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Preface

As part of its on-going activities to foster research in undergraduate mathematics education and the dissem-
ination of such research, the Special Interest Group of the Mathematics Association of America on Research
in Undergraduate Mathematics Education (SIGMAA on RUME) held its twenty-second annual Conference
on Research in Undergraduate Mathematics Education in Oklahoma City, Oklahoma from February 28 -
March 2, 2019.

The program included plenary addresses by Dr. Dan Battey, Dr. Vilma Mesa, and Dr. Mike Oehrtman,
and the presentation of 134 contributed, preliminary, and theoretical research reports and 77 posters.

The conference was organized around the following themes: results of current research, contemporary
theoretical perspectives and research paradigms, and innovative methodologies and analytic approaches as
they pertain to the study of undergraduate mathematics education.

The proceedings include several types of papers that represent current work in the field of undergraduate
mathematics education, each of which underwent a rigorous review by two or more reviewers:

- Contributed Research Reports describe completed research studies

- Preliminary Research Reports describe ongoing research projects in early stages of analysis

- Theoretical Research Reports describe new theoretical perspectives for research

- Posters are 1-page summaries of work that was presented in poster format

The conference was hosted by Oklahoma State University and the University of Oklahoma.

Many members of the RUME community volunteered to review submissions before the conference and
during the review of the conference papers. We sincerely appreciate all of their hard work.

We wish to acknowledge the conference program committee for their substantial contributions to RUME
and our institutions. Without their support, the conference would not exist.

Finally, we wish to express our deep appreciation for Dr. William “Bus” Jaco and Mathematics Learning
by Inquiry for their support in organizing and funding the conference. Their support enabled us to have our
conference and support our community.

Aaron Weinberg RUME Conference Organizer
Deborah Moore-Russo, RUME Conference Local Organizer
Megan Wawro, RUME Program Chair
Hortensia Soto, RUME Coordinator
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Jonathan Lòpez Torres

Reasoning covariationally to distinguish between quadratic and exponential growth . . . . . . . . . . . . . . . . 1048
Madhavi Vishnubhotla, Teo Paoletti

First-year mathematics students’ view of helpful teaching practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055
Kristen Vroom, Jessica Gehrtz, Tenchita Alzaga Elizondo, Brittney Ellis, Naneh Apkarian, Jess
Ellis Hagman

Poster Reports

Contextualized instruction as a motivational intervention in college calculus . . . . . . . . . . . . . . . . . . . . . . 1061
Enez Akbuga

Towards better mathematics teaching assistant preparation in graduate programs . . . . . . . . . . . . . . . . . 1063
Aida Alibek

Like it or love it: Exploring elements a↵ecting student’s mathematical achievement . . . . . . . . . . . . . . . . 1065
Ezell Allen, Leigh Harrell-Williams

Exploring connections between students’ representational fluency and functional thinking . . . . . . . . . . 1067
Nigar Altindis, Nicole Fonger

Faculty and undergraduate students’ challenges when connecting advanced undergraduate
mathematics to school mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069

James A. Mendoza Àlvarez, Elizabeth Burroughs

Developmental mathematics students’ reactions to a novel tutoring program . . . . . . . . . . . . . . . . . . . . . . 1071
Geillan Aly, Larissa Schroeder

An inquiry-oriented, application-first approach to linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073
Tom Asaki, Heather Moon, Marie Snipes

Observing active learning in mathematics classes: Do we have the right tool? . . . . . . . . . . . . . . . . . . . . . 1075
Amy Been Bennett

Predicting final grades in calculus using pre- and early-semester data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077
Steve Bennoun, Matthew Thomas

Mathematical knowledge for teaching in chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
Kristen Bieda, Lynmarie Posey, Charles Fessler, Pamela Mosley

Students’ views of the relationship between integration and volume when solving second-semester
calculus volume problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081

Krista Kay Bresock, Vicki Sealey

Exploring remedial math through a number course for preservice teachers . . . . . . . . . . . . . . . . . . . . . . . . 1083
Rachael Ericksen Brown, Michael Tepper

Students’ proving as a collaborative work-in-progress: The case of a graduate course in topology . . . . 1085
Wenrui Cai, Igor’ Kontorovich

What content is being taught in introductory statistics?: Results of a nationwide survey . . . . . . . . . . . 1087
Samuel Cook, Robert Sigley, Dana Kirin, Sheri Johnson, Asli Mutlu

xv



Assessing conceptual learning in calculus I: Preliminary results and future ideas . . . . . . . . . . . . . . . . . . . 1089

Beth Cory, Taylor Martin

Connecting constructs: Coordination of units and covariation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091

Andy Darling, Cameron Byerley, Steven Boyce, Brady Tyburski, Je↵rey Grabhorn

Understanding calculus students’ thinking about volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093

Tara Davis, Roser Ginè
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The SIGMAA on Research in Undergraduate Mathematics Education (RUME) community 

recently had to grapple with issues encountered as a result of California state law, which states 
that, “California must take action to avoid supporting or financing discrimination against lesbian, 
gay, bisexual, and transgender people” (California Assembly Bill No. 1887, 2016). In effect, this 
law prohibits California state-funded travel to other states which have religious freedom laws 
that are viewed as discriminatory to lesbian, gay, bisexual and transgender (LGBT) individuals. 
On June 22, 2018 Oklahoma was added to the list of states where travel was prohibited, due to a 
newly enacted law SB 1140. This law states that child-placement agencies will not be required to 
place a child in adoption or foster care in situations that “violate the agency’s written religious or 
moral convictions or policies” (Oklahoma Senate Bill No.1140, 2018). The enactment of SB 
1140 and the prohibited state-funded travel meant that some members of the RUME community 
would be unable or unwilling to travel to the 2019 and 2020 RUME conferences, which were 
slated to be held in Oklahoma.  

The SIGMAA RUME Executive Committee decided to respond to this issue while 
attempting to uphold the SIGMAA on RUME’s principles of equity and mentorship, to address 
previously contracted financial obligations, and to instill fairness and transparency within the 
RUME community. As a result of conversation with the Oklahoma organizing committee, the 
RUME Executive Committee decided to host the 2019 Conference in Oklahoma but to relocate 
the 2020 SIGMAA RUME Conference. On October 13, 2018 the Executive Committee 
communicated this decision in an email sent to the RUME listserv and read in part: 

The SIGMAA RUME EC has had several difficult discussions among ourselves, as well 
as with the Oklahoma planning committee regarding how this impacts our community 
especially given our equity statement, which explicitly states that as an organization we 
will respect our LGBQTA+ members. As such, have decided that, in the context of the 
California travel ban, having our conference in Oklahoma in 2020 would violate this 
statement. We very much want to also honor our equity statement and strongly believe 
that having the 2020 SIGMAA RUME conference in Oklahoma would send the wrong 
message to our LGBQTA+ SIGMAA RUME members. Given we very much want to 
support all of our members, we have decided to not have the 2020 SIGMAA RUME 
conference in Oklahoma. At the same time we want to honor our initial commitment to 
our Oklahoma members who have been working hard to plan the 2019 SIGMAA RUME 
conference – as such the 2019 conference will still be in Oklahoma. 
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This initial communication sparked a rapid dialogue, resulting in 23 posts to the listserv in 
less than two days (as well as numerous non-listserv communications) before posting was 
suspended for a short duration. In an effort to address the concerns via the listserv and foster a 
positive and affirming SIGMAA RUME community, the Executive Committee created an Ad 
Hoc Committee for the Advancement of Lesbian, Gay, Bisexual, Transgender, Queer, Intersex, 
and Asexual (LGBTQIA+) Inclusion in the RUME Community. The committee was formed via 
nominations of willing and interested researchers in the community, representing both 
individuals within and outside the LGBTQIA+ community. The authors of this executive 
summary comprised the members of this committee, and they were charged with creating a 
proposal for incorporating activities and/or sessions into the 2019 conference that would promote 
education about—and discussion of—issues related to the participation of LGBTQIA+ 
colleagues and students in our research community in particular and in our society in general.  

The ad hoc committee met on several occasions to determine the focus and intent of the 
activities, to draft a list of recommendations, and to plan for their implementation. One of the 
initial considerations addressed was how broadly to implement issues of inclusivity at the 
conference. For instance, the committee considered focusing on inclusivity and marginalization 
generally, to include activities on how these may be experienced by women, scholars of color, 
those in the religious minority, etc. Yet, for this conference, the committee decided to keep it 
focused on LGBTQIA+ issues because it was directly related to the charge of the committee, 
helped ground conversations in particular experiences, and provided a common thread 
throughout the activities.  

LGBQTIA+ Activities and Sessions 
In this paper, we showcase the recommendations proposed by the committee, the rationale 

behind such efforts, and a discussion of how they were implemented at the conference. Our hope 
is that by sharing these efforts others can learn and implement similar practices at other 
conferences, in departments, at their institution, etc.  

Opening Session to Address LGBTQIA+ Issues 
The SIGMAA RUME conference opened with a session that included a panel who 

specifically addressed LGBTQIA+ issues. Incorporating this panel into the well-attended 
opening session set a tone concerning these issues and opened a dialogue for the remainder of the 
conference. Keeping the SIGMAA RUME equity statement in mind, the opening session was 
framed around this statement. SIGMAA RUME’s Position Statement on Equity “reflects the 
commitments and perspectives of the community in advancing equity in undergraduate 
mathematics education with respect to: 1) participation within the community; 2) teaching 
practices; and 3) research. For purposes of this document, equity is defined as a state in which all 
participants are enabled to fully participate and become successful in a community of practice” 
(Committee on Equity, 2018, p. 1). Therefore, the panel of testimonials or narratives was geared 
towards equity researchers, RUME faculty, and students. The overarching questions addressed 
by the panel included:  

• How does identifying within the LGBTQIA+ community impact your experience in 
RUME?  

• How does identifying within the LGBTQIA+ community impact your experience in 
mathematics classes?  

• How does your research agenda impact the LGBTQIA+ community and your pursuits 
as a scholar? 
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As such, the panel included both in-person sharing and written testimonials that were 
submitted prior to the conference and projected for conference attendees to see and read in 
silence. Both senior and junior members of the community shared testimonials about their 
experience as LGBTQIA+ RUME members. These testimonials of such participants included 
comments on making career decisions based on safety and livelihood, on monitoring or tracking 
their feelings of inclusion within the community, and on the emotional impact of discriminatory 
laws in both the U.S. and abroad. One of the panelists shared that as a first-time conference 
attendee it was important for them to see the efforts to promote inclusivity at the conference, 
since their first exposure to the community was through the email listserv exchange. Another 
panelist shared that although they didn’t share about their personal life, it was important to them 
to serve on the panel in order to share how they constantly monitor/assess ways in which they 
feel safe and included in situations and ways in which they feel marginalized and at-risk. 
Another panelist shared the emotional toll of not seeing members of the community at the 
conference because of the travel ban and expressed their struggle with how we as a community 
should address this topic.  

 

 
Figure 1. Opening session participants and Committee members 

Finally, a set of testimonials from others within the community, students and equity 
researchers were projected on the screen. The ad hoc committee decided not to read aloud the 
testimonials of those who submitted written responses, as we believed that it would be 
inappropriate to voice their words and experiences when they are not our own. Rather, these 
testimonials were projected and read quietly by audience members. Those who could not view 
the testimonials were welcomed to stand and come forward for a closer view. To use the old 
idiom, you could have heard a pin drop; the silence was all-encompassing. The session was 
attended by well over 200 people and ended in a standing ovation. The remaining conference 
activities capitalized on this energy, providing a space for attendees to engage in deeper 
conversations about LGBTQIA+ issues and inclusivity in general.  
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Wall of Identity 
As mentioned, the opening session with testimonials provided a window into the 

vulnerability and the human endeavor of research; this seemed to help others connect and share 
their journey with the RUME community. In order to allow all conference participants to share 
such experiences, a “wall of identity” was created to feature the printed versions of the written 
testimonials and block paper for others to respond to the following prompt: “Please feel free to 
share how your identity (e.g., who you are) has impacted your experiences with the RUME 
community or your interactions at this conference.” This prompt allowed what are sometimes 
less visible or public experiences to become part of the communal dialogue, and the wall was 
actively contributed to throughout the conference.  

  

 
Figure 2. Wall of Identity 

On the Wall of Identity, over 50 people described their experiences in RUME, shared how 
their identities impact their participation in the RUME community, and responded to others’ 
concerns. Many of these experiences shared on the Wall of Identity resonated with others and led 
to a chain of people commenting. Some of the themes that were shared on the wall related to 
feelings of imposter syndrome, to feelings of isolation, and to the lack of representation 
Individuals shared the ways in which their identity led to racialized experiences in RUME, 
gendered experiences in RUME, and differential involvement as a parent. Additionally, several 
members shared that they felt like peripheral members of the community because of a research 
focus in community college, developmental mathematics, or equity. There were also general 
positive experiences in RUME expressed such as admiration for the RUME community and 
feeling welcomed at the conference. Finally, the wall included statements from an individual 
recognizing their privilege as a straight white cisgender man in RUME.  
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Coffee Break Dialogue Sessions 
In addition to the wall of identity, a series of targeted questions were posted at each of the 

conference breaks along with poster paper to allow participants to express and expand on their 
views, understandings, and knowledge base of LGBTQIA+ issues. These questions were 
designed to align with the ongoing activities at the conference and to allow individuals to 
continue the conversation about LGBTQIA+ issues throughout the entire conference. The set of 
questions included the following:  

  
Table 1. Coffee break dialogue prompts  
Break 
Session 

Question Prompt 

One What ideas resonated with you, or what insights did you gather as a result of 
attending the panel discussion about LGBTQ+ issues?   

Two What might be potential challenges as it relates to critically engaging with and/or 
discussing LGBTQ+ issues?  
What has been or could be the most helpful mechanism to assist you with 
supporting LGBTQ+ mathematics students? 

Three What were your takeaways from the Faculty LGBTQ+ Ally critical discussion? 
What resources or support systems are needed in your 
community/institutional/departmental space to truly advocate for LGBTQ+ 
inclusivity? 

Four How might you redesign one of your mathematics lessons, examples, or projects to 
(further) engage with LGBTQ+ issues? 
How might your research projects, tasks, etc. (better) attend to LGBTQ+ issues? 

Five How might these critical conversations about LGBTQ+ inclusivity benefit the 
RUME community? 
What are potential next steps for advancing LGBTQ+ inclusivity in RUME?   

  
The questions posted at each of the breaks helped to keep transformative conversations about 

LGBTQIA+ issues occurring throughout the conference. For example, an instructor shared that 
one way to support LGBTQIA+ students was to humanize the subject of mathematics to promote 
relational interactions with students. This discussion shows the synergy of having these coffee 
break questions woven throughout the conference since the questions about LGBTQIA+ 
inclusion linked well with one of the plenary sessions on equity “for all” and relational 
interactions.   

Name Badges and Pronouns 
Beginning with the 2017 RUME conference in San Diego, space was added on name badges 

to allow for participants to enter in their pronouns (e.g., they/them/theirs, he/him/his, 
she/her/her). This practice (GLSEN, n.d.) helps support inclusive spaces at the conference by 
allowing individuals to be referred to by their self-selected pronouns and conveys that the 
conference organizers are open and accepting of non-binary or non-traditional pronouns. 
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Gender Inclusive Restrooms 
Often times there are not gender-inclusive restrooms at conference locations, or these are not 

easily accessible or clearly indicated for participants to find. This can present a barrier and 
challenge for transgender and non-binary individuals who are uncomfortable using gendered 
restrooms (e.g., men’s, women’s). To address this issue, gender-inclusive restrooms were created 
by re-labeling the gendered restrooms to be all gender restrooms This proved to be especially 
impactful because the inclusive restrooms were central to the conference activities and they were 
the primary restrooms available. One participant during the coffee break discussion pointed out 
that the gendered restrooms were inconveniently located further from the main conference 
rooms, and so those wishing to use such restrooms were inconvenienced in a way that many 
members of the LGBTQIA+ community feel every day by not being welcomed to use the 
restroom of their choice.  

  

 
Figure 3. Gender Inclusive Restrooms 

Having gender-inclusive restrooms generated several discussions throughout the conference 
regarding restroom availability for transgender individuals, feelings of unsafety for women, and 
the privilege experienced by many cisgender individuals. In a post-conference survey, 11 out of 
52 open-ended responses to the LGBTQIA+ activities focused on the gender-inclusive 
restrooms. Over half of these expressed concern with how the restrooms were announced and 
updated (e.g., first the women’s restroom was updated, and then a few hours later the men’s 
restroom was updated) and concern with availability of gender-specific restrooms. One 
participant expressed concern that re-labeling the men’s restrooms as gender-inclusive is 
problematic since they also had urinals present, which they expressed as problematic for fear of 
being exposed to a colleague’s genitalia. This participant suggested that the urinals could be 
marked off as “out of order” during the conference. Another suggestion was to clearly label what 
is inside the restroom (e.g. 5 urinals and 6 stalls) so individuals can choose which restroom they 
desire. Another participant expressed concern using a restroom with a man present, because a 
man in the women’s restroom could be a potential sexual assault. The ad hoc committee does not 
have definitive answers as to what would be the best practice for restroom access for future 
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conferences; however, we hold steadfast to the necessity of having gender-inclusive restrooms 
available and easily accessible for conference participants.  

Safe-Space Training 
In order to promote education, our intention was to partner with the local LGBT and Gender 

Center to offer safe-space training during the conference. Due to scheduling conflicts, this was 
not able to be offered in its entirety and instead there was a lunch session that promoted a critical 
discussion on being an ally for LGBTQIA+ colleagues and students. This session was attended 
by 10-15 participants and provided a space for unpacking the series of events at the conference 
as well as discussing issues of teaching and mentoring LGBTQIA+ students. Participants in 
attendance expressed that having a space to learn about issues, unpack conference events, discuss 
personal struggles, and get practical advice was a helpful. They also appreciated the space to 
have such conversation that were separate from the research focus of other sessions. Therefore, 
the ad hoc committee posit that there is a need to have sessions and programming efforts that 
offer education as well as informal spaces to discuss our practices and lived experience at future 
SIGMAA RUME meetings.  

Anonymous Feedback Platform 
An anonymous feedback platform was created for participants to ask questions. The purpose 

behind having this anonymous platform was to allow individuals to ask questions that they may 
feel uncomfortable asking in a group setting. That way, the ad hoc committee could respond to or 
post their feedback for other conference attendees to see. With this platform, a total of 13 
responses were received throughout the conference ranging from general positive affirmations of 
the activities, questions about how to address gendered language when calling on people (e.g., 
yes, ma’am?), and suggestions for revising the equity statement to address the inclusion of 
developmental mathematics constituents and K-12 practitioners.  

Other Efforts 
There were several other efforts that were undertaken to promote inclusion at the conference. 

These included having a letter writing campaign to the state legislature, having a social hour at a 
local LGBT bar, and connecting with local LGBT organizations and student clubs such as Out in 
STEM (oSTEM).  

Participant Reactions 
In an effort to assess the impact and effectiveness of the previously mentioned activities, 

several survey questions were included in a post-conference survey distributed to all participants. 
There were a total of 155 survey responses, with 150 that included responses to questions about 
the LGBTQIA+ activities and sessions. Asked to what extent they appreciated the inclusion of 
the LGBTQIA+ activities at RUME out of the 151 responses to this question, 54% of 
respondents supported including all of them and 23% supported including some of the activities 
but neutral to others (see Figure 4). Only 3% of respondents did not support including most or all 
of the activities and sessions. Of the remaining respondents, 13% were neutral about most of the 
activities and 8% supported some activities but did not support others. Given the listserv catalyst 
for the creation of this committee, these results help provide context that a majority of RUME 
participants are supportive of including activities that address issues of identity and inclusion at 
the conference. In fact, 15 of the 52 open-ended responses discussed a desire for including 
activities at the next RUME conference that addressed issues of identity and marginalization of 
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other groups of individuals (e.g., people of color, undocumented students, people with a 
disability, women).  

Figure 4. RUME conference participants response (n=151) indication appreciation of LGBTQIA+ activities. Due to 
rounding the percentages total greater than 100%. 

Asked which of the activities or sessions participants (n=129) found the most helpful for 
facilitating learning and discussion about LGBTQIA+ issues (see Figure 5), the most indicated 
sessions were the introductory panel of testimonials (100), the wall of identity (62), the pronouns 
on name tags (56) and the gender inclusive restrooms (54).  

  

 
Figure 5. Response counts from 129 participants to the activities and sessions that were most helpful in facilitating 

learning and discussion about LGBTQIA+ issues. 

Participants (n=151) were also asked how the activities and sessions impacted their 
understanding of LGBTQIA+ issues and experiences, resulting in 25% expressing a lot, 57% a 
little, and 18% not at all. The fact that a plurality of participants grew in their understanding of 
LGBTQIA+ issues suggests that the educative goals of this committee were supported by 
conference activities. Participants (n=150) were also asked how the sessions created 
opportunities for discussion about LGBTQIA+ participation, resulting in 45% expressing a lot, 
46% a little, and 9% not at all. These results indicate that the vast majority of participants saw 

22nd Annual Conference on Research in Undergraduate Mathematics Education 8



opportunities in the activities to discuss with other participants about LGBTQIA+ participation 
in RUME. Based on these results, a majority of participants found the activities and sessions 
encouraging discussion and promoting understanding of LGBTQIA+ issues and experiences, 
which was the charge of the committee.  

Reflections on the Initiatives  
The activities and sessions mentioned in this article are not an exhaustive list of the ways in 

which inclusivity within the RUME community can be promoted, but they are a start in 
recognizing the humanity and dignity of our colleagues and friends. The activities implemented 
at RUME 2019 included:  

• The opening session to address LGBTQIA+ issues,  
• The wall of identity,  
• Coffee break questions and dialogue, 
• Pronouns on name badges, 
• Gender-inclusive restrooms, 
• A safe-space training, 
• An anonymous online feedback platform, and 
• Other local informal efforts. 

Additionally, all of these efforts helped to promote discussions within and outside the formal 
conference program, with participants discussing how the issues shared related to their identity 
within the field. Our hope is that by engaging in these discussions, experiencing vulnerability 
and empowerment, we can support each other to allow all members to engage fully within the 
SIGMAA RUME community. 
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Understanding and Enacting Organizational Change: An Approach in Four Frames 
 

 Naneh Apkarian Daniel L. Reinholz 
 Western Michigan University San Diego State University 

This paper reports on an instance of change in a university mathematics department which 
revitalized and improved their precalculus/calculus program by implementing a series of 
strategies, techniques, and programs which are supported by educational research. Using the 
Four Frames perspective for organizational culture (Bolman & Deal, 2008; Reinholz & 
Apkarian, 2018), we explore how the dimensions of structures, symbols, people, and power 
support a rich understanding of how the department’s culture supported and constrained the 
change initiative. We do so both generally speaking, for the entire initiative, and more in depth, 
regarding the development of a course coordination system. Furthermore, this case study 
suggests the utility of these four frames for change agents elsewhere as a tool to support the 
design and enactment of successful and sustainable change towards the improvement of, 
specifically, undergraduate mathematics education. 
 
Key words: Institutional change, departmental culture, course coordination 

Objectives & Purpose 
For decades, education researchers, professional societies, and government agencies have 

called for educational reform in introductory undergraduate STEM courses. Many of these calls 
point specifically to the implementation of research based instructional strategies and programs 
(National Research Council, 1999, 2013; Saxe & Braddy, 2015). Although there are numerous 
examples of improvement initiatives, they have not had a sustained impact at the desired scale. 
Commonly cited reasons for the lack of success are inadequate attention to theories of change 
and local cultural context (Borrego & Henderson, 2014; Elrod & Kezar, 2016; Henderson, 
Beach, & Finkelstein, 2011; Kezar, 2014).  

This paper has two main goals: (1) to help introduce the RUME community to research from 
organizational change, and (2) expand such research by further contextualizing it to the 
discipline of mathematics, which is not a typical research area for organizational change. 
Through these goals, we hope to contribute to a conversation with the RUME community on 
how to sustainably improve undergraduate mathematics education. To achieve these goals, we 
present a case study of change in a university mathematics department which implemented 
research-based programs to support student success over a period of several years. We present a 
story of this change which attends to the cultural aspects of the department which supported and 
constrained the initiative using the four frames model (Bolman & Deal, 2008). Our results 
suggest strategies for enacting sustainable changes in undergraduate mathematics. 

Theoretical Framing & Perspective 
The Four Frames perspective originated in organizational science (Bolman & Deal, 2008) 

and was adapted for undergraduate STEM department contexts by Reinholz and Apkarian 
(2018). In this perspective, culture is defined as “a historical and evolving set of structures and 
symbols, and the resulting power relationships between people” (Reinholz & Apkarian, 2018, p. 
3). This definition highlights four interrelated dimensions of institutional culture as well as 
acknowledging that culture is historical and ever-evolving. Table 1 summarizes the definitions of 
each dimension and how they can relate to both the products and process of change – analytically 
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and for design purposes. In general, structures refer to observable mechanisms which determine 
how members of a community interact (e.g., meeting structures, teaching assignments, 
committees). Symbols include espoused beliefs, underlying assumptions, and shared values (e.g., 
mathematics is the purest discipline; precalculus is taken by non-majors) which are generally 
used by community members to guide their reasoning and give purpose to structures. The people 
frame focuses on the importance of recognizing individuals within a community, who bring their 
own lens, goals, needs, and identities to bear on their interactions with others in the community. 
The power frame brings to the fore ideas of how explicit hierarchies and implicit status or 
positioning influence community interactions and decision making. 

 
Table 1. Definitions and aspects of the products and process of change according to the four frames perspective. 
Adapted from Reinholz and Apkarian (2018, p. 6). 
 Description Aspect of product Aspect of process 
Structures Roles, responsibilities, 

routines, etc. which 
organize how people 
interact 

A new thing that addresses 
an issue in an ongoing and 
sustainable way 

Create incentives and 
support for individuals 
to engage in the change 
process and new things 

Symbols Cultural artifacts, 
language, myths, and 
values that community 
members use to guide their 
reasoning 

Attitudes and beliefs that 
support a proposed change 
so that it is optimally 
taken up 

Use language, data, 
and evidence that align 
with present ways of 
thinking 

People Individuals within the 
community and their 
individual needs, goals, 
and identities 

Solutions that embody a 
shared vision which 
attends to the needs goals, 
and identities of many 
within the community 

Afford individuals 
agency and ownership 
of the direction of the 
change initiatives 

Power Status, control, position, 
control, and political 
coalitions which mediate 
interactions between 
people 

Leadership structures that 
promote equity by 
attending to the needs of 
diverse stakeholders and 
participants 

Use concrete signs of 
success to develop and 
maintain the sanction 
of key stakeholders 

 
In this study, we use the four frames to understand the products and process of change in a 

single department during a major improvement initiative. This allows for a robust story which 
addresses many interrelated aspects of change and culture, and how various aspects of 
departmental culture supported or constrained the efforts of change agents. Our experience 
suggests that the four frames perspective is valuable for change agents when planning and 
evaluating their own initiatives to increase the likelihood of sustained success.  

Methodology 
This three-year study took place in a mathematics department at a large public university 

(LPU) while the department enacted a major change initiative to align their precalculus and 
calculus courses with the findings of a national study of successful programs in college calculus 
(Bressoud, Mesa, & Rasmussen, 2015; Rasmussen, Ellis, Zazkis, & Bressoud, 2014). This paper 
reports on one part of a deep case study of the change initiative. Data for this paper comes from 
30 interviews with 22 members of the department and university at large, several of whom were 
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interviewed at yearly intervals. These were semi-structured interviews, consisting of a core set of 
questions related to each participant’s role in and perception of the mathematics department, 
introductory mathematics sequence, and ongoing change initiative. Observations of departmental 
meetings and online surveys served to contextualize each interview.  

Interviews were analyzed using thematic analysis (Braun & Clarke, 2006; Miles & 
Huberman, 1994). The first phase of data familiarization, informed by the four frames 
perspective, provided a starting list of codes. Iterative rounds of tagging and coding data served 
to revise the coding scheme by developing new codes as ideas emerged across interviews, then to 
merge and combine these codes into a refined set. Once code clusters were developed, the data 
was re-examined to identify themes. The validity of these themes was examined using multiple 
qualitative validity testing procedures. This included triangulation with other data sources from 
the study, member-checking with a subset of the study’s participants, peer debriefing for 
sensibleness of interpretation, and searching through the interviews for confirming and 
disconfirming evidence (Creswell & Miller, 2000; Lincoln & Guba, 1985; Miles & Huberman, 
1994). These themes were then turned into thick descriptions, rich narratives of the themes which 
include quotations and context supporting each of the major ideas. The emerging themes were 
also considered in light of the four frames perspective, and a condensed version of these framed 
narratives is presented next. We also include a more detailed review of the implementation of a 
course coordination system, a complex undertaking which connected to many different 
structures. 

Results – General Overview 
The change initiative at LPU aimed to implement new structures to better support students. 

These included a new course coordination system, more systematic review and use of local data, 
the development of a GTA teaching preparation program, the implementation of active learning 
in GTA-led recitation and lab sessions, a new adaptive computer system for placing students into 
appropriate courses, and the development of a new and more dedicated tutoring center 
specifically for mathematics. These structures were successfully implemented. The pre-existing 
structures at LPU included high enrollment precalculus/calculus courses, which were taught 
primarily by lecturers with some tenure-track faculty involvement. During the change, each 
course was assigned a dedicated coordinator who holds a tenured or tenure-track position in the 
department of mathematics and teaches the course each term, alongside lecturers and other 
faculty. Change agents at LPU took advantage of the registrar’s regulations to re-define the 
course as a lab course, which provided an extra contact hour a week in addition to the weekly 
recitation section without increasing the credit load of the course, so as not to interfere with 
credit limits that affect tuition. The implementation of a coordination system, consisting of 
uniform course elements (e.g., textbook, homework, exams) is one of the central changes to the 
ways in which the department functions in relation to the precalculus/calculus course sequence at 
LPU. The new structures have been implemented as a system, and the interlocking pieces of the 
system amplify the effectiveness of each program for supporting student success. The 
interlocking nature of the new system also increases the likelihood of sustainability, as the pieces 
depend on each other so discontinuing any one feature will affect the others. 

There was no explicit attempt to change what Reinholz and Apkarian (2018) consider to be 
symbols, though some department members indicated that they hoped some shifts might occur 
organically. A pervasive belief that students in mathematics courses at LPU were unprepared at 
every level supported the implementation of a change initiative, as generally everyone in the 
department agreed that something needed to be done. Attitudes toward the calculus sequence are 
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that it is a service sequence, primarily taken by non-mathematics majors and offered as support 
for other STEM departments. Some department members take this up as a duty to support 
applied science students, while others see their duty as “weeding out” those who will not succeed 
in rigorous scientific programs. This attitude means that department members do not have as 
much interest in the details of how precalculus/calculus are taught as compared to graduate 
courses or upper division courses taken by majors, which limited the intensity of pushback to the 
initiatives. Another major aspect of the department culture from the symbols perspective is a 
strong belief in pedagogical autonomy and instructor independence, which made the 
implementation of a course coordination system more challenging. However, this was mitigated 
by the large number of lecturers teaching in the course sequence, and by strategic teaching 
assignments which moved resistors to other courses. This belief about pedagogical autonomy 
impacted the nature of the coordination system as well, in that the system primarily focused on 
uniform course elements while instructional change was pushed to graduate students teaching 
recitation sections. 

The power frame highlights hierarchies within LPU and the effect of these on the change 
initiative. Change agents positioned their intentions in line with the university’s strategic plan, 
and thus leveraged institutional power to gather resources and support from stakeholders in the 
administration. Within the department, contingent faculty have less power and respect than 
tenured and tenure-track faculty. One effect of this power dynamic is that, although some 
lecturers frequently teach multiple sections of precalculus and calculus, they were not included in 
the initial discussions nor planning phases of the change initiative. That these faculty bore the 
brunt of the coordination system reduced pushback from tenured and tenure-track faculty about 
the coordination, and in fact the few tenured faculty who taught in the new coordination system 
were the most difficult for the coordinator to keep in line. Graduate students are at the bottom of 
the teaching hierarchy, and they have been a major part of the change initiative – perhaps in part 
because they are the most pliable due to their roles in the department. The new coordination 
system has added to the positional leadership hierarchy, as they control over many aspects of the 
teaching of precalculus/calculus courses and their input on teaching assignments is taken under 
consideration by the department chair.  

 Finally, the people frame brings into focus the roles of individuals within the collective 
department community. Pre-tenure faculty have increased pressure and expectation to publish, 
and it is generally agreed that they will spend less time working on instruction or teaching 
professional development, particularly in regards to lower-division undergraduate courses. 
Contingent faculty at LPU are primarily part-time, and have external pressures as many of them 
work at other jobs (e.g., local two-year colleges). Additionally, they do not have service 
expectations at LPU. These contribute to their identity as not being LPU-centric, and they are 
less likely to participate in decision-making or committee service. There are also idiosyncratic 
power issues. For example, one coordinator feels strong ownership of the course he coordinates, 
responsibility to the students, and works tirelessly to achieve and share successes with the new 
initiatives. Another coordinator feels this is simply another service assignment, has little belief 
that the changes will make a significant difference, and does not dedicate as much time to the 
role. This has affected the perspectives of other faculty teaching the respective coordinated 
courses, and highlights the importance of clear and dedicated leadership. In light of the wide 
variety of people and opinions within the department, the change initiative was first outlined by a 
group of faculty with diverse research interests and attitudes about students, teaching, and 
learning. This task force negotiated many details of the planned initiatives before a departmental 
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vote, and in doing so avoided some of the pitfalls which might have led to a shutdown. This 
included the initial scope of the coordination system, and who would take on the bulk of the new 
strategies for instruction. 

Course Coordination 
The implementation of a course coordination system at LPU was a major feature of the 

change initiative under study, and provides a rich context for exploration using the four frames. 
Course coordination is also of particular relevance to mathematics departments across the 
country, with many universities expressing interest and recommendations for increased 
coherence from research and policy documents (Apkarian, Kirin, Vroom, & Gehrtz, under 
review; National Research Council, 2013; Rasmussen et al., in press, 2014; Saxe & Braddy, 
2015). Prior to this change initiative, the P2C2 courses at LPU were entirely under the purview 
of individual instructors, to the extent that when multiple instructors taught a particular course in 
a single term they might each select a different textbook. Therefore, the implementation of a 
coordination system including uniform textbooks, common assignments, and common exams 
was a major change to the status quo for instructors. In terms of structure, the coordination 
system changed how people in the department interacted around P2C2 courses; cultural symbols 
affected how and how quickly this system could be implemented; individual people and their 
personal histories were leveraged in the design and roll-out of the system; and the leveraging of 
power, both formal (in the case of the chair) and informal (in terms of relative status). 

When the idea of coordinating the P2C2 courses was first floated in the department, it was 
met with heavy resistance. Some of this resistance came from a widespread and entrenched 
belief in the importance of instructor autonomy. There were also individuals in the department 
whose personal identity and individual experiences impacted their ideas about coordination – 
some were open to the idea of insisting that others use their materials, but were unwilling to use 
others’. There were also a variety of opinions related to change in general. The department 
generally agreed that students were entering and exiting the P2C2 courses without the desired 
conceptual understandings and procedural skills, so were somewhat open to the general idea that 
some improvement was needed. Individuals within the department viewed the problems through 
their own idiosyncratic lenses, leading to a range of proposed strategies for improving outcomes. 
The department chair organized a calculus task force, composed of faculty representatives of 
several viewpoints, which counted as departmental committee service for those involved. This 
group considered various suggestions and concerns related to each proposed new structure, 
including the implementation of course coordinators, uniform course elements, and regular 
meetings for instructors in the P2C2 courses. As a group, they rejected, accepted, and adapted 
these ideas to find something palatable to all. The development of a shared conception, agreed 
upon by so many already, smoothed the path to a wider departmental vote in favor of 
coordinating Precalculus, Calculus 1, and Calculus 2. The lower status of lecturers also 
contributed to the implementation of course coordination, as it was suggested that faculty 
coordinators would make decisions that lecturers needed to follow, rather than faculty telling 
other faculty what to do. It seems that this contributed to the passage of the faculty vote. A final 
contributing factor to the task force, and then the department, agreeing to course coordination 
courses was the general view of the P2C2 sequence as a set of service courses taken primarily by 
non-mathematics majors. As the major impact would be to non-majors, faculty in the 
mathematics department were less concerned about what topics needed to be covered and how 
than they might be for courses which directly lead students into upper-division mathematics 
electives. Thus, the design of a new structure (coordination system) involved the development of 
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a shared vision across many people, leveraging an existing structure (department committees). It 
came to be, in part, because of the existing power dynamics (relative status of lecturers) and 
beliefs and values that are highlighted by the symbols view (P2C2 as service courses, frustration 
with existing course outcomes).  

In the first implementations of P2C2 course coordination at LPU, there were areas for 
improvement. For example, during the first term, the course coordinators did not yet have a 
robust system for communicating with the other instructors about the content and format of the 
exams they were writing, which resulted in drastic differences in scores from section to section. 
As a result, instructors refused to abide by a common grading scheme and made adjustments to 
their students’ scores to reflect the variation in what had been covered and how in their 
respective courses. The lines of communication between coordinators, instructors, and GTAs 
allowed this issue to be brought up quickly and discussed openly, leading to a new protocol for 
sharing and collaborating on the writing of midterm and final exams. Communication was a 
general challenge during the roll-out of the changes at LPU, one that is increasingly being 
addressed. Aside from the course coordinators, all of whom were tenured faculty, only three 
faculty members taught P2C2 courses in the first two years of coordination (in total, there were 
three coordinators, three other faculty, and nine lecturers). Two of these three were unhappy with 
their lack of control, and refused to go along with all the coordinators’ decisions. In response, the 
department chair (who promoted the change initiative) has made efforts to assign those faculty to 
other courses in the foreseeable future, leveraging his official powers in the department. 

Given the previous discussion of concerns, one might assume that the effort to implement 
course coordination would fail. To date, however, the coordination is in place. Certain aspects of 
the department and institution’s culture were strong enough to overcome the concerns of a few. 
The aforementioned belief that the pre-existing P2C2 courses were not sufficiently preparing 
students was part of this, with many faculty members willing to test the new system thoroughly, 
especially as one of the coordinators repeatedly voiced his belief that students were doing better, 
on harder exams, than they did previously. His insistent presentations to the department of early 
wins and markers of success, including better attendance, fewer instances of cheating, and 
increased performance helped the initiative maintain its course. The course coordination system 
also supported the work of GTAs and the tutoring center, as all students in a given course were 
grappling with the same material at the same time. This did not go unnoticed by those working 
with the GTAs or at the tutoring center. Additionally, instructors noted that the consistency of 
the P2C2 courses made teaching any course with P2C2 prerequisites more straightforward, as 
they could be assured that students had seen certain material presented in a certain way, and 
using the same textbook. Administrators, who had been supportive and secured some of the 
necessary funding for the larger initiative, have also continued to support the coordination of 
courses for a variety of reasons – all of which contribute to the department-at-large’s interest in 
maintaining course coordination. Over the next few years, the effects of the overall initiative, and 
course coordination, on long-term metrics such as persistence, completion rates, and time-to-
degree will be measured and use to more appropriately gauge the successfulness of these 
changes.  

Discussion & Significance 
This brief paper provides an example of how the four frames can be used to capture the 

complexity of department-level change over a number of years. The change initiative we studied 
was largely successful, making numerous and, as yet, lasting changes in the department. The 
change process began with a taskforce that helped create a common vision for the department. 
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This vision was enacted through a variety of structures and the creation of an integration 
coordination structure. Rather than quick fixes, these large structural changes are new aspects of 
the department that modify its basic operation. The frames also highlight that department 
members paid less attention to symbolic aspects of change, such as focusing on the beliefs about 
the purpose of teaching (i.e. supporting students vs. weeding out students). There was also no 
explicit focus on equity as far as the role of lecturers. The four frames draw attention to these 
areas of symbols and power as key areas of focus for sustainable change and future efforts at 
LPU. These particular beliefs and power issues are a part of academia generally, and specifically 
mathematics (i.e., in terms of a weed-out culture). Thus, we see that the four frames theory can 
draw attention to the types of things one should attend to in a change initiative, but deep 
contextual knowledge also helps support how the theories are applied to mathematics in specific. 
Conversations with change agents about this study’s findings suggest that they will make efforts 
to address these aspects of the department as they continue to move forward and improve the 
LPU mathematics department. This shows how the four frames theory can help change agents 
attend to areas of focus that they otherwise may have not considered, which is a tool to support 
holistic, sustainable change.  

Here we have provided an example of how the four frames are a useful tool from 
organizational change that can be adapted to the context of educational change. These frames 
help organize an understanding of what has happened at LPU, how that process has played out, 
and the impact of existing and evolving departmental culture on the products, enactment, and 
process of change. Crucially, the frames also reveal gaps in the change initiative, areas for 
growth and cultural factors which potentially affect the enactment and sustainability of the new 
system. The four frames, therefore, are a tool for other researchers, change agents, or university 
administrators to increase the likelihood of implementing sustained changes. The four frames can 
be used by internal and external members of a community to identify supports (e.g., 
stakeholders, institutional goals, champions) and constraints (e.g., weed-out mentality, power 
differentials) to better navigate the pathways of change. Leveraging this framework to identify 
aspects of departmental and institutional culture that can be used to individualize and personalize 
the generic products and processes of change found in the literature, thus addressing one of the 
primary obstacles to sustainable improvement initiatives. 
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Abstract 

A robust conceptual understanding of function is essential for students studying calculus and 
higher levels of mathematics as they continue to pursue the learning of mathematics. In this 
study, we investigated the ways in which students in a Calculus II course understand functions by 
examining student engagement with a vending machine applet. Specifically, we considered how 
these students made sense of the univalence requirement of functions in the context of a vending 
machine in which a single input produces an output of two cans. We identify and discuss in detail 
several themes that emerged in students’ categorization of machines as functions or non-
functions when encountering this two-can scenario. 

Keywords: Functions, Calculus, Univalence 

Functional relationships are an essential construct in undergraduate students’ mathematical 
learning (Cooney, Beckmann, & Lloyd, 2010; Dubinsky & Harel, 1992; Leinhardt, Zaslavsky, & 
Stein, 1990). However, research has shown that undergraduate students often display incomplete 
conceptions regarding the concept of function (e.g., Oehrtman, Carlson, & Thompson, 2008), 
including an incomplete conceptual understanding of domain and range (Dorko & Weber, 2014). 
These conceptions or other difficulties that students have may be due to a lack of understanding 
of the nature of connections between the different representations of functions (e.g., Clement, 
2001; Stylianou, 2011), the abstract nature of the function concept (Steele, Hiller, Smith, & 
2013), or lack of a fully developed definition of function (Clement, 2001). Additionally, without 
a robust understanding of function, students may struggle with the function concept when 
moving from two to three dimensions in multivariable calculus (Dorko & Weber, 2014). 

One’s concept of function depends on his or her previous experiences with function, 
including the definitions to which they have been introduced (Thompson & Carlson, 2017). The 
most commonly used definition of function in schools is a variation of Dirichlet’s definition 
(e.g., a function is a relation between two sets in which every element in the domain is mapped 
to exactly one element in the range) (Cooney & Wilson, 1993; Thompson & Carlson, 2017; 
Vinner & Dreyfus, 1989). This definition attends primarily to the relationship between two sets 
of elements (i.e., domain and range). As a result, students’ difficulties are often related to the 
univalence requirement of the definition of function (Dubinsky & Wilson, 2013). To address this 
issue, we designed an applet in the form of a vending machine to problematize univalence. We 
used this applet to examine how Calculus II students make sense of the univalence requirement 
of functions situated in a vending machine context in which an output of two cans is produced by 
a single input. In this study, we seek to identify the themes that arose through this two-can 
scenario. We attempt to answer the question: In what ways do Calculus II students make sense of 
a vending machine applet that produces two cans from a single input? 

22nd Annual Conference on Research in Undergraduate Mathematics Education 18



 
Background Literature 

Much of the research on student understanding of function has occurred in the context of 
college algebra, precalculus, or calculus classes. Through these studies there has been a careful 
identification of common understandings that students develop related to the concept of function. 
Common student understandings include that functions are defined by an algebraic formula or 
two expressions separated by an equal sign, and that functions are represented by graphs (that 
pass the vertical line test) (Carlson, 1998; Clement, 2001; Breidenbach et al., 1992; Thompson & 
Carlson, 2017). All of these conceptions are limited and can be problematic when distinguishing 
functions from non-functions, especially in non-algebraic settings (Steele et al., 2013). 

An important aspect of the identification of functions is the univalence requirement (i.e., a 
function maps each element in the domain to exactly one element in the range). When using a 
graphical view of function, students often satisfy the univalence condition by using the vertical 
line test; however, the arbitrary nature of what a function can represent is lost within this narrow 
view (Clement, 2001; Steele et al., 2013). In addition, research has shown that a common 
incomplete conception regarding the univalence requirement is believing that it is synonymous to 
saying that the function has a one-to-one correspondence (Dubinsky & Wilson, 2013). 

Due to the concern that calculus students may have developed a weak understanding of the 
concept of function (Moore, Carlson, & Oehrtman, 2009), researchers have suggested that 
students be engaged in activities that require using various representations (Zeytun, Cetinkaya, & 
Erbas, 2010; Moore et al., 2009). One way in which this can be accomplished is by using 
interactive applets that do not make use of any type of algebraic representations. The use of 
technology in this way can cause a cognitive conflict and require students to reflect and reassess 
their current understanding of function (Pea, 1987). For instance, a student whose understanding 
of function is only related to input-output relationships or reliance on the vertical line test may 
have trouble when encountering non-algebraic functions in a novel context (Steele et al., 2013). 
Sherman, Lovett, McCulloch, Edgington, Dick, and Casey (2018) found that the use of an online 
applet in the context of a vending machine, designed to support calculus students’ opportunities 
to consider functions in a novel environment, improved student understanding of the definition 
of function and strengthened their ability to distinguish functions from non-functions. Through 
analysis of 105 undergraduate students’ pre- and post-definitions, they found that students’ 
interaction with the applet resulted in improved attention to the univalence requirement in their 
stated post-definitions (pre-definitions 36.6%; post-definitions 85.3%). However, by attending 
only to the students’ pre- and post-definitions, student thinking in regard to univalence in the 
context of differentiating between function and non-function relationships remains unclear. 

Theoretical Perspective/Conceptual Framework 
In considering undergraduate students’ learning related to function, we adopted a theoretical 

lens of transformation theory (Mezirow, 2009). Transformation theory is consistent with 
constructivist assumptions, specifically in that meaning resides within each person and is 
constructed through experiences (Confrey, 1990). Mezirow (2009) describes four forms of 
learning that lie at the heart of this theory: elaborating upon existing meaning schemes, learning 
new meaning schemes, transforming meaning schemes, and transforming meaning perspectives. 
Meaning schemes are the specific expectations, knowledge, beliefs, attitudes or feelings that are 
used to interpret experiences (Cranton, 2006; Peters, 2014). 

Learning by transforming meaning schemes often begins with a disorienting dilemma. 
This stimulus requires one to question his or her current understandings that have been formed 
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from previous experiences (Mezirow, 2009). It is this type of learning experience that we are 
particularly interested. Given the evidence that undergraduates often have a view of function that 
is limited to algebraic expressions and the associated graphs (e.g., Carlson, 1998; Even, 1990) 
and that such understandings typically result in a “vertical line test” related definition of function 
(e.g., Carlson, 1998), we designed an experience that would problematize these understandings, 
thereby creating a stimulus for transformation. 

One strategy that has been suggested for diminishing common misunderstandings related to 
function is the use of a function machine as a cognitive root. The idea of a cognitive root was 
introduced by Tall, McGowen, and DeMarois (2000) as an “anchoring concept which the learner 
finds easy to comprehend yet forms a basis on which a theory may be built” (p.497). As an 
example of a cognitive root for the function concept, Tall et al. (2000) suggest the use of a 
function machine, typically referring to a type of “guess my rule” activity in which inputs and 
associated outputs are provided, challenging students to determine the pattern (i.e., identify the 
function rule). The use of such machines proved quite promising as a cognitive root for function, 
yet some students still struggled with connecting representations and determining what is and is 
not a function (McGowen, DeMarois, & Tall, 2000). Given the potential of using a machine 
metaphor as a cognitive root for function, as well as our desire to present a disorienting dilemma 
for undergraduate students, we designed an applet to provide students with a learning experience. 

Context of this Study: Vending Machine Applet 
The vending machine applet (McCulloch, Lovett, & Edgington, 2017) was designed to 

provide an opportunity for students to reexamine their definition of function by interacting with a 
non-algebraic representation. The applet was built using a GeoGebra workbook and uses a 
vending machine metaphor to represent functions and non-functions. The first three pages of the 
applet each contain two soda vending machines (Machines A-F), each with buttons for Red Cola, 
Diet Blue, Silver Mist, and Green Dew. When the user clicks a button (input), one or more cans 
(red, blue, silver, and/or green) appear in the bottom of the machine (output). To remove the 
can(s) the user clicks the “take can” button. Students are asked to compare the different machines 
and determine which of the two represent a function. The non-function machines have at least 
one button that produces at least one random can when clicked (i.e., the resulting can is not 
predictable based upon the button that is pressed). The fourth page of the applet contains an 
additional six vending machines (Machines G-L); students are asked to consider whether or not 
each machine could represent a function. Student work on Machines D, E, I, and K (see Table 1) 
are the focus of this study, as these are the machines that result in a two can output.  
 
Table 1. Machine output for each button clicked  

Button Clicked  
Red Cola Diet Blue Silver Mist Green Dew 

Machine D random pair blue can silver can green can 
Machine E red can blue & random can silver can green can 
Machine I two silver cans green can red can blue can 
Machine K red can blue can silver can red & green can 

 
Research Methods 

The purpose of this qualitative study was to investigate the ways in which Calculus II 
students make sense of functions in a vending machine context. We attempt to answer the 
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question: In what ways do Calculus II students make sense of a vending machine applet that 
produces two cans from a single input? 

Participants and Data Collection 
A total of 40 students from one centrally located U.S. university participated in the study. At 

the time of data collection, all participants were enrolled in a Calculus II class. Each student 
recorded a screencast of themselves working through the applet while noting decisions leading to 
the classification of each machine as a function or non-function. Students also wrote their 
rationale for each decision on an accompanying worksheet. Students were asked to use a think 
aloud protocol to explain their reasoning while interacting with the applet. The data used for this 
study include the video-recorded screencasts and the accompanying worksheets. Upon review of 
the data, four students were eliminated from analysis as their screencasts lacked audio or were 
incomplete. A total of 36 students’ data were analyzed. 

Analysis 
The first phase of data analysis consisted of creating descriptions of students’ engagement 

with the applet that included timestamps with direct student quotes. Next, we coded for 
articulated dilemmas and the triggers for those dilemmas. This study is focused on one trigger, 
one input mapped to an output of two cans, as such descriptive transcriptions were created for 
the portions of the video in which this specific situation occurred. While transcribing the 
screencasts, we created memos related to student thinking about the two-can scenario.  

A preliminary codebook was developed based on themes that emerged in the memos related 
to the ways in which students made sense of the two can dilemma. The researchers then used this 
codebook along with open coding and a constant comparative method (Strauss & Corbin, 1998) 
to develop a final set of codes. For example, the final codebook included: function - consistent, 
function - corresponding color, non-function - two outputs, and non-function - random. Once the 
codebook was finalized and inter-rater reliability achieved, all remaining data was double coded 
with any differences discussed until agreement was reached. Finally, the researchers looked 
within the data for each code to identify themes across and within machines. 

Results  
Analyses illuminated several themes that directly address the purpose of this study – namely, 

to examine the ways in which students identify functions and non-functions when faced with the 
dilemma of an output consisting of two elements (see Table 2). Looking across all machines that 
produced a two can output, nearly a quarter of the students (8 of 36) indicated that a machine 
with an output of two cans is never a function regardless of the consistency of the output. For 
example, one student commented “Machine K is consistent with what it’s giving out, but it’s 
giving out two cans, and I feel like it shouldn’t be able to do that. Like a function shouldn't allow 
it to have two outcomes for one input.” This student’s decision was based exclusively on the 
number of cans produced in the output. Students who decided that machines producing two cans 
automatically qualified as a non-function often attempted to make sense of the applet by viewing 
the cans as numbers or coordinates. One student stated, “Oh, it’s not a function, because the 
Green Dew produces two y-values.” This statement indicates that the student was considering the 
idea of univalence and viewing the two green cans as two separate outputs. Many of these 
students incorrectly used the language “one to one” to refer to univalence while relying on 
procedural knowledge to make a decision. 

While some students focused on the number of cans, others made decisions based upon 
predictability of the output or lack thereof. Many students (56%) commented on consistency or 
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randomness for at least one of the two can machines, however only 22% always used the idea of 
consistency or randomness to decide whether the machine was or was not a function. Students 
who decided that both Machines I (Red Cola → two silver) and K (Green Dew → red and green) 
were functions tended to focus on a consistent two can output. For example, one student 
remarked, “So even though the green button dispenses two different cans, it does generate the 
same outcome each time, as well as the other button, so Machine K is also a function.” This 
student was unconcerned with the output quantity and was attending to the predictability of the 
machine. The remaining 78% of students did not reliably consider consistency or randomness. 
The following sections detail the emerging themes that arose from the two can dilemmas.  

 
Table 2. Overarching Themes regarding the Two-Can Scenario 

Overarching Themes 
Rationale Percentage of Students 

(N=36) 
Based decision on number of cans every time 22% (8) 
Based decision on consistency and randomness of output every 
time 

22% (8) 

Based decisions on both consistency/randomness and number 
of cans 

22% (8) 

Various other reasons 34% (12) 

Dilemma: Two cans with at least one being random 
Machines D (Red Cola → random pair) and E (Diet Blue → blue and random) not only had a 

two can output but also included an element of randomness in the output. When confronted with 
both randomness and a two can output, 22% of the students described the lack of consistency of 
the output in their justifications. For example, when one student clicked the Red Cola button on 
Machine D the first time, two red cans were given as the output. When Red Cola was clicked a 
second time, two blue cans were dispensed. The student commented,  

Okay so it looks like the Red Cola is different, see it’s moving between the different 
colors for the two cans; so, it was red, now it’s blue. So, because of that, I feel that 
Machine D is not a function because, because it’s creating different outputs for the Red 
Cola and it’s not consistent. 

Similarly, another student used randomness to justify a decision,  
However, red is the odd one out here as it is a different, it’s giving off two of a random 
color drink. Because Red Cola has a random, has a random effect. Every time, there’s no 
rhyme or reason as to why it does it, it’s just, possibly, random number generator. 

Both students commented on the random or inconsistent output of the Red Cola button and 
decided that the lack of predictability make Machine D a non-function. When assessing Machine 
E, another student stated “The blue always does random, while the other ones keep clicking their 
same color can. So, I think in this case, F is a function because blue is always a constant silver. 
While in E blue is a random.” The predictability of Machine F and the randomness of Machine E 
seemed to inform this student’s decision. 

In contrast, eight of the 36 students attended to both randomness and the number of cans in 
the output when justifying that Machines D and E were non-functions. For example, one student 
commented that “Machine E, however, can’t be, uh, multiple outputs, especially multiple 
different outputs. So, E should not be a function.” This student noticed that Machine E both 
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produces two cans (“multiple”) and produces random colored output (“different outputs”). In the 
cases of these students who attended to both of these factors, it was unclear in both the 
screencasts and worksheets which reason predominated their decision-making process.  

Dilemma: Two Consistent Cans 
Interacting with Machines I (Red Cola → two silver) and K (Green Dew → red and green) 

presented the students with the situation of a button having a consistent output of two cans, yet 
eight of the 36 students treated these machines differently from one another, labeling one as a 
function and the other as a non-function (see Table 3).  

Table 3. Machine I and K Inconsistencies 
Rationale  Inconsistency  

I is a function; K 
is not a function 

(N=6) 

K is a function; I 
is not a function 

(N=2) 

Lack of Coherent Explanation 1 
 

Machine I produces 2 cans of same color; Machine 
K produces 2 different colors 

5 
 

Machine K: Cola button does match output can 
color; Machine I: Cola button does not match 
output can color 

 
2 

  
The majority of the students who classified I and K differently were attending to the color of 

the two can output instead of the consistency of those outputs. The attention to color manifested 
in two ways: students either identified the machine as a function 1) if the two cans produced 
were the same color (Machine I: Red Cola → two silver), or 2) if the button color matched at 
least one of the output cans (Machine K: Green Dew → red and green). The two students who 
labeled Machine K as a function and Machine I as a non-function were looking for colors of the 
output cans to correspond with the color of the pressed button. For example, one student said, 
“Machine K is a function because for all of the buttons I do get what I want, but even though I 
click Green Dew I get something else, I still get what I want right.” This student’s explanation 
included that the Green Dew button output both a green can (“I still get what I want”) and a red 
can (“something else”). Students are specifically examining whether the button colors 
correspond to the color of the output can(s). This reasoning was unique to these two students.  

The remaining five students who gave a coherent explanation regarding their attention to 
color labeled Machine I as a function and Machine K as a non-function. These students identified 
Machine I as a function because the output created two cans of the same color. For example, one 
student commented that “I guess it’s still a function, but if they had two separate color cans, then 
I think that would imply different y, values for y. So I’m gonna say that Machine I is definitely a 
function.” These students also indicated that Machine K was not a function since the output 
consisted of two cans of different colors. For example, one student wrote on the worksheet, 
“Although the 'Green Dew' button always gives the same outcome it releases two different cans 
unlike all the other buttons on this machine.” Some students elaborated further and commented 
that different buttons produce the same color can, “It appears that multiple input buttons, like 
green and red, both produce red cans as their output which makes them not a function.” In an 
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attempt to make sense of this problem, one student tried to connect the cans to numbers and 
make use of the vertical line test, 

Um, I think that it is not a function because every, every input should only have one 
output, and this one, it has two. So, I just, I picture it on a graph and I don’t think that 
would pass a vertical line test and I think that is something, um, that a function needs to 
pass, so I don’t think Machine K is a function. 

This student is viewing the two cans as two separate outputs because they are different colors. 
Lastly, one student did not provide a clear enough think aloud or written rationale to ascertain 
why Machine I was labelled as a function and Machine K as a non-function. 

Discussion and Conclusion 
Sherman et al. (2018) found that students’ definitions of function showed increased attention 

to univalence after engaging with the vending machine applet. This study builds on that work by 
attending to students’ engagement with the applet as it relates to the two-can scenario. Our 
results revealed that while many students justified their decisions by referencing consistency or 
randomness, it was uncommon for students to do so reliably. One concern is that 78% of students 
in this study steadfastly focused on irrelevant elements or unreliable rationale when presented 
with machines producing a two can output. For example, some students focused on whether the 
button color matched the output can color (irrelevant elements). Other students switched 
reasoning from machine to machine focusing on predictability one time and on the number of 
cans the next time (unreliable rationale). This may be due to students lacking a fully developed 
definition of a function (Moore et al., 2009), or that students’ understandings of function are too 
narrow or include erroneous assumptions (Clement, 2001). This suggests that Calculus II 
instructors need to help students develop a strong definition of function which can be applied to a 
variety of  representations.  

The attention that some students placed on attempting to connect the vending machine 
context to numbers or coordinates confirms the known difficulties students have with univalence 
(Dubinsky & Wilson, 2013) and their over reliance on procedures (Steele et al., 2013). It was 
evident from the screencasts that these students were linking the two can output to two y-values 
and confusing univalence with one-to-one correspondence. The prevalence of this confusion and 
the incorrect use of language regarding one-to-one correspondence suggests that some students 
do not understand that one-to-one correspondence is a special case and not a requirement. This is 
an area that warrants further research. 

One limitation of our study was that our analysis only included transcriptions of videos of 
students’ interactions with the applet, in that we did not utilize students’ personal definition of 
function in tandem with their interactions. Future studies with this applet should analyze the 
reliability of student rationale in conjunction with their definitions to determine if weak or 
narrow function definitions are related to the inconsistent classification of machines. Moreover, 
as this study focused on only one dilemma trigger, future studies should explore other triggers. 

Calculus II students have had many experiences with functions, yet the analysis of their 
interactions with the vending machine applet revealed the possibility that students have 
underdeveloped definitions of function or consider functions too narrowly. Further research is 
needed to explain the unreliable rationales when determining function from non-function in non-
algebraic settings to better understand why students have difficulties with univalence. With the 
concept of function permeating mathematics past Calculus II, the results of this study 
demonstrate the need to allow students to reexamine their conceptual understanding of function 
in advanced classes, where these topics are not necessarily in the scope of the class. 
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Analyzing Topology Students’ Schema Qualities 
 

Ashley Berger    Sepideh Stewart 
University of Oklahoma               University of Oklahoma 

A schema is a mental structure of concepts that are connected together and allows for the 
efficient functioning of director systems. Skemp (1979) discusses various qualities that this study 
used to look at students’ schemas. This case study focuses on a pair of Topology students and 
their work on a problem involving the product topology on 𝑋 × 𝑌. There were many positive 
qualities that the students demonstrated, but there were also difficulties with particular 
connections between concepts. 

Keywords: Topology, schema, director system 

Theoretical Background 
  Topology is an important course for advancement in mathematics. Many graduate students 

need to take topology to continue in their mathematics degrees. Regrettably, research on 
pedagogy of topology is still in its infancy. In a study by Berger and Stewart (2018), the analysis 
of the data revealed that the majority of undergraduate students were in the beginning stages of 
schema development, even though they were completing a final examination at the end of their 
semester. Cheshire (2017) looked at axiomatic structures of Topology and how students’ 
schemas undergo accommodation to understand these structures.  

  Understanding mathematical concepts at an advanced level is an enormous undertaking for 
many students. The word ‘understanding’ reminds us of the well referred work by Skemp (1976) 
on relational understanding and instrumental understanding. Some years later, Skemp (1979) 
developed a model of intelligence in which its focus was the construct of the idea of schema.   In 
Skemp’s (1979) notion:  

 
A schema is a structure of connected concepts. The idea of a cognitive map is a 
useful introduction, a simple particular example of a schema at one level of 
abstraction only, having concepts with little or no interiority, and representing 
actuality as it has been experienced. A schema in its general form contains many 
levels of abstraction, concepts with interiority, and represents possible states 
(conceivable states) as well as actual states.  (p. 190) 
 

A schema is what allows for the efficient functioning of a director system, which is a central 
focus to Skemps’ model. A person or object has a present state that they are currently in, and a 
goal state that they would like to be in. “That which is changed from one state to another and 
kept there” (p. 41) is what Skemp calls the operand. The operator is “that which actually does 
the work of changing the state of the operand.” (p. 41) Finally, a director system is “that which 
directs the way in which the energy of the operator system is applied to the operand so as to take 
it to the required state and keep it there.” (p. 41-42)  

Skemp (1979) communicated his theoretical ideas through many everyday examples. He 
referred to the temperature of an oven in many instances. Say an oven is at room temperature and 
needs to heat to 400 degrees Fahrenheit. The present state is the current temperature and the goal 
state is to reach 400 degrees Fahrenheit. The operand is the interior of the oven and the operator 
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is the temperature of the oven. The thermostat in the oven is the director system. If there is a new 
goal state of 350 degrees Fahrenheit, the same director system (the thermostat) will be used.  

A schema is what gives a director system this flexibility when states change. “The greatest 
adaptability of behavior is made possible by the possession of an appropriate schema, from 
which a great variety of paths can be derived, connecting any particular present location to any 
required goal location.” (Skemp, 1979, p. 169) Skemp’s work with director systems was also 
used by Olive and Steff (2002, p. 106) to build “a theoretical model of children’s constructive 
activity in the context of learning about fractions.”   

Skemp (1979) believed that “a schema is a highly abstract concept” (p. 167). Some of his 
qualities of schema and the definitions of certain words that are used are shown in Table 1. 
 

Table 1. Certain qualities of a schema.  
Qualities of a schema  Definitions 
(ii) “Relevance of content to the task in hand 
(rather obviously, but not always met).” (p. 
190) 

 

(iii) “The extent of its domain.” (p. 190)  
 

Domain: “The set of states within which (and 
only within which) a director system can 
function, i.e., can take the operand to its goal 
state and keep it there, provided that the 
operators are capable.” (p. 312) 

(iv) “The accuracy with which it represents 
actuality.” (p. 190) 

 

(v) “The completeness with which it 
represents actuality within this domain.”  (p. 
190) 

 

(vi) “The quality of organization which makes 
it possible to use the concepts of lower or 
higher order as required, and to interchange 
concepts and schemas. (The vari-focal part of 
the model, linked with the idea of 
interiority.)” (p. 190)  

Vari-focal: “A way of describing the different 
ways in which the same concept or schema 
can be viewed, from a simple entity to a 
complex and detailed structure.” (p. 316) 

(vii) “By a high-order schema, we mean one 
containing high-order concepts…This 
determines its generality…” (p. 190) 

 

(viii) “The strength of the connections.” (p. 
190) 

 

(ix) “The quality of the connections, whether 
associative or conceptual.” (p. 190) 

 

(x) “The content of ready-to-hand plans…” 
(p. 191) 
 

Plan: “A path from a present state to a goal 
state, together with a way of applying the 
energies available to the operators in such a 
way as to take the operand along this path. A 
plan is thus one essential part of the director 
system.” (p. 314) 
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The notion of schema has also been explored by others in the literature. For example, a 
definition of schema is embedded in APOS Theory (Dubinsky & McDonald, 2001). They 
claimed that “a schema for a certain mathematical concept is an individual’s collection of 
actions, processes, objects, and other schemas which are linked by some general principles to 
form a framework in the individual’s mind that may be brought to bear upon a problem situation 
involving that concept.” (p. 277)   

In this paper we will examine students’ development of their schemas and their qualities 
based on Skemp’s (1979) model. The research question to guide this study was: What qualities 
of schema do Topology students demonstrate? 

Methods 
In this case study, we examined students’ schemas for a basis for a topology. This is part of a 

larger study for the first author’s dissertation. The participants were first year graduate students 
who were enrolled in a graduate topology course at a Southwestern University in the U.S. The 
four participants were divided into two pairs. Each pair did two task-based interviews together, 
the first about a month into the semester, and the second during finals week of the same 
semester. Pairs were used to try to get the participants to demonstrate their ideas and discuss how 
they think about the tasks to their partner, making their thoughts more observable. No data was 
collected regarding what took place in the classroom before, after, or between these interviews.  

The participants were given a task sheet and a definition sheet. Each interview began with a 
period of time where the participants could look through and work on the tasks individually. 
After that, they worked on the tasks as a pair, explaining their thoughts to each other and coming 
to a consensus for each problem. In the final part of each interview, the pairs were asked follow-
up questions about what they thought was needed to complete each task. They were also asked 
about their background with Topology. In the interviews that occurred during finals week, they 
were additionally given their work from earlier in the semester and asked to discuss their 
progress between then and finals. Each interview was video recorded and then transcribed. If the 
participants utilized the white boards, their written work was also transcribed. In the 
transcriptions, a scribble indicates that the pair erased something on the board.  

For this study, we focused on the third task only (see Figure 1). We chose to analyze the data 
from the third task for a few reasons. First, this problem is one that frequently shows up on 
homework assignments and exams when the product topology is covered in class. As such, we 
have been able to collect data in the past involving this same problem, regardless of what 
Topology course the data was collected from. This problem also requires a higher-order schema 
for a basis and, because of this, we hypothesize that the data will be more informative about 
certain qualities of schema needed. After transcribing the data from this task, we established 
some themes from Skemp’s model based on the qualities and created Table 2 as a framework. 
After creating an ideal proof with ideal qualities, we examined our data against it. 

 

 
Figure 1. Task 3. Show that the projection map is an open map.  
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Results and Discussion 
The step by step proof of part (b) has been illustrated in Table 2. The lower-order concepts 

needed for this proof, as well as the schema qualities ideal for completing each portion of the 
proof, are shown. We acknowledge that there are more qualities of schema that can be applied in 
each step, however, the listed qualities are what we focused on based on our experience with this 
problem and our data set. After being transcribed, the data was divided up by what portion of the 
proof it aligned with. In each portion, we provide some explanation of the data in terms of 
Skemp’s qualities of schema. Ideally, learners’ schemas become more structured as they go 
throughout the course, but this study is not solely focused on comparing the early and final 
interviews. Instead, we are looking for changes in students’ schemas and what qualities are 
involved in those changes. 

 
 Table 2. Qualities of each portion of task 3. 

Portion 
of proof 

Proof for part (b) Explanation of Proof 
Step 

Lower-order 
Concepts 
Needed 

Qualities of 
Schema 

b1 Consider 𝑝𝑋(𝑊) 
where 𝑊 ⊂ 𝑋 × 𝑌 is 
an arbitrary open set 
of 𝑋 × 𝑌. 

Start with an 
arbitrary open set of 
𝑋 × 𝑌 and see where 
𝑝𝑋 sends it. 

-Open map  -Plan 
-Domain 
-Relevance 

b2 Now 𝑝𝑋(𝑊) =
𝑝𝑋(∪𝛼 (𝑈𝛼 × 𝑉𝛼)) 
where 𝑈𝛼 × 𝑉𝛼 ∈ 𝒯 
are basis elements. 

By the definition of 
a basis, 𝑊 can be 
written as a union of 
basis elements. 

-Topology 
generated by a 
basis 
-Equality of 
sets 

-Strength 
-Quality 
-Domain 

b3 Note  
𝑝𝑋(∪𝛼 (𝑈𝛼 × 𝑉𝛼)) =
∪𝛼 𝑝𝑋(𝑈𝛼 × 𝑉𝛼). 

The projection of a 
union is a union of 
projections. 

-Projection 
map 
-Equality of 
sets 

-Generality 
-Domain 
-Accuracy 
-Strength 
-Quality 

b4 Now  
∪𝛼 𝑝𝑋(𝑈𝛼 × 𝑉𝛼) =
∪𝛼 𝑈𝛼 where 𝑈𝛼 ∈
𝒯𝑋 . 

The projection map 
sends basis elements 
to open sets of 𝑋. 

-Projection 
map 
-Definition of 
the product 
topology on 
𝑋 × 𝑌 

-Accuracy 
-Completeness  

b5 Since ∪𝛼 𝑈𝛼 ∈ 𝒯𝑋 , 
𝑝𝑋(𝑊) ∈ 𝒯𝑋  and 𝑝𝑋 is 
an open map. 

The union of open 
sets of 𝑋 is also open 
in 𝑋. 

-Topology 
-Open map 

-Strength 
-Vari-focal  
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Initial Interview 
For the purposes of this paper, we focus on only one of the pairs of participants: Brandon and 

Kyle (pseudonyms). Brandon had not completed a Topology course before the initial interview 
and Kyle had previously taken an introductory Topology course, so their experience with the 
subject matter was limited. Additionally, this pair was more interactive with each other and took 
their time discussing each task.  

In their initial interview, Brandon and Kyle defined the product topology without using a 
basis and then had a short proof based on their incorrect definition. This was the typical mistake 
that was found in previous work with undergraduate students (Berger & Stewart, 2018). 
Specifically, in defining the product topology in part (a), the pair incorrectly stated that the 
product topology consisted of all sets of the form 𝑈 × 𝑉, not the unions of such sets. Therefore, 
they set themselves up for a fairly trivial proof for part (b). They both took some time wrapping 
their minds around the problem, Kyle in more of a verbal manner. For b1, they took their 
arbitrary open set to be exactly what is expected based on their response to part (a), which is 
𝑈 × 𝑉 where 𝑈 ∈ 𝒯𝑋 and 𝑉 ∈ 𝒯𝑌 (see Figure 2). Their director system functioned appropriately, 
but their previous knowledge led them to start part (b) at the wrong present state. 

 

 
Figure 2. Brandon and Kyle’s attempt early in the semester. 

From there, they followed the definition of the projection map and immediately got what 
they needed in order to show that the map is open (see Figure 3). Since this step was a fairly 
straightforward computation for the pair, their ideas were accurate and complete, but only 
relative to their incorrect definition in part (a). With regards to their schemas for a basis, we 
cannot make any claims since their work here provided no evidence regarding a basis.  

 

 
Figure 3. The end of Brandon and Kyle's proof. 

Final Interview 
Now we will discuss what Brandon and Kyle did during finals week. For part (a), they 

correctly defined the product topology by generating it with a basis. For b1, Brandon quickly 
wrote an arbitrary open set, 𝑊, on the board, but neither Brandon nor Kyle discussed it (see 
Figure 4). Brandon had a plan and executed it without discussing it with Kyle. Mathematically, 
this was relevant and fit within the domain of the problem. 
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Figure 4. The start of Brandon and Kyle's proof late in the semester. 

For b2, Brandon began writing 𝑊 as a union of basis elements, but Kyle seemed unsatisfied 
and wanted to make the notation clearer. Brandon asked how they wanted to proceed in showing 
the union. Kyle took over writing on the board, erased the union that Brandon had written, and 
came up with the beta notation shown in Figure 5. After this, he was still unsatisfied with his 
notation and the usage of too many b’s, but Brandon said it was fine, so they moved on. Note 
that Kyle immediately knew that they were wanting to write a union of basis elements, but the 
pair spent their time here struggling to denote it. Towards the beginning of their discussion on 
b2, Kyle stated “W is the union of elements of...some arbitrary union of elements of that B thing 
[referring to the basis they wrote in part (a)].” Kyle’s statement demonstrates a strong conceptual 
connection between open sets and a basis. Again, this was appropriate within the domain of the 
problem. 

 

 
Figure 5. Where Brandon and Kyle had notational difficulties. 

In moving on to b3, they started off quickly saying that the projection gives you a union of 
open sets, but then Kyle starts thinking about if they could get “weirder things”. This launched 
the pair into a discussion about what they showed in class regarding the projection map. Brandon 
finally says something that takes them back to what they originally (and correctly) said, which 
prompted Kyle to read the task again and agree that they had been on the right track. Although 
their discussion may have been helpful for them in checking their ideas, it ended up not affecting 
the proof that they wrote down as the discussion was entirely verbal and ended with the same 
conclusions that they began with. They discuss what exactly the projection does, and this 
prompts Kyle to suddenly write up the proof seen in Figure 6. They verbally acknowledge that 
they get a union of open sets of 𝑋 from the basis elements and use this as the end of their proof. 

 

 
Figure 6. Final part of Brandon and Kyle's proof. 
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The part where the pair got off topic demonstrates a loss of relevance to the task and not as 
strong of connections between the projection map and unions. At the beginning and end of b3, 
however, they did demonstrate accuracy in their statements about what the projection map does. 
They combined b4 and b5 of the proof with their b3 statements and did not make any conclusion 
statements for their proof. Their final statements from b3 are accurate, but do not demonstrate 
complete ideas. We cannot say anything about what qualities they demonstrated for b4 or b5 
since they did not say or write any concluding remarks. 

Towards the end of the final interview, the pair was asked to reflect on their work from the 
initial interview. After reviewing their previous work, Brandon and Kyle quickly confirmed that 
they had not considered a basis in the first interview. When asked about what could have aided in 
correcting that mistake, Brandon responded that what corrected it for him was getting feedback 
on his homework “…with that specific thing being torn apart on it.” Kyle admitted that he didn’t 
“get the basis topology stuff at all when [they] were going over it in class” but later realized the 
importance when reading through the textbook. Brandon commented on their earlier work on the 
problem with,  

 
In terms of when we first did this, I guess, um, it’s easy to just jump straight into 
just choosing 𝑈 or something because of the way we defined the basis of just 
being an open set cross an open set where each of those are coming from the 
individual…so…it just seems natural to just go to one thing instead of considering 
the most general thing, which is a union of those things. 
 

Brandon’s reflection suggests that the generality and relevance of a schema are not necessarily 
intuitive.  

Concluding Remarks 
In this study we saw that accuracy and completeness are not typically a difficulty, but rather 

the generality of a schema, strength of connections, and the relevance of a schema can be 
difficult to navigate. Both Brandon and Kyle demonstrated strong, conceptual connections 
between lower-order concepts and a basis in the final interview, but not in the early interview. In 
the final interview, the pair demonstrated a weaker connection between the projection map and 
unions. 

Employing Skemp’s model in order to develop a more general theoretical framework to 
examine learner’s schemas are among our next steps. Future work will also involve analyzing the 
other pair of participants, as well as analyzing the remainder of the tasks. Additionally, we will 
be interviewing graduate students whose research area is in Topology, as well as postdoctoral 
fellows to examine their schema qualities.  

Based on this work, some teaching recommendations could include emphasizing scenarios 
where arbitrary objects and generality are necessary in higher-order topics, focusing on giving 
good feedback for students regarding what qualities are missing in their work, and explicitly 
discussing conceptual connections between concepts frequently. 
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Construction and Application Perspective: A Review of Research on Teacher Knowledge 
Relevant to Student-Teacher Interaction 

 
Biyao Liang 

University of Georgia 

This paper is a review of research that either explicitly or implicitly examines the interplay 
between teacher knowledge and teaching practices sensitive to students’ mathematical thinking. 
I use radical constructivism as a lens to analyze how the researchers conceptualize the role of 
teacher knowledge in student-teacher interaction. My analysis reveals that some researchers 
attribute teachers’ observable actions to what knowledge teachers possess (i.e., application 
perspective) while some others focus on what knowledge teachers construct in-the-moment (i.e., 
construction perspective). I conclude the paper by discussing the potential causes and 
consequences of these differences as well as the affordances and limitations of each perspective.  

Keywords: Teacher Knowledge, Student-Teacher Interaction, Constructivism, Literature Review 

Student-teacher interaction is a common and critical activity in teaching practices. However, 
some researchers have suggested that, in mathematical teaching and learning, there is a 
discrepancy between the mathematical meanings teachers intend to teach and the mathematical 
meanings students actually develop (e.g., Bauersfeld, 1980; Lew, Fukawa-Connelly, Mejía-
Ramos, & Weber, 2016; Thompson, 2013; Thompson & Thompson, 1994). This 
miscommunication between teachers and students creates a fundamental dysfunction in 
mathematics education (P. W. Thompson, 2013), which highlights the need for mathematics 
teachers to systematically bring forth the mathematics of students and make instructional 
decisions sensitive to the mathematics of students (e.g., Steffe & Thompson, 2000b; Teuscher, 
Moore, & Carlson, 2016). In extant literature, researchers have found that teachers’ development 
and enactment of teaching practices sensitive to student thinking is associated with their 
knowledge of all kinds (e.g., Hill et al., 2008; Johnson & Larsen, 2012; Seymour & Lehrer, 
2006; A. G. Thompson & Thompson, 1996). The goal of this review is to identify the 
researchers’ various ways of operationalizing teacher knowledge in these studies.  

Teacher Knowledge and Teaching Practices Sensitive to Student Thinking 
Mathematics educators continue to highlight the importance of teachers eliciting and using 

student thinking in teaching practices. For example, National Council of Teachers of 
Mathematics (2014) announced eight Mathematics Teaching Practices, among which four are 
relevant to making instructional actions based on student thinking (i.e., facilitate meaningful 
mathematical discourse, pose purposeful questions, support productive struggle in learning 
mathematics, and elicit and use evidence of student thinking). Many researchers have studied 
how teachers learn and implement these practices, which resulted in a growing body of literature 
on teacher discourse moves, teacher noticing, teacher decentering and instruction in general. 
Findings of these studies indicate that most teachers are not used to attending to and interpreting 
student thinking (e.g., Franke, Carpenter, Levi, & Fennema, 2001; Jacobs, Lamb, & Philipp, 
2010). Even when teachers do attend to student thinking, it is especially difficult for teachers to 
interpret what students are thinking and the sources of the students’ difficulties (e.g., Johnson & 
Larsen, 2012; Maher & Davis, 1990; Speer & Wagner, 2009).  

This issue motivates researchers to investigate what contributes to teachers’ varying abilities 
to notice, listen to, model, and act on student thinking. Some researchers have suggested that 
teachers’ knowledge is associated with teachers’ abilities to notice student thinking (e.g., Lee, 
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2017) and instruction quality (e.g., Charalambous, Hill, & Mitchell, 2012; Hill et al., 2008). 
These researchers typically assessed teacher knowledge by using assessment items grounded in 
existing teacher knowledge frameworks (e.g., Ball, Thames, & Phelps, 2008) and analyze the 
teachers’ actions independent of the knowledge assessments. Some other researchers have 
attempted to infer teachers’ knowledge in the moment of interaction with students and, at times, 
combined this with retrospective teacher interviews to support their inferences (e.g., Seymour & 
Lehrer, 2006; Teuscher et al., 2016). Given these different approaches to teacher knowledge 
relevant to student-teacher interaction, I conjecture that researchers might have different views 
on teacher knowledge and affect their methodological designs and interpretation of their data. In 
this paper, I review select literature that examines the interplay between teacher knowledge and 
teaching practices sensitive to students’ mathematical thinking in order to answer the following 
research questions: What are the researchers’ different conceptualizations of teacher knowledge 
and what are the affordances and limitations of these conceptualizations?  

Radical Constructivism, Knowledge, and Social Interaction 
The epistemological stance of radical constructivism (von Glasersfeld, 1995) informs my 

analysis of the literature. I consider knowledge as actively constructed by a knower through 
interaction with the environment. Knowledge is not a representation of an objective ontological 
“reality”; rather, it functions and organizes viably within a knower’s experience and is 
idiosyncratic to the knower. We thus have no access to anyone else’s knowledge nor an objective 
environment; the best we can do is to construct hypothetical models of others’ knowledge that 
viably explain our observation of their behaviors (Steffe & Thompson, 2000b). As it relates to 
mathematical teaching and learning, students’ mathematical knowledge consists of their ways of 
understandings (Harel, 2008) of mathematics that are product of their mental actions constructed 
from their experience including interactions with their teachers; accordingly, teachers’ 
mathematical knowledge for teaching (MKT; see Silverman & Thompson (2008)) is grounded in 
their ways of understandings of mathematics constructed from their experience including their 
interactions with students. In order to transform these personal understandings so that they have 
pedagogical power, teachers need to try to model their students’ perspectives and consider how 
to foster their constructing similar understandings (Silverman & Thompson, 2008).  

The radical constructivist view of knowledge and knowing is also useful for operationalizing 
social interaction among students and teachers. As Steffe & Thompson (2000a) stated, 
“interaction enters radical constructivism at its very core” (p. 192). Student-teacher interaction 
(or human communication in general) involves each individual engaged in a conversation 
interpreting others’ meanings, anticipating others’ responses, and adjusting her models of the 
others’ meanings in order to decide how to act and what to expect in future conversations. As 
teachers and students communicate, they reciprocally construct (sometimes with intention) 
knowledge about the other in the moment of interacting through assimilating and 
accommodating (von Glasersfeld, 1995) the language and observable actions of the other (Steffe 
& Thompson, 2000a) (see the four blue arrows in Figure 1a). A teacher’s constructed knowledge 
potentially perturbs and constrains their personal mathematical knowledge and affect their 
following actions (see the “enact” arrows on the teacher side). A teacher can also refine and 
construct knowledge of students’ mathematical thinking through reflecting on their own ways of 
interacting along with the mathematical and pedagogical consequences of these ways of 
interacting in-the-moment and retrospectively (see the “reflect” arrow on the teacher side).   

Related to the current review, I aim at examining select literature by focusing on the extent to 
which researchers capture this assimilation and accommodation aspects of teacher knowledge in 
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their conceptualization of teacher knowledge and interaction (see my distinction between the 
construction and application perspective in a later section). 

            
Figure 1. (a) A proposed framework of student-teacher interaction from a radical constructivist perspective with (b) 

four research areas situated in the framework (the blue area indicates activity relevant to the current review). 

Methods 
I first situated the literature base in the above framework and located four research areas 

relevant to teaching practices sensitive to student thinking, which included teacher discourse 
moves (i.e., teacher talks for eliciting and using evidence of student thinking), teacher noticing 
(i.e., teachers’ ability to observe and recognize student thinking), teacher decentering (i.e., 
teachers’ attempt to set aside her own thinking and model student thinking), and instructional 
actions in general (see green boxes in Figure 1b).  

I selected literature through the consultation of the university library Multi-Search that 
simultaneously searched more than 130 databases. I elected to include only English articles that 
had been published in academic journals to guarantee that I included research of a scholarly and 
authoritative nature. I used keyword combinations of “mathematics”, “teacher knowledge”, and 
“decentering” or “discourse” or “listening” or “teacher moves” or “analytic scaffolding” or 
“teacher noticing” or “student thinking” to search only in abstracts. I then ranked the results of 
each search by “relevance” and reviewed the abstracts of the first 50 articles to filter 26 articles 
that satisfied the following four criteria: (1) empirical studies, (2) either explicitly or implicitly 
touches on teacher knowledge, (3) involves the activity of student-teacher interaction (e.g., 
research on teacher noticing during analyzing students’ written work was excluded), and (4) 
touches on student thinking. Eighteen of these articles constituted the literature base for the 
current review, which included two studies on teacher decentering, four on teacher discourse 
moves, two on teacher noticing, and ten being relevant to teacher knowledge of student thinking.                 

I followed Galvan and Galvan’s (2017) guidelines to conduct this review. I first conducted a 
vertical analysis (Miles & Huberman, 1994) of each of the 18 articles in my first pass of reading. 
I used an EXCEL sheet to organize the information of each article in six aspects. In this paper, I 
only focus on reporting my analysis on “researchers’ conceptualization of (teacher) knowledge”. 
I drew on two sources to interpret researchers’ perspectives on teacher knowledge. First, I 
examined the theoretical framework section of the paper to infer the authors’ conceptualizations 
of teacher knowledge or their interpretations and adaptations of the existing teacher knowledge 
frameworks. In addition, I drew attention to the teacher knowledge claims researchers made for 
explaining teacher actions to infer what kinds of knowledge they considered to be critical in 
generating these explanations. I then conducted a horizontal analysis (Miles & Huberman, 1994) 
to identify similarities and differences within this aspect across the literature. I developed a code 
for each emerged theme and assigned codes to each article during the second pass of reading. I 
continually searched for examples that the generated themes could not account for, and I 
modified my definition of the existing themes or created new themes. 
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Results 
I identify four themes regarding researchers’ conceptualizations of teacher knowledge and 

summarized the literature by themes in Table 1. 
Table 1. Summary of literature by emerged themes (literature categorized as more than one theme is underlined). 

Theme Teaching Practices Number of 
Literature Noticing Listening Discourse Decentering Instruction in General 

Application 
Perspective 

Kersting 
(2008) 
 

Johnson 
and Larsen 
(2012) 
 

Bray (2011); 
Speer and 
Wagner 
(2009) 
 

 

Charalambous et al. 
(2012); 
Hill et al. (2008); 
Park and Oliver (2008); 
Wilkie (2016) 

8 

Construction 
Perspective 

Lee 
(2014) 

Jenkins 
(2010); 
Johnson 
and Larsen 
(2012) 

Seymour 
and Lehrer 
(2006) 

Teuscher et 
al. (2016); 
Walters 
(2017) 

Franke et al. (2001); 
Park and Oliver (2008); 
M. G. Sherin (2002); 
Wilkie (2016); 
Wilson et al. (2013) 

11 (3 
duplicated) 

Action/Skill 
Perspective 

Lee 
(2017)     1 

Lack of 
Perspective    

Jacobson 
and Lehrer 
(2000) 

  1 

Application Perspective 
To take an application perspective, a researcher conceives teacher knowledge as possessed 

knowledge enacted in contexts and being ready for researchers’ evaluation. The researcher 
potentially presumes teachers’ observable behaviors as driven by existing knowledge and aims at 
understanding what knowledge the teachers possess that enables them to act in particular ways. I 
identified 8 out of 18 studies in which researchers used this perspective. For example, Johnson 
and Larsen (2012) investigated the role of a teachers’ mathematical knowledge for teaching in 
supporting her ability to listen to students. Although the authors did not elaborate on their 
conceptualization of teacher knowledge, I inferred their perspective based on their interpretation 
of the data:  

[The authors demonstrated a transcript in which a researcher was explaining a student’s 
thinking to the teacher, Dr. Bond, in a post-class interview and Dr. Bond responded with a 
new realization of what the student was thinking] Provided with this extra piece of 
information, that Adam [the student] was thinking about multiplying symmetries as a left to 
right sequential procedure, Dr. Bond was able to make sense of his concern…we argue that 
she was constrained by a limitation in her knowledge of content and students…Dr. Bond was 
constrained by a lack of knowledge about how her students might have been thinking about 
the operation of composing symmetries. (p. 122) 

Here, the authors claimed that the teacher’s lack of knowledge of content and students led to her 
difficulty with understanding the student’s struggles and constrained her from interacting with 
Adam in ways that were sensitive to his mathematical thinking. They further argued that, if the 
teacher was armed with the knowledge of students’ conceptions of binary operation, she would 
be able to apply such knowledge in-the-moment to address the student’s concern. Because the 
authors attributed a teacher’s thinking and actions to what knowledge she possessed or lacked, I 
infer that they held a view of knowledge that was consistent with an application perspective.  

As another example, Speer & Wagner (2009) provided the following statement about 
pedagogical content knowledge (PCK):  

We use recognize in our description of the component practices to denote situations in which 
teachers are already familiar with the ways that students think about and come to understand 
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the mathematics. In other words, their existing PCK may include knowledge of how students 
think about the specific ideas at hand and/or typical students’ difficulties with the topic…At 
other times, even if teachers are not familiar with the particular ways of reasoning that 
students offer, they may be able to “figure out” what the students are suggesting and 
thinking. Therefore, recognizing draws heavily on a teacher’s PCK, whereas figuring out 
requires that a teacher do some mathematical work in the moment. (p. 536-537) 

First, the authors claimed that teachers might hold some existing PCK of students’ mathematical 
thinking that enabled them to “recognize” similar students thinking in certain situations. This 
view of PCK is consistent with the application perspective. I also drew attention to the authors’ 
awareness of situations where teachers’ existing knowledge of student thinking might not include 
all possible ways of thinking they could observe and thus the teachers need to “figure out” 
student thinking in-the-moment (“do some mathematical work in the moment”). However, it was 
unclear as to whether the authors considered “figure out” to be a result of a teacher’s application 
of existing knowledge (i.e., an application perspective) or as a process of constructing new 
knowledge (i.e., a construction perspective). In later sections, I found multiple pieces of evidence 
consistent with the former case—the authors made claims that the teacher’s inability to “figure 
out” student thinking in-the-moment was due to her lack of knowledge (e.g., “Had Gage’s SCK 
enabled him to figure out the mathematical ideas the students were suggesting…he might have 
been able to provide different kinds of guidance for the students…” [p. 553].).  

Construction Perspective 
The above example opens up an alternative interpretation of the “figure out.” That is, the 

presence of novel student thinking may offer teachers an opportunity to construct new 
knowledge as they interpret what the student may be thinking in-the-moment. This interpretation 
is consistent with my definition of “construction perspective.” To take a construction 
perspective, a researcher believes that teacher knowledge is generative, dynamic, evolving, and 
co-emerging from on-going interaction with students (including their reflection on their own 
interaction). The researcher explains teachers’ observable actions in their teaching or reflection 
by inferring what knowledge about the students the teachers construct in-the-moment.  

The construction perspective applies to 11 out of 18 studies. For example, Seymour and 
Lehrer (2006) conceived the growth in PCK as “an interactional achievement” in a sense that 
teachers develop PCK by engaging students in conversations to make sense of their 
mathematical thinking that is different from their own and by reflecting on students’ thinking; 
meanwhile, students engage in understanding teachers’ verbal meanings and actions. The authors 
also discussed their conception of orchestration as a site for developing PCK, stating 
“Orchestration and PCK are essentially coconstituted…PCK cannot emerge all at once, but 
rather evolves during the course of a protracted series of attempts to orchestrate classroom 
conversations” (ibid, p. 550-553). Transitions in a teacher’s PCK can be characterized as “the 
emergence, stabilization, and adaptation of couplings” between student Discourse and teacher 
Discourse (ibid, p. 554). I interpret that the authors conceived teacher knowledge as being 
constructed and developed through sustained negotiation between knowledge of distinct 
perspectives, which aligns with a construction perspective. 

Mixed Perspectives 
I should note that making the distinction between an application and a construction 

perspective does not imply that they contradict each other. A teacher’s possessed knowledge can 
be a result of her construction during prior experiences and can inform the construction of 
knowledge in future interactions. I consider it possible for a researcher to take both perspectives 
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simultaneously in one study since the researcher can conceive teachers’ observable actions as 
results of their application of possessed knowledge and is also aware that they can construct new 
knowledge or modify existing knowledge through interaction with students. I identified three 
studies that used a combination of the two perspectives (underlined in Table 1). For example, 
Park and Oliver (2008) characterized that,  

PCK as knowledge-in-action became salient in situations where a teacher encountered an 
unexpectedly challenging moment…In order to transform the challenging moment into a 
teachable moment, the teacher had to integrate all components of PCK accessible at that 
moment and apply them to students through an appropriate instructional response. In this 
respect, the development and enactment of PCK is an active and dynamic process. (p. 268) 

The authors illustrated with an example that a teacher learned about a student’s misconception of 
a concept in her teaching and integrated this knowledge with her knowledge of subject matter 
and curriculum to confront student misconceptions through instructional strategies in-the-
moment. Characterizing what knowledge the teacher constructed in terms of the student’s 
misconceptions implied that the authors took a construction perspective. Meanwhile, they 
considered the teacher’s instructional decisions as results of her integrating and applying 
multiple sources of knowledge, which implied an application perspective.  

Action/Skill Perspective and Lack of Perspective 
In Lee’s (2017) conceptualization of teacher knowledge, she conflated teacher knowledge 

(i.e., what teachers know) and teacher actions or skills (i.e., what teachers do), stating that “PCK 
for preschool mathematics can be conceptualized as a set of three interrelated skills (p. 233)” that 
included noticing, interpreting, and enhancing student thinking. I also identified a literature in 
which the authors did not discuss any theoretical orientations of teacher knowledge and assumed 
teachers who participated in additional professional development program had more knowledge 
than those who did not (Jacobson & Lehrer, 2000).  

Discussions 
My intention of this review is to identify researchers’ different approaches to teacher 

knowledge relevant to student-teacher interaction, which included the different teacher 
knowledge frameworks they used and their ways of operationalizing these frameworks to make 
claims about teacher knowledge when explaining teachers’ observable actions. First, my analysis 
unsurprisingly suggests that researchers hold different perspectives on teacher knowledge when 
conducting research in relation to teacher knowledge and student-teacher interaction. This 
phenomenon is not necessarily due to the diversity of frameworks prevalent in mathematics 
education. Researchers who used the same framework might interpret and use the framework 
differently. For example, researchers of 9 (out of 18) studies used Ball et al.’s (2008) MKT 
taxonomies but with some of them using it as a construction perspective, some using it as an 
application perspective, and one using it as an action/skill perspective (see a summary in Table 
2). Because Ball et al. (2008) developed the MKT framework with an intention of identifying 
teacher knowledge demanded by the work teachers do, it made sense that this framework widely 
applied to the literature on teacher knowledge relevant to student-teacher interaction. However, 
this conceptualization of teacher knowledge emphasizes specific types of teaching practices that 
signal teacher knowledge rather than the cognitive content and nature of teacher knowledge 
itself. As a result, it is not surprising that many researchers used this framework either from an 
action/skill perspective to conflate knowledge and actions or an application perspective to focus 
on the function of knowledge in the form of teacher actions. A limitation of these views of 
teacher knowledge is that they do not allow researchers to gain insights into the cognitive content 
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and structure of the teachers’ knowledge. We are left wondering: what mathematical meanings 
the teacher construct from their students and how are those meanings organized in the teachers’ 
minds so that they can enact those meanings when interacting with students?  

Table 2. Summary of literature using Ball et al.’s (2008) MKT framework.  

Theme Literature # of literature/Total # of 
literature in each theme 

Application 
Perspective 

Bray (2011); Charalambous et al. (2012); Hill et al. 
(2008); Johnson & Larsen (2012); Kersting (2008); Speer 
& Wagner (2009); Wilkie (2016) 

7/8 

Construction 
Perspective 

Johnson & Larsen (2012); Wilkie (2016); Wilson, 
Mojica, & Confrey (2013) 3/11 

Action/Skill  Lee (2017) 1/1 
Second, researchers’ views of teacher knowledge reflect what source of knowledge they 

consider as critical in explaining teachers’ observable actions. Researchers who hold a 
construction perspective attribute teacher actions to what knowledge teachers construct in the 
moment of interacting with students and make claims about what constitutes the teachers’ 
constructed knowledge. Researchers who hold an application perspective explain teacher actions 
in terms of what knowledge teachers possess or lack. At times, the researchers make claims 
about what teachers cannot do due to the absence of certain types of knowledge, emphasizing the 
deficit of teacher knowledge instead of the affordances. While this perspective allows 
researchers to understand what knowledge enable teachers to notice, listen, and act on student 
thinking, it may constrain researchers from understanding how noticing, listening, and teaching 
provides teachers sustained opportunities to develop their knowledge of their students.  

I am not arguing that a construction perspective is always preferable over an application 
perspective. I understand that researchers may have different research goals and thus focus on 
different aspects of teacher knowledge. However, I do believe that researchers who are oriented 
to radical constructivism should consider taking both perspectives to explain teacher actions. A 
radical constructivist view of social interaction as ongoing assimilation and accommodation of 
meanings requires researchers to simultaneously take into account how teachers apply and 
modify knowledge in the moment of interacting with students. Applying existing knowledge to 
interpret a current situation implies a mental process of assimilation; namely, the teachers are 
treating what they perceive about the students’ activity as fitting into their existing conceptual 
structure. In comparison, modifying knowledge from teaching implies that the teachers are 
experiencing accommodation—the teachers are modifying their existing conceptual structures to 
account for what they perceive in-the-moment. This echoes some scholars’ call that researchers 
should focus on the knowledge construction process to capture the dynamic and constructive 
nature of teacher knowledge, as opposed to identifying particular knowledge needed for effective 
teaching (e.g., Bauersfeld, 1980; Mason & Spence, 1999; Silverman & Thompson, 2008).  

A final observation is that some researchers did not provide sufficient descriptions of their 
views of teacher knowledge in the theoretical framework section (e.g., Bray, 2011; Jacobson & 
Lehrer, 2000; Lee, 2014)—some of them summarized the existing frameworks without 
elaborating on how they interpreted and used the framework in their studies. It is important for 
researchers to carefully consider their uses of teacher knowledge frameworks and to be aware of 
how they conceive the role of teacher knowledge in student-teacher interaction. As suggested in 
my analysis, such consideration may not only help situate the research in the literature in a more 
rigorous way but also impact researchers’ ways of interpreting and explaining their data. 
 
Acknowledgment: I thank Dr. Kevin Moore and Dr. Carlos Castillo-Garsow for their insightful 
feedback on previous versions of this paper.  
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This is Us: An Analysis of the Social Groups Within a Mathematics Learning Center 
 

 Katie Bjorkman Susan Nickerson 
 San Diego State University San Diego State University 

The mathematics learning center (MLC) of a university may influence more aspects of a 
student’s life than the targeted mathematics learning. In this study we examined an MLC from 
the perspective of the undergraduate peer tutors employed there seeking to understand the space 
as a figured world. Differential use of pronouns emerged during analysis of collected stimulated 
recall data from the participating undergraduate mathematics peer tutors. My examination of 
which individuals, groups, or subgroups were included in “we” and “us” statements by the 
participants revealed social patterns within the MLC where both academic and non-academic 
behaviors indicated belonging or the potential to belong. The personal narratives of the 
participant tutors expanded on these ideas of coming to belong within the MLC and the 
implications of that belonging for their developing mathematics and STEM identities. 

Keywords: peer tutoring, figured worlds, discourse analysis 

Increasing STEM retention is an important contemporary topic in mathematics education 
and beyond (Bressoud, Mesa, & Rasmussen, 2015; Daempfle, 2003; Ellis, Fosdick, & 
Rasmussen, 2016; Shin, Levy, & London, 2016). One proposed mechanism for students’ 
decisions to persist or leave a STEM major is a sense of belonging in mathematics or more 
broadly in STEM (Ellis et al., 2016; Estrada-Hollenbeck, Woodcock, Hernandez, & Schultz, 
2011; Wilson et al., 2015). A mathematics learning center (MLC) is a possible space for students 
to gain a sense of belonging in mathematics.  

The MLC and mathematics tutoring have become almost ubiquitous on university 
campuses with a recent national survey suggesting that virtually all calculus-offering institutions 
offer mathematics tutoring in some form (Bressoud et al., 2015).  A study in the UK concluded 
that an MLC may be seen by mathematics students as qualitatively different than other physical 
spaces in which doing mathematics and social interactions can provide a space where students 
feel both ownership and belonging in a way that they do not in the classroom or traditional office 
hours (Solomon, Croft, & Lawson, 2010). However, there is very little research on tutoring 
compared to other subfields within mathematics education, particularly when considering 
tutoring at the undergraduate level within the US, even though approximately 40% of calculus 
students in the US report utilizing on-campus mathematics tutoring at least once (Bressoud et al., 
2015; Mills, Tallman, & Rickard, 2017). 

This research report is part of a broader study in which undergraduate mathematics peer 
tutors (UMPTs) were recruited as case study participants. We explored their views of their 
tutoring and of the MLC where they were employed. The results presented here focus on the 
community building affordances of the MLC and what it provided for tutors and STEM majors 
to gain a sense of belonging in mathematics. We take up the framework figured worlds (Holland, 
Lachicotte, Skinner, & Cain, 1998) to explore the complex, reflexive, and fluid nature of tutoring 
and extra-tutoring interactions within the MLC. Our primary data source was a series of video-
recorded stimulated recall interviews with four participants around their tutoring enactments and 
a final semi-structured interview where the participants provided information on their 
background and experiences (Dempsey, 2010; Ginsburg, 1997). In our results presented here we 
focus on the emerging patterns observed in pronoun usage within the stimulated recall transcripts 
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along with participants’ explanations of their perceptions of the MLC and their place within it. 

Background and Setting 
The setting for this study was a large, public university in the southwestern US. The 

university is a Hispanic-serving institution and has a diverse student population. A recent 
increased interest in improving mathematical outcomes for students in mathematics courses lead 
to the development of the MLC in its current form and location. The MLC has the stated goal of 
improve the DWF rate in Precalculus, Calculus I, and Calculus II, while also offering tutoring in 
other undergraduate mathematics and statistics courses. The MLC is well-utilized with over 5000 
student-tutor contacts recorded during the past year. There were 28 UMPTs employed at the 
MLC in the semester when this data was collected. The mathematics department has an 
expectation that graduate teaching assistants (TAs) will hold some or all of their office hours in 
the MLC as well, creating an additional pool of tutors. 

Theoretical Framework 
Figured worlds as a theoretical framework couches identity – being a certain “kind of 

person” – into a sociocultural space where some kinds of person are allowed and others 
disallowed, where some roles are well-defined and others ill-defined, and some are more valued 
than others (Holland et al., 1998). Figured worlds are spaces where identities are produced and 
individuals can develop new identities through interactions within these spaces. The culmination 
of experiences and interactions influence who a person believes that they are and can be in the 
future and thus how they can and should act in a situation. The tutoring interaction creates at 
least one such figured world, but as Colvin (2007) found, it is not a world in which every tutor or 
student knows who they are expected to be and what enactments to engage in to reach their goal 
in that space. Identities must be negotiated and who you are and can come to be within the 
figured worlds is largely dependent on the willingness of others to view you as having that 
identity. An individual’s perception that certain identities are granted greater power in certain 
spaces can alter their sense of mathematical belonging (Solomon et al., 2010). The explicit focus 
of this report is on the identity work that the tutors engaged in as revealed by their use of 
pronouns. We sought to answer the research question: Who is “us” and what does it mean to be 
“us” within the figured world of the MLC? 

Data Collection 
As part of the broader study, a web-based survey was distributed by the director of the 

MLC to all tutors in the MLC. A subset of seven survey respondents indicated their willingness 
to talk further with a researcher. Of these, two declined further participation when contacted. 
Four participants of the remaining five were selected with the goal of a gender-balanced sample 
and a representation of multiple undergraduate majors. No Hispanic/Latin@s volunteered and 
thus were not represented in this sample but they do represent a significant minority of the 
UMPTs employed in the MLC. The characteristics of the participants are summarized in Table 1. 

The case studies consisted of repeated observations and video recording of tutoring 
interactions in the MLC. Each observation coincided with a full tutoring work shift for each 
participant and lasted 2 or 3 hours. Participants were observed four times and each observation 
was followed with a stimulated recall interview (Dempsey, 2010; El Chidiac, 2017; Lyle, 2010), 
with two exceptions. Lily was observed five times but only completed four stimulated recalls, 
and Eric had an observed tutoring shift where only one very short (<10 minute) tutoring 
interaction occurred and so only participated in three stimulated recalls. After the final stimulated 
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recall each participant also participated in a semi-structured interview of approximately an hour 
with the same initial guiding questions (Ginsburg, 1997). 

The observing researcher created a log of key features or incidents in real time field notes 
while video-recording tutoring interactions. These field notes were used to direct the selection of 
interactions during the stimulated recall. A second set of notes were made by rewatching the 
recorded tutoring interactions at a later time and both sets of notes were utilized to help interpret 
the stimulated recall data (Emerson, Fretz, & Shaw, 1995). The stimulated recall and final 
interview were video recorded and transcribed. In their interpretations of their interactions, we 
can learn about UMPT’s view of their own identity and that of others within the figured world. 

Analysis 
For the purpose of analysis the two sets of notes were combined with the stimulated 

recall transcripts and the primary unit of analysis were the 71 tutoring interactions discussed in 
stimulated recall (Dempsey, 2010; Emerson et al., 1995). Data was analyzed using grounded 
theory to code the resulting transcripts (Strauss & Corbin, 1994). While coding this data set we 
noted pronoun useage as a meaningful emergent category. Participants differed between the 
pronouns they would use to reference students they had worked with, for example one 
participant had a pattern of  “then I told them” pronoun usage when talking about tutoring 
Precalculus but “then we worked on” when talking about tutoring upper division courses. A more 
robust analysis was produced classifying every use of first-person plural pronouns based on 
whom the pronoun was referencing. This allowed us to explore who was afforded similar social 
standing to an UMPT within the figured world. For example, when Lily was asked “ ‘we’ 
meaning…?” and responded with “The MLC.” during a stimulated recall interview it was taken 
as evidence that she felt a sense of belonging within the group of UMPTs at the MLC. 

Final semi-structured interviews were also transcribed and coded separately. Pronoun 
usage was not directly analyzed in the same fashion for this data as it was a qualitatively 
different dialog than the stimulated recalls. Rather, the final interview data served to answer 
broader questions about the tutors’ views of the figured world of MLC and their reflexive 
identity work within it. Grounded theory was again utilized (Strauss & Corbin, 1994). Of most 
interest for the present report were the answers regarding the social aspect of the MLC and the 
tutors’ personal narratives regarding how they came to be a tutor there. 

Results 
The three most prominent groups identified by UMPTs in the MLC were students 

seeking tutoring (SSTs), upper-division STEM majors (SMs), which here we will use to refer 
only to non-tutors who are not seeking tutoring, and the undergraduate tutors (UMPTs). These 
groups blended into one another with the UMPTs talking about socializing with the SMs, 
particularly after hours when they would retain access to the MLC as a study space. The 
participants introduced the language about this group of people as “the club” who “practically 

Table 1. Case study participants key characteristics 
Case Study 

Participants* Year Major Ethnicity Time Tutoring 
in the MLC 

Danielle Junior Mathematics White/Caucasian 1-2 years 
Eric Senior Mathematics Chinese-Filipino 1-2 years 
Jake Sophomore Engineering White/Caucasian <1 year 
Lily Junior Mathematics & Physics Cambodian 1-2 years 

*Gender-preserving pseudonyms chosen by the participants 
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live here.” SSTs were seen by the UMPTs to varying degrees as potential UMPTs and potential 
members of the club – Danielle’s story of becoming a tutor is one of beginning as an SST, and 
Jake talked about perceiving one of his SSTs to be someone who would make a good tutor and 
encouraging them to apply. Interestingly, the graduate teaching assistants (TAs) were not seen by 
the UMPTs as belonging to any of these groups. First person plural pronouns never referred to 
TAs. The first-person plural pronoun usages referring to each group are summarized in table 2. 

The Club 
The MLC has become an important social space for UMPTs beyond their tutoring duties 

and hours. Jake described to us how the MLC was the place where he first met other SMs and 
found peer-mentors and friendships in his major. The other participants also talked about the 
social aspect both as part of what makes it work as an educational space, as Lily put it: 

“You get close to the tutors, at least the ones who stay here [when off-duty or 
after hours], that's most of us. But usually the people that we hang out with. And 
we become best friends which gives us a friendly environment. Which we think is 
a good thing.” (from a stimulated recall) 

The participants spoke of the MLC being their primary social as well as professional outlet. 
Researcher: So this place has become more than, more than a job to most tutors. 
Eric: We usually also live here, also, yeah…yup it is the place to be not just for work but for 

work not like work but homework and things to do that are mathish. 
R: It's the nerd clubhouse. 
E: Pretty much, yeah. (from final interview) 

Beyond the tutors, “the club” as a social unit also extended to some upper division STEM 
students, specifically but not exclusively mathematics majors, and a group of them could always 
be found in one corner of the MLC.  

“It's [the MLC] a nice place to be for math students… we're here all the time, and there 
are whiteboards and things like that…It's kind of fun when it closes at the end of the day. 
We close down and then people will stay and study and stuff [Tutor] and I have done that 
a few times. Then it's really cool. We feel really included, like it's this little club. Because 
we're like "we get to stay after hours."” – (Danielle, stimulated recall)  

First-person plural pronouns explicitly included SMs in ten cases our of 403 analyzed in the 
stimulated recalls, such as the first usage in Danielle’s quote “math students… we’re here all the 
time,” this a small percentage but any mention is a bit surprising as the SMs were not part of the 
interactions being discussed. There is high degree of overlap between upper division STEM 

Table 2. First-person plural pronoun use in stimulated recall interviews 

Group Referenced Number of First Person 
Plural Pronouns 

Percentage of First Person Plural 
Pronouns 

UMPTs 218 54% 
STTs 104 26% 

“The MLC” 40 10% 
SMs 10 2% 
TAs 0 0% 

Other* 31 8% 
Total: 403  

*this category included tutors using pronouns as-if quoting what someone else said – i.e. “the student was like 
‘we don’t learn anything by going to class.’” These cases were excluded as the use of the pronoun was not 
inclusive of the tutor. 
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majors and the UMPTs, not only because the UMPTs are recruited and hired primarily from the 
SMs but also, interestingly, the SMs are sometimes called upon to act as if they were tutors 
employed in the MLC when it gets busy. 

“So, you have, one group that's your regular, upper division math students who all 
are working together on their classes and they're always just hanging out in here. 
And they'll help people, too, if people have questions they will intervene even if 
they're not on.” – (Jake, final interview) 

Jake is reporting that it is normalized within the MLC to ask an SM for help if you are 
stuck on a student’s question. In my observations asking for assistance was common 
between UMPTs, even when they were off duty, but we observed SMs being asked as 
well. The club seemed to function as the social core of the MLC and in pronoun usage 
while discussing the social aspects of the MLC it was common for “us” to perhaps 
implicitly include its non-employee as well as UMPT members, as when Danielle said 
“we get to stay after hours” a privilege extended explicitly to employees of the MLC but 
practically also to SMs around at closing time so long as at least one employee was there. 

The UMPTs included non-tutors in their core social unit but did not seem to consider all 
students as members of the club. A pattern was noted in Jake’s responses while analyzing the 
pronouns he used for students in the stimulated recall interviews. Jake did not use “us/we” 
pronouns for a student a single time while tutoring Precalculus or Business Calculus (nine 
interactions), but did use it when tutoring upper division mathematics courses (above Calculus 
II) in five out of ten interactions, and once when tutoring Calculus we (out of four interactions). 
A similar pattern could not be traced in other participants’ due to a lack of data – only three total 
other upper division mathematics tutoring interactions were recorded across the other 
participants. However, Jake’s pronoun selections of what students are part of “we/us” may reveal 
how more advanced students are closer to being considered peers. In the finer-grained analysis 
the first-person plural pronoun analysis also reflected that UMPTs included students in 104 of 
403 cases – half the number including other UMPTs but a non-trivial percentage of the time. 

Becoming a Tutor 
Becoming a member of the club seemed to refer to individuals who repeatedly showed up 

in the MLC and were in upper division courses with other SMs. The process of becoming an 
UMPT employed at the MLC is naturally more formal, but may begin with the process of joining 
the club. One of my participants, Danielle, described how she became an UMPT through first 
being a regular student in the MLC: 

“I was coming in here [to the MLC] because we needed help with Calc II… we 
started seeing kids that were around my age like being tutors and so we would ask 
friends, or like kids we knew, how did you become a tutor? Like I'd ask [tutor] 
how did you become a tutor here? And he'd say like, "oh, we don't know we just 
volunteered to tutor here and we was here all the time and we wanted the job and 
we just asked [MLC director]." and we was like "OK." So then we think we 
emailed her over the summer asking if we could work here and she sent out an 
application…” (final interview) 

Danielle’s story of becoming a tutor was unique among my four case study participants. We 
found evidence beyond her story that her trajectory was a normalized way to become an UMPT. 
During one of our stimulated recall sessions, Jake commented about a particular student that he 
was trying to recruit the student to become a tutor, 

Researcher: So this becomes almost like, 
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Jake: Advice, mentoring – it also can be a recruiting process for me, too… For our ‘club’, 
[Student], he seemed like a very good candidate… I could even see him as a tutor. Just 
kind of giving him advice like, if you want to tutor, here's what you do. I can see that you 
would be good at this subject, which we lack. And then so like, I'm going to stay in 
contact with him now because he's a very good potential candidate. He actually cares 
which is sometimes hard to find in students. So that was really just cool. 

R: But this is the kind person that you want to be like, [MLC director] hire this person. 
J: Yeah, exactly, that was exactly it. (stimulated recall) 

The use of “ ‘our’ club” is an example of a potentially ambiguous case which we counted as only 
explicitly referencing the UMPTs due to the context speaking directly about tutors, though ‘the 
club’ to Jake in other contexts appears to include SMs and he clarifies in his next sentence that 
beyond the club this student could ‘even’ be a tutor perhaps indicating that the earlier ‘our’ could 
be taken to include SMs. His discussion of recruiting of a student gives evidence that Danielle’s 
experience was not unique, but rather that in the figured world of the MLC, it is both possible 
and desirable for a student seeking tutoring to become part of the social life of the MLC and to 
be hired as an UMPTs, thus authoring an identity of being a person who belongs in mathematics. 

TA vs. Tutor 
Another key group in the MLC are TAs who are graduate degree seeking students in the 

mathematics department who lead break-out sections for students in large lecture courses of 
Calculus we and II. In addition, they are expected to hold office hours by tutoring in the MLC. 
According to the UMPTs the TAs form a separate social unit and are perceived to fulfill a 
different role despite also having a tutoring function. Of the 403 instances of plural first-person 
pronoun usage in the stimulated recall sessions not one could be determined to unambiguously 
include the TAs. In fact, when asked if a “we” statement included the TAs, participants would 
indicate that it did not. While no direct conflicts were observed, UMPTs did complain that the 
TAs did not follow the same rules (such as always wearing the required vests and nametags). 
According to Lily, “the TAs almost view us as some kind of undergrad nuisance” and Jake stated 
that there was little to no social interaction between UMPTs and TAs: 

“With a lot of them we don't socially as tutors talk to them as much because 
they’re always just at their table with their group of students not really roaming 
around like "hey, can you help them." The tutors kind of fill in for everybody 
when there isn't a TA for a specific class and the TAs just come here work with 
the students and then go. That's how we usually see it.” (final interview) 

This dynamic was interesting to observe as the other major groups in the MLC – the UMPTs, the 
SMs, the SSTs – seemed to form almost a single, fluid social group where roles shifted based on 
taking more advanced courses or an individual’s prowess in a subject area, and where students 
were actively recruited to join the club. TAs were seen as something apart from this social order 
and participants never expressed to us the possibility of becoming a TA even when several of 
them talked about going to graduate school. 

Conclusion 
The MLC is a figured world with several perceived possible roles for undergraduate 

STEM majors. These roles seem to fall along a continuum from a lower-division SST to an 
UMPT member of the club. This study has sought to examine the nature and boundaries of the 
perceived social groups within the MLC in order to better understand how those dynamics may 
play into an individuals’ development of a mathematical identity, and thus, positive student 
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outcomes. The UMPTs who participated in this study spoke of social groups including ‘the club’ 
and their students some of who may become tutors and members of the club at a future time. 
This reveals a figured world where SSTs may author roles as club members and UMPTs. 
Meanwhile, the UMPTs consistently positioned themselves as a role and social group ‘other’ 
than the TAs. We found no evidence of an imagined path where a current UMPT would become 
a TA in the future. 

The ability of any student, even formerly struggling students like Danielle, to become 
tutors and part of the club speaks to the MLC as a possible source of a sense of belonging for 
mathematics and other STEM majors – a figured world where identity work affirming of 
mathematical struggle and peer collaboration regularly takes place. This is a significant finding 
as the majority of research to date on undergraduate mathematics tutoring has emphasized the 
academic gains of students who are tutored and not attended as strongly to affective factors like 
belonging or the sociocultural factors that would support it. Researchers like Solomon et al. 
(2010) in the UK have explored how having a neutral space for peer interactions around 
mathematics can be beneficial to feelings of community and belonging in a mathematics 
department. In the US, it is of note that students cited tutoring centers and other opportunities for 
social interactions with peers outside of class as being important to their mathematical 
development and experiences (Bressoud et al., 2015). The UMPTs in this study emphasized their 
role as a peer in the space as being particularly valuable for students. As Danielle put it:  

“Oh, it's so helpful to students that have questions in math or are struggling in 
math. It's really hard, it's hard to find someone to go to who isn't your professor or 
your TA… They may not be able to help you even though it's the same class. So 
it's a lot easier to come here to the MLC because there are a lot of other people 
who are here who have taken that class with that professor and they know what 
you should be working on and they know what you should be helping with… I 
feel like this is the easiest – it is the easiest and most relaxed way to get help 
without feeling the pressure of going to a TA or a professor because that can be 
really nerve-wracking.” (final interview) 

As researchers, we were surprised to see the social distance between two groups (TAs and 
UMPTs) that we initially perceived as fulfilling a similar role in the space. Our initial response to 
this social gap was one of concern – surely it would be beneficial for students if all the educators 
in the space collaborated as peers? We wonder if the distance might serve a social function after 
hearing the UMPTs talk about social mobility and the narratives of students coming into the club 
and being recognized as mathematical peers. Social distance between the TAs with institutional 
authority and the near-peer UMPTs may in fact be positive in some cases in allowing students 
currently enrolled in TA-utilizing courses access to a mathematical community that does not 
include individuals with institutional authority over their coursework and grades. 
 Other MLCs at other institutions will have different social groups and roles emerge as 
their figured world develops in interactions between students, tutors, and other key players. This 
study is an example of some of the types of identity work that can arise within a university’s 
MLC and highlights the ways that social as well as mathematical factors play a role in identity 
work such as coming to belong. This direction of research extending beyond an increase in 
academic gains should not be neglected in future studies and should perhaps garner greater 
attention during formal and informal assessments of MLCs. 
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When students are coming to understand how to construct proofs, as well as how 
mathematicians use proofs in their work, the role of the instructor cannot be overstated. In this 
paper, we present an investigation into how an instructor uses her authority to empower students 
as legitimate proof producers and learners of mathematics. We view this empowerment and 
student learning through a situated lens, accounting for relationships of disciplinary authority 
and student agency. In our investigation, we analyzed the transcripts from three classroom 
episodes in an inquiry-based transition-to-proofs course. We identified instances when the 
instructor leveraged her institutional authority as well as her mathematics expertise authority to 
support students’ engagement in the dance of agency, asserting their own creative ideas as 
learners of mathematics while still adhering to the norms and standards of the discipline.  

Keywords: Authority, Agency, Proving, Proof, Empowerment 

Mathematical proof has a special place in the discipline of mathematics, and it plays an 
important role in undergraduate mathematics education (Stylianides, Stylianides, and Weber, 
2017). When students learn to write proofs, they must find a balance between the norms of proof 
writing established by the discipline of mathematics and their own creativity. Such a balance 
may be considered a dance of agency between the authority of the discipline and the agency of 
the student (Boaler, 2002; Pickering, 1995). The instructor plays an important role in setting the 
stage for this dance, with his or her position to both represent the discipline and support students’ 
agency. In mathematics education literature, the problem of striking a balance between the norms 
of the discipline and the ideas of the students is often framed as a problem of establishing shared 
authority between student and teacher in the classroom (e.g. Webel, 2010). So how can shared 
authority be achieved? Gerson and Bateman (2010) suggested one potential answer--that 
undergraduate instructors should limit both their institutional authority (based on their position 
as instructor of the course) and their mathematical expertise authority (based on proven 
mathematical expertise) in order to promote shared authority within a classroom community. 
But, just as students must find a balance between the authority of the discipline and their own 
agency, we contend that instructors must find a balance between exerting and limiting their own 
authority in order to facilitate productive learning. In fact, we believe the field could benefit from 
questioning the often-cited claim that teachers should limit their authority, and instead explore 
how instructor authority can usefully be employed to support students as mathematics learners. 
In this study, we use data from an inquiry-based undergraduate transition-to-proof course in 
order to understand how an instructor may use her institutional and mathematical expertise 
authority to empower students as legitimate practitioners of mathematics.  
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Theoretical Framework 
Situated Learning 

We adopt a situated view of learning and consider learning to occur when students engage as 
legitimate peripheral participants in the mathematics community of practice (Lave & Wenger, 
1991; Wenger, 1998). “Viewing learning as legitimate peripheral participation means that 
learning is not merely a condition for membership, but is itself an evolving form of membership” 
(Lave & Wenger, 1991, p. 53). So in our case, to learn mathematics is to be in an evolving state 
of membership within the mathematics community.  Students, as “newcomers” to the 
mathematics community, gradually develop their agency and shape the discipline itself as they 
become more accustomed to the norms practiced by the “oldtimers” of the discipline (Lave & 
Wenger, 1991). Through this process, a student gains fuller membership into the community of 
mathematicians. Thus, understanding how to facilitate the balance between the authority of the 
discipline and the agency of the learner is critical to supporting students as learners of proof, and 
hence legitimate practitioners of mathematics. 

Agency and Authority 
Recall that in this study, we seek to understand how instructors may use institutional and 

mathematical expertise authority to empower students as legitimate practitioners of mathematics. 
Empowerment, as we conceive it, is linked to a student’s ability to engage in the dance of agency 
(Boaler, 2002; Pickering, 1995), balancing his or her own creative ideas with the ideas and 
norms of the discipline. Although Boaler (2002) and Pickering (1995) use the term agency to 
describe both the individual and the discipline, we find it more useful to follow Amit and Fried 
(2005) and speak of the agency of the student and the authority of the discipline.  A few 
definitions will be helpful in this regard. By agency, we mean "a dynamic competence of human 
beings to act independently and to make choices" (Andersson and Norén, 2011, p. 1). Given this 
definition, agency is most appropriate when describing a human being in action. We identify 
instances of student agency when students debate, ask questions, and propose their own ideas or 
proving strategies.  

Alternatively, by authority, we refer to “situations in which a person or group, fulfilling some 
purpose, project or need, requires guidance or direction from a source outside himself or itself…. 
The individual or group grants obedience to another person or group (or to a rule, a set of rules, a 
way of coping, or a method) which claims effectiveness in mediating the field of conduct or 
belief as a condition of receiving assistance” (Benne, 1970, pp. 392-393). In the undergraduate 
setting, students experience the authority of the discipline in textbooks and communications from 
their instructor. Established theorems, standards for rigor, symbolic conventions, and accepted 
proof formats are instantiations of the authority of the discipline of mathematics. We contend 
that the discipline possesses authority in terms of its norms and standards for rigor and proving. 

 The instructor plays an important role in not only promoting student agency (e.g., by asking 
probing questions, providing opportunities for discussion) but also in helping students learn 
about what is established in the discipline of mathematics. In this sense, the instructor serves as a 
broker between the community of students in the classroom and the community of 
mathematicians in the discipline (Wenger, 1998).  If we consider a continuum to represent 
students’ learning of proof, as in Figure 1, in which the right side of the continuum represents 
students exerting their agency in deciding what should count as mathematical proof, and the left 
side represents obedience to disciplinary authority, we recognize the limitations of each extreme. 
If students are strictly taught to obey the authority of the discipline in regards to learning 
mathematical proof, then they may focus on form rather than reasoning. They may fail to see 
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proof as a sense-making endeavor and feel isolated from the process. On the other hand, if 
students are given complete agency to decide what counts as proof, their proofs may not meet the 
standards of the discipline. This makes the instructor’s role as broker between the classroom 
community and mathematics community central to empowering students in the dance of agency. 

 
Figure 1. Continuum of Agency and Authority when Learning Proof 

Methodology 
We adopted Gerson and Batemen’s (2010) classification of authority, because to date they 

have provided the most extensive framework for identifying authority roles within mathematics 
classrooms that “give way to the realization of autonomy with interdependence” (p. 195), a goal 
we see as aligned to our theoretical perspective, in which we view student empowerment as a 
successful balance of student agency and the authority of the discipline of mathematics. As a 
way to describe the interactions amongst students and the instructor in an inquiry-based calculus 
class, Gerson and Bateman distinguished between four authority types (hierarchal, mathematical, 
expertise, and performative) encompassing seven sub-types.  Two of these subtypes are 
particularly important to our study: institutional authority which is “held by instructors based on 
the position as instructor of the course” (p. 201), and mathematics expertise authority, “based on 
the proven mathematical expertise of the bearer” (p. 201). Recall, Gerson and Bateman 
suggested that instructors should limit these two sub-types of authority in order to promote 
shared authority in the classroom. We, however, sought to explore if and how an instructor’s use 
of these two authority sub-types may support student learning, highlighting the teacher’s role as 
a more nuanced set of actions and decisions. Hence, we pose the following research questions: 
Can an instructor’s institutional authority be used to empower students as legitimate practitioners 
of mathematics? If so, how? Can an instructor’s mathematics expertise authority be used to 
empower students as legitimate practitioners of mathematics? If so, how? 

The data for this study were collected as part of a larger study on the nature of mathematics 
(Pair, 2017). For the purpose of this study, we transcribed audio recordings of three classroom 
episodes depicting whole-class discussions that took place within an undergraduate transition-to-
proof course at a large Southeastern University. Two mathematics education scholars, also 
authors of this manuscript, co-taught the course utilizing collaborative, inquiry-based pedagogy. 
Twenty-three students, including mathematics majors and minors, agreed to participate. 

Three researchers independently read and coded the selected transcripts, taking one speaker’s 
(student or instructor) turn as a unit of analysis. Each time a new speaker contributed to the 
whole-class discussion, the researchers assigned as a code any of the seven authority sub-types 
from Gerson and Bateman’s framework that seemed to represent the authority relationship 
demonstrated within that speaker’s contribution. Sometimes a researcher assigned more than one 
authority code to a turn, and sometimes a researcher assigned no codes to a turn. Also, 
researchers wrote memos and questions related to their coding in the margins of the transcript. 
After independent coding of each transcript, the three researchers came together in group 
meetings to (a) discuss and negotiate the types of authority relationships evident in the transcript, 
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and (b) identify key instances within the transcript where institutional authority and/or 
mathematics expertise authority were used by the instructor in a way that empowered students as 
legitimate practitioners of mathematics. 

Results 
To begin our presentation of results, we first reiterate what we mean by empowered learning 

with respect to students as learners of proof.  Recall, we view empowerment as related to a 
student’s ability to exert his or her own agency/ideas while also considering and respecting the 
norms and understandings of the discipline of mathematics. To clarify this notion, we present 
two student quotations from an early class session in the transition-to-proofs course.  Students 
were asked to respond to the following question, “Based on your past learning experience with 
mathematical proof (either high school or college), how did you learn about what makes a good 
mathematical proof?”  We highlight two responses below, one from Eddie and one from Josiah.  

 
And as far as my personal struggles with them [proofs]... what helped me the most 
honestly was continually being wrong. I would be wrong and the teacher would be like 
this doesn’t work. Logically this doesn’t work, that math is wrong there. And so the more 
I was wrong and the more I thought about why I was wrong and how to fix it, I got better 
at it. (Eddie) 
 
I feel like I haven’t really formally learned about how to do proofs. In the lower classes it 
was something that was just sort of tacked in like in the textbook, as like oh here is a 
thing, you understand this right? Or let’s look at how to do integration with this infinite 
series, and everyone is like WHAOOO??? And by the time you get to the higher classes 
they just assume you know how do to it. (Josiah) 

 
We argue that the first student, Eddie, describes an empowering learning experience because 

he is actively engaged in the dance of agency. Eddie exerted his ideas (agency), and was often 
incorrect. He would receive feedback from his teacher (representing disciplinary authority) and 
then take the feedback to revise and reflect on how to modify his proofs, in an empowering 
cycle. Alternatively, Josiah describes a disempowering learning experience as he did not have 
the opportunity to engage in the dance of agency. He was instead simply given the instantiation 
of authority from the discipline (in the textbook), or assumed to understand the knowledge and 
norms of the discipline, with little opportunity for inserting his own agency. 

With this conceptualization of empowerment in mind, we turn to our research questions: (1) 
Can an instructor’s institutional authority be used to empower students as legitimate practitioners 
of mathematics? If so, how?, and (2) Can an instructor’s mathematics expertise authority be used 
to empower students as legitimate practitioners of mathematics? If so, how? 

 
Leveraging Institutional Authority 

Early on in the semester, students sought direct guidance from the instructors regarding what 
constitutes mathematical proof, asking questions including, “Is there a best way of doing proofs? 
Something that works stronger than all other ways?”, “What is official/professional proof 
supposed to look like? What are the requirements?,” and “When will we know for sure we are 
writing proofs correctly?” Instead of providing a direct answer about what makes a proof, the 
instructors engaged the students in a two-day activity in which students debated the criteria for a 
valid argument by analyzing and critiquing one another’s written arguments for a given problem. 
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The quotation below comes from the lead instructor, Dr. BB, as she responded to students’ 
questions regarding the best way of writing proofs: 

 
We are looking for some more guidance right? About what is proof. You all were 
working last week, working on a few problems and thinking about how to prove things. 
Today what we are going to do, is try to as a class, as a community, come up with some 
criteria that would help us describe what a proof should be. Okay? And we [the 
instructors] think that can come from you all, that it doesn’t necessarily need to come 
from us. That based on logic and based on the understanding of mathematics that you 
have so far, that you all are very capable of creating some criteria that would help you 
think about what should count as proof and what maybe shouldn’t count as proof. Okay? 
So that is what we are going to do today. 
 
Creating a class criterion for proof writing represents students interacting at the rightmost 

end of our continuum (Figure 1); students exerted their own agency on what counts as 
correctness in proof. This exercise was a novel experience for most students, as the majority of 
students described learning mathematical proof in ways similar to Josiah, where proofs were 
given as examples to be mimicked or memorized. We noticed that in these early-semester 
encounters, the instructors often leveraged their institutional authority in order to drive the norms 
of the classroom, asserting that students could and should insert their voice into the classroom 
conversation, and implementing a classroom activity that allowed for active student 
contributions. Given students’ initial inclination to live on the left side of the continuum 
(obeying disciplinary authority), we argue that the instructors’ use of institutional authority here 
was empowering as it allowed students the opportunity to offer their own thoughts and ideas to 
the classroom discourse. This is highlighted again in the following exchange, as Jackson 
contrasted his classmates’ ideas and his own thoughts on proof:  

  
Jackson: I’m having a debate about ... examples about where they belong in proofs. I guess I 

may not agree with the [class] consensus that examples belong in proofs. I certainly do 
examples for myself to support the veracity of what I am working on. But I don’t think a 
thousand examples prove anything. So I don’t know if they belong in there or not. I think 
one example that disproves has a lot of value. But I don’t know if putting half a dozen 
examples in a proof really supports the proof or not. 

Dr. BB: Mhhm. Great. And [that’s] another thing that I would like all of us to be thinking 
about today, okay? So keep raising that question Jackson, when we get back to revising 
our criteria later maybe you could bring it up again based on what you discuss in your 
group today.  

 
This instance can be interpreted both as a leveraging of institutional authority and as a 

limiting of mathematics expertise authority. Dr. BB leveraged her institutional authority (as the 
instructor of the course) by encouraging Jackson and the other students in the class to continue to 
think about the role of examples in proofs. She simultaneously limited her mathematics expertise 
authority, as Gerson and Bateman (2010) suggest, by not offering her own thoughts (as a 
disciplinary expert) on the role of examples in proofs. Dr. BB’s actions continued to emphasize 
the norm that student contributions were valuable to this classroom community, and these actions 
provided opportunities for empowered learning by moving students toward the right side of the 
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continuum.  Note that even though students were exerting their agency, they were coming to 
conclusions that were aligned to the disciplinary norms of the mathematics community. While a 
mathematician may use examples to generate ideas for a proof (de Villiers, 2004) or check the 
claims of a proof (Weber, Inglis, & Mejia-Ramos, 2014), examples are not part of formal 
deductive argumentation. Eventually, the class was able to come to this conclusion on their own 
through whole-class negotiation. We observed several similar instances early in the semester 
when Dr. BB simultaneously exerted her institutional authority and limited her mathematics 
expertise authority in ways that prompted students to attribute value to their class contributions, 
while also considering legitimate practices of the mathematics discipline. It was not until later in 
the semester that we were able to identify instances where the instructor’s use of mathematics 
expertise authority could be perceived as empowering (Research Question 2). We now highlight 
such a case.  

 
Leveraging Mathematics Expertise Authority 

It was about one month into the semester and the Blue Team had just finished their whole-
class presentation of a direct proof for the claim, “If l and m are odd integers, then l+m is even.” 
After their presentation, Jayden (a member of the team) suggested, “Also, we could prove it by 
contrapositive: By showing if l+m is odd, then l and m are even.” We believe that Jayden 
demonstrated agency by offering an alternative proof method unprovoked. He also offered a 
specific disciplinary technique (contrapositive) that he saw as part of his growing knowledge 
base. Note however that while Jayden offered a viable alternative proof approach (i.e. 
contrapositive), his structuring of the contrapositive statement was incorrect. Dr. BB took this as 
an opportunity to highlight Jayden’s suggestion for an alternative proof approach, but to also 
ensure that the students in the class had an understanding of the correct form for this particular 
contrapositive statement. 

 
Dr. BB: Let’s take one minute, if we were to prove this by contrapositive, what would we 

need to prove, what would that be? 
Natalie: If l+m is odd, then l and m are even integers. 
Sofia: I think it is ‘l or m is even,’ because the negation of and is or. 
Dr. BB: The negation of an and statement will end up being or. So essentially this is like ‘l is 

odd and m is odd.’ Then taking the negation of that, this is really important, we need ‘l is 
even or m is even.’ Which law is that? 

Students: DeMorgan’s law. 
Dr. BB: Yes. So we can use contrapositive, but make sure we can negate this piece correctly. 

Okay take a minute to talk in your groups. 
 
In this exchange we see Dr. BB exerting her mathematics expertise authority in two ways. 

First, Dr. BB recognized Jayden’s mistake in the statement of the contrapositive and decided to 
focus the class’s attention on the formation of that statement by pausing the group presentation 
and asking a probing question. Second, Dr. BB reiterated Sofia’s point, summarizing the correct 
approach to forming the contrapositive by negating the component statements, alluding to 
DeMorgan’s law. Student agency is valued, because of the student-centered nature of the ideas in 
the discussion and the ability of students to negotiate the correct format of the contrapositive. 
However, the instructor also honors the discipline by explicitly confirming the correct approach 
and then having students pause to reason about the proof by contrapositive format as applied to a 
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conjunction statement. In this instance of Dr. BB’s exertion of mathematics expertise authority, 
we see an empowering balance between student agency and students’ growing understanding of 
the norms and truths of the discipline of mathematics.  

Discussion and Conclusions  
In the results above, we presented brief vignettes of instructor/student interactions that we 

claim to illustrate the following two situations: (1) An instructor’s use of institutional authority 
that empowered students as legitimate practitioners of mathematics (i.e., Dr. BB’s use of 
institutional authority to set norms within the classroom community that student contributions 
would be valued and to engage students in an activity that offered them opportunities to consider 
legitimate disciplinary practices regarding proof), and (2) An instructor’s use of mathematics 
expertise authority that empowered students as legitimate practitioners of mathematics (i.e., Dr. 
BB’s use of mathematics expertise authority to identify a student’s mathematical error and to 
probe students in the class to explore and explain the mathematical error).  

These vignettes highlight an instructor’s use of authority that contradicts the suggestion by 
Gerson and Bateman (2010) that “an ideal instructional environment to promote shared authority 
would limit the instructor’s institutional and mathematics expertise authorities” (p. 206). Instead, 
we offer a more nuanced view of an instructor’s use of authority in the teaching and learning of 
proof, where institutional and mathematics expertise authorities may be used to empower 
students as legitimate practitioners of mathematics. Further exploration of how different 
authority types may be used in empowering or disempowering ways would benefit the field. 

As we conducted this analysis of classroom transcripts, we noted some interesting 
connections between institutional authority and mathematics expertise authority.  First, as 
discussed above, we noticed that when the instructor exerted her institutional authority in an 
attempt to set norms that valued student agency, she often simultaneously limited her 
mathematics expertise authority. This may be what Gerson and Bateman (2010) meant in their 
suggestion to limit mathematics expertise authority, as a way to provide space for students to 
assert their own mathematical ideas rather than adhere only to the mathematical ideas of the 
instructor.  This led us to wonder, is it possible to exert mathematics expertise authority and 
simultaneously limit institutional authority? And if so, what would this look like? Institutional 
authority is an authority type that is at play in the classroom no matter how the instructor decides 
to act (Amit & Fried, 2005).  In fact, when an instructor removes him or herself from 
contributing to a discussion, they are making use of their institutional authority. So, what would 
it look like to limit institutional authority in an empowering way, or is that possible at all?  

We also noted that there were instances within the classroom transcripts where, as 
researchers, we could clearly distinguish between the instructor’s exertion of institutional and 
mathematics expertise authorities. Our clarity in distinguishing these types of authority is likely 
due to our advanced knowledge of disciplinary norms in mathematics together with our 
professional knowledge as instructors. However, we hypothesize that it would not have been as 
straightforward for the students in the class to differentiate between these authority types. After 
an instructor makes an authoritative statement, the students may be left to wonder whether they 
should adhere to the instructor’s statement because it would be beneficial for their participation 
in this classroom community (institutional authority) or whether the instructor is speaking on 
behalf of the broader mathematics community (mathematics expertise authority). We believe that 
future research could explore if and when it is important for students to discern between these 
authority types, and how such discernment aids in their empowerment as legitimate practitioners 
of mathematics.  
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In this report we examine the performance and reasoning of span and linear independence of 126 
linear algebra students who learned through a particular inquiry-oriented (IO) instructional 
approach compared to 129 students who did not. Students who received IO instruction 
outperformed Non-IO students on questions focused on span, but not on questions focused on 
linear independence. Our open-ended coding additionally suggested that IO students’ concept 
images of span and linear independence were more aligned with corresponding concept 
definitions than those of Non-IO students.  
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A growing body of research documents improved student learning outcomes in 
undergraduate science, technology, engineering, and mathematics courses that use active 
approaches to learning (Freeman et al, 2014). However, there is limited work that documents 
differences in how students reason about particular disciplinary ideas under particular instructional 
approaches. In this paper, we analyze differences in performance and reasoning about span and 
linear independence of students whose instructors received instructional supports to teach linear 
algebra in an inquiry-oriented way from those who did not. In inquiry-oriented (IO) approaches to 
mathematics teaching, students inquire into mathematics by working on carefully designed 
sequences of open-ended problems, and instructors inquire into students’ thinking and use their 
ideas to drive the development and formalization of mathematical ideas to align with language and 
notation more conventionally used among the broader mathematical community (Rasmussen & 
Kwon, 2007).  
 Throughout this report, we will refer to students who learned through an IO approach as 
IO students, and we will refer to students learned through other approaches as Non-IO students. 
Our analysis uses data from an assessment developed to assess student performance and reasoning 
around core concepts in linear algebra (Haider et al., 2016). This report will focus on students’ 
responses to two multi-part questions that offer insights into students’ understanding of span and 
linear independence. In this study we will try to analyze two research questions: (1) How did IO 
and Non-IO students reason differently about span? (2) How did IO and Non-IO students reason 
differently about linear independence? 
 

Literature & Theoretical Framing 
Many works that examined how students reasoned about span and linear independence 

discuss findings related to the categories of algebraic and geometric interpretations. Students tend 
to be more comfortable with algebraic than geometric approaches, and often do not use geometric 
intuition when solving problems about span and linear independence (Bogomolny, 2007; Aydin, 
2014, Ertekin, Erhan, Solak, & Yazici, 2010, Stewart & Thomas 2010).  

Students often think of linear dependence in a variety of algebraic ways: in terms of free 
variables, pivot positions, or rows of 0’s in the reduced row-echelon form (RREF); they often think 
of linear independence as meaning there are no free variables, or that vectors are not multiples of 
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each other (Bogomolny, 2007; Aydin, 2014). A common theme in this literature is that many 
students treat linear independence as a process; some think of it in terms of the row reduction 
procedure and some connect it to the homogeneous linear system 𝐴𝑥 = 0.  

Stewart & Thomas (2010) also found that students tended to rely on algebraic approaches 
when solving problems involving span. Bogomolny (2007) found that for some students geometric 
and algebraic representations seemed completely detached. This was seen in students’ attempts to 
provide a geometric interpretation of the span of the set of column vectors of a matrix; instead of 
giving a geometric representation of the span of the columns of the matrix 𝐴, some students found 
a geometric representation of the solution set of the homogeneous system 𝐴𝑥 = 0. By definition, 
span does not require linear independence, but by involving this concept students successfully 
interpreted span as a subspace of certain dimension (Wawro, Sweeney, and Rabin, 2011).  
 In this work, rather than focusing on distinctions between algebraic and geometric 
interpretations for analyzing student reasoning about span and linear independence, we draw on a 
helpful theoretical distinction made by Tall and Vinner (1981) which offers language for 
differentiating the way individuals think about particular mathematical ideas (concept image) from 
formal mathematical definitions for particular mathematical ideas that are more conventionally 
accepted by the broader mathematical community (concept definition).  
 

Data Sources & Study Context  
Data for this analysis is drawn from a broader study (NSF #1431595/1431641/1431393) of 

instructors who received a set of three instructional supports to teach linear algebra in inquiry-
oriented ways. These instructional supports were: curricular support materials (consisting of task 
sequences, learning goals, descriptions of common student approaches to tasks, and 
implementation notes and suggestions), a 16-hour summer workshop, and facilitated online work 
groups that met for one hour per week during the semester instructors implemented the curricular 
support materials.  

For this study, we have analyzed a total of 255 assessments where 126 assessments were 
collected from students in IO classes and 129 were from students in comparable Non-IO classes. 
The linear algebra assessment is a paper-pencil based test and was administered as a post-test in 
IO and Non-IO classes. All students were given up to 1 hour to complete the test. The assessment 
carries 9 questions, which are combinations of multiple-choice and open-ended items, and the 
focus of the assessment is to capture students’ conceptual understanding of linear algebra concepts. 
The assessment was designed in way that a calculator was not required to answer any question on 
the test. In this study, we focused on an in-depth analysis of students’ reasoning on the assessment 
questions related to span (question 1) and linear independence (question 3; see Figure 1).  
 Questions Q1a and Q1b offer insight into how students interpret the span of a set of vectors 
as a geometric object; Q1c and Q1d offer insight into how students identify when particular vectors 
are part of the span of a set of vectors. The multiple choices for these items provide systematic 
insights on these students’ concept images of span, whereas their open-ended responses have the 
potential to provide insights into connections to the concept definition. Question 3b explicitly asks 
students to justify their response to whether a given set of vectors are linearly independent by 
connecting the result of a procedure (row reduction) – which we also think will offer insights into 
the links between students’ concept image and the concept definition of linear independence. 

Instructors using the IO approach used a 4-task sequence developed to support students’ 
reinvention of the concepts of span and linear (in)dependence (Wawro, Rasmusen, Zandieh, 
Sweeney, & Larson 2012). In task 1, students have two modes of transportation whose movement  
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is restricted to correspond with two particular vectors in 𝑅ଶ to try to arrive at a particular given 
location. In task 2, students explore whether it is possible to “get anywhere” in the plane using the 

 
 
same two vectors; after students work on this task, the instructor formalizes the definition of span 
of a set of vectors as the set of all possible linear combinations of the vectors in the set. In the third 
task, students are given three modes of transportation in 𝑅ଷ and explore whether it is possible to 
take a non-trivial journey using those vectors that starts and ends at home. Sets of vectors that 
allow such non-trivial journeys are linearly dependent – an idea the instructor leverages following 
task 3 to formalize the definition that a set of vectors is linearly dependent when the corresponding 
homogeneous vector equation has a non-trivial solution. In the final task, students work to try to 
generate examples of sets 2 and 3 of vectors in 𝑅ଶ and 𝑅ଷ that are linearly dependent and 
independent; students form and justify generalizations based on this example-generating activity.  
 

 Methods of Analysis 
To identify differences between IO and Non-IO student’ performance and reasoning about 

span, we first look quantitatively at response patterns to multiple choice questions to Q1a and 
Q1c, and then look qualitatively at open ended responses to Q1b and Q1d to better understand 
the nature of student reasoning and differences between IO and Non-IO students. For linear 
independence, we did a similar quantitative and qualitative analysis to Q3a and Q3b. 
Quantitative comparisons of response patterns between IO and Non-IO students on multiple 
choice items were made using z-tests to see if there were statistically significant differences in 
the proportion of choices that IO and Non-IO students picked for every item. To qualitatively 
see how IO and Non-IO students reasoned, we engaged in open coding by first examining a 
subset of student responses to identify the variety of mathematically distinct ways students 
reasoned about each open-ended response question; we continued analyzing additional 
responses, refining categories as we did so, until our categories were saturated. This process led 
to 7 main categories of students’ reasoning about Q1b, 2 categories about Q1d and 6 about Q3b 
(see Table 1). Items that did not fall into the categories described in Table 1 were labelled as 
“other” or marked if they were left blank. Student responses could be coded in multiple 

FIGURE 1. Assessment items related to span and linear independence 
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categories. During the coding we also paid attention to these reasonings if they align with the 
definitions or not and assign them as correct reasonings, otherwise they were incorrect 
reasoning (For example, students who reasoned in terms of linear independence did so correctly 
if they wrote something like ‘the two vectors are linearly independent (or not scalar multiples 
of each other or not parallel …) so they make a plane.’) We also use z-test to compare the 
proportion of codes assigned to the responses in both groups.  

 
Table 1. Codes for Q1b, Q1d and Q3b and their descriptions 
Questions Code Description 

Q1b 
(Span) 

Linear  
Independence 

Response indicates that the two vectors are linearly 
independent or are not (scalar) multiples of each other. 

Linear  
Combination 

Response refers to a linear combination of the two vectors 
(either directly in words, by giving the formula 𝑥𝑣ଵ +
𝑦𝑣ଶ = 𝑤, or stating something like ‘getting anywhere’) 

Different  
Directions 

Response indicates that the two vectors point in different 
directions. 

Row  
Reduction 

Student row reduces a matrix comprised of the given 
vectors. 

Dimensionality 
Response makes explicit reference to the number of 
vectors, entries, or pivots; or claims that the two vectors 
are a basis 

Vector as 
Point/Line/Plane 

Student identifies each vector individually as 
corresponding to either a point, line, or plane 

 
Geometric/ 
Graphical 
representation 

Response includes a drawing showing a geometric 
representation as a response or part of it. 

Q1d 
(Span) 

Augmented 
Matrix/Row 
Reduction 

Student row reduces the matrix comprised of the given 
vectors and concludes the vector is/is not in the span if the 
result is consistent/inconsistent or there is / is not a 
solution. 

Linear  
Combination   

Same description as in Q1b.  

Q3b 
(Lin. 
Ind.) 

Compares RREF to 
Identity Matrix 

Response indicates whether row reduction leads to identity 
matrix, especially comparing number of rows/columns  

Pivots 
Response indicates if there are missing pivots in one or 
more columns/rows, if there is a pivot in every 
column/row, or explicitly references number of pivots   

Linear Combination Explicitly or implicitly observes that one of the columns is 
a linear combination of other columns  

Solving Ax = 0 Response refers to solutions to the equation Ax = 0, e.g. 
non-trivial or infinitely many solutions  

# columns > # rows, 
or  
# vectors > dim(𝑅ଷ): 

Response indicates the number of columns or vectors is 
bigger than the number of rows or the dimension of 𝑅ଷ, or 
that the matrix M is not square 

Free Variable Response explicitly indicates there is a free variable 
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Findings 
Our quantitative analysis of the multiple-choice questions showed that IO students 

outperformed Non-IO students on span questions, but not on linear independence questions. Our 
open-ended coding additionally suggested that IO students’ concept images of span and linear 
independence were more aligned with corresponding concept definitions than those of Non-IO 
students. Additional details about trends in student reasoning follow. 
 
Differences in IO and Non-IO Student Performance and Reasoning about Span 

 When asked to identify which best describes the span of a given set of two (linearly 
independent) vectors in R3 on Q1a, almost twice as many IO as Non-IO students correctly selected 
“A Plane” (see Table 2). This difference was statistically significant (𝑝 < .001). All other choices 
(which are incorrect answers to the given problem) were picked at higher rates by Non-IO students 
than IO students; in the case of choices Two Points, A Line, and Two Planes this difference was 
also statistically significant.  

 
TABLE 2. Popularity of choices of Q1a Picked by IO and Non-IO Students 

Choices IO 
(n=126) 

Percentage 
(IO) 

Non-IO 
(n=129) 

Percentage 
(Non-IO) 

Significance* 
(z-test) 

i. A point 1 .79 1 .77 p=.984 
ii. Two points 0 00 5 3.9 p=.026 

iii. A line 4 3.2 12 9.3 p=.043 
iv. Two lines 6 4.8 8 6.2 p=.617 
v. A plane  94 74.6 53 41.1 p<.001 

vi. Two planes 5 4 17 13.2 p=.009 
vii. A 3-D space 12 9.5 14 10.9 p=.726 

* Difference between percentages of IO and Non-IO students for each choice based on z-scores 
 
When comparing the reasoning of IO and Non-IO students, we note two key trends. First, 

IO students were significantly more likely to reason about span in terms of linear independence, 
dimensionality, or row reduction than Non-IO students, and they employed these forms of 
reasoning correctly at much higher rates. Non-IO students on the other hand, were significantly 
more likely to interpret the span of a set of vectors by interpreting each vector individually as a 
geometric object. (This is consistent, for example, with significantly more Non-IO students 
selecting “Two points” and “Two planes” on Q1a.) Table 3 summarizes the coding of justifications 
students gave for their choices on Q1a; the p-values provided regard the comparison of the number 
of IO and non-IO students who used an approach (not the number using it correctly).  
 

TABLE 3. Codes for IO and Non-IO Students’ Approaches to Q1b 

Codes IO students |# used 
correctly (n=126) 

Non-IO students |# 
used correctly(n=129) 

Significance*  
(z-test) 

Linear independence 53(42%) | 51(40%) 28(20%) | 27(21%) p<.001 
Linear Combination 22(17%) | 19(15%) 18(14%) | 16(12%) p=.441 
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Different Directions 7(6%) | 7(6%) 3(2%) | 3(2%) p=.183 
Row Reduction 10(8%) | 6(5%) 0(0%) | 0(0%) p=.001 
Vector as 
Point/Line/Plane 21(17%) | 10(8%) 36(28%) | 6(5%) p=.032 

Geometric/Graphical 23(18%) | 15(12%) 17(13%) | 9(7%) p=.267 
Dimensionality 51(40%) | 42(33%) 32(25%) | 21(16%) p=.008 

* Difference between percentages of IO and Non-IO students for each choice based on z-scores 
 
When asked to identify whether or not particular vectors lie in the span of a set of vectors, 

IO students were significantly more likely to select choices that were a scalar multiple of one of 
the vectors in the set (iii) or explicitly expressed as a linear combination of vectors in the set (v), 
(see Table 4.) On the other hand, Non-IO students were significantly more likely to incorrectly 
select the choice that indicates any vector in 𝑅ଷ is in the span of the given set of two vectors.  

 
TABLE 4. Popularity of Choices of Q1c Picked by IO and Non-IO Students 

Choices 
IO 
(n=126
) 

Percentage 
(IO) 

Non-IO 
(n=129) 

Percentage   
(Non-IO) 

Significance* 
(z-test) 

i. [1,2,0] 107 85% 110 85% p=.936 
ii. [1,2] 19 15% 24 19% p=.453 

iii. [0, −2,−4] 101 80% 78 60% p<.001 
iv. [1,0,0] 13 10% 22 17% p=.119 
v. 3.1[1,2,0] − ସ

ହ
[0,1,2] 90 71% 77 60% p=.049 

vi. Any Vector in R3 10 8% 23 18% p=.019 
* Difference between percentages of IO and Non-IO students for each choice based on z-scores 

 
We noted above, Q1a and Q1b provide insight into students’ geometric interpretations and 

justifications. Q1c and Q1d provide insight into how students interpret span in terms of individual 
elements, i.e. how students decide if individual vectors are in the span of a set of vectors, as 
opposed to describing the entire span of that same set of vectors as a geometric object. Looking 
across these two questions, we note one key interesting story: in Qc, IO students pick correct 
choices, (especially scalar multiple and linear combination of vectors in the set are in the span of 
the set) at higher rates, suggesting they have a better sense of how to identify vectors in the span 
than Non-IO students. In Q1d, we see IO and Non-IO students use linear combination reasoning 
at similar rates, though IO students did so correctly more than Non-IO students. Based on results 

Table 5. Codes for IO and Non-IO Students’ Approaches to Q1d 

Codes IO Students | # used 
correctly (n=126) 

Non-IO Students | # 
used correctly (n=129) 

Significance  
(z-test) 

Linear Combination 99(79%) | 93(74%) 97(75%) | 81(63%) p=.522 
Augmented Matrix (RR) 27(21%) | 12(9.5%) 10(8%) | 5(3.9%) p=.002 
Other 5(4%) | 0(0%) 18(14%) | 0(0%) p=.005 
Empty 5(4%) 6(5%) p=.787 
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from Q1c, IO students have a more robust concept image of span (e.g. they have a better sense of 
the variety of forms this can take; scalar multiples and linear combinations). See table 5.  

 
Differences in IO and Non-IO student performance and reasoning about linear 
independence.  

When asked whether a given set of 4 vectors in R3 is linearly independent or dependent 
(and given the correct RREF of the augmented matrix comprised of those column vectors), there 
was no statistically significant difference in the portion of IO and Non-IO students who correctly 
said the set was linearly dependent (see Table 6). However, there were some differences in 
reasoning of IO and Non-IO students. 

 
Table 6. Choices Selected by IO and Non-IO Students on Q3a 

Choices IO Students 
(n=126) 

Percentage  
(IO) 

Non-IO Students 
(n=129) 

Percentage   
(Non-IO) 

Significance* 
(z-test) 

Linear 
Dependence 101 80% 97 75% p=.343 

Linear 
Independence 19 15% 31 24% p=.072 

* Difference between percentages of IO and Non-IO students for each choice based on z-scores 
 
When justifying their responses about whether the set in Q3a was linearly independent, IO 

students were more likely to reason by comparing the number of rows/columns in the RREF (in 
comparison to the identity matrix), or in terms of the solution to 𝐴𝑥 = 0, and more IO students 
reasoned correctly using those approaches. This suggests for IO students, there may be better 
alignment between their concept image and concept definition.  

 
Table 7. Codes for Various Students’ Approaches to Q3b 

Codes 
IO 

Students 
(n=126) 

Used 
Correctly 

(IO) 

Non-IO 
Students 
(n=129) 

Used Correctly 
(Non-IO) 

Significance*  
(z-test) 

Compare RREF to I 20 (16%) 19 (15%) 6 (5%) 6 (5%) p=.003 
Pivots 31 (25%) 21 (17%) 42 (33%) 31 (24%) p=.159 
Lin. Comb 25 (20%) 22 (17%) 28 (22%) 20 (16%) p=.711 
Solving 𝐴�̅� = 0 31 (25%) 26 (21%)  17 (13%) 10 (8%) p=.020 
#Col > #Rows OR  
#Vectors > dim(𝑅ଷ) 14 (11%) 14 (11%) 19 (15%) 18 (14%) p=.390 

Free Variable 32 (25%) 30 (24%) 31 (24%) 27 (21%) p=.802 
* Difference between percentages of IO and Non-IO students for each choice based on z-scores 

 
Discussion 

We found IO students outperformed Non-IO students on span questions, exhibiting a wider 
range of appropriate concept images of span. While IO students did not outperform Non-IO 
students on the linear independence question, our data suggests IO students’ interpretations were 
more explicitly linked to the concept definition. Future work will further explore this issue. 
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Positive and negative quantities are ubiquitous in physics, and the sign carries important and
varied meanings. Unlike physics experts, novices struggle to understand the many roles signed
numbers can play in physics contexts, and recent evidence shows that unresolved struggle carries
over to subsequent physics courses. The mathematics education research literature documents the
cognitive challenge of conceptualizing negative numbers as mathematical objects. We contribute
to the growing body of research that focuses on student reasoning in a physics context about signed
quantities and the role of the negative sign. This paper contributes a framework for categorizing
the natures of the negative sign in physics contexts, inspired by the research into the natures of
negativity in algebra. Using the framework, we analyze several published studies associated with
reasoning about negativity drawn from the physics education and mathematics education research
communities. We provide implications for mathematics and physics instruction and further re-
search.

Keywords: Negative, Quantity, Negativity, Physics, Signed

Introduction
Development of mathematical reasoning skills is an important goal in introductory physics courses,
particularly those geared toward students majoring in physics and engineering fields. Positive and
negative quantities are ubiquitous in physics, and sign carries important and varied meanings. Un-
like physics experts, novices struggle to understand the many roles sign plays in physics contexts.

Negative pure numbers represent a more cognitively difficult mathematical object than positive
pure numbers do for pre-college students (Bishop et al., 2014). Mathematics education researchers
have isolated a variety of natures of negativity fundamental to algebraic reasoning in the context
of high school algebra that go beyond a ‘position on a number line’ nature (Gallardo & Rojano,
1994; Nunes, 1993; Thompson & Dreyfus, 1988). These various natures of negativity form the
foundation for scientific quantification, where the mathematical properties of negative numbers
are a good representation of natural processes and quantities. Physics education researchers report
that the majority of calculus-based physics students struggle to make meaning of positive and
negative quantities in spite of successfully passing Calculus I and beyond in mathematics (Brahmia
& Boudreaux, 2016, 2017). Developing flexibility with negative numbers is a known challenge in
mathematics education, and there is mounting evidence that reasoning about negative quantity
poses a significant hurtle for physics students at the introductory level and beyond.

Few published studies have focused on negativity in the context of the mathematics used in
physics courses. Studies conducted in the context of upper division physics courses reveal robust
student difficulties (Hayes & Wittmann, 2010; Huynh & Sayre, 2018). Brahmia and Boudreaux
constructed physics assessment items based on the natures of negativity from mathematics educa-
tion research (Vlassis, 2004) and administered them to introductory physics students in the intro-
ductory sequence of courses (Brahmia, 2017; Brahmia & Boudreaux, 2016, 2017). The authors
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Table 1: A map of the different uses of the negative sign in elementary algebra (Vlassis, 2004)

Unary (Struct. signifier) Symmetrical (Oper. signifier) Binary (Oper. signifier)
Subtrahend Taking opposite of, Completing

Relative number or inverting the operation Taking away
Isolated number Difference between numbers

Formal concept of neg. number Movement on number line

report that students struggle to reason about signed quantity in the contexts of negativity typically
found in the curriculum (e.g., negative work, negative acceleration in one dimension, negative di-
rection of electric field), and they concluded that science contexts may overwhelm some students’
conceptual facility with negativity. In addition, they observed that students struggled to interpret
the meaning of either a positive or negative signed quantity—it is the existence of a sign that causes
difficulty (Brahmia & Boudreaux, 2017). These studies reveal that signed quantities, and their var-
ious meanings in introductory physics, present cognitive difficulties for students that many don’t
reconcile before completing the introductory sequence.

The current study contributes to this body of research by introducing a framework for cate-
gorizing the natures of negativity in introductory physics (NoNIP), analogous to the natures of
negativity developed in the context of algebra. The intention is to provide a framework that can
help researchers characterize and address the mathematical conceptualization of signed quantity in
introductory physics. We conclude that the natures of negativity should be explicitly addressed in
the context of introductory physics and calculus. We provide recommendations that can support
the use of the NoNIP framework in the context of these courses.

A Model of the Natures of Negativity
The first generation of the natures of negativity for introductory physics was based on the natures
of negativity described by Vlassis (Vlassis, 2004). We developed survey items to help map the
algebra natures to a physics context—one survey question for each of the three natures in two
contexts: mechanics quantities and E&M. The first survey item probes student understanding of
the unary nature of the negative sign, the second probes the symmetrical nature, and the third, the
binary nature (see Table 1). Table 2 presents all three mechanics items for reference.

We found that most uses of the negative sign typically found in introductory physics courses
could be categorized using the map summarized by Vlassis. By using a mathematics-based sorting
theme, however, we found we often lost the nuances of the physics described by the math; for
example, we found that both scalars and vectors might be placed in the same broad category,
despite the importance in physics of distinguishing between vector and scalar quantities. Because
our intent was to encode both physical and mathematical meanings of the negative sign, we started
from scratch keeping the physics as our primary guide.

Because of the importance of the difference between scalar and vector quantities in physics,
our first attempt at mapping the natures of negativity in introductory physics began with a broad
categorization based on whether quantities were vector or scalar. Some vector relationships are
exclusively opposite in nature, such as Newton’s Third-Law pairs, and the relationship between
force and potential, ~F = �~—U . It was determined that this was the only possible categorization
for ‘complete’ vector quantities, rather than vector components; in this case, ‘opposite’ indicates
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Table 2: Questions representing different algebraic natures of negativity in introductory mechanics

Unary Symmetrical Binary
structural signifier operational signifier operational signifier

Direction of a
vector component

Signifies work results in
decreasing the system,

energy, not increasing it

Position relative to an
origin

An object moves along the
x-axis, and the acceleration
is measured to be
ax = �8 m/s2. Describe
in your own words the
meaning of the negative
sign in the mathematical
statement “ax = �8 m/s2”.

A hand exerts a horizontal force
on a block as the block moves
on a frictionless horizontal surface.
For a particular interval of the
motion, the work W done by the
hand is W = �2.7 J. Describe in
your own words the meaning of the
negative sign in the mathematical
statement “W = �2.7 J”.

A cart is moving along the
x-axis. At a specific
instant, the cart is at
position x = �7 m.
Describe in your own words
the meaning of the negative
sign in the mathematical
statement “x = �7 m”.

that the vectors in the relationship point in opposite directions (i.e., they are anti-parallel). Another
vector-related category was for vector component quantities, and had two sub-categories: quanti-
ties for which the negative sign indicates the direction of the component relative to a coordinate
system (such as vx,Fx,Ex, or Dpx ), and one-dimensional relationships similar to the ‘opposite’
category for vector quantities described above.

Scalar quantities were subdivided into four categories: a) Amount; b) Opposite/opposing; c)
Difference/change; and d) Label. The subcategory Amount is reserved for quantities for which
we consider a negative amount of a thing. Such quantities are rare, and are only derived (not
base) quantities. Total and potential energy, as well as scalar product quantities such as work and
electric or magnetic flux were categorized in this way. Scalars in the opposite/opposing category
include charge (as positive and negative charge are opposite types of charge) and relationships
such as Faraday’s Law, and DV = W/q. The Difference/change category was used for time rates
of change of scalar quantities, where the sign of the quantity indicates an increase or decrease, and
for changes in a system such as energy change, DE, or temperature change, DT . Finally, the Label
category was used only for charge; the sign of a charge tells us the type of charge, while the charge
of an object tells us the type of charge in excess on the object.

Although this categorization did allow for the differentiation of vector and scalar quantities, we
found it unsatisfactory overall. There seemed to be more variation within categories than between
them, and we found that it placed quantities with similar physical characteristics (such as relation-
ships that fell into the “opposite” categories for both scalars and vectors) into different categories.
We also found that this categorization scheme did not allow for differentiation between uses of the
negative sign as an operator. Moreover, quantities for which the negative sign has multiple interpre-
tations (e.g., mechanical work as a scalar product and as measure of system energy change) were
poorly represented by this categorization. Because our focus was on physics quantities rather than
relationships between quantities, it was difficult to categorize models for which a negative sign is
not an explicit part of the relationship. Finally, we recognized that there were quantities such as the
product f (x)dx that were not well-represented in this scheme. Physics and mathematics education
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researcher had indicated that products of integrands and differentials pose challenges for students
when one or both of the factors are negative (Bajracharya, Wemyss, & Thompson, 2012; Sealey &
Thompson, 2016).

The first two authors employed a modified card-sorting task for a second attempt at creating an
expert version of the natures of negativity in physics, in which we again brainstormed and sorted
physics quantities and relationships typically introduced in introductory physics. Categories were
created based on the overarching similarities without first dividing quantities based on whether they
were vector or scalar in nature. We created several sub-categories for each main category, largely
to account for nuances in physical meaning. We determined three basic categories: Direction (D),
Opposition (O), and Change (Ch). A fourth category, Compound (Co) was added for instances
when multiple meanings are assigned to the negative sign in a single expression or concept. Table
3 shows the results of this effort to create a map of the natures of negativity in introductory physics.
We have surveyed introductory physics textbooks, checking that described signed quantities can
be categorized satisfactorily with our scheme. We conducted expert interviews with physics in-
structors to ensure that this map of natures of negativity is valid for describing a majority of signed
quantities in introductory physics and proposes a categorization that makes sense in the introduc-
tory physics context. A number of small changes were made based on these interviews, resulting
in the form included in this paper. Additionally, we conducted expert interviews with mathematics
faculty who were familiar with the physics contexts, including one math education researcher, to
ensure that mathematical validity of this categorization; a repeating theme from these interviews
with math experts was the importance of the meaning of ‘zero’ or ‘origin’ in each of these cases.
This also indicated to us that reasoning about the sign of every quantity (not just reasoning about
negativity) was important for more complete understanding of physics quantities.

We note that the Direction and Opposition categories are supported by the categories iso-
lated by mathematics education researcher Chiu. In their study, they identified three categories
of metaphorical reasoning that both middle school students and undergraduate and graduate math-
ematics and engineering majors used during problem-solving interviews—motion, manipulation
of objects/opposing objects, and social transaction (associated with the experiences of giving and
exchanging) (Chiu, 2001). While these are metaphors in mathematics, they are in fact contexts in
physics in which a conceptual mathematical understanding is essential for learning the physics.
The entire content of mechanics is focused on actual motion in space (not motion along a number
line). Phenomena that arise due to the parallel or antiparallel orientations of two quantities are
ubiquitous throughout physics (i.e. speeding up/slowing down, friction and air resistance, electro-
magnetic induction). Direction and Opposition are central natures of signed quantities in physics.

The Direction category is used largely for components of vector quantities. We differentiate
between 1. Location (for which the sign tells us the position relative to an origin), 2. Direction of
motion (typically used for a vector component, where sign indicates direction of motion relative
to a coordinate system), and 3. Other vector quantities (where the sign of a vector component
tells us the direction of that component relative to a coordinate system, but when motion is not an
intrinsic quality of the vector quantity). We consider subcategories 2 and 3 separately, as direction
of motion is readily apparent and observable. Finally, we consider 4. Above/below reference for
scalar quantities such as electric potential and temperature, for which the zero of the quantity is an
arbitrary reference point.

For the category Opposition, we consider quantities for which a negative sign implies opposite
direction or relationship. 1. Opposite type, as positive and negative charge are “opposite” types
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Table 3: The Natures of Negativity in Introductory Physics, a map of the different uses of the negative sign in intro-
ductory physics

(D) Direction (O) Opposition (Ch) Change (Co) Compound
1. Location 1. Opposite type 1. Removal (operator) 1. Scalar rates of change

x Q (charge) 0� (�5µC) dF
dt

2. Direction of motion 2. Opposes 2. Difference (operator) 2. Base + change
vx,Dx ~F12 = �~F21 E f �Ei f + df

dt t
px ~F = �~—U ~p f �~pi ~v+~at

3. Other vec. quant. comp. E = � dFB
dt 3. System scalar quantities 3. Products f (x)dx

Ex,Bx ~F = �k~r DK,DE E(r)dr
Fx,Lz 3. Scalar products DS P(V )dV

ax W = ~F ·D~x 4. Scalar, vector change 4. Models
Dpx,Dvx F = ~B ·~A DE = E f �Ei,DV =Vf �Vi Wnet,ext = DE

4. Above/below reference ~Dp = ~p f �~pi ~Fnet = m~a
T (temperature) DU = Q�W

V (electric potential)

of charge, and obey the mathematical relationship of +q+(�q) = 0 (i.e., adding equal amounts of
opposite types of charge leads to a system with no net charge). For the the subcategory 2. Opposes,
we consider scalar and vector relationships between quantities that indicate that the quantities
oppose each other in direction or change, such as members of a Newton’s Third Law force-pair.

The category Change encompasses both the meaning of the sign of the change of a quantity as
well as the negative sign as an operator that signifies a change in a quantity. (1. Removal (oper-
ator). We may also use the negative sign to signify that we are taking a difference between two
quantities (as in determining the change of a quantity), as described by 2. Difference (operator).
Subcategory 3. System scalar quantities describes quantities that characterize change in a system,
such as changes in energy or entropy. For 4. Scalar, Vector change, when students are asked to
calculate a change in a quantity such as energy or momentum, they must first account for the signs
of the initial and final quantities, then successfully subtract one from the other and make sense of
the result.

Finally, the Compound category covers instances when the negative sign spans more than one
category, or that require one to ‘keep track’ of several signs when making sense of a quantity or
relationship. 1. Scalar rates of change, 2. Base + change (base quantities that are increased or
decreased by the addition of a change; the concept of accumulated change is ubiquitous in physics),
and 3. Products f (x)dx (products of integrands and differentials). We also include in this category
4. Models, to account for models that require sensemaking of a negative sign. The Work-Energy
Theorem, where the sign of Wnet,ext indicates whether a system gains or loses mechanical energy,
is an example of such a model.

Applying the framework
In this section, we use the NoNIP as an analytical lens through which to view recently published
studies in physics and calculus and that mostly involve advanced physics or math students.

Bajracharya, Wemyss, and Thompson (2012) investigated upper-division student understand-
ing of integration in the context of definite integrals commonly found in introductory physics, but
with physics context stripped from the representation: the variables typically used in physics con-
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texts were replaced with x and f (x) (Bajracharya et al., 2012). Their results suggest difficulties
with the criteria that determine the sign of a definite integral. Students struggle with the concept of
a negative area-under-the-curve, and in particular negative directions of single-variable integration.
Sealey and Thompson (2016) interviewed math majors to uncover how they made sense of a nega-
tive definite integral. Undergraduate (beyond introductory) and graduate mathematics students had
difficulty to make meaning of a negative differential in the context of integration (Sealey & Thomp-
son, 2016). The struggles these researchers described can be seen through the lens of NoNIP as
struggle with the product of the integrand, f (x), and the differential, dx (Co.4 in NoNIP). The neg-
ativity of the integrand (D in NoNIP) was less of a struggle for the students in these studies than
was the notion of a negative differential (Ch in NoNIP), which has application throughout physics.

Hayes and Wittmann (2010) report on an investigation in a junior-level mechanics course of
negative signs and quantities associated with the equation of motion of an object thrown down-
ward, with non-negligible air resistance (Hayes & Wittmann, 2010). The equation of motion is
ma = mg � bv, or md2x

dt2 = mg � bdx
dt , where the initial velocity exceeds the terminal velocity so

the object is thrown downward and slows down—the velocity and the acceleration oppose each
other initially. The student interviewed struggles with treating one-dimensional acceleration as a
signed quantity, and feels there should be an additional negative sign included to indicate that the
acceleration is opposing the motion. The authors conclude that the multiple natures of the nega-
tive sign are a source of cognitive conflict that the student can’t resolve. Mathematics education
researchers have found that younger students tend to assign only natural numbers to literal sym-
bols or to treat expressions such as �x as if they represent solely negative quantities (Christou &
Vosniadou, 2012; Lamb et al., 2012). Although the students in the Hayes and Wittman study are
well beyond Calculus II, it appears they revert to a more primitive treatment of vector quantities
when they encounter a challenging context that calls on multiple meanings of the negative sign.
Seen through the lens of NoNIP, minus is an operator, and negative signs are used to represent
many mathematical objects in physics. In this context the student struggles with D.3 and D.2 in
the contexts of one-dimensional acceleration and velocity. The negative sign that modifies the bv
term is used as O.2, to indicate that the force is in the opposite direction to the velocity. Combining
terms, the students struggle to make sense of the equation of motion. The cognitive load associated
with the individual terms contribute to a higher-level struggle of making physical sense (Co.5).

In their study of negativity in junior level Electricity and Magnetism, Huynh and Sayre (2018)
describe the in-the-moment thinking of a student solving for the direction only of a positive and
negative charge distributed along a line symmetrically about the origin (Huynh & Sayre, 2018).
The solution involves an algebraic superposition of the field due to each charge individually. In
their study the authors focus on the student reasoning about the sign of the the electric field vec-
tor component along the axis of symmetry in three regions of space—to the left of one charge,
between the two charges and to the right of the other charge. The authors detail the students’
development of an increasingly blended approach that is situated in a mental space informed by
both mathematical and physical concepts. The student starts reasoning about the direction of the
field by (unintentionally) combining multiple natures of negativity into one, using the canceling
procedure that two negatives make a positive, without considering the source of each negative sign.
In Coulomb’s law, signs come in associated with the charges, the unit vector and the electric field
vector direction. Collapsing the signs using arithmetic rules is a common approach first tried by
the students in this study, which focuses on the multiplicative rules of signed numbers rather than

22nd Annual Conference on Research in Undergraduate Mathematics Education 73



the physics of the meaning of the signs. Next the student rarefies his approach as he considers
more carefully the natures of negativity in the context of the problem. Seen through the lens of
NoNIP we can see evidence of the student first conflating the natures superficially; the authors de-
scribe, “...he decides to absorb the destructive meaning...into the opposite meaning...and changes
the second negative sign to a plus sign...however he didn’t consider the...relative direction...leading
to...the opposite sign of the correct answer.” Then as he slows his thinking, first recognizing D.2
and D.3, the unit and electric field vectors and as sources of negative signs, the student says, “...I
should have figured it out...which direction it is. This is exactly what is changing signs.” After
reconciling the basic level, then he struggles with O.2, the authors describe that the student “has
successfully affiliated the sign’s meaning to the relative direction...electric fields and x-hat.” The
authors conclude, and we agree, that the most sophisticated challenge occurs when these natures
are combined in which three natures of the negative sign must be made sense of in the context of
a single equation, Co.5. This example illustrates the challenges associated with reasoning about
the natures of negativity even for strong majors, and reveals a hierarchy that lends plausibility the
NoNIP model being representative of emergent expert-like reasoning.

Implications for instruction
Student difficulties are embedded in natures of negativity that can be, and we argue should be,
explicitly addressed in the context of introductory physics and calculus. We suggest that instruc-
tors familiarize themselves with the many jobs that the negative sign does in introductory physics
courses, and help students recognize the varied natures of signed quantities. The NoNIP framework
can help. We offer two suggestions as a start:

1. In problems associated with motion, aligning the positive coordinate axis with the direction
of motion eliminates the need for signed quantities when discussing velocity. This choice,
however, could be a missed opportunity to distinguish between orientation and sense. The
opposite coordinate choice can prime students to consider the signed nature of position,
velocity, and subsequent vectors quantities they encounter.

2. Applications that involve quantities that are inherently signed quantities should be prefaced
with a negative sign when the quantity is negative, and a positive sign when positive. Priming
students in a math course to expect that real-world quantities have signs that carry meaning,
and that ‘no sign’ is a different kind of quantity than a positively-signed quantity, will help
better prepare students. These quantities in physics include, but aren’t limited to: position,
displacement, velocity, acceleration, force, and work.

In addition to enriching subsequent physics learning, a focus on natures of negativity in physics
contexts can also enrich the corequisite mathematics learning. Sealey and Thompson report on a
context in which physics helps math students make sense of negativity in calculus. The researchers
observed that invoking a physics example of a stretched spring helped catalyze sense making—the
physics helped them to make sense of an abstract binary nature of the negative sign (Sealey &
Thompson, 2016). We suggest that there is a symbiotic cognition possible in which both mathe-
matics and physics learning can be enriched by conceptualization of the other. We present NoNIP
as a representation of signed quantity providing a step in that direction.

This material is based upon work supported by the National Science Foundation under grant
number IUSE:EHR #1832836.
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Opportunities to Engage Secondary Students in Proof Generated by Pre-service Teachers  
 

 Orly Buchbinder Sharon McCrone 
 University of New Hampshire University of New Hampshire  

For reasoning and proving to become a reality in mathematics classrooms, pre-service teachers 
(PSTs) must develop knowledge and skills for creating lessons that engage students in proof-
related activities. Supporting PSTs in this process was among the goals of a capstone course: 
Mathematical Reasoning and Proving for Secondary Teachers. During the course, the PSTs 
designed and implemented in local schools four lessons that integrated within the regular 
secondary curriculum one of the four proof themes discussed in the course: quantification and 
the role of examples in proving, conditional statements, direct proof and argument evaluation, 
and indirect reasoning. In this paper we report on the analysis of 60 PSTs’ lesson plans in terms 
of opportunities for students to learn about the proof themes, pedagogical features of the lessons 
and cognitive demand of the proof-related tasks.  

Keywords: Reasoning and Proving, Preservice Secondary Teachers, Lesson Plans  

Despite persistent calls to make reasoning and proof an integral part of everyday teaching 
and learning mathematics, the reality in secondary schools is far from what mathematics 
educators and policy leaders had in mind (NCTM, 2009, 2014, 2018; CCSSI, 2010). Studies 
consistently show that proof and proving are “notoriously difficult for students to learn and for 
teachers to teach,” and that making proof a reality in mathematics classrooms requires systemic 
change in classroom culture (Nardi & Knuth, 2017, p. 267). Since teachers are instrumental to 
any instructional change (NCTM, 2014), pre-service teachers (PSTs) need to develop knowledge 
and skills to successfully implement reasoning and proving in their future classrooms.   

To address this goal, we developed a capstone course Mathematical Reasoning and Proving 
for Secondary Teachers, which is part of an NSF-funded, 3-year design-based research project. 
The course comprised four modules, each focused on one proof theme: quantified statements and 
the role of examples in proving, conditional statements, direct proof / argument evaluation, and 
indirect reasoning. The themes were chosen because they are known in the literature as central to 
proof production and comprehension, but challenging for students and teachers alike (e.g., 
Antonini & Mariotti, 2008; Durand-Guerrier, 2003; Weber, 2010). Our primary goal was to 
support future teachers in integrating reasoning and proving in their classroom instruction, 
regardless of the content or grade level, with the specific focus on these proof themes. Thus, the 
course activities aimed (a) to increase PSTs’ awareness of the importance of the logical aspects 
of proof, and student difficulties with proving, (b) to teach PSTs to identify within regular school 
curricula opportunities to integrate proof-related tasks, and (c) to equip PSTs with pedagogical 
tools and ideas on how to create or modify mathematical tasks to integrate proof within them.  

In Buchbinder and McCrone (in press) we describe the theoretical foundations of the course 
design and detail its structure and activities. Here, we focus on one critical component of the 
course: having the PSTs design and implement, in local schools, lessons that integrate 
mathematical topics with one of the proof themes. In this paper, we analyze the PSTs’ lesson 
plans, focusing on the opportunities that PSTs engineered for secondary students to learn about 
the four proof themes. Our analysis addressed two overarching questions:  

1. What opportunities to learn about reasoning and proving, specifically about the four 
proof-themes, did PSTs integrate in their lesson plans?  
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2. How were these learning opportunities realized in the lesson plans?  
While the most intriguing question might be: “what did the secondary students learn from 

such lessons?”, our ability to answer this question is limited. First, the focus of the study was on 
the PSTs’ ability to engage students in proving. Second, most PSTs taught multiple different 
groups of students throughout the semester, and although all lessons were video-taped, we can at 
most assess student engagement with the lesson rather than their learning from a single lesson.  

Background and Theoretical Perspectives  
 For the purpose of our study, we adopt a definition of proof that is appropriate for the 
secondary school context: “a mathematical argument for or against a mathematical claim that is 
both mathematically sound and conceptually accessible to the members of the local community 
where the argument is offered” (Stylianides & Stylianides, 2017, p. 212). By reasoning and 
proving, we refer to a wide range of processes such as conjecturing, generalizing and making 
valid arguments on the basis of mathematical deductions rather than authority or empirical 
evidence (Ellis, Bieda & Knuth, 2012; Stylianides, 2008). This definition and these processes 
were used in the analysis of the PSTs’ lesson plans.  

Stein, Remilard and Smith (2007) distinguish between written curriculum, which is written 
artifacts that teachers and students use, intended curriculum, which is the teacher’s lesson plan, 
and enacted curriculum that is the lesson as it unfolds in the classroom. A lesson plan contains 
information on the mathematical content of the lesson, the types of tasks, how students will be 
engaged in them and the goals the teacher seeks to achieve. All these aspects shape the quality of 
students’ mathematical experiences. For example, mathematical tasks of high vs. low cognitive 
demand determine whether students will be engaged in meaningful mathematical processes such 
as exploring and justifying, or simply applying standard procedures and recalling facts (Smith et 
al., 2004). Pedagogical features of the lessons provide information on how it will be enacted and 
on the organizational aspects of the lesson that “have potential to generate opportunities for 
students to develop or display mathematical understanding” (Silver et al., 2009, p. 511). In this 
paper, we analyze PSTs’ lesson plans and focus on the opportunities to learn about reasoning and 
proof embedded in them and how the PSTs intended to enact these opportunities. 

Methods 
Fifteen PSTs participating in the capstone course Mathematical Reasoning and Proving for 

Secondary Teachers took part in this study. The PSTs (4 middle-school, and 11 high-school 
track; 6 males and 9 females) were in their senior year, meaning that they have completed most 
of their content courses and two courses on methods of teaching mathematics. 

During the course, the PSTs designed four lesson plans integrating a particular proof theme 
with a mathematical topic from the secondary curriculum, based on information from 
cooperating teachers from the local schools. Due to the course structure, the PSTs were required 
to address particular proof themes while the current classroom mathematical topic might have 
been more conducive to a different proof theme. The PSTs were encouraged to include in their 
lessons high cognitive demand tasks, and to use pedagogical tools that were illustrated and 
discussed in the course, among them proof task models, such as, Who is right?, True-or-False?, 
Always-Sometimes-Never? and Is it a coincidence?. These task models have been shown to elicit 
rich student engagement with the logical aspects of proof and can be modified for various 
mathematical topics, while maintaining their original structure and goals (Buchbinder & 
Zaslavsky, 2013). However, turning these pedagogical devices into a lesson plan was up to the 
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PSTs; we did not offer lesson plan templates that were specific to the proof themes, and PSTs 
were not directly told how to integrate these themes into the content of their lessons. 

The lessons were 50 minutes long, designed for small groups of 4-8 students. The PSTs then 
taught each lesson and videotaped their teaching. The lesson plans followed a particular format 
that included: (1) general information on grade level, subject area, topic of the lesson, student 
prior knowledge, content and process objectives; (2) outline of the lesson explaining what the 
teacher and the students will be doing, description of anticipated student difficulties and ways to 
address them; and (3) student worksheets with solutions. These lesson plans, 60 in total, 
comprise the main corpus of data for this paper. Supplementary data sources supporting our 
analysis were the PSTs’ reflections on each lesson and on the course overall, and video records 
of the course sessions and of the PSTs’ classroom teaching.  

In our analysis we relied on the frameworks developed by Silver et al., (2009) who analyzed 
lessons submitted by teachers seeking national board certification. The analysis proceeded in 
several stages. First, we mapped out the grade level, mathematical content and pedagogical 
features of each lesson plan. Second, since each lesson intended to integrate some proof theme, 
we assigned each lesson plan, as a whole, a rating (high, medium or low) reflecting the 
prevalence of the proof theme in it. We illustrate this coding and its outcomes in the results 
section below. Next, we examined the level of cognitive demand of the tasks designed by the 
PSTs. In each lesson we identified proof-related tasks, that is, tasks in which students had to 
develop/evaluate an argument, justify, explain, or compare their own mathematical work with 
that of others. Regardless of whether or not the tasks were focused on the proof theme, we coded 
them as high or low-demand using Silver’s et al (2009) framework. Note that the attributes of 
proof-related tasks are often associated with high-cognitive demand (Stein, et al., 2000), however 
our analysis showed that these two characteristics are not identical.  

The coding procedures were carried out as follows: the two researchers coded each lesson 
plan independently, and then compared and discussed their coding until agreement was reached.   

   Results 

Mathematical Topics and Pedagogical Features of the Lesson Plans  
Table 1 summarizes the mathematical content and pedagogical features of the lesson plans.  

Table 1. Mathematical Content and Pedagogical Features 
 8th Grade Mathematics 

Pre-Algebra (HS) 
22 lessons 

Algebra 1 
College-Prep Alg. 1 

18 lessons 

Geometry 
College-Prep Geometry 

20 lessons 

Mathematical 
Content 

x Rules of exponents 
x Scientific notation 
x Order of operations 
x Problem solving 
x Variable expressions 
x Distributive property 

x Proportions 
x Order of operations 
x Combining “like” terms 
x Solving equations 
x Linear functions/graphs 

x Quadrilaterals 
x Parallel lines 
x Vertical angles 
x Line and angle proofs 
x Pythagorean theorem 
x Simplifying square roots 

Pedagogical 
Features of 
Lessons 

x Manipulatives (e.g., dice 
and playing cards) 

x Matching activities  
x Logic riddles 

x Manipulatives (e.g., 
algebra tiles) 

 

x Card sorting tasks 
x Exploration and 

conjecturing 

• Real-world context;  •  Assessing sample student work; •  Using task models (e.g., 
Is this a Coincidence?);  •  Games (e.g., Jeopardy, Math Baseball) 
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We were encouraged to see the PSTs’ efforts to creatively incorporate multiple pedagogical 
techniques for addressing a range of mathematical content at various grade levels. Other 
common features of the lesson plans, not reflected in Table 1, were due to the special nature of 
this teaching experience. One such feature is the use of PST-developed worksheets to reduce 
reliance on students’ textbooks to which the PSTs often had no access. Second, since the lessons 
were designed for small groups of students, all plans embedded opportunities for students to 
work with their peers and share ideas. In the next section we describe how the PSTs used these 
and other features to focus on the proof themes.  

Focus on the Proof Themes 
There was substantial variation in how focused the lesson plans were on the proof themes for 

the four modules of the capstone course. Since a proof theme could appear in multiple parts of 
the lesson e.g., exposition, warm-up, some or all student tasks, we took the whole lesson plan as 
a unit of analysis. Based on how prevalent a proof theme was in the lesson plan, we broadly 
categorized each plan as having high, medium or low focus on a given proof theme. For 
example, for the lesson in which PSTs were asked to integrate the proof theme of quantification 
and the role of examples in proving, Ellen’s (all names are pseudonyms) Geometry lesson 
contained several two-column proofs about parallel lines and vertical angles, but nothing related 
to the proof theme; thus, it was coded as having low proof theme focus.  

Nate’s lesson plan aimed to integrate this proof theme with the topic of proportions and unit 
conversion in Algebra 1. Nate used a real-world context to create a problem about two investors 
buying land in the United States and Europe; the solution required area and money conversion to 
decide who got a better deal. The lesson also contained four sample arguments, each claiming 
that another investor got a better deal. The task for students was to evaluate these arguments, 
decide whether they were correct or not and justify their decisions. Nate wrote that he intended 
to use these explanations as counterexamples to the claims made by the imaginary students in the 
problem. That is, if an imaginary student made a claim that one investor got a better deal, but the 
students in class could refute this argument by showing that the second investor got a better deal, 
this would illustrate that a counterexample disproves a claim. Although it might be possible to 
use Nate’s problem in this way, we felt unconvinced that the lesson plan was sufficiently explicit 
in positioning the problem in this light, hence we coded it as having medium focus on the proof 
theme.  

On the contrary, Rebecca’s lesson plan was categorized as highly focused on the proof 
theme. It started with exposition on what a universal statement is, and used examples outside 
mathematics, such as “A man who is wearing a suit and tie is attending a funeral,” to explain that 
one needs a general proof to prove a universal statement, and a counterexample to disprove it. 
Next, Rebecca had students explore and develop a conjecture about types of quadrilaterals 
created by connecting the midpoints of the sides of another quadrilateral. The students were not 
required to prove their conjectures, but only to consider what information may be needed to 
prove or disprove it. This lesson constitutes creative and high integration of the proof theme.  

Overall, 28 lessons were coded as having high focus on the proof theme, 13 as medium and 
19 as low (see Table 2 below). Table 2 shows that the highest focus on proof themes occurred in 
lessons on conditional statements (11 out of 28) and on direct proof/argument evaluation (10 out 
of 28). Most lesson plans on these proof themes contained tasks engaging students in evaluating 
the mathematical work or arguments of imagined students, providing justification for why these 
arguments are true or finding and correcting mistakes in them. Another frequently used feature 
was the task model Is this a coincidence? In this type of task students are given a description of a 
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mathematical exploration along with one or two related examples generated by an imaginary 
student, and an observation that he/she made based on these examples. A set of prompts, 
including: “Is this a coincidence?”, invite students to formulate a conjecture, explore it and then 
prove or disprove it.  Figure 2 shows Angela’s task of this type.   

A student said: I took four congruent triangles, with side lengths 3in, 4in, and 5in, and found that 
I could rearrange them in a square. I tried to do the same thing with four triangles of side lengths 
6in, 7in, and 8in and I couldn’t make a square.   
Is this a coincidence?  

                     

Figure 2: Angela’s task using the model of “Is this a coincidence?”   

 The two proof themes in which the majority of lessons were coded as having low focus on 
the intended theme were: (a) quantification and the role of examples in proving and (b) indirect 
reasoning (Table 2). Despite the attempt to integrate the proof theme with the ongoing 
mathematical topic, in reality these lesson plans were only tangentially related to the proof 
themes. However, some PSTs found creative ways to incorporate proof themes in their lessons, 
cf. Rebecca’s lesson on quantification. Another strong example is Logan’s lesson on indirect 
reasoning. Logan created six problems on applications of Pythagorean theorem, each asking 
students to explain why certain measures of triangle sides cannot be true (see Figure 3 for one 
problem). Indirect reasoning would come into play by assuming that the ramp is 9 feet long, and 
using the Pythagorean theorem to calculate the length of the ramp to arrive at a contradiction. 

You’re working as an independent contractor and your latest client needs a ramp built at one of 
their properties. The client knows that the ramp must come to an elevation of three feet and that 
they only have enough room for the ramp to come out six feet from the wall. The client mentions 
that the length of the ramp’s surface will be 9 feet. Explain to the client why the length of the 
ramp cannot be nine feet. Also include what the correct third measurement is for the ramp. 

   Figure 3: Logan’s task on indirect reasoning. Emphasis added.  

Although conditional statements and direct proofs are relatively common in the high school 
geometry curriculum, it was reassuring to see the PSTs implementing such lessons within 
algebra and prealgebra. We turn now to describing a cognitive demand of the proof-related tasks.  

Cognitive Demand 
In each lesson plan, we identified proof-related tasks and examined how cognitively 

demanding they were, using the framework of Silver et al. (2009, p. 511). The tasks coded as 
high-demand asked students to: (a) explain, describe, justify, compare or assess; (b) make 
decisions or choices, formulate questions or problems, (c) work with multiple representations; 
(d) read, comprehend or complete proofs. Tasks coded as low-demand: (a) required application 
of routine procedures, (b) lowered expectations or provided too much guidance making a 
potentially high-demand task into a routine one, (c) targeted non-challenging issues (e.g., 
required explanation of standard procedures). If a plan contained more than one proof-related 
task, the lesson plan was assigned the score of the task with the highest demand. Table 2 shows, 
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for each proof theme, the number of the lesson plans with high, medium and low focus on that 
proof theme, and the cognitive demand of proof-related tasks. 
Table 2. Focus on proof themes vs. cognitive demand of proof-related tasks. 

Proof theme 
Focus of the lesson of a proof theme Cognitive demand of proof-related tasks 

High Medium Low High-demand Low demand 
Quantification and the 
role of examples 3 4 8 5 10 

Conditional statements 11 1 3 5 10 

Direct proof, argument 
evaluation 10 5 0 14 1 

Indirect reasoning 4 3 8 7 8 
 
Although we only coded proof-related tasks, i.e., tasks that require developing / evaluating 

arguments, justifying, explaining, or comparing one’s mathematical work to that of others, not 
all tasks were highly demanding. In fact, in all proof themes, except for direct proof and 
argument evaluation, the number of low-demand tasks exceeded the number of high-demand. 
This often happened when PSTs lowered the cognitive demand of a proof-related task. For 
example, Audrey created a worksheet with several problems that called for identifying and 
correcting student mistakes. One item was: “Carly thinks that (x2)4 = x6. Is she correct? Explain 
why or why not”. The answer key showed that Audrey expected students to respond: “Carly is 
not correct because you do not add the exponents”, an answer that relies on rule memorization 
characteristic of low-demand tasks, rather than mathematical reasoning.  

Our analysis suggests that the relationship between the lesson’s focus on proof themes and 
cognitive demand of proof-related tasks was not straightforward. While 19 of highly-demanding 
tasks occurred in lessons with high focus on a proof theme, and 17 of low-demanding lessons 
appeared in the lessons with a low proof theme focus, other combinations were also present in 
the data. For example, Nate’s problem on unit conversion was proof-related and highly 
demanding, but it had only medium focus on the proof theme for which it was designed, namely, 
quantification and the role of examples in proving. 

Discussion and Implications for Education  
Our study focused on two overarching research questions:  
1. What opportunities to learn about reasoning and proving, specifically about the four 

proof-themes, did PSTs integrate in their lesson plans?  
2. How were these learning opportunities realized in the lesson plans?  
We operationalized the first question by examining the ways PSTs integrated the four proof 

themes in their lesson plans and noting the prevalence of these proof themes in the plans. We 
addressed the second question by examining the pedagogical features of the lessons as a whole 
and the cognitive demand of the proof-related tasks.  

The lesson plans encompassed a variety of mathematical topics and embedded multiple 
pedagogical features demonstrating that a wide range of topics can provide opportunities for 
introducing reasoning and proof across the grades, and that PSTs were capable of identifying and 
capitalizing on these opportunities in their lesson plans. The variation in the level of focus on the 
proof themes stems from several factors, some beyond the PSTs’ control (e.g., responding to a 
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cooperating teacher’s request to devote time to exam review). Data from other sources, such as 
course classroom video and the PSTs’ course reflections, suggest that two main reasons for low 
or moderate focus on proof themes were: (a) the PSTs’ own doubts about feasibility of 
integrating proof themes in secondary mathematics, and (b) lack of experience with proof-related 
tasks at the secondary level. The quotes by Ethan and Laura illustrate these points, with Ethan 
sharing what he saw as challenging and Laura explaining how she addressed the challenge:   

It was definitely easier to implement certain proof topics compared to others. I 
found implementing two themes the role of examples in proving and evaluating 
arguments to be rather easy/less challenging and beneficial to the students. On the 
other hand, I found conditional statements and proof by contradiction to be 
challenging to teach middle school students, even if it was at the most basic level. 
These topics can be very difficult to grasp so finding a way to relate them to 
exponents or linear equations I found to be challenging. (Ethan) 

At the start of this class, I believed that proofs were only appropriate in geometry 
classrooms, or in proving Calculus theorems. However, I was tasked with 
teaching a geometry class, a pre-algebra class, and two Algebra 1 classes. I found 
that if you focus on the kinds of reasoning involved in different proof-themes, and 
if you don’t overwhelm students by attempting formal proof right away, the four 
proof-themes could easily be applied to any mathematics topic. (Laura) 

As instructors, we invested a considerable amount of course time and efforts to get the PSTs 
on board with the idea that all students are capable of doing proof-related tasks and can benefit 
from them. Some of this included providing examples of pedagogical features, such as assessing 
sample student work or proof task models to inspire PSTs’ creativity. Our data suggest that PSTs 
could benefit from greater exposure to examples of successful integration of proof themes with 
mathematics instruction. We plan to use the current sample of lesson plans as a pool of examples 
on how this can be achieved. Another critical point that came up in our data is the cognitive 
demand of proof-related tasks. We found it somewhat surprising that inclusion of a proof theme 
in a lesson plan did not automatically translate to highly demanding proof-related task. We 
intend to address this in the next iteration of the course by having the PSTs assess cognitive 
demand of their own tasks and the tasks of their peers, to increase their awareness of different 
learning opportunities in tasks with high vs. low cognitive demand.   

We conclude this paper by noting that there is a long way between creating lesson plans that 
integrate reasoning and proving in secondary mathematics as a course assignment and being able 
to identify opportunities to integrate proving in mathematics instruction as a part of one’s regular 
teaching practice. We hope that our course helped the PSTs to make an important step in this 
direction, as the following quote from Angela’s reflection suggests:  

So while the task of incorporating the proof themes into our lessons was 
challenging, it was also very eye-opening into the multitude of ways that higher-
level mathematics topics can be brought into lower level subjects and it is 
something I want to continue to try and do in my own practice. 
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Investigating STEM Students’ Measurement Schemes with a Units Coordination Lens 
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Measurement is a foundational concept in all STEM fields. Difficulties with measurement and 
converting between units of measure have been documented in medical students, chemistry 
students, and mathematics students at varieties of educational levels. However, less is known 
about why this topic is so difficult and what mental operations are entailed in mastering it. Steffe 
(2012) argued that students must assimilate situations with three levels of units to understand 
measurement conversions so we attend to students’ units coordination schemes while remaining 
open to other factors impacting students’ responses to measurement tasks. We found that the 
STEM majors in our sample who assimilated tasks with two levels of units had more difficulty 
with measurement tasks than those who assimilated tasks with three levels of units.  

Keywords: Measurement, Units Coordination, Quantitative Reasoning, STEM Majors 
 

Research on quantitative reasoning is an important area of Research in Undergraduate 
Mathematics Education (Thompson, 2012). Thompson (2012) defined quantification as the 
mental process of conceiving of some aspect of an object as measurable and understanding that 
the measure of the object is some multiple of the chosen unit of measure. Steffe presented a 
conceptual analysis of the cognitive foundations of quantitative reasoning and measurement by 
building on his research into children’s coordination of partitions and iterations of multiple units 
(Steffe, 2013). We use Steffe’s units coordination constructs to understand students’ thinking 
about measurement. Given students’ difficulties with measurement it is important to understand 
the conceptual roots of the issues. Thus our research question is:  

 How are STEM majors’ units coordination structures related to their understanding of 
measurement? 

Literature Review 
Measurement and conversions that are fundamental in many STEM courses (e.g., 

DeLorenzo, 1994; Saitta et al., 2011; Scott, 2012). However, there is evidence that these ideas 
are poorly understood. Large samples of university calculus students and secondary mathematics 
teachers found it difficult to convert between liters and gallons given a conversion factor 
(Thompson, Carlson, Byerley & Hatfield, 2013; Byerley & Thompson, 2017; Byerley, 2016). 
Difficulties with measurement are also common in doctors with medical degrees. For example, 
in one study there were 55 medication errors per 100 patients admitted with 28% of those errors 
related to prescribing appropriate doses of medicine (Kaushal et. al., 2001). Chemistry students 
struggle to interpret what it means to perform dimensional analysis. This has driven many to 
investigate more effective methods of teaching this technique; for instance, by including 
descriptive words with calculations (DeLorenzo, 1994), having students work collaboratively 
with manipulatives (Saitta, Gittings, & Geiger, 2011), and using interactive software that shows 
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the sizes of units (Ellis, 2013). Chemistry educators debate teaching dimensional analysis as rote 
procedure vs deliberately scaffolded logic and reason (DeLorenzo, 1994). 

Less is known about why measurement is so difficult. One hypothesis is that many 
students do not assimilate situations with three levels of units when they are asked to make sense 
of measurement in elementary school (Steffe, 2013). Smith and Barrett (2017) conjecture that 
part of the difficulty might be the way measurement is taught, and the lack of focus on the 
underlying structures of various measurement situations.  

[We] found it striking how often the same conceptual principles and associated 
learning challenges appear in the measurement of different quantities… Despite 
the clear focus in research on equipartitioning, units and their iteration, units and 
subunits… curricula (and arguably most classroom teaching) focus students’ 
attention on particular quantities and the correct use of tools, as if each was a new 
topic and challenge (p. 377). 
Our study investigates STEM majors’ units coordination schemes and their measurement 

schemes to describe the conceptual structures needed to understand measurement. 

Theoretical Perspective  
Steffe (2013) posited that students need to be able to assimilate situations with three 

levels of units to make sense of measurement situations where one quantity is measured with 
more than one unit. He also explained how the ability to assimilate situations with two levels of 
units is related to being able to construct a measure of one quantity. Steffe and colleagues came 
to these conclusions based on teaching experiments with mostly K-8 students (Steffe & Olive, 
2010) and their hypotheses have not been investigated with undergraduate students.  

Units Coordinating 
Units coordinating is described as “students’ ability to create units and maintain their 

relationships with other units they contain or constitute” (Norton, Boyce, Phillips, Anwyll, 
Ulrich, & Wilkins, 2015). Units coordinating is foundational for the construction of early whole- 
number concepts, such as n 1s being equivalent to one n (Steffe & Cobb, 1988). Units 
coordinating is a useful construct for understanding students’ fractions conceptions. To 
understand the fraction m/n as a number, one must understand m/n as commensurate with m 
1/nths, n of which are commensurate with 1 (Hackenberg, 2010). In the case of m > n, the 
meaning of 1/n must transform from thinking of 1/n as one out of n total pieces to thinking of 1/n 
as an amount that could be iterated more than n times without changing its relationship with the 
size of 1 (Steffe & Olive, 2010; Tzur, 1999). This involves coordinating three levels of nested 
units: 7/3 is 7 times (1/3), 1=3/3 is 3 times (1/3), thus a 7/3 unit contains both a unit of 1 and a 
unit of 1/3 within 1 (see Figure 1). Students thinking this way about fractions are said to have 
constructed an iterative fraction scheme (Steffe & Olive, 2010).  

 

 
Figure 1. Three level structure for 7/3 
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Students coordinating with fewer levels of fractional units may construct measurement 
conceptions of fractions limited to proper fractions (i.e., partitive fraction schemes) or be limited 
to conceptions of fractions disconnected from measurement (i.e., part-whole fraction schemes; 
Steffe & Olive, 2010). Students who can assimilate with two levels of units can often correctly 
solve tasks that have a three-part unit structure if they are able to use manipulatives or images. 
We say these students can coordinate three levels of units in activity, but do not assimilate tasks 
to a three-part structure that they have already constructed mentally. In other words, although the 
two-level students do not simultaneously keep track of three units and their relationships in their 
mind they can cope with this three-part structure using tools and correctly solve many problems. 

Reciprocal Reasoning  
Construction of an iterative fraction scheme is necessary for reciprocal reasoning, which 

has connections to students’ reasoning in school algebra (Hackenberg & Lee, 2015) as well as 
measurement. To construct reciprocal reasoning, students must abstract a structure for their 
coordination of three levels of fractional units that can apply more generally to unknown units 
(Hackenberg and Lee, 2015, p. 226). For instance, consider the equation y = 7/3 x. A student 
employing reciprocal reasoning may reverse the multiplicative relationship, to obtain x = 3/7 y, 
by understanding that each ⅓ of x is 1/7 of y, so 3/3 of x is 3/7 of y (Hackenberg, 2010). 
Reciprocal reasoning is one form of reversible multiplicative reasoning - a student may instead 
reverse a multiplicative relationship by reasoning about reversing whole number arithmetic 
operations (e.g., by multiplying 3 and dividing by 7). This ostensibly yields the same result, but 
it is disconnected from the multiplicative relationship between the x and y.  

Methods 
We recruited eight calculus students from two universities by visiting calculus courses 

and asking for volunteers. We interviewed all students who volunteered. Six students were 
enrolled in Calculus II at one university and two students were enrolled in Calculus I for 
Biologists at the second university. Each student was interviewed individually for approximately 
one hour by one of the authors and answered units coordination and measurement tasks. We 
report on three students whose reasoning illustrates trends we saw in all interviews.  

The interview protocol included seven units coordination items developed and validated 
by Norton et al. (2015) for assessment of middle school students’ reasoning. We chose these 
tasks because there was guidance from prior research on how to use them to diagnose units 
coordination structures. The most difficult task in the assessment is shown in Figure 2.  

 
 

Figure 2. The task “Measuring Bars” from Norton et.al. 2015. 

 
 The liters to gallons conversion task was developed for secondary mathematics teachers 

(Byerley & Thompson, 2017).  We knew this task was very difficult to solve correctly based on 
prior research, but did not know what made the task so challenging for people with math degrees. 
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Figure 3: The task “Liters to Gallons” from Byerley and Thompson, 2017. © Arizona Board of Regents 2015.  

The other measurement items came from assessments and worksheets in the first author’s 
Calculus for Biologists course. These included drawing a ruler with both centimeters and inches 
on it, determining the number of square centimeters in one square inch, and doing unit 
conversions with fictional units given a conversion factor: A Mump is 7/3 times as large as a 
Tog. We chose these tasks because we knew they were difficult but did not know why. 

Our research team watched video recordings of each interview and made initial notes 
about how students responded to the units coordination and measurement tasks. After 
independently making notes summarizing each interview, we individually wrote descriptions of 
the students’ responses to units coordination and measurement tasks. If we all determined a 
student assimilated tasks with three levels of units independently we felt more confident in our 
model of that students’ thinking. We shared our notes and discussed differences in our 
interpretations, using the discussion as a chance to identify and test multiple conjectures that 
could explain the students’ activities.  

Results 
We will compare and contrast our interpretations of three students’ units coordination and 

measurement schemes. Students 1 and 3 were independently categorized by all team members as 
assimilating situations with three levels of units. Student 2 was categorized by all team members 
as assimilating situations with two levels of units.  

Students’ Responses to Measuring Bars 
The research team used students’ responses to seven units coordination tasks to decide 

how many levels of units the student assimilated with. We will discuss the evidence from the 
most difficult task “Measuring Bars.” It is the most difficult because unlike the other tasks the 
answer is not a whole number. Table 1 summarizes features of each students’ response.  
Table 1. Summary of three students’ responses to the Measuring Bars Task   

Student 
 
Student 1 
Student 2 
Student 3 

Answer or 
Answers 

9/4 
2 1/9 then 2 1/4 

9/4 

Time to Giving Correct 
Answer 
42 sec 

4 min 15 sec 
49 sec 

Needs an image to 
produce answer? 

No. 
Yes. 
No.  

Number of levels 
assimilated? 

Three 
Two 

Three 

 

 
Student 1. Student 1 correctly answered all of the tasks on Norton et. al.’s (2015) 

instrument without needing supporting images, which is evidence he assimilated the situations 
with three levels of units. The short amount of time he took to solve the Measuring Bars Task 
suggests he was able to assimilate the task to his existing three level unit structure. We also 
considered other evidence of his use of a three-level unit structure in his strategies for 
partitioning bars. For example, when partitioning a bar into 6 equally sized pieces (the fourth bar 
task) the student first partitioned the bar into three equally sized pieces, then partitioned each of 
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those pieces into two equally sized pieces (he used a similar strategy to make 12 inches on the 
ruler task: split the ruler in half, each half in half, each quarter into thirds).  

Student 2.  Student two was able to coordinate three levels of units in activity with the 
aid of pictures and repeated prompting but did not assimilate tasks with three levels of units. 
When faced with tasks involving improper fractions, she expressed a preference of converting 
them to decimals. 

Unlike Student 1, Student 2 identified that she could not solve the Measuring Bars task 
(Figure 2) without drawing a picture. Even with the support of the picture she did not keep in 
mind relationships between three quantities. Student 2 answered “two and one out of nine.” She 
was fairly confident in her answer of 2 1/9 but also considered “two and one out of four” before 
choosing 2 1/9.  The interviewer told her that one green bar is one ninth of an orange bar and 
asked her what fraction one green is of a purple bar. Student 2 determined correctly the green bar 
is one fourth of the purple bar but then reconfirmed “so I think my answer should be 2 and one 
ninth.”  The conversation continued: 

I: How did you decide you should write that fraction in terms of the size of the orange versus 
the size of a green or a purple?” 

S: Like you said, it got me thinking, that makes sense, because this whole one is a green one, 
and when we look at it in terms of orange it is just one ninth of an orange, the question is 
asking to answer in terms of the long orange bar so I decided it would be one ninth. 

I: Does this to you also refer to long orange bars. [points to the 2 in the answer 2 1/9.] 
S: That refers to how many purple fits into the long orange bar. So it would be two purples 

and an extra of the green. [student laughs] 
I: Okay. And the extra green is one fourth of one purple.  
S: Oh. [sense of realization] 
I: So this answer is correct in the sense that you mean two purples and one…[gets cut off] 
S: one ninth of a green. 
I: [corrects student] one ninth of an orange.  

The conversation continued until Student 2 decided to change her answer to 2 ¼ (the 
intended answer). Student 2 had difficulty keeping track of three units in her mind as evidenced 
by calling a green square both one ninth of a green and one ninth of an orange. She also does not 
remember her measure of two is in terms of the purple unit when she determines the size of the 
leftover green piece. Steffe hypothesized that constructing an iterative fraction scheme to 
understand nine fourths requires assimilating the situation with three levels of units. In this case 
understanding that the green is one fourth of the purple while at the same time thinking of the 
orange as nine copies of the green.  

The interviewer asked the student if the answer of 2 1/4 was related to the nine and four 
given in the problem statement. She replied: 

Ummm... I think it is related to the nine? [questioning tone.]  Ummm... I would usually 
check my work using like a calculator because I’m not really good with fractions. I don’t 
usually do fractions, I would put it into decimals. So I guess like two point two five 
would fit into nine... [pause of six seconds to compute.] like four times. So that would be 
four times two point one four to get the nine.  
This excerpt provides evidence that Student 2 does not have an iterative fraction scheme. 

Student 2 was not aware that 9/4 was the same number as 2 ¼, as indicated by the multiple 
pauses and computations the student made when asked how 9 and 4 were related to her answer 
of 2 ¼.  
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Student 3. This student was able to answer units coordination tasks correctly before 
drawing any pictures, but sometimes would make units-related errors when discussing his 
reasoning (e.g. mixing up number of purple and green bars). His response to Measuring Bars 
was distinctly different than Student 2’s and demonstrates the student likely had a meaning for 
division as producing a measure of two quantities and is comfortable with fractions like 9/4. His 
ability to answer Measuring Bars quickly without an image suggests he assimilated the task to an 
existing three-unit mental structure in his mind. He explained his answer of 9/4: 

Basically, the small green bar into purple is four, uh, the green bar into the full thing is 
nine, so if I take the full thing and I want to know how many of these there is. I’m 
basically just using green as units, so it’s like the full bar of greens is 9, the purple’s size 
is 4, 9 divided by 4, basically using it as the smallest unit. [Points to the greens on his 
diagram.] These are the fourths because they are the greens and there are 9 of them.   
Student 3’s language describing the orange as nine copies of the fourths is consistent with 

an iterative fraction scheme which students typically construct after assimilating tasks with three 
levels of units (Steffe & Olive, 2010). 

Students’ Responses to Measurement Tasks. 
Student 1. Student 1 had the strongest measurement schemes in the group of eight 

students interviewed this summer. He told the interviewer he had not previously seen many of 
the measurement questions but was able to figure them out fluently without help from the 
interviewer. For example, Student 1 did not know that there are 2.54 cm in one inch, but given 
that information by the interviewer he was able to draw an essentially flawless representation of 
a ruler using a straightedge. He attended to making sure that the 2 inch mark was lined up with 
5.08 cm mark and that the 12 inch mark was lined up with the 30.48. He was the only student of 
eight to correctly answer the Liters to Gallons conversion task, which is known to be hard for 
secondary math teachers (Byerley & Thompson, 2017). He utilized reciprocal reasoning to 
express x liters as 50/189 x gallons, but keeping track of the distinction between the number of 
liters (x) and the size of a liter (some agreed upon amount of volume) was non-trivial for him. He 
reread the prompt four times to make sense of it and spent a few minutes contemplating his 
answer before feeling confident. 

Student 2. Student 2 expressed apprehension about drawing a ruler with centimeters and 
inches on it despite having memorized that 2.54 centimeters equals one inch. She first drew a 
picture of a ruler with inches on it. Unlike the students in the interviews who assimilated tasks 
with three levels of units, she did not partition a partition to form twelve equal parts, and none of 
her inches ended up the same size. The following excerpt shows that despite the interviewer’s 
attempts to orientate her and help her understand the question she did not come up with a plan 
for drawing the centimeter side of the ruler.  

S: So that would be 2.54.[marks 2.54 cm across ruler from 1 inch]. I don’t know. I don’t 
know how like proportionate it should be.... 

I: By proportionate do you mean that the lines don’t usually line up? 
S: Yeah. But the big lines do, but like there is like small lines in between that don’t. I don’t 

really know what the cm side should look like as I never really use that side. We use the 
conversion but don’t use a ruler to look at it.   

I: If you were trying to fit… I’m going to draw it bigger so it is easier to look at….if this is 
one inch and this is two inches...and then you were trying to put centimeters over here 
would you be able to? And I agree at one inch you get 2.54 cm, but usually on rulers 
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what they do is that they put whole number values of centimeters. They put whole 
number values they don’t put decimals. Does that make sense? 

S: Yeah. I don’t think I’ll be able to draw the centimeter side in whole numbers, I just know 
the conversion.  
On the Liters to Gallons task Student 2 knew that there should be more liters than gallons 

in a given container but struggled to respond to the question for a variety of reasons. One of her 
repeated difficulties was choosing between a meaning of x as a number of liters and a meaning of 
x as the size of one liter. It might be that differentiating between the number of copies of a unit 
and the size of a unit while also attending to a second unit of measure requires assimilating the 
task with three level of units. She did not express awareness of the reciprocal relationship 
between the relative size of units of measure and the measurement of a container. Thus she knew 
there should be fewer gallons in the container, but did not know how to find the number of 
gallons precisely. This is consistent with prior observations that assimilating situations with three 
levels of units is important for development of reciprocal reasoning. 

Student 3. Student 3 drew a ruler correctly, and his ruler drawing and other work showed 
that he understood that if a quantity was measured with a larger unit of measurement, the 
resulting measure was smaller. However, Student 3 answered the Liters to Gallons task 
incorrectly with the expression (189/50) x. He did not distinguish between the number of liters 
(x) and the size of a liter in his response. Based on his answers to other questions he seemed to 
have the unit structures he needed to answer the task, but he did not consider the meaning of x in 
his expressions and so did not notice it stood for two different ideas. When asked how many 
mumps were in a tog, Student 3 correctly answered 3/7, but he questioned himself, stating, 
“You’re asking how many mumps are in the tog, so how many big are in the small. So, it’ll be a 
fraction. I’m saying 3/7.” There is evidence of reversible multiplicative reasoning in Student 3’s 
immediately attributing the reciprocal of 7/3 to how many mumps are in a tog. But Student 3’s 
pausing and consideration of generic relative sizes (“how many big are in the small”) before 
settling on 3/7, together with his incorrect response to the Liters to Gallons task, suggests his 
reciprocal reasoning involving unknown quantities was not well-established. 

Conclusions 
This evidence suggests that development of fraction schemes and units coordination 

structures described by Steffe and colleagues to model children’s reasoning is useful for 
understanding adults’ measurement schemes. As his theory predicted, the calculus students who 
assimilated situations with two levels of units had not constructed productive measurement 
schemes. Student 2 had developed many strategies (such as dimensional analysis) for 
understanding problems without needing to assimilate them with three levels of units. However, 
some of her strategies, such as converting fractions to decimals, made it more difficult for her to 
make useful observations about reciprocal relationships and were detrimental to her conceptual 
understanding of unit conversions. It is much easier to see the reciprocal relationship between 
50/189 and 189/50 when the numbers are left as fractions. When student 2 converted all fractions 
to decimals it often made it much harder for her to generalize important aspects of the problem. 
The example of Student 3 shows that assimilating tasks with three levels of units is not enough to 
make sense of Liters to Gallons without help. Even students with strong units coordination 
schemes and strong measurement schemes, like Student 1, may still find Liters to Gallons 
difficult. Across our sample of eight, students’ units coordination structures are related to their 
ability to reason about measurement in non-routine ways. Assimilating tasks with three levels of 
units appears to be necessary, but not sufficient to understand a variety of measurement tasks. 
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The creators and leaders of mathematics tutoring centers at universities make many choices 
about the organizational structure of their centers. Some of those choices include the location of 
the center, the education level of the tutors, the method of tutor training, the number of hours 
tutoring is available, and the way tutoring is provided (i.e. drop in or scheduled). Our group’s 
long-term goal is to provide research-based evidence to help faculty and administrators choose 
effective structures for centers. This paper documents similarities and differences between 
centers to provide a descriptive foundation for future hypothesis generation and testing.  
 
Keywords: tutoring centers, organizational structure, definition of constructs 

 
While most would recognize that mathematics tutoring centers (henceforth called math 

centers or centers) are units associated with post-secondary institutions whose purposes are to aid 
students studying mathematics, little is actually known about their general characteristics. 
Whetten, Felin, and King (2009) insist that organizational research should begin with context 
sensitivity that acknowledges and accounts for the relevant conditions of the entities to be 
studied. For that reason, we began this study with a series of questions: What are the structural 
similarities and differences of math centers? What are useful ways to define organizational 
structures of math centers?  

Our group’s long-term goal is to generate and test hypotheses about the effectiveness of 
competing organizational structures. The three stages of this research are:  

1. Describe the organizational structures of various tutoring centers. 
2. Compare qualitative and quantitative measures of success from various centers 

and develop testable hypotheses about the choices that impacted the success of 
these centers. 

3. Design research methods to specifically test hypotheses generated in stage two. 
This paper addresses the first stage. We draw on our experiences as tutor center leaders to 

identify, define, and document significant organizational structures of various tutoring centers.  

Theoretical Perspective 
Research on organizational identity suggests that identity is a construct formed from 

comparisons. Gioa, Patvardhan, Hamilton, and Corley (2013) suggest that some of the first 
stages of organizational identity formation process should involve considering contrasts and 
converging on a consensual identity. Albert and Whetten (1985) put forth that “organizational 
identity is formed by a process of ordered inter-organizational comparisons and reflections upon 
them over time” (p. 273). While theories such as these are more common in management fields, 
for educational researchers this might be reminiscent of variation theory, which suggests a 
concept is understood when its critical features are acknowledged, and the means to deem 
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features as critical is discerned only through experienced variation (Runesson, 2006). To 
determine the organizational identity that is associated with math centers we look at the central, 
stable features of math centers that make them distinctive (Gioa, Patvardhan, Hamilton, & 
Corley, 2013).  We looked outside of mathematics education for theoretical guidance on how to 
study organizational structures because this is not a common topic in research in undergraduate 
mathematics education. We narrowed in on the idea of defining identity by making comparisons 
between organizations for the first stage of the research.  

Literature Review 
Empirical investigation of mathematics tutoring and tutoring centers at the undergraduate 

level is still in the beginning stages. Characteristics of Successful Programs in College Calculus 
reported that undergraduate tutoring is commonplace: 97% of the 105 institutions surveyed had a 
tutoring center for students to receive help for calculus, and 89% of the institutions offered 
tutoring by undergraduate students (Bressoud, Mesa, & Rasmussen, 2015). Several quantitative 
studies indicate that visiting mathematics tutoring centers is correlated with higher final grades 
(Byerley & Rickard, 2018; Rickard & Mills, 2018; Xu, Hartman, Uribe & Menke, 2014). Each 
of these studies focused on a single institution, and the metrics for success are limited to final 
grades, rather than other indicators of success such as persistence through a STEM major. 
Matthews, Croft, Lawson, and Waller (2013) reviewed the literature concerning tutoring center 
effectiveness and found a wide diversity in the metrics that determine success, such as grades, 
retention rates, frequency of repeated visitors, and student reports of confidence and motivation. 
They recommend further investigation into “what constitutes effective delivery of mathematics 
support” (p. 23). Due to the small number of studies on tutoring centers we feel confident that no 
studies have compared centers with contrasting organizational structures to make hypotheses 
about structures of effective centers. 

To explain the success of tutoring, a number of studies have examined the intricacies of 
tutor-student interactions. Research indicates effective tutoring commonly includes active 
inquiry and self-explanations on the part of the student (Chi, 1996; Lepper and Wolverton, 2002; 
Topping, 2005; Van Lehn, 2011), and appropriate questioning and responsive scaffolding on the 
part of the tutor (Graesser et al., 2011; Roscoe & Chi, 2007; Topping, 1996). While these 
findings are helpful in guiding productive tutoring, they were not conducted in a mathematics 
tutoring context, nor do they offer significant insight into the structural organization of a tutoring 
center. Solomon, Croft, & Lawson (2010) is one of the few studies to describe the impact of a 
physical space on the climate of a math center.  

Methods 
We will compare structures that differ between tutoring centers by drawing on our 

experiences with tutoring centers. All six authors of this paper are actively involved in their 
university’s math center, attend a national conference for tutor center leaders, participate in 
weekly or monthly online meetings with other tutor center directors, and lead or attend tutoring 
center working groups at the RUME conference. Our understanding of tutoring center structures 
is built on our frequent interaction with our universities’ tutoring centers, notes from conferences 
and online meetings, and a shared digital resource library. 

Multiple center leaders wrote descriptions of various aspects of their centers such as tutor 
selection, tutor training, center hours, classes tutored, numbers of students served, description of 
physical space, and description of relationship with the mathematics department. We analyzed 
these documents to create and refine definitions of organizational structures. Of course, there are 
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other differences between our centers that did not emerge in our conversations and writing. This 
methodology relies on the expertise of tutor center leaders to choose what they believe are the 
most important contrasts between centers. We make no claims that the structures we define will 
turn out to be the most important once more formal study is conducted. 

Descriptions of Different Tutoring Center Structures 
In the following section, we describe six significant dimensions of undergraduate 

mathematics tutoring centers: (1) Specialist versus Generalist Math Tutor Models, (2) Strength 
of Relationship between Center and Math Instructors, (3) Type and Extent of Tutor Training, (4) 
Types of Tutoring Services, (5) Physical Layout and Location, and (6) Tutoring Capacity. 

Specialist versus Generalist Math Tutor Models 
A specialist math tutor is assigned to tutor for one course. This tutor helps numerous 

students with the same course and becomes familiar with the homework problems, student 
mistakes, homework solutions, the syllabus, and expectations for testing. Ideally the tutor would 
communicate with at least one instructor of the course to give feedback on students’ experiences 
and to ask for any clarification needed. Sometimes specialized tutors also serve as Learning 
Assistants in the course (see Goretzen et. al., 2011 for definition of Learning Assistant). Often 
Learning Assistants attend a course and assist faculty with in class group work and hold mentor 
groups outside of class. Typically, specialist tutors are not available during all times the center is 
open and students must attend the center when tutors are available for their course.  

A generalist math tutor is someone who tutors for many or all of the courses the center 
serves that the tutor understands. When students come to the center while it is open they have a 
reasonable expectation that someone will be there to help them. A generalist tutor should be able 
to respond to questions about all or most of the courses served by the center. Students typically 
ask tutors some of the harder questions in the homework and it is difficult even for experienced 
tutors with advanced degrees to answer questions on the spot in courses they took semesters ago. 
Compared to specialist tutors generalist tutors will spend more time solving the problem and be 
more likely to use a textbook or other resources. We are not claiming that tutors needing to use 
resources to solve the problem is negative. Perhaps seeing tutors model how to solve unknown 
problems is better for students that seeing tutors who know the assignment and answers 
intimately.  Generalist tutors are less likely to understand the scope of the course or the particular 
procedures the instructor is assessing, especially for courses like College Algebra the tutors 
typically took in high school. 

Strength of Relationship between Center and Mathematics Instructors 
There are a variety of characteristics of tutoring centers we identified as having strong 

relationships with the mathematics instructors at their university. It is unknown if the 
effectiveness of a tutoring center is related to the strength of its connection with the mathematics 
instructors. It might be that having strong connections with student services or centers for 
teaching and learning are more important predictors of effectiveness.  

Course Coordinators Collaborate with Tutor Center Leaders. At some centers the 
leaders interact frequently with course coordinators.  The center leaders might be math faculty 
who are also course coordinators or instructors.  An example of collaboration is a course 
coordinator that offers extra credit to students for completing a task at the center and the center 
records this information. Other center directors do not teach math or communicate frequently 
with the course coordinators or instructors.  If a center relied on the mathematics faculty 
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occasionally to provide recommendations for tutors or to provide course syllabi the center could 
still be categorized as having minimal collaboration with course coordinators.  

Instructors of Courses Hold Office Hours in the Center. Some department chairs 
request that instructors hold office hours in the center. Other centers are only staffed by 
undergraduates or a mixture of undergraduate and graduate students. We believe that when 
instructors are tutors in the center there is more potential for dialogue between instructors and 
other tutors. 

Tutors Interact Frequently with Course Instructors. In some of the universities with 
specialist tutoring models, the tutors attend the courses they tutor for as Learning Assistants who 
help with group work. Generalist tutors might also interact frequently with course instructors if 
the instructors also tutor in the center or the tutor center leaders are also course instructors.  

Type and Extent of Tutor Training 
In our centers, undergraduate tutors are the most likely to receive training and graduate 

student tutors are the second most likely. In our centers, faculty do not receive tutoring training.  
Content Training. Content training is focused on refreshing and deepening the tutors’ 

knowledge of the content of the classes they are responsible for. Examples of content training 
that exist at our centers are asking tutors to read the book according to the posted schedule or 
asking tutors to complete homework problems focused on relevant material.  

Pedagogical Training. Pedagogical topics include how to help the student use resources 
to solve a problem, how to report students in crisis, how to ask good questions, how to motivate 
students, how to teach study strategies, how to respond to complaints about instructors, etc. 
Pedagogical training varies between centers because of the variations in the philosophy of 
tutoring between center leaders.  

Mathematical Knowledge for Tutoring. We suspect that effective tutors draw upon 
more than content knowledge and pedagogical knowledge and have developed additional insight 
into learning mathematics. We speculate that the construct mathematical knowledge for tutoring 
is not identical to the construct mathematical knowledge for teaching (Thompson A. and 
Thompson P., 1996; Hill, Ball, & Schilling, 2008) but has some similarities. There are no known 
programs to develop mathematical knowledge for tutoring, but tutor center leaders report that 
they try to help tutors understand this issue sporadically. For example, some center leaders 
analyze student work with tutors and help them generate hypothesis about student thinking. 

Time Spent on Training. Training time includes meetings between tutors and center 
leaders focused on improving content or pedagogical knowledge. Most centers who provide 
training do more training in the first semester of the tutor’s job. Although tutors might learn from 
experiences such as attending class to facilitate group work, we do not count this as training. 

Types of Tutoring Services 
Some centers focus on a particular type of mathematics, such as calculus, and only serve 

a few courses and are typically housed in smaller locations. Other centers serve upwards of 
twenty different courses ranging from developmental mathematics to linear algebra and are 
typically housed in much larger spaces. One advantage of having large centers that serve the 
majority of courses is that the university can put one person in charge of managing the center. If 
smaller centers serve restricted clumps of courses, the university might need more people to 
manage the centers. We wonder if smaller centers develop different cultures than larger centers 
serving many courses. Additionally, some centers offer drop in tutoring, others offer scheduled 
one-on-one tutoring, and others offer a combination of services. A potential benefit of drop in 
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tutoring is that some students work together and make study friends at the center. A downside of 
drop in tutoring is that some students complain of waiting too long for help and not having 
enough time with a tutor.  

Physical Layout and Location 
Oklahoma State’s center is housed in beautiful rooms with huge windows, ample natural 

light and expansive views of campus while other tutoring centers have no windows. Some 
centers do not have enough chairs for students during busy times, and students choose to either 
sit on the floor or leave the center after evaluating the crowd. The ceiling height and ventilation 
differs at centers leading some students to complain of stuffiness or smell. In addition to wide 
variations in the quality of the centers’ spaces, there are variations in the center’s location on 
campus and how far the students typically must travel to attend the center. Some centers offer 
tutoring services in other locations. For example, University of Oklahoma offers tutoring in one 
of the largest dorms in the evenings before a coordinated exam. 

Tutoring Capacity 
Our centers have wide variation in the number of tutor hours available per eligible 

student. We propose multiple metrics to evaluate the availability of tutors. First, we define tutor 
hours to mean the sum of all the hours tutors are employed.  One metric is the number of tutor 
hours per student eligible to use the center. We consider a student eligible to use the center if 
they are enrolled in a course the center serves at the end of the semester. Another metric is the 
number of tutor hours per student visit. This metric takes into account the wide variation in the 
percentage of eligible students who use a center at a particular university. Some universities have 
multiple options for tutoring and so a particular center needs fewer tutors to satisfy demand. A 
third metric that is harder to track, but available at some universities, is the number of tutor hours 
per student hour spent at the center.  Although these metrics are relatively easy to compute they 
do not capture the number of tutors per student at peak hours before tests and before homework 
is due. A potential solution is to use electronic queueing systems and record the time between 
when a student asked for help and when the tutor responded to their request.  

Structural Organization of Selected Math Centers 
Table 1 compares two distinct centers that serve students at large state schools.  In Fall 

2017 Oklahoma State has an average of 6.9 visits for each eligible student and Ohio State has an 
average of 1.6 visits per eligible student. There are so many variations between the two centers 
and student bodies it is difficult to hypothesize why one center is used more frequently. Is the 
quality of the space, a connection to math, or something else? 

We are in the process of describing approximately 14 centers using definitions offered 
here and then looking for patterns in measures of effectiveness that might be related to structural 
choices. We plan to use Table 1 to define the organizational structures of each center. Some 
aspects of the table were suggested by the literature. For example, usage is one commonly 
reported measure of effectiveness of a center (Matthews et. al., 2013). The strength of correlation 
between the number of visits to a center and the student’s grade is another measure of 
effectiveness (Rickard & Mills, 2018). By comparing data from many centers we hope to create 
hypothesis about shared components of the most effective centers. After creating hypotheses we 
can do targeted data collection and surveys designed to evaluate the most important features of 
successful centers 
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Table 1. Characteristics of Tutoring Centers at Two Universities 
 

Oklahoma State Ohio State 

Tutoring Services 
Generalist or Specialist  
 
Drop in or Scheduled 
Number of Courses Served 

 
           Generalist 

 
Drop in 
12 Math 

 
Tutors begin as specialists 
then become generalists 

Drop in 
19 Math (8 Stats) 

Physical Space  
Location 
 
Windows 
Square Footage 
Number of Chairs 
Ventilation 
Computers available 

 
Fifth Floor of Library 
 
Large and Plentiful 

8000 
266 
No Complaints 
130 

 
Basement and first floor of 
building near math dept. 

Few 
7000 
360 

Temp Regulation Issues 
13 but starting this year all 
freshman receive ipads 

Relationship With Instructors 
Course Coordinators 

Collaborate with Center. 
Instructors Tutor in Center. 
Tutors Interact with Faculty. 

 
Yes 
 
Yes 
Yes 

 
Minimal 
 
No 
No 

Tutor Training  
Content Training (UG) 
Pedagogy Training (UG) 
Content Training (G) 
Pedagogy Training(G) 

 
5 hours per semester 
3 hours per semester 

0 hours 
0 hours 

 
3 hours per semester 
10 in first semester as tutor 

0 hours 
.25 hours 

 
Table 2 compares measures of Tutoring Capacity at multiple centers. These measures can 

be used to describe capacity and will be used in the future to investigate relationships between 
tutoring capacity and the effectiveness of a center. We suspect that once the ratio of tutor hours 
per student visit becomes too small that complaints about availability of tutors will become 
common on the evaluation surveys. Colorado State, which has a ratio of 0.19 tutor hours per 
student visit, finds that approximately one third of students complain about tutor availability on 
their evaluation surveys. In our discussions we realized that some of the numbers are not easy to 
compare across universities. For example, at Colorado State a separate campus organization 
provides evening and weekend tutoring so it would not make sense to open the center much more 
than 36 hours a week. Further, Colorado State has a relatively high number of student visits per 
eligible student but all instructors’ office hours are held at the center. At other institutions the 
students who seek help from instructors would not be counted as visiting the center. Multiple 
dimensions must be considered simultaneously and it is not possible to say that one center is 
more effective than another based on one line of the table.  
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Table 2. Measures of Tutoring Capacity at Various Centers. Data refers to Fall, 2017. 

Undergraduate 
Institution 
 
Colorado State 
U of Arkansas 
Oklahoma State 
U of Oklahoma 
U of Portland 
Ohio State U 

Students 
Eligible to Use 
Center  
1,148 
6,021 
4,523 
5,515 
1,124 
8,632 

Location of 
Center 

 
Math Dept 
Math Dept 

Library 
By math 

Commons 
Math Dept 

Total Student 
Visits 
 
7,330 
10,175 
31,411 
22,031 
1,139 
14,096 

Hours per Week 
Center Open 
 
36 hours 
55 hours 
64 hours 
33 hours 
29 hours 
39 hours 

Undergraduate 
Institution 

 
Colorado State 
U of Arkansas 
Oklahoma State 
U of Oklahoma 
U of Portland 
Ohio State U 

Average visits 
per eligible 
student 
6.38 
1.69 
6.9 
4 
1.01 
1.632 

Tutor hours per 
eligible student 
per week 
.08 
.03 
.11 
.08 
.04 
.06 

Type of Tutor 
(Grad, UG, 
Faculty) 
UG, G, F 
G, F 
UG, G, F 
UG, G 
UG 
UG, G 

Tutor hours per 
student visit 

 
.19 
.29 
.24 
.30 
.56 
.53 

 

Limitations and Conclusions 
We believe our collective experiences are adequate to offer definitions of many tutoring 

center structures in use in the United States. This paper contributes to the growing work on 
tutoring centers by offering shared definitions that researchers can adopt in their work. This 
paper does not list all of the differences in tutoring centers. For example, each center has a 
different budget and different restrictions on how the money can be used. Further we recognize 
that the metrics identified vary for many reasons. Some reasons are connected to the 
organizational structure of the center and some reasons are beyond the control of center leaders. 
For example, some universities with low numbers of visits per student have many other tutoring 
options for students. On the other hand, it seems logical that well-advertised and helpful centers 
might have higher number of visits per eligible students than centers with less effective 
organizational structures. As we proceed in identifying ways to measure effectiveness and ways 
to define centers we will have to continue to grapple with these issues. It will take a lot of 
reflective consideration to identify effective organizational structures without inappropriately 
concluding that a lower score on a metric is caused by a structural decision made at the center. 

The creation and testing of hypothesis about the effectiveness of various structures will 
happen later and will involve the analysis of data about students visits to the center, the students’ 
grades, and the students’ demographic information. Data collection will also include student 
surveys about their experiences at the center. The survey questions will be designed to test 
hypothesis coming out of exploratory data analysis. We welcome participation in our project 
from other tutor center leaders, and offer these definitions as a starting point for those seeking to 
define their centers’ identity. Please feel free to contact the authors to become involved. 
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Instructional Practices 
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This study raises questions about a common assumption that an advanced degree in mathematics 
is sufficient for teaching courses in undergraduate mathematics meaningfully. The study reports 
results from 24 mathematics PhD students’ solutions to a precalculus level problem requiring 
quantitative reasoning. We also describe the PhD students’ conceptions of what knowledge is 
needed to produce a meaningful solution to this task. These graduate students’ problem solving 
approaches and images of the reasoning abilities needed to solve the problem were classified as 
having either a static calculational orientation or a dynamic conceptual orientation. We share 
how these two orientations are exhibited in the context of teaching precalculus students. We 
further illustrate ways in which a teacher’s actions to support her students in conceptualizing and 
relating quantities led to her engaging her students in more dynamic conceptually oriented 
discussions. 

Keywords: quantitative reasoning, mathematical knowledge for teaching, teaching practice 

Mathematics departments across the nation assign incoming mathematics PhD students 
teaching assignments in precalculus and beginning calculus. In US mathematics departments 
these assignments are often made based on the students’ prior coursework in mathematics and 
their ability to communicate clearly in English. Some mathematics departments provide teaching 
workshops for their incoming PhD students in mathematics. However, it is common for these 
workshops to focus primarily on the mechanics of teaching, with little or no focus on what the 
mathematics education research literature has revealed about the processes of learning or 
teaching ideas in the courses they are assigned to teach (Ellis, 2015). It has also been reported 
that graduate students in mathematics sometimes have weak understandings of fundamental 
ideas they are expected to teach (Musgrave & Carlson, 2016). These PhD students are typically 
offered little support in considering what is involved in understanding or learning the key ideas 
of courses they are assigned to teach; nor are they supported in determining how or whether to 
engage students during class, what to include in a lecture, how to assess student learning. Given 
the background and experiences of these new mathematics instructors it is likely that their 
instructional decisions and actions will be based on such things as their current conceptions of 
the mathematics they teach and their experiences in learning these ideas as students (Stigler & 
Hiebert, 1999).  

In this study we investigated the mathematical approaches that incoming PhD students in 
mathematics used when completing a standard applied problem (see Figure 1) in a course in 
precalculus. We also probed their view of the knowledge they used to complete the problem. 
Subsequently two of these 24 students participated in weekly professional development aimed at 
supporting precalculus teachers in engaging their students in developing stronger meanings of 
the ideas of precalculus and improved ability to access these ideas when confronting novel 
problems. The analyses of these two teachers’ classroom videos reveal stark differences in the 
teachers’ images of how students’ understandings develop. They also highlight instructional 
practices that led to students’ constructing stronger meanings. The results of this study may also 
provide new directions for preparing mathematics PhD students for teaching.  
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Literature Overview and Theoretical Framing 
Over 30 years ago Shulman (1986) encouraged research to pay more attention to the 

knowledge base that teachers need to carry out the practice of teaching. He called for increased 
attention on what he called pedagogical content knowledge, “the ways of representing and 
formulating the subject that make it comprehensible to others” and greater understanding of what 
makes student learning of specific topics difficult (Shulman, 1986, p. 9). Even and Tirosh (1995) 
further called for teachers to develop understandings of student ways of thinking and suggested 
that this knowledge should inform the activities they use to engage students. One such 
reconceptualization was the introduction of the construct of mathematical knowledge for 
teaching (MKT) in which pedagogical and mathematical knowledge were combined into one 
category (e.g., Ball, Thames, & Phelps, 2008; Hill, Ball, & Schilling, 2008; Hill et al., 2008). 
Silverman and Thompson’s (2008) study of teaching placed greater focus on the mathematical 
understandings, how they are connected, and how a teacher might spontaneously leverage these 
understandings when teaching. They also call for teachers to ponder how these understandings 
might develop in the minds of students (Silverman & Thompson, 2008, p. 500). Silverman and 
Thompson (2008) later proposed that developing MKT involves transforming a teacher’s 
personal understandings of a mathematical concept to an understanding of how this 
understanding might be useful for students’ learning of related ideas. They call for teachers to be 
supported in developing their images of the kinds of activities and conversations that might 
support another person in developing an understanding of an idea. They advocate that teachers 
try to envision learning the concept as a student and keep this in mind when developing activities 
to use with his students. By imagining scenarios from the viewpoint of a student, a teacher is 
better prepared to guide and direct conversations with his students. 

Other lines of inquiry into teaching have considered what teachers pay attention to and how 
they respond to student utterances in the context of teaching. Some of these constructs include 
calculational orientation, teacher noticing, and decentering. Thompson, Philipp, Thompson, and 
Boyd (1994) characterized and contrasted a teacher exhibiting a calculational orientation when 
interacting with students with one who exhibited a conceptual orientation when conversing with 
students about their approach to working an applied problem in a 7th grade classroom. They 
illustrate questions posed by a teacher that is oriented more toward helping students understand 
why an approach works (e.g., can you explain why that calculation makes sense?), and 
contrasted these to questions (e.g., what do you do next?) asked by a teacher that was focused on 
students’ completing the calculations to get the correct answer.  

Jacobs, Lamb, and Philipp (2010) studied teaching by examining children’s strategies, 
interpreting their understanding, and deciding how to respond on the basis of children’s 
understanding. They call these integrated abilities “professional noticing” and claim that they 
enable teachers to make appropriate instructional decisions based on student thinking. Thompson 
(2000), Steffe (1990), and Moore and Carlson (2012) leveraged Piaget’s (1955) idea of 
decentering to characterize the quality of teacher-student discourse. In Piaget’s work on 
children’s cognitive development, he introduced the idea of decentering to describe a child’s 
transition from his or her egocentric thought to the capability of adopting the perspective of 
another. As a teacher shifts to consider a student’s perspective and expressed meanings she is 
said to be attempting to decenter (Thompson, 2000). 

Conceptualizing Quantities in a Problem Context 
In recent years many researchers have found Thompson’s (1990, 1994, 2011) idea of 

quantitative reasoning to be fundamental to working applied problems in precalculus and 

22nd Annual Conference on Research in Undergraduate Mathematics Education 103



calculus (e.g., Engelke, 2007; Moore & Carlson, 2012). Thompson claims that when students 
process the words in an applied problem they should be conceptualizing the measureable 
attributes of objects that are described in the problem context. According to Thompson a quantity 
does not exist in the world; rather a quantity is constructed in the mind of an individual when she 
imagines measuring some quality of an object, such as a person’s height or the person’s distance 
from home as she drives to work (Thompson, 2011). A quantity’s value is the numerical 
measurement that a quantity assumes. When the value of a quantity is static it is called a constant 
or fixed quantity. If the value of a quantity changes throughout a situation it is referred to as a 
varying quantity. A quantitative operation occurs in the mind of an individual when 
conceptualizing a new quantity in relation to one or more already-conceived quantities 
(Thompson, 2011). When one conceives of three quantities related by means of a quantitative 
operation, he has conceptualized a quantitative relationship. One is said to be engaging in 
quantitative reasoning when he is actively engaged in constructing a network of quantities and 
quantitative relationships (Thompson, 1988, 1990, 2011). 

Context of the Study 
The Pathways to Transforming Undergraduate Mathematics Education project supports 

future mathematicians (PhD students in mathematics) to develop as reflective teachers who 
leverage research on student learning and formative data to adapt their instructional practices. 
The PhD students in the program attend a 3 day workshop prior to teaching with research based 
instructional materials, and then attend a weekly seminar during each semester that they teach a 
course using these materials. The materials include cognitively scaffolded in-class investigations 
that engage students in quantitative and covariational reasoning as cross-cutting ways of thinking 
that lead to students’ understanding and using the course’s ideas. Detailed instructor notes and 
solutions illustrate both productive and unproductive student thinking relative to specific ideas.  

Method 
The data presented in this study is from a larger study that followed 2 PhD students from a 

pool of 24 incoming mathematics PhD students over the first two years of their teaching 
precalculus at a large public university. Upon their entering the program they and 22 other 
students completed 5 mathematics problems to assess their conceptions of fundamental ideas of 
precalculus. Two of the 24 PhD students who were assigned to teach pre-calculus were 
subsequently video-taped when teaching during their first 3 semesters of teaching precalculus in 
the context of using a research based curriculum and attending weekly professional development 
meeting based in research on student learning, and designed to foster growth in the instructor’s 
mathematical conceptions of precalculus ideas and how they are learned. The written responses 
of 24 incoming PhD students were analyzed relative to their: (a) conceptualization of the 
quantities in the problem context; (b) their usage and meanings for variables, terms and 
expressions; (c) their image of the transformation of the box; (d) the degree to which the box’s 
transformation influenced their image of the constrained covariation of the two varying 
quantities to be related. We analyzed classroom video data of two teachers during their third 
semester in the Pathways TUME program. The lessons analyzed for this report had a focus on 
conceptualizing quantities in the context of the familiar box problem (see Figure 2). This video 
data was analyzed relative to the same four criteria used to analyze the written responses. In 
addition we analyzed the teachers’ actions (utterances, drawings, questions, etc.) to glean 
insights about their approaches for supporting their students in engaging in quantitative 
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reasoning, and their conceptions of how students might acquire the ideas that were central to the 
lesson.  

Toy Chest Problem 
An 8-foot by 4-foot piece of plywood is being used to build an open-top toy chest. The chest 

is formed by making equal-sized square cutouts from two corners of the plywood (see Figure 1). 
We remove these squares and make three folds (illustrated as dashed lines on the figure) to form 
three sides of a box. We then attach the three-sided box to the wall, so that we get an open top 
toy chest. Define a function f that determines the volume of the toy chest (in cubic feet) in terms 
of the length (number of feet) of one side of the square cutout, x. 

 
Figure 1. The toy chest problem 

Results 
The toy chest problem was one of the five problems that 24 PhD students in mathematics 

completed during an initial teaching workshop that took place during the summer prior their 
beginning their graduate studies. This problem asked student to define a function to determine 
the volume of a toy chest given the side-length of equal-sized squares that are cut from two 
corners of a plywood board. The problem was illustrated in a drawing with the dimensions of the 
plywood labeled and dashed lines indicating where the cuts could be made (see Figure 1). 

Analysis of the responses of the 24 PhD students responding to this task revealed that only 13 
of 24 of these students produced a correct response of 		 f (x)= (8−2x)(4− x)(x) . The majority (7 
of the 11) who produced an incorrect answer responded by writing f(x) = (8)(4)(x). This response 
suggests that these mathematics graduate students were not imagining the sides of the toy chest 
varying with x, the length of the sides of the squares cut from the two corners. Instead they 
appeared to imagine a fixed length and width for the box, and failed to recognize how the box’s 
length and width would vary as the value of the side-length of the squares varied. Other incorrect 
responses included, f(x) = (8 – x)(4 – x) and f(x) = (8 – 2x)(4 – 2x)(x), also suggesting that the 
symbols they produced were not based in an accurate image of the quantitative relationships 
described in the problem context.  

In a follow up prompt these same PhD students were asked to describe how they would 
explain what it means to solve the equation f(x) = 9, and how they would support students in 
understanding what it means to evaluate f(3) and solve the equation f(x) = 9.  The PhD students’ 
responses included: (a) one is finding x and the other is finding f(x) so I would show them how to 
calculate these values when the other value is known; (b) solving f(x) = 9 using algebra might be 
too hard for them, but they should have no problem finding the point that has a y-value of 9; (c) 
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when evaluating f(3) you are putting 3 in for x and finding a value for the box’s volume. When 
solving f(x) = 9 you are putting in a value for the box’s volume and finding a value for x. The 
first 2 responses (typical of over half to the 24 subjects) focus on what students should do to 
answer the questions, with no mention of the quantities represented by the symbols or what it 
means to evaluate a function or solve an equation. In contrast, the third response includes 
references to the quantities and describes what the process of “evaluating” and “solving for” 
produces in terms of the quantities in the situation. A stronger response (not provided by any of 
the incoming PhD students) might also convey that evaluating a function for a particular value of 
the input quantity involves using the function rule or process to determine the corresponding 
value of the output quantity. Solving f(x) = 9 would then be described as producing a value of the 
input quantity x as an instance of reversing the process of f, or determining a value for the 
square’s side-length, x, when the box’s volume is known. This data provides evidence of 
weaknesses in these graduate students’ conceptions of a function, also suggesting that the 
majority of these PhD students viewed a function formula as a tool for determining values.   

The Teaching of Jack and Gloria 
The video excerpts of Jack and Gloria are presented to contrast two teachers’ conceptions of 

a mathematics lesson that required their students to use quantitative reasoning to relate two 
varying quantities. Recall that this data was collected during the third semester in which Jack and 
Gloria were teaching precalculus in the context of the Pathways TUME project.  

Jack’s conceptions operationalized during teaching. Jack began his lesson with a picture 
of an 8.5” by 11” sheet of paper with squares 2 inches on each side removed from each of the 
four corners (see Figure 2).  He had labeled one side of one of the four squares with the label 2”.  

 
Figure 2. Jack’s illustration of the box 

He began his discussion of this problem by saying, “What I have drawn out on the board is 
an 8 and ½ by 11 inch piece of paper, out of which we have cut 2 inch squares.” (Jack assumed 
the students understood that the squares removed from all four corners all had side lengths of 2 
inches). He followed by saying, “We are going to fold the paper along these dashed lines.” (The 
students are expected to imagine a paper being folded). He then said, “What we’re interested in 
is the volume of this box when a 2 inch square is removed from each corner.” He goes on to tell 
students that the volume of the box is length times width times height, but then follows by saying 
that “We’re not going to worry why this formula works.” but invites them to think about this on 
their own time. The lesson continues with him doing almost all of the talking while focusing on 
the calculations needed to determine the length, width, and height of the box that he has drawn. 

Jack labeled the fixed quantities of 11” and 8.5” on his drawing (see Figure 2) and placed a 2 
above one of the squares. It is noteworthy that he failed to make clear whether he was speaking 
about the square’s area or the square’s side length when referencing the 2. He followed by asking 
students what in the picture represented the length of the box. A student who appeared confused 
raised her hand and said in an inquiring way, “So the length would not be 11.” The teacher 
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followed by saying, “That is correct, the length will not be 11, but we may want to use 11 to 
determine the box’s length later on; just hold that thought.” This response suggests that the 
teacher was not interested in how the student was conceptualizing the quantities in the situation, 
rather he seemed more focused on what he wanted to say next. Jack then moved on to ask the 
same student what the width would be. She responded similarly in an inquiring tone, “So the 
width wouldn’t be 8.5 (pause), would it be 2 something?” The teacher did not respond to her 
question, but again points to the box’s width in his illustration on the board. He followed by 
calculating each dimension of the box while writing	(11−(2)(2))(8.5−2(2))(2)  and concluded the 
discussion by saying, “We could use the same method to find a box with a different square.  
Right?”  

This exchange suggests that Jack was not interested in how the student was conceptualizing 
his drawing. When the student asked why the box’s length was not 11” Jack took no action to 
support her in conceptualizing the box’s length; nor did he pose questions to support this student 
in visualizing how the box’s length varied with changes in the side of the square. His description 
of how to calculate the box’s length and width suggests that he believed that writing and saying 
these calculations conveyed an image of how the box’s width and the square’s side length are 
related. He did not appear to be interested in how he was being interpreted and did not show 
interest in his student’s thinking. His questions direct students’ attention to a static image of the 
paper and were focused more on what calculations to use to compute a volume. 

Gloria’s conceptions operationalized during teaching. Gloria’s discussion of the box 
problem began with her providing pairs of students with an 8.5” by 11” sheet of paper, scissors, 
and tape. On the overhead projector were instructions to build a box by cutting four equal sized 
squares from the corners, and folding up the sides. As she circulated from table to table she 
challenged students to build a box that would hold only a small amount of popcorn and others to 
build a box that would hold the largest amount of popcorn possible. After the students had built 
their boxes she held up four boxes and asked her students to vote on which box would hold the 
most popcorn. Her choice to have students build the box suggests that Gloria recognized the need 
for students to take time to initially conceptualize quantities in the problem context and to 
consider how they are related. After the students had built their boxes, Gloria asked students to 
discuss what quantity in the situation determined each box’s shape. After a few minutes of 
discussion, students expressed a consensus that each box’s shape depended on the side length of 
the squares cut from the corners. Gloria followed by displaying a Geogebra animation she had 
developed prior to class (This applet allowed her to vary the side length of the squares while 
displaying how both the paper and box’s dimensions were transformed). Gloria began her 
discussion around the applet by saying, “Since we decided that the box’s shape and dimensions 
depend on the side length of the squares cut from the corners, let’s see what happens when we 
vary this quantity.” As she varied the side length steadily from 0 to its maximum value (4.25”) 
she asked students to describe how the box’s volume was changing. She interjected a prompt for 
students to explain what they were visualizing when thinking about the box’s volume. Students 
who responded conveyed they were visualizing such things as the amount of space inside the box 
and how much popcorn the box holds. She then asked her class what units they might use for 
measuring the box’s volume. After they discussed this with one another, she used a second 
applet that allowed her to vary the shape of the box, while displaying a varying number of cubes 
1 inch on each side that would fit into the displayed box. As Gloria continued to vary the side 
length of the square cutout she prompted students to move their index finger upward from their 
desk to represent the box’s volume increasing and downward to represent the box’s volume 
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decreasing. Students’ first attempt to represent how the volume of the box was varying resulted 
in many students moving their finger upward only. Gloria called on one student to explain why 
she was moving her finger the way she did, and she replied that she was visualizing the height of 
the box getting taller and taller. Gloria asked the student to describe what attribute she was 
looking at when she was thinking about the box’s volume. The student quickly recognized that 
she was paying attention to the wrong attribute of the box. Gloria again moved the side length 
continuously form 0 to 4.25, while all students moved their fingers upward to a point, and as the 
box became taller and narrower, they began to move their fingers downward until the paper 
folded onto itself. Gloria called on particular students to verbalize what they were imagining as 
they moved their fingers upward and then downward. She also asked particular students to 
describe the minimum and maximum values for the side length of the square that could be cut 
from the paper. 

Gloria then had students work in their groups to complete a table to determine the value of 
the box’s width, length, height and volume, given 4 values for the square’s side length. While 
they were working she walked around the classroom as students completed the calculations and 
asked specific students to describe what their calculations represented in the context of the box’s 
dimensions. Gloria posed a final question for students to determine an expression to represent the 
box’s volume in terms of the side-length of the squares cut from the box’s corners. While 
students were working she circulated around the class to ask students how they defined the 
independent variable and what quantity their expressions represented in the context of the box. In 
one case a student had written 2x – 11 for the box’s side length, instead of 11 – 2x. Gloria asked 
this student to point to what x represented in the context of the box, what 2x represented in the 
context of the box and what 11 represented.  Once the student had done this, the student noticed 
that his answer did not represent anything in the context of the box and he changed his answer to 
11 – 2x, explaining that 2 side-lengths are subtracted from 11 to get the box length. Gloria’s 
persistent attention on her students’ conceptions of the quantities in the problem context suggests 
that she believed that quantitative reasoning would enable her students to visualize what 
variables, expressions and formulas represent, and to see these symbols as representing how the 
box’s volume varied with (or was related to) the length of the side of the square x that was cut 
from the box’s corners. 

Conclusions and Discussion 
The data collected from the 24 incoming PhD students suggests that these highly successful 

mathematics students may have some of the same impoverished meanings and ways of 
approaching contextual problems as what has been reported in the literature about undergraduate 
students in mathematics. This finding suggests that even PhD students in mathematics might 
benefit from professional development focused on what is involved in understanding and 
learning ideas that are the focus of their instruction. The teaching episodes of Jack and Gloria 
contrast two conceptions of what is involved in supporting students in engaging in quantitative 
reasoning as a means for constructing formulas that represent how quantities in a problem vary 
together. Jack displayed a strong tendency to focus on static relationships and computations, 
while Gloria focused more on understanding ideas and visualizing quantities as they varied. 
Jack’s interactions further reveal that he had little interest in understanding the meanings his 
students were constructing, while Gloria was regularly concerned with how students were 
conceptualizing a situation or representing a quantity. Her strong orientation toward her students’ 
thinking and her actions to support students in constructing productive meanings led to many 
instances in which her interactions with her students led to advancements in their thinking. 
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Revisiting Graduate Teaching Assistant Instructor Expertise and Algebra Performance of 
College Students 

 
 Karla Childs Hayley Milbourne 
 Pittsburg State University San Diego State University 

This longitudinal study revisits a decade old study about the relationship between level of 
Graduate Teaching Assistant (GTA) instructional expertise, amount of GTA teaching experience, 
and academic performance of their college algebra students measured by course grades. The 
questions posed then remain relevant today. In the present study, college algebra grades for all 
students in classes taught by GTAs since the original experiment were analyzed.  That is, data 
from twelve years (AY2006 – AY2017) and 168 sections (n = 6675) were examined. Noteworthy 
is the fact that success in lowering the drop rate in the treatment group held true for 15 years 
since the treatment was initiated.  Included is a look at what has changed and what has remained 
the same since the original study. 

Keywords:  Graduate teaching assistants, professional development, program efficacy 

 “Mathematics education, unlike mathematics itself, is not an exact science; it is much 
more empirical and inherently multidisciplinary.  Its aims are not intellectual closure but helping 
other human beings, with all of the uncertainty and tentativeness that that entails” (Bass, 1997, p. 
21). Professional development programs for Graduate Teaching Assistants (GTAs) are becoming 
more common across the United States, with 81% of PhD granting institutions and 45% of 
Masters granting institutions reporting having some kind of department-run professional 
development for their GTAs (Rasmussen et al., 2016). However, it is not clear what the results of 
these various professional development programs are, both on teaching efficacy and student 
achievement. 

Teachers of mathematics need both knowledge of content and knowledge of the best way 
to teach that content to students.  Pedagogical content knowledge or subject-specific pedagogical 
knowledge consists of how to represent specific topics and issues in ways that are appropriate to 
the diverse abilities and interests of learners (Ball, Thames, & Phelps, 2008).  Brown and Borko 
(1992) said this requires making the transition from a personal orientation to a discipline to 
thinking about how to organize and represent the content of the discipline to facilitate student 
understanding.  Naturally, GTAs need support and guidance in making this transition from 
learner to learning to teach.  

In this particular study, GTAs were given professional development to help support them 
in their teaching of college algebra. Results from the past 12 years since the program was 
implemented of the change in withdrawal rates are given. In the talk, we will further discuss 
changes in the grade distributions for the course. 

Background of GTA Professional Development Programs 
 Researchers in higher education have suggested that for decades universities and colleges 
gave little regard to the impact of GTAs on undergraduate education (Boyer, 1990; Sykes, 1988). 
Sykes (1988) said that the professoriate, in pursuit of research, grants, and academic politicking, 
has left undergraduate students in the care of under-prepared and under-paid GTAs.  During the 
late 1980’s, in response to the sharp criticism about the practice of using graduate students as 
inexpensive labor, many GTA orientation and training programs were started at colleges and 
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universities across the United States (Bartlett, 2003). Now, as the focus is returning to the 
teaching of mathematics at the undergraduate level, there is renewed interest in professional 
development programs for GTAs. For instance, one of the seven recommendations from the 
Mathematical Association of America study of successful Calculus programs was to improve the 
professional development offered to the GTAs (Bressoud, Mesa, & Rasmussen, 2015).  
 Research about college student learning and development clearly shows that student 
learning is “unmistakably linked to effective teaching” (Pascarella & Terenzini, 1992, p.182).  
Furthermore, there is research to support that “good teaching” has a positive effect on the change 
in students’ attitudes towards mathematics (Mesa, Burn, & White, 2015), with “good teaching” 
referring to three components: classroom interactions that acknowledge students, encouraging 
and available faculty, and fair assessments.  However, this same study has shown that students 
are still citing their experiences in college mathematics as a top reason for why they are 
switching out of a STEM (science, technology, engineering, and mathematics) major 
(Rasmussen, Ellis, & Bressoud, 2015). So, more work needs to be done on how the experience in 
undergraduate mathematics courses can be improved. 

Within the various studies done on the range of professional development programs 
available for GTAs, most studies can be described by three main themes: temporal, structural, 
and topical. In temporal studies, researchers describe the duration of the professional 
development and how it varies across the nation (e.g. Belnap & Allred, 2009). In structural 
studies, the focus is on the various ways the programs for professional development of GTAs are 
structured (e.g. Ellis, 2015; Palmer, 2011). In topical studies, there is an effort to create a list of 
standard topics and teaching practices on which the professional development programs are 
focused (e.g. McDaniels, 2010). Finally, outside of the three topics described above, there are a 
group of studies on the efficacy of particular professional development programs (e.g. Griffith, 
O’Loughlin, Kearns, Braun, & Heacock, 2010).  

The research base on the state of professional development of GTAs is still relatively 
small. There have been only a handful of studies done exclusively on the state of professional 
development of GTAs across the nation (Belnap & Allred, 2009; Kalish et al., 2011; Palmer, 
2011; Robinson, 2011). Additionally, there have been a few meta-studies conducted over the 
years on the state of research in the teaching of undergraduate mathematics (Speer, Gutmann, & 
Murphy, 2005; Speer, Smith, & Horvath, 2010). Outside of the national studies, there are also a 
handful of articles on particular programs at specific institutions, with a focus on the structure of 
the program or the efficacy of the program (e.g. Griffith et al., 2010; Marbach-Ad, Shields, Kent, 
Higgins, & Thompson, 2010).  

During the Research in Undergraduate Mathematics Education (RUME) conference in 
2017, there were five different studies presented that involved examining what GTAs learned 
from a particular professional development program. The study done by Pascoe and Stockero 
(2017) focused on the results of an intervention in which the GTAs learn about a noticing 
framework and how to use it while watching videos of teaching. Reinholz (2017) and Wakefield 
and colleagues (2017) focused on the use of reflections in the development of teaching in GTAs, 
with Reinholz also looking into the role of peer feedback. Each of these studies focused on a 
cognitive approach to learning.  

Furthermore, Speer, Deshler, and Ellis (2017) presented results from a study done on the 
ways departments are evaluating the undergraduate student outcomes from their GTA 
professional development programs. With this greater focus on GTA professional development 
programs, ways to evaluate their efficacy is an important aspect that has not been widely studied. 
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Their results showed that many departments are relying on student evaluations to evaluate the 
teaching of their GTA’s, which has been shown to be an ineffective measure of teaching 
(Krautmann & Sander, 1999).  

The purpose of the present longitudinal study was to revisit a decade old study about the 
relationship between instructor participation in a GTA professional development program and 
academic performance of college algebra students measured by course grades (Childs, 2008).  
Furthermore, the relationship between algebra performance of college students in courses taught 
by first year GTAs and second year GTAs was reexamined. 

Methods 

Participants 
 All of the participants in the present study were enrolled in sections of MATH 113, 
College Algebra, taught by GTAs at a midsized Midwestern University during the spring and fall 
semesters over the AY 2006-17. The University remains a traditional college campus with 
average class size of 18 students.  Approximately 7,000 students annually were enrolled in more 
than 200 academic programs and emphasis areas in four colleges. 

College Algebra is one of three choices for all baccalaureate students to satisfy the 
Mathematics Area under the General Education Degree Requirements as stated in the university 
catalog.  Enrollment for the course is approximately 700 students each academic year.  College 
Algebra courses offered during the summer term are not taught by GTAs and not considered in 
this study.  The students were males and females, freshman, sophomores, juniors, and seniors 
between the ages of 17 and 65.  Participants for this study were enrolled in this course, as well as 
other courses, with the assistance of an academic advisor.  Quantitative data was gathered from 
this purposive sample to examine the relationship between algebra performance among college 
students and instructor expertise. 

Procedure 
 In the current study as well as the original study, there are important common 
components of Math 113, College Algebra, during the control and treatment years.  They include 
course syllabi, Basic Skills Exams, final exams, and GTA instructors.  These standardized 
conditions of college algebra during the years under investigation help control for potential 
group differences and allow for investigation of the treatment variable with more reliability. 
 Course Syllabi.  All students in the participating sections of college algebra are exposed 
to the same set of course topics during the semester.  All college algebra classes have a common 
day-by-day schedule and a common syllabus of topics and skills outlined by the State Board of 
Regents.  The Core Competency Committee, called by the State Board of Regents, determined 
minimum core competencies for common courses under its jurisdiction.  Mathematics instructors 
and professors from all of the State institutions comprised the committee to develop the 
mathematics syllabi.  To ensure this set of minimum core competencies and department 
approved learning goals and objectives are taught uniformly in all college algebra courses within 
the mathematics department, course syllabi are scrutinized by either the GTA supervisor or the 
department chair.  
 Basic Skills Exam. The Basic Skills Exam is an important formal assessment tool used 
in college algebra at this university.  The math department requires a Basic Skills Exam for 
college algebra in which students must get 9 out of 11 problems completely correct in order to 
successfully exit the course.  Students start taking this exam at the beginning of week 9 of the 
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semester.  If a student fails the exam, he or she works one on one with the instructor and tutors 
and may continue to repeat versions of the exam until week 11 of the semester.  If the student 
still does not pass the exam after week 11, he or she must repeat the course.  
 Every student from every section of college algebra had to demonstrate mastery of these 
basic algebra skills to the same high degree of accuracy by passing the standardized Basic Skills 
Exam during the semesters under study. 
 Final exam. Students in college algebra take a common comprehensive final exam that is 
prepared by the full-time instructor who coordinates the college algebra sections.  All students in 
all sections of college algebra take this comprehensive final exam on the same date and at the 
same time. The contents of final exams during the years under investigation were analyzed for 
concepts tested, number of questions, and number of questions per concept. Two mathematics 
instructors participated in this analysis to provide inter-rater reliability and determine if there 
were any significant differences among the years being studied.   
 Each of the final exams for the 24 semesters being examined contained questions in six 
categories: Basics, Algebraic Operations, Solving Equations and Inequalities, Functions, 
Graphing, and Matrices.  Just as in the original study, the contents of final exams during the 
years under investigation were analyzed for concepts tested, number of questions, and number of 
questions per concept. Two instructors participated in this analysis to provide inter-rater 
reliability and determine if there were any significant differences among the years being studied.  
The results suggest that no mean differences exist between the number of questions in each of 
the six categories during the control years and treatment years. In addition, there was not a 
significant difference in the total number of questions on the finals in the control group, AY 
1999 – 2001, (MC = 36.6) and the treatment group AY 2002-17 (MT = 37.2). The results of the 
chi-square test substantiated there were no differences between the groups by content area on the 
final exams (χ2 = 0.198, df = 6, p > .95). The P-Value is 0.99985. The result is not significant at p 
< 0.05. 

Treatment Procedures 
 Beginning in the fall 2002 semester and continuing to the present, the mathematics 
department implemented a coordinated program of support and professional development for its 
GTAs.  Release time was given to a tenure-track faculty member for this assignment.  Also a 
new course, MATH 871 Teaching Mathematics, for one-credit-hour was added and required of 
all GTAs.   
 Prior to the fall semester 2002, GTAs teaching mathematics attended a fall orientation to 
cover the department handbook but did not receive any further training.  Under the new program, 
since the fall semester 2002, graduate students teaching in the mathematics department meet for 
a half day of professional development training before the fall semester begins and then for a one 
hour class each week throughout the semester.  The curriculum for MATH 871 Teaching 
Mathematics was designed specifically to assist GTAs in their role as educators and to address 
the unique professional challenges and limitations they face.  
 The following sections describe the program and procedures of the GTA training model 
used in this study.  They comprise information about what has changed and what has remained 
the same about the treatment from the original study to the current study.  

Treatment that continued from the original study.  
In all treatment years, pre-service training for GTAs in the mathematics department was 

held prior to the start of the fall semester.  During this time GTAs were given their assignments, 
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a day by day schedule of textbook sections to teach along with unit test dates.  They were 
provided with a copy of the textbook and ancillary materials to be used for teaching.  The typical 
semester assignment for full-time GTAs consisted of complete responsibility for two, 3-credit-
hour sections of college algebra.  Both first and second-year GTAs participated in the 
orientation. 
 MATH 871 Teaching Mathematics Course Description. The course was designed to 
promote guidance, direction, and support for GTAs.  From inception, the course goal was to 
encourage excellence in teaching through a program of sharing ideas, concerns, problems, and 
information on an ongoing basis with GTAs in the mathematics department.  No one model was 
followed in course development.  Instead, the aim was to build a unique model that drew from 
the research on best practices in GTA training and effective programs that fit the needs of 
mathematics GTAs at this university.   

All GTAs attended an hour-long class once a week with the GTA supervisor.  During the 
entire time period of the study, the researcher served as the GTA supervisor.  Both new and 
returning GTAs participated in class activities with second-year GTAs acting as mentors for new 
GTAs.   
 
Treatment new to this study. 
 Peer Observations. Peer observations were instituted starting in Fall 2012.  GTAs were 
given opportunities to provide feedback about teaching, not just receive it. It was hypothesized 
that they may learn as much from providing feedback as receiving feedback.   The process 
started with peer conferences.  In this meeting GTAs were encouraged to discuss specific 
behaviors that they were interested in receiving feedback on.  Following the peer observation, a 
second conference allowed students to discuss their feedback and analyses.  Peer observations 
provided an additional learning opportunity for the GTAs, beyond only receiving feedback from 
a supervisor. 
 Journals. During the AY 2003-05 journal entries were required and submitted weekly. 
During the years of the current study, AY 2006-17, GTA’s had a choice of a weekly face-to-face 
conference with the supervisor or a weekly journal submission. Both options were used as a way 
for the GTA supervisor to have continuing dialogue with individual GTAs and as a vehicle for 
GTAs to reflect on their own experiences and growth.  From time to time a specific prompt 
activity was assigned.  Regardless of the means, graduate teaching assistants were encouraged to 
regularly reflect intelligently on the work they were doing. 
 Teacher Noticing. A lesson about Teacher Noticing was added to the content of the 
GTA training course in AY 2014.  GTA’s were assigned research articles to read about this 
relatively new field in education and a GTA class meeting was devoted to discussion and 
question/answer dialogue about Noticing. The goal of introducing these student-centered 
pedagogies was to help GTAs to attend to and respond to student thinking in their classrooms. 
 Portfolios. All GTAs during the treatment years of the original study maintained 
teaching portfolios that documented their accomplishments during the semester. Portfolios 
during the treatment years of the current study were recommended by not required. This change 
was made help alleviate the many demands for their time.  

Results 
 To assess the effectiveness of GTA training and the influence of GTA experience, course 
grades in college algebra were used as the dependent variable in this analysis.  Students who 
finished the course were assigned grades of A, B, C, D, or F by their instructors.  For the purpose 
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of analysis, these grades were assigned numeric values (e.g., an “A” was assigned a value of 4; a 
“B” was assigned a value of 3, etc.). Students who withdrew from the course were assigned a 
grade of W.  Of the 6675 participants, 4826 (73.4%) completed college algebra and 1849 
(26.6%) withdrew from the course.   
 
Table 1: Percentage of students who received each grade in the course broken down by semester. 

AY  Semester    A    B    C     D     F   W 

06 SP 30.4% 15.6% 8.0% 8.0% 6.3% 31.6% 
WF 21.5% 21.5% 16.8% 4.4% 7.7% 27.9% 

07 SP 29.6% 21.3% 19.2% 4.5% 3.8% 21.6% 
WF 24.7% 18.8% 15.3% 9.0% 5.9% 26.4% 

08 SP 40.2% 14.5% 14.1% 3.9% 4.3% 23.0% 
WF 24.2% 23.9% 13.8% 8.0% 3.1% 27.0% 

09 SP 25.0% 17.3% 16.5% 5.0% 6.9% 29.2% 
WF 24.2% 15.9% 13.6% 5.5% 7.1% 33.8% 

10 SP 19.9% 18.8% 10.8% 8.3% 7.2% 35.0% 
WF 18.8% 19.6% 19.0% 9.7% 6.3% 26.7% 

11 SP 22.1% 17.2% 13.1% 4.5% 7.4% 35.7% 
WF 25.4% 20.6% 9.8% 6.0% 5.8% 32.4% 

12 SP 23.5% 20.5% 14.0% 9.2% 5.1% 27.6% 
WF 46.8% 16.4% 8.8% 3.2% 4.5% 20.3% 

13 SP 47.1% 15.8% 12.9% 4.0% 3.7% 16.5% 
WF 30.8% 17.8% 14.9% 5.5% 6.3% 24.6% 

14 SP 25.3% 16.6% 18.4% 3.7% 8.8% 27.2% 
WF 24.1% 22.2% 13.8% 6.8% 4.6% 28.6% 

15 SP 18.5% 19.8% 11.3% 7.2% 7.7% 35.6% 
WF 32.8% 25.5% 12.1% 6.6% 5.3% 17.7% 

16 SP 15.2% 20.6% 15.5% 8.3% 8.3% 32.1% 
WF 34.6% 22.6% 12.1% 4.2% 6.8% 19.7% 

17 SP 31.3% 18.8% 11.6% 5.8% 6.7% 25.9% 
WF 34.2% 22.7% 12.3% 5.1% 6.4% 19.3% 

 

Examination of Grades of Students Who Completed the Course 
 Of the 6675 participants, 4826 (73.4%) completed college algebra with an average grade 
of 2.73 (approximately C+). The course grade data for students who finished the course were 
entered into an analysis of covariance with Math ACT scores as the covariate.  Covariates are 
influential variables that affect the dependent variable but do not interact with any of the other 
factors being tested at the time. Therefore, since prior mathematics knowledge was present 
during the study, using Math ACT scores as a covariate in the analysis allowed for control of its 
influence.  
 The results of the analysis of covariance revealed that there were no main effects or 
interactions involving Year of Teaching.  The only main effect was that of Math ACT, F(1,4826) 
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= 166.72, p < .0001. The results of this analysis indicated that students’ math abilities (MACT) 
explained the variability in course grades rather than the GTAs’ experience.  

Examination of Withdrawals Only 
 Of the 6675 participants in the current study, 1849 (26.6%) withdrew from college 
algebra. In the original study, of the 2,198 participants, 670 (30.5%) withdrew from college 
algebra and for those who withdrew, 60.5% withdrew from classes taught by GTAs who were 
not trained and 39.6% withdrew from classes taught by GTAs who were trained. Upon 
examination of the frequency of withdraws by year of teaching, there were slightly fewer 
withdraws (48.2%) from classes taught by GTAs who had two years of teaching experience than 
had one year of teaching experience (51.8%). This result is in contrast to the finding from the 
original study where the results indicated that GTAs who had been trained and were in their 
second year of teaching had significantly fewer withdraws from their courses. 

Discussion 
A noteworthy finding is the fact that success in lowering the drop rate in the treatment 

group held true for 15 years. Of the 6675 participants in the current study, 1849 (26.6%) 
withdrew from college algebra. In the original study, of the 2198 participants, 670 (30.5%) 
withdrew from college algebra.  

Furthermore, the results of this analysis indicated that students’ math abilities (MACT) 
explained the variability in course grades rather than the GTAs’ experience. This result 
corroborates with the findings in the original study. 

Upon examination of the frequency of withdraws by year of teaching, there were only 
slightly fewer withdraws (48.2%) from classes taught by GTAs who had two years of teaching 
experience than had one year of teaching experience (51.8%). This result is in contrast to the 
finding from the original study where the results indicated that GTAs who had been trained and 
were in their second year of teaching had significantly fewer withdraws from their courses. A 
possible reason for this difference is the new treatments within the GTA professional 
development program. The result that the withdrawal rates are no longer significantly different 
based on the number of years the GTA has been teaching provides evidence that the new 
treatments may be helping to reduce the withdrawal rates starting in their first year of teaching. 

Finally, the pass rates (receiving an A, B, or C in the course) for the students since the 
change in the professional development program for the GTAs are 58.7% on average. This 
average pass rate is higher than that of the national average for college algebra, which is 50% 
(Saxe & Braddy, 2015). So, there is some evidence that shows the students in these college 
algebra courses with GTAs who have had additional support may be doing better in the course 
than the national average. 

With the increase in professional development programs for graduate teaching assistants 
across the nation, large data sets are needed to gain an understanding of the impact the support 
may have on student success. This study provides evidence of the impact a professional 
development program can have on student pass rates in college algebra and adds to the literature 
base on the efficacy of professional development programs.  
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Determining Significant Factors for Relating Beliefs to Lecture  
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When trying to examine instructors’ instructional practices, specifically lecturing, qualitative 
studies have indicated the necessity to consider their beliefs. However, there is a dearth of 
quantitative belief measures specific to instructors of undergraduate mathematics courses. No 
one specific instrument captures the relationship between beliefs and lecturing. This paper, 
therefore, attempts to establish a foundation of significant factors for researchers to consider 
when developing belief measures to predict lecturing. We use pre-existing data from Calculus 
and Abstract Algebra courses to conduct factor analyses and develop composite variables. We 
then use multiple regression to examine composites with significant effects on time spent 
lecturing. Results suggest that beliefs related to a focus on skills and content, knowledge 
facilitation authority, expectations of student success, and the importance of particular concepts 
are of particular importance. 

Keywords: lecture, beliefs, factor analysis, regression 

Within mathematics education research, there has been extensive work focusing on 
improving mathematics instruction. Much of this research has shown that the type of 
instructional strategies instructors employ depends on their teaching philosophy, how they feel 
students should learn the material, along with other factors such as attitudes and content 
knowledge (Mesa, Celis, & Lande, 2014; Remillard, 2005; Weber, 2004; White & Mesa, 2014; 
Wilkins, 2008). Research has shown there is an interaction between content knowledge, 
attitudes, beliefs, and instructional practices (Remillard, 2005; Wilkins, 2008). For example, 
Wilkins (2008) found that content knowledge had a negative effect on both beliefs and 
instructional practice concerning inquiry-based instruction, indicating that teachers with more 
content knowledge had lower beliefs and were less likely to use inquiry-based practices; attitudes 
had a positive effect on beliefs and instructional practices; and beliefs had a positive effect on 
instructional practices. Remillard (2005) also found that the type of curriculum instructors 
implement in the classroom was centered on their teaching beliefs and attitudes (Remillard, 
2005). Similar results have been found in post-secondary settings in undergraduate mathematics 
classrooms (Johnson, Keller, & Fukawa-Connelly, 2017; Mesa et al., 2014; Weber, 2004; White 
& Mesa, 2014). 

By understanding beliefs, researchers are able to gain insight on how to modify instruction. 
Johnson et al. (2017) took this charge and examined instructors’ beliefs and the “nature of 
instruction” to help explain “why there has been little change” (p. 259) concerning instructional 
practices. They found that some instructors identified as lecturers but used more student-centered 
instructional practices and instructors who identified as non-lecturers reported lecturing 
sometimes during class (Johnson et al., 2017). This suggests that an instructor’s instructional 
practices are a complex system made up of both internal and external factors. These factors may 
very well be in conflict with one another, causing the instructor to sacrifice one belief for 
another. This calls for the need of models that can help describe instructors’ beliefs and offer 
more insight into conflicting beliefs. These models can also better explain why instructors may 
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choose certain instructional practices over others. However, this can be a taxing job since beliefs 
are hard to capture in a way that is predictive. As a result, more research is needed to investigate 
instructors’ beliefs to gain better insight for improving instruction. Therefore, the purpose of this 
paper is to use existing data to establish a foundation of important factors for others considering 
developing belief measures. Specifically we ask: what belief factors can be used to predict 
undergraduate mathematics instruction? 

Literature Review 
Background of Beliefs and Teaching Instruments 

We conducted an extensive literature review, searching for literature that focused exclusively 
on quantitative analysis of beliefs and practices in the STEM or higher education field. What we 
found was a dearth of instruments used to capture beliefs regarding teaching. These instruments 
range in disciplines, focusing on general teaching beliefs to more content specific such as 
Science and Statistics. However, none of the instruments we examined were specific to the 
mathematics context. The majority of instruments were general, focusing on teaching style 
preference (Heimlich, 1990), approaches to teaching (Trigwell & Prosser, 2004), or teaching 
self-efficacy (DeChenne, Enochs, & Needham, 2012; Tschannen-Moran & Hoy, 2001; Thadani, 
Breland, & Dewar, 2010). Although some of these instruments were newly developed by the 
researcher (e.g., Heimlich, 1990; Sampson & Grooms, 2013; Trigwell & Prosser, 2004; Zieffler 
et al., 2012), most often these instruments were developed by adopting previous instruments 
(e.g., DeChenne et al., 2012; Justice, Zieffler, & Garfield, 2017; Thadani et al., 2010)   or 
expanding them from the K-12 setting to higher education (e.g., Sunal et al., 2001).  

The theme from the results of these studies showed that beliefs are directly linked to 
instruction, and also are predictors of instructional changes (e.g., Sampson & Grooms, 2013; 
Trigwell & Prosser, 2004; Thadani et al., 2015). Thadani et al. (2015) used four instruments to 
measure instructors’ beliefs: Implicit theories about teaching, Teaching self-efficacy, Implicit 
theories of intelligence, and Beliefs about students' learning needs. They found that an 
instructor’s belief that teaching skills cannot change subsequently hinders their willingness to 
improve (Thadani et al., 2015). Sampson and Grooms (2013), as well as Pelch and McConnell 
(2016), used the Beliefs about Reformed Science Teaching and Learning instrument to 
investigate instructor’s beliefs about science teaching and learning in relation to reformed-based 
teaching strategies. Results from both studies showed that instructors typically fell on a 
continuum, ranging from traditional to reform aligned. They also found that by using those 
beliefs and offering specific training, instructors were able to change beliefs, and that the greatest 
changes occurred on items related to situational classroom factors (Pelch & McConnell, 2016). 
Further examining instructors’ reform-based beliefs and instructional practices, Borrego, Froyd, 
Henderson, Cutler, and Prince (2013) used the Research-Based Instructional Strategies survey 
and found that the instructional practices employed in class aligned with the instructors’ beliefs 
about how students best learn in a limited amount of time. This study identified a “direct link 
between instructor beliefs and classroom activities specific to engineering courses which rely 
heavily on problem-solving” (p. 1468). The researchers also claim that this study provides 
evidence that instructors resistant change due to time constraints. 

One concern regarding all the studies we examined was that none of the instruments used 
were specific to undergraduate mathematics. Although some, such as the STEM GTA-Teaching 
Self-Efficacy Scale (DeChenne et al., 2012), were specific to STEM, the instruments were not 
tailored to the field of mathematics specifically. Research has shown that mathematics is a 
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unique content to teach, as there are many beliefs concerning the teaching and learning of it 
(Johnson et al., 2017; Weber, 2004). For example, Johnson et al. (2017) note that there is a large 
debate over whether lecture or reformed-based pedagogy is best for the teaching and learning of 
mathematics. They also note how it is argued that instructors employ instructional practices 
simply out of habit or because of their beliefs. Due to this debate, there needs to be an instrument 
designed specifically for mathematics that captures instructors’ beliefs and how that might 
predict instruction. 

Building a New Instrument/Model 
Prior research has identified numerous belief factors that may influence instructional 

practices. As was noted above however, very few of the studies we found were specific to 
undergraduate mathematics instruction. Without such research, those attempting to capture 
beliefs as they relate to undergraduate mathematics instruction may face confusion over what 
sets of beliefs to focus on and how to capture them. This concern becomes especially important 
if researchers are trying to see what kinds of beliefs may predict openness to instructional change 
as Johnson, et al. (2017) call for. By knowing what belief factors may relate to instructional 
practices and how to capture them, the mathematics education community can take steps to use 
those beliefs as leverage points to examine, predict, and even change instruction to meet the calls 
for educational reform. The aim of our study then is to provide a baseline for which belief factors 
to focus on in the undergraduate mathematics context and how to capture them quantitatively. 

Method 
This report draws on pre-existing data from the MAA’s 2010-2012 NSF supported study on 

the Characteristics of Successful Programs in College Calculus (CSPCC) and abstract algebra 
(AA) instructor surveys. Sonnert and Sadler (2015) identified numerous teaching practices 
students classified as ‘ambitious teaching’, with many of these paralleling Saxe and Braddy’s 
(2015) definition of active learning. We looked for parallel questions representing instructors’ 
beliefs in such practices in the CSPCC and AA instructor surveys. Further details of the CSPCC 
study can be found in Bressoud, Mesa, and Rasmussen (2015) while details on the AA study can 
be found in Fukawa-Connelly, Johnson, and Keller (2016). 

Survey Items and Factor Analyses 
There were numerous items of interest relating to instructors’ instructional beliefs in the 

CSPCC (16 initial items) and AA surveys (23 initial items). For use in regression analyses, we 
wanted to maximize our degrees of freedom and create a more parsimonious model and thus 
used an exploratory factor analysis to create composite independent variables for each survey 
separately. Numerous models were run with different number of items while eliminating cross-
loaded items. We included 13 and 20 items in our final CSPCC and AA factor analyses 
respectively. The CSPCC data resulted in a four-factor solution (PROMAX rotated) explaining 
54.72% of the variance. The AA data resulted in a five-factor solution (PROMAX rotated) 
explaining 68.22% of the variance. All items had factor loadings above 0.4. Items that loaded 
onto the same factor were standardized, with items that loaded negatively being reverse coded. 
Items were then averaged together to create composite variables representing each factor. The 
factors and included variables are presented below with their factor loadings in parentheses. 

CSPCC data. The variables loading onto the first factor asked teachers to estimate what 
percentage of their students were prepared for the course (.61), and would pass (-.98), fail (.79), 
or withdraw (.79). As such, we felt the factor represented Expectations of student success. The 
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second factor consisted of the questions: 1) From your perspective, when students make 
unsuccessful attempts when solving a Calculus I problems, it is: 0 (a natural part of solving the 
problem) to 5 (an indication of their weakness in mathematics; .63), 2) rate on a scale of 0 
(Strongly Disagree) to 5 (Strongly Agree) the statement Calculus students learn best from 
lectures, provided they are clear and well-organized (.78), and 3) rate on a scale of 0 (Strongly 
Disagree) to 5 (Strongly Agree) the statement Understanding ideas in calculus typically comes 
after achieving procedural fluency (.55). By examining the descriptive statistics for these items 
(means of 2.65, 3.77, and 3.76 respectively), we felt these reflected a focus on achieving 
procedural fluency and covering content before conceptual understanding and thus called the 
composite Focus on skills and content.  

The third factor consisted of the questions: 1) From your perspective, students’ success in 
Calculus I PRIMARILY relies on their ability to: 0 (solve specific kinds of problems) to 5 (make 
connections and form logical arguments; .75), 2) My primary role as a Calculus instructor is to: 
0 (work problems so students know how to do them) to 5 (help students learn to reason through 
problems on their own; .71), and 3) rate on a scale of 0 (Strongly Disagree) to 5 (Strongly Agree) 
the statement In my teaching of Calculus I, I intend to show students how mathematics is 
relevant (.59). We felt these reflected instructors’ beliefs about what conceptions they wanted to 
portray to their students and thus we called the composite Conceptions of mathematics.  

The fourth factor consisted of: 1) From your perspective, in solving Calculus I problems, 
graphing calculators or computers help students to: 0 (understand underlying mathematical 
ideas) to 5 (find answers to problems, -.46), 2) rate on a scale of 0 (Strongly Disagree) to 5 
(Strongly Agree) the statement If I had a choice, I would continue to teach calculus (.68), and 3) 
rate on a scale of 0 (Strongly Disagree) to 5 (Strongly Agree) the statement Familiarity with the 
research literature on how students think about ideas in calculus would be useful for teaching 
(.76). This factor seemed to reflect instructors’ interest in teaching and perceptions of resources 
to aid in their instruction and as such, we call the composite Teaching and Learning Focus. 

AA data. The variables loading onto the first and second factors related to topics teachers 
felt they should: 0 (would not cover), 1 (try to teach), or 2 (always teach). The first factor 
consisted of rings (.84), fields (.82), field extensions (.66), ring isomorphisms (.88), ring 
homomorphisms (.90), and polynomial rings (.86). The second factor consisted of groups and 
subgroups (.69), group isomorphisms (.83), group homomorphisms (.86), quotient groups (.83), 
Lagrange’s theorem (.69), and the fundamental homomorphism theorem (.81). Regardless of 
instructors’ position on these topics, we felt that the loadings of these items together as factors 
represented a focus on fields and rings and a focus on groups, respectively.  

The third factor consisted of the following statements instructors rated on a 4-point scale of -
2 (Disagree) to 2 (Agree): 1) I think lecture is the best way to teach (.63), 2) I think lecture is the 
only way to teach that allows me to cover the necessary content (.62), 3) I think students learn 
better when they struggle with the ideas prior to me explaining the material to them (-.80), and 
4) I think students learn better if I first explain the material to them and then they work to make 
sense of the ideas for themselves (.74). Based on the positive and negative loadings of these 
items, we felt that these questions reflected a focus on who instructors believe should control 
knowledge facilitation and thus was called the composite Knowledge facilitation authority.  

The fourth factor consisted of the following statements instructors rated on a 4-point scale of 
-2 (Disagree) to 2 (Agree): 1) I think that all students can learn advanced mathematics (.94) and 
2) I think all students can learn abstract algebra (.96). We felt these questions reflected 
instructors’ beliefs about students’ learning abilities, paralleling the Expectations of student 
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success factor in the CSPCC data and thus we similarly called the composite Expectations of 
student success. The fifth factor consisted of items asking instructors to rate how influential 
instructors’ experiences as students (.83) and teachers (.83) were on their teaching on a 3-point 
scale of 1 (Not at all) to 3 (Very). These seemed to reflect the personal experiences instructors 
felt impacted their teaching. Thus, we called the composite Personal influences on teaching. 

Regression Analysis 
For the purposes of this study, we were interested in looking for composites with significant 

effects on time spent lecturing (as one measure of teaching practice). The dependent variable for 
our CSPCC analyses had instructors rate on a scale from 0 (Not at all) to 5 (Very often), the 
statement During class time, how frequently did you lecture (mean= 4.20, SD= 1.16). For the AA 
analyses, teachers answered on a scale from 0 (Never) to 4 (75-100%), the question While 
teaching, what is the approximate amount of time per class that you are lecturing (mean= 2.64, 
SD= 1.09). These are categorical dependent variables (with at least five categories), thus we used 
multiple regression. For each data set, the dependent variable of the amount of time spent 
lecturing was regressed on the centered composite independent variables specific to that data set. 

In terms of diagnostic tests, the regression analyses resulted in VIF values close to 1 (Table 
1), indicating that multicollinearity was not an issue. We tested linearity by fitting a Loess line 
on the plots of standardized predicted values against standardized residuals and by sequentially 
entering centered power terms sequentially into separate regression models. We checked 
homoscedasticity by examining the spread of the plots for irregularities. For the CSPCC data, the 
spread of the data suggests homoscedasticity was a reasonable assumption while the Loess line 
and statistically significant quadratic model (F[4, 424] = 2.61, p < .05) suggests linearity may be 
an issue. The spread of the AA data suggests homoscedasticity may be a problematic assumption 
while the curvilinear tests suggest linearity was met. Histograms of residuals and P-P plots 
indicated normality of residuals was satisfied for the AA data but not for the CSPCC data. We 
checked for outliers by plotting centered Leverage values against instructor ID, which indicated 
concerns for the CSPCC data. Taken together, these tests suggest that the results of our 
regression analyses may be inflated for both data sets and other tests may be more appropriate, 
particularly for the CSPCC data. 

Results 
For the CSPCC data, Expectations of student success, Focus on skills and content, 

Conceptions of mathematics, and Teaching and learning focus together accounted for 2.8% of 
the variance in the time spent lecturing and the overall multiple regression was statistically 
significant (F[4, 427] = 3.08, p < .05). For the AA data, Focus on fields and rings, Focus on 
groups, Knowledge facilitation authority, Expectations of student success, and Personal 
influences on teaching together accounted for 37.8% of the variance in the time spent lecturing 
and the overall multiple regression was statistically significant (F[5, 161] = 19.58, p < .05). As 
presented in Table 1, there were statistically significant effects of Focus on skills and content on 
CSPCC instructors’ time spent lecturing (βfocus = .145, t = 2.96, p < .05) as well as statistically 
significant effects of Focus on groups, Knowledge facilitation authority, and Expectations of 
student success on AA instructors’ time spent lecturing (βgroups = .17, t = 2.74, p < .05; βauthority = 
.49, t = 7.32, p < .05; βexpectations = -.15, t = -2.26, p < .05). Thus, the more focused CSPCC 
instructors were on covering content and imparting basic skills first, the more likely they were to 
spend time lecturing. For the AA data, the higher expectations AA instructors had for their 
students, the less likely they were to spend time lecturing. By contrast, the more AA focused on 
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the topic of groups or believed in their role as the driving source for knowledge creation, the 
more likely they were to lecture.  
 

Table 1. Predictors of Time Spent Lecturing  

Variable b SE beta t Significance 
level VIF 

CSPCC data (N=432) 

Constant 4.192 0.056  75.119 0.000  
Expectations of student success -0.117 0.075 -0.075 -1.557 0.120 1.027 
Focus on skills and content 0.247 0.084 0.145 2.957 0.003 1.058 
Conceptions of mathematics -0.033 0.087 -0.019 -0.385 0.700 1.050 
Teaching and learning focus -0.070 0.087 -0.039 -0.809 0.419 1.047 

AA data (N=167) 

Constant 2.569 0.066  39.064 0.000  
Focus on fields and rings 0.155 0.081 0.120 1.900 0.059 1.025 
Focus on groups 0.226 0.082 0.174 2.741 0.007 1.039 
Knowledge facilitation authority 0.710 0.097 0.489 7.317 0.000 1.154 
Expectations of student success -0.166 0.074 -0.149 -2.258 0.025 1.120 
Personal influences on teaching 0.110 0.086 0.081 1.285 0.201 1.020 

Conclusions 
The factors that resulted from our EFA may be useful subscales for future work attempting to 

create surveys of instructors’ beliefs . To maintain brevity, we suggest retaining two to three 
questions per factor. The criterion for choosing items should be based on how strongly the item 
loads onto a given factor. Specifically, items with loadings of the highest absolute value should 
be considered representative of the factor they load onto. Taking the AA data for example, if we 
are to have a subscale on Knowledge facilitation authority and want to retain two items, we 
would retain the questions asking instructors to rate their agreement with the statements: 1) I 
think students learn better when they struggle with the ideas prior to me explaining the material 
to them and 2) I think students learn better if I first explain the material to them and then they 
work to make sense of the ideas for themselves, as these two had the highest loadings (in absolute 
value) of all items loading onto that factor (.80 and .74 respectively). 

Our regression analyses suggest that the beliefs of particular importance are those related to a 
focus on skills and content (before conceptual understanding), knowledge facilitation authority, 
expectations of student success, and the importance of particular concepts. Focusing on these 
factors can help researchers create more succinct belief assessments. We acknowledge that these 
factors are only significant in relation to how much instructors lecture. Other factors may be 
influential in determining other instructional practices and that is an area for future research. 
Another peculiar finding was the difference in explained variance of instructional practices 
between the CSPCC and AA data (with more variance explained for the AA data). This may be a 
result of including items related to topic priority in the AA data but could also result from belief 
factors having different effects based on context (as can be seen in the difference in beta values 
for expectations of student success between both data sets). This notion of beliefs varying by 
context is paralleled in Leatham’s (2006) conception of beliefs. Future research should look into 
how certain belief factors affect instruction differently in different contexts and formulating 
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subconstructs of content specific groupings of concepts (as done with the AA data) which 
instructors rate on instructional priority.  

Our literature review highlighted a dearth of quantitative belief measures specific to 
undergraduate mathematics instruction. With the results on hand, we have provided some 
baseline constructs to measure undergraduate mathematics instructors’ beliefs in relation to time 
spent lecturing and other instruction practices. 
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Instructors' Pedagogical Decisions and Mathematical Meaning-Related Goals 

Ahsan Chowdhury    Brigitte Sanchez Robayo  

Virginia Polytechnic Institute and State University 

There are differing senses of meaning in mathematics education focusing either on mathematical 
understanding or on relevance. Various pedagogical practices exist in mathematics education, 
each with its own goals and associated challenges of implementation though the relationship 
between pedagogical goals and differing senses of meaning has not been explored extensively. 
Using pre-existing survey data on calculus instructors’ pedagogy, we used multiple regression to 
determine the effect of differing pedagogical decisions aligned with the “meaning of” or 
“meaning for” mathematics on instructors’ perceived pressure to cover course content. The 
results of our overall test were statistically significant. In particular, we found instructors’ focus 
on the meaning for mathematics had a statistically significant effect on decreasing instructors’ 
stress to cover material. Implications and further areas of study follow. 

Keywords: Instruction, Mathematical Meaning, Calculus, Instructor Goals, Pedagogy 

Brownell (1947) defines two senses of meaning in mathematics education. The “meaning of 
mathematics” can be thought of as mathematical understandings while the “meaning for 
mathematics” can be thought of as the subject’s usefulness or relevance for non-mathematical 
purposes. Thompson (2013, 2015) highlights the importance of the “meaning of” while Jones 
and Wilkins (2013) identify usefulness (“meaning for”) as a key part in motivating student 
learning. We argue mathematics instructors should thus attend to both senses of meaning. In 
practice, a focus on the ‘meaning of’ may manifest in helping students connect concepts while a 
focus on the ‘meaning for’ may manifest in tying concepts to everyday experiences. 

The senses of meaning instructors adopt relate to broader questions regarding instructors’ 
pedagogical practices. One place this comes up is in the push towards active learning, where 
teaching for conceptual understanding (meaning of) and including applications and modeling 
(meaning for) are included in larger instructional reform efforts (Saxe & Braddy, 2015). 
However, active learning in its various forms poses numerous challenges for teachers such as the 
lack of breadth and depth of mathematical course content, a threated sense of instructor 
autonomy, logistic and planning hurdles, issues of departmental support, having the pedagogical 
knowledge to productively build off student contributions, and difficulty gauging student 
understanding (Carducci, 2014; Cooper, 2014; Donnay, 2014; Gregson, 2007; Johnson, Keller, 
& Fukawa-Connelly, 2017; Johnson & Larsen, 2012; Olitsky, 2015; Rousseau, 2004). Of 
particular note to us was a common thread of pacing and content coverage concerns, which could 
result from issues with lacking necessary pedagogical knowledge and/or gauging student 
understanding (Carducci, 2014; Donnay, 2014; Gregson, 2007; Johnson & Larsen, 2012; Wagner 
et al., 2007). Rousseau (2004) found that the issue of gauging student understanding and pacing 
could even push teachers towards abandoning pedagogical change. These results parallel the 
argument made that lecturing is the best way to cover content (Wu, 1999).  

A question that arises for us then is how do teachers’ struggles with meaning differ according 
to their pedagogical decisions and how does that affect instruction? Teachers’ pressure to cover 
content may be one area affected as was identified in prior studies. Addressing this question 
requires considering how to look at instructors’ pedagogical decisions and beliefs. We posit that 
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the extent to which instructors are motivated to incorporate differing sense of meaning in their 
instruction is related to their beliefs about pedagogical goals. Thus, we focus on a particular set 
of beliefs and goals (related to the extent to which instructors care about the meaning of and/or 
meaning for mathematics in their instruction) and a particular constraint (coverage concerns) to 
look for relationships between beliefs about mathematical meaning, pedagogical decisions, and 
constraints. By doing so, we aim to answer the following research question: how does the effect 
of pedagogical decisions focused on the ‘meaning for’ mathematics compare to the effect of 
pedagogical decisions focused on the ‘meaning of’ mathematics on instructors’ perceived 
pressure to cover course content? By analyzing this question from survey data on instructors’ 
beliefs and practices, we can see if previous qualitative results generalize quantitatively but also 
begin elaborating a framework for mathematical meaning which accounts for pedagogical 
decisions and the diversity of instructors. 
 

Theoretical Framework 
We need to first describe what we mean by certain terms. We take pedagogy to mean the 

methods, assessments and practices instructors adopt to teach, whether these are connected under 
a larger framework or connected simply by the choice of the instructor to place them together in 
their instruction. We take pedagogical decisions and beliefs to include the choices and associated 
beliefs regarding activities or actions the instructor and or students engage in, as determined by 
the instructor to meet instructional goals. This includes decisions and rationale regarding 
curriculum, assessment, classroom activities and discourse, and course content delivery. We take 
instructional goals to mean beliefs about what instruction should emphasize. 

As mentioned earlier, Brownell distinguishes two senses of mathematical meaning. The 
“meaning of” mathematics is synonymous with conceptual understanding in the sense of 
understanding the connections between and within mathematical concepts (Rittle-Johnson, 
Schneider, & Star, 2015; Thompson, 2013, 2015). The “meaning for” mathematics can be 
thought of as understanding mathematics’ significance for some non-mathematical purpose such 
as mathematics’ application to everyday life or simply its capacity to endow skills needed for 
upcoming tests, future coursework, or one’s career. To borrow a notion from motivation 
literature, the ‘meaning for’ focuses on understanding mathematics for separable outcomes while 
the ‘meaning of’ is thought of as understanding mathematics for non-separable outcomes (Ryan 
& Deci, 2000). Thus, according to the definitions given in prior research (Gregson, 2007; 
Hadlock, 2013; Leonard, Napp, & Adeleke, 2009; Rozek, Hyde, Svoboda, Hulleman, & 
Harackiewicz, 2015), pedagogies such as mathematics equity practice, critically relevant 
pedagogy, service learning, and utility-value interventions would fall under focusing on the 
“meaning for” mathematics because of their focus on mathematics to attain some separable 
outcome, like addressing social or community concerns. Inquiry-based learning (Laursen, Hassi, 
Kogan, & Weston, 2014) would fall under teaching approaches focused on the “meaning of” 
mathematics because of its focus on mathematical understanding itself rather than for some 
separable consequence. Problem-based learning however highlights the complicated nature of 
these constructs since an instructor could focus on either meaning (or both) based on how it is 
defined in the literature (Dochy, Segers, Van den Bossche, & Gijbels, 2003).  

Building on this teacher specific nuance, instruction could focus on conceptual understanding 
but still fall under focusing on the “meaning for” if the aim was ultimately for a separable 
outcome. Thus, the senses of meaning adopted by a teacher when they make pedagogical 
decisions is ultimately dependent on their goals. Considering the issues identified between 
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various non-lecture pedagogies and content (Carducci, 2014; Donnay, 2014; Gregson, 2007; 
Johnson & Larsen, 2012; Wagner et al., 2007) and the possibility that the implementation of such 
pedagogies may be manifestations of instructors’ pedagogical goals related to meaning (as 
differentiated above), we suspect that differing senses of meaning instructors focus on could lead 
to content coverage concerns. We further posit that pedagogical decisions in the spirit of these 
non-lecture pedagogies (teaching for conceptual understanding, focusing on application 
problems, etc.) are different forms of ‘ambitious teaching’ (Sonnert & Sadler, 2015) because of 
the attention such practices have garnered in instructional change efforts (Saxe & Braddy, 2015). 

Niss (1996) and Wagner et al. (2007) looked at the goals of mathematics education on 
different levels, ranging from national policy goals (such as promoting democratic values) to 
highly specific, localized goals on one instructional task in a class session. We are looking 
specifically at the goals behind instructors' pedagogical decisions, where we take such goals as 
being directed towards the “meaning of” or “meaning for” mathematics. Since we take 
instructional goals as being determined by what teachers believe they should emphasize 
instructionally, we treat goals as a subset of beliefs. One indication of how meaning may direct 
beliefs is by examining the degree to which one sanctions statements about what they should 
focus on in instruction. Agreeing with a statement on making math relevant by using real world 
examples could demonstrate “meaning for”-oriented goals while agreeing with a statement 
emphasizing that instruction should demonstrate connections between concepts could 
demonstrate “meaning of”-oriented goals.  

Arguing against the notion of inconsistency between beliefs and practice, Speer (2005) points 
out a flawed methodological assumption that beliefs remain constant across contexts. Hoyles 
(1992) proposes an alternate conception of beliefs as situated in which beliefs are dialectically 
constructed products of activity, context, and culture. Beliefs vary by context and as such, 
researchers’ focus on inconsistency is replaced by attention to what factors constrain or scaffold 
teachers in their practices. Leatham (2006) expands this by viewing teachers as sensible and 
beliefs as coherently organized within belief structures. Beliefs can vary on three dimensions. 
Psychological strength describes the relative strength of a belief, ranging from peripheral to 
central. Psychological strength is determined by how connected beliefs are with other beliefs in a 
belief system (an often-unconscious sense-making process). Quasi-logical relationships, the 2rd 
dimension, refers to some beliefs as derivatives of other beliefs (like in an if-then statement in 
the teachers’ mind). The extent to which beliefs cluster in isolation from other beliefs (3rd 
dimension) is determined by context (department culture for example). Individuals can hold 
seemingly contradictory beliefs, but the contextual factor simply makes one belief cluster more 
central in a certain situation. Inconsistencies then are in the eyes of observers who have either 
misunderstood certain beliefs’ implications (second dimension) or failed to account for other 
beliefs becoming more prominent due to context (first and third dimensions).  

Considering the above framework, we hold that teachers’ goals behind their pedagogical 
decisions, and thus the senses of meaning focused on, are situated and vary sensibly according to 
the three factors. In turn, the senses of meaning a teacher focuses on and to what extent are either 
scaffolded or constrained by teachers’ lived reality. Prior research suggests that stress to cover 
content can result from pedagogical decisions. We understand these factors can be reflexively 
related as Chowdhury (2018, February) suggests, but for this study, we are only interested in the 
one-way relationship identified. By analyzing this relationship, we hope to explore the effect of 
instructors’ differing pedagogical decisions and beliefs (related to the ‘meaning of’ and/or 
‘meaning for’ mathematics) on instructors’ perceived pressure to cover course content. 
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Method 

This quantitative study draws on pre-existing data from the MAA’s 2010-2012 NSF 
supported study on the Characteristics of Successful Programs in College Calculus (CSPCC). 
Pre- and post-survey data was collected from a large sample of students, teachers, and calculus 
course coordinators across 213 institutions. The focus of this study was on the calculus teachers’ 
responses. Details on the study can be found in Bressoud, Mesa, and Rasmussen (2015). 

Based on the relationship between pedagogy and stress to cover content in the literature, we 
identified two pre-survey questions representing content coverage pressure. On a scale of 1: (Not 
at all) to 6: (Very often), instructors rated the statements When teaching my Calculus I class, I 
had enough time during class to help students understand difficult ideas (mean= 4.23, SD= 1.25) 
and When teaching my Calculus I class, I felt pressured to go through material quickly to cover 
all the required topics (mean= 2.08, SD= 1.38). Responses on both correlated highly with one 
another (r = -.6, p < .01) and thus a composite representing content coverage pressure was used 
as the dependent variable. This composite was formed by reverse coding responses to having 
time to help students, shifting both variables to start from 0, and averaging.  

In relation to our framework on meaning, there were numerous variables of interest relating 
to pedagogical decisions and instructors’ goals. Regarding pedagogical decisions, Sonnert and 
Sadler (2015) identified numerous teaching practices students identified under the category of 
‘ambitious teaching’. We looked for parallel questions in the instructors’ post-survey responses 
as representatives of pedagogical decisions. Regarding goals, we looked for questions we felt 
corresponded to the meaning of or for mathematics. This resulted in 14 items of interest total. 
However, we wanted to maximize our degrees of freedom and create a more parsimonious model 
and thus we used an exploratory factor analysis to create composite variables. Numerous models 
were run with different numbers of items. We settled on including 8 items in our factor analysis. 
This resulted in a three-factor solution (PROMAX rotated) explaining 38.81 % of the variance. 
All items had factor loadings above 0.4. The first factor retained four items, while the second and 
third retained two items each. The factors and included items are presented in Table 1. 
Composites were created by standardizing items then averaging those that loaded together. 

The items loading into the first factor aligned with Sonnert and Sadler’s ambitious teaching 
factor, so we retained their terminology for the composite. The second factor consisted of 
questions on whether learning mathematics was about solving individual problems or conceptual 
understanding and drawing connections. Based on descriptives favoring the latter perspective for 
individual variables (means ranging from 3.97 to 4.87), we felt that these questions reflected a 
focus on the meaning of mathematics and thus we called the composite Meaning of. The third 
factor consisted of questions related to relevance and application. In our framework, these can be 
seen as separable outcomes and thus we called the composite Meaning of. 
 

Table 1. Results of Factor Analysis of Variables with PROMAX Rotation 

Variables Loading 

Factor 1: Ambitious Teaching (rated on a scale from 1-Not at all to 6-Very often) 

When teaching, I have students work with one another .71 

When teaching, I hold whole class discussions .63 
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When teaching, I have students give presentations .55 

When teaching, I ask students to explain their thinking .52 

Factor 2: Meaning of  

Students’ success depends on ability to: 0-solve specific problems to 5-make 
connections  

.59 

My primary role is to: 0-work problems so students know how to do them to 
5-help students learn to reason through problems on their own 

.59 

Factor 3: Meaning for (low values-strongly disagree/never, high values-strongly 
agree/always) 

I look for application problems to motivate the ideaa .70 

I intend to show how mathematics is relevant .62 

Notes: Items had a 6-point scale response unless otherwise noted. a. Item had a 4-point scale 

 
Analysis 

We were interested in the effect of continuous independent variables and any possible 
interactions between them on a continuous dependent variable. As such, multiple regression was 
the most appropriate method. The composite for perceived stress to cover content was regressed 
on the centered composite independent variables (Meaning of, Meaning for, Ambitious 
Teaching). To test if teaching practices were associated with differing senses of meaning, cross-
product terms (of × for, of × Ambitious Teaching, for × Ambitious Teaching, of × for × 
Ambitious Teaching) were sequentially added in blocks to test for possible interactions.  

In terms of diagnostic tests, the regression analyses resulted in VIF values close to 1, 
indicating that multicollinearity was not an issue. We tested linearity by computing centered 
power terms and sequentially entering them into the regression model and by fitting a Loess line 
on the plot of standardized predicted values against standardized residuals. We checked 
homoscedasticity by examining the spread of the plot for irregularities. The spread of the data 
suggested homoscedasticity was met. The Loess line and lack of statistically significant 
differences from adding power terms indicated linearity was met. A histogram of residuals and 
P-P plot indicated normality of residuals was satisfied. We checked for outliers by plotting 
centered leverage values against instructor ID, which indicated only a few cases of concern. 
  

Results 
The Meaning of, Meaning for, and Ambitious Teaching composites together were statistically 

significant (F[3, 449] = 2.779, p = .041) and accounted for 1.8% of the variance in instructors’ 
perceived pressure to cover course content. The interactions were not significant (ΔR2 = .004, 
F[4, 445] = .446, p = .775). According to Table 2, there was a statistically significant effect of 
focusing on the meaning for mathematics on instructors perceived stress to cover content (β = -
.103, t = -2.077, p < .038). Thus, the more instructors focused on the meaning for mathematics, 
the less likely they were to feel pressured to cover course content.  
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Table 2. Predictors of Instructor Pressure to Cover Content 
Variable b SE beta t Sig. level VIF 

Constant 1.936 0.055   35.314 0.000   
Meaning of 0.079 0.070 0.055 1.140 0.255 1.066 
Meaning for -0.146 0.070 -0.103 -2.077 0.038 1.114 
Ambitious Teaching -0.109 0.080 -0.067 -1.359 0.175 1.115 

 
Discussion 

Our analysis suggests that pedagogical decisions focusing on the ‘meaning for’ mathematics, 
here entailing the application of problems and conveying relevance, scaffold content coverage 
goals. This suggests that when our sample teachers focus on the ‘meaning for’, the notion that 
they must cover everything is diminished perhaps because the psychological strength of teacher's 
beliefs on the significance of mathematics as central creates a filter on content to focus on and 
thus relieves pressure to cover everything.  

This highlights Leatham’s contextual dimension because one important consideration is the 
type of mathematics taught. Some fields, like calculus, may be easier to find real world examples 
to build content off of regardless of what teaching practices instructors enact and thus lead to less 
pressure (refer to the left representation on Figure 1). In Yoshinobu and Jones’ (2012) terms, the 
mathematical content itself becomes the vehicle for developing mathematical thinkers, but here 
thinking is specifically about the ‘meaning for’. A more theoretical course like abstract algebra, 
which tends towards the left most quadrants, may be harder to find applied problems to work 
from and thus instructors may feel pressure to cover content if they are focused on the ‘meaning 
for’ mathematics (trying to shift instructional goals towards the right most quadrants as in the 
right representation in Figure 1). These instructors could then face a question ‘meaning of’ 
focused instructors may have faced in our study (to be addressed below): do they choose to cover 
all content or cut content, and will the former decision shift their ‘meaning for’ focus to a 
peripheral position? By contrast, instructors in abstract algebra focused on the ‘meaning of’ 
could feel less pressure to cover content since the material lends itself to drawing purely 
mathematical connections.  

Related to the contextual clustering and quasi-logical dimensions is what instructors consider 
an application. A physics-based mathematics problem may be easy to situate in calculus. A 
social justice problem however may be harder to accommodate in such a context and could thus 
anticipate concerns. The data we drew on did not consider what the implications of ‘application’ 
and ‘significance’ entailed. Future studies should investigate these nuances.  

 

 
Figure 1. Mathematics and ‘meaning for’ focused instructors relative to meaning. The horizontal and vertical 
axes depict the ‘meaning for’ and ‘meaning of’ respectively. ‘Meaning for’ focused instructors may have real 
world problems to draw on in Calculus. Abstract algebra may have less accessible applied problems and thus 

‘meaning for’ focused instructors may have to go out of their way to meet instructional aims. 
 

22nd Annual Conference on Research in Undergraduate Mathematics Education 134



Another finding possibly related to the quasi-logical and psychological strength dimensions 
was that neither ambitious teaching nor a focus on the ‘meaning of’ affects instructors’ perceived 
pressure to cover course content. Johnson, Ellis, and Rasmussen (2016) found that ambitious 
teaching practices did not conflict with the centrality of content coverage goals. However, 
'meaning of'-focused instructors may be faced with challenges regarding the content learned. Do 
they, the instructor, choose to cover everything or not? The former choice could lead to beliefs 
prioritizing content coverage and even shift their ‘meaning of’ focus to a more peripheral 
position while imparting procedures becomes central. The latter choice may curtail such 
concerns and thus scaffold teachers’ ‘meaning of’ focus. This decision could then have quasi-
logical implications regarding the roles teachers assign to themselves and their students. Our 
variables did not capture this distinction however. This may explain the lack of significance 
associated with a ‘meaning of’ focus and any subsequent interactions with ambitious teaching 
since we may have been catching the effects of both decisions.  

The previous analyses assumed that both foci (‘meaning of’ and ‘meaning for’) are causes of 
content coverage pressure due to prior research. Our statistical results may suggest however that 
the differing sense of meaning act on different concerns or factors. Future studies should explore 
what factors besides content coverage a focus on the ‘meaning of’ may affect, and if it does 
affect content coverage, exploring the distinction between instructors who choose to cover 
everything and those who do not. Answers to the various questions raised can hopefully give 
insight into how mathematical meanings affect pedagogical decisions.  

 
Conclusions 

This study compared the effects of pedagogical decisions aligned with differing senses of 
meaning on instructors’ perceived pressure to cover content. Our analyses suggest instructors’ 
focus on the ‘meaning for’ could lead to less pressure to cover content whereas a focus on the 
‘meaning of’ did not affect pressure. Our factor analysis suggests that the ‘meaning of’ 
mathematics is a separate construct from the ‘meaning for’ mathematics, but no other items 
loaded onto either. As a result, we do not have information on how ‘meaning of’ focused 
instructors responded to content coverage pressures nor what kinds of applications ‘meaning for’ 
focused instructors had in mind. We do know our results are specific to calculus instruction, a 
course which already serves as a service course for many STEM majors. It may be then that 
‘meaning for’ focused instructors experienced less pressure because the psychological strength 
of such a focus served as a productive filter of instructional attention and thus scaffolded content 
coverage goals. This may not hold in other mathematics courses and future research should 
investigate possible differences and other influencing factors.  

As a parting note, the mathematics education community has often focused on ‘meaning’ or 
‘meaningful’ in accordance with Brownell’s “meaning of” sense (Brownell, 1947; Thompson, 
2013, 2015; Wawro, Sweeney, & Rabin, 2011, p. 17; Weber & Alcock, 2004, p. 227). Rousseau 
(2004) found that content coverage pressure could lead instructors to abandon pedagogical 
change. Our results may suggest that the reverse situation is worth exploring: if instructors feel 
less pressure to cover content as a result of focusing on the “meaning for” mathematics, would 
they be more receptive to pedagogical innovations? It may be worth the mathematics education 
community’s time to devote more attention to the “meaning for” mathematics as a possible 
leverage point in getting instructors on board with pedagogical change initiatives. 
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Monster-barring as a Catalyst for Connecting Secondary Algebra to Abstract Algebra 
 

John Paul Cook 
Oklahoma State University 

 
This proposal reports on a teaching experiment in which a pair of prospective secondary 
mathematics teachers leverage their knowledge of secondary algebra in order to develop 
effective understandings of the concepts of zero-divisors and the zero-product property (ZPP) 
in abstract algebra. A critical step in the learning trajectory involved the outright rejection of 
the legitimacy of zero-divisors as counterexamples to the ZPP, an activity known as monster-
barring (Lakatos, 1976; Larsen & Zandieh, 2008). This monster-barring activity was then 
productively repurposed as a meaningful way for the students to distinguish between types of 
abstract algebraic structures (namely, rings that are integral domains vs. rings that are 
not).  The examples of student activity in this teaching experiment emphasize the importance 
of identifying, attempting to understand, and leveraging student thinking, even when it 
initially appears to be counterproductive.  
 
Keywords: Teaching experiment, Zero-product property, Monster-barring  
 

Introduction 
Abstract algebra is seen as an important course in the mathematical preparation of 

secondary teachers, largely because of its potential to enable students to view the familiar 
content of secondary algebra through a more advanced lens. For example, it is recommended 
that prospective teachers come to regard the secondary algebra that they will be teaching as 
“the algebra of rings and fields” (CBMS, 2012, p. 59). Thus, in light of a significant body of 
literature reporting that students struggle to view secondary content from such an advanced 
persepective (e.g., Wasserman, 2016; Wasserman et al., in press; Zazkis & Leikin, 2010), a 
productive avenue of insight is to investigate student thinking about the algebraic properties 
that characterize such fundamental structures as rings, integral domains, and fields. To this 
end, the research question that motivated this study was: how might prospective secondary 
teachers preparing to take abstract algebra be able to adapt their existing understandings of an 
algebraic property to be effective in abstract algebra? 

To answer this question, I conducted a teaching experiment (Steffe & Thompson, 
2000) with a pair of prospective teachers preparing to take an introductory course in abstract 
algebra. The purpose of the teaching experiment was to investigate how prospective teachers 
might “assimilate their understanding of secondary mathematics with advanced mathematics” 
(Wasserman, 2017, p. 199) by focusing on: (i) student thinking related to the zero-product 
property (ZPP), a tool for solving equations in secondary algebra and the definitive character-
istic of integral domains in abstract algebra, and (ii) how such thinking might be leveraged to 
enable students to develop an effective understanding of the ZPP in abstract algebra.    

 
Literature and Theoretical Framing 

With respect to my research question, I employed Thompson’s (2008) tools for con-
ceptual analysis in order to describe the characteristics of productive understandings of the 
ZPP in abstract algebra. To this end, a way of understanding is a meaning or conception that 
a student has for a particular mathematical idea (Harel, 1998). A way of understanding might 
include a system of strategies, analogies, informal descriptions, and examples and non-exam-
ples. Harel (1998) proposed that a student holds an effective way of understanding a mathe-
matical idea if, in addition to retaining that way of understanding over time, she is able to: 

§ Criterion I: reformulate and articulate it in her own words,  
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§ Criterion II: think about it in a general way, and 
§ Criterion III: coordinate it with her ways of understanding other ideas.  

These criteria provide an observable way to determine if a student holds an effective way of 
understanding, but it remains unclear exactly what these criteria mean for zero-divisors and 
the ZPP in an abstract algebra setting. While criterion I – the student’s ability to formulate the 
concept in her own words – is relatively straightforward, in order to operationalize Harel’s 
criteria it is necessary to specify what it means for a student to think about zero-divisors and 
the ZPP in a general way (criterion II), and also to incorporate her thinking about other con-
cepts (criterion III).  

In order to operationalize1 criterion II – what it means to think about a concept in a 
general way – I adopted Alcock and Simpson’s (2011) perspective that classification of ex-
amples is a fundamental mathematical task. Indeed, a fundamental task for introductory ab-
stract algebra students is to determine if a new example structure is an integral domain, which 
essentially amounts to determining whether the structure contains zero-divisors. Though the 
ability to consistently classify examples is rarely the final objective, it can be a useful oppor-
tunity for students to gain some initial experience with the underlying concept (e.g. Ross & 
Makin, 1999). Particularly, students with a way of understanding that is not fully developed 
will probably be unable to use it to consistently classify examples (e.g. Davis & Vinner, 
1986). Thus, I used the ability to consistently classify algebraic structures on the basis of a 
particular property as evidence that a student was thinking about that property in a general 
way.   

 
Methods 

I adopted the teaching experiment methodology (Steffe & Thompson, 2000) as a 
means of exploring and refining the conceptual analysis – that is, the characterization of an 
effective way of understanding the ZPP and my hypothesis about how students might come 
to achieve such a way of understanding.  I conducted the teaching experiment reported here 
with two undergraduate students, Brian and Julie (both pseudonyms), who were both begin-
ning the first semester of their junior years at a small, public liberal arts college as mathemat-
ics education majors and prospective secondary mathematics teachers. Both had completed a 
course in linear algebra (both earning B’s) but had not yet taken an introduction to proof 
course. This was typical for mathematics education majors at this particular institution, who 
instead were required to take an ‘abstract algebra for future secondary teachers’ course that 
focused more on the relevance of abstract algebra to secondary algebra than on the rigors of 
proof.  Both Brian and Julie were preparing to begin this course when they participated in this 
study.  

The teaching experiment consisted of 4 sessions lasting between 75 and 90 minutes 
each; I served as the teacher-researcher for all sessions. Each session was recorded with 
LiveScribe pen technology, which records the students’ pen strokes with synchronized audio 
(called a pencast). I constructed models of Brian and Julie’s ways of understanding using on-
going and retrospective analysis techniques (Steffe & Thompson, 2000). The instructional 
tasks of the teaching experiment centered on solving equations, a mathematical activity that is 
familiar to students from school algebra that can serve as a useful means of gaining insight 
into the algebraic structures – like groups (e.g. Wasserman, 2014) and rings (e.g. Cook, 2014) 
– that form the foundation of abstract algebra.  

 

                                                   
1 Here I will only explicate criterion II, as the excerpts of student activity relevant to criterion III were trimmed to comply with space con-
straints. 
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Results 
Though it is beyond the scope of this brief proposal to comprehensively document the 

students’ entire learning trajectories, here I will present and analyze the key episode of the 
teaching experiment in which Brian’s outright rejection (i.e. monster-barring – see Lakatos, 
1976; Larsen & Zandieh, 2008) of zero-divisors was repurposed in order to classify algebraic 
structures in a way consistent with how experts distinguish between integral domains and 
rings that are not integral domains. 

 
Monster-Barring Zero-divisors in ℤ"# 

At this point in the teaching experiment, Brian and Julie had correctly solved several 
equations in ℝ, including 4& = 0, 4 & − 5 = 0, and & + 2 & + 3 = 0.  I encouraged 
them to solve the same equations in ℤ/0, hoping that they would notice the presence of multi-
ple solutions and ultimately identify the failure of the ZPP as the cause.  But, just as in ℝ, 
they both asserted that & = 0 is the only solution to 4& = 0 and & = 5 is the only solution to 
4(& − 5) = 0 in ℤ/0, with Brian specifically mentioning that “the only way for 4 times a 
number to equal 0 is by multiplying by 0.” Similarly, Julie’s solution to solving (& + 2)(& +
3) = 0 in ℤ/0	employed what appeared to be the ZPP and proceeded almost identically to her 
response to the same equation in ℝ, the only difference being that her solutions were & = 9 
and & = 10 (instead of & = −2 and & = −3).  Brian’s response made it clear that he also did 
not detect any differences between ℝ and ℤ/0: 

 
Brian:  Uh … what was the point of that?   

 Researcher: What was the point of what? 
 Brian:  That is literally the exact same as normal math.   
 Researcher: OK, so … [laughs].  OK, so I want to break this down.  What is, what  

is that?   
What are you … what is the same as normal math? 

 Brian:  The way she solved it with ℤ/0 is the exact same way you solve that in  
normal factoring.   
 

Simpson and Stehlikova (2006) proposed that, in cases in which students struggle to identify 
critical aspects of an algebraic structure for themselves, instructors should “explicitly guide 
attention to, first, those aspects of the structure which will be the basis of later abstraction” 
(p. 368). As my efforts to guide their attention to zero-divisors implicitly via task design were 
unsuccessful, I decided to heed these recommendations and explicitly point out an instance of 
zero-divisors. Specifically, referring to the task in which Brian and Julie had proposed that 
& = 5 was the only solution to 4(& − 5) = 0 in ℤ/0, I asked them about the possibility that 
& − 5 = 3 (see the excerpt below) so that they might recognize that 4 & − 5 = 4 ⋅ 3 = 0.  I 
phrased my inquiry somewhat unconventionally in terms of the element & − 5 (as opposed to 
simply offering & = 8 as an additional solution) because I wanted to maintain focus on the 
equation’s product structure and, potentially, the ZPP. Julie immediately realized (and ac-
cepted) that they had overlooked such cases, remarking that she had stopped looking for solu-
tions after identifying & = 5 because she had only expected one solution. Brian, on the other 
hand, rejected the possibility of additional solutions: 
 

Researcher: What do you think, Brian, you don’t look, you’ve got a skeptical look on 
your face.   

 Brian:  I still think that this [motions to 4 ⋅ 0 = 0] is 0, right, but this … 
 Researcher: So, can you say what you’re pointing to right now? 
 Brian:  The 4, um, as long as & = 5, then that’s 0, and I think that’s the only way  
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to 0. This is some type of convoluted plan or a scheme you’ve come up with.  
There’s no way that this is a 0. 
 

Brian’s outright rejection of zero-divisors surprised me – I had predicted that he would react 
like Julie and reluctantly concede that he had overlooked several solutions (which would then 
have been an opportunity to encourage them to revisit their rule and whether or not it holds in 
ℤ/0). Instead, however, I decided to explore Brian’s reasons for rejecting (the additional solu-
tions created by) zero-divisors. My first conjecture was that perhaps the clock arithmetic met-
aphor from the initial task that introduced ℤ/0 was influencing Brian’s thinking. Perhaps, for 
example, he viewed 4 ⋅ 3 as 12, and, as a result, did not identify 12 with 0.   
 
Monster-Barring Zero-divisors in 8#(ℝ) 

To test this conjecture, I shifted to another example structure, thinking that, if Brian 
raised no objection to zero-divisors in the new context, then I could conclude that the nature 
of his previous objection was context-specific to ℤ/0. If, however, he maintained his objec-
tions, this would indicate that he was potentially objecting to idea of zero-divisors altogether. 
I chose 90 ℝ  as the new example structure because it contains zero-divisors, and it would 
have been familiar to Brian from linear algebra, thus leaving him with fewer reasons to doubt 
its legitimacy2. I asked if their rule held in 90 ℝ , and Julie, who seemed relatively unper-
turbed by the presence and effects of zero-divisors in ℤ/0, drew an analogy with ℤ/0 and 
seemed to accept the possibility of such elements in 90 ℝ  (though she was unable to iden-
tify any at first), remarking that “when I look back ... there are some other ways to get 0 with-
out multiplying by 0, so I think that maybe there could be a way to multiply two matrices so 
that you can get the zero matrix.” Brian, on the other hand, remained steadfast in his apparent 
belief that the ZPP was universally inviolable, and responded before even trying to produce a 
counterexample that “in order to get a zero matrix, you have to multiply by 0.”  I responded 
by presenting them with a pair of zero-divisors – specifically, 1 0

0 0  and 0 0
0 1 . Brian, after 

multiplying the two matrices together to obtain the zero matrix, again stood by his original 
assertion:  

 
Brian:  I don’t understand how this example … can count.  [sighs] 

 Researcher: So why, why wouldn’t it count? 
Brian: Because you’re still … you still have zeros here. Like you literally just added 

a 1 somewhere, and said, here you go! It works! 
Researcher: OK, um, when you said ‘zeros here,’ can … unfortunately, the Livescribe pen 

can’t, uh, can’t tell us which ones you’re pointing to.   
Brian: OK … these ones [motions to and marks the zeros in 1 0

0 0  and 0 0
0 1 ].  So 

there are zeros involved.   
 Researcher: There are zeros involved.   
 Brian:  Yes, so I don’t think this should, this should count as an example that  

we can use.  I, I just don’t believe that, that this is OK.   
 

Because the nature of Brian’s objection in this case was that “there are still zeros involved,” I 
responded by presenting him with a zero-divisor pair that did not involve any 0 entries: 
1 2
3 6  and 2 2

−1 −1 . This time, after verifying for himself that the product of these two 

                                                   
2 It is not completely inconceivable that Brian viewed ℤ/0 as a contrivance that I created purely for the purposes 
of this teaching experiment. There would be no such concerns with 90 ℝ .   
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matrices was indeed the zero matrix, he maintained his skepticism, this time on the grounds 
that 0 was not involved: 
 

Brian: Um, I’m still skeptical because I still think you need zeros to get zeros, and 
… you’re not multiplying ; times, er … you’re not multiplying ; and < 
together to get 0, um, because ; and < have to be 0.   

 
Brian’s refusal to accept zero-divisors in both ℤ/0 and 90 ℝ  suggests that his reasons for 
doing so were not context-specific and that he was indeed objecting to counterexamples to 
the ZPP in a more general way.   

Brian’s rejection of zero-divisors across algebraic contexts is an example of monster-
barring. In his seminal text Proofs and Refutations, Lakatos (1976) defined monster-barring 
as the outright rejection of a counterexample on the grounds that it is “a pathological case” 
(p. 14). Similarly, Larsen and Zandieh (2008), who repurposed Lakatos’s methods for mathe-
matical discovery as design heuristics for RME, characterized monster-barring as “any re-
sponse in which the counterexample is rejected on the grounds that it is not a true instance of 
the relevant concept” (p. 208). This includes cases in which students summarily reject a coun-
terexample without an apparent reason. Indeed, several of Brian’s comments support the as-
sertion that he viewed zero-divisors as pathological and, as a result, he refused to consider 
them as counterexamples to the ZPP.   

Although monster-barring might, at first, seem to be counterproductive and in need of 
correction via direct instruction, Lakatos (1976) suggested there was potential for such activ-
ity to be productively repurposed, commenting that mathematical ideas “are frequently pro-
posed and argued about when counterexamples emerge” (p. 16). Accordingly, Larsen and 
Zandieh (2008) proposed that having students consider and render judgments about the valid-
ity of proposed counterexamples and underlying definitions is a form of informal mathemati-
cal thinking that can be leveraged to support the development of more formal mathematical 
concepts.   
 
Leveraging Monster-barring activity to sort algebraic structures 

During this new line of inquiry, I asked Brian to identify exactly which products he 
objected to in the multiplication table for ℤ/0. He and Julie responded by turning to their mul-
tiplication table and circling entries.   

 
Brian: So 6 times 2, 6 times 4 … 

 Julie:  6 times 6, 6 times 8, 6 times 10.    
 Researcher: So you’re just going down … 

Brian: We’re just finding the places that … it doesn’t look like a 0 needs to be there.  
Like it’s awkward, like it shouldn’t be on the multiplication table. So, 
numbers that multiply … don’t look like they multiply together would equal 
0, we’ll find they do.   

Julie: 6 times 4, there’s a 0.   
Researcher: OK. 
Julie:  So, like, the same thing with, like, 8 times 3. 
Researcher: And that’s, so, Brian, that’s what you’re calling an awkward … 
Brian:  Yes.   
Researcher: Like zero showing up in an awkward place? 
Brian:  Yes. 
Researcher: Where, where does … what are the non-awkward appearances of 0? 
Brian: The places where 0, the top row and the first column in the table show that 

every one of those numbers is multiplied by 0 to get 0. Those are the normal 
ways … to get zero.   
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Researcher: Are there, so are there any normal ways that are not in the first row or the 
first column? 

Brian:  No. 
 

This was an important exchange for several reasons. First, Brian used the phrase “awkward 
ways to make zero” to refer to combinations of elements in which “it doesn’t look like a zero 
needs to be there ... numbers that ... don’t look like they multiply together would equal 0.” 
Similarly, “normal ways to get zero” are those involving multiplication by 0. This mirrors the 
distinction between the ZPP (which is equivalent to the absence of zero-divisors in a ring) 
and its converse (which always holds in a ring). Second, Julie, who was relatively unper-
turbed by zero-divisors, was able to quickly operationalize Brian’s distinction, as evidenced 
by her immediate engagement in the task. I interpreted this as a sign that Brian’s criteria 
could be a meaningful way for Brian (and even Julie) to engage with zero-divisors and use 
them to make distinctions between algebraic structures. This hypothesis shaped my instruc-
tional decisions and analysis in the remaining sessions of the teaching experiment, which in-
volved Brian using his ‘awkward’ distinction as a means of distinguishing between structures 
with and without zero-divisors.  

To further elicit Brian and Julie’s thinking about awkward and normal ways to make 
zero, I designed classification tasks that prompted them to decide if a given structure behaved 
more like ℝ or more like ℤ/0 (as they had already concluded that ℝ contains no awkward 
ways to make zero, unlike ℤ/0). The first structures they considered were ℤ/0 and 90 ℝ , 
both of which they had worked with earlier in the teaching experiment. Brian immediately 
responded that 90 ℝ  should be classified as “more like ℤ/0.” 

 
Brian:  Definitely ℤ/0. 
Researcher: Why? What makes you so sure? 
Brian: Well, earlier we discussed that ℤ/0 has some awkward ways to make zero 

and we also talked earlier that the matrices have awkward ways to make zero. 
Real numbers don't have awkward ways to make zero. So they share that 
comparison. 

Julie: That does make a little bit more sense because I guess in ℤ/0 three times four 
is zero. So that would be an awkward way to make zero. You would have to 
multiply by zero in [the] real [numbers]. 

 
Brian’s classification of 90 ℝ  as “more like ℤ/0” suggested that this adaptation to his way 
of understanding the ZPP might also be generalizable to other contexts. Brian’s statements 
that “ℤ/0 has some awkward ways to make zero” and “the real numbers don’t have awkward 
ways to make zero” are comparable to the more conventional “ℤ/0 contains zero-divisors” 
and “ℝ does not contain zero-divisors.” Notably, it is not difficult to find superficial similari-
ties between 90 ℝ  and ℝ: both are uncountably infinite and, moreover, 90 ℝ  can be 
viewed as having been constructed from ℝ. The use of Brian’s characterization of zero-divi-
sors seemed to supersede such considerations.   

Up to this point, Brian had only applied this way of understanding to ℤ/0 and 90 ℝ , 
the contexts from which it had emerged in his reasoning, both of which contain zero-divisors. 
Subsequently, I asked Brian and Julie to classify ℤ=, +=,⋅= , a structure that, based upon 
purely superficial characteristics, might be classified as more similar to ℤ/0. However, ℤ= 
contains no zero-divisors and is thus more similar in this regard to ℝ. Initially, both Brian and 
Julie hypothesized that ℤ= was more similar to ℤ/0 and 90 ℝ  because, Brian predicted, 
“they’re [probably] awkward ways to make 0 for ℤ= as well.” As they attempted to justify 
this conjecture by constructing the operation tables, however, they changed their minds: 
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Julie: That is more like the real numbers, actually. The only way we ended up getting zero 
is multiplying by zero. And so that would be more like the real numbers, because in 
ℤ/0 we could do awkward ways like three times four and get zero. But in the real 
numbers we have to multiply by zero, and ℤ= also, to get zero. 

Researcher: Do you agree, Brian? 
Brian:  I would say it's like the real numbers, yes, after drawing the table out. 
Researcher: And what about the table changed your mind? 
Brian: Looking over, there are no other zeros where other numbers should be, except for 

where zero is multiplied by another number. 
Researcher: Yeah. I was gonna ask you about that. So I see zeros in the first row and the first 

column here. Are those not awkward? 
Brian: No. Those are normal ways to get zero. Multiply by zero.  
  

In the above exchange, both students indicated awareness that the ‘normal’ ways to get zero 
are the only such ways – for example, Julie mentioned that “we have to multiply by zero … 
to get zero” and Brian noticed that “there are no other zeros where other numbers should be.” 
This is notable because it demonstrates that both Brian and Julie were able to operationalize 
the awkward/normal distinction to identify a structure without zero-divisors. 
 

Conclusion 
This project addresses the issue that prospective teachers do not see the relevance of 

their abstract algebra coursework to the secondary mathematics they will be teaching. In re-
sponse, guided by the tools of conceptual analysis (Thompson, 2008), I conducted a teaching 
experiment (Steffe and Thompson, 2000) that investigated how students might be able to 
adapt their ways of understanding familiar properties from secondary algebra to be effective 
in abstract algebra. Focusing specifically on the zero-product property (ZPP), my primary re-
search question was: How might beginning abstract algebra students be able to adapt their ex-
isting understandings of the ZPP to be effective in abstract algebra?  Though I have not pre-
sented the learning trajectory in full here, I did describe and analyze its key component:  the 
repurposing of Brian’s monster-barring of zero-divisors.   

I believe this study has some implications for thinking about pedagogy in mathemat-
ics teaching more broadly. Namely, it provides an example for how students’ experiences, 
even if they seem counterproductive and irrelevant at first, can be leveraged effectively to ad-
vance their mathematical thinking in productive ways. I see this as a more specific case of a 
broader phenomenon – an approach to teaching that builds on students’ thinking. Much of the 
mathematics education literature advocates for such an approach. In fact, these findings were 
brought to light by applying Steffe and Thompson’s (2000) methodological principle that re-
searchers – and, indeed, teachers – should assume that students’ behavior is rational and that 
there is great value in attempting to understand and build upon it. This study adhered to this 
principle by using Brian’s thinking as he engaged with the notion of a zero-divisor. However, 
even more so, this study indicates that such an approach is possible even when a students’ 
thinking initially appears to be counterproductive.  This suggests two things to me about in-
struction in abstract algebra for an audience of secondary teachers. First, abstract algebra in-
struction can model good pedagogical practices. As was done in this study, using student 
thinking to develop abstract algebra ideas models good pedagogy. For secondary teachers, 
learning mathematics in ways that mirror good teaching contributes to their development as 
teachers. Second, not only can we model good pedagogical practices as abstract algebra in-
structors, we can also be explicit about this modeling. That is, as instructors, we can draw at-
tention to the ways that we are building on students’ thinking in our own classrooms. And, as 
evident from this study, building on student thinking is possible even in extreme cases, when 
their ideas appears to be unproductive. 
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How do Transition to Proof Textbooks Relate Logic, Proof Techniques, and Sets?  
 

John Paul Cook                                Paul Dawkins                                Dov Zazkis 
Oklahoma State University          Northern Illinois University          Arizona State University 

 
Many mathematics departments have transition to proof (TTP) courses, which prepare 
undergraduate students for proof-oriented mathematics. Here we discuss how common TTP 
textbooks treat three topics ubiquitous to such courses: logic, proof techniques and sets. We 
show that these texts tend to overlook the rich connections sets have to proof techniques and 
logic. Recent research has shown that student thinking about sets is propitious to novice 
students’ ability to reason about logic and construct valid arguments. We suggest several key 
connections TTP courses can leverage to better take advantage of their unit(s) on sets. 
 
Keywords:  transition to proof, textbook analysis, logic 

 
Introduction 

Over the past few decades, many mathematics departments have recognized the need to help 
students through two major undergraduate transitions: the transition to college mathematics and 
the transition to proof-oriented mathematics.  A recent survey found that the majority of 
mathematics departments at research universities have attempted to address the latter by creating 
‘transition to proof’ courses specifically aimed at helping students navigate the challenges of 
proof-oriented mathematics (David & Zazkis, 2017).  The content of such transition to proof 
(TTP) courses can be quite diverse, but they often include a number of topics that are necessary – 
though perhaps not sufficient – for learning how to read and write proofs in later courses. 
Specifically, such courses usually address mathematical logic, sets, and basic proof techniques. 
We consider these topics necessary but not sufficient because understanding them will not 
guarantee success in later courses, but violating logical laws, misusing set structures, or using 
invalid proof techniques will almost certainly undermine later success. Mathematical logic, sets, 
and basic proof techniques are ubiquitous amongst transition to proof courses (David & Zazkis, 
2017), and thus we expect and proof-oriented course to draw upon ideas from each of these 
domains.  Each of these topics also corresponds to an entire field of mathematics – formal logic, 
set theory, proof theory – so that any one topic could fill an entire course.  Instructors of such 
courses must therefore make careful pedagogical choices about what and how much to introduce 
from each of these domains.  

Little is known, however, about the results of these choices – that is, how logic, sets, and 
proof techniques are presented in transition to proof courses.  To gain insight into this issue, we 
analyzed how these three topics are covered and connected in commonly used transition to proof 
(TTP) textbooks. Our inquiry was guided by the following research questions: How are basic 
ideas of logic, sets, and proof techniques introduced and explained? How do TTP books connect 
these domains? In what order do they appear? 

Literature and Theoretical Perspective 
In this section we consult relevant literature on student thinking about sets, logic, and proof 

techniques in order to present the beginnings of a conceptual analysis (Thompson, 2008), a 
theoretical model that describes “ways of knowing that might be propitious for students’ 
mathematical learning” (p. 46).  We operationalized our conceptual analysis as a lens through 
which to investigate and compare the presentation of these topics amongst our textbook sample.  
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We chose to focus on these three topics because, in addition to their ubiquity in TTP courses 
(David & Zazkis, 2017), they each provide some necessary contribution to understanding proof-
oriented mathematics. Furthermore, there are common elements of mathematical text that 
simultaneously draw upon all three topics. 

Recent studies on student thinking about logic (Dawkins, 2017; Dawkins & Cook, 2017; Hub 
& Dawkins, 2018) have investigated how students read mathematical statements prior to being 
taught formal logic; the students’ intuitive approaches and interpretations in these studies were 
compared to the normative ways of interpreting such language.  One of the key findings of this 
series of studies was that students who connected mathematical categories (e.g. “rectangle,” 
“even,” “divisible by 4”) to the sets of objects in the category were able to adopt expert ways of 
reading mathematical language much faster than their peers (who focused on examples or 
properties). They were also better at forming valid arguments for why quantified statements were 
true. Moreover, building the truth table for logical connectives was insufficient for students to 
successfully build strategies that mirrored Venn diagrams unless they were conversant in 
thinking about sets. In other words, adding quantifiers posed a significant challenge to students’ 
ability to verify and falsify statements and to formalize their ideas about logic, even when they 
understood the truth table for a connective. Based upon these studies, we contend that being able 
to relate set ideas to logic and proof techniques is key – that is, thinking about sets is propitious 
to novice students’ ability to reason about logic and construct valid arguments.  

Consider the following example of how the ability to move flexibly amongst understandings 
that center on logic, sets, and proof techniques might afford different insights in the context of 
interpreting the following conditional statement (which, conceptually, amounts to stating that 
divisibility is a transitive relation): “Let !, !, and ! be integers.  If !|! and !|!, then !|!.” 

1. Logically, we might assert that the theorem is true because we cannot find three numbers 
such that !|!, !|!, and ! ∤ !. In other words there does not exist a case that makes the 
antecedent true and the consequent false.  

2. Set-wise, conditionals always connect to subset relations. In this case, the theorem can be 
restated as { !, !, ! ∈ ℤ!:!|! and ! ! ⊆ { !, !, ! ∈ ℤ!:!|!}. If we pick any triplet in 
the first set, we know that it will necessarily be in the second set.  

3. In terms of proof techniques, we might say that the property !|! can be inferred from the 
properties !|! and !|!. Alternatively, ! ∤ ! or ! ∤ ! might be provable from ! ∤ !. Lastly, 
it may be that !|!, !|!, and ! ∤ ! are inconsistent.  

While these may seem like subtle distinctions, they have the potential to provide potentially 
valuable information.  The first view discusses truth-values or what kinds of triplets of integers 
exist. The second view emphasizes how the predicates in the theorem range over all of ℤ! and 
each have a truth-set they represent. The relationship between the antecedent and consequent 
properties can be understood as a relationship between these truth-sets (Hub & Dawkins, 2018). 
The third view draws our attention to the inferences available from the hypotheses of the 
theorem, such as creating equations ! = !" and ! = !" for some !,! ∈ ℤ and using 
substitution to proceed with the proof. Stated this way, it seems that the first and last 
interpretation are most mathematically useful for the work of reading and writing proofs. 
However, we posit that students should understand – and, as a consequence, TTP textbooks 
should address – logic and sets because it appears fruitless to be able to write a valid proof if one 
does not understand the second and third interpretations as entailments of that proof.  

 

22nd Annual Conference on Research in Undergraduate Mathematics Education 147



Methods 
Our objective was to obtain a sample of TTP textbooks that accurately reflect those in 

widespread use in undergraduate classrooms in the United States.  To do so, we leveraged the 
results of a recent study of TTP courses (David & Zazkis, 2017), which analyzed the syllabi from 
TTP courses at all institutions categorized by Carnegie designations as high research activity and 
very high research activity in the United States.  The study reported which portion of those 
courses used a textbook and which textbooks were most commonly used. To ensure that our 
sample was reasonably representative yet still tractable enough to allow for detailed individual 
analyses, we selected those textbooks in use at a minimum of 6 universities (as reported by 
David & Zazkis, 2017).  We included one more book intended for inquiry-based TTP instruction 
in order to guarantee our sample was more diverse in terms of instructional approaches.  A 
complete bibliography of the textbooks in our sample is included after the references.     

 After obtaining copies of all 10 textbooks in our sample, the data collection process initiated 
with each researcher independently reading the front matter (e.g. preface, notes to the instructor 
and/or student) of a particular text to gain insight into any global themes and general strategies 
for content presentation.  Notes were recorded about any approaches that seemed to place strong 
emphasis on one of our three main topics (logic, sets, and proof techniques).  Next, each 
researcher used the table of contents and the index to identify the places in each text where logic, 
sets, and proof techniques appeared.  We recorded excerpts and quotations that we deemed 
provided insight into connections between logic, sets, and proof techniques – as described in our 
conceptual analysis in the previous section – in a spreadsheet.  Each textbook was reviewed by at 
least two members of the research team.  We used constant comparison (Creswell, 2007; 2008) 
of textbook materials to identify common themes across the data set, including common 
sequences in which logic, proof techniques, and sets appeared in each text and how that might 
have influenced their presentation of each.   

 
Results, part I:  Overview of Textbook Sample 

Four general points emerged from a global analysis of our entire sample1. First, sets appeared 
to be the one element that varied in position most widely across the texts. Collectively, logic (L), 
quantification2 (Q), and proof techniques (P) most often appeared in the order L – Q – P (seven 
texts) or Q – L – P (two texts).  Sets almost evenly varied between appearing first (four texts), in 
the middle (three texts), and last (three texts).   

Second, the most common connection that textbooks made among the logic, proof 
techniques, and sets was to explain or justify proof techniques using truth tables. We will 
consider some examples of these explanations in a later section.  

Third, about half of the texts connected logic and sets in explicit ways. Four textbooks 
explained set ideas using logical structure. This seems a natural approach since one can translate 
set operations – ! ∪ ! – into set-membership conditions with logical connectives – {!: ! ∈
! !" ! ∈ !}. Alternatively, a natural way to introduce the notion of set itself is through truth-sets 
for predicates (e.g. the set of multiples of 4, the set of divisors of 52). While some books used 

                                                
1 It is beyond the scope of this brief proposal to present the results of our analysis of each textbook in our sample.  Those who are interested to see 
such details may follow this link (https://www.dropbox.com/s/jhrxo8bajhzon8s/Rume2019proposal-table.pdf?dl=0) to a table that includes (1) the 
authors and names of the books we analyzed, (2) the order in which logic, proof techniques, quantification, and sets appeared, and a brief 
summary of how each textbook connected the topics in question. 
2 Quantification is often understood as part of logic, but we found it useful to distinguish it because some books dedicated long sections to only 
propositional logic (without quantifiers) and others dedicated more time to predicate logic (quantified). Also, quantifiers themselves varied from 
being treated as logical constants to being phrases in mathematical language. In other words, quantifiers sometimes were treated more logically 
(in terms of truth-conditions) and other times more linguistically (what do these phrases mean and how do we use them).  
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this as an introduction (i.e. the first explicit mention of sets), they often shifted to talking about 
sets as general collections without some underlying predicate. Only one book explicitly built the 
truth-table for a (quantified) conditional statement by considering the truth of an example 
statement on various sets of inputs. In this case, the set structure guided the exposition of logic.   

Fourth, sets generally played no role in explaining or justifying proof techniques. Rather, the 
primary examples of connections between proof techniques and sets occurred when sets were 
discussed last and thus the other topics informed the exposition of sets.  

 
Results, part II:  Analysis of Illustrative Excerpts from Textbook Sample  

The above summary of our textbook analysis findings suggests that TTP textbooks frequently 
link logic and proof techniques and with some regularity connect sets to logic. Sets in particular 
appear the most isolated of the three topics. This forms a simple descriptive account of current 
TTP curricula. We pursue two goals hereafter. First, we will provide some excerpts from the 
textbooks that illustrate the nature of the connections between logic, sets, and proof techniques to 
recognize some qualitative differences that likely matter for student sense making. We shall also 
note some potential connections that, according to our conceptual analysis, could have been 
made that were not, specifically with regard to sets.  

As stated above, the most common connection TTP books made among logic, proof 
techniques, and sets was to motivate proof techniques for conditional statements by 
demonstrating their validity through the use of truth tables. Below we provide some excerpts 
from the books that illustrate how this was done. Overall, we notice that the books draw upon 
diverse resources to help students make sense of proof techniques. 

 
Figure 1. Rosen’s (2012, p. 74) example proof connecting proof techniques to rules of inference. 

 
Figure 2. Rosen’s (2012, p. 82) explanation of direct proof techniques using truth tables. 

From an early stage, Rosen (2012, Fig 1) invites students to cite rules of inference (e.g. 
“contrapositive” and “hypothetical syllogism”) as warrants in proofs. The example theorem does 
not concern mathematics and the author immediately replaces the propositions with logical 
variables to construct a proof in logical syntax. The text’s later examples are mathematical and 
quantified and Rosen uses predicates to explain proof by universal generalization. However, 
when the author explains the proof technique (as shown in Fig 2), the language shifts back to 

P1: 1/1 P2: 1/2 QC: 1/1 T1: 2

CH01-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 15:27

74 1 / The Foundations: Logic and Proofs

EXAMPLE 7 Show that the premises “If you send me an e-mail message, then I will finish writing the
program,” “If you do not send me an e-mail message, then I will go to sleep early,” and “If I go
to sleep early, then I will wake up feeling refreshed” lead to the conclusion “If I do not finish
writing the program, then I will wake up feeling refreshed.”

Solution: Let p be the proposition “You send me an e-mail message,” q the proposition “I will
finish writing the program,” r the proposition “I will go to sleep early,” and s the proposition “I
will wake up feeling refreshed.” Then the premises are p→ q, ¬p→ r , and r → s. The desired
conclusion is ¬q → s. We need to give a valid argument with premises p→ q, ¬p→ r , and
r → s and conclusion ¬q → s.

This argument form shows that the premises lead to the desired conclusion.

Step Reason
1. p→ q Premise
2. ¬q → ¬p Contrapositive of (1)
3. ¬p→ r Premise
4. ¬q → r Hypothetical syllogism using (2) and (3)
5. r → s Premise
6. ¬q → s Hypothetical syllogism using (4) and (5)

▲

Resolution

Computer programs have been developed to automate the task of reasoning and proving theo-
rems. Many of these programs make use of a rule of inference known as resolution. This rule
of inference is based on the tautology

((p ∨ q) ∧ (¬p ∨ r))→ (q ∨ r).

(Exercise 30 in Section 1.3 asks for the verification that this is a tautology.)The final disjunction in
the resolution rule, q ∨ r , is called the resolvent. When we let q = r in this tautology, we obtain
(p ∨ q) ∧ (¬p ∨ q)→ q. Furthermore, when we let r = F, we obtain (p ∨ q) ∧ (¬p)→ q
(because q ∨ F ≡ q), which is the tautology on which the rule of disjunctive syllogism is based.

EXAMPLE 8 Use resolution to show that the hypotheses “Jasmine is skiing or it is not snowing” and “It is
snowing or Bart is playing hockey” imply that “Jasmine is skiing or Bart is playing hockey.”

Solution: Let p be the proposition “It is snowing,” q the proposition “Jasmine is skiing,” and r
the proposition “Bart is playing hockey.” We can represent the hypotheses as ¬p ∨ q and p ∨ r ,
respectively. Using resolution, the proposition q ∨ r , “Jasmine is skiing or Bart is playing
hockey,” follows. ▲

Resolution plays an important role in programming languages based on the rules of logic,
such as Prolog (where resolution rules for quantified statements are applied). Furthermore, it
can be used to build automatic theorem proving systems. To construct proofs in propositional
logic using resolution as the only rule of inference, the hypotheses and the conclusion must be
expressed as clauses, where a clause is a disjunction of variables or negations of these variables.
We can replace a statement in propositional logic that is not a clause by one or more equivalent
statements that are clauses. For example, suppose we have a statement of the form p ∨ (q ∧ r).
Because p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r), we can replace the single statement p ∨ (q ∧ r) by
two statements p ∨ q and p ∨ r , each of which is a clause. We can replace a statement of
the form ¬(p ∨ q) by the two statements ¬p and ¬q because De Morgan’s law tells us that
¬(p ∨ q) ≡ ¬p ∧ ¬q. We can also replace a conditional statement p→ q with the equivalent
disjunction ¬p ∨ q.

P1: 1/1 P2: 1/2 QC: 1/1 T1: 2
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theorems needs to include a universal quantifier, the standard convention in mathematics is to
omit it. For example, the statement

“If x > y, where x and y are positive real numbers, then x2 > y2.”

really means

“For all positive real numbers x and y, if x > y, then x2 > y2.”

Furthermore, when theorems of this type are proved, the first step of the proof usually involves
selecting a general element of the domain. Subsequent steps show that this element has the
property in question. Finally, universal generalization implies that the theorem holds for all
members of the domain.

Methods of Proving Theorems

Proving mathematical theorems can be difficult. To construct proofs we need all available am-
munition, including a powerful battery of different proof methods. These methods provide the
overall approach and strategy of proofs. Understanding these methods is a key component of
learning how to read and construct mathematical proofs. One we have chosen a proof method,
we use axioms, definitions of terms, previously proved results, and rules of inference to com-
plete the proof. Note that in this book we will always assume the axioms for real numbers
found in Appendix 1. We will also assume the usual axioms whenever we prove a result about
geometry. When you construct your own proofs, be careful not to use anything but these axioms,
definitions, and previously proved results as facts!

To prove a theorem of the form ∀x(P (x)→ Q(x)), our goal is to show that P(c)→ Q(c)
is true, where c is an arbitrary element of the domain, and then apply universal generalization.
In this proof, we need to show that a conditional statement is true. Because of this, we now focus
on methods that show that conditional statements are true. Recall that p→ q is true unless p is
true but q is false. Note that to prove the statement p→ q, we need only show that q is true if p
is true. The following discussion will give the most common techniques for proving conditional
statements. Later we will discuss methods for proving other types of statements. In this section,
and in Section 1.8, we will develop a large arsenal of proof techniques that can be used to prove
a wide variety of theorems.

When you read proofs, you will often find the words “obviously” or “clearly.” These words
indicate that steps have been omitted that the author expects the reader to be able to fill in.
Unfortunately, this assumption is often not warranted and readers are not at all sure how to fill in
the gaps. We will assiduously try to avoid using these words and try not to omit too many steps.
However, if we included all steps in proofs, our proofs would often be excruciatingly long.

Direct Proofs

A direct proof of a conditional statement p→ q is constructed when the first step is the
assumption that p is true; subsequent steps are constructed using rules of inference, with the
final step showing that q must also be true. A direct proof shows that a conditional statement
p→ q is true by showing that if p is true, then q must also be true, so that the combination
p true and q false never occurs. In a direct proof, we assume that p is true and use axioms,
definitions, and previously proven theorems, together with rules of inference, to show that q
must also be true.You will find that direct proofs of many results are quite straightforward, with a
fairly obvious sequence of steps leading from the hypothesis to the conclusion. However, direct
proofs sometimes require particular insights and can be quite tricky. The first direct proofs we
present here are quite straightforward; later in the text you will see some that are less obvious.

We will provide examples of several different direct proofs. Before we give the first example,
we need to define some terminology.
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propositional variables and “assumption” of the hypothesis rather than selecting an arbitrary 
element of the truth set of the hypothesis predicate.  

      
Figure 3. Hammack’s (2013, p. 92) explains direct proof of conditionals using the truth table. 

Hammack’s (2013, Fig 3) representations, which closely mirrored several others, present 
general proof frames using propositional variables, though mathematical example proofs 
appeared nearby for comparison. He explains the initial step “Suppose !” in light of the fact that 
! ⇒ ! is always true when ! is false (similar to Rosen). Interestingly, the examples all involved 
predicates, but Hammack presents the proof techniques using only the proof table and 
propositional variable.  

 
Figure 4. D’Angelo and West’s (2000, pp. 34,35) explanation of conditional proof methods with 

reference to quantification.  

D’Angelo & West (2000, Fig 4) directly address how proofs of conditionals verify quantified 
claims making use of the connections they previously established between sets and logical 
relations. The explanation uses logical variables, though the authors immediately provide 
mathematical examples thereafter. D’Angelo and West’s explanation seems to provide the most 
attention to the sets underlying the predicates while still using logical variables for exposition.  

 
Figure 5. Schumacher’s (2001, p. 32-33) explanation of direct proof of a quantified conditional. 

92 Direct Proof

4.3 Direct Proof
This section explains a simple way to prove theorems or propositions
that have the form of conditional statements. The technique is called
direct proof. To simplify the discussion, our first examples will involve
proving statements that are almost obviously true. Thus we will call the
statements propositions rather than theorems. (Remember, a proposition
is a statement that, although true, is not as significant as a theorem.)

To understand how the technique of direct proof works, suppose we
have some proposition of the following form.
Proposition If P, then Q.

This proposition is a conditional statement of form P � Q. Our goal
is to show that this conditional statement is true. To see how to proceed,
look at the truth table.

P Q P �Q

T T T
T F F
F T T
F F T

The table shows that if P is false, the statement P �Q is automatically
true. This means that if we are concerned with showing P �Q is true, we
don’t have to worry about the situations where P is false (as in the last
two lines of the table) because the statement P �Q will be automatically
true in those cases. But we must be very careful about the situations
where P is true (as in the first two lines of the table). We must show that
the condition of P being true forces Q to be true also, for that means the
second line of the table cannot happen.

This gives a fundamental outline for proving statements of the form
P �Q. Begin by assuming that P is true (remember, we don’t need to worry
about P being false) and show this forces Q to be true. We summarize this
as follows.

Outline for Direct Proof
Proposition If P, then Q.

Proof. Suppose P.
...

Therefore Q. �
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Schumacher’s (2001, Fig 5) presentation attends more directly to quantification, though the 
quantifiers themselves stay implicit throughout. Her example theorem is mathematical and she 
does not rely on logical variables to present the proof. 3 She points out that the hypothesis of the 
theorem is true for infinitely many values of !, so the proof must work for all such values. 
Woven throughout the exposition is the assumption that “assuming that the hypothesis is true” is 
tantamount to selecting (any) even value of !.  

Discussion 
To summarize, the presentations of proof techniques vary from constructing derivations 

within a propositional logical calculus (in which every step is validated by a rule of inference) to 
mathematical proofs (in which familiar mathematical content is written in paragraph format 
using warrants that would likely be familiar to TTP students). Many of the presentations exist 
between these poles of operating in a logical calculus and examining actual mathematical proofs. 
Many books explain patterns or strategies in proof construction using logical variables with 
varying levels of attention to the quantification structure that is present in most of the 
mathematical proofs constructed later in each text. We offer two primary observations about how 
these common intermediate approaches may be problematic for students.  

First, these textbooks tend to use propositional variables to explain proof techniques that are 
almost always applied to situations involving predicates. We are sensitive to this trend in light of 
our experiences researching how novice students interpret mathematical language. When many 
students read a phrase such as “! is an even number,” they are frequently drawn to select a 
representative even number (or to think about properties such as the units digit being even). 
Many students need guidance to understand the way that mathematicians infer that this phrase 
almost always implicitly refers to any even number (unless ! is already a bound variable). By 
referring to these phrases in proofs as propositions, we worry that these TTP texts might 
reinforce this limiting trend in student reasoning. Assigning truth-values (“assume ! is true”) 
does not help students attend to the underlying set structure (“select an arbitrary ! from the set of 
even numbers”).  Similarly, the suppression of quantification is common in mathematical proof 
writing. Indeed, there are likely many familiar theorems that we have never thought about using 
the subset interpretation mentioned by D’Angelo and West (2000; Fig 4). Our contention is that 
texts that teach students how to read and write proofs (maybe for the first time) might need to 
give students more time to understand the role of quantification and sets in proof techniques 
before these ideas can be left implicit. This matter becomes especially challenging for students 
when we consider falsifying statements by counterexample or negating statements.  

Second, representing proof techniques using logical variables may preclude students’ ability 
to make sense of the set structure that underlies common proof techniques. What we mean is that 
when students read a meaningful mathematical predicate such as “! is even,” “!|!,” or “2!! + 3 
is a multiple of 5,” there is at least the opportunity for them to reason about the truth set of the 
predicate. However, when TTP books explain proof techniques using logical variables such as !, 
we expect students to find thinking about ! ∈ !:! !  to add little insight. In contrast, we 
concur with Schumacher’s (2001) effort to draw students’ attention directly to the way that 
proofs written using definitions apply to all objects that satisfy the definition. This is part of what 
Dawkins (2017) refers to as reasoning with predicates, which refers to students’ propensity to 
associate with any mathematical category the set of objects in the category. In our research, we 

                                                
3 Earlier in the text she invited readers to prove logical equivalences or differences using truth tables, noting that the logical variables there stood 
for predicates. 
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find that students do this much more easily with familiar categories such as even numbers, 
multiples of !, or factors of !. This seems reasonable since they have had experience with such 
sets since grade school and can anticipate how those sets would be populated. Students need 
some guidance and experience thinking about the truth sets of negatively stated predicates (“! is 
a non-continous function”) and unfamiliar categories (“2!! + 3 is a multiple of 5”). Once again, 
we acknowledge that experts may often write proofs without thinking explicitly about these 
underlying sets. We contend, though, that novices often do not find such connections immediate 
when they are learning to read proofs; reading valid proofs without such understanding leaves 
something to be desired.  

Conclusion 
We close by proposing a few goals for TTP instruction.  We prioritized these goals because 

1) our research leads us to question whether students will make these connections unless they are 
explicitly accounted for in instruction, and 2) our textbook analysis herein reveals that sets are 
the most underdeveloped of the three core topics we examined.  

1. Recognizing that every predicate entails an underlying truth set and membership in any 
set can be understood as a predicate. We anticipate that it might be helpful to build up to 
this generalized relationship by starting with familiar sets (even numbers), before moving 
to property-based predicates ( ! ∈ ℤ: 5|2!! + 3 ), before thinking about generalized 
predicates (!(!) is true if ! ∈ {1,5,7}).  

2. Recognizing the set over which the predicates in a theorem range. Many theorems 
involve a number of variable elements that each constitute a variable in the theorem’s 
predicates. Helping students attend to the variables and their scope is an important part of 
understanding what a theorem says and what a proof accomplishes. Indeed, this seems 
one of the most natural ways to see the importance of Cartesian products of sets. 

3. Connecting the various ways to interpret mathematical texts listed above: the statement 
“Suppose [! !  is true]” can be thought of as assuming the hypotheses true, selecting an 
arbitrary ! in the scope of the predicate !, as beginning proof by universal generalization, 
or as providing the assumptions from which we must deduce the theorem’s conclusions. 
Part of the work of the TPP course is to help students understand why all of these are 
accomplished by the same text.  

Overall, our analysis of Transition to Proof texts revealed that textbooks intended for such 
courses frequently connect logic and proof techniques, and connect logic and sets. However, they 
infrequently connect sets to proof techniques. Indeed, analyzing the representations used to 
introduce proof techniques reveals that it would be hard to make sense of the underlying truth 
sets because hypotheses are so often represented by logical variables. Our research suggests that 
students need help thinking about the underlying sets and that this can help them reason about 
logic and argumentation. Accordingly, we argue that TTP courses should help students connect 
assumptions of truth with arbitrary selections from particular sets. We offer this reflection to 
encourage instructors to think about and attend to the potential for such connections in TTP 
courses.  Ultimately, we hope such considerations can help more of our students succeed in 
learning how to read, write, and truly understand mathematical proving, thereby gaining access 
to its great epistemic power.  
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Participation in a Mathematical Modelling Competition as an Avenue for Increasing STEM 
Majors’ Mathematics Self-Efficacy 

 
 Jennifer A. Czocher Kathleen Melhuish Sindura Subanemy Kandasamy 
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Though scholars have long called for applications and modeling to be explicitly added to 
classroom agenda (Niss, Blum, & Galbraith, 2007), opportunities for undergraduates to engage 
in modeling in the classroom remain scarce. We report a study of undergraduate STEM majors 
engaging in authentic, open-ended modeling tasks using differential equations through a 
modeling competition. In this study, we propose a logic model that captures the relationship 
between the advantages of mathematical modelling and mathematics self-efficacy (MSE) and 
investigate the extent to which a mathematical modeling intervention increased STEM majors’ 
Mathematics Self Efficacy (MSE). 
 
Keywords: Mathematical Modeling, Self-Efficacy. Mathematics Self Efficacy 
 

Educators have increasingly turned to mathematical modelling to resolve the relevance 
paradox of mathematics in the curriculum. The relevance paradox refers to the disparity between 
the objective relevance of mathematics for society and the subjective irrelevance of mathematics 
perceived by many students who study it (Niss & Hojgaard, 2011). Perceiving mathematics as 
relevant to their goals maintains student interest in mathematics (Liebendörfer & Schukajlow, 
2017), and leads to persistence (Business-Higher Education Forum [BHEF], 2010). In addition to 
interest, mathematics proficiency and self-efficacy have an interrelated effect on student 
persistence in mathematics (BHEF, 2010). Self-efficacy plays a role in all aspects of goal-setting, 
perusal, persistence, and effort (Bandura, 2006), and it has been specifically implicated as a 
factor in choosing to take mathematics courses and a STEM career (Betz & Hacket,1983). 
Without interest to learn mathematics, students are less likely to engage in meaningful learning, 
build self-efficacy, and ultimately develop mathematical proficiency requisite for persistence in 
STEM careers.  

Mathematical modeling experiences potentially address the relevance paradox because in 
mathematical modeling students use their mathematical knowledge to solve authentic, real-world 
problems. However, any instructional innovation targeting interest, including modeling, will play 
a supportive role only insofar as the experiences help to develop both mathematics proficiency 
and self-efficacy (Lauremann, Tsai & Eccles, 2017). At the post-secondary level, research has 
documented some of the positive impacts of mathematical modeling experiences on mathematics 
proficiency (e.g., Author, year; Kwon, Allen, & Rasmussen, 2005). However, at this level, the 
impact of modeling experiences on Mathematics Self efficacy (MSE) remains an open question. 
At the middle grades and secondary level, researchers have documented this link between 
modeling experiences and self-efficacy (Krawitz & Schukajlow, 2017). We conjecture that an 
extra-curricular modeling competition replicating instructional features associated with 
increasing mathematics proficiency, self-efficacy, and interest will similarly promote gains in 
self-efficacy for post-secondary students. 

In this paper, we outline a logic model relating mathematical modeling experiences, self-
efficacy, proficiency, and interest.  We then present a study of the impact of an extra-curricular 
mathematical modeling competition on STEM students’ Mathematics Self Efficacy (MSE).  The 
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competition focused on differential equations, because of its presence in STEM major 
requirements. Drawing on the logic model, we argue that replicating aspects of mathematical 
modeling experiences that impact middle grades students’ self-efficacy is a promising avenue for 
building STEM students’ MSE. 

Empirical Background 
Twenty-first century education can be characterized by an ever-increasing need for 

STEM graduates. Unfortunately STEM majors leave their programs at high rates (some estimate 
as high as 48%, (Chen & Soldner, 2013). Some factors that contribute to attrition are gender, 
conceptual understanding, and self-efficacy (Geisinger, 2013). Additionally, women are still 
vastly underrepresented in mathematics-intensive fields, like engineering and computer science 
(NSF, 2011). Although women are more likely than men to attend college, they are less likely to 
pursue mathematics-related careers (Perez-Felkner, McDonald & Schneider,2014), a disparity 
evident by third grade (Lubiensky et al 2013). Proposed causes for attrition are: perceived 
relevance, mathematical proficiency, and MSE. STEM students do not see mathematics as 
relevant is that mathematics classes often do a poor job of showing how course content fits into 
STEM careers (Jahn & Myers, 2015). Lacking mathematical proficiency hinders their 
persistence in a STEM field. Engineering students reportedly struggle not only with algebraic 
skills, but also with abstract concepts and mathematical modeling; “somehow [students] think 
that when engineering starts mathematics stops” (Varsavsky,1995, pp 344). Likewise, in physics, 
failure to connect mathematical knowledge to real-world knowledge hinders successful problem 
solving (Black & Wittmann, 2009). At the same time, STEM majors’ mathematics-related SE 
mediates their interest and persistence in mathematics. It is related not only to proficiency but 
also to decisions to persist (Chemers, Hu & Garcia, 2001; Estrada et al, 2011).  

Existing research informs us that articulating positive self-efficacy beliefs can be 
impacted through participation in constructive experiences at the post-secondary level (e.g. Shaw 
& Barbuti, 2010). Chemmers and colleagues (2011) reported that three kinds of experiences may 
lead to positive self-efficacy beliefs: research experience, community involvement, and 
instrumental socioemotional mentoring. Research experiences that foster a sustained interest in 
STEM include: extend and apply lessons from their classrooms to authentic scientific inquiry 
(Pender et al, 2010), collaborating with peers and connecting with faculty (Eagan et al, 2013), 
integration into social systems of STEM community activities (e.g., competitions, summer 
camps, or bridge programs) (Estrada et al, 2011), and extracurricular experiences (VanMeter-
Adams et al, 2014). The mechanisms through which community activities work to increase self-
efficacy include mentorship, collaboration, writing, hands-on exercises, and targeting 
mathematics competencies (Findley-Van Nostrand & Pollenz, 2017). Finally, learning 
environments that include emotional support from the teacher, academic support from peers, and 
encouragement from the teacher to discuss work as well as focus on mastery and feelings of 
efficacy, motivate students to persist in difficult activities (Patrick, Ryan, & Kaplan, 2007).  

We claim that mathematical modelling has the potential to address the relevance paradox, 
develop mathematics proficiency, and build MSE in specific contexts. Mathematical modelling 
means using mathematics to solve non-mathematical problems: transforming a real-world 
problem into a mathematical problem to solve, solving the mathematical problem, and using the 
results to address the initial real-world problem. Several studies reflect that teaching with a 
mathematical modeling approach can positively impact students’ learning of differential 
equations content. For example, Author (year) found that consistent emphasis on mathematical 
modeling principles, even in lecture, could positively impact engineering students’ learning of 
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differential equations. Others have shown that drawing on “experientially real” starting points to 
instruction can positively impact student learning of content (e.g., Rasmussen & Blumenfeld, 
2007). Schukajlow et al. (2012) found that for ninth graders, student-centered instruction using 
modeling tasks was the most beneficial for increasing student affect and Zbiek and Conner 
(2006) reported that a modeling approach deepened prospective secondary mathematics teachers’ 
motivation to learn new mathematics content. What remains to unknown is whether and how 
engaging in mathematical modeling might impact STEM students’ MSE. 

Mathematical Modelling Competition Intervention 
Educational interventions should target proficiency, self-efficacy, and interest because 

projects that target only one may produce non-optimal results (Lauremann, Tsai & Eccles, 2017, 
pp 1542). Since STEM students’ persistence is tied to their MSE, there is a need to study and 
document the advantages of modeling for MSE in advanced mathematics. We propose a logic 
model (Figure 1) that captures this relationship. In the present study, we investigated one aspect: 
the extent to which a mathematical modeling intervention increased undergraduate STEM 
majors’ MSE.  

 
Figure 1 Logic model relating modeling, interest, MSE, and proficiency to persistence 

Since mathematical modeling promotes interdisciplinary thinking (Bliss et al., 2016) and 
fosters mathematical reasoning as a basis for decision making (OECD, 2017), modeling 
experiences can develop mathematical proficiency in ways that are valued by STEM disciplines. 
Because undergraduate classrooms typically have little time and instructor support for innovative 
pedagogical strategies (e.g., Johnson, Keller, & Fukawa-Connelly, 2017), classrooms alone may 
be unable to replicate optimal learning environments. Extracurricular activities are promising for 
engaging students in mathematical modeling.  

The Systematic Initiative for Modeling Investigations & Opportunities with Differential 
Equations (SIMIODE) hosted an intervention (the Student Competition Using Differential 
Equations Modeling [SCUDEM]) that engaged students in authentic modeling problems in 
differential equations. The competition presented students with a choice of challenging real-
world problems, that require genuine inquiry into the mathematical and contextual aspects of the 
problem. Students from around the US formed teams of three (or two) and selected one of three 
situations given to them. Each team was led by a faculty member coach from their home school. 
Teams had one week to work on their chosen problem prior to convening at a local host site. The 
teams turned in a 2-page executive summary describing their solution to the problem. At the 
local host site, the faculty coaches met as a panel to discuss the executive summaries, providing 
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constructive feedback, observing weaknesses or inaccuracies in the models, or suggesting 
directions for improving the models. Each team then had 2.5 hours to address the panel’s 
concerns and put together a 10-minute presentation to communicate their final models to their 
peers and to the panel to convince their audience that theirs was the best model. In this way, 
competitors were encouraged to select challenging tasks, record and communicate their thinking, 
apply or develop mathematical knowledge and contextual knowledge, and engage in the target 
modeling competencies all while working with teammates and a knowledgeable faculty mentor. 

The modeling competition replicates the important aspects of modeling that have been 
associated with developing interest and proficiency in mathematics. Our goal was to study the 
modeling competition as an example of an extra-curricular learning environment. We addressed 
the question: To what extent does participation in the modeling competition impact student’s 
MSE? 

  Theoretical/Conceptual Framework  
For the purposes of this study, we operationalized mathematical modelling as producing a 

conceptual system to describe, interpret, explain, or predict a real-world situation and expressing 
the conceptual system in conventional mathematical terms. In this cognitive view, mathematical 
modelling is represented as a cyclic process comprised of distinct activities referred to as 
modelling competencies: formulating a task (identifying important relationships from the real-
world situation)), systematization (identifying variables, making assumptions, estimating 
parameters), mathematization (representing the entities and relationships in mathematical form), 
mathematical analysis (using mathematical methods to arrive at mathematical conclusions), 
interpretation of results (re-contextualizing the mathematical result), validation (comparing the 
model to real-world or known information, establishing limitations of the model’s scope), and 
communicating (sharing the model) (Blomhöj & Jensen, 2003).  

We operationalized an individual’s self-efficacy about an activity as their perceived 
capability to carry out that activity. MSE is then an individual’s perceived capability to carry out 
mathematical activities. Since, at the level of differential equations and for STEM majors, 
mathematical activities include both setting up and solving mathematical problems that arise 
from real-world problems, we interpret MSE to mean an individual’s perceived capability to 
carry out the interrelated activities that make up mathematical modelling. We asked participants 
to self-assess their MSE (measuring their confidence in their capability, not their actual 
capability). We specifically selected the competencies systematization, mathematization, 
validation and communication because they are the most difficult to learn and because analysis is 
usually the focus of mathematics coursework.  

Methods 
A total of 393 students from 85 schools participated in the competition at 40 host sites 

around the U.S. Of these, 266 completed the pre-competition survey and 107 completed the post-
competition survey. In the analysis, we considered the 90 of 393 students who completed both 
the pre- and post-competition surveys. Based on the theory of self-efficacy measurement by 
Bandura (2006), the study used a pre-experimental matched pre and post design to investigate 
changes in student self-efficacy regarding the following modelling competencies: 
systematization (identifying variables, making assumptions, estimating parameters), 
mathematization (deriving a differential equation), validation (comparing the model to real-
world or known information, establishing limitations of the model’s scope), and communication 
(sharing conclusions). Participants rated their confidence on 7 statements on a 100 point Likert 
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type scale (see Table 1) The survey also recorded demographic questions such as gender, major, 
anticipated graduation year, and mathematics courses taken. 

A principal component analysis (Abdi & Williams, 2010) was conducted on the full set 
of pre-test data to explore dimensionality. A pair-wise items correlation was performed and a 
Cronbach’s alpha (Cronbach,1951) was calculated on the set of seven self-efficacy items on the 
pre and post tests. These analyses suggest that the MSE scale is an internally consistent, 
unidimensional instrument with high face and construct validity.  Therefore, we treated the sum 
of responses to items on the pre- and post-competition surveys, respectively, as MSE_pre and 
MSE_post and define gains in modeling self-efficacy as MSE_post – MSE_pre.  

We address the following research hypotheses: (1) participating in the modeling 
competition led to self-efficacy gains, (2) participating in the modeling competition may 
decrease differences between men and women with regards to their self-efficacy, and 
additionally the following research question (3) How do different groups, on average, gain in 
MSE? A matched pair !-test determined there were statistically significant gains in MSE from 
pre- to post-competition. A comparison of mean MSE_pre and compared mean MSE_post by 
gender tested hypothesis (2). We answered (3) by statistically model gains in MSE while 
accounting for the structure of the dataset using hierarchical linear modeling (HLM) techniques 
(Raudenbush & Bryk, 2001) via SPSS. 

Results 
Claim 1 - Participating in the competition led to gains in MSE: Across the 90 participants 

who completed both the pre- and post-competition survey, the mean score on MSE_pre was 
444.44 (sd = 134.74) and the mean score on MSE_post was 518.00 (sd = 104.78). The mean 
individual gain (calculated as MSE_post – MSE_pre-for each individual) was 73.56 (sd 107.92). 
A paired samples t-test indicated that the individual gain was statistically significant (t(89)=-
6.466, p<.001). This gain reflects an effect size of d=0.55, a medium effect size. Mean responses 
to individual MSE questions are in Table 1. 

Table 1.  self-efficacy survey, keyed to modeling competencies    
Rate your level of confidence by recording a number from 0 to 100 
using the scale given below: 

Competency Pre 
Mean 
(SD) 

Post 
Mean 
(SD) 0       10        20        30        40       50      60       70        80        90       100 

Cannot do at all Moderately can do Highly certain can do 
Create a differential equation model for the spread of smart home 
appliances in the United States during the twenty-first century. 

Mathematize 54.67 67.11 

In (1) identify the important variables leading to a reasonably accurate 
prediction. 

Identify 
variables 

62.67 74.67 

In (1) make simplifying assumptions to reduce the number of important 
variables. 

Make 
assumptions 

59.89 75.67 

In (1) consult appropriate resources to check whether your model was 
reasonable. 

Validate 66.36 73.86 

In (1) list the real-life and mathematical limitations of your model. List 
limitations 

67.56 78.89 

In (1) create a short presentation to convince a smart appliance 
manufacturer that they could rely on your model to develop their business 
plan. 

Communicate 
findings 

62.56 74.11 

Given a differential equation which describes the rate of formation of 
material A,  
A’(t)  = α A(t)β , 
and a data set of observations for time, t, amount of material A at each 

Estimate 
parameters 

71.33 74.56 
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Claim 2 - Gender disparity in MSE decreased after the competition: Among the 58 men, 

the mean MSE_pre-score was 462.41 (sd = 123.26). Among the 31 women, the mean MSE_pre-
score was 409.03 (sd=151.56). An independent samples t-test, assuming equal variance, showed 
a borderline significant difference between the men and the women (t(87)=1.795, p=0.076) with 
a small effect size d=0.40. For men, the MSE_post score was 523.45 (sd=102.92) and women’s 
MSE_post score was 503.87 (sd=109.87). An independent samples t-test, assuming equal 
variance, revealed no statistically significant difference between genders (t(07) =.840, p=.40) and 
a small effect size d = 0.14. This pair of univariate analyses established a difference between 
men’s and women’s MSE as they entered the competition and that the difference decreased after 
the competition.  

Claim 3 – (A) Women experienced more gains in MSE than Men, and (B) Students who 
did not take differential equation experienced larger MSE gains: Even though women were 
estimated to enjoy MSE gains of 30.360 beyond equivalent men participating in the competition, 
gender did not have a statistically significant effect on MSE gains. (See left panel of table 3.) A 
participant who had not taken differential equations was estimated an MSE gain of 133.24, a 
large effect size of d=0.99. A participant who had taken differential equations was estimated to 
have increased 59.8 on the MSE instrument, with a small effect size d=0.44. The difference in 
gains between the groups was significant (See right panel of table 3). The HLM analysis revealed 
that participants experienced gains in their MSE from before to after the competition and that 
these gains were largest for those who had never taken differential equations.  

Table 2 and Table 3 present the coefficient estimates for the effects in the HLMs with the 
final HLM presented in the right-most panel of 3.  

Table 2 .Unconditional HLM 

Unconditional HLM 

  Coeff SE df p 
Intercept 69.835369 14.899584 26.031 0.0000 

 Variance SE     
Level 1 Residual 8646.740100 1592.289984     
Level 2 3172.757189 1836.480544     

 
Table 3. Conditional HLMs 

Conditional HLMs 
  Coeff SE df p Coeff SE df p 
Intercept 131.715661 37.595201 88.084 .001 133.235498 29.892652 82.383 <.001 
Gender  -30.359506 21.192516 83.029 .156         
DiffCalc 16.177674 34.131681 75.588 .637         
DiffEQ 15.852225 22.655806 80.821 .486 -73.434996 30.568948 88.071 0.018394 
LinAlg -77.627974 32.711868 88.841 .020         
UsualGrade 4.800528 8.562256 87.750 .576 -29.008721 17.675959 80.914 0.104650 
GraduationYear -31.784291 17.865118 82.786 .079         
  Variance SE     Variance SE     
Level 1 Residual 7239.029113 1348.147958     7470.731888 1385.216979     
Level 2 3070.872030 1696.941897     3180.054413 1733.936735     

time t, you could estimate the parameters ! and !. 
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Discussion 
Our exploratory, pre-experimental intervention study drew on theory built up by prior 

mathematics and STEM education research in order to address one small aspect of the “leaky 
STEM pipeline.” We do not claim that any one characteristic of the competition has directly 
resulted in gains in MSE, only that the combination of features like communicating one’s work, 
working in teams, working with a faculty mentor, revising reasoning, and working on 
challenging, authentic problems led to observable gains in MSE. 

Our study of the impact of the differential equations modeling competition on STEM 
majors’ self-efficacy used a naturally-occurring pre-experimental design without a treatment 
group, and so there are standard threats to internal validity. First, participants join the modeling 
competition of their own volition. It is possible that those who self-select into a modeling 
competition are already predisposed to engage meaningfully in mathematical activities. If so, 
then our results may not represent the full potential impact of the competition on the general 
population of secondary/post-secondary STEM students. Yet, even within this potentially 
exceptional group we still observed general trends such as gendered disparity in gains that are 
commonplace in the general population. Future work could follow up by including competition 
participation as part of regular course requirements to generate a more representative sample. 

We have not yet explored the potential impact of coaches on participants’ self-efficacy. 
For example, coaches allowed varying degrees of autonomy to the participants and their own 
self-efficacy with regards to modeling with differential equation should be accounted for. A 
larger data set could allow for a 3-level design (as opposed to our 2-level design), nesting 
participants into coaches into sites. Such a design would take coach background (e.g., experience 
in coaching competitions) and their own self-efficacy (e.g., teaching differential equations with a 
modeling approach) into account along with individual-group correlations as covariates to aid in 
understanding the conditions that affect growth in STEM students’ self-efficacy. 

In summary, we can conclude the following: (1) Individual MSE increased after 
participating in the modeling competition, (2) The difference between men and women’s MSE 
decreased after partaking in the competition, and (3) Students who did not take differential 
equations before experienced greater MSE gains after the competition. In conclusion, our data 
and the literature review provide further evidence that extra-curricular interventions can be a 
fertile ground for building undergraduate students’ mathematics self-efficacy, perhaps in ways 
that cannot be achieved in the classroom. Since the extra-curricular environment in this case was 
designed around principles of mathematical modeling, and many students had no previous 
coursework in the mathematics being used to model, it provides grounding for claims about the 
potential of modeling to facilitate STEM majors’ persistence through ameliorating their self-
efficacy.  
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Observing Students’ Moment-by-Moment Reading of Mathematical Proof Activity 
 

Paul Christian Dawkins Dov Zazkis 
Northern Illinois University Arizona State University 

 
This study presents findings from a series of interviews in which we observed undergraduate 
students’ moment-by-moment Reading of Mathematical Proof (ROMP) activity. This 
methodology is adapted from a validated assessment of narrative reading comprehension 
developed by cognitive psychologists. We demonstrate the fruitfulness of the method by 
describing four relatively novel phenomena that we observed in our interviews, and highlight 
ROMP activities that seemed to distinguish less productive and more productive readers.  
 
Keywords: Proof, Reading, Transition to Proof, Systemic Functional Linguistics 
 

Much of students’ apprenticeship in advanced mathematics at the tertiary level involves 
learning how to read and write mathematical proof. Mathematics educators have studied this 
transition in terms of students’ ability to comprehend proofs after reading (e.g. Mejia-Ramos, 
Lew, de la Torre, & Weber, 2017), validate proofs (e.g. Alcock & Weber, 2005; Inglis & Alcock, 
2012), and write proofs (e.g. Weber, 2001). Fewer studies have investigated the reading of 
mathematical proof (ROMP) process itself (Weber, 2015). In this paper, we present findings 
from our adaptation of a moment-by-moment reading assessment method developed by 
psychologists for studying narrative text reading (Magliano & Millis, 2003; Magliano, Millis, 
Team, Levinson, & Boonthum, 2011). That methodology of read aloud interview protocols and 
line-by-line presentation provides different insights into narrative reading than those provided by 
end-reading comprehension tests. Similarly, we argue here that our method reveals a different set 
of sense-making activities than has previously been documented. We also contribute to the 
literature by comparing the ROMP behaviors of novice readers and more experienced readers.  

Relevant Research Studies 
Our study builds directly on the work of cognitive psychologists Magliano, Millis, and their 

team, who developed the Reading Strategy Assessment Tool (RSAT) (Magliano et al., 2011). 
RSAT is a validated measure of reading comprehension. It presents students with single lines of 
text and asks students to think aloud about each line. The nature of the inferences that students 
make indicate their relative competence as a reader in the following way: students who connect 
the given line to previous lines (bridging inferences) or to their outside knowledge (elaborating 
inferences) tend to have higher comprehension than students who merely restate lines 
(paraphrasing inferences). The quality of the inferences is less salient to this assessment 
compared to an end-reading comprehension test. RSAT focuses on qualitative differences in 
reading behavior rather than post-reading understandings. Forming bridging inferences and 
elaborating inferences correlates with measures of end-reading comprehension.  

Fletcher, Lucas, and Baron (1999) adapted this moment-by-moment reading assessment 
methodology to ROMP, using secondary geometry proof texts. They directly compared the 
observed behavior to reading of narrative text. They reported that ROMP was more effortful than 
reading narrative texts and elicited a different constellation of reading activities. The primary 
reading activity novel to ROMP was forward elaboration in which students anticipate later lines 
of the text, which was less common in reading narrative text.  
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Mejia-Ramos, Fuller, Weber, Rhoads, and Samkoff (2012) present a framework for the 
various kinds of understanding students might develop from ROMP, which built heavily on 
Yang and Lin’s (2008) framework. Those authors successfully adapted their framework into a 
validated, multiple-choice assessment of end-reading comprehension (Mejia-Ramos et al., 2017). 
Our study and methodology differ in large part because we seek to investigate moment-by-
moment ROMP activities and our analysis focuses more on sense-making activities rather than 
kinds of understanding to be constructed.  

Relatively few undergraduate mathematics education studies focus on reading processes. 
Shepherd and van de Sande (2014) compared undergraduate student reading of textbooks to 
faculty reading. They found salient differences regarding the way their subjects articulated 
equations; experts referred to parts of equations in terms of their meaning or role while novices 
read the names of the symbols in sequence. A couple of studies compare expert and novice 
ROMP behaviors using eye-tracking technology (Inglis & Alcock, 2012; Panse, Alcock, & 
Inglis, 2018). An interesting finding from those studies is that novices attend more commonly to 
equations in proof texts while experts spend more time examining the connecting statements that 
state logical inferences. Weber (2015) reports some reading behaviors of very successful 
undergraduate students by which they made sense of a novel proof text.  

Two studies report on interventions aimed at improving student ROMP activity. Hodds, 
Alcock, and Inglis (2014) adapted self-explanation training from other reading domains to the 
context of proof and found that self-explanation training was successful in improving student 
comprehension of proofs they read. Samkoff and Weber (2015) reported findings from trying to 
train students in the effective reading behaviors reported in Weber (2015). They had modest 
success, though students needed guidance in using the strategies effectively.  

Analytical Framework 
Our analysis of the reading process is informed largely by the tradition of Systemic 

Functional Linguistics (Halliday, 1994; Schleppegrell, 2004). As suggested in its name, SFL 
emphasizes how language functions to make meaning, either in articulation or interpretation of 
language. From this standpoint, choice is a key aspect of all language use. In particular, Halliday 
argues that linguistic choices are made to achieve three metafunctions: ideational – what is being 
talked about, interpersonal – who are the interlocutors and how are they positioned, and textual – 
what kind of text is being constructed. In this study, we particularly attend to the first and third 
metafunctions (though interpersonal metafunctions influenced the observed ROMP activity). The 
ideational metafunction (which Halliday at times subdivided into experiential and logical) for 
mathematical proof naturally involves discussion of mathematical objects, properties, and 
relationships. One of the novel contributions of this study consists in observing how the textual 
metafunction became salient in students’ ability to make meaning of the proof texts they read.  

Methodology 
Adapted Assessment Method 

To select proof texts for students to read, we searched introduction to proof textbooks and 
asked for ideas from mathematician colleagues. We sought proofs that were at least 10 lines (to 
increase opportunities to respond), were accessible to novice readers, and that were less likely to 
appear in common undergraduate courses (to minimize prior exposure). We selected four proof 
texts, proving the statements listed in Figure 1. Mirroring RSAT, we developed both general and 
specific response prompts for each line of text. Like RSAT, the two authors began by coding 
each line of text for all of the connections we expected students might make. This informed our 
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choice of specific response prompts for each line. Students were always asked to think aloud, but 
the more specific response prompts included: 

• “Why is this line justified?” inviting identification of data, definitions, and warrants. 
• “What is the purpose of introducing !?” probing student recognition of goals. 
• “What does this line accomplish?” assessing achievement of proof goals. 
• “What do you expect in the following line[s]?” inviting forward elaboration.  

The final prompt was used when we expected that students would be able to elaborate forward 
based on a proof frame that had been introduced (cases, universal generalization, contradiction, 
induction, dual inclusion between sets) or because a stated goal was nearly accomplished.  

 
 

 
  

Figure 1. Statements of the four theorems proven in the texts presented to students.  

Study Participants and Interview Methodology 
We recruited from courses at one medium and one large public research university in the US. 

To sample students with varying experience, we recruited from differential equations, 
introduction to proof, real analysis, and topology courses. We classified our participants in three 
groups: novice readers who had completed no proof-oriented courses at university (6), 
experienced readers who had completed at least one such course (9), and graduate students (2). 
Interviews were conducted outside of class time for 1-2 hours, and students were modestly 
compensated. All interviews were audio recorded and any student work was retained.  

Each proof text reading began by students reading definitions, previous theorems assumed 
true, and the statement of the theorem to be proven. The interviewers answered questions about 
mathematical facts and clarified the theorem statement if needed (e.g. L-shaped tiles each 
covered 3 squares). We generally avoided explanations that would affect the reader’s construal 
of proof text itself. Students could always see all prior lines of the text as they read and had the 
definitions and theorem statements available on paper. In addition to scripted response prompts, 
interviewers could ask elaboration questions at their discretion.   

Analysis Methods 
Interview coding proceeded in three stages. Upon watching the interview recording, the 

researcher first described the student response to each response prompt for each line, transcribing 
quotes that seemed significant or relevant. Upon completing these detailed field notes, the 
researcher then compiled a list of notable patterns in each student’s ROMP activity on each 
proof. Some organizing categories emerged for this stage of analysis, but these were meant to 
guide the researcher’s noticing more than serving as research constructs. In particular, we always 
tried to focus on ways students sought to make meaning of the text, regardless of how normative 
their interpretations were. Initially, both authors completed these first two stages of coding for 
the same two interviews. Once we compared and reach some agreement about the process, the 
rest of the interviews were partitioned and each analyzed by only one of the two authors.  

The third stage of analysis followed thereafter when we created general categories of ROMP 
activities that could be assessed on all the tasks by specific indicators. This proved challenging 

Primitive Pythagorean Triples

Definition:
(a, b, c) is a primitive Pythagorean triple if a, b and c share no common factors and a2 + b2 = c2.

Assumption
Assume the following theorem: In a primitive Pythagorean triple, exactly one of the numbers a and b is even and c is odd. For
convenience, we may always assign a as odd and b as even.

Theorem being proven:
For every primitive Pythagorean triple (a, b, c) there exist some numbers s and t with no common factors such that s > t � 1

where a = st , b = s2�t2
2 , and c = s2+t2

2 .

Paul C. Dawkins and Dov Zazkis Reading Study 2016 2 / 12

EFP=PPP

Definition:
A transversal configuration is made up of two lines l, m both intersecting a third line n. Same-side interior angles �, � of a
transversal configuration are the angles in the positions shown to the right.

Euclid’s Fifth Postulate:
If the same-side interior angles of a transversal configuration sum to less than 180� , then the lines l and m intersect on that side
of the line n.

Playfair’s Parallel Postulate:
Given a line m and a point P not on the line, there is exactly one line through P that is parallel to m.

Theorem being proven:
Euclid’s Fifth Postulate implies Playfair’s Parallel Postulate.

Paul C. Dawkins and Dov Zazkis Reading Study 2016 5 / 12

Sets

Definitions:
1 Given a set of numbers A, we define the complement of A, written Ac , to be the set of all elements not in A.
2 If all numbers are in A, we say A is the universal set, written A = �.
3 If no numbers are in A, we say A is the empty set, written A = �.
4 These two sets are complements of each other: �c = � and �c = �.
5 Given two sets A and B, we define the union of A and B, written A � B, to be the set of all numbers that are in A or in B

(or in both).
6 Given two sets A and B, we define the intersection of A and B, written A � B, to be the set of all numbers that are in A

and in B.

Theorem being proven:
For any two sets A and B, Ac � Bc = (A � B)c .

Paul C. Dawkins and Dov Zazkis Reading Study 2016 8 / 12

Triminos

Theorem being proven:

For any positive integer n, a 2n � 2n square grid with any one square removed can be covered with L-shaped tiles.
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because students did not exhibit particular ROMP activities uniformly throughout each text and 
students’ ability to construe each proof normatively did not appear to correlate with their ROMP 
experience. The final goal of the analysis is to identify parent categories of ROMP activities that 
can be assessed for each proof text along with indicator activities specific to each proof that can 
be used to represent each student’s reading of that text. It is beyond the scope of this report to 
present these categories and indicators. Rather, in the following section we present some 
representative reading phenomena observed that demonstrate the fruitfulness of this assessment 
methodology and the complexity of student ROMP activities. Figure 2 presents the first proof 
that students interpreted, that will be referenced in the data presented.  

 

 
Figure 2. Proof characterizing primitive Pythagorean triples (adapted from Rotman, 2013).  

Results 
In this section we exemplify of four ROMP phenomena that we observed in our interviews: 

1) computational and inferential orientations, 2) low-level construal of proof claims, 3) ongoing 
revision of proof construal, and 4) patterns of identifying and stating warrants.  

Computational and Inferential Orientations 
We observed that some novice readers interpreted the proof texts using what we call a 

computational orientation while more experienced and effective readers exhibited an inferential 
orientation. These two constructs relate to the textual metafunction. That is, they relate to the 
student’s sense of what kind of text is being constructed and what kinds of activities are relevant 
in such a text. The distinction was most prominent with regard to how students interpreted 
equations in proofs. We have reported more fully on this distinction elsewhere (Dawkins & 
Zazkis, 2018), so we shall merely describe this phenomena without extensive data. 

The first proof used the equation !! = !! − !! = (! + !)(! − !) in multiple ways. First, it 
is used to infer that if (! + !) and (! − !) are both multiples of !, then ! is also (L7, L11). 
Later, it was used to infer that since (! + !) and (! − !) had no common factors they are both 
perfect squares (L13). Students who exhibited a computational orientation saw the equation and 
the introduction of ! as a factor of (! + !) and (! − !) as an opportunity to substitute into the 
equation and solve for certain variables. They made meaning of the text using practices that were 
native to the mathematics courses they had thus far completed in college (calculus and 

Primitive Pythagorean Triples

Theorem being proven:
For every primitive Pythagorean triple (a, b, c) there exist some numbers s and t with no common factors such that s > t � 1

where a = st , b = s2�t2
2 , and c = s2+t2

2 .

1 Let (a, b, c) be a primitive Pythagorean triple.

2 Then a2 = c2 � b2 = (c + b)(c � b).

3 We want to show that (c + b) and (c � b) are both squares and share no common factors.
4 Suppose that d is a common factor of both (c + b) and (c � b).
5 Then d is also a factor of (c + b) + (c � b) = 2c and a factor of (c + b) � (c � b) = 2b .
6 So both 2b and 2c are multiples of d .
7 If d is factor of both b and c , then d is also factor of a.
8 This contradicts (a, b, c) being a primitive Pythagorean triple.
9 Since d is not a factor of both b and c, d divides 2.

10 Hence d is 1 or 2.
11 d divides a, which is odd, thus d cannot be 2.
12 Thus d = 1 and (c + b) and (c � b) share no factors greater than 1.

13 This means that (c + b)(c � b) = a2 implies that (c + b) and (c � b) are both perfect squares.

14 So there are some numbers s2 and t2 such that(c + b) = s2 and (c � b) = t2.
15 s and t share no common factors as established above.
16 Clearly, s > t � 1.

17 Finally, c = s2+t2
2 , b = s2�t2

2 , and a =
�

(c + b)(c � b) = st

Paul C. Dawkins and Dov Zazkis Reading Study 2016 4 / 12
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differential equations). We understood this as construing the proof as a different kind of 
mathematical text than was actually being produced. These students often exhibited great 
perturbation in sense making, and articulated desire to deal with the equations in familiar “plug-
and-chug” ways. Students exhibited an inferential orientation when they interpreted the equation 
as a means of inferring the properties of the various quantities in the equation (as is intended).  

Low-Level Construal of Proof Claims 
Low-level construal of proof claims refers to the quality of the mental model students build 

of the information presented in the text. This relates both to the model of the line currently being 
read and how students’ interpretation/recall of previous lines affects their reading of the current 
line. We report Novice 1’s (Nov1) ROMP activity to exemplify this construct.  

A number of steps in the primitive Pythagorean triples (PPTs) proof (Fig 2) related to which 
numbers shared common factors (definition of PPT, L3, L4, L7, L12, L15). This relation thus 
appears in the proof with reference to at least four sets of numbers: (!, !, !), ((! + !), (! − !)), 
(2!, 2!), (!, !). Some relations are assumed by hypothesis (L1), some are assumed toward a 
contradiction (L7), and others are inferred from other properties (L15). When Nov1 read the 
definition of PPT, he said, “Run of the mill Pythagorean triple that I’ve learned since high 
school.” He showed no sign of attending to the word “primitive” or how it modifies the meaning 
of Pythagorean triple by incorporating an additional no common factors stipulation.  

When Nov1 read L4, he correctly noted that ! would be used to accomplish the goals stated 
in L3, likely using proof by contradiction. Nov1 justified L5 by imagining factoring ! out of the 
expressions (! + !) and (! − !) and then factoring again to show that both sides of the 
equations are multiples of !. He made a similar argument for L7, except applied to the equation 
in L2. His reasoning suggests his meaning of “factor of” in terms of being able to factor a term 
out of an expression was productive in helping Nov1 justify certain inferences. He also seemed 
aware of the goal stated in L3 regarding “no common factors” and how ! would be used to 
accomplish that goal. After reading L7, the interviewer asked what Nov1 expected to follow: 

A little up in the air because of the assumption it would be proof by contradiction 
because in the assumption of the, it said that “with no common factors,” even 
though that, in the next coming line we are going to be moving towards “! does 
not work for both ! and !.” [The interviewer asked him to elaborate.] Because the 
theorem being proven it says that there are some numbers with no common 
factors, but then again that’s, yeah. But that’s for ! and ! and I just transferred that 
assumption to ! and !, but I don’t know. If ! and ! have no common factors, oh, 
but ! and ! already have a common factor of 2 because they are both being 
divided by 2, or ½ I should say. So the assumption that, from what I derived from 
the theorem being proven, it’s being misassigned to ! and ! and not necessarily to 
!!!!!
!  and !

!!!!
! . So I am excited to see what this next line says.  

This marked a shift in Nov1’s ability to track the inferences being made. He began trying to 
interpret L7 in terms of the properties of ! and ! (part of the theorem’s conclusion). He also 
inferred that ! and ! are divisible by 2 based on the equations in the theorem’s conclusion.  

After reading L8, Nov1 questioned his prior claims and decided that L8 was referring to the 
“no common factors” claim in the definition of PPT. He did not elaborate further on how this 
revised his interpretation of the proof. When Nov1 read L9, he was able to explain the claim with 
reference to L6. He exemplified this inference when 2! = 10 and 2! = 14. The interviewer 
asked what the rest of the proof needed to accomplish, and part of Nov1’s reply was: “What the 
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last couple of lines have been is giving the evidence and basically proving in a more theoretical 
way that !, !, and ! share no common factors, and so the next part of the proof will be defining 
! and ! in terms of ! and ! so that they will have no common factors.” When Nov1 read L12 that 
explicitly refers back to the goal in L3, he again concluded that this line verified that !, !, and ! 
share no common factors. 

Nov1 read the last part of the proof frequently using the conclusions of the theorem to justify 
proof claims. He used the equations in the theorem statement to justify L14. Reading L15, Nov1 
said that it was self-explanatory because it was stated in the theorem. In his explanation, he 
referred to factors of ! and !, ! and !, and (! + !) and (! − !), but he showed no sense of 
dependence among these claims. Rather, he said this line simply reminded the reader of what had 
been done, since everything was being redefined in terms of ! and !. He similarly noted that L16 
was “a statement made in the theorem.” After he had read the entire proof, Nov1 reflected, “I 
would have plugged and chugged would have to worked to get this expression from that 
expression. But I would have skipped all the 2! and 2! and the common factor stuff.” 

To summarize, in Nov1’s ROMP activity he was quite successful at using equations to show 
that if some constituents had a factor of !, then others would also. He used his meaning for 
factor to connect L9 to L6 using particular examples (c.f., Weber, 2015). He recognized the 
beginning of proof by contradiction in light of the goals stated in L3. Less productively, it 
appeared that he only became aware of the “no common factors” stipulation in the definition of 
PPT when it was used in L8. He initially tried to make sense of that line in terms of the “no 
common factors” claim in the theorem’s statement. In this middle section of the proof, he 
seemed to lack a clear sense of “no common factor” claims were known and which required 
justification. As a result, his emerging construal of the proof began to completely reverse the 
intended relationship between hypotheses and conclusions. Nov1 reached the point of claiming 
that L12 proved that property held for (!, !, !) rather than for ( ! + ! , ! − ! ).  

We argue that Nov1’s weak image of what was taken as hypothesis in the proof influenced 
the way that he confused the various “no common factor” claims. For lines that clearly stated the 
hypotheses and conclusions, he produced valid justifications. However, he never developed a 
clear sense of what the overall proof began assuming and how the set of claims proven grew over 
the course of the text. This is why we describe this as a low-level construal of proof claims. This 
account of Nov1’s sense making of the text helps explain why he ended the reading unable to 
explain the necessity of the middle section of proof.  

We observed other forms of this construct, especially among novices. This often seemed to 
result from a weak understanding of the underlying concepts. For instance, students who thought 
about “! is a factor of (! − !)” in terms of the process of dividing, rather than being made up of 
units of !, and students who had trouble thinking of (! − !) as a unit all tended to have trouble 
building a mental model of what was assumed and what needed to be shown. Like Nov1, such 
students ended up trying to draw inferences from the equations in the theorem’s conclusion 
because they seemed to provide richer resources for sense making.  

Ongoing Revision of Proof Construal 
This construct represents a complex form of bridging inference (Magliano et al., 2011). It 

describes when students revised their existing model of the proof’s prior claims in light of later 
lines. As an example, Experienced 5 (Exp5) could not recall which claim was assumed as true in 
the wording “Euclid’s Fifth Postulate (EFP) implies Playfair’s Parallel Postulate (PPP).” Because 
the proof begins with the hypotheses of PPP (Zandieh, Roh, & Knapp, 2014), he inferred that 
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“implies” meant to assume PPP and prove EFP. Exp5 initially interpreted that L1 assumed PPP 
was true. It was not until L6 when the proof applied EFP that the student decided EFP was the 
hypothesis and PPP the conclusion. He supported this by revising his understanding of L1 as 
assuming only the hypotheses of PPP rather than assuming the entire claim.  

Some novice readers exhibited less productive examples of ongoing revision when they read 
L8 of the Pythagorean triples proof. They inferred that the contradiction denied the hypothesis in 
L1 rather than the hypothesis “! is a factor of both ! and !” from L7. Once they concluded that 
L8 stated that !, !, !  is not a primitive Pythagorean triple, they rightly expressed difficulty 
making sense of the argument when the object in question was not in the relevant category. Our 
moment-by-moment methodology uniquely provides access to this type of ongoing forming and 
reforming of models for what proofs claim to be true.  

Identifying and Stating Warrants  
The final notable pattern of ROMP activity we present in this report dealt with the ways 

students sought and stated warrants for inferences made in proofs. The interview protocol often 
invited students to explain why particular lines were justified, which for us meant to identify 
warrants. More experienced readers tended to be more adept at this practice and we observed key 
differences among the kinds of warrants sought and produced. Nov1’s reasoning about L5 above 
exemplifies an enacted warrant in which he justified the inference by describing how particular 
manipulations could be made to show that ! would be a factor of an expression. This constituted 
a mini-proof of the relevant warrant. Nov1’s reasoning about L9 above is an example of 
justification by example, which does not constitute a valid warrant, but nevertheless provides 
some support for the claim. More experienced students were more often observed trying to state 
warrants in general form. For example, they articulated that L5 is justified because the sum [or 
difference] of any two multiples of ! is also a multiple of !. Finally, Graduate 1 was able to cite 
a relevant warrant for L5, namely that any linear combination of multiples of ! is also a multiple 
of !. Across our interviews, we observed a range of ROMP activities within which students with 
more experience exhibited greater tendency to seek warrants and where more adept at identifying 
particular inferences as instances of a general mathematical fact.  

Discussion 
This paper presents findings from our adaptation of the moment-by-moment reading 

assessment methodology to the reading of mathematical proof. We identified several novel 
ROMP activities that emerged in our interviews that justify the value of the methodology. The 
first phenomena distinguishes between the kinds of practices that students used to make sense of 
the proof texts and relates to the textual metafunction of mathematical texts. We anticipate that 
this finding that novice readers try to make sense of proofs using expectations from other 
mathematical texts could be fruitfully explored in the context of introduction to proof instruction. 
This pattern of ROMP sense making may help explain why Inglis and Alcock (2012) found that 
novice readers attended more closely to equations in proofs while experts attended to the 
surrounding text, which contains logical connectives. We hope that these other ROMP activity 
constructs can be further harnessed in later investigations to better understand how students 
make meaning of proofs they read and how that process develops over time. Ongoing work 
intends to find ways to adapt this methodology into an efficient assessment tool that can be more 
quickly administered and coded. This will contribute more insights about the process of reading 
to supplement the existing assessments of end reading comprehension and proof validation.  
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Professors Intentions’ and Student Learning in an Online Homework Assignment 
 

Allison Dorko 
Oklahoma State University 

 
Homework accounts for the majority of undergraduate mathematics students’ interaction with 
the content. However, we do not know much about what students learn from homework. This 
paper reports on a pilot study of why professors chose particular homework problems, what they 
hoped students would learn from them, and whether students’ engagement with the problems 
reflected those outcomes. Results show students gained the desired familiarity with notation and 
procedures. The results also speak to how professors manage the content between what they 
discuss in class, homework problems, and intentional overlap between the two.  
  
Key words: online homework, sequences, instructional triangle, calculus 
 

Background and Theoretical Perspective  
 

 One way researchers have conceptualized mathematics instruction is as “interactions 
among teachers and students around content, in environments”  (Cohen, Raudenbush, & Ball, 
2003, p. 122). In this perspective we can think of instruction as a triangle that relates the teacher, 
the knowledge at stake (content), and the student (Figure 1). The student vertex includes the 
mathematical tasks students work on and the milieu in which they experience those tasks. A milieu 
is a “counterpart environment[s] that provides feedback on the actions of students” (Herbst & 
Chazan, 2012, p. 9). The interactions among the vertices are governed in part by the didactic 
contract (Brousseau, 1997), the set of implicitly-negotiated expectations between teachers and 
students. For example, students expect professors to provide opportunities to learn the knowledge 
at stake. Professors expect students to do the tasks (or other activities) that represent learning 
opportunities. At the undergraduate level, an important component of the didactic contract is the 
expectation that students will spend significant time out of class interacting with the knowledge at 
stake (Ellis et al., 2015). 

 
 

Figure 1. Instructional triangle (Ellis et al., 2015, p. 270; Herbst & Chazan, 2012, p. 10). 

Homework represents the primary milieu for students’ out-of-class learning. University 
calculus I students spend more time doing homework than they do in class (Ellis et al., 2015; 
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Krause & Putnam, 2016). As such, homework accounts for the majority of students’ interaction 
with mathematics content and mathematics tasks (White & Mesa, 2014). White and Mesa (2014) 
found instructors view homework in general as a way for students to learn through repetition, 
understand algebraic manipulations, and apply mathematics to realistic situations. However, we 
do not know much about what students learn from homework. 

LaRose (2010) found homework improved students’ ability to do procedural integration 
problems. There is evidence that students frequently complete textbook exercises by focusing on 
superficial features and finding procedures to mimic (Lithner, 2003). We also know that in the 
case of online homework, students sometimes guess answers (Dorko, 2018; in preparation; Hauk 
& Segalla, 2005) or sometimes type entire problems into search engines (Krause & Putnam, 2016). 
However, there is also evidence that students engage in mathematical sensemaking when doing 
online homework (Dorko, 2018; in preparation; Krause & Putnam, 2016). Homework has the 
potential to be a powerful learning environment and research about the nature of students’ 
reasoning while doing homework and what they learn from different sorts of homework tasks can 
help instructors design homework assignments that more effectively influence students’ cognitive 
activity.   

Toward that end, this paper reports on a pilot study of student learning from homework. I 
sought to answer the research questions (1) why did two calculus II instructors choose the 
particular problems they did and (2) did nine calculus II students learn what instructors intended 
they learn from each of fourteen problems in an online homework assignment about sequences? 
While limited in scope to one assignment, the results provide initial information about what 
students might reasonably learn from an online homework assignment. Additionally, themes in the 
professors’ intentions for the problem talk back to the theory by providing insight into how the 
professors managed the knowledge at stake across multiple milieu.  
 

Data Collection  
 

The data presented here come from video recorded interviews with two calculus II 
professors, and video recordings and follow-up interviews with 9 calculus II students. The data 
were collected in the fall and spring semesters at a large public university in the U.S. Calculus II 
at this university is a coordinated course in which a course coordinator chooses a set of online 
homework problems for each section. Each professor assigns some or all of the problems the 
course coordinator chose. In the professor interviews, which occurred prior to the student 
interviews, each professor viewed the coordinator’s 14 chosen problems for section 10.1, 
sequences. The professors had each taught the course numerous times and the problems were not 
new to them. For each question I asked, “would you assign this problem and why or why not?” If 
the professor would assign the problem I asked, “what would you hope students would learn from 
this problem?” I transcribed both interviews and listed what the professors hoped students would 
learn from each question. I then wrote questions for the student interviews based on this list, with 
the goal that students’ verbal answers and written work would lend insight into whether the student 
had achieved the professors’ goals for the problem. For example, in Question 1 (Figure 2), 
Professor B hoped students would “solidify their understanding of factorials”, so I asked students 
“how familiar are you with factorials?”. Professor A said of the sequence -1, 1, -1, 1, … with 
general term cos	(&') would  
Excerpt 1. Professor A discussing the sequence -1, 1, -1, 1 with general term cos(&') 
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Professor A: [This one] is sort of a good idea because it shows that a sequence can be simpler 
than the way it’s defined.  

Hence I asked students “were you struck by the fact that the sequence -1, 1, -1, 1, … is fairly 
simple, but is defined by a trig function?” As another example, Professor B chose not to assign a 
question that asked about the convergence of an= (3/8)n, but Professor A said he would assign this 
because 
Excerpt 2. Professor A discussing a question that asked about the convergence of an= (3/8)n 

Professor A: I think this will naturally get them thinking more about this as a discrete set of 
numbers [instead of a continuous function].  

 Hence I asked students if they had a mental image of that sequence and if so, I asked them to 
describe or sketch their mental image. If students described or sketched a line, I asked “do you 
envision this sequence as a line or a set of points?”  
Match each sequence with its general term. (Assume & ≥ 1) 
(a) +, ,

,
. ,

.
/ ,

/
0 , …     (b) -1, 1, -1, 1, …        (c) 1, -1, 1, -1, …       (d) +, ,

,
/ ,

2
3 ,

,/
+2 , …  

cos	(&')       4!,6          4
47+        sin	(&')        (-1)n+1 

Figure 2. Question 1 in the online sequences homework. 
Each calculus II student met with me twice. In the first session, I video recorded them doing 

their online 10.1 homework. I did not interrupt students except to ask what they had typed on 
calculators. I photocopied students’ written work from the session, their class notes, and any 
supplemental materials they viewed. In the second session, the student and I watched the video. I 
paused the video to ask students questions about what they did and why and to ask each question 
I had generated from the professors’ lists of the knowledge at stake.  

 
Data Analysis: Why Professors Chose the Problems that they Did  

 
I employed the constant comparative method (Strauss & Corbin, 1994) to identify themes 

in why the professors chose the questions they did. The professors stated their reasons for choosing 
the problems in terms of what they hoped students would learn from them, so the data source for 
this analysis was the same list generated above. I read through the list looking for similarities in 
the motivations the professors expressed with the items. For example, professors mentioned 
including problems because a particular notation or operation would be important in future topics 
(e.g., the notation shown in Question 4, Figure 3). Other problems they included to elicit shifts in 
students’ cognitive activity. For example, in Question 4, Professor B said  
Excerpt 3. Professor B discussing question 4 (figure 3) 

Professor B: I know from experience that many of them are going to say c1 is 1/5, c2 is 1/8, c3 
is 1/11… because this notation is, is very unfamiliar to them, this idea of a sum with a 
variable at the end. [I hope] they would get comfortable with the idea of this kind of 
notation for a partial sum, and so when in the next section we start doing this all the time, 
they’ve at least done it for themselves one time. 

I continued searching for similarities until I believed I had exhausted them all, then wrote an 
initial set of categories and their criteria. Following this, I applied the criteria to code all the items 
again, which allowed me to refine the criteria and to ensure each item belonged to at least one 
category (that is, to ensure the categories adequately described all the data). The resultant themes 
are presented in the next section. 
Calculate the first four terms of the given sequence, starting with n = 1. 
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:4 =
1
5 +

1
8 +

1
11 +⋯+ 1

3& + 2 
 
c1 = _____        c2 = _____     c3 = ______          c4 = _____         

Figure 3. Question 4 in the online sequences homework. 
 

Results: Why Professors Chose the Problems that they Did  
 

Table 1 shows the themes in why the professors selected the problems they did. These 
themes are not mutually exclusive, and any particular instance of student work could be coded as 
representing multiple themes.  
Table 1. Themes in professors’ reasons for assigning particular questions  
Category Examples 
Students will engage with a skill/concept specific to the 
content of section 10.1.  

Excerpts 1, 2, 3 

Students will engage with a skill/concept that is important for a 
future topic.  

Excerpt 3 

Students will make a connection back to a prior skill/concept 
(either from the current course or a past course). 

Both professors hoped 
students would recall the 
use of dominant terms to 
find the limit of the 
sequence B4 = C74D.4E

C4E7.  
Students will build number/operation sense (familiarity with 
numbers and operations.  

The professors wanted 
students to gain familiarity 
with factorials, powers of -
1, powers of 2, etc.  

The professor would refer to the problem in class.  Excerpt 3 
Students will experience a cognitive shift (think about 
something in a different way). 

Excerpt 2, 3 

 
The theme ‘Students will engage with a skill/concept specific to the content of section 10.1’ seems 
obvious, but this category helped distinguish statements professors made about students 
connecting back to a prior skill from statements about something new in section 10.1 (e.g., 
notation). I discuss these findings later in the paper.   
 

Data Analysis: Did the Students Learn what the Professors Intended?  
 

 To analyze whether students learned what instructors intended from each question, I took 
each item from the previously-generated list of what professors hoped students would learn from 
each question and identified what would suffice as evidence that a student had met that outcome. 
Identifying what I would take as evidence was an iterative process in which I looked at the data 
from all students (all 9 students’ written work and answers to the interview prompts) while I was 
trying to determine what would suffice as evidence. Because this was a pilot study and there is so 
little literature about student learning from homework, I did not know how to define “learning” for 
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this context or what might count as evidence of it, so I was unable to establish a priori what 
evidence of learning might be. Looking at what students had done for each question helped me 
determine what it might mean for students to learn a particular part of the knowledge at stake. For 
example, in many of the questions (e.g., Question 4, Figure 3), the professors wanted students to 
gain familiarity with notation. Looking at student data for these questions helped me determine 
that if a student answered those questions correctly, they had made sense of the notation.  
   

Results: Did the Students Learn what the Professors Intended? 
 

 On the whole, the nine students achieved the goals the professors stated regarding gaining 
familiarity with notation, operations (e.g., factorials), number sense, vocabulary, and procedures. 
However, the students seldom noticed nuances the professors hoped they would notice in particular 
problems. I present brief examples of each below. These students’ responses were representative 
of the entire group.  
 
Familiarity with notation, operations, number sense, vocabulary, and procedures 
 There were two problems in which professors hoped students would gain familiarity with 
notation. One (Question 2) was making sense of subscripts: students were given a formula for an 
and directed to generate terms for bn = an+1, cn = an+3, and dn = 2an – an+1. Professor A said notation 
“tends to trip them up”, so I inferred he wanted students to become familiar with subscripts. 
Professor B said “I want them to be very comfortable with what an+1, an-1, what that does in the 
sequence.” All students computed the terms correctly (some taking multiple attempts), which I 
took as evidence that they had made sense of the subscripts. I also asked students to describe what 
the subscripts meant, and they made statements such as “you would just go to like the term after… 
on this one you had to go to the third term after”. Question 4 (Figure 3) was the other problem the 
professors thought was important for notation. Professor B said “I know from experience that many 
of them are going to say c1 is 1/5, c2 is 1/8, c3 is 1/11… because this notation is, is very unfamiliar 
to them, this idea of a sum with a variable at the end. [I hope] they would get comfortable with the 
idea of this kind of notation for a partial sum, and so when in the next section we start doing this 
all the time, they’ve at least done it for themselves one time”. Five of the students computed the 
terms correctly on their first try, indicating they had made sense of the notation. The other four 
made the error Professor B predicted, then computed the terms correctly on their second try. I took 
these correct computations, and students’ descriptions of how they thought about the problem, as 
evidence that they made sense of the notation. For example, one student said at first she thought 
the 1/(3n+2) was “the pattern, like in the previous question” in which she had been given a general 
term. She described that after seeing her initial answers were wrong, “I realize[d] it was adding 
the terms and not just like the individual [fractions]”. Another student said “I learned what to look 
for, and the difference between… a sequence and a sum.”  
 Like the analysis regarding whether the students made sense of the new notation, my 
criterion for items the professors stated about familiarity with operations and number sense was 
primarily whether or not the students answered the problems correctly. For example, the professors 
felt questions like number 1 (Figure 2) and number 3, computing terms of 9n/n!, would help 
students “recogniz[e] you know factorials, powers of 2, changes of sign… they’re getting to 
practice that” and “they’re getting to use powers, maybe a power they’re not familiar with… so 
they’ll see how those numbers come out”. I took correct answers to problem 1 (Figure 2) as 
evidence students gained familiarity with factorials, powers of 2, and changes of sign because 
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students either seemed to do this in their heads (writing nothing or typing nothing into a calculator) 
or took the general terms and wrote the first several terms of the sequences before matching the 
answers. That is, students appeared to engage in the computations with the general terms in 
question 1 and this engagement represented their gaining more familiarity with particular powers 
and operations. In question 3, computing terms of cn = 9n/n!, six students either did the factorial 
calculations in their heads and/or wrote the factorials as products (e.g., (94)/(1*2*3*4)). I took this 
as evidence that they gained familiarity with the factorial. Three students typed the 9n/n! into their 
calculators. The calculators outputted simplified answers, which did not give students an 
opportunity to see powers of 9 or how the factorial affected the terms.  
 Five questions with various sequences were stated like Question 9 (Figure 4) in which 
students selected a multiple choice option that Professor A considered “checking vocabulary.” 
Though students did not answer all these questions correctly, with one exception, they always 
checked ‘converges’ if they inputted a limit that was a real number and ‘diverges’ if they inputted 
¥ or -¥. Two students looked at the definition of converge in the textbook or their notes. I took 
this and the internal consistency of all students’ answers to the two parts of the problem as evidence 
that they either knew what ‘convergence’ and ‘divergence’ meant before starting the assignment, 
or (in the case of the two students who looked up the definitions) they learned it while doing the 
assignment.   

 
Figure 4. Question 9 in the online sequences homework. 

  
In questions like question 1 (Figure 2), questions 2 and 3 (described above), and question 

4 (Figure 3), the professors described they wanted students to become familiar with the procedure 
of generating terms of a sequence. All of the students answered these questions correctly, which 
served as partial evidence that they had gained familiarity with the procedures in each case. In 
summary, on the whole the nine students achieved the goals the professors stated regarding gaining 
familiarity with notation, operations (e.g., factorials), number sense, and vocabulary.  

These results support the efficacy of an online homework program with multiple attempts 
per question for helping students make sense of new notations, gain familiarity with operations 
and powers of numbers, learn the meanings of new vocabulary, and practice procedures. An 
important caveat is that if the goal is for students to gain familiarity with operations (e.g., 
factorials), it may be best to encourage students to write computations by hand instead of relying 
on a calculator.  
 
Nuances    
 While the homework problems supported students in learning or practicing notation, 
procedures, and operations, students largely missed the nuances the professors hoped students 
would notice in the problems. This may be because the professors’ goals for the problems asked 
for something that was not a necessary conception for the students to have in order to get the 
correct answer, and not a connection that was directly asked of the students. For example, no 

22nd Annual Conference on Research in Undergraduate Mathematics Education 177



student picked up on Professor A’s desired take-away for cos	(&') and the sequence -1, 1, -1, 
1, … (Excerpt 1). Calvin, one of the students, said 
Excerpt 4. Calvin discussing cos	(&') and the sequence -1, 1, -1, 1 

Interviewer: Did it surprise you… so we have a sequence that’s fairly simple, right? Because     
 it’s -1, 1, -1, 1 but it’s defined with a trig function. 
Calvin: I mean not really. I mean back when I was first learning trig stuff, like the emphasis 

on the graph and how it was alternating… I didn’t really think about it. 
Similarly, students did not imagine an = (3/8)n as a discrete set of points, as Professor A intended 
(Excerpt 2). The students who described mental images of this sequence described or drew 
continuous functions.  
 In the next section, I discuss the results and make connections between the themes in why 
the professors chose the problems and whether students learned what the professors intended. 
 

Discussion and Conclusion 
 

 These results support others’ findings that online homework can improve students’ fluency 
with procedures and notation (LaRose, 2010). However, students missed some of the nuances the 
professors hoped they would take away from the problems. There were two problems professors 
hoped would cause cognitive shifts for students, but only one problem was successful in doing so. 
Professors chose problems that helped students recall prior learning and connect it to the new 
content, problems for students to practice content particular to sequences and their computation, 
problems that would provide a foundation for future content, problems they wanted to talk about 
in class, and problems that they hoped would cause students to think about something differently. 
This list could be informative for new instructors in thinking about what to include in a homework 
assignment.  
 White and Mesa (2014) found variation in the cognitive orientation of tasks across milieu 
(homework, worksheets, exams) and instructors. The professors in this study selected problems 
that were largely procedural, expressing they wanted students to be exposed to these problems 
beforehand so they could discuss the details in class. For example, in a problem that directed 
students to use limit laws and theorems to find the limit of an = 9n/n!, Professor B said he did the 
example 11n/n! in class …  
Excerpt 5. Professor B discussing an = 9n/n! 

Professor B: … so it, it went up for a bit longer before it started to come down… they either 
didn’t know the limit or they thought the limit was infinity. And then you know I talked through 
factoring everything and realizing that after we get to this peak, things start to come down, and 
they start to come down kind of fast because we’re multiplying by these numbers that are less 
than 1 all the time….We have to actually manipulate the factorial as a product now to, to see 
the answer. 

Similarly, the professors wanted the students to have experienced computing partial sums so they 
were familiar with it for the lesson on series (Excerpt 3). In summary, the findings suggest the 
professors made intentional decisions about managing the knowledge at stake across milieu.  
 These results have many implications for future research. One avenue would be 
investigating what students learn from homework problems that are more conceptual in nature. In 
particular, online homework platforms have the advantage of allowing students multiple attempts 
and providing immediate feedback, and research should examine how we can leverage these 
systems to influence the cognitive bases of students’ activity. 
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Abstract: Recently, Ely & Ellis (2018) described a new mode of covariational reasoning—
scaling-continuous reasoning—and conjectured that it might support productive student thinking 
in calculus. We investigate that hypothesis by analyzing how calculus students employed 
scaling-continuous covariational reasoning when discussing differential calculus ideas. The 
interviewed students who took a course based on a “local straightness” approach to calculus used 
scaling-continuous reasoning in their description of the derivative at a point, particularly in their 
imagery of zooming in on a function at a point to reveal its slope. The interviewed students who 
took a course based on an “informal infinitesimals” approach to calculus used scaling-continuous 
reasoning in their account of how zooming in on a neighborhood reveals the coordination 
between a bit of x (dx) and the corresponding bit of y (dy), a relationship that gives a differential 
equation for that curve.  
 
Keywords: covariation, differential, infinitesimal, local straightness, derivative 
 

Ely and Ellis (2018) proposed the category of scaling-continuous variational/covariational 
reasoning and hypothesized ways it could productively support student reasoning in calculus. We 
build on this idea by investigating if and how scaling-continuous reasoning could support student 
understanding in single-variable differential calculus.  
 

Theoretical Background 
The idea of scaling-continuous reasoning is grounded in significant ongoing research on 

variational and covariational reasoning (e.g., Carlson, Jacobs, Coe, Larsen, and Hsu, 2002; 
Carlson, Persson, and Smith, 2003; Castillo-Garsow, 2012; 2013; Castillo-Garsow, Johnson, and 
Moore, 2013; Confrey & Smith, 1995; Saldanha & Thompson, 1998; Thompson, 1994; 
Thompson & Carlson, 2017; Thompson & Thompson, 1992). We briefly summarize several 
categories that are prominent in this research, as recently synthesized by Thompson and Carlson 
(2017). For a single quantity, chunky-continuous variational reasoning involves imagining that 
changes in a variable’s values occurs only in completed iterated chunks, but without a clear 
image of how the variable actually takes on the intermediate values within each chunk. For two 
quantities, chunky-continuous covariational reasoning describes chunky reasoning with two 
quantities simultaneously: one quantity is taken in chunks, with corresponding chunks in the 
other quantity, but with no clear image of variation co-occurring within the chunks. Smooth-
continuous variational reasoning entails an image of a changing quantity that smoothly changes 
in time. The reasoning can imagine the variable’s magnitude increasing in bits, but 
simultaneously anticipates smooth variation within each bit (Thompson & Carlson, 2017). 
Smooth-continuous covariational reasoning involves smooth variation in both quantities at the 
same time, including the understanding that smooth change in one quantity, no matter how small, 
can correspond to simultaneous smooth change in the other quantity. According to Thompson & 
Carlson (2017), smooth-continuous variational and covariational reasoning requires reasoning in 
terms of something moving in time. They describe smooth-continuous covariation essentially in 
terms of two quantities parametrized by an underlying time variable: “The coordination of 
quantities’ values is like forming the pair [x(t), y(t)], where “t” stands for a value of conceptual 
time” (2017, pp. 444-5). Smooth-continuous reasoning has been shown to be robust and 
productive in calculus (e.g., Castillo-Garsow, 2012; Castillo-Garsow, Johnson, and Moore, 
2013).  
 Scaling-continuous variational reasoning entails the image that at any scale the continuum 
remains continuous and that a variable takes on all of its values in that continuum. The 
continuum can be zoomed in on arbitrarily or even infinitely, and at no scale will it be revealed 

22nd Annual Conference on Research in Undergraduate Mathematics Education 180



as discrete or having holes. Scaling-continuous covariational reasoning involves imagining re-
scaling or zooming in on an increment of one variable quantity and coordinating that with an 
associated re-scaled increment of another variable quantity. For instance, one can envision 
shrinking or expanding a window of x-values and at every scale is a corresponding re-scaled 
window of y-values determined by the correspondence between increments of x and y. Unlike 
smooth-continuous reasoning, this does not fundamentally rely on an image of motion or an 
underlying time parameter. Scaling-continuous reasoning itself entails the idea that it is possible 
to zoom arbitrarily to any (finite) scale, but it plausibly requires another mental act to generalize 
or encapsulate this to develop an image of zooming in infinitely, revealing infinitesimal 
increments. We also note that scaling-continuous reasoning does not by itself entail the ability to 
effectively calculate at any scale (just as smooth-continuous reasoning does not alone entail the 
ability to effectively calculate change in one quantity in terms of change in another). 
 

Method 
Each author taught a calculus class using different non-traditional approaches—local 

straightness (Samuels) and informal infinitesimals (Ely)—conducting various semi-structured 
interviews investigating the reasoning of students in the classes. For this study, we analyzed 
these interviews with an eye to how different types of covariational reasoning manifested. 
 
Setting 1: A Calc I class with a local straightness approach 
 Author 2 (Samuels) taught a Calculus I class using local straightness as a cognitive root (Tall 
& McGowen & DeMarois, 2000) for the derivative and the integral. Local straightness is the 
property that zooming in at one point on the graph of a function of one variable reveals a (nearly) 
straight line when the function is differentiable at that point, and the slope of the line is the 
derivative at that point (Samuels, 2017). Student-centered guided discovery activities were at the 
core of the curricular design.  
 Students first developed the idea of the derivative at a point by engaging in activities using an 
applet with two windows. One window contains the graph of the function on a fixed scale. The 
second window graphs the function centered at a variable point on the graph on a variable scale. 
(The point and the scale can each be manipulated by the user with sliders; A box in the first 
window indicates which portion of the graph appears in the second.) After zooming in, students 
see a (mostly) straight line, and learn to associate the slope of that line with the slope or 
derivative at that point. (If the function is not differentiable at that point, a straight line never 
comes into view.) Questions and activities for the students included: describing what is visible 
during the zooming process, estimating slope at a point, and making a table of slope values. For a 
more detailed description of the approach, see (Samuels, 2017). Algebraic limits and their 
application to the slope difference quotient typically are presented as an entrée to the derivative 
(e.g. Stewart, 2012) and are seen as a necessary precursor to understanding the derivative 
(Zandieh, 2000); in this curriculum, they are reserved until the end of the course. The geometry 
of local straightness replaces the symbolic formalism of the limit definition as a way to conceive 
of the derivative. Further, in this approach, the slope object is not an encapsulation of a limit 
process, as it is when you move the second point along the graph toward a fixed point and secant 
lines must be understood to approach a tangent line. In that process, secant lines are first 
constructed as additional mathematical objects. Instead, the local slope is in some sense already 
there to be “found” for the student; once one zooms in close enough one can see the graph as 
being straight (enough) and thus having a slope. Here, no additional mathematical objects are 
constructed; rather, we take a different view of the existing graph. 
 
Setting 2: A Calc I class with an informal infinitesimals approach 
 In Fall 2016, the first author (Ely) taught a Calculus I course that used an “informal 
infinitesimals” approach in a large lecture (110 students). His purpose was to build calculus ideas 
in such a way that the notation transparently referred to quantities, rather than serving as a 
shorthand for the result of a limit process. This is in keeping with the imagery Leibniz had in 
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mind when developing the notation we still use for calculus: dx denotes an infinitesimal amount 
of x and ∫ represents a sum of infinitely many infinitesimal bits. The class used Leibniz’ 
heuristics for imagining infinitesimals, and his consistent rules for working with them. The 
purpose was to allow students to work directly with infinitesimal quantities using regular 
arithmetic and algebraic operations. For instance, dy/dx was a quotient of two infinitesimal 
quantities, not code language for lim!→!

! !!! !!(!)
!  . Although the development of the hyperreal 

numbers in the 1960s offers a formal system sufficient for rigorously grounding Leibniz’ 
approach (Robinson, 1961), the informal infinitesimals calculus class used Leibniz’ notation and 
imagery with very limited reference to the formal hyperreal numbers. For a detailed summary of 
how infinitesimals can be rigorously developed in this manner, see the appendix of (Ely, 2017). 
 An infinitesimal is a number or quantity smaller than any real number but larger than 0. In 
lecture, the instructor used the image of an infinitesimal distance as being revealed by zooming 
in infinitely on the real number line. For instance, if you zoom infinitely on the point 100 on the 
real number line, using an infinitesimal scale factor of ε:1, you can see a little neighborhood or 
“monad” around 100 that contains an entire world of numbers that are all infinitely close to 100, 
including numbers such as 100 + ε and 100 - 3ε. Infinitesimals such as 100 – 4ε2, are still 
indistinguishable from 100 at this zoom factor of ε; these are revealed by zooming again 
infinitely at 100 by another scale factor of ε:1, and thus are considered second-order with respect 
to the infinitesimal ε. This image can be formalized in the hyperreal numbers (e.g. Keisler, 
1986), although the informal infinitesimals class did not do so. 
 Focusing just on differential calculus, the class developed methods for deriving differential 
or “bits” equations from “amounts” equations. For example, y = x2 was seen as an equation that 
gives an amount y in terms of an amount x; its bits equation dy = 2x·dx provides a bit of y (dy) in 
terms of a bit of x (dx), which relies on the value x near which the variation is occurring. Later, 
after working with bits equations, we divided both sides of a bits equation by an infinitesimal to 
find the quotient of two bits near a particular x: i.e., dy/dx = 2x. In the special case where y is a 
function of x in the original amounts function, this quotient will also be a function of x, which 
enables the defining of that amounts function’s derivative function. Bits equations were also used 
extensively in the course as a basis for definite and indefinite integrals, a development that is 
beyond the scope of this article (but see Ely 2017 for more detail). 
 
Data collection 
 Both authors conducted semi-structured clinical interviews with students about a variety of 
topics from a Calculus I class they were just completing, 7 students that used the informal 
infinitesimals approach and 25 that used the local straightness approach. Interviews were 
analyzed for student use of various types of covariational reasoning. For this paper, we focus on 
how scaling-continuous reasoning manifested and supported student understanding and 
explanation of several important ideas in differential calculus. 
 

Results 
 
Scaling-continuous student reasoning in local straightness calculus class 
 Multiple students discussed the derivative using scaling-continuous reasoning. This occurred 
both in their general conception and in solving specific problems. For brevity, here we relate 
three excerpts, each with illustrative verbal and graphical components. 
 The interviewer asked Young to describe his process of determining the derivative of a 
function at a particular point x. He said that “[while zooming in] the line straightens out in the 
zoom window.” Subsequently, to explain this process, he drew the picture in Figure 2a. 

He indicated his focus on a single point with a black dot on the graph. He indicated his zoom 
action by drawing, first, a box around this point, and second, that box magnified. (The paper was 
rotated during the discussion.) Young’s work suggests he is using scaling-continuous 
covariational reasoning. He zooms, then draws a re-scaled window to show the imagined result 
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of the zooming action. In the magnified image, the zoomed-in neighborhood on the graph is 
represented as continuous, unbroken, and (essentially) straight. This straightness allows him to 
coordinate the vertical and horizontal variation in order to find a slope of the graph in that 
neighborhood.  

         
Figure 2. Tangent line sketches by:  (a) Young        (b) Carl         (c) Sam 
 
 To explain the derivative at a point, Carl drew a graph with a tangent line at one point. He 
then elaborated, “To get this tangent line, we learned from the lab that it could be there, and there 
(draws 3 lines going from curvy to straight, in Figure 2b), you zoom in enough, and it becomes a 
straight line. It’s got to become a straight line or you don’t have a derivative.” He focused on a 
unique point, and the nature of the function at multiple levels of zooming, a strong indication of 
scaling-continuous reasoning. 
 A third student, Sam, also used scaling-continuous covariational reasoning in his description 
of the derivative at a point and how it can be calculated. He goes further than the other two 
students in that he also distinguishes between zooming arbitrarily to get an approximate value 
and zooming infinitely to get an exact one: 
 
J: What is a derivative? 
Sam:  Derivative is slope at a point. That’s the bottom line. … If the graph is like this (draws 

image in Figure 2c), the derivative, as you zoom in, this is the tangent line. The derivative 
becomes more and more accurate.  

J:  So you also mentioned the tangent line. What does the tangent line have to do with the 
derivative? 

Sam:  The tangent line is the slope at a point. As the tangent line moves this way (gesturing to 
the right), it gets more and more steep. So that’s the derivative. 

J:  When you find the derivative, when you give an answer, is it approximate or exact? 
Sam:  It’s approximate. 
J:  Is there an exact answer? 
Sam:  If you zoom in infinitely. It’s not perfectly accurate. The main concept of finding the 

derivative, I think, is seeing this curve as a collection of straight lines. But it’s not really a 
collection of straight lines, it’s a curve. And the straight lines are the tangent lines.  

 
 Sam’s account of slope at a point uses scaling-continuous covariational reasoning in several 
ways. He indicates his focus on a single point with no secondary point with a single black dot on 
the graph. Like Young, he describes “zooming in” to find a derivative at that point, suggesting 
that each zoom entails a coordinated horizontal and vertical re-scaling. With each zoom, the 
derivative becomes more accurate, but it is still “approximate.” This indicates he is picturing 
scaling revealing covariation at an arbitrary level. Then he explicitly adds that one can “zoom in 
infinitely” to get an exact answer. His description indicates that he is generalizing his image of 
arbitrary re-scaling: at the infinitesimal scale there is still smooth covariation, and the graph has 
become perfectly straight, enabling the determination of an exact slope. His “collection of 
straight lines” metaphor is a way to hold both finite and infinite scaling conceptions; it was, in 
fact, also used by Leibniz (Katz, 1998). 
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Scaling-continuous student reasoning in informal infinitesimals differential 
calculus 

Several of the students who took the informal infinitesimals calculus class employed scaling-
continuous covariational reasoning when interviewed in their reasoning with differential notation 
and differential equations. For sake of brevity, we describe this with an illustrative segment of 
one interview. In this segment, the interviewer has asked the student, Roan, to describe the 
relationship between the amounts equation y = x2 and its corresponding bits equation dy = 2x·dx. 
The interviewer asks what the terms in the bits equation mean. Roan describes how the dx refers 
to an infinitesimal difference between two x values, and the dy refers to an infinitesimal 
increment between the two corresponding y values. The interviewer then asks what the x is doing 
in the equation. After some discussion, Roan asks if he can illustrate his thinking with the 
dynamic graphing program Desmos on his computer. He graphs the function y = x2 and then says 
that the bits equation dy = 2x·dx needs an x in it because for this function the dy’s will be 
different sizes depending on the dx’s. The interviewer then asks him to explain his thinking in 
terms of dx and dy increments. 
 Roan’s computer has a touch screen which enables him to zoom in and out on the graph in 
the Desmos program by using two fingers. He zooms in on the graph at the origin, and points out 
that near 0 “the proportion to dy to dx is not much at all,” gesturing a vertical increment (dy) that 
is small in comparison with the horizontal increment (dx). Roan then zooms back out and says: 
 

Roan’s words Roan’s gestures 
Yeah, ‘cause you can see, like, as 
you go across this distance, 

gestures with two fingers significantly separated 

y doesn’t change as much as here, 
like if you go from here to here, 

gestures with two fingers close together a dx 
increment in one place and then another same-sized 
dx increment further to the right 

y goes up more in relation. gestures with the corresponding vertical dy 
increments of two different sizes, the right one 
being significantly larger than the left one 

Or from here to here, zooms in 
it goes up this much, so it’s going 
up more and more in comparison. 

gestures a fixed small horizontal increment from x 
= 0 to 0.2 and then again from x = 0.2 to 0.4, then a 
few more times, moving the increment to the right 

So the change isn’t affecting y as 
much and then you keep going 
over. Now when x changes, 

zooms out, then drags the graph over and indicates 
a small dx increment in a different spot 

y goes a lot. gestures a vertical increment 
Then when you keep going over, drags graph over and indicates another same-sized 

small dx increment yet another spot further right 
when you change your x, y 
changes a lot. 

gestures a large vertical increment 

 
 Roan then zooms out further. The interviewer asks about how this relates to the x, and Roan 
says, while pointing at the indicated parts of the equation dy = 2x·dx, “Because this [dx] stays the 
same, and this [x or maybe 2x], is giving the proportion, where this [dx] is fixed…” He describes 
then how as you move to the right, x gets larger, and the dy increment gets larger even though 
the dx stays the same. 
 In this segment, Roan treats the increments dx and dy as small differences in the variable 
quantities x and y in the graph of y = x2. He describes how the bits equation dy = 2x·dx shows the 
coordination of uniform-sized dx increments with varying-sized dy increments, and that this 
variation depends on where in the x direction the increments are being considered.  
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 Roan’s continual gesturing shows how scaling-continuous covariational reasoning supports 
his understanding of this coordination between dx and dy. In two minutes, Roan zooms in or out 
on the graph no fewer than twelve times. He zooms in on the graph usually when he is talking 
about a particular increment dx and its corresponding dy. This suggests that his image is that an 
“infinitesimal” (as he often calls it) difference or increment is obtained by zooming in near some 
point x. When it comes time to talk about how a dx-dy pair at one spot x1 relates to another dx-dy 
pair at another spot x2, he zooms back out again so that the overall shape of the graph is more 
apparent, gesturing how the dy’s are different in size at these two locations. Scaling in is part of 
his image of how one sees a pair of infinitesimal increments in the two coordinated variables at a 
particular location. Scaling out is part of his image of how the coordination between the dx and 
dy itself varies from point to point on the larger graph.  
 In his image, there seems to be an operational coordination between increments of x and 
increments of y at every scale, which also presumes that scaling never reveals non-intervals in 
either quantity. Because this coordination is available even, according to Roan, at the 
infinitesimal scale, he can envision a distinct coordination of dy and dx “at every x.”  
 

Discussion 
 Neither calculus course was designed or taught with the idea of scaling-continuous 
variational/covariational reasoning in mind—indeed, at the time neither instructor had heard of 
the idea. Yet some of the students in the courses ended up displaying these modes of reasoning, 
and these modes seem to support these students’ reasoning about some key ideas in differential 
calculus. In this section we discuss how scaling-continuous reasoning can be seen to support 
robust understandings of some key ideas in differential calculus that are aligned with the goals of 
the two classes. 
 Students in the local straightness calculus class frequently exhibited scaling-continuous 
covariational reasoning when discussing a derivative at a point. They anchored focus at a single 
point, which they indicated both verbally and with a graphical mark, and pictured zooming in as 
far as needed, with a technology tool or with mental or written images, to reveal a straight line 
segment. They then estimated the value of the slope and assigned it the meaning of the derivative 
of the original function at that point. In this last step, they turned to coordinating increments in 
both quantities at a single point, recognizing that the arbitrary zooming of scaling-continuous 
reasoning was necessary to make that meaningful.  
 Also, it is notable that this can serve as a foundation for the conception of the derivative as a 
function, as demonstrated by Sam (and by many students in class). He described taking the 
straight line at a point and moving it to the right and recording the derivative at every point. This 
indicates he had encapsulated his scaling-continuous construction of the tangent line, to recreate 
it at any point.  
 In the informal infinitesimals calculus class, scaling-continuous variational reasoning 
provides a crucial image that at each scale the values of a continuous variable form a continuous 
unbroken increment on which variation occurs. This idea can then be generalized to an image 
that each infinitesimal increment looks the same way, a generalization that Sam and Roan both 
appear to have made. A robust image of infinitesimal entails generalizing or encapsulating the 
process of scaling involved in applying scaling-continuous variational reasoning.  
 With this in mind, scaling-continuous covariational reasoning gives the student a way to 
imagine a coordination between each continuous increment of one variable and a continuous 
increment of another, at every scale. Roan tacitly assumes that coordination when gesturing and 
speaking about the relationship between bits, differences, and changes in x and y. While scaling-
continuous covariational reasoning only includes this coordination for arbitrary scales, for the 
informal infinitesimals approach it is important for this coordination at some point to be 
generalized to the infinitesimal scale. The reason is that this provides a basis for the productive 
interpretation of a bits (differential) equation as an algebraic description of the relationship 
between an infinitesimal amount of change in, say, x and a corresponding infinitesimal amount 
of change in, say, y. Because these amounts are infinitesimal, this coordination can be envisioned 
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at every value of x, and depending on that value of x. This is illustrated when Roan describes and 
gestures how the coordination he imagines between dy and dx is established at different points, 
and how this in turn varies from location to location.  
 In both classes, the encapsulation of scaling-continuous covariational reasoning at a single 
point is a crucial element as students form their conceptions of single variable differential 
calculus, even though it manifests differently.  
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Mathematicians’ Validity Assessments of Common Issues in Elementary Arguments 

Joshua B. Fagan 
Texas State University 

This study explores how mathematicians view validity in the face of explicit validity issues within 
written mathematical arguments in the context of the Introduction to Proof (ITP) setting. An 
internet survey of 30 arguments was constructed leveraging common issues in validity at the ITP 
level, and widely distributed to research-active mathematicians in the United States. The results 
suggest that there is no consensus as to the effect of any single validity issue on the overall 
validity of an argument, lending credence to the notion that argument validity lacks a consistent 
set of criteria from one mathematician’s point of view to the next. 

Keywords: Proof, Validity, Mathematician Practice 

The nature of a valid, mathematical proof is difficult to define. In fact, several studies 
have established that even mathematicians have a number of points of disagreement on what 
constitutes a valid proof (Inglis & Alcock, 2012; Inglis, Mejía-Ramos, Weber & Alcock, 2013; 
Weber, 2008). This finding corroborates mathematicians’ own accounts that there may not be 
any fixed set of standards for determining what is or is not valid within the mathematical context 
(e.g., Rav, 2007). The study presented here extends this tract of research by exploring on a large 
scale how mathematicians judge the effect that specific flaws within an argument can have on 
the validity of an argument at the Introduction to Proof (ITP) level. The effort is to explore in 
depth what standards might currently exist and what perceived requirements might lead to 
disagreement amongst mathematicians. Specifically, this research aims to answer the following 
questions: 

• To what extent do mathematics professors agree about whether basic deductive 
arguments (at the ITP level) are proofs? 

• What characteristics of deductive arguments account for disagreement in 
mathematician’s validity assessment? 

Background 
In response to the assertion that argument validity is an important criteria when exploring 

undergraduate mathematics major’s understanding of proof (Selden & Selden 2003), researchers 
have focused on mathematicians’ ideas concerning validity to clarify existing standards and 
determine the consistency and importance of validity within mathematics at large and in the 
undergraduate mathematics classrooms (Inglis & Alcock, 2012; Inglis, et al., 2013; Weber, 
2008). Weber (2008) investigated both the contextual criteria and strategies research-active 
mathematicians used when validating both elementary and advanced arguments. Weber found 
that there were a number of extra-mathematical criteria that the eight mathematicians from his 
study used in considering the validity of the arguments, including who the author of the 
argument was. One of the most important criteria for many of the mathematicians when looking 
at elementary proofs was the question of what had been established to be true. This key 
characteristic hits at the heart of any validity judgement as the building of a specific set axioms, 
theorems and the like within any setting – or the lack thereof – may require further 
argumentation on the authors part when constructing an argument. While Inglis and Alcock’s 
(2012) main focus concerned the differences between novice and expert approaches to validating 
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tasks, their findings concerning the 12 mathematicians in the study support the notion that 
mathematicians do not exhibit a uniform consensus of what might count as valid. Inglis, et al. 
(2013) expanded upon this idea by exploring how these disagreements in validating might arise 
in terms of a mathematician's area of expertise within mathematics, as well as exploring 
mathematicians’ assessments of their own validity judgments in terms of their perception of the 
how other mathematicians would validate a proof. In the end, this study of 109 mathematicians 
and the two prior studies point to the same overall conclusion that validity is, as yet, a poorly 
defined construct which is case and individual dependent. 

While each of these studies has helped to clarify the relationship between mathematician, 
context, and expertise and the role the latter pair play in validity judgments, none of them have 
offered deeper insight into individual, specific criteria relating to argument creation that might 
affect the validity of an argument. Meaning, for example, it is unclear how mathematicians might 
react in the face of a warranting issue within an argument or to an argument that begins by 
assuming the conclusion and showing the antecedent as a direct result. Are mathematicians 
consistent in their judgments of some set of perceived validity issues, but less consistent in 
others? 

Framing 
The idea of proof is nuanced in the mathematics education literature ranging from the 

overtly mathematical in nature (e.g., Healy & Hoyles, 2000; Knuth, 2002; Mariotti, 2000) where 
logic and deduction are stressed at the expense of all else, to the cognitive or social perspectives 
each focusing on aspects of conviction, and communal acceptance (e.g., Balacheff, 1988; Harel 
& Sowder, 2007). For this study, I adopt Stylianides’ (2007) definition: 

Proof is a mathematical argument, a connected sequence of assertions for or against a 
mathematical claim, with the following characteristics:  
1. It uses statements accepted by the classroom community (set of accepted statements) 
that are true and available without further justification; 
2. It employs forms of reasoning (modes of argumentation) that are valid and known to, 
or within the conceptual reach of, the classroom community; and 
3. It is communicated with forms of expression (modes of argument representation) that 
are appropriate and known to, or within the conceptual reach of, the classroom 
community. (p. 291; emphasis in original) 

From this definition the understanding is gained that a proof is a mathematical argument which is 
defined by three distinct characteristics concerning statement, modes of argumentation, and 
representation. For this research, the scope of what is a proof is limited to statements and 
representation which are common in the ITP classroom (David & Zazkis, 2016), and modes of 
argumentation that consist specifically of direct proof1. 

Validity 
Selden and Selden (2003) called proof validation, “the reading of, and reflection on 

proofs to determine their correctness” (p. 5).  While correctness may imply some sort of 
universal standard, the validity standing of an argument is often subjective. I treat proof 
validation is the act of judgement or evaluation which leads the reader to identify whether a 
given argument appropriately proves a statement. 

Finally, for linguistic clarity, I take argument to represent the body of all purported 
proofs regardless of their validity. Thus, to ascribe a series of logical (or illogical) statements as 
                                                           
1 Direct proofs in this research included proof by cases. 
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an argument is to remove any notion of validity from the conversation. Arguments are valid-
neutral. On the other hand, identifying an argument as a proof is to remove its valid-neutrality 
and assert that it is valid. 

Common Validity Issues 
To give context to the validity judgements that mathematicians made, this study 

leverages the idea of issues in proof writing which focuses on the prevalent validity issues 
amongst undergraduate mathematics major’s own written arguments (Hazzan & Leron, 1996; 
Selden & Selden, 1987, 2003). The validity issues considered for this study fall into one of six 
categories as presented in Table 1. Each argument which was initially coded as invalid had the 
inclusion of a single example of one of the six issues where each argument was intended to 
present a single validity issue to the participants. Though often the validity issues were simple in 
nature, they were chosen or constructed because they represented issues that are considered 
common in undergraduate mathematics (Alcock & Weber, 2005; Hazzan & Leron, 1996; Selden 
& Selden, 1987, 2003; Weber & Alcock, 2005; Weber, 2001). 

Table 1. Common Validity Issues 
Issue (Abbr.) Definition 
Assuming the 
Conclusion (AC) 

An argument assumes the consequent (conclusion) of the proposition it is 
claiming to prove and attempts to show that the antecedent is a direct 
consequence. 

Circular 
Reasoning (CR) 

An argument assumes the consequent (or antecedent) of the statement it is 
claiming to prove and comes to a trivial conclusion, namely the consequent 
(or antecedent) once again. Equally, within an argument a claim is made 
and used to argue to trivial ends, the claim itself. (𝑃 → 𝑄 → ⋯ → 𝑃) 

Logical Gap (LG) An argument omits a portion of reasoning; the argument has a hole. This 
could be thought of as a lack of explicit warranting where such would 
seem prudent. 

Misuse of 
Notation (MN) 

Within an argument, proper notation or variable naming conventions are 
not adhered to, or notation and variable naming conventions are used 
inconsistently. 

Warranting (W) Within an argument, an error in justification is made either explicitly or 
implicitly. This can take the form of an incorrect explicit warrant, or an 
incorrect implicit warrant which may emerge as an arithmetic or 
computational error. 

Weakening the 
Theorem (WT) 

An argument proves less than what is implied by the statement being 
proven or begins by assuming more than is permissible. 

Methods 
Qualtrics, an internet survey system, was used as the main resource for data collection in 

this study to obtain a large sampling of mathematicians. The survey itself consisted of 30 
arguments to 22 different propositions considered germane in the ITP setting (David & Zazkis, 
2016). For each argument, the participants were first asked, “Is the argument for the included 
proposition a valid proof?” and given the binary option of “Yes - valid,” or “No - invalid.” 
Participants were initially warned against grading the proofs as though they were student proofs, 
but to instead answer for themselves the question, “Does this argument actually prove the 
proposition in a way that I feel is appropriate, based upon what I believe is requisite for an 
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argument to be valid?” In this way it was left to the participant to infer what they felt was 
requisite for an argument to be a valid proof. 

If the proof was initially coded as invalid and the participant disagreed (i.e., they chose 
“valid” as their response) the participant was presented with the proposed validity issue and 
asked how the presence of said flaw affected their initial response, and then given the chance to 
change their minds about the validity of the argument2. If the participant did not change their 
mind, they were asked to share why they felt the flaw did not invalidate the argument. 
Additionally, for each argument that was initially coded as invalid, if the participant agreed that 
it was in fact an invalid argument, they were also presented with the flaw and asked if it was the 
reason they choose invalid. If it was not the reason, participants were asked to state why they 
thought the argument was invalid. For all arguments which were initially coded as valid, if the 
participant disagreed and chose invalid, they were asked to justify their views by stating why 
they thought the argument was invalid. 

The arguments themselves were clustered into one of seven groupings based upon their 
initial validity coding and issue. Participants were then randomly presented with an argument 
from each cluster to ensure that they saw an argument whose flaw came from each area of the 
framework as well as being presented with an argument which was considered to initially be 
valid. No participant saw the same argument twice. In total, 1528 survey invitations were 
distributed via email to research-active mathematicians across the United States, of which 228 
submitted responses to the survey. Of the 228 participants, 178 completed all 7 argument sets 
with which they were presented, all others completed no less than 2 argument sets. 

All free responses were analyzed using thematic analysis (Braun & Clarke, 2006). The 
analysis began with open coding of the free responses for each of the 30 arguments 
independently and categorizing responses relative to each argument in terms of their 
appropriateness. All nonsensical free-responses led to a cycle of analysis of the quantitative data 
supplied by the author of said free-response to ensure the author was not supplying malicious 
data3. Malicious data was omitted from further analysis. Following open coding, themes were 
identified, categorized and condensed for each argument. No cross-argument analysis occurred 
as the questions for this study do not focus on how responses to one type of validity issue are 
correlated to responses to other validity issues. 

Results 
Figure 1 comprises the final validity judgements to all 30 arguments including those of 

which were initially coded as valid (i.e., arguments V1-V5). The chart represents the percentage 
of mathematicians that deemed each argument to be invalid calculated by taking the total number 
of “No - invalid” responses along with the number of mathematicians who changed from “Yes – 
valid” to invalid and then dividing by the total number of responses. For both the set of valid and 
invalid arguments, the number of responses for each argument was not uniformly distributed due 
in part to the random design of the survey and the inclusion of partially completed responses. 
Disagreements among mathematicians was found in every category, and while there are cases 

                                                           
2 There were four exceptions where no follow-up was requested. Three of these four arguments contained a logical 
gap which initially it was unclear if the gap would affect the validity of the argument. 
3 Quantitative data was considered malicious if the entire survey had been completed in under 10 minutes, any one 
validity set – the initial validity question and all follow-up questions – was completed in less than one minute, or if 
all validity questions were homogeneous and all other follow-up free response questions were left blank. 
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where 100% of mathematicians agreed that something was invalid (AC1-AC3), no one category 
was free from disagreement. 

 
Figure 1. Percentage of mathematicians who thought the argument was invalid (number of responses). 

Each argument that was initially coded as invalid was given a name and number based on its included validity issue 
(i.e., WT – weakening the theorem, MN – misuse of notation, LG – logical gap, W – warranting, CR – circular 

reasoning, and AC – assuming the conclusion). 

A Weakening the Theorem Example 
One of the more interesting weakening the theorem results, argument WT5’s (Figure 2) 

validity issue was that the argument did not account for the negative integers and zero when 
defining the parameter 𝑥 as odd (i.e., “𝑥 = 2𝑎 + 1 for some 𝑎 ∈ ℕ” instead of “for some 𝑎 ∈
ℤ”), thus arguing for something weaker than what was intended to be implied by the proposition. 
Mathematicians who felt this was not enough to invalidate the argument fell into two general 
groups, the first arguing that the proposition itself does not clearly define odd as to mean odd 
integers versus odd natural numbers. The second, and perhaps more pertinent group of 
mathematicians thought that, though the argument failed to account for the negative integers and 
zero, because the structure and logic of the argument was intact the weakening of the theorem 
that had occurred did not invalidate the argument. For instance, one mathematician said, “The 
heart of the argument is understanding that odd numbers are 1 mod 2 and that an odd number 
squared is 1 mod 2, which remains valid. The error is minor because of its consequence. If this 
was a proof involving absolute values and the negative numbers [were] not properly dealt with 
that would be much more damning.” Thus, despite the inaccuracy these mathematicians felt the 
argument was valid. 
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Figure 2. Argument WT5 – 36.7% of mathematicians thought the weakening that occurred was enough to 

invalidate the argument. 

A Warranting Example 
The validity issue of warranting lead to unclear results in term of agreement. Arguments 

W5 (Figure 3) and W7 (Figure 4) argued for the same proposition and had identical arguments 
save for an explicit warranting issue which occurred at the same point within each argument. The 
difference came about in the perceived reasonability of the warranting issue which lead 60% of 
mathematicians to conclude that W7 was invalid, while 79.7% of mathematicians thought the 
warranting issue in W5 was sufficient to invalidate the argument4. Many of the mathematicians 
who claimed that W7 was valid cited the “minor typo” that occurred did not underscore the 
soundness of the argument as a whole. On this fact many mathematicians made statements like, 
“Yes, it is the incorrect term for the property being used; however, the property actually used 
(multiplication on R is commutative) is certainly true, so the argument is still valid.” This 
contrasts with the general sense that though commutativity was also correctly used in W5, there 
was a much stronger negative reaction in term of validity to the claim that “multiplication is an 
equivalence relation in ℝ.” It should be noted that no one argued that either was a true statement. 

 
Figure 3. Argument W5 – 79.7% of mathematicians thought the claim that “multiplication is an 

equivalence relation in ℝ” was enough to invalidate the argument. 

 
Figure 4. Argument W7 – 60% of mathematicians thought the claim that “multiplication is associative in 

ℝ” was enough to invalidate the argument. 

An Assuming the Conclusion Example 
Even in the case of arguments which assume the conclusion, thus having major structural 

issues there was some amount of disagreement. Argument AC4 (Figure 5) argues the converse of 

                                                           
4 The difference between the two proportions is statistically significant with 𝑝 = .0196, 95% CI [0.0195,0.3582] 
with continuity correction. 
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the proposition, and despite having this fact pointed out to them, four mathematicians held that 
the proof was valid making statements like, “I would say this argument is almost correct rather 
than invalid,” or “It could be modified quite quickly for the proof to be correct. The main idea is 
still there.” Thus, despite arguing the converse and even though these mathematicians agree the 
argument is not correct they felt it was valid. 

 
Figure 5. Argument AC4 – 91.1% of mathematicians thought the argument for the converse was invalid in 

light of the proposition. 

A Logical Gap Example 
Finally, mathematician’s sense of the affect of logical gaps lead to an interesting result 

with argument LG3 (Figure 6). Here, the argument presented trivializes the proving process at 
many points with unsupported statements, twice using the phrase “which implies” in place of an 
actual argument. This lack of overt justification divided the mathematicians’ validity stance with 
48.6% of mathematicians claiming the argument was invalid. 

 
Figure 6. Argument LG3 – 48.6% of mathematicians thought the lack of overt justification was enough to 

invalidate the argument. 

Conclusion 
In response to the first research question, the data from this study reflects that even in 

direct, deductive proofs at the elementary level, there is a substantial disagreement amongst 
mathematicians over validity. This finding corroborates the findings from Inglis et. al. (2013) 
that mathematicians use different standards in judging an argument’s validity. The divergence 
was not unexpected in terms of more subjective proof aspects such as the allowable size of a 
logical gap. However, these divergent validity standards were apparent even when an argument 
had a major structural issue: assuming the conclusion. 

The disagreement over validity has implications for instruction. Particularly, the fact that 
these inconsistencies may counter the dominant narrative that mathematics is universal. 
Furthermore, inconsistency across instructors could lead to cognitive dissidence in student’s 
proof writing and reading as they progress through a tract in undergraduate mathematics, and 
perhaps beyond. 

Finally, taken together with past research, this data suggests that not only do 
mathematicians have different standards for what is and is not valid, but they might not have a 
good sense of what valid means generally as such a notion may not exist in a binary sense (Rav, 
2007). This in turn leaves some questions about whether we as mathematics education 
researchers have a good feel for what validity is as well. If nothing else, future studies should be 
careful in making claims about validity in terms of absolutes, as there may be no absolute 
standard, at least not for elementary arguments. 
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Is Statistics Just Math? The Developing Epistemic Views of Graduate Teaching Assistants 
 

Kelly Findley Jennifer Kaplan 
Florida State University University of Georgia 

Research has shown that teachers and instructors’ views about the discipline they teach inform 
their instructional approaches. As a foundation for investigating this relationship in statistics, we 
explore how (or whether) beginning graduate students in statistics perceive statistics as distinct 
from mathematics. Using the lens of epistemology, we share findings from interviews with four, 
first-year graduate students who served as graduate teaching assistants (GTAs) in a statistics 
department. Using data collected from interviews across their first year, we constructed three 
models that explain how the GTAs conceived of the nature of statistics in relation to 
mathematics. Additionally, we identified two continua that reveal how participants came to 
understand the nature of doing statistics. We discuss how these models and continua form the 
basis of a unified statistical epistemology that has implications on their views for statistics 
education.  

Keywords: Statistics Education, Graduate Teaching Assistants, Epistemology 

Research in mathematics and science has revealed that instructors’ pedagogical decisions are 
deeply influenced by their views about the nature of the discipline they teach (Abd-El-Khalick, 
Bell, & Lederman, 1998; Cross, 2009; Speer, 2008). As a young and evolving discipline, 
statistics proves to be an area ripe for investigation on this matter. Statisticians and statistics 
educators have identified multiple perspectives and routes for disciplinary engagement in 
statistics, even going so far to suggest statistics to be validly seen as a liberal art, an area of 
scientific inquiry, and a branch of mathematics (De Veaux & Velleman, 2008; Lindley, 2000). 
With so many different perspectives of statistics available, our research investigates how 
instructors develop and refine their own views of statistics. We view this line of inquiry as a 
precursor to understanding how instructors make certain pedagogical and curricular decisions. 

Our research focuses on the views of Graduate Teaching Assistants (GTAs) in statistics. 
GTAs represent a unique subset of instructors, distributing their time between the roles of 
teacher and student. This report documents the views of four, first-year statistics GTAs as they 
respond to questions about the nature of statistics as a discipline and what constitutes a statistical 
problem. In particular, this paper focuses on how these GTAs distinguished statistics from 
mathematics as a unique discipline. We explore the perceived distinctions and commonalities the 
GTAs expressed between the two disciplines, concluding with thoughts on how these views 
might guide their teaching. We address the following question: How do new statistics GTAs 
discuss and conceptualize statistics in relation to mathematics?  

Conceptual Framework 
We approach our topic through the lens of epistemology to target GTAs’ deeper philosophy 

about the purpose and structure of statistics as a discipline. Epistemology is focally concerned 
with an individual’s views on the nature of knowledge and the means by which we know (Hofer 
& Pintrich, 1997). Research in recent decades supports the stance that epistemic views appear to 
be contextual and domain-specific (Buehl, Alexander, & Murphy, 2002; Op ‘t Eynde, De Corte, 
& Verschaffel, 2006). The case for domain-specific lenses on epistemology can be readily made 
when one considers aspects that are privileged in classrooms of different domains. In the 
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mathematics classroom, Schoenfeld (1992) noted that it is typical for students to think there is 
only one right answer and that mathematics is a solitary activity. Contrast this perspective with 
norms in the Humanities, where students more readily recognize peer review and negotiation as a 
means to developing knowledge (Donald, 1990).  

To frame our investigation of statistics GTAs’ epistemic views, we first explored work on 
epistemology from a domain-general perspective to identify common dimensions of thinking that 
permeate multiple disciplines (e.g., Hofer & Pintrich, 1997). Second, noting that statistics has 
origins deeply rooted in both mathematics and science (Stigler, 1986), we examined 
epistemology as it has been framed in these two disciplines (Op ‘t Eynde et al., 2006; Russ, 
2014; Schoenfeld, 1992; Tsai & Liu, 2005). From these models and discussions, we generated a 
four-dimension framework to capture the epistemic views of statistics GTAs (Table 1). Diamond 
and Stylianides’ (2017) paper, which examined the personal epistemologies of statisticians, was 
also influential for designing our interview questions and interpreting our results. That study, 
however, adopted a domain-general framework (Hofer & Pintrich, 1997); thus, it did not 
contribute new ideas to the dimensions of our statistics-specific framework. 

 
Table 1. Statistical Epistemology Framework 

The Nature of 
Statistics 
 
The distinction and 
purpose of statistics 

The Nature of 
Statistical Knowledge 
 
The origin and 
openness of statistical 
knowledge. 

 

The Nature of 
Knowing Statistics 
 
The nature of proving 
and negotiating 
statistical knowledge 

The Nature of Doing 
Statistics 
 
The role of creativity 
and subjectivity in 
engaging in 
statistical problems 

 
In this paper, we focus primarily on participants’ responses related to the first and fourth 

dimensions of this framework—the nature of statistics and the nature of doing statistics—which 
yielded the richest dialogue on the comparisons of statistics to mathematics. As Diamond and 
Stylianides (2017) recognize, there is an “inextricable link between statistics and 
mathematics…statistics teaching is frequently embedded in mathematics” (p. 336). 
Unfortunately, as the authors also recognize, such conceptions of statistics are incomplete. An 
expert framing of statistics recognizes the dynamic and flexible nature of the discipline based on 
its attentiveness to context (Cobb & Moore, 1997). Cobb and Moore expand on this by 
describing statistics as exploring and explaining variation in the world, with mathematical 
methods acting as part of the toolkit individuals use to accomplish this goal. We focus on 
disciplinary aspects where the GTAs drew meaningful connections and distinctions between 
statistics and mathematics, as well as points of struggle.  

 
Methods 

Setting 
This study took place in a statistics department with 200 graduate students and 62 GTAs, 

housed in a large, public university in the U.S. In this department, new GTAs are assigned 
grading or recitation duties for the first two semesters, with the possibility of becoming a solo 
instructor the following summer or fall if they complete the department teaching workshop in the 
spring. During the 2017-2018 academic year, 12 new graduate students were awarded teaching 
assistantships, all of whom were invited to participate in an interview at the beginning of their 
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first term, with continuing invitations for more interviews throughout the year. This study 
documents the views and experiences of four of these GTAs who a) had no previous teaching 
experience, b) participated in all six interviews for the full year (Fall 2017-Summer 2018), and c) 
were awarded solo teaching positions during the final semester of the study. Details about the 
participants are displayed in Table 2. 

 
Table 2. Participants 

Pseudonym Gender Nationality Highest Degree 
Kathy Female U.S.  B.S. Mathematics & B.S. Human Health 
Li Male Chinese B.S. Mathematics 
Mindy Female U.S. B.S. Mathematics 
Sahil Male Indian B.S. & M.S. Statistics 

 
Data Collection 

The GTA-participants were involved in a larger, yearlong study, with each completing six 
one-on-one interviews across a full year. The aim of the full study was to chart participants’ 
epistemic views, pedagogical views, and influential experiences throughout the year, culminating 
in observations and discussions of their teaching during the following summer. The interviews 
and observations were conducted and facilitated by the first author, a U.S. white male who had 
previously been a GTA in the department. As such, the interviewer was familiar with the GTA 
responsibilities and program of training in place in the department.  

This paper focuses on data collected from the first and third interview. The first interview 
was relatively informal, allowing the interviewer to get to know each of the participants (Corbin 
& Strauss, 2006) and explore their initial thoughts about the discipline of statistics (e.g., How 
would you define statistics? What does it mean to do statistics?). The length of the first interview 
was between 30-45 minutes for all participants and took place during the first week of classes 
during their first semester. The third interview included more in-depth exploration of each 
participants’ epistemic views, reflecting themes included in the framework presented in Table 1. 
The third interview lasted between 70-90 minutes and took place midway through their second 
semester. Each interview proceeded in a semi-structured format, leaving time for the interviewer 
to probe certain ideas more if they were relevant. Additionally, each of these interviews 
connected participants’ views about statistics to their views about statistics pedagogy, which we 
plan to document more fully in future research. 

The epistemology questions used in the interviews were inspired from a number of sources, 
including questions used to assess the epistemologies of statisticians (Diamond & Stylianides, 
2017), students in mathematics (Op ‘t Eynde et al., 2006), and students in science (Tsai & Liu, 
2005). Items to address statistics GTAs’ views about an introductory course curriculum, statistics 
teaching, and statistics learning were borrowed or adapted from items on existing surveys used to 
understand the pedagogical views of statistics GTAs (Justice, Garfield, & Zieffler, 2017). 
Additional items that were written specifically for this study were reviewed by three other 
researchers who have published work on statistics GTAs. 
 
Methods of Analysis 

The first interview provided an early glimpse of each GTA’s developing statistical 
epistemology, revealing ideas and distinctions to explore further. The third interview allowed for 
more in-depth probing of each participant’s epistemology. The first author transcribed the 
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interviews and coded responses according to the dimension they fit. After creating a data matrix 
that included all relevant responses divided by dimension, further coding was conducted to 
identify response themes (e.g., the interdisciplinarity of statistics) that helped connect ideas 
across participants (Miles, Huberman, & Saldaña, 2014). Some of these themes were isolated to 
a specific question, while other themes were present across responses to several different 
questions.  

This paper highlights several themes that emerged regarding GTAs’ views about statistics. 
We discuss three models of thinking related to views of the Nature of Statistics and two continua 
of thinking regarding the Nature of Doing Statistics: statistics as flexible versus methodical and 
statistics as experienced-based versus knowledge-based. These models and continua represent 
how we saw the participants making sense of statistics, and specifically how they were relating 
statistics to mathematics. We briefly highlight each idea and conclude with a discussion of how 
their statistical epistemologies have implications for their instruction. 
 

Findings 
The Nature of Statistics 

All four participants discussed statistics as being centrally concerned with data and agreed 
that statistics is closely related to mathematics in nature and structure. Participants also discussed 
statistics as being concerned with interdisciplinary applications. Primary differences were rooted 
in articulations of the purpose of statistics and whether the discipline was better understood as a 
form of mathematics, an extension of mathematics, or as its own distinct subject. We highlight 
each of these three models below. 

Statistics as applied mathematics. In discussing the nature of statistics, Kathy found 
statistics to be inherently similar to mathematics in structure. She described both as having 
assumptions and utilizing fixed methods, making them both “hard and fast sciences.” Kathy 
differentiated statistics from mathematics as being more concerned with applied questions, 
noting that statistical problems often necessitate extracting information from a paragraph. She 
said of statistics, “it’s not just learning the equation, it’s learning how to interpret the equation 
and what it means, and I think that’s just as important as getting the right answer.” When Kathy 
discussed her experiences in mathematics, it became clear that she had few experiences to work 
through applied problems. As a result, she largely associated statistics with more applied 
problems and mathematics with abstract problems. 

From Sahil’s perspective, mathematics exists fundamentally for its own sake and is not 
centrally concerned with modeling reality. Statistics, in contrast, exists for the purpose of 
application. According to Sahil, mathematical concepts, specifically integration and 
differentiation, exist in their own right. Statistical topics, like hypothesis testing, differ in that 
application was necessary to give it identity. Sahil was hesitant to call statistics a subset of 
mathematics, but viewed it more as an alternative use of mathematics, concerned with methods 
created for the purpose of understanding and modeling real-world data. The model of statistics 
Kathy and Sahil discussed (see the left most panel in Figure 1) represents the domains of 
statistics and mathematics as a spectrum between application and theory.  

Statistics as extending mathematics into context. In many ways, Mindy shared a similar 
perspective of statistics being focused on application, but knew that mathematics still included 
applied elements. Mindy noted that mathematics is more observable than statistics and could be 
described better as an exact science involving certain formulas. To Mindy, statistics certainly 
involves real-world observation, but not in the same way that mathematics does. Mindy viewed 
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statistics as more situational and assumption-based, explaining that every time you use a 
particular statistical test, you need to check that assumptions are met first (e.g., random, 
independent sample). It seemed to Mindy that using mathematics does not require assumptions: 
rather, mathematical methods we use are essentially always appropriate.  

 
 
 
 

 

 
 

Spectrum Model Extension Model      Divergent Model 
 

Figure 1. Models for the Relationship between Mathematics and Statistics 
 

As we understand it, Mindy seemed to recognize that applying statistical methods and 
principles has to start from the situation in which the data were collected. In this way, statistical 
methods (e.g., a 2-sample t-test) are limited, whereas mathematical methods (e.g., addition, the 
associative property), are seemingly always appropriate. In the middle panel of Figure 1, we 
represent what we see as Mindy’s model, showing statistics as an extension of mathematics into 
specific contexts, with mathematics extending application universally. 

Statistics as diverging from mathematics in purpose. Li saw statistics and mathematics as 
sharing similar purposes in helping us understand and explain the world. For Li, however, the 
approaches to this goal are diametrically opposed for the two subjects. According to Li, statistics 
rests on the philosophy that we can never figure out the truth. Mathematics tries to prove truth 
under starting assumptions (e.g., Euclidean Geometry) and attempts to create a comprehensive 
and logical story. Statistics by nature cannot provide a full story, but simply a reasonable story. 
He described statistics as starting from the bottom (i.e., data through observable reality) and 
attempting to reach the top (i.e., the truth), while mathematics starts from an assumption-based 
top and logically proceeds to the bottom (right-hand panel of Figure 1). 

 
The Nature of Doing Statistics 

In the previous section, we unpacked three models that reveal the foundational paradigm 
through which the participants conceived of statistics as a discipline in relation to mathematics. 
In this section, we discuss how the participants’ discussed the nature of doing statistics. We 
distinguish participants’ responses using two continua: flexible versus methodical and 
experience-based versus knowledge-based. Within each of these continua, we illustrate how the 
participants discussed statistical problem-solving in relation to mathematical problem-solving. 
We view these two continua providing a richer picture of each participants’ statistical 
epistemology with respect to mathematics that generally complement the disciplinary models 
they conveyed. We detail these two continua with examples below.  
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Continuum 1: Statistics as flexible versus methodical. At times during in the first 
interview, Kathy talked about doing statistics as similar to following the scientific method. She 
connected this to the type of work she did during a previous summer internship, discussing 
statistical analysis as essentially running experiments. Other times, Kathy used very 
mathematical language to describe the process of doing statistics, such as identifying “variables,” 
using “formulas, manipulation, and computing,” and finding the “right answer.” Both types of 
statistical work had in common a rather strict protocol—there is a correct way to do statistical 
and mathematical work. She described both as having “a process and a right answer,” suggesting 
uniformity in their approaches to problem solving. The primary difference between statistical 
and mathematical work was that statistical work included a broader spectrum of responsibilities 
and practices (e.g., applied work) while mathematics was primarily the procedures themselves. 

Kathy did recognize some level of flexibility existing in statistical work, for example 
choosing a procedure or test to use. She remarked that two people using the same methods 
should have the same result, but that statisticians will often approach problems differently 
depending on their theoretical orientation (e.g., Frequentist or Bayesian). Sahil expressed an 
additional layer of flexibility in his responses by discussing openness in developing new methods 
and generating theory. He described the goal of such statisticians as trying to come up with the 
most “elegant” methods, not over- or under-fitting, but creating something simple yet robust. He 
went farther than Kathy in this respect by noting that statisticians utilize a mixture of pre-
determined procedures and creative approaches, allowing researchers to add their own 
impression into their work. In this process of doing statistics and employing creativity, Sahil saw 
mathematics as the medium through which statisticians were playing with models and solutions. 
He did not view the two fields as remarkably different in the way theorists express creativity in 
their work. The difference is primarily in the fact that mathematicians are working more directly 
in the abstract while statisticians use mathematical tools to work more directly in the real world. 
With this perspective, Sahil was consistent with his model for statistics and mathematics being 
on different ends of the spectrum of applied versus pure.  

As a volunteer data analyst for a school sports team, Mindy noted that statistical problems 
often have multiple approaches and valid solutions. Analytical approaches can then be flexible 
depending on the purpose they serve, such as choosing how to assess performance and 
improvement in sports. Underlying this flexibility is theory that, she supposed, must be 
objective. In comparison to mathematics, it appeared statistics leaves more room for creativity in 
deciding how to go about solving a problem, yet it is still dependent on a set of truths, which 
Mindy essentially equated with mathematics. This perspective aligned with Mindy’s model of 
statistics as being much like mathematics, but fitting context rather than universal stipulations. 

Continuum 2: Statistics as experience-based versus knowledge-based. Having completed 
undergraduate degrees in both mathematics and human health, Kathy instinctively paired 
statistics and mathematics as categorically similar disciplines with “right answers,” while fields 
like human health were based on principles and individualized truths. She shared sleep as an 
example in health class for which students can share their own experiences and feelings as it 
related to healthy living, but joked that similar student-centered experiences do not make sense 
in statistics: “For [statistics], how do you feel about correlation? Where do you see correlation? 
[chuckling]…It’s just not as discussion based.” From Kathy’s perspective, both statistics and 
mathematics existed independent of students’ experiences and could not feasibly be approached 
in a similar manner as human health. Both mathematics and statistics existed within an objective 
framework of truths. 
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Li offered a contrasting viewpoint by stating that experience is an important part of statistical 
work. He described doing statistics well as a skill—like playing the piano or drawing 
calligraphy. Rather than simply applying knowledge, Li viewed doing statistics almost as an art 
where instinct essentially guides you in the same way that instinct guides a musician in the 
moment. Li did not distinguish the work of statisticians from that of mathematicians on this 
point; what he did distinguish was the type of experience that guided practitioners and 
researchers in each field. While mathematicians are inspired by reality in their pursuit to 
understand abstract ideas, statisticians are work from instinct and observation to better 
understand and model real-world phenomenon, just as a scientist would.  
 
Summary 

While Kathy and Sahil both shared a model of statistics and mathematics on a spectrum of 
applied to pure, they articulated differences in the nature of solving problems. The extent to 
which Kathy recognized flexibility in statistical work came in how statisticians might choose 
different methodical solution path (e.g., choosing a test); Sahil saw both disciplines informed by 
work that could be creative and open. Li and Mindy shared more alignment in their views, with 
Li sharing a more philosophical description of statistics in terms of pursuing truth and Mindy 
bringing a more practitioner perspective through discussing universal versus contextual 
applications. Li was much more detailed in discussing both statistical and mathematical work as 
experience-based, but in slightly different ways. Mindy’s uncertainty in the theoretical 
components of statistics produced more hesitant responses on this front, but she also recognized 
flexibility and experience as core components of statistical work. 

Interestingly, none of the participants described statistics as the pursuit to explain variability, 
which is regarded by many as the fundamental distinction of statistics (e.g., Cobb & Moore, 
1997). That is not to say that anyone’s answers were inherently incorrect. In fact, all participants 
shared ideas about statistics and its relation to mathematics that were sensible. 

 
Conclusion and Implications 

In future work, we plan to document how each participant’s epistemic views connected to 
their vision for introductory statistics. In reference to the findings in this paper, we simply note 
how each GTA’s statistical epistemology sets up different perspectives on the purpose of 
statistics education and the nature of problems they would likely envision students working on. 
For example, from Kathy’s epistemology we hypothesize that students would complete 
procedural problems similar to those they would see in a mathematics class, but with a context 
attached. In contrast, Mindy and Li recognized statistical problem solving as being more flexible 
and experience-based, suggesting they might be more open to having students complete projects 
that interest them, or that their classes might more readily explore how different approaches or 
measures are judged for validity based on how well they meet the context and nature of the 
problem. Sahil envisioned a more theory-based statistics course that engaged students in the 
beauty and construction of statistical methods (i.e., statistical reasoning). 

In order to prepare the next generation of undergraduate students for a world of data, their 
instructors must first understand what is truly unique about statistics and how an introductory 
statistics course differs from such courses as College Algebra and Calculus. The epistemic views 
of this study’s participants reveal striking distinctions in how they understand the purpose and 
role of statistics. We believe this topic requires more research, including explicit connections 
between GTAs’ epistemic views and instructional decisions. 
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Linear functions of more than one variable exhibit the property that changes in the dependent 
variable are linear combinations of changes in the independent variables. Although multivariable 
calculus makes frequent use of this linearity condition, it is not known how students reason about 
linearity within this context. This report addresses this question by analyzing how three students 
incorporate linearity into their schemas for linear approximation and directional derivative. The 
students in this report showed a progression in their understanding from not using linearity within 
their reasoning to incorporating linearity into first their scheme for linear approximation and 
finally into their scheme for directional derivative. The results indicate that the context of linear 
approximation was useful for developing concepts of linearity and aiding their development of the 
concept of directional derivative. 
 
Keywords: Multivariable Calculus, Linearity, Schema Theory, Directional Derivative 
 

Introduction & Literature Review 
There is a recent surge of interest in student learning in multivariable calculus, which is a 

crucial course for all STEM majors (PCAST, 2012). Although there is a rich body of research 
investigating students’ understanding of rate of change (Johnson, 2013; Lobato & Siebert, 2002; 
Stump, 2001; Teuscher & Reys, 2010) in general and the concept of derivative (Zandieh, 2000; 
Park, 2011; Samuels, 2012; Orton, 1983) in particular, there is limited research on how students 
interpret these concepts in multivariate settings. Recent studies have indicated that students may 
struggle to generalize the concept of slope from two to three dimensions (McGee, Conner, & Rugg, 
2011) and that by the end of a multivariable calculus class few students have developed a 
meaningful conceptualization of total derivative (Trigueros Gaisman, Martinez-Planell & McGee, 
2018). Additionally, research in physics education shows that students having completed 
multivariable calculus struggle to appropriately apply partial differentiation in physics contexts 
(Thompson, Bucy & Mountcastle, 2006). However, there is evidence that the use of physical 
manipulatives may support students’ conceptions of rate in multivariable calculus (Samuels & 
Fisher, 2018; McGee, Moore-Russo & Martinez-Planell, 2015). 

Linear functions of one variable exhibit the important property that changes in the 
dependent variable are always proportional to changes in the independent variable. Calculus takes 
advantage of this fact when using a linear approximation to estimate nearby values of a function 
with the equation Δy ≈ f’(x)·Δx. Using the language of differentials this property can be 
summarized with the equation dy = f’(x) dx. However, in multivariable calculus the concept of 
linearity takes on the additional property that changes in the independent variables are additive 
when determining the change in the dependent variable. As a linear approximation for functions 
of two variables, we have that Δz ≈ fx·Δx + fy·Δy; the corresponding differential property is dz = fx 
dx + fy dy. At a given point, these expressions become linear combinations. It is similar for the 
directional derivative: where v = (Δx, Δy), Dvf = fx·Δx/|v| + fy·Δy/|v|. Although there is significant 
research on student understanding of linearity within the context of one variable functions (e.g. 
Ellis, 2007; Greenes, C., Chang, K. & Ben-Chaim, D., 2007; Moschkovich, J., Schoenfeld, A. & 
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Arcavi, A., 1993) and an emerging body of research on linearity within linear algebra (Wawro & 
Plaxco, 2013; Wawro, Rasmussen, Zandieh, Sweeney & Larson, 2012), there is an absence of 
research on how students experience linearity in multivariable calculus. This study adds to the 
literature by exploring student conceptions of linearity in this context. In particular, we seek to 
answer the question: what conceptions of the role of linear combinations do students form in the 
context of linear approximation and directional derivative for multivariable functions? 
  

Theoretical Framework 
This report aims to analyze student understanding through the lens of schema theory. 

Schema theory has a long history of development with many significant influences (e.g. Bartlett, 
1932; Piaget, 1926; Anderson, 1984) whose models of cognition subtly differ from one another. 
For this reason there are multiple definitions of the word schema throughout the literature. For the 
purposes of this study we will define a schema as an internal framework used to guide encoding, 
organization and retrieval of information (Stein & Trabasso, 1982). In this way a schema 
characterizes the relations among its components (Anderson et al., 1978). From our perspective, 
schemas are functional in the sense that they are continuously undergoing change (Iran-Nejad & 
Winslerin, 2000), reshaping themselves as the individual undergoes new experiences and reflects 
upon past experiences. This reshaping can occur in three ways: accretion, in which new facts are 
assimilated into the existing knowledge structure, tuning, in which the knowledge structure is 
slightly modified without changing relationships, and restructuring, in which new knowledge 
structures are created. There are four types of tuning: refining accuracy, generalizing, 
exemplifying, and creating an archetype. There are two types of restructuring: patterned 
generation, in which an old schema is modified into a new schema, and schema induction, in which 
a recurrent relationship among schemas is retained as a new schema. The latter is the most difficult 
and rare form of learning (Rumelhart & Norman, 1978). 
 

Methodology 
The data for this report were obtained from semi-structured task-based interviews with 

three students working together as one group as they encountered the ideas of multivariable linear 
approximation and directional derivative for the first time. The students were enrolled in a 
multivariable calculus course incorporating physical manipulatives using the Raising Calculus to 
the Surface materials (Wangberg & Johnson, 2013). The interviews took place in two separate 
sessions. The first session consisted of open-ended questions and tasks designed to elicit their prior 
understanding of rates of change in single and multivariable calculus followed by a series of 
activities designed to explore the ideas of linear approximation and directional derivative. The 
second session revisited the linear approximation and directional derivative tasks to assess further 
changes in the way the students viewed these concepts. The sessions were video recorded and 
analyzed.  

During the analysis the authors identified instances in which the students actively described 
or utilized schemas which incorporated aspects of rate of change or linearity. These instances were 
then analysed from the perspective of schema theory in order to identify the pattern of connections 
evoked by the students related to rate of change and linearity. These patterns were then analyzed 
over the duration of the interviews to determine significant changes within the students’ schemas 
as a result of their explorations during the task. 
 

 

22nd Annual Conference on Research in Undergraduate Mathematics Education 205



Results 
Students’ Prior Knowledge 

In response to the open-ended questions prior to the linear approximation task, each student 
exhibited a robust understanding of rates of change in single variable calculus. Their initial 
schemas included a description of derivatives as measurable rates of change in geometric and 
contextual situations arrived at through a limiting process. The students were then able to extend 
these ideas to a two-variable setting by adding an element of directionality to their mental 
framework. They were able to evoke this rate of change schema in order to measure partial 
derivatives in multiple settings: on a three-dimensional physical representation of a surface, in the 
applied context of a heated plate, and on a contour map. 

At this point in the interview the students’ primary use of directionality was to reduce a 
three dimensional problem to a problem of only two dimensions by looking at the traces of the 
surface on the coordinate planes. This is described below with the first evidence that the students 
were also considering directions other than those along the coordinate axes.  

 
Interviewer: You mentioned earlier that the idea of derivative is connected to the idea of 

tangent line. Is there any sort of similar idea that holds in multivariable calculus? 
Willy: When you’re dealing with more dimensions, kind of like a plane, which plane the rate 

of change is happening, the xz-plane or the yz-plane. 
Mo: You have to specify a direction. 
Interviewer: You were nodding, was your description of plane similar to [Mo]’s description of 

a direction? (Willy nods) What sort plane are you thinking about? 
Willy: There are infinite amounts of planes (gestures vertical planes in many directions). So 

you have to specify which direction the tangent line is in. 
 

As we see in the above excerpt, the students were able to consider rates of change in many 
directions; however, prior to the linear approximation tasks they did not demonstrate an ability to 
measure or calculate rates of change along directions other than the coordinate directions. When 
asked if there is a relationship between the rates of change in different directions, Willy responded, 
“No… I don’t think there is any relation between one slope and another.” Similarly, when given 
two partial derivatives and asked whether a directional derivative would be positive or negative, 
James made a wavy hand gesture and stated “It would depend on the way the temperature’s 
changing on the curve.”  
 
The Linear Approximation Task 
 In order to explore linear approximation in multivariable calculus, the students were given 
a physical surface representing a two-variable function with one point on the surface identified 
with a blue dot.  The students were given the following task: 

 
Figure 1: Linear Approximation Task 

A. The surface represents the density of gold (in grams per cubic mile) beneath the ground. You own a small 
mine located at the blue dot. Estimate the density of gold at your mine and measure how the density of gold 
changes in the north and east directions. 

 
B. You want to buy one of three mines which are for sale; their locations (relative to yours) are given below. 

Estimate the density of gold at each mine using only your previous measurements. 
Mine A: 1.2 Miles North 
Mine B: 1.2 Miles North and 0.8 Miles East 
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The students were able to apply their prior knowledge about partial derivatives to quickly 
answer Part A of the task finding that the height of the surface at the blue dot was 3.5, the rate in 
the north direction was 0.28 and the rate in the east direction was -1.1. When beginning Part B the 
students were quickly able to incorporate the fact that changes in the density will be proportional 
to changes in the north direction in order to approximate the density at Mine A. 

 
James: Oh yeah, right, so we’re at 3.5 right. So they’re 1.2 north. And the rate of change is -

1.1 per inch. 
Willy: No that’s the east direction, north is 0.28 
James: Alright, [a rate of] 0.28, that means that gets slightly taller. 
Willy: Or is it 0.28 [the rate of change] times 1.2 [the change in distance]? 
Mo: That is exactly what it is. This is all we need to do. If it says north, we times it with dz/dy 

if it says east we times it with dz/dx. 
  

As the students attempted to approximate the density at Mine B, they needed to consider 
changes in both the north and east directions simultaneously.  
  

Willy:  But what about, like, [Mines] B and C where it moves both north and east? 
Mo:  You can add them? 
James:  But look – you have to multiply the rate of change by the direction and add that to our 

mine. You get what I’m saying? Because it’s 1.2 inches north, so you have to multiply that 
by the rate of change, and you have to add that to the mine, to see the height at that mine. 
Because it’s moving .25 grams per mile to the fourth in that direction. So we multiply that 
by 1.2 and then add that to the 3.5 to see where their height, quote unquote, would be. 

Mo:  I see what you’re saying, yes... 
Willy: Yeah, that makes sense. 

  
In the above excerpt we see that the additive property of linearity for changes in the 

dependent variable came naturally for the students. The students offered varied justifications for 
the linearity of their solutions when asked specifically why they believed it was appropriate to add 
the two components together. In the quotation below Willy argues that adding these changes 
together is similar to adding together vectors in three dimensional space. 

 
Willy: So, say this is the original point (indicating the blue dot on the surface). Then when we 

went east it decreased a bit, and when we went north it increased a bit. So we are basically 
adding them. So, it’s basically vectors. Like, you have 3i + 4j and you are basically adding 
them up, something like that… It’s like, think of that parallelogram thing we learned. We’re 
getting the resultant vector from the north and east. So, we are adding them up, basically.  

 
 As seen in the above excerpt, Willy has made connections between this activity and his 
prior knowledge of vector addition, which incorporates the key properties of linearity, addition 
and scalar multiplication. It is not clear whether he is recognizing that the partial derivatives can 
be represented as vectors on a tangent plane or whether he is just acknowledging that the additive 
behavior and directionality seen in vectors is similar to the approximation calculation.  
 Mo subsequently embraced the vector-style reasoning:  
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Mo: They’re not vectors but they behave like vectors. (He draws a rectangle with vectors as 
the edges.) If you want to get to this point you have to do this plus this. So I guess it’s like, 
they act like vectors, but they’re not really vectors. 

 
 James constructed a justification from a different point of view.  
 

James: When you multiply them out ... you’re left with the change in z … you get the same 
unit as this one. And the same thing goes for here so you can add them all up.  

 
He confirmed that in this context the units became the same for each term. While not a 

complete justification for linearity, it demonstrates its plausibility, as the inverse scenario would 
rule it out. 

After successfully approximating the density of gold at Mine B the students quickly applied 
the same principles to approximate the density at Mine C. Following this task they were able to 
work together to create a generalized formula for linear approximations at any point in the domain. 
Furthermore, upon returning for the second session of the interviews the students immediately 
applied the same additive approximation scheme when given a similar task.  
 
Directional Derivatives 

Immediately after the development of their linearity schema for linear approximations, the 
students were asked if, given the partial derivatives of a two-variable function, they could evaluate 
the derivative in another specific direction. Their initial response is in the excerpt below:   
  

Interviewer:  Let’s make this vector more precise. Let’s make it 1i [plus] 2j. Could we figure 
out what the rate of change is in that direction? 

Willy:  2 over 1. 
Mo:  It’s actually the magnitude. 
Willy: Its 2 over 1. 
James: No it’s not the magnitude. The magnitude is the length of the… 
Willy: Remember Pythagoras theorem, 
James: It’s the length of the steepest point. 

 
In the above excerpt we see the students attempting to connect this problem to several prior 

experiences in mathematics, but significantly they have not connected this problem with the just 
completed linear approximation activity, and have not invoked any part of their linear combination 
schema. 

During the second interview session the students were once again tasked with finding the 
directional rate of change. The function had partial derivatives fx = 0.41 and fy = -0.19, and they 
were given the direction of 3.5i + 1.25j. 
  

James:  What if we add both rates, shouldn’t it give you that rate? 
Mo:  Actually… yes. 
James:  Yeah, it should because it’s going to give you the same points… 
Interviewer:  So, tell me what you’re going to add? 
James: Wait let me see if it makes sense first? [cross talk] To get from point A to point B, you 

just add them. 
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Interviewer: So where did the .22 come from? 
James: I just added the rates. 

  
Here we see the students begin to explore incorporating addition into their problem 

solution; however, they are adding the rates and not the changes in the values. Thus we see that 
from their linearity schema they have utilized addition but not scalar multiplication.  

A short while later they recognize that they need to multiply the rate by the change in 
distance, but they still have not connected this process to the linear approximation schema 
developed earlier. This observation is finally made in the following excerpt. 
  

Mo: Ok, I get it. So this rate is not for this distance, it is for anywhere. This is how much it is 
changing for a unit distance. So we need to multiply by this distance. 

James:  Wait, yo, it’s what we did originally. It is. 
Mo:  Yeah, I think the rate is this (writes 3.5 * 0.41 + -0.19 * 1.25). 3.5 times what was the 

rate, 0.41, times the distance, plus, again the rate, -.19, time the distance 1.25, and you’re 
going to divide it by the square root of it, to get this distance (writes square root of 3.52 + 
1.252). That’s it. (does a victory fist pump) 

 
When asked why they needed to divide in the above expression, the students responded: 

 
Mo: I had the rate in this direction (indicates the x-direction), but I had to multiply it by the 

distance. But, since I don’t want the rate times distance in this direction (indicates the 
direction of the directional derivative) I had to divide by the distance. 

James: Yeah, to get the unit vector of unit rate.   
 
 Immediately following this excerpt the students extended their result and wrote a 
generalized formula for the directional derivative as a linear combination. 
 

Discussion & Conclusion 
Over the course of the two interviews, we saw a progression of the students’ schema for 

linearity and its connectedness to linear approximation and directional derivatives. Initially the 
students did not display evidence of a connected linearity schema, arguing that there should be no 
relationship between rates of change in different directions. However, engaging with the 
approximation task prompted the students to introduce linear combinations into their linear 
approximation schema. Their construction of a correct procedure and answer for linear 
approximation represented a restructuring of their schema by schema induction. They were able 
to generalize their result, indicating an act of tuning. During discussion the next day on linear 
approximation they each comfortably utilized linearity in the same fashion, indicating that their 
schema had been strengthened.  

They offered varied justifications for implementing linearity. Two students had a 
justification for linearity which was context-free (vector addition) and one was more context 
dependent (adding like units). The ability to justify the use of linearity in appropriate contexts is a 
significant development since prior research shows that students often apply linearity and its 
properties to mathematical scenarios where it is inappropriate (De Bock et al., 2007). 

In spite of this schema development, the students were not able to evoke linearity once the 
students changed tasks to determine the value of a directional rate of change. This indicates that, 
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at that time, there was no connection between their schemas for directional derivative and for either 
linearity or linear approximation. Instead they went about re-creating the linearity schema within 
the context of directional derivatives. Finally, after the linearity property was re-created by the 
students, James exclaimed “Wait, yo, it’s what we did originally!” This appears to be the moment 
that James recognized that he could use his linearity schema from the linear approximation task 
and adapt it in order to reason about directional derivatives. The other group members made the 
same realization and quickly incorporated linearity into their problem solution for directional 
derivatives. Their resulting schemas thus had connections between linearity, linear approximation 
and directional derivative. Given their inability to calculate the last two previously (in 
multivariable calculus), this indicates a significant restructuring of these schemas.  

It is significant that the expression of linearity within the context of linear approximation 
did not immediately lead to the use of the schema when finding directional derivatives. This is 
reasonable, as the former deals with total change, whereas the latter involves a rate, and an 
additional division must occur. Indeed, in the construction of the directional derivative expression, 
this division is the final step the students took. It is notable that it was, in fact, the recognized 
connection between linear approximations and directional rates of change that allowed the students 
to complete their formulation of the directional derivative. Many major textbooks (e.g. Stewart, 
2012) do not make the connection between these topics explicit. This development points to 
several areas of possible future research. Is this connection between linear approximation and 
directional differentiation commonly observed among students? How does the instructional 
sequence of linear approximation followed by directional derivative compare to other alternative 
instructional sequences? How does the choice to contextualize the linear approximation task 
impact a student’s development of a linearity schema? Finally, do the observations reported here 
generalize to large student populations? 

This study has contributed to the body of research in multivariable calculus by observing 
how three students invoked their linearity schemas at varying levels of robustness while 
investigating linear approximation and directional derivative, by analyzing the connections they 
made, and has suggested new lines of inquiry as well. 
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The Institutionalized Paradox: Our Teachers Are Not Trained To Teach 
 

Rochy Flint  
Columbia University   

In a culture where STEM preparation is rapidly becoming of utmost importance to the nation’s 
economy and educators are challenged to increase diversity and equity amongst students, quality 
mathematics instruction at the collegiate level is critical. Yet the majority of undergraduate 
mathematics teachers are not formally trained in pedagogy. This is a systemic issue, an 
institutionalized paradox, which originates in the mathematicians’ training grounds - 
mathematics PhD programs. This paper provides background on this issue and focuses on a 
survey of university mathematicians concerning their formal academic training and their 
outlooks and prioritization of pedagogical training. Attention is drawn to the disconnect between 
university mathematicians’ beliefs about the important role of pedagogical education in 
mathematics program and their resistance to promoting its implementation as a basic 
institutional requirement. A call for action is suggested to remedy these institutionalized systemic 
paradoxes.  

Keywords: Pedagogical Training, Pedagogy for Mathematicians, Undergraduate Instruction 

 Introduction 
It is a curious phenomenon that those whose role it is to prepare the next generation of 

mathematics learners at the college level most often lack basic training in the fundamentals of 
teaching. Although this pedagogical vacuum is present in other subject matters, the lack is most 
critical in mathematics, where future success is based on a mastery of progressively complex 
predecessor functions and disciplines. Mathematics teachers rarely learn how to teach; they learn 
how to be mathematicians. Granted that to be a good mathematics teacher strong mathematical 
knowledge is required – as subject matter expertise is a primary critical component of teaching. 
However, in most cases subject matter knowledge is not sufficient to reliably result in effective 
and excellent teaching. 

The central thesis of this paper is that a discrepancy exists between the way mathematicians 
think about the importance of pedagogical training for teachers of mathematics and the priority 
they place on actually implementing pedagogy into mathematics PhD programs. This 
discrepancy contributes to a situation in which the overwhelming majority of mathematics PhDs 
will become college level mathematics teachers (i.e. adjuncts, instructors, lecturers, and 
professors), while mathematics PhD programs across the United States, and often around the 
world, have little or no pedagogy development to assure that these programs will produce good 
mathematics teachers. These programs are designed to prepare mathematics researchers. Our 
future teachers are rigorously trained to ―do‖ mathematics and are not trained to ―teach‖ 
mathematics. Research shows that this is having an impact on student retention and attrition in 
undergraduate mathematics programs.  

The aim of this paper is threefold: (a) to review research which discusses this systemic 
problem, (b) to assess contributing factors to this systemic problem by addressing the perspective 
of university mathematicians on the importance of pedagogical training, and (c) to suggest 
fundamental changes in the way we approach integrating course requirements for mathematics 
PhD programs. 
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The paper is organized as follows: (a) Section 2 is a literature review and discussion of 
studies related to this paper’s central thesis; (b) Section 3 presents a survey on pedagogy and an 
analysis of survey results, which were conducted at an international conference of 
mathematicians and at a research seminar at an American university in spring of 2018; (c) 
Section 4 discusses the ramifications of the literature review and the survey results; 
(d) Section 5 draws conclusions and suggests a call to action for fundamental change in the 
curricula of mathematics PhD programs and proposes a study to assess the value of that change. 
 

 Literature Review 
There is a rich amount of research showing that strong mathematics knowledge is not 

necessarily an indicator of strong mathematics teaching skills (Bass, 1997; Kennedy, 1991). 
Universities, have competing goals when they hire faculty: research and teaching. These two 
goals often conflict. Many universities have a value hierarchy and regard research as more 
pivotal and will hire faculty primarily for their research abilities, regardless of their pedagogical 
training and skills (Brand, 2000). Although universities generally do have a process for assessing 
teaching capabilities of its subject matter experts, it is most often a limited process consisting of 
a brief model lesson and an observation lesson each semester for beginning teachers and student 
evaluations (NRC, 2003). Whereas this system may screen out teachers with ―poor skills‖ it 
almost never results in formal pedagogical training or deep professional development. The 
system is missing the fundamental step of providing formal pedagogical training prior to 
graduates becoming teachers. 

Mathematics instructors in college mathematics vary widely, from tenured full time 
professors and full time lecturers with many years of teaching experience, to adjuncts either with 
PhDs or enrolled in PhD programs, and varying teaching experience especially in the beginner 
mathematics college courses (Haycock, Majors, & Steen, 2004). Implementing Shulman’s 
directive that to understand a profession one looks at its nurseries, to understand the profession 
of college mathematics teachers one should look at the mathematics PhD programs (Shulman, 
2005). PhD programs most often do not focus on preparation for college teaching, despite 
teaching being a fundamental component of an academic life (Adams, 2002). Many of these 
professors and instructors have had no formal pedagogical training. As Bass states, ―academic 
mathematical scientists, who typically spend at least half of their professional lives teaching, 
receive virtually no professional preparation or development as educators, apart from the role 
models of their mentors‖ (Bass, 1997). Moreover, since teaching is often not the primary focus 
for many university teaching faculty, this results in minimal time to focus on building teaching 
skills and tends to rely on ―learning on the job‖ to gain classroom skills despite the availability of 
resources (Boyer, 1990; Fairweather, 2005).  

The systemic issue is that regardless of the intention and perspective of the teacher, lacking 
pedagogical skills often negatively impacts the students in the classroom (Gibbs & Coffey, 
2004). Furthermore, it leads to disinterested students and can discourage students from 
continuing their pursuit of a mathematics degree (Seymour & Hewitt, 1997). Is it okay to have an 
entire system dependent on idiosyncratic teacher performance? Acknowledging that there are 
many mathematicians who profoundly care about teaching and who have developed excellent 
teaching skills on the job (Oleson & Hora, 2014), should there be a systematic approach to 
developing excellent teachers? Research shows that educators with teacher training are more 
successful educators than teachers without professional teacher training (Darling-Hammond, 
2000). Moreover, teacher practices and skill are not innate but something that is learned 
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(Darling-Hammond, 2012). Formal pedagogical training is ubiquitously accepted as fundamental 
and required in the K-12 level of schooling, yet this consensus is not an established norm at the 
college level despite the prevalent need and public concern (TAC & NRC, 2001). 

The field of mathematics education, which was established to study the fundamental issues of 
pedagogy in mathematics, was founded over a century ago by the renowned mathematician, 
Felix Klein (Bass, 2005; Eves 1969). Naturally it would seem that a positive symbiotic 
relationship between mathematicians and mathematics education would ensue. Yet, there is an 
unfortunate disconnect between the fields (Dörfler, 2003). Under the umbrella of mathematics 
education there is a plethora of rich research, knowledge, tools and resources that focus on 
pedagogy for postsecondary mathematics instruction, e.g. Transforming Postsecondary 
Education in Mathematics (TPSE Math) (Holm & Saxe, 2016). There exist communities of 
scholars and programs consisting of mathematicians and mathematics educators that focus on 
pedagogical related issues for undergraduate teaching in mathematics, e.g. programs such as 
SIGMAA on RUME, the Mathematical Association of America (MAA) Project NExT, the 
Preparing Future Faculty (PFF), and the International Commission on Mathematical Instruction 
(ICMI), to name just a few. Furthermore, there exist teams of scholars addressing 
mathematicians’ knowledge of teaching (Loewenberg Ball, Thames, & Phelps, 2008) and active 
studies (e.g. see Miller, 2017) finding the best teaching methods at the collegiate level. 
Nevertheless, the majority of mathematicians are generally unaware of these resources (Nardi et 
al, 2005). Many PhD programs that are training future mathematics educators fail to 
acknowledge and integrate this fundamental body of knowledge. This failure can have 
tremendous impact on the quality of teaching and hence negatively impact the quality of 
mathematics learning at the collegiate level. 

The principal problem is that this body of research does not enter the curriculum of 
mathematics PhD programs. It is just not part of the system. There are some PhD mathematics 
programs that have begun to require and offer pedagogy training in the form of mentoring, but 
even a rigorous mentoring program is not sufficient for ensuring student learning. In addition, 
most mentoring training programs fail to offer basic courses such as a methods class, or a 
multicultural mathematics education course which would better equip teachers in increasingly 
diverse populations of undergraduate classrooms. Many PhD mathematicians are not 
pedagogically trained at all, as is highlighted in the survey below. 

 
 Survey on Pedagogy for Mathematicians 

 The Survey 
During his 90th birthday celebration mathematician Dr. Henry Pollack humorously told the 

crowd that when he teaches his mathematics education students mathematical modeling he tells 
them "I'll teach you math, and you'll teach me how to teach." This sentiment resonates with many 
mathematicians. To highlight this perspective, which resonated deeply with me while training to 
be a mathematician, I decided to conduct a survey of fellow mathematicians to ascertain what 
they thought about the importance of pedagogy for mathematicians. To date, I have conducted 
the survey with two groups: (a) at a recent international mathematics research conference 
consisting of a group of mathematicians actively engaged in advanced mathematics - faculty, 
postdocs, and graduate students in PhD mathematics programs who often have teaching 
requirements at the undergraduate level; and (b) at an American university mathematics seminar 
in advanced mathematics. For both groups, the survey was intended to elicit participants’ 
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thoughts on their training and their views on the value of pedagogical training for 
mathematicians. 

In total, 64 participants completed the survey. The majority of the survey participants have 
teaching obligations at the undergraduate level in mathematics. The responders consisted of 32 
faculty, 13 postdocs, 16 students, and 3 unidentified. The international conference had a total of 
77 participants from 50 different universities worldwide. In total 57 responded. The survey at an 
American university was given after a research seminar talk to a small group of 7. The questions 
on the survey were chosen to be direct, short, and easy to answer in order to attract a high 
volume response rate. There were four questions: 

1. How many pedagogical courses have you taken during the course of your 
mathematics education? (a) none, (b) 1 or 2, (c) 3 or more. 

2. How important is it to have pedagogical training for mathematics PhD programs? 
(a) Not important, (b) Somewhat important, (c) Very important. 

3. Should mathematics graduate programs offer courses in pedagogy? (a) No, (b) 
Yes, (c) Unsure. 

4. If you answered yes to #3, should the courses be required?  (a) No, (b) Yes. 
Following these questions, the survey included a section for comments, and an option to 

describe the individual’s position as faculty, postdoc, or student. 
Survey Results 

The questions and corresponding responses are indicated in Table 1. The numbers indicate 
the number of responses for each option per question; adjacent are the corresponding percentages 
with respect to the total number of responders for that particular question indicated as well.  

When administering the survey at the international conference I requested that responders 
write the name of the country in which they took their pedagogical training (if they had any 
pedagogical training). The participants in the conference were from a diverse collection of 
countries. 21 of the 30 responders who had pedagogical training identified the country in which 
they took pedagogical courses, (see Table 2). It will be interesting for further research to 
determine whether there is any significant variance amongst geographical locations concerning 
the perceived importance of pedagogical training.  

 
         Table 1. Survey questions along with participants’ responses. 

Survey on Pedagogy for Mathematicians Results  
 
1. How many pedagogical courses have 

you taken during the course of your 
mathematics education? 

 

None  1-2 3+ 
34 53% 25 39% 5 7.8% 

2. How important is it to have pedagogical 
training for mathematics PhD 
programs? 
 

Not important  Somewhat 
Important  

Very 
Important  

9 14.3% 33 52.4% 21 33.3% 

3. Should mathematics graduate 
programs offer courses in pedagogy? 
With three options to respond: 
 

No Yes  Unsure 
8 12.7% 37 58.7% 18 28.6% 

4. If you answered yes to #3, should the 
courses be required? 

 

No Yes  
16 44.4% 20 55.5% -- -- 
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                     Table 2. Countries where participants received teacher training. 

Country where pedagogical courses where given 
Country # of 

responders 
1 or 2 

courses 
3 or more 
courses 

Hungary 

Israel 

Japan 

Korea 

US 

1 

1 

1 

1 

17 

-- 

1 

-- 

1 

16 

1 

-- 

1 

-- 

1 
 

 
The results led to insightful findings highlighting the systemic issue, as follows: 

1. The majority (53%) of respondents did not have any pedagogical training. 
2. The overwhelming majority (86%) replied that pedagogical training for 

mathematics PhD programs is ―somewhat‖ to ―very important‖.  
3. Less than 15% answered that it is ―not important‖.  
4. The majority (59%) did agree that graduate programs should offer courses in 

pedagogy.  
5. Less than 13% answered that mathematics graduate programs should not offer 

pedagogical courses, and approximately 29% were unsure.  
6. Of those who responded yes to question 3 (Should mathematics graduate 

programs offer courses in pedagogy?), approximately 55% replied that it should 
be required.  

7. Very few (less than 8%) have taken 3 or more pedagogical courses.  
Many were eager to complete the survey and expressed concern about the lack of focus on 

pedagogical training and attitudes about pedagogical training in mathematician circles. Of note, 
the majority of mathematicians in this survey were not trained formally in teaching, yet an 
overwhelming majority believe pedagogical training for mathematics PhD programs is 
important. 55% of those who responded yes to question 3 (59% of total participants) about 
whether mathematics PhD programs should offer pedagogical training courses said it should be 
required. This means that in total, only 31% of all responders believe that pedagogy training 
courses should be required. This underscores a common perspective amongst mathematicians, 
namely that many mathematicians do not think that formal pedagogy training is essential yet they 
still acknowledge that it is important.  Most outstanding is that only 8% of all the responders had 
formal training of 3 courses or more. 

After conducting the survey many responders reached out to discuss the issue of teacher 
training in mathematics PhD programs. Additional anecdotal insights provided by the survey 
participants conveyed that there was a sense that pedagogical training is not an issue that 
mathematicians think deeply about but is something that is vital. Few expressed concern about 
how ill-prepared they felt to fulfill their teaching obligations. Some were proud to praise the 
programs their universities had to guide their students in teaching. One faculty responder noted 
that his program for requiring students to take a 2-semester course on lecturing created the 
outcome that ―our students result in the best presenters, regardless of the nature of their content‖. 
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The survey responses conveyed similar results with slight variation when observing data 
based on cross tabulation of the following subgroups (a) faculty, (b) postdocs, (c) students, (d) 
research seminar, and (e) international conference. 

This survey highlights several key critical findings: (a) the lack of pedagogical training for 
mathematicians, (b) the overall belief that training is important, and (c) there exists a disconnect 
and reluctance of mathematicians regarding the fundamental importance of formal pedagogy 
training in PhD programs as a required part of the curriculum. The fact that only 31% think 
pedagogical courses should be required highlights the disconnect and lack of awareness of the 
vast body of knowledge in undergraduate mathematics education supporting the vital role of 
pedagogical training in the development of mathematics educators.  

 
 Discussion on Ramifications of Literature Review and Survey Results   

There is substantial support, both in the literature and amongst the sample surveyed, that 
pedagogical training for college mathematics is important to produce good teachers, and more 
importantly, to produce good mathematics learners (students). This viewpoint runs counter to the 
notion that students’ innate affinity for mathematics is the major determinant of successful 
mathematics learning and that students’ lack of innate affinity for mathematics is the major 
determinant of failure to learn well (Rattan, Good, & Dweck, 2012).   

There are two inherent paradoxes that emerge from the survey and literature review. (a) The 
majority of mathematics educators on the collegiate level are not trained in pedagogy; simply 
speaking, our teachers are not trained to teach. (b) The majority of mathematicians in the survey 
think pedagogy training is important, yet only a minority believes it should be required.  

The failure to have pedagogically trained teachers contributes to poor outcomes of 
collegiate teaching in the STEM fields and blocks the emergence of mathematical talent across 
many demographics. This is of utmost concern given the global economic paradigm shift from 
agricultural-and industrial-based jobs to STEM-based careers, creating a need to prepare 
generations of students who are STEM-career ready. Yet we are not producing an adequate 
number of STEM degreed graduates to meet our national need (Hall et al, 2011). Moreover, 
those who are graduating are predominantly non-diverse—this is in part due to lack of interest in 
the field projected by ineffective teachers (Nardi, 2007). A significant cause of attrition is not 
students’ ability but rather poor pedagogical practices by faculty (Seymour & Hewitt, 1997).     
      Understanding the needs of the student body and being equipped to teach collegiate students 
in mathematics are crucial for student success. The undergraduate curriculum for STEM-oriented 
majors requires proficiency in the "gateway" courses of calculus and linear algebra. Moreover, 
many students coming into college are missing basic mathematics skills and are placed in 
remedial mathematics courses such as college algebra or pre-college algebra (Bryk, & Treisman, 
2010). These students require well-trained educators to succeed. Those students who don't pass 
entry-level courses either are blocked from furthering any STEM-based education or they drop 
out because their failure has caused them to believe that they cannot succeed (Bellafante, 2014). 
      To address this gap, critical care must be given to train the teachers who will be responsible 
to teach all students including (a) students that are insufficiently prepared and (b) an increasingly 
diverse student body. It is telling to note that students who are taking "beginner courses" are 
often taught by adjuncts, who are mostly PhD graduate students who are learning and 
researching upper level mathematics and have little to no pedagogical training (Harris et al, 
2009). (As noted, if the teacher is a full-time professor, often they also don't have pedagogical 
training.) This systemic failure is having a damaging effect on our students and can be rectified. 
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Conclusions, Limitations, Future Directions, and A Call to Action 
Conclusions 

      The results of this survey highlight that although most mathematicians have limited training 
in formal pedagogy, the majority believes that pedagogical training for mathematicians is 
important. Paradoxically, whilst they believe it is important, only a minority of mathematicians 
endorse that pedagogy is vital enough to be a basic requirement. The disconnect between the 
well-researched importance of education in mathematics instruction and the level of education 
training among mathematicians is represented in this survey and speaks to a surprising gap in 
current mathematics educational practice.  

Lack of pedagogical instruction for university teachers is a systemic and detrimental 
problem. Absent any pedagogical requirements, and coupled with the dominant viewpoint that 
teaching is the second fiddle to the virtuoso performance of research, university teaching cannot 
be expected to be efficient – let alone excellent. The literature on the subject of teacher training 
overwhelmingly demonstrates that trained teachers produce better mathematics learners than 
untrained teachers, however brilliant these teachers may be in their field. Yet university systems 
impose no formal pedagogical requirements on their teachers. 

Limitations and Future Directions 
The survey was conducted on a small convenience sample of mathematicians in a particular 

area of pure mathematics. Thus, a larger sample size is needed to more broadly assess the 
attitudes and beliefs of mathematicians across a broader range of university settings and across a 
more random sample of mathematics specialties. 

This study’s survey provides preliminary evidence of a gap in mathematicians’ knowledge 
about the importance of formal pedagogical training and readiness to promote educational 
change on an institutional level. Further research is needed to explore the nature of this 
discrepancy, its driving/contributing factors, and the impact of raising mathematicians’ 
awareness and increasing knowledge for teaching. A pilot study in which beliefs and attitudes of 
a randomized group of mathematicians are assessed before and after exposure to pivotal articles 
in mathematics education research would shed light on whether a lack of crosstalk between the 
fields of pure mathematics and mathematics education is an important contributing factor to the 
gap highlighted in this paper. The study would also assess whether individual attitudes and 
beliefs about the importance of formal pedagogy in mathematics generally, and as a basic 
requirement in teaching undergraduate mathematics courses specifically, are changed pre- and 
post- exposure to the selected articles. 

Call to Action 
To solve this systemic problem requires a systemic solution. Both institutional requirements 

and public policy require change. The following possible solutions are suggested. Institutionally, 
mathematics PhD programs should offer and require pedagogical training for all their students, 
and universities should require all members of their teaching staff to be trained in pedagogy. In 
order to implement such change, public policy must be affected at a national level. 
Notwithstanding that change can happen systematically, it may require a grass roots effort (one 
school at a time) to adopt this policy.  Further research is needed to better understand attitudes 
and beliefs among influential mathematicians toward and in resistance to imposing these 
educational requirements are crucial to guide future effective and targeted public policy change.  
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To reform instruction by moving towards student-centered approaches, research has shown that 
faculty benefit from support and collaboration (Henderson, Beach, & Finkelstein, 2011; Speer & 
Wagner, 2009). In this study, we examined the ways in which a mathematician’s instruction 
unfolded during his participation in a faculty collaboration geared towards reforming 
instruction and aligning it with inquiry oriented instruction (IOI) (Kuster, Johnson, Andrews-
Larson, & Keene, 2017). Results indicate the participant’s mathematics background and 
research interests influenced how he used student thinking in his instruction. More specifically, 
when mathematics content specifically aligned with the participant’s research interest he often 
guided students to view differential equations as he did; whereas, when the content was not 
aligned with his research interest, he was more open to the using his students’ thinking to drive 
the class forward. Implications and future research directions are discussed. 

 
Keywords: Instructional Change, Faculty Collaboration, Student Mathematical Thinking 
 

Over the last decade there have been numerous calls for reform in undergraduate 
mathematics education (e.g., President’s Council of Advisors on Science and Technology 
[PCAST], 2012). These calls for reform draw on research that has shown the benefits of student-
centered instruction (e.g., Freeman et al., 2014). To address these calls, change is needed in the 
instruction of undergraduate mathematics. For example, A Common Vision gave a general call 
that instruction should move away from traditional lecture as the sole instructional method in 
undergraduate mathematics (Mathematics Association of America [MAA], 2015). 

Given these calls for instructional reform, faculty want to make changes to their instruction. 
However, research has shown that even when working with research-supported curricular 
materials, mathematics faculty are often unprepared to undertake the challenge of changing their 
instruction (Henderson et al., 2011; Wagner, Speer, & Rosa, 2007). Current endeavors are 
providing mathematics faculty with support needed to change their instruction. 

There are also calls for departments and faculty members to collaborate specifically on the 
pedagogy (MAA, 2011). One research-based method of support is faculty collaborations geared 
towards collectively improving instruction (e.g., Nadelson, Shadle, & Hettinger, 2013). In 
particular, researchers are studying how mathematics faculty come to use research-based 
instructional strategies in their classrooms in the context of faculty collaboration. This study 
explored the experiences of a mathematician who participated in one such faculty collaboration 
that addresses the numerous calls for reform in undergraduate mathematics education and 
instruction. The study addressed the following overarching research question: 1) In what ways 
does one mathematician’s experiences in an online faculty collaboration on inquiry oriented 
differential equations relate to his instructional practice? And the following sub research 
questions: a) How does his instructional practice unfold over his first implementation of inquiry 
oriented differential equations and in what ways does it align with inquiry oriented instruction? 
b) How does his participation unfold in the online faculty collaboration? 
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Theoretical Backing and Literature Review 
Our study and the instructional strategies we sought to disseminate to the mathematics 

community are rooted in Freudenthal’s (1991) theory that mathematics is a human activity. This 
is manifested in the instructional design theory of Realistic Mathematics Education 
(Gravemeijer, 1999) on which inquiry oriented mathematics is based. In this section, we briefly 
describe this instruction and relevant research on instructional change. 
Inquiry Oriented Mathematics 

The faculty collaboration focused on inquiry oriented mathematics and instruction. 
Rasmussen and Kwon (2007) defined inquiry oriented (IO) environments as teaching where 
students are inquiring into the mathematics, while the teachers are inquiring into the students’ 
mathematical thinking. In this study, we specifically focused on inquiry oriented differential 
equations (IODE) which has been shown effective for student understanding of differential 
equations (Kwon, Rasmussen, & Allen, 2005). 

Inquiry oriented instruction. In inquiry oriented mathematics, it is clear that the role the 
teacher plays is important for advancing the mathematical agenda. Kuster et al. (2017) recently 
defined four focal components of inquiry oriented instruction (IOI): generating student ways of 
reasoning, building on student contributions, developing a shared understanding, and connecting 
to standard mathematical language and notation. The focal components of instruction are guiding 
principles of IOI. It is important to note that the four focal components very rarely occur 
independently; oftentimes, these components overlap and occur in the complexities of an IO 
classroom. Further, there are local practices of IOI. The local practices of IOI (see Table 1) are 
an elaboration on the four focal components of IOI. While the focal components are guiding 
principles of IOI, the local practices are specific actions that instructors do in an IO classroom. 

 
Table 1. Inquiry oriented instructional local practices (Kuster et al., 2017). 
Local Practice Description 

1 Teachers facilitate student engagement in meaningful tasks and 
mathematical activity related to an important mathematical point. 

2 Teachers elicit student reasoning and contributions. 
3 Teachers actively inquire into student thinking. 
4 Teachers are responsive to student contributions, using student contributions 

to inform the lesson. 
5 Students are engaged in one another’s thinking or reasoning. 
6 Teachers guide and manage the development of the mathematical agenda. 
7 Teachers introduce language and notation when appropriate and support 

formalizing of student ideas/contributions.  
 
Overview of Faculty Instructional Change 

Here we first describe barriers to instructional change and then what the research community 
knows about facilitating and sustaining instructional change.  

Barriers to instructional change. One barrier to instructional change is faculty’s knowledge 
for teaching with student-centered instructional strategies. Research has shown that some faculty 
lack the necessary skills to enact student-center instruction (Hayward, Kogan, & Laursen, 2015), 
sometimes because they lack specialized content knowledge relating to instruction and being 
prepared to respond to student questions productively (Wagner et al., 2007). Further, faculty 
have stated that student resistance, lack of student buy-in, and student attitudes of school are 
reasons why they do not use student-centered instruction (DeLong & Winter, 1998). The most 
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often cited environmental reason by faculty to not use student-centered instruction is how much 
more time it takes than teacher-centered instruction (Henderson & Dancy, 2017). Likewise, 
faculty say they stray away from student-centered instruction because they have a certain amount 
of material that needs to be covered over the course of one semester (Hayward et al., 2015).  

Facilitating and sustaining instructional change. Henderson et al. (2011) outlined four 
categories of instructional change strategies that are elaborated on in this section: disseminating 
curricula and pedagogy, developing reflective faculty, enacting policy, and developing a shared 
vision. Borrego and Henderson (2014) elaborated on these four categories of change by defining 
eight change strategies that fit within the framework. Our study considered two of these change 
categories: scholarly teaching and faculty learning communities. Scholarly teaching is when 
“individual faculty reflect critically on their teaching in an effort to improve” and faculty 
learning communities are when a group of faculty come together and “support each other in 
improving teaching” (Borrego & Henderson, 2014, p. 227). These two strategies can work 
together to improve undergraduate mathematics instruction. 

Methods 
This study focused on one participant from an IODE online faculty collaboration (OFC). This 

qualitative instrumental case study (Stake, 1995) was bounded by the participant’s participation 
in the OFC and his classroom teaching. This work comes from the BLINDED project, which 
supported university mathematics faculty in shifting their practice towards an IO practice. 
BLINDED offered three supports: the IO materials (in this case IODE), a summer workshop, and 
the weekly OFC. Here we first highlight pertinent details on the OFC. 
Online Faculty Collaborations 

The IODE OFC met weekly during the semester they are teaching IODE, virtually via 
Google Hangouts to conduct lesson studies that were modified Japanese lesson studies (Demir, 
Czerniak, & Hart, 2013) led by a facilitator. The main goals of the OFC were to: 1) aid teachers 
in making sense of the instructional IODE materials, 2) thinking through the sequences of tasks, 
how students might approach the tasks, how to structure instruction around the tasks to support 
student learning, 3) assist teachers in developing and enhancing their instructional practice, and 
4) develop a safe and supportive community.  
Participant 

The focus of this study is one participant from the IODE OFC, Dr. DM. The OFC consisted 
of the facilitator (Dr. GG), two graduate research assistants (GRA1 and GRA2), and five faculty 
teaching the materials for the first time (Drs. DM, AB, PR, CD, ST). The sampling of Dr. DM 
was purposeful in nature (Yin, 2013) and there were several reasons for that choice. First, he was 
and is passionate about his participation in BLINDED and to this day continues with IOI in his 
IODE classroom. Second, he became a facilitator for the project in future semesters following his 
participant experience. Furthermore, Dr. DM filmed every class of the semester, which was more 
than was expected of the other BLINDED participants, affording a plethora of possible data 
sources and a semester-long look at instruction. 
Data Collection and Analysis 

Data were collected from Dr. DM’s classroom instruction, the OFC he participated in, and 
two interviews during his participation in the project. 

Classroom data. Video data from Dr. DM’s classroom were collected. Classroom video data 
were chosen to match the units covered in the OFC lesson studies (i.e., Unit 6 and Unit 9). In 
addition to those units, Unit 1-2 as an introductory unit and Unit 12 were analyzed. All units 
lasted a different amount of time. The IOI framework discussed above (Kuster et al., 2017) was 
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designed to capture IOI in action. Consequently, we used the framework as an a priori analytical 
framework for coding Dr. DM’s classroom instructional practice to answer research question 1a. 
In particular, we used the local practices (LP) of IOI. The IOI framework also contained 
“evidences,” not shown above, of each LP; these evidences served as codes that were collapsed 
to each LP. LP1 was not coded for unique observable instances in the data. After the first round 
of coding, we went back again and revisited analysis logs and made adjustments to the coding as 
necessary. In this step, we looked for emergent themes from the data.  

OFC data. Each OFC was screencast using software. All weeks of the OFC were analyzed 
except week 6 because the data was corrupted and week 8 because Dr. DM was unable to attend 
that week (in total 9 OFCs were analyzed). Weeks 1 and 2 were introductory weeks. Lesson 
study 1 took place over weeks 3-5 and lesson study 2 took place over weeks 6-10. Lastly, a 
debrief OFC occurred during week 11. All videos were transcribed. To analyze Dr. DM’s 
participation in the OFC we coded the transcripts with a priori codes and frameworks: the role of 
the speaker (production design from Krummheuer, 2007), the role of the listener (reception 
design from Krummheuer, 2011), and conversation categories (Keene, Fortune, & Hall, under 
review). These frameworks were adapted to fit the context of this study and are discussed in the 
results. In a broad sense, we considered Dr. DM’s active versus passive participation. 

Interview data. The interview data served as a third data source to relate Dr. DM’s 
experiences in the faculty collaboration to his instructional practice. Furthermore, this data 
offered Dr. DM’s personal perspective on being part of a faculty collaboration. Entrance and exit 
semi-structured interviews were conducted. All interviews were audio recorded and transcribed. 
Transcripts of both interviews were open coded (Yin, 2013).  

Results 
Instructional Practice 

Central to IOI is the facilitation of mathematics where students are actively inquiring into the 
mathematics while the teacher is actively inquiring into the students’ mathematical thinking 
(Rasmussen & Kwon, 2007). Dr. DM’s instruction focused predominantly on LP2, eliciting 
student ways of reasoning and contributions (see Table 2). Dr. DM less often actively inquired 
into why his students were making such contributions (LP3), used those contributions to push the 
agenda forward (LP4), and had students engage in one another’s thinking (LP5; although this 
happened frequently in Unit 1-2). Note that frequencies were scaled and rounded to represent the 
same amount of class time as each unit lasted a different number of days. 
 

Table 2. Frequencies of Dr. DM’s Local Practices of IOI. 
Practice Unit 1-2 Unit 6 Unit 9 Unit 12 

2 58 52 66 26 
3 17 24 16 4 
4 17 16 15 8 
5 42 26 14 2 
6 14 16 6 4 
7 3 14 8 2 

 
Table 2 is very telling of Dr. DM’s instruction. He was very interested in generating student 

contributions. While some of the questions asked were ones from the IODE tasks themselves, he 
often would ask his own questions in his own way as a means to address something that he 
wanted to focus on or have his students think about. While students had opportunities to engage 
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in others’ contributions as they were written on the board, they less often had opportunities to 
engage in others’ thinking, as Dr. DM did not follow up with questions to have students 
elaborate on their thinking as often. Essentially, after students made contributions, Dr. DM 
would more often move on. We cannot know for sure if Dr. DM was so in tune with the students 
in his class and the mathematics itself, that he did actually know why his students were thinking 
along certain lines. However, LP3 and LP4 are about making explicit to the rest of the class such 
thinking and thus Dr. DM’s LP frequencies were reflective of the fact that he did not often make 
public his inquiring into student thinking. 

Comparison of instructional units. Dr. DM’s instruction did not necessarily change from 
the beginning of the semester to the end of the semester. As discussed across the totality of Dr. 
DM’s instruction his most frequent LP was LP2, eliciting student ways of reasoning and 
contributions. However, when comparing the four units of analyzed instruction there were 
contrasts between the units. Namely, the way Dr. DM’s instruction unfolded was tied to 1) how 
and when he used student thinking in his class and 2) his mathematical beliefs, rooted in his 
mathematical research arena. 

First, Units 1-2 and 6 were when Dr. DM frequently (more often than any other unit when 
comparing across scaled time) engaged students in one another’s thinking. In particular, these 
units were the units where his students’ thinking was most at the forefront of the class and he 
oftentimes used that thinking to advance the mathematical agenda. When student thinking was 
made prevalent to the rest of the class, Dr. DM’s instructional reflected that. For example, when 
introducing phase lines one student made a claim that the solution will never reach 8 (i.e., an 
equilibrium solution) and the following 8 minutes focused on that one claim. During that time 
students were responding directly to each other [LP5] or prompted to do so by Dr. DM [LP5]. 
Dr. DM asked clarifying questions [LP3] such as “and that assessment was based on what?” 

Second, when the mathematics of the unit was associated with Dr. DM’s mathematical 
research interests he would focus on getting students to get to “the way [he] view[s] the 
mathematics” rather than having his students’ work or ideas at the center of the development of 
the mathematical agenda. Unit 9 dealt with the development of the phase plane which was a 
crucial tool in Dr. DM’s research. The instructional portrait of that unit had the highest amount 
of eliciting student ways of reasoning and contributions [LP2] and in comparison, a very low 
frequency of LP3-5 (the other practices associated with student thinking). Many of the questions 
that Dr. DM asked were of his own accord and not generated from the whole class discussion. 
Because he knew the mathematics so intimately, he was most interested in getting students to see 
the mathematics the way he does, rather than letting the mathematics emerge from the students. 

Dr. DM specifically discussed in his exit interview how he would want students to view 
mathematics as he does, in particular, the subset of differential equations closely related to his 
research field: phase planes. 

 
Dr. DM [interview]: And so, um I see DEs, like that’s my goal is for students to be able 
to start to see that. And for that reason, I have to push that kind of phase plane agenda to 
start to be able to talk about that. ... By viewing myself as the curator of their discussion 
and just picking apart things and building towards my mathematical agenda allowed me 
to inject a lot of my personality back into the course and talk about things that I’m really 
passionate about. … And that agenda is largely because of the way I see DEs used in my 
research. Uh, I want students to have a taste of that. 

 
Similarly, in class Dr. DM would point out his bias of use of the phase plane. 
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Dr. DM [class]: This is my home; phase planes are where I live. ... All of my research is 
based in the phase plane, in phase space. ... That is a sufficiently strong hint that says I 
will allow my bias to show and I will promise you many questions on the phase plane on 
the next celebration of knowledge [Dr. DM’s tests]. I can’t help it. I find it exciting. � 

 
Participation in OFC 

Recall the goal of the OFC was to support cohorts of mathematicians as they came to learn 
about IOI and IODE. Table 3 highlights the participation frequencies based on role and 
conversation. For the purposes of space, we only discuss active and passive participation here 
rather than all the more specific roles adapted from Krummheuer (2007, 2011). Additionally, we 
adapted frameworks from our previous work (Keene et al., under review) but here only include 
four broad conversation categories rather than each individual conversation topic. 

Rather than growth throughout the semester, Dr. DM immediately jumped into the active role 
in the OFC and that active role was consistent throughout the semester. Similar to his classroom 
instruction there was not a change but rather how his role looked depended on the content of 
each OFC. For example, if the week focused on doing mathematics, he rarely authored topics 
because he simply was partaking in the conversation, however, he was very active in those 
weeks as he has a real passion for mathematics. Additionally, when the OFC focused on sharing 
of his videos, he authored frequently those weeks and the conversation focused on pedagogy as 
he sought advice on, for example, how to speed up his class because he was running out of time 
at the end. Table 3 highlights Dr. DM’s most active role related to pedagogical issues. 
 

Table 3. Frequencies of Speaker / Listener Codes by Participation / Conversation Category. 
Conversation 

Category 
Speaker Listener 

Active Passive Active Passive 
Pedagogical Issues 137 16 82 55 
Mathematical Issues 70 6 72 40 
Student Issues 63 2 20 23 
OFC Issues 97 24 91 156 

Discussion and Conclusion 
In this section, we discuss how Dr. DM’s instruction related to his participation in the OFC. 

In our analysis we observed numerous relationships, but in this report, we specifically focus on 
how his mathematics background impacted his teaching and his participation in the OFC. 

Dr. DM’s mathematics background played a role in how his instruction panned out 
throughout the semester and how he participated in the OFC. In both cases his mathematical 
content knowledge (rooted in his background and research interests) was placed on top of his 
interest in enhancing his pedagogical practice. By that we mean, in his teaching, his view of 
mathematics sometimes was the view of mathematics that he was guiding his students towards. 
Likewise, in his participation in the OFC, his mathematical understanding was one of the driving 
factors for his interest in enhancing his pedagogical practice. Namely, he had a deep geometric 
understanding of differential equations and sought support on how he can get his students to that 
same level of awe and understanding. Dr. DM desired to reform his instruction but struggled to 
put aside his prescribed view of mathematics in lieu of his students’ mathematics. 

This conclusion supports previous work from Speer, Wagner, and colleagues (Speer & 
Wagner, 2009; Wagner et al., 2007). In their work, they considered the concept of analytic 
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scaffolding necessary for mathematicians to facilitate whole class discussions in inquiry-driven 
classrooms. They considered analytic scaffolding to be how one supports the mathematical goals 
of discussion. They remarked, “Gage’s [their participant] analytic scaffolding ... was met with 
only limited success, despite his strong understanding of the mathematical content, clear vision 
of the learning goals for the lesson, and commendable ability to elicit contributions from 
students” (Speer & Wagner, 2009, pp. 558–559). In this quote, numerous parallels can be made 
between Gage and Dr. DM. Firstly, both had strong understanding of the mathematical content. 
Second, both had a clear vision of the learning goals. Third, both were very able to elicit 
contributions from students. Recall that Dr. DM’s most used IOI LP was LP2, eliciting student 
ways of reasoning and contributions. 

However, there are important distinctions that shed light on this topic and provides 
discussion for faculty collaborations going forward. Most importantly, it brings to the forefront 
of discussion the subtle notion of a mathematician’s mathematical content knowledge. In their 
work, Speer and Wagner noted that their participant had a strong understanding of the 
mathematical content but that did not help in terms of his analytic scaffolding (i.e., meaning 
facilitation of discussion). Similarly, Dr. DM also had a strong understanding of the 
mathematical content across all units. However, the difference lies in the fact that in some units 
he was able to provide analytic scaffolding, namely, he was able to use his students’ ideas in the 
class (LP3: actively inquiring into student thinking, LP4: being responsive to student 
contributions, LP5: engaging students’ in one another’s thinking, LP6: guide the mathematical 
agenda). Yet, he was more likely to do that when the mathematical content wasn’t his specific 
research interest. Consequently, we concur with Speer and Wagner and posit that one’s 
mathematics background is not sufficient to successfully use student thinking in one’s class. 
Additionally, however, the level to which one understands that content makes a difference in 
their instruction. 

In the case of Dr. DM, his focus, for some of the content from the course, was to get his 
students to his view of the mathematics. This ultimately leads to a tension between his teaching 
agenda and inquiry. If in inquiry, student thoughts are central to the development of the 
mathematical agenda (Kuster et al., 2017), then imposing one’s own view of mathematics does 
not align with an inquiry perspective. The reason this causes a tension is because being 
passionate about your research inherently is not a bad thing, nor trying to get your students to see 
the beauty of mathematics. However, in so doing, one privileges their understanding over that of 
their students. We know from extant literature that mathematicians often struggle to implement 
novel teaching (if it is new to them) and in particular struggle with how to respond to and deal 
with student contributions in a productive and successful way (Wagner et al., 2007). However, 
this was not an issue for Dr. DM as he was in an OFC supporting his instruction. He never noted 
that he was unsure what his students were going to do. Yet, he seldom actively inquired into his 
students thinking. This indicates he either knew what his students were thinking or simply did 
not probe into their thinking; we cannot know which one. 

This area of research is ripe for future investigation. The instruction of undergraduate 
mathematics courses is a hot button item in undergraduate mathematics education research 
today. More importantly, the research community still needs to know more about how we can 
support endeavors to reform instruction, how can they be scaled up, and how do we measure 
success? In this qualitative instrumental case study, while not generalizable, we can conclude 
that the OFC supported Dr. DM’s desire to reform his instruction. This work has highlighted 
how those faculty collaborations can be improved moving forward and most importantly 
highlights that instructional change is possible if the time and effort are put into it. 
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A Possible Framework for Students’ Proving in Introductory Topology 
 

 Keith Gallagher Nicole Engelke Infante 
 West Virginia University West Virginia University 

Advanced mathematics courses require that students possess sophisticated proving techniques. 
Topology is one such course in which students’ proving behaviors have not been extensively 
studied. In this paper, we propose that visual methods play an important role in undergraduates’ 
discovery of the key idea of a proof, and we describe a potential framework for students’ proving 
processes in a first course in undergraduate topology based on Carlson and Bloom’s (2005) 
problem solving framework.  

Keywords: topology, proof, visualization, representation, key idea 

Background 
Proof is of great importance in mathematics, but it is known to be a difficult concept for 

students (Dawkins, 2016; Harel & Sowder, 1998). Harel and Sowder (1998) define proving to be 
“the process employed by an individual to remove or create doubts about the truth of an 
observation” (p. 241). Indeed, proving is a composite of two processes: “Ascertaining is the 
process an individual employs to remove her or his own doubts about the truth of an observation. 
Persuading is the process an individual employs to remove others’ doubts about the truth of an 
observation” (Harel & Sowder, 1998, p. 241). 

When proving, a mathematician’s primary goal is often the discovery of the key idea of the 
proof: “A key idea is an heuristic idea which one can map to a formal proof with appropriate 
sense of rigor. It links together the public and private domains, and in doing so gives a sense of 
understanding and conviction. Key ideas show why a particular claim is true” (Raman, 2003, p. 
323). A heuristic idea is an informal idea, often represented by a picture, which gives the 
individual an understanding of why a conjecture is true, but which may not lead to a rigorous 
proof. Determination of the heuristic idea may be the primary goal of visualization: “The 
drawing of a diagram was not a goal in itself but a means to aid them in gaining more 
information for the problem situation. Mathematicians anticipated that a figure would provide 
them with specific information – the drawing of a diagram was not simply a vague step forward 
in the solution of the problem” (Stylianou, 2002, p. 310). However, the key idea is necessary for 
the construction of a formal proof, as the prover must convince not only herself, but she must 
provide an argument which will convince others as well. 

A diagram constructed in search of a heuristic idea may be thought of as a type of example. 
Watson and Mason (2005) define an example as “anything from which a learner might 
generalize” (p. 3). Students often use specific and generic examples to help make sense of a 
definition or theorem. Such examples make up part of the student’s example space for the given 
topic (Mason & Pimm, 1984; Watson & Mason, 2005). This example space serves as a starting 
point when encountering definitions to be used in other contexts. Examples, along with 
definitions, theorems, actions, and images associated with an idea, constitute the individual’s 
concept image (Tall & Vinner, 1981). 

Moore (1994) observed that students often use definitions to generate examples. These 
examples then help to develop their concept image, which informs the students’ understanding of 
the original definition. The chosen examples transition from a model of the definition to a model 
for the more sophisticated knowledge necessary for proof construction (Cobb, Yackel, & 

22nd Annual Conference on Research in Undergraduate Mathematics Education 231



McClain, 2000). Moore identified the scheme “Images Æ Definitions Æ Usage” to describe a 
successful trajectory used by students in his study. The scheme “Images Æ Usage” often failed 
students in his study. When examples were used to guide students toward a deeper understanding 
of a definition, the definition became more useful during proof construction. 

Building on existing frameworks for individuals’ problem-solving processes, this study 
proposes a framework for students’ proving processes. Through observations of the proving 
behaviors of Stacey, an undergraduate taking a first course in topology, we propose a framework 
for students’ reasoning in proving. Our results show that students’ approaches to proving and 
problem solving are similar to those of experts but exhibit some key differences. 

Theoretical Perspective 
We examined our data using the Multidimensional Problem-Solving Framework (MPS 

Framework; Carlson & Bloom, 2005). Research into problem solving has shown that 
mathematicians use visual and analytic methods in a cyclic process to help them solve problems 
(Carlson & Bloom, 2005; Stylianou, 2002; Zazkis, Dubinsky, & Dautermann, 1996). A precursor 
to the MPS Framework, the Visualization/Analysis Model (VA model) describes a process of 
alternation between visual and analytical strategies employed when solving problems (Stylianou, 
2002; Zazkis, Dubinsky, & Dautermann, 1996). The MPS Framework elaborates on this idea, 
proposing a cycle of four phases through which expert mathematicians proceed when solving 
problems: Orienting, Planning, Executing, and Checking. The VA Model is encapsulated in the 
Orienting and Planning phases, during which the mathematician familiarizes herself with the 
problem, often by drawing a picture or creating a manipulative, and comes up with a strategy  to 
solve the problem. A sub-cycle of conjecture-imagine-evaluate takes place during the Planning 
phase. The strategy is applied in the Executing Phase, and in the Checking phase, the 
mathematician looks back at her work and determines if she was successful in solving the 
problem or if she needs to try another approach. 

Visualization plays a pivotal role in the Orienting and Planning phases. The construction of 
an appropriate diagram not only helps the problem solver to make sense of the problem scenario, 
but we argue that it may lead to the realization of the key idea (Raman, 2003) of the proof, 
allowing one to transition from the Orienting phase into the Planning phase. Our data suggest 
that students progress through the same four phases of the MPS Framework that were observed 
in expert mathematicians, but that students’ ways of executing and checking are different from 
those of experts. 

Methods 
Four students (three undergraduate and one graduate) taking an introductory course in 

topology participated in at least one weekly, hour-long “Group Study Session” in which the 
students were asked to prove a true statement and to disprove a false one. The first author acted 
as the facilitator for all Group Study Sessions. One undergraduate student, Stacey (all names 
used in this study are pseudonyms), attended all sessions: the data presented here focus on 
Stacey’s behaviors throughout the semester. The facilitator attended all class sessions (excluding 
exams); proof tasks were chosen based on material that had been covered recently in class. 
Group Study Sessions were video recorded. Students were encouraged to speak aloud as they 
worked and to work together with other students in the session. To maintain an authentic study 
atmosphere, students were permitted to use textbooks and notes as they wanted. As 
compensation, the facilitator offered extra office hours for participants to receive help with 
topology.  
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Using deductive thematic analysis (Braun and Clark, 2006), codes were applied to the data. 
Initial coding focused on identifying instances of students producing drawings, generating 
examples, and writing proofs. During this round of coding, it became evident that Stacey (as the 
only student to be present for all sessions) frequently used drawings to help her visualize 
definitions or to represent aspects of the problem scenario, and that these drawings seemed to 
influence her proving strategies. Based on the results of this first round of coding, a second round 
of coding identified instances of students constructing examples or drawings related to a 
definition, instances of students arriving at the key idea of a proof, and instances of students 
monitoring their work (either checking their own ideas or checking with the facilitator for logical 
consistency), as well as evidence of students’ transitions through the phases of the MPS 
Framework. The patterns observed in these data resulted in the Topology Proving Framework 
proposed in this paper. 

Data 
The data presented here focus on Stacey’s behaviors throughout the semester. Because this 

paper describes a framework for the construction of proofs of true statements, we describe the 
“prove” condition from two sessions; future work will focus on the “disprove” condition. 
Though Stacey produced drawings in Session 1 and Session 4 when prompted to do so by the 
facilitator, she did not spontaneously produce a drawing until Session 6. We present here two 
examples of Stacey’s proving activities. 

Session 6: Prove: A subset A of a topological space  is said to be dense in X if . 
Prove that if for each open set  we have , then A is dense in X. (Note: the 
notation  indicates the topological closure of A in X.) 

For Session 6, Stacey was joined by Tom. The idea of a dense subset had not been discussed 
in class prior to this session, and Stacey had not previously encountered this idea. Tom had 
previously encountered this term in his introductory analysis course. After a brief reading of the 
problem, Stacey began by silently producing the drawing in Figure 1A. 

 
Figure 1A-1C: Stacey's drawings of a dense subset A of X. Figures 1A and 1B represent a dense subset; Figure 1C 

shows a subset A of X that is not dense. 

After Stacey finished drawing, she explained: 
I can’t really show it with a picture because I can’t draw, like, a dashed line over a 
straight line, or like, a solid line, but we have  on the outside, and then we have the set 

, which is represented by the dashed, which I wish I could get closer to this [pointing to 
the border of X], but I can’t. So if we had the closure of , then it would just be the same 
as that solid line [tracing the border of X with her hand]. So then if you take any open set 
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[drawing circles on her diagram, Figure 1B] anywhere, there has to be some kind of 
intersection with . So if it wasn’t, like if you take… if the intersection could be closed, 
er, could be, not closed, um, the empty set… [draws the diagram in Figure 1C] You’ve 
got  here… and A here, and you could have an open set here, and their intersection 
would be the empty set. [code: recognizes key idea] But then this closure wouldn’t be 
equal to . I get it conceptually I think, but I’m not sure how to prove it. 

The preceding quote was coded as Stacey orienting herself to the problem. In the following 
excerpt, we see her transition into the Planning phase: 

Stacey: We probably have to use the definition of closure in it… So we could say like… take 
 in… I don’t know, either  or , I’m not sure which one… and then a neighborhood of 

that point … 
Fac: Is there maybe a general strategy that you’re thinking about? Or how are you thinking 

about approaching this problem? 
Stacey: Um, I think contradiction, that’s what’s in my head right now. 
Fac: If you had to outline your procedure – I know you don’t have the whole thing fleshed 

out, but – how would your contradiction look? How would you set that up? 
Tom: For the contradiction for this statement, it’s gonna be “For each open set , we have 

this [points to ], but  is not dense in . So the closure of  is not .” Right? 
Following this exchange, several minutes were spent trying to determine whether the point x 

should be chosen from the set  or from X. Once it was agreed upon that x should be chosen 
such that it lies in X but not in , Stacey and Tom collaborated to write their proof. Stacey wrote 
“Let  and .” Tom contributed, “So when you have this, when you have x is not in the 
closure of A, it means there is a neighborhood of x where it, intersect with A, will give the empty 
set,” looking to the facilitator for confirmation of his reasoning. He followed this up by saying, 
“It doesn’t seem right,” but wrote this statement on the board, calling this neighborhood N. He 
then said this was the contradiction: “Now you have an open set that, intersect with A, gives you, 
uh, empty set.” When the facilitator asked if N was an open set, Stacey concluded the proof by 
responding, “[The open set] is within the neighborhood… So there’s O, subset of N, whose 
intersection with A is equal to the empty set.” This resulted in a correct proof. 

Session 8: Prove: Let  be a topological space. A separation of X is a pair U, V of 
disjoint open subsets of X whose union is X. X is connected if no separation of X exists. If 
the sets C, D form a separation of X and if Y is a connected subspace of X, then either 

 or . 
This was Stacey’s first encounter with the idea of a separation of a topological space. Stacey 

was the only participant in Session 8. She began by drawing the diagram in Figure 2A to orient 
herself to the problem. 

 
Figure 2A-2B: Stacey's drawings of a separation and a connected subspace Y. 

She explained,  
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If you have the X, the ambient space, and then you have the sets C and D, they form a 
separation, so that means that they’re disjoint, so they don’t have any of the same 
elements, and that their union is X, so that is satisfied for this. And then if Y is connected, 
which means it’s not in these sets that are disjoint whose union is Y, it’s just one cohesive 
set, then it has to be either in C or D, it can’t be in both. Because if, if it was like that 
[draws the subset in Figure 2B], it would be disjoint. [code: recognizes key idea] 

Stacey misspoke at the end of this explanation; throughout this session, she frequently said 
“disjoint” instead of “disconnected.” In this last sentence, we observe Stacey’s transition from 
Orienting to Planning. 

She then began Executing her strategy, proceeding with her proof by way of contradiction. 
The facilitator provided guidance with logic and notation. Stacey frequently expressed correct 
ideas, such as the necessity to assume (for a contradiction) that some elements of Y lay in C and 
some elements lay in D. However, her initial notation read “Let  and .” Because 
Stacey verbalized correct ideas, such as “If we do it like, by contradiction, and we say that 
there’s intersection with both of them, and then we could show that Y can’t be connected,” we 
attribute errors like this to a lack of experience writing formal proofs, and specifically 
inexperience writing proofs in topology, rather than to a lack of understanding of the underlying 
ideas. When she changed her notation to a more appropriate statement, she checked with the 
facilitator to ensure that her new statement was accurate. 

Stacey continued reasoning through the proof: 
Then you would say that… the points x and y are in disjoint spaces… From our 
assumption that C and D form a separation… So that would mean that… Y would have to 
be [disconnected] as well… Is there some kind of definition that says, like, a 
[disconnected] space that intersects all parts of another [disconnected] space is also 
[disconnected]? Is there something like that? 

Stacey was talking about the fact that Y intersects both components C and D of X, which leads 
directly to the desired contradiction, as the sets  and  form a separation of Y, 
contradicting the connectedness of Y. As before, she appears to have the correct idea, but she 
lacks the experience to know exactly what she can do and how to formulate it correctly. 

Discussions and Conclusions 
The data presented here led to the creation of the Topology Proving Framework. It should be 

stressed that this is merely a potential framework; the small number of participants in this study 
makes it impossible to make generalizations with any reliability. This framework resembles the 
Multidimensional Problem-Solving Framework (Carlson & Bloom, 2005) in that it retains the 
idea of the four phases: Orienting, Planning, Executing, and Checking. Recall Stacey’s behavior 
in Session 8: Stacey began investigating this conjecture by drawing a diagram to represent a 
separation, a clear sign of orientation to the problem. She then put forth the idea of proof by 
contradiction: What if Y has intersection with both C and D? “If we do it like, by contradiction, 
and we say that there is intersection with both of them, and then we could show that Y can’t be 
connected.” Here, Stacey has moved into the Planning phase and shows evidence of the sub-
cycle of conjecture-imagine-evaluate. 

Stacey’s time in the Orienting phase often took a particular form. Beginning in Session 6 
when she first began to produce drawings without prompting, her drawings frequently began as a 
visual representation of a key definition in the conjecture, occasionally becoming a 
representation of the entire problem scenario. As was reported by Stylianou (2002), this appears 
to have been a directed effort: the drawing seemed to stimulate Stacey’s entry into the 
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conjecture-imagine-evaluate cycle in the Planning phase, as it facilitated her ability to consider 
What if? questions. Furthermore, it is at this point that Stacey most frequently recognized the key 
idea (Raman, 2003) of the proof. For instance, in Session 6, Stacey drew two diagrams: one to 
represent a dense subset and one to represent a subset that is not dense. This seemed to motivate 
her to choose the strategy of proof by contradiction, and to recognize that if  is not a dense 
subset of , then there must be some open subset  of X such that . Ideas like this one 
do not always come fully-formed, as we saw in this example where Stacey seemed to have only a 
vague notion that contradiction should work. There was no guarantee that Stacey would 
necessarily know how to implement the key idea right away, as in this instance, in which Stacey 
wanted to begin her proof by choosing a point x which lay in either the set A or in the set X, but 
the determination of which set would be more productive seemed to require significant effort. 

An interesting twist on the MPS Framework (Carlson & Bloom, 2005) as applied to Stacey’s 
behavior arose when she entered the Executing and Checking phases. Carlson and Bloom’s data 
show that experienced mathematicians proceed through the Planning, Executing, and Checking 
phases in a cyclic fashion until the mathematician is satisfied with her solution. Stacey, on the 
other hand, typically established a plan and then alternated between Executing and Checking 
activities. Furthermore, the experienced mathematicians Carlson and Bloom interviewed relied 
on their own internal resources to check their work. As a relative newcomer – not just to 
topology, but to proof writing in general – Stacey frequently checked with the facilitator to 
confirm notation, phrasing, and logical consistency, as seen in the following exchange from 
Session 5, in which part of the “Prove” condition asked Stacey to prove that the empty set and 
the set X are both closed in the topological space : 

Stacey: X is in , and then X is open, by definition. 
Fac: Correct. 
Stacey: And then the complement of X is the null set, and that’s… closed. 
Fac: Because…? 
Stacey: Because… um… I mean, the null set is just like one, it’s one element… 
Fac: What reasoning did you apply to get there? X is in  … 
Stacey: X is in T, so X is open. Well… So is the null set also in ? 
Fac: By definition, right? 
Stacey: So that would also be open. So it’s an open set… and the complement is the null 

set… And then the null set’s also open, so then… it’s a closed set? 
Fac: Yeah. 
Stacey: Same thing the other way around? So the null set can be open or closed, depending 

on the situation? 
Fac: Well, not open or closed, but it’s open and closed, simultaneously. 
Stacey: But it’s a different kind of open and closed than this, right? [points to the interval 

[0,1)] 
Through her verbalizations, Stacey demonstrated the ability to self-monitor; external validation 
from the facilitator was not always necessary. However, this sort of external checking was 
common for Stacey, and it typically happened in conjunction with the execution of her proof 
construction, as part of an ongoing process of Execute-Check-Execute-Check which continued 
until the conclusion of her proof. We observed this kind of behavior with Tom as well in Session 
6, as he unpacked what it meant for x to lie outside the closure of the set A while looking to the 
facilitator for confirmation of his reasoning. 
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The combination of these observations led to the development of the following Topology 
Proving Framework (TPF). 

 
Figure 3:The Topology Proving Framework. 

In keeping with the MPS Framework, the TPF begins with the student orienting herself to the 
problem. Most often, this took the form of the student converting a definition into a diagram or 
coming up with examples which gave a better understanding of the definition. This led to the 
realization of the key idea of the proof, which allowed the student to transition into the Planning 
phase. 

With a visual representation of the key definition, the student was better equipped to ask 
What if? questions and to develop a plan, such as using proof by contradiction or direct proof. 
The recognition of the key idea gave the student a sort of “target,” a sub-goal which, if proved, 
would result in the completion of the required proof. With a plan in mind, the student then began 
attempting to execute this plan. The execution was not always smooth and sometimes required 
some intense thought or trial-and-error. Throughout the execution of the plan, the student 
performed monitoring activities to ensure that she was still making progress toward her goal. 
These activities sometimes took the form of internal checks within herself, and other times they 
occurred as dialogue with the facilitator. Such external validation is not uncommon for students 
learning to prove or learning to prove in a specific content domain (Harel & Sowder, 1998). The 
alternation of execution steps and checking steps continued until a check resulted in the 
recognition of an error (which may reset the process back to the Planning phase) or in the 
student’s perception that the proof was complete. The results of this study indicate that 
leveraging a key definition through visualization may be critical to success in identifying the key 
idea and producing a satisfactory proof in topology. Our future work will examine how this cycle 
is similar and different when tackling statements that require disproof. 
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Responsiveness as a Disposition and Its Impact on Instruction 
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There is evidence that instructors who are responsive to students’ thinking tend to provide more 
positive learning experience for students. Additionally, effective instruction relies on an 
instructor’s ability to respond to student thinking, which is especially relevant due to the 
increased attention on improving college mathematics instruction. In order to investigate 
instructor responsiveness to student thinking as a disposition (that guides action) and 
responsiveness to student thinking as an action (the enacted evidence of the underlying 
disposition), eight college Calculus instructors were interviewed three times over the course of 
one academic year. A thematic analysis of the task-based interviews indicated that instructors 
who exhibited a responsive disposition to their students’ thinking enact this through eliciting 
student thinking, reflecting on student thinking, and responding to student thinking. Further, 
these instructors view themselves as decision-makers, and thus feel empowered to act on their 
responsive disposition.  
 
Keywords: Instructor dispositions, decision-making, noticing 
 

Effective instruction relies on an instructor’s ability to attend and respond to students’ 
mathematical understandings and strategies (Jacobs, Lamb, & Philipp, 2010). Additionally, there 
is evidence from the K-12 literature that an instructor’s disposition towards student thinking also 
influences instructional decisions, including how they interact and respond to students (Sherin & 
Russ, 2014; Thornton, 2006; Schoenfeld, 2008). Specifically, it has been shown that teachers 
who are more responsive to their students’ thinking are generally recognized as more effective 
teachers who provide more positive learning experiences (Thornton, 2006). This is especially 
relevant due to the increased attention on improving college mathematics instruction, and in 
particular, the focus on student-centered instruction. In order to further our understanding on 
how to most effectively implement such instruction, it is important for us to consider everything 
that contributes to college mathematics instructors’ teaching practice. In this talk, we focus 
generally on responsiveness as a disposition, identify components of responsive instruction 
(enacting a responsive disposition), and compare this work to other existing frameworks 
examining similar qualities in teachers.  

 
Research Related to Responding to Student Thinking 

Although instructor dispositions towards teaching and students play an integral role in how 
instructional activities are chosen and enacted, it is not always clearly articulated what is 
encompassed by one’s “disposition.” Dispositions can refer to an instructor’s beliefs, 
inclinations, values, attitudes, and ability, among other things (Splitter, 2010). For this talk, we 
draw upon Thornton’s (2006) definition of “dispositions in action” that arose as a result of her 
work studying middle school teachers’ dispositions: 

Dispositions are habits of mind including both cognitive and affective attributes that 
filter one’s knowledge, skills, and beliefs and impact the action one takes in 
classroom or professional setting. They are manifested within relationships as 
meaning-making occurs with others and they are evidenced through interactions in 
the form of discourse (p. 62). 
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This definition highlights that dispositions are more than simply latent values or beliefs, and 
that these interact with knowledge and influence instructional practices. Based on other’s 
previous work and our own experiences, we hypothesize that an instructor’s disposition towards 
student thinking influences how they interact with students during class or office hours, how they 
elicit and respond to student thinking, how they prepare for a lesson, and how they approach 
grading and thinking about student work.  

In her work on dispositions, Thornton (2006) developed a continuum of examples using 
classroom discourse analysis that describes teachers’ orientations to student interactions ranging 
from a responsive disposition to a technical disposition. Responsive dispositions are those that 
are responsive to the needs and learning of students, including emotional, cultural, and 
development needs, and technical dispositions are those that involve going through the motions 
of teaching, but not engaging on a deeper level to probe, understand, or facilitate student 
learning. Thornton (2006) notes that with technical dispositions, instruction varies little from 
student to student and from situation to situation. This framing of teacher dispositions on a 
continuum lends itself to distinguishing between teachers who view themselves as in-the-
moment decision-makers and those who do not. More specifically, one would expect teachers 
who view themselves as decision-makers to continually direct classroom interactions in order to 
align them with their goals for student learning as well as with their students’ current thinking 
(exhibiting responsive dispositions). Conversely, teachers who carry out their role technically are 
expected to follow their prescribed lesson plans or pedagogical goals without deciding to adapt 
to the needs of the class or students (exhibiting technical dispositions).  

One of the most developed models for considering teachers as decision-makers comes from 
Alan Schoenfeld who has worked to describe how knowledge, goals, and beliefs interact to shape 
instructional practices and decisions (Schoenfeld, 1998). His work provides evidence that an 
instructor’s knowledge about the content, context, and pedagogy influences the types of things 
that they attend to during instruction and why they make certain decisions. Additionally, an 
instructor’s goals (short or long term) influence how they decide to respond in the moment. For 
example, if a student asks a question in class, the instructor has to decide how they want to 
answer (with a mini-lecture, class discussion, etc.) and how long they want to spend answering 
the question and when (either now or later); these will vary depending on the instructor’s 
immediate and long-terms goals for student learning. Further, an instructor’s beliefs and 
dispositions influence which goals they prioritize. Schoenfeld (1998) notes that certain beliefs, 
knowledge, or goals can be strongly activated at a particular moment during instruction (either 
because of planning or an interaction) and that this can influence how the instructor decides to 
respond.  

Schoenfeld (2008) has also noted that teaching is a system that involves coherence between 
teacher commitments and values. He highlights that even when teachers are flexible and 
responsive to student thinking in their classroom, attending to multiple or conflicting goals, it is 
possible to model their decisions with consistency. This illuminates the connection between an 
instructor’s underlying beliefs and the instructional decisions they are making, further 
highlighting that responsive dispositions can be enacted through decision-making.  

Another framework that unpacks how teachers act as decision-makers is that of professional 
noticing (Mason, 2002; Sherin, Jacobs, Philipp, 2011), which has been used as a way to connect 
an instructor’s knowledge and practice with their disposition towards student thinking (Hand, 
2012). This framework focuses specifically on how a teacher decides to respond to students’ 
mathematical understandings, complementing Schoenfeld’s framework that models all the 

22nd Annual Conference on Research in Undergraduate Mathematics Education 240



decisions an instructor makes while teaching. Jacobs, Lamb, and Philipp (2010) describe 
noticing as: attending to, interpreting, and deciding how to respond to student strategies and 
understandings. An instructor’s disposition to student thinking has been shown to impact the 
types of things that they attend to during instruction, impacting how and what they respond to 
(Sherin & Russ, 2014). We conjecture that in order for teachers to effectively attend, interpret, 
and respond to their students’ understandings, they must have a responsive disposition that 
values student contributions and allows them to capitalize on their role as decision-maker.  

The frameworks discussed above focus on in-the-moment decision-making, highlighting 
different processes and aspects that impact instructional decisions. Schoenfeld links knowledge, 
goals, and beliefs with decision-making, and Jacobs, Lamb, & Philipp link attending and 
interpreting with how an instructor interacts with specific students’ understandings. However, 
neither framework attends explicitly to the underlying disposition that guides instructors’ 
behavior - their responsiveness to student thinking - and how instructional decisions shed light 
on this underlying disposition. This study is guided by the following research question: How do 
college calculus instructors exhibit responsiveness to student thinking? In particular this work 
investigates instructor responsiveness by focusing on both responsiveness as a disposition (that 
guides action) and responsiveness as an action (the enacted evidence of the underlying 
disposition). This distinction will be discussed more thoroughly throughout the paper.  

 
Research Design and Methodology 

This study is part of a larger mixed-methods studying investigating the influences of college 
calculus instructors’ dispositions towards student thinking. For this talk, we focus on the 
qualitative data collection and analysis component of this study.  

To understand responsiveness as a disposition and how it impacts college mathematics 
instruction, we focus our study at one university and in one content area - calculus. We chose 
calculus because this is a course that impacts a vast array of students, with varying interests and 
educational goals, and is taught by a vast array of instructors with their own varying experience, 
interests, and educational goals (Bressoud, Mesa, & Rasmussen, 2015). For this study, eight 
Calculus 1 instructors from one highly selective institution were interviewed. Four participants 
were new graduate teaching assistants (GTAs) who were leading recitation sections, two were 
experienced GTAs who were instructors of record (with multiple semesters experience teaching 
Calculus 1), and two experienced teaching faculty. Of the teaching faculty, one was in her first 
year at this institution, but had several years of experience teaching as a graduate student at 
another highly selective institution. The other teaching faculty had received her PhD at this 
institution and had ten years of experience teaching Calculus 1 (and other courses) at this 
institution. These participants were selected because of their varying levels of experience 
instructing and interacting with students. Additionally, this variation of roles and responsibilities 
related to the instruction of calculus is likely to influence their perception of their role as 
decision-maker, and consequently provides greater insight into responsiveness as a disposition 
and how this is enacted in instruction.  

We conduct this work from a situated cognition learning perspective which emphasizes the 
importance of context in the development of understanding and knowledge. From this 
perspective, it is essential to consider the multiple facets (i.e. content, level of instruction, teacher 
knowledge, teacher beliefs) that are tied to and interact to give rise to various knowledge 
impacting teaching practice (Putnam & Borko, 2000). Specifically, in trying to research and 
improve teacher practice, we must attend to teachers’ dispositions as a part of this surrounding 
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context. Although interviews were conducted outside of a teaching context, instructors were 
asked to consider their teaching practice in addition to examining student work, which is a 
common and authentic practice for most teachers. 

A series of three interviews were conducted with each of the participants over the course of 
one academic year. The first interview was designed to learn about the participants’ experiences 
teaching, career goals, and perspective on what it looks like to be a good instructor. The second 
interview was a task-based interview adapted from one used previously to exam college 
instructor mathematical knowledge for teaching where instructors were asked to work through 
calculus prompts, interpret student work to those prompts, and then discuss how they would 
respond to the students’ thinking (Speer & Frank, 2013). The third interview was designed to 
facilitate a discussion revolving around various responsive instructional practices. 

The interviews were audio-recorded and transcribed for analysis. The interview data were 
analyzed using thematic analysis (Braun & Clarke, 2006), by first highlighting all utterances 
related to a consideration of students or their thinking. These segments were then coded as either 
demonstrating responsiveness in action or responsiveness as a disposition. Segments coded as 
responsiveness in action included segments where instructors were responding specifically to 
students’ work (e.g. “I would just go back over the definition with them”), and segments coded 
as responsiveness as a disposition were segments that demonstrated a general attending to 
students’ needs, learning, and understanding (e.g. “I [try to] put myself into [the students’] 
positions, thinking about if I am first learning this concept.”). We then used open-coding to 
determine themes, paying specific attention to how responsiveness as a disposition influenced 
responsiveness in action. After arriving at three general categories that described how 
instructors’ were enacting responsive dispositions (or not) in their practice, we coded the 
interviews using these categories, developing subcategories as necessary.  

 
Findings: Towards Understanding Instructor Responsiveness 

The thematic analysis shed light on how an instructor elicits, reflects, and responds to student 
thinking and mathematical understandings (demonstrating responsive instruction) serves as a 
proxy for understanding their underlying responsive disposition. 

Eliciting Student Thinking 
The thematic analysis of the interviews highlighted a few underlying reasons why instructors 

might elicit student thinking, shedding light on their underlying disposition of responsiveness. 
Instructors that elicited student thinking either sought to draw out understandings they 
anticipated students would have (either correct or incorrect), or sought to gain insight into 
student thinking in order to gauge understanding. There were also instances where instructors did 
not elicit student thinking explicitly; these tended to be situations where either the instructor was 
able to interpret student thinking from the student’s work or they sought to interpret the work 
without prompting for student thinking (e.g. “Well, I’d first have to figure out what they were 
getting at in answering this question.”). The following excerpts demonstrate possible motives for 
eliciting student thinking. 

Eliciting to draw out common student errors: “I have been spending time every week coming 
up with five challenging problems, and I think, ‘What’s all the stuff they mess up on the 
test?’ And I can put them all into [these] problems … I said I’ll work through all of these 
with you so they don’t just blatantly do all the mistakes … They’ll kind of know that they 
are not sure what they’re doing, ... and so I have noticed that by me kind of drawing these 
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to the forefront … [they] seem pretty good when [there are] similar … stumbling blocks 
on the later assessments.” 

Eliciting to gain insight into student thinking: “The first thing I would ask them is for them, 
now that they have the opportunity to take as much time as they want, try to explain to 
me what they were thinking.” 

Eliciting to guide a student through a problem: “I would probably just ask them like what’s 
going on throughout time - like which car is moving faster. And then based on that, 
which one went farther during this time.” 

These excerpts shed light on instructors’ underlying disposition of responsiveness to student 
thinking. Instructors that exhibit a more responsive disposition tend to demonstrate a variety of 
motivations for eliciting student thinking, drawing out student thinking in a variety of situations. 
This ties back to their role as decision-makers who capitalizes on opportunities to incorporate 
and respond to student thinking. The most common of the subcodes listed above was that of 
eliciting to gain insight into student thinking. This is likely due to the fact instructors were asked 
to respond to students’ work several times throughout the interviews and they felt they needed 
more information about how the student was thinking in order to respond accordingly. 

Reflecting on Student Thinking 
Instructors who regularly reflected on their students and their students’ understandings 

demonstrated a responsive disposition towards student thinking. These instructors tended to 
reference students or their thinking when discussing the motivation behind various instructional 
practices and decisions. The following excerpts come from one instructor’s interview - note the 
variety of ways that this single instructor attends to students and reflects on student experiences 
and thinking. These excerpts together highlight a responsiveness (as a disposition) to student 
thinking, and provides insight into why they make certain instructional decisions enacting this 
disposition. 

Reflecting on students’ affect: “I have felt that my students have a lot of anxiety just because 
they are trying to prepare for this test … I am supposed to be very conscientious about 
how much information I share with my students, and I get that because we want the 
experience to be uniform. So if I am telling my students more than other instructors, then 
that is not fair … I personally don’t care about fairness, but I understand that fairness is a 
consideration … And it’s one way for me to alleviate my own anxiety, and my students’ 
anxiety was just to tell them what I wanted them to know … I was still able to help them 
to focus on the things that I thought were important.” 

Reflecting on student difficulties with content: “Right now my students across the board - so 
students who I know came in with strong backgrounds and students who came in with 
maybe weaker backgrounds - are all having trouble with sigma notation and writing 
down Riemann sums.” 

Reflecting on student thinking when grading: “Definitely when I am grading I have more 
time and space to think, ‘Oh you’ve written down this thing in this weird way,’ let me try 
to figure out where it is coming from.” 

Reflecting on student thinking when planning: “I mean ideally when I plan a lesson I think 
about what my students will struggle with and what they will feel very natural [with], but 
I don’t always do a good job of it. I don’t always have the time and space to really think 
about what exactly is going to be the challenging part, and I also don’t always do a good 
job of predicting what is going to be the challenging part.” 
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Reflecting on specific student thinking and understanding: “I would want for them to draw 
me a picture, … because if they drew me just a single point, then I am worried that they 
are only thinking of this as single point instead of a single point in a continuous function. 
But if they are thinking of this as a single point in a continuous function, then I think that 
they have some understanding of what is going on with the limit.” 

Other instructors demonstrated a responsiveness to student thinking by reflecting on common 
student errors, by trying to anticipate student thinking (e.g. “I just try to put myself inside their 
head as best as I can”), or by reflecting on their own experience as a student (e.g. “We try to 
think ... through the first time I learned this, what was tough for me. And we write that on the 
board and go over it. And I think a lot of the times we get it sort of correct, and some of the times 
we don’t.”). The most common theme among instructors was a reflection on common student 
difficulties or, in response to interpreting student work, reflecting on what the student might be 
thinking. Instructors who demonstrated a more responsive disposition towards student thinking 
reflected on students regularly throughout the interview regardless of specifically being asked to 
consider student thinking, which seems to impact how they enact this disposition in the types of 
decisions they are making.  

Responding to Student Thinking  
Instructors’ responses about how they would help students after interpreting their work in the 

interviews fell into a few categories that shed light on their underlying disposition of 
responsiveness towards student thinking. On one end of the spectrum, instructors responded to 
specific student work by selecting examples or explanations tailored to the student’s 
understanding, enacting a responsive disposition towards student thinking. Further, these 
instructors tended to discuss additional ways in which they responded to student thinking (during 
planning, grading, writing assessment, in-the-moment instruction, etc.), highlighting their role as 
a decision-maker enacting this responsive disposition. On the other end of the spectrum, there 
were instructors who demonstrated a lack of responsiveness to student thinking, or a technical 
disposition (to borrow Thornton’s (2006) term). These instructors typically responded directly to 
the mathematics prompt explaining how they would solve the problem instead of building off the 
student’s demonstration of understanding.  

The following interview excerpts show the spectrum of ways instructors demonstrated 
responsive dispositions (or lack thereof) to students and their thinking. 

Responsive to specific student’s thinking: “If [the student] drew another graph for me where 
it was decreasing and then increasing, then I would know they don’t really understand 
what the sign of the derivative means. Then I would have to go back into this idea. I 
could … <describes specifically what they would do>... Whereas if they drew a correct 
graph, then I would know they were kind of grasping for where to go with this, and then 
we could talk specifically [about] if you realize that was a minimum, what should you 
have looked at next.” 

Responsive to student thinking on homework/exam problems: "If I think [a problem is] going 
to send them down a completely wrong road, I either might change the problem a little bit 
or give them a hint, say, ‘Hey you notice this thing.’ But I think it’s important to at least 
be in the mindset when you’re writing down homework problems or exam questions or 
any of that, you have to be in the mindset of what somebody who doesn’t know the stuff 
very well would try." 
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Not responsive to student thinking: “I would just abandon [the student’s] answer, and just 
start over with - I know this is the graph of f’, what does this tell me about the slope? Or 
what does f’ tell you about the original function?”  

Most of the segments coded as responding to student thinking were in the instructors’ 
responses to the prompt, “If this student were to come to your office hours, what sorts of things 
would you do to help them have a better understanding?” after examining the student’s work. It 
is important to note that individual instructors typically demonstrated various types of responses 
to student thinking throughout the interviews. Thus it is important to consider how an instructor 
responds to specific student thinking along with the other aspects of responsive instruction that 
shed light on their underlying disposition of responsiveness, namely how they elicit student 
thinking and reflect on student thinking. 
 

Discussion and Implications 
This analysis has illuminated the distinction between responsiveness as a disposition and 

responsive instruction. Instructors who exhibit a responsive disposition to their students’ thinking 
enact this through eliciting student thinking, reflecting on student thinking, and responding to 
student thinking. Responsive instruction is instruction that includes regular eliciting of, reflecting 
on, and responding to student thinking. We argue that instructors who exhibit responsive 
instruction have an underlying disposition of responsiveness. These instructors view themselves 
as decision-makers (Thornton, 2006), and feel empowered to act on their responsive disposition.  

Instructors were even aware of this distinction between an underlying disposition of 
responsiveness and of what it looks like to be enacted through responsive instruction. This is 
demonstrated in the Findings section by the segment coded as responsive to student thinking on 
homework/exam problems. Here the instructor highlights the importance of being “in the 
mindset” of considering what students might do (demonstrating an underlying disposition of 
responsiveness) when he is writing exam or homework problems (enacting responsiveness 
through instructional decisions).  

As mentioned in the review of the literature, previous work has focused on understanding 
instructors’ decision-making and noticing has highlighted the great variety in ways that instructor 
can be aware of and respond to their students’ needs (Jacob, Lamb, and Phillip, 2010; 
Schoenfeld, 2008). In this work, we have begun to unpack the underlying disposition of 
responsiveness that enables or constrains instructors’ actions as decision-makers responding to 
their students. By better understanding responsiveness, we can learn how it can be developed and 
utilize it to impact instructors’ practices as decision-makers. 

Currently, much professional development surrounding student-centered instruction focuses 
on the teaching practices and the logistics of facilitating such learning. But since there is 
evidence that dispositions can be reshaped and developed (Hand, 2012), we should strive to not 
only improve instruction, but to foster responsive dispositions towards student thinking. As we 
gain a greater understanding of these underlying dispositions and how they impact responsive 
instruction (in how they elicit, reflect, and respond to student thinking), we can create 
professional development that more specifically targets this underlying factor that impacts 
instructor decisions and practice. Further, this area of research has the potential to drastically 
impact undergraduate instruction; since when we better understand how we can foster responsive 
dispositions and responsive instruction, we can better support students through student-thinking 
centered instruction. 

 

22nd Annual Conference on Research in Undergraduate Mathematics Education 245



Acknowledgments 
This work is part of the Progress through Calculus project (NSF DUE #1430540). The 

opinions expressed do not necessarily reflect the views of the Foundation. 
 

References 
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in 

psychology, 3(2), 77-101. 
Bressoud, D., V. Mesa, C. Rasmussen. 2015. Insights and Recommendations from the MAA 

National Study of College Calculus. MAA Press. 
Hand, V. (2012). Seeing culture and power in mathematical learning: Toward a model of 

equitable instruction. Educational Studies in Mathematics, 80(1-2), 233-247. 
Jacobs, V. R., Lamb, L. L., & Philipp, R. A. (2010). Professional noticing of children’s 

mathematical thinking. Journal for research in mathematics education, 169-202. 
Mason, J. (2002). Researching your own practice: The discipline of noticing. Routledge. 
Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say 

about research on teacher learning?. Educational researcher, 29(1), 4-15. 
Schoenfeld, A. H. (1998). Toward a theory of teaching-in-context. 
Schoenfeld, A. H. (2008). Chapter 2: On Modeling Teachers’ In-the-Moment Decision 

Making. Journal for Research in Mathematics Education. Monograph, 14, 45-96. 
Sherin, M. G., & Russ, R. S. (2014). Teacher noticing via video. Digital video for teacher 

education: Research and practice, 3-20. 
Sherin, M., Jacobs, V., & Philipp, R. (Eds.). (2011). Mathematics teacher noticing: Seeing 

through teachers’ eyes. Routledge. 
Speer, N., & Frank, B. (2013). Building knowledge for teaching rates of change: Three cases of 

physics graduate students. In S. Brown, G. Karakok, K. H. Roh, & M. Oehrtman (Eds.), 
Proceedings of the 16th Annual Conference on Research in Undergraduate Mathematics 
Education, Vol. 2 (pp. 247–253). Denver, CO. 

Splitter, L. J. (2010). Dispositions in education: Nonentities worth talking about. Educational 
Theory, 60(2), 203-230. 

Thornton, H. (2006). Dispositions in action: Do dispositions make a difference in practice?. 
Teacher Education Quarterly, 33(2), 53-68. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 246



 
Prospective High School Teachers’ Understanding and Application of the Connection Between 

Congruence and Transformation in Congruence Proofs 
 

 Julia St. Goar Yvonne Lai Rachel Funk 
 Merrimack College University of Nebraska-Lincoln University of Nebraska-Lincoln 

Undergraduate mathematics instructors are called by recent standards to promote prospective 
teachers’ learning of a transformation approach in geometry and its proofs. The novelty of this 
situation means it is unclear what is involved in prospective teachers’ learning of geometry from 
a transformation perspective, particularly if they learned geometry from an approach based on 
the Elements; hence undergraduate instructors may need support in this area. To begin to 
approach this problem, we analyze the prospective teachers’ use of the conceptual link between 
congruence and transformation in the context of congruence. We identify several key actions 
involved in using the definition of congruence in congruence proofs, and we look at ways in 
which several of these actions are independent of each other, hence pointing to concepts and 
actions that may need to be specifically addressed in instruction. 

Keywords: geometry, transformations, secondary teacher education 

Instructors of undergraduate teacher preparation programs face a transition in geometry 
instruction. In the past several decades, geometry has been taught primarily from a perspective 
based on Euclid’s Elements (Sinclair, 2008); in recent years, geometry from a transformation 
perspective has come to the fore in secondary standards (National Governors Association Center 
for Best Practices, Council of Chief State School Officers, 2010) and guidelines (NCTM, 2018).  

These changes in geometry standards have implications both mathematically and 
pedagogically. For instance, consider the well-known triangle congruence criterion “Angle-Side-
Angle (ASA)”:  If ∆"#$ and ∆%&' are triangles such that "#(((( ≅ &%((((, ∡#"$ ≅ ∡&%', and 
∡"#$ ≅ ∡%&', then ∆"#$ ≅ ∆%&'. In secondary and college geometry texts using an 
Elements approach, this criterion is often taken as a postulate: it is intended to be accepted as 
mathematical truth without proof (e.g., Education Development Center, 2009; Musser, Trimpe, 
& Maurer, 2008; Serra, 2008; Boyd, Cummins, Mallow, Carter, & Flores, 2005). These and 
other texts help students establish conviction in ASA through empirical exploration – a scheme 
for conviction, that taken by itself, can be unproductive when the objective is to construct a 
deductive proof (Harel & Sowder, 2007). In contrast, from a transformation approach, if a 
student is to show that two triangles ∆"#$ and ∆%&' in a plane are congruent, they must show 
that no matter the triangles’ locations, there exists a sequence of translations, rotations, and 
rotations that map ∆"#$ to ∆%&'. (See Wu (2013) for a schematic for such a proof.) In the 
transformation approach, even if empirical exploration is beneficial, a teacher must also help 
students move toward deductive proof. In the Elements approach, a proof would be 
mathematically impossible.  

It is critical for prospective and practicing teachers to understand not only the abstract notion 
that different axiom systems result in different proof approaches (Van Hiele-Geldof, 1957), but 
also that they may be teaching students from an axiomatic system different from the one they 
learned first. Consequently, teachers – including prospective teachers who are undergraduate 
students – may not be familiar with what can be proven, what cannot be proven, or how 
particular proofs operate. We address this problem from the perspective of developing 

22nd Annual Conference on Research in Undergraduate Mathematics Education 247



knowledge for teaching prospective teachers, including understanding how prospective teachers 
learn. In this document, we report on a study guided by the question: What concepts are entailed 
in prospective teachers’ construction of congruence proofs?  

We focus this study on establishing congruence proofs because, as suggested by the example 
above, it is an area fundamental to the study of geometry at the secondary level where 
differences between Elements and transformation approaches are salient. We address our 
research question by analyzing data from prospective teachers for potential key developmental 
understandings (Simon, 2006) related to constructing congruence proofs.  

Conceptual perspective 
Transformation approaches to school geometry, though only recently sanctioned in standards 

documents such as that of the Common Core, are not new. Following Usiskin and Coxford 
(1972), we take a transformation approach to geometry as one that features:  

• Postulation of preservation properties of transformations:  
o in particular, reflections, rotations, and translations are assumed without proof 

to preserve geometric properties such as length and angles; and 
o these transformations are defined as maps from the plane to the plane; 

• Definition of congruence in terms of transformations: two subsets , and -	of the 
plane (e.g., two triangles) are said to be congruent if there exists a reflection, rotation, 
or translation, or sequence of these transformations1, that maps , to -; 

• Definition of similarity in a corresponding way, via transformations.  
The details of these features may differ across texts, for instance, different statements of 
postulates of transformations may be taken, but they have in common that the postulates are 
about transformations, rather than congruence criteria for particular objects such as triangles. 

Hence, from a transformation perspective: 
• [T-to-C] To establish a proof of congruence of two objects in the plane, such as two 

triangles, one constructs a sequence of assertions that show that there exists a single 
one of or a sequence of reflections, rotations, or translations that maps one object to 
the other, 

where the assertions can be justified with reasoning and represented in ways that the community 
learning these concepts understands (Stylianides, 2007). Moreover,  

• [C-to-T] When two objects are congruent, the transformation perspective provides 
that there then exists a single one of or a sequence of reflections, rotations, or 
translations that maps the first object to the other. 

We emphasize and name the “T-to-C” (transformations are used to establish congruence) and 
“C-to-T” (congruence provides a sequence of transformations) statements for two reasons. First, 
they represent an unpacking of the two directions of the definition of congruence from a 
transformation approach, when the definition is taken as an if-and-only-if statement. Second, 
they are essential to the tasks used in the reported study. 

We take an Elements approach to be one that features the postulation of at least one triangle 
congruence criterion (e.g., SSS, ASA, or SAS), and definition of congruence similarity in terms 
of individual geometric objects (e.g., congruence for triangles is defined separately from 
congruence of circles). 

                                                
1 Note that glide reflections can be expressed as compositions of reflections and translations. 
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As Jones and Tzekaki (2016) reviewed, there is “limited research explicitly on the topics of 
congruency and similarity, and little on transformation geometry” (p. 139). To our knowledge, 
there have been few studies on teachers’ conceptions of congruence proofs from a transformation 
perspective. One exception is Hegg, Papadopoulos, Katz, and Fukawa-Connelly (2018), who 
examined how teachers managed their prior knowledge of congruence criteria when showing the 
congruence of two triangles. They found that teachers preferred to use triangle congruence 
criteria rather than transformations, but could, when asked, successfully complete proofs using 
transformations. However, their study did not examine the case of proving congruence of figures 
that are not triangles.  

Hence, because of the novel nature of this study, we pursue an inductive analytic design, and 
we present related literature in the discussion section rather than in the introduction. This 
structure is “most suitable for the inductive process of qualitative research” and allows related 
literature to be “a basis for comparing and contrasting findings of the qualitative study” 
(Creswell & Creswell, 2017, p. 27). 

Data and Method 

Data 
A post-hoc analysis was conducted of 20 prospective secondary teachers’ responses to two 

congruence proof tasks, the Line Point Task and the Boomerang Task (below). The tasks were 
distributed as part of an in-class midterm examination in a mathematics course taught by one of 
the authors in Fall 2017.  

• Line Point Task. Let ℓ,0 be lines. Among all the points that are a unit distance from 
ℓ, choose one point 1. Among all the points that are a unit distance from 0, choose 
one point 2. Prove that no matter what points 1 and 2 you chose, it is always true 
that ℓ ∪ 1 ≅ 0 ∪ 2. 

• Boomerang Task. Let ∆"#$ and ∆%&' with congruences marked as shown. Let 4 
be a point on the inside of ∆"#$ and 1 be a point on the inside of ∆%&' so that the 
angle measures 5 = 7 and 8 = 9 as shown. Given the all the above, prove that 
∆"4# ∪ ∆"#$ ≅ ∆%1& ∪ ∆%&' (Figure 1). 

 
Figure 1: The Boomerang Task was distributed with this representation of ∆AOB∪	∆ABC and ∆DPE∪	∆DEF 

Analysis 
The analysis focused on identifying potential key developmental understandings (KDU: 

Simon, 2006) used in constructing congruence proofs. A full conceptualization of KDU is 
beyond the scope of this brief report, but we emphasize that a KDU affords a learner a different 

22nd Annual Conference on Research in Undergraduate Mathematics Education 249



way of thinking about mathematical relationships (Simon, 2006). For our analysis, this meant 
that to determine whether something may be a KDU, we must be able to identify how having or 
not having the KDU could make a difference in learners’ capacity to construct congruence 
proofs. We proceeded by coming to consensus about the logic of each prospective teacher’s 
response to the tasks, then generating potential descriptions of ways of thinking about 
congruence and proof that account for differences among responses. These descriptions became 
provisional codes. We consolidated or distinguished codes based on how and whether the use of 
the definition of congruence changed what was possible mathematically later in the argument.  

Rationale for Task Design 
The Line Point Task and Boomerang Task were part of a sequence of tasks intended for 

developing prospective teachers’ understanding of using definition of congruence from a 
transformation perspective to prove the congruence (or non-congruence) of given figures, 
especially when the proof requires showing the extension of transformations from a proper 
subset of figures to entire figures. The prospective teachers’ responses to these tasks suggest that 
there are KDUs underlying the doing of the tasks; responses to the tasks indicated different 
understandings of the role of the definition of congruence and the need for showing extensions of 
transformations. Moreover, in-class discussions indicate that understandings were more likely to 
develop as a result of reflection and multiple experiences than through direct instruction. 

The second author selected and designed this sequence using variation theory; in brief, this 
theory holds that knowledge of a particular idea develops from tasks that keep constant the use of 
the idea while varying other aspects of tasks (Lo, 2012). The sequence included tasks co-
designed by teachers, mathematics educators, and mathematicians to support this goal (Park City 
Mathematics Institute, 2016), beginning with prospective teachers’ discovering that, from a 
transformation perspective, the statement that “two line segments of equal length are congruent” 
required proof. Building on the transformations used in a proof of this statement, prospective 
teachers then used extensions of these transformations for proofs involving triangles and other 
unions of line segments during class and for homework. Prospective teachers were then asked to 
prove that two rectangles of equal dimensions are congruent, which requires showing that a 
candidate sequence of transformations can extend from mapping parts of a figure to mapping 
entire figures as desired. Two of the authors designed the Line Point and Boomerang Tasks as 
variations of the rectangle task.  

Results 

Decomposition of using the definition of congruence in congruence proofs 
Using the prospective teachers’ responses, we first decomposed the definition of congruence 

into the concepts C-to-T and T-to-C, and then decomposed each of these concepts. In particular: 
• Using C-to-T involves prospective teachers explicitly using known congruence 

between two figures, known theorems, or axioms to infer the existence of a sequence 
of rigid motions mapping one figure to a second figure.  

• Using T-to-C involves two actions:  
o the teacher consistently states that in order to establish congruence one must 

establish a sequence of rigid motions to map one figure to the other and  
o the teacher establishes rigid motions or a sequence of rigid motions to map 

one figure to another to show congruence between the figures. 
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Using these criteria, we found that using C-to-T does not predict using T-to-C, or vice versa. 
With this independence of C-to-T and T-to-C in mind, we then analyzed how prospective 
teachers’ responses invoked C-to-T and T-to-C. Our analysis resulted in two potential KDUs. 
Due to space limitations we only describe illustrative examples for the first result; we elaborate 
upon the results in the presentation.  

Potential KDU 1: Understanding that applying the definition of congruence to prove 
congruence of two figures means establishing a sequence of rigid motions mapping one 
entire figure to the other entire figure.  

Prospective teachers without this KDU may know that rigid motions are involved in 
congruence proof, but they may not understand that figures remain fundamentally un-altered 
with every motion. For instance, we found responses that established rigid motions and thus 
congruence between parts that compose a whole (such as between ℓ and 0 as well as 1 and 2, or 
∆"4# and ∆%1& as well as ∆"#$ and ∆%&') but that did not necessarily establish congruence 
of entire wholes (ℓ ∪ 1 and 0 ∪ Q, or ∆"4# ∪ ∆"#$ and ∆%1& ∪ ∆%&'). 

To illustrate, in the Boomerang Task, some responses used the premise that "#(((( ≅ %&(((( to 
claim abstractly the existence of a transformation mapping "#(((( to %&((((, but then the responses 
concluded that ∆"4# ∪ ∆"#$ ≅ ∆%1& ∪ ∆%&' because ∆"4# ≅ ∆%1& and ∆"#$ ≅ ∆%&' 
– and not because the transformations could extend to the unions. (See Figure 2 for an example.) 

 
� 

 
� 

 
Figure 2: These show key steps of one teacher's work on the Boomerang Problem. In the first part the teacher used 

C-to-T. Just before the second part above the teacher concluded using these rigid motions that ∆AOB maps to 
∆DPE. In the third part we see that the teacher did not use T-to-C to conclude congruence of the unions. 
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Additionally, some prospective teachers’ responses described rigid motions that mapped 
some or all corresponding parts of the first figure to the second, but the rigid motions constructed 
did not extend to the entire figures – in this case, the responses exhibited different rigid motions 
for different components that could not extend. Other responses constructed rigid motions that 
did extend to the entire figure, but this extension was not recognized explicitly in the responses. 
Furthermore, some prospective teachers defined a transformation that did “double-duty”, that is 
the teacher noted that two parts of the figures are congruent and therefore claimed the existence 
of a single transformation that mapped both pieces to their corresponding parts at the same time.  

Potential KDU 2: Understanding that using a sequence of transformations to prove that 
two figures are congruent means justifying deductively that the image of one figure under 
the sequence of transformations is exactly the other figure. 

To understand the necessity of proving that two figures need to be superimposed, one must 
conceive of the possibility that they may not be superimposed. Being able to conceive of this 
possibility allows for a learner to realize that there is more to show than identifying a candidate 
sequence of transformations.  

Teachers without this KDU may declare the proof complete after defining the 
transformations or providing minimal justification. For instance, on the Line Point Task, some 
prospective teachers defined a sequence of rigid motions and claimed that ℓ ∪ 1 had been 
mapped to 0 ∪ 2 without further justification. Several other prospective teachers minimally 
attempted to justify superposition by stating that rigid motions preserve distance. We note that in 
this case, prospective teachers showed evidence of potential KDU 1 but not potential KDU 2. 

Discussion/Conclusion 
In this study, we analyzed prospective teachers’ responses to tasks, designed using variation 

theory, for underlying understandings that support constructing congruence proofs. Based on this 
analysis, we proposed an empirically-based decomposition of and two potential KDUs for the 
use of the definition of congruence in congruence proofs. We now discuss our findings in 
relation to previous results in the literature. We highlight two such results; our findings 
corroborate one result and add nuance to the other. 

First, as Edwards (2003) described, students at middle school, secondary, and undergraduate 
levels predominately hold a motion view of transformations. From this perspective, a 
transformation is conceptualized as the movement of a geometric object, which sits “on top” of 
the plane, from one location to the next. This contrasts with a map view (Hegg et al., 2018) in 
which objects are perceived to be subsets of the plane, and transformations to be maps of the 
plane. Multiple subsequent studies suggest that prospective middle school and secondary 
mathematics teachers may also hold a motion view (Portnoy et al., 2006; Hegg et al., 2018; 
Yanik, 2011), and that this view may make it difficult to construct proofs of congruence from a 
transformation perspective.  

Our analysis corroborated the “motion-versus-map” findings of previous studies, instantiated 
as expressed conflation of pre-images and images. For instance, after applying a transformation 
to ℓ ∪ 1 in the Line Point Task, some prospective teachers continued to refer to the image as ℓ ∪
1. We interpreted this notational usage as the consequence of a movement conception of 
transformation rather than a map conception. In contrast, when teachers used notation such as 
;(ℓ ∪ 1) or (ℓ ∪ 1)′, we interpreted this as the consequence of a map conception. However, 
some teachers who used notation consistent with a movement conception nonetheless otherwise 
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produced valid arguments for congruence, suggesting that this conception is not necessarily a 
barrier to understanding the structure of congruence proofs.  

Second, as far as the ability to construct congruence proofs, Hegg et al. (2018) found that, 
after participating in a course which incorporated transformational geometry content, prospective 
teachers could successfully use transformations to establish congruence between two triangles. In 
our findings we also found this to be true; however, our data suggest that prospective teachers 
may not be as successful in establishing congruence for other objects, and that they encounter 
difficulties in applying the definition of congruence. The design of our study allowed us to 
examine prospective teachers’ capabilities for writing congruence proofs beyond standard 
triangle congruence proofs. These tasks required not only finding sequences of transformations 
between familiar objects, but showing that a sequence could simultaneously map the objects in a 
union of these objects to another union. Furthermore, our data included working with lines and 
points—objects which, though familiar—are not often discussed in the context of congruence 
proofs.  

We now make some points about the relation of our proposed KDUs to successful 
completion of congruence proofs from a transformation perspective. First, these potential KDUs 
are necessary but not sufficient for teachers to successfully complete congruence proofs. For 
instance, a teacher who has attained potential KDU 2 may know that further justification is 
necessary after defining a sequence of transformations but be unsure as to what justification to 
use. It also appears possible that a teacher may have one of the above KDUs but not the other, as 
with responses demonstrating KDU 1 in the Line Point Task but not KDU 2. 

Additionally, we note that the conceptual link between transformations and congruence in the 
context of congruence proofs involves understanding C-to-T (the fact that the congruence of two 
figures implies that there exists a sequence of transformations carrying one figure to another) and 
T-to-C (the fact that the existence of a sequence of transformations carrying one figure to another 
implies that the two figures are congruent). A teacher who applies C-to-T in a mathematically 
valid way will use known congruences between two figures to infer existence of rigid motions 
mapping one figure to a second figure. A teacher who applies T-to-C in a mathematically valid 
way will both (a) consistently state that in order to establish congruence one must establish a 
sequence of rigid motions to map one figure to the other and (b) construct or declare rigid 
motions that carry one entire figure to another. A few additional ways of thinking related to the 
above concepts have also been noted. As the above actions are all teacher actions that appear to 
be prerequisites to the creation of mathematically valid and complete congruence proof 
construction, these are skills that instructors will likely need to address. 

While the above actions may be conceptually related, they appear in this data set to be 
independently adopted by prospective teachers, with prospective teachers sometimes engaging in 
only one or two of the corresponding actions at a time. As a result, an instructor may need to 
keep in mind that successfully addressing only one or two of these concepts and actions may not 
be sufficient in helping prospective teachers create mathematically valid and complete 
congruence proofs.  

Applications of this work may include the construction of lessons, assignments, and 
assessments that directly address each above potential KDUs and conceptual links. Such 
materials may help instructors as they attempt to help prospective teachers learn the subtle 
concepts listed above in addition to those involved in notation. Future work is needed to 
interrogate the accuracy of these KDUs.  
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Investigating How Students from the Biological and Life Sciences Solve Similar Calculus 
Accumulation Tasks Set in Different Contexts 

 
 William Hall Karen Keene 
 Washington State University North Carolina State University 

Calculus teaching and learning is a topic of great interest in the mathematics education research 
community. Specifically, the definite integral and accumulation have received quality attention 
in the past few years (e.g. Jones, 2015; Sealey, 2014). However, even though approximately 30% 
of our introductory calculus students are planning on careers in the biological and life sciences, 
little research exists concerning how students from these fields reason about calculus. In this 
study, task-based interviews were conducted with 12 undergraduate students majoring in the 
biological and life sciences. Students were asked to complete two similar calculus accumulation 
tasks, one a traditional kinematics task and the other set in the context of plant growth. Data 
were analyzed via open coding. Results indicate students interpreted the given information in the 
tasks differently, they were more likely to view the rate of change curve as representing the total 
accumulated quantity in the plant growth tasks. 
 
Keywords: Calculus, Definite integral, Biology 

 
Introduction and Background Literature 

The biological and life sciences are among the most popular fields for student enrolled in 
introductory calculus; approximately 30% of the students in traditional Calculus I courses intend 
for careers in the biological and life sciences (Bressoud, 2015). Unfortunately, the traditional 
Calculus I course “is designed to prepare students for the study of engineering or the 
mathematical or physical sciences” (Bressoud et al., 2013, p. 691) and research on student 
thinking in calculus has largely been done on students with a physics and engineering 
background. Therefore, there is a significant gap in our collective attention in undergraduate 
calculus - how students from the client disciplines of calculus other than engineering and physics 
reason about calculus within their own fields. Our goal with the current study is to answer the 
research question: How do students majoring in the biological and life sciences solve two 
calculus accumulation tasks which differ primarily by context? 

Integration and accumulation serve an important role in differential equations, which are 
used extensively in modeling within the biological and life sciences. Additionally, there is a need 
for quantitative reasoning in the training of future biologists as the field of biology now depends 
on advanced mathematical and computer programming techniques (Bialeck & Botstein, 2004; 
Cohen, 2004; Gross 2004; Hastings & Palmer, 2003; NRC, 2003). Researchers have investigated 
student conceptions of the definite integral and have found that calculus students are good at 
using the standard antiderivative techniques taught in introductory calculus (Ferrini-Mundy & 
Graham, 1994; Grundmeier, Hansen, & Sousa, 2006; Mahir, 2009; Orton, 1983) and that 
focusing on the multiplicative structure of the Riemann sum is a productive way to conceive of 
the definite integral when compared to using only area under a curve (e.g. Jones, 2015; Sealey, 
2014). Researchers have also noted that students struggle to make meaningful connections 
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between rate of change and accumulation in definite integral tasks (Bajrachara & Thompson, 
2014; Beichner, 1994; Thompson, 1994). In addition, research has shown that context can impact 
student solution strategies, both within calculus and mathematics more broadly (Arleback, Doerr, 
& O’Neil, 2013; Bajracharya & Thompson, 2014; Jones, 2015b; Herbert & Pierce, 2012; Moore 
& Carlson, 2012). To better serve students from the myriad client disciplines of calculus, we 
must understand how students solve calculus tasks set in contexts relevant to those fields and 
whether those contexts play a significant role in their mathematical reasoning.  

In this study, our goal was to investigate how students from the biological and life 
sciences solved two similar calculus accumulation tasks that differed only in context - one set 
within a familiar kinematics context and one in plant growth. We hope to provide a foundation 
on how problem context and background knowledge play a significant role in calculus teaching 
and learning. 

 
Theoretical Perspective 

The perspective of learning that influenced this study is constructivism. In a 
constructivist theory of learning, learners are viewed as actively participating in the development 
and re-organization of the cognitive structures making up their understanding of the world (von 
Glasersfeld, 1982). Furthermore, we consider it necessary that to explore a given individual’s 
understanding of mathematics, one must consider the “social and cultural influences of a tribe 
(group)” (Confrey & Kazak, 2006, p. 317). This perspective on learning maintains a focus on the 
individual learner while acknowledging that social and environmental factors necessarily play a 
pivotal role in that learning. For this study, such a perspective serves as the foundation for 
analyzing each individual’s approaches to the calculus tasks while situating them within the 
influence of those individual’s backgrounds (in this case, as undergraduate students majoring in 
the biological and life sciences) and the interview setting itself.  

 
Methods 

The current study was part of a larger project aimed at understanding how students from 
the biological and life sciences reason about calculus accumulation tasks. In the larger study, we 
utilized task-based interviews with twelve undergraduate students majoring in the biological and 
life sciences at a large public university in the Southeastern United States, which we refer to as 
Southern State University (SSU), in the spring of 2016. Data were open-coded via methods from 
constructivist grounded theory (Charmaz, 2000). The current study focuses on two of the five 
tasks from interview sessions and with it we seek to answer the question: How do students 
majoring in the biological and life sciences solve two calculus accumulation tasks which differ 
primarily by context? 

The participants were selected from the population of all undergraduate students 
majoring in the biological and life sciences at SSU. SSU is a large, public university serving 
approximately 24,000 undergraduates. SSU is considered “very selective” with 46% of 
applications admitted per year (The College Board, 2017). Students majoring in the biological 
and life sciences at SSU at the time of this study were required to take at least two semesters of 
calculus. Participants were solicited by visiting second semester calculus courses specifically 
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designed for students studying in the biological and life sciences as well as upper-level courses 
within the biological and life sciences. Twelve students were interviewed, half of which were 
freshman or sophomores while the other half were juniors or seniors. The students were 
predominantly female (8 of 12) and Caucasian (11 of 12).   

During the task-based interviews students completed five calculus tasks concerning 
accumulation with each interview lasted approximately one hour. In each of the five tasks, the 
students were presented with a rate of change function of some quantity and asked questions 
about the accumulation of said quantity over various periods of time. In the current study, we are 
focusing on two of the tasks that were utilized to specifically address how students might solve 
two mathematically similar tasks that were set in two different contexts, one a standard calculus 
kinematics tasks concerning velocity and distance traveled and the other regarding plant growth 
and total number of plants. The two tasks are shown in Figure 1. 

Figure 1. Interview tasks. 
 
Data Analysis 

The analysis procedures were developed out of a constructivist grounded theory approach 
(Charmaz, 2000) in which data were open-coded and categories of responses were allowed to 
naturally emerge. Constructivist grounded theory, like other forms of grounded theory (e.g., 
Glaser & Strauss, 1967; Strauss & Corbin, 1990), allows the researcher to explore the data 
without an assumed framework for results. Each interview task was first annotated independently 
using language as close to the students’ language as possible. Annotating each task 
independently meant we did not begin with an assumption of uniformity in student approaches. 
However, we determined that due to the similarity in student approaches and the frequency with 
which students talked about both tasks at the same time during the interviews, that the 
annotations for each task should be merged into a single codebook. These annotations were then 
collected and grouped for similarity, becoming the initial codes in the codebook. The data was 
then coded and independently coded by external researchers to ensure validity and reliability.  
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Results 
Student Interpretations of the Tasks 
            Table 1 shows how many of the students were given that code in that task, therefore there 
is a maximum of 12 for each cell in the table. The first two codes, Graphed Function Represents 
Quantity and Graphed Function Represents Rate of Change, tell us about how the students 
described and reasoned about the function they were given. The intended interpretation for each 
graph was as a rate of change, so the second code is considered more mathematically accurate. 
 
Table 1. Frequencies of Codes Regarding How Students Interpreted the Tasks. 

Code Description Example Task 2 Task 4 

Graphed 
Function 
Represents 
Quantity 

Student reasons about the 
graphed function as 
representing quantity, either 
total number of plants or 
total distance traveled. 

“And then after two years, 
species two is larger, that’s 
pretty obvious…this is 
plants [vertical axis] and 
this is years [horizontal 
axis].” 

3 9 

Graphed 
Function 
Represents 
RoC 

Student reasons about the 
graphed function as 
representing rate of change 
of quantity, either plant 
growth or velocity. 

“Okay, so after one and 
some years, the growth rate 
was fifteen hundred plants 
per year.” 

12 5 

Intersection of 
Curves 
Implies 
Quantities 
Equal 

Student claims that when 
the curves intersect, it 
implies the quantities will 
be equal. 

“Okay so I mean they’re 
[number of plants] the 
same at, after one year. 
Um…” 

7 9 

Intersection of 
Curves 
Implies RoC 
Equal 

Student claims that when 
the curves intersect, it 
implies the rates of change 
are equal. 

“Even though they both 
end at the same rate at year 
one” 

8 1 

 
As we can see in Table 1, students interpreted these graphs differently. In solving Task 2, 

each of the 12 students reasoned about the function as representing rate of change while only 3 
of 12 students reasoned about the function as distance traveled. However, in solving Task 4, 9 of 
12 students interpreted the function as denoting total number of plants whereas 5 of 12 
interpreted the function as representing the rate of plant growth. Here we see a clear distinction 
in students’ interpretations where the function in Task 2 was more likely to be interpreted as 
intended, as a graph of rate of change.  

For Task 4, we see similar findings when considering the intersection point as compared 
to when we considered the graph more generally; more students (9 of 12) interpret the 
intersection of the curves as implying the number of plants in each species is equal compared to 
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those who explicitly discussed the intersection as implying the rates of growth to be equal (1 of 
12). However, for Task 2 we see something surprising in that more students were coded as 
Intersection of Curves Implies Quantities Equal (7 of 12) as compared to those who reasoned 
about the graph as representing distance traveled (3 of 12). We still see a reasonably large 
number (8 of 12) of students who saw the intersection point as denoting that the two rates of 
change were equal. Therefore, at first glance it would seem students are interpreting the graph 
simultaneously as a rate and an accumulated quantity. This discrepancy and a potential 
explanation are discussed in more detail in the next section. 
 
Student Reasoning Through the Tasks  
 Table 2 contains the frequencies of the codes relevant to how students reasoned with the 
given information to solve the tasks. The first code, Greater Rate of Change Implies Greater 
Quantity, gives us a little insight into our apparent contradiction regarding how students 
interpreted the curves in Task 2 as compared to their intersection point.  
 
Table 2. Frequencies of Codes Regarding How Students Reasoned in the Tasks 

Code Description Example Task 2 Task 4 

Greater 
RoC 
Implies 
Greater 
Quantity 

Student states that a 
greater rate of change 
value implies that the 
quantity will be larger. 

“If you have a higher 
velocity your speed is faster, 
so feet per minute, so you’re 
traveling more feet per 
minute, so he’s traveled 
farther.” 

10 4 

Kinematics 
Derivatives 

Student recalls the 
calculus relationship 
between displacement, 
velocity, and acceleration. 

“The derivative of distance 
traveled is velocity” 7 0 

Kinematics 
Influence 

Student explicitly reasons 
about the task utilizing 
their knowledge and/or 
language of kinematics 

“It’s telling us the, the rate 
of…so we have the, I guess 
‘velocity’ of plant growth 
here” 

0 3 

RoC 
Multiplied 
by Time 
Equals Net 
Quantity 

Student multiplies a rate 
of change value by time to 
calculate the change in 
quantity over a given time 
period. 

“They’re going a thousand 
feet per minute for one 
minute, so we guess they 
went a thousand feet” 

5 1 

 
Most (10 of 12) students reasoned that a greater rate of change implied a greater distance 
traveled. However, there are students who assumed that a greater velocity at any given point in 
the graph necessarily implies a greater distance traveled at that point. This means that a student 
could interpret the graph as giving a rate of change but the intersection point as implying the cars 
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had traveled the same distance, shedding some light onto the apparent discrepancy. The results 
from Task 4 are in line with our previous findings that they were largely interpreting the graph as 
giving the total number of plants instead of a growth rate since only 4 of 12 students were coded 
as Greater Rate of Change Implies Greater Quantity during their work on that task. 

Students frequently discussed kinematics derivatives (e.g. velocity is the derivative of 
displacement or acceleration is the derivative of velocity) while solve Task 2 (7 of 12) but never 
while solving Task 4, even though three students were coded as Kinematics Influence, meaning 
they discussed kinematics in some way while solving Task 4. The final code, Rate of Change 
Multiplied by Time Equals Net Quantity, shows us again the discrepancy in how students 
approached each task. While 5 of 12 students reasoned about multiplying a rate by a time to find 
a total quantity during Task 2, only one student was found to do so for Task 2. 

 
Discussion & Implications 

 Students interpreted these tasks in diverse ways, which resulted in their solution 
strategies differing as well. In their work on Task 2, the kinematics task, students were more 
likely to interpret the graph correctly as a rate of change as compared to their work on Task 4, the 
plant growth task. However, this does not imply they successful in completing the task as many 
of those students also reasoned that if the two cars had the same velocity at one minute then they 
would therefore have the same distance traveled. Overall, these data showcase a rather 
insufficient understanding of rate of change and how it relates to accumulation, supporting the 
findings of previous researchers that students do not tend to have a robust conceptual 
understanding the connections between rate of change and the definite integral (Bajrachara & 
Thompson, 2014; Beichner, 1994; Thompson, 1994).  
 Previous research has shown students conflate rate of change and total amount (e.g. 
Arleback, Doerr, & O’Neil, 2013; Beichner, 1994; Monk, 1992). Beichner (1994) highlights that 
one of the “most common errors students make when working with these kinds of graphs are 
thinking that the graph is a literal picture of the situation” (p. 751). The kinematics task used in 
this study has been used in various forms in other studies. For example, Monk (1992) found that 
students tended to interpret the intersection of the velocity curves as implying that the cars will 
be in the same place or that one car will be passing another. Our results support and expand upon 
this finding as we saw that some students making this claim were actually reasoning about the 
rates of change and not just interpreting the graphs as if they were giving a distance or a position. 
For example, one student, Jake, stated that “because they’ve got the same velocity and they’ve 
got the same time so, say velocity is five and time is one, you divide that to get um, the distance 
and it’s gonna be the same.” Jake focused primarily on the equation distance equals rate times 
time, which he seemed to have been using extensively in a physics course.  
 When asked directly about the differences between Tasks 2 and 4, students noted some 
interesting distinctions. Mary felt that the plant context was “more concrete,” Tom claimed that 
area under a curve was easier to conceptualize while solving the plant task but that he felt more 
comfortable with Task 2 because he had seen tasks like that in the past. Andy indicated that Task 
2 was easier because “you can picture [velocity] in your mind, at least I can personally picture. 
It’s harder to picture plant growth, or plant growth to population.” Similarly, Jake also claimed 
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Task 2 was easier because of his experience with physics. When asked whether one task was 
easier than the other he said, “I think they’re about the same. Maybe, I think maybe this one 
[Task 2] because I was more used to doing that.” However, physics was not a universally 
positive influence on students’ work on the tasks as Gina claimed Task 4 was easier since Task 2 
“reminds me of physics and I failed physics.” Clearly, students felt differently about the two 
tasks even though they were very similar mathematically. This finding is in line with previous 
research that has shown students have more familiarity with kinematics tasks than with contexts 
like work (Ibrahim & Rebello, 2012) and area and height (Herbert & Pierce, 2012).  

 
Conclusions 

 Our goal with this study was to answer the question: How do students majoring in the 
biological and life sciences solve two calculus accumulation tasks which differ primarily by 
context? Students seemed to interpret the graphs differently, where they were more likely to 
reason about the rate of change represented in the kinematics task as compared to the plant 
growth task. This study lays a foundation for building a corpus of knowledge on the ways 
students reason about rate of change and accumulation within contexts meaningful to the 
biological and life sciences. Much more work needs to be done to explore these contexts more 
fully and we recommend a few directions for further inquiry.  
        First, teaching experiments and design research should be completed to develop good tasks 
and further our understanding of student reasoning within the context of population biology. 
Additionally, more work needs to be done to explore how students reason in other relevant 
contexts for calculus. We have so many fruitful areas to pull from as calculus educators and we 
do our students a great disservice to only utilize one or two contexts, like kinematics, in our 
calculus courses. In their work on problem solving, Carlson & Bloom (2005) include orienting 
oneself to the given task as part of their problem-solving framework and Moore & Carlson 
(2012) have noted that students will utilize their image of the problem context in the refinement 
of their solutions. This implies that students’ background knowledge concerning the contexts we 
choose in our calculus courses plays a pivotal role in whether they are successful, before and 
while they apply their calculus knowledge. Finally, we recommend calculus instructors to start 
branching out and looking for myriad contexts they can use for changing quantities, specifically 
those that are most relevant to their students. Students’ backgrounds are not utilized to their 
greatest potential when we do not present them with calculus tasks situated in their own fields of 
inquiry.  
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Examining Questions as Written Feedback in Undergraduate Proof-Writing Mathematics 
Courses 
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Abstract 
The practice of providing written feedback on an undergraduate student’s proof in the 

form of asking questions is striking in that professors do not know whether the student attempts 
to answer the questions. This phenomenon leads us to investigate the reasons why professors ask 
questions as written feedback. We analyze the written questions of four professors teaching 
abstract algebra and real analysis at a medium-sized, rural, comprehensive public university in 
the northeast. We find that these four professors most frequently ask questions that either seek 
further explanation from students or address a mathematical detail within their proof. In some 
cases, the professors answer the questions they ask as written feedback. Overall, the professors 
ask questions as written feedback to encourage students’ thinking, thereby engaging students in 
the proof-writing process and improving the students’ proof production skills. 
 
Keywords: Feedback on Proof, Questioning, Proof Instruction, Written Feedback 

 
Introduction 

 Professors who teach undergraduate courses often give students written feedback on their 
writing and assessments, but some feedback results in miscommunication between the professor 
and student (Price, Handley, Millar & Donovan, 2010). Many students find written feedback 
unhelpful or are uncertain of how to use to it (Amrhein & Nassaji, 2010; Price, et al., 2010; 
Vardi, 2009). In proof-writing mathematics classes, students misinterpreted the intention of 
written feedback (Byrne, Hanusch, Moore, Fukawa-Connelly, 2017). As professors report 
spending considerable time writing feedback on student proofs (Moore, 2016), it is desired that 
the feedback will maximize student understanding. The first step in evaluating the effectiveness 
of feedback is to research the current written feedback practices of collegiate mathematics 
professors, which responds to the call from Speer, Smith & Horvath (2010) for additional 
research on collegiate mathematics instruction.  

We defined written feedback as the language and annotations that a professor leaves on a 
student’s written work. Two types of written feedback are excluded from our analysis: check 
marks and numeric scores. Check marks are excluded because they convey little information, 
except that the professor read and accepted that component of the proof. Although feedback is 
often provided to justify numerical scores (Glover & Brown, 2006; Price et al., 2010), we 
disregard numerical scores. This decision is for privacy concerns and FERPA regulations, but 
also because inconsistencies were found between the feedback professors provided and the 
scores they assigned, as professors assigned significantly different scores to the same proof (Lew 
& Mejía-Ramos, in press; Moore, 2016; Miller, Infante, Weber, 2017).  

This paper is part of a larger project examining all written feedback on proofs, and this 
paper examined the phenomenon of a professor asking a question as written feedback. This 
subset of the feedback had an inherent contradiction, as the question should be answered, yet 
none of the professors required the students to formally answer these questions. An example of 
this phenomenon is shown in Figure 1, where the student introduced a new variable on an 
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abstract algebra homework assignment but failed to describe the properties of this variable. The 
professor chose to use the question “What is x?” to provide feedback.  

Furthermore, professors occasionally answer their own questions in writing on their 
student’s paper. Sometimes the answer is provided as a statement, but in other cases, such as in 
Figure 1, the answer is provided in a more detailed follow up question. 

In this article, we addressed the following research questions: 
1. What types of questions do professors write on student proofs? 
2. Why do professors choose to ask questions as a form of written feedback? 
3. Why do professors choose to write answers for some of the questions they ask? 

 
Literature Review 

Theoretical perspective of feedback 
 Evans (2013) proposed a constructivist model which views feedback as an exchange 
between the instructor and student, termed the feedback landscape. Within this landscape, all 
instructors and students interpret the feedback and work through a personal buffer zone which is 
informed by the individual’s social and cognitive factors. Since these buffers are individualized, 
it is within these zones that the intended meaning of the feedback can be lost. 
 
Theoretical perspective of questions in instruction 
 Rowe (1986) described classroom interactions as a game with two players: the teacher 
and the set of students. This game has four moves:  

1. Structuring: giving directions, stating procedures, suggesting changes. 
2. Soliciting: asking questions. 
3. Responding: answering solicitations, expanding on a structuring move, reporting 

data, or continuing a line of reasoning. 
4. Reacting: evaluating statements made by self or other player (Rowe, 1986, p. 46). 

These moves can be initiated by any player and satisfaction is highest when each player utilizes 
all four moves. Rowe argues that when the teacher increases the wait time between moves 2 and 
3 and between moves 3 and 4, then the students complete moves 1, 2 and 4 more frequently. 
 For this study, we viewed these four steps as a complete questioning sequence, no matter 
who completed each move. We focus on written assessments (homework, quizzes and exams) 
where the professor chooses the proof tasks, the student responds in writing, and then the 
professor reacts through the written feedback. As such, the professor always completes moves 1, 
2 and 4, and the student always completes move 3. However, during move 4, the professor 
sometimes initiated a new questioning sequence by asking a question within their feedback. 
These sequences are usually incomplete, as moves 3 and 4 may not be completed. 

Figure 1 An instance of using a question as written feedback. 
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Written feedback on writing 

Several studies investigated written feedback on writing in undergraduate courses. 
University science students found written feedback on their work useful, especially feedback that 
helped them to understand where they had gone wrong (Brown and Glover, 2006). Walker 
(2009) expressed that written comments should be classified as feedback only if it is “usable” or 
can be implemented by students. Unfortunately, many studies concluded that a high proportion 
of comments are considered unusable to students and recognized the need for an improvement in 
the practice of commenting on written assignments (Amrhein & Nassaji, 2010; Mulliner & 
Tucker, 2017; Vardi, 2009; Walker, 2009). The present study took a step toward improving 
feedback in the context of proof writing in undergraduate mathematics courses, although we do 
not investigate the student perspective directly at this time. 
 
Written feedback on proofs 
 While several studies examined written feedback on writing assignments, only a few 
focused explicitly on feedback on mathematical proofs. Professors valued several characteristics 
when evaluating student proofs, including logical validity, clarity of writing and demonstration 
of understanding (Moore, 2016). Linguistic and notational conventions are also valued by the 
professors, such as using ∅ to mean “the empty set” rather than just the word “empty” (Lew & 
Mejia-Ramos, in press; Moore, 2016). Scoring varied greatly between professors, with ranges up 
to 48% observed on the same proof (Miller, Infante & Weber, 2018; Moore, 2016). The 
professors assigned scores based on their perceptions of student thinking, the severity of the 
error, and whether the proof was written in a timed or untimed setting (Lew & Mejia-Ramos, in 
press; Miller, Infante & Weber, 2018, Moore, 2016). These three studies established that grading 
and providing feedback are complex practices with competing priorities and beliefs. 

Only one study, Byrne, et al. (2018), investigated feedback from the student’s 
perspective. In this study, the undergraduate students interpreted the written feedback on sample 
proofs, and then rewrote each proof incorporating the feedback. The students usually addressed 
the feedback in the rewrite, even when they could not express the rationale for the comment. 
Furthermore, the students attributed much of the feedback to linguistic conventions in 
mathematics, even when the feedback addressed the logical validity of the proof. 

All four of these studies utilized clinical interviews, and none occurred in a classroom 
setting. The clinical setting removed genuine communication from the feedback process and 
restricted the opportunities to observe the buffer zones of the faculty and students. Additionally, 
the previous studies focused on proofs at the transition-to-proof level. This study, in contrast, 
used the feedback given by professors to their own students and more accurately reflected 
genuine instructional practice. The mathematical content of real analysis and abstract algebra 
added an additional layer of complexity that allowed us to see how feedback on the mathematical 
content interplayed with feedback on general proof techniques and proof writing. 
 
Questioning in class 

While there is significant research on the value of written feedback, no research focused 
on the specific phenomenon of providing feedback in the form of a question. On the other hand, 
many researchers found oral questioning to be valuable in the K-12 classroom, especially for 
probing student thinking and promoting higher-order thinking (Acar & Kilic, 2011; Almeida, 
2010; Burns, 1985; Martino & Maher, 1999). We note that Speer et al. (2010) established that 
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instructor questioning practices have not yet been researched within collegiate mathematics 
classrooms. 

 
Methods 

Subjects and data sources 
 The subjects in the study were two instructors of abstract algebra and two instructors of 
real analysis at a comprehensive undergraduate institution, with one section of each course 
offered in a fall semester and one section of each in a spring semester. Each professor had taught 
the course multiple times previously and held the rank of associate professor or professor. The 
professors maintained full control over their course during the study, including the textbook, the 
nature and frequency of assignments and assessments, and how they chose to give feedback to 
students. The graded papers were scanned before being returned to students. The papers were 
then redacted to remove all identifying information about the institution, the professor, the 
students, and to remove grade information. Table 1 shows the number of student participants, the 
number of homework assignments, quizzes, and exams that were collected in the course, and the 
total number of questions asked in writing by each professor.  
 
Table 1 A summary of the participants and the items considered in the study. 
Course Fall Algebra Fall Analysis Spring Algebra Spring Analysis 
Professor A B C D 
No. of students 5 10 15 8 
No. of HW/Quiz/Exam 5/6/2 9/10/2 24/3/4 24/0/2 
No. of questions asked 59 134 128 247 
 
Analysis technique 
 After redacting each document and numbering the feedback, we assembled a spreadsheet 
containing the text of every question. We did not include question marks with no text, because a 
question mark conveyed significantly less information to the students than a question with text. 

We utilized the constant comparative method (cf. Creswell, 2013), to sort the questions 
into clusters. Eventually we established five clusters: drawing attention to detail, seeking further 
explanation, questioning assumptions, expressing confusion, and addressing proof structure. We 
note that the descriptions of the clusters are not mutually exclusive, and we made a judgment call 
regarding which description seems most reasonable when more than one cluster applies. 

After our initial coding, we interviewed all four professors asking them to describe why 
they chose to write questions as feedback in general. Then, we asked each professor to review a 
purposeful sample of 12 items of feedback, and to provide an explanation as to why they chose 
to use a question for the feedback. We used the interviews to triangulate our coding and found 
that the professors’ descriptions aligned with our coding in all but five cases. In each case, we 
originally considered multiple clusters, but the professor emphasized a different cluster than the 
one we assigned. In such cases, we changed the cluster to match the professor’s description.  

 
Results 

Types of questions 
The analysis process resulted in five clusters for classifying written questions: drawing 

attention to details, seeking further explanation, questioning assumptions, expressing confusion, 
and addressing proof structure. We defined drawing attention to detail as questions that ask if 
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the details provided by the student are sufficient. Within this category, there were two 
subcategories: mathematically focused and language focused. Mathematically focused questions 
address the student’s use of notation or computational work, whereas language focused questions 
pertain to specific word choice and phrasing made by the students.  

Since justification is a cornerstone of proof, many questions sought additional 
explanations from the students. A common example of this type of question was “why is that 
true?” or “how do you know…”, and an indication as to which line needs the explanation. The 
cluster, questioning assumptions, concerned questions that point out false assumptions made by 
the student. This cluster differed from drawing attention to detail in that questioning assumptions 
pointed out false assumptions that were made or cases that were forgotten. Some seeking 
explanation questions appear to question assumptions, but in those instances the assumptions 
made are typically true and simply require further explanation.  

The expressing confusion cluster contained questions where the professor indicated 
confusion about the student’s writing. Common questions included “what does this mean?” and 
“huh?” The professors also used question marks to indicate confusion such as Professor B who 
claimed, “But a question mark by itself really means, ‘This doesn’t make any sense.’”  

Finally, questions in the addressing proof structure cluster addressed the choices made 
by the student regarding the type of proof or the completeness of the proof. These questions 
focused on the framework of the proof, instead of being detail or explanation focused.  

 Each professor asked questions in each cluster, except professor A. Across the four 
classes, seeking explanation and mathematically focused questions were the most prevalent. 
These findings were unsurprising as we expected students to support their claims in proof-
writing classes and to occasionally make errors using new notations and concepts.  
Table 2 A summary of the types of questions asked as written feedback for each professor. 
 Fall Algebra  

n=59 
Spr. Algebra  
n=129 

Fall Analysis  
n=134 

Spr. Analysis 
n=247 

Overall 
n=569 

Detail-Math n= 15 25.4% n=33 25.6% n= 45 33.6% n=100 40.5% n=193 33.9% 
Detail-Lang n= 3 5.1% n=12 9.3% n=12 9.0% n=5 2.0% n=32 5.6% 
Detail-Other n=0 0% n=0 0% n=0 0% n=2 0.8% n=2 0.4% 
Explanation n= 29 49.2% n=66 51.2% n=37 27.6% n=99 40.1% n=231 40.6% 
Assumptions n=3 5.1% n=3 2.3% n=33 24.6% n=21 8.5% n=60 10.5% 
Proof Struct. n=0 0% n=8 6.2% n=1 0.7% n=14 5.7% n=23 4.0% 
Confusion n=9 15.3% n=7 5.4% n=6 4.5% n=6 2.4% n=28 4.9% 

Although the sample is too small to support generalization, the data suggested that course 
subject may impact the types of questions asked by the professors. In both algebra classes, 
roughly half of the questions sought explanations from students, and drawing attention to the 
mathematical details accounted for another quarter of the questions. In contrast, the seeking 
explanation cluster was a smaller portion of the questions asked in the analysis courses and 
drawing attention to mathematical detailed was a larger portion of the questions asked. 
 
Why professors ask questions as feedback 
 While all the professors asked their students questions, they have not examined their 
reasons for asking a question as opposed to another form of written feedback. Professor D 
explained, “I don’t know if it’s a thoughtful, considered decision. ‘Let’s see, should I ask a 
question, or should I write a declarative statement?’ I don't know if I'm thinking about it that 
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carefully.” When asked about his decision to pose a question, Professor C repeatedly responded, 
“I think that’s just a personal style.” 

Professors also asked questions to alert students that their work is unsatisfactory in a 
“non-insulting way.” Professor C explained, “It’s also the same as telling them that I think 
something is inadequate without saying it that way.” Similarly, Professor A said she sometimes 
avoids explicitly telling her students they are wrong, preferring to pose a question. Therefore, 
questions are perceived by the professor as a less harsh method of critiquing students’ work. 
 Collectively, the professors stated that they asked their students questions, so the students 
will reflect upon their work. Professor D claimed he asks his students questions to  

… guide them to ask the right question to kind of correct their mistake by just 
knowing which question they should be asking themselves. Because, I guess as I 
think about it, having been a math student myself for many years, sometimes if 
you know the right question to ask yourself, you’re well on the way to answering 
the question correctly. 

The professors used questions as a mechanism to guide students to improved self-reflection, with 
the aim of improving future proof-production. 

Asking questions as written feedback gives professors the opportunity to stimulate 
students’ thought process and lead students to correct solutions. Professor D attempted to 
“redirect [students’] thinking by asking them a question that maybe would get them on track.” 
Professor C asked questions as written feedback because “it’s something I think a student ought 
to think about.” Therefore, professors asked questions as written feedback to encourage students’ 
thinking with the intent of students arriving at the answer on their own. 
 
Answering questions 

The professors provided written answers to 6% of the questions to ensure their students 
learn from their errors. Professor C claimed, “Well, I think it’s just a form of, of telling them, 
‘You’ve got something wrong, and here’s the direction you should have gone.’” Professors A 
and B claimed that they answer their own question when they observed students repeatedly 
making the same error. Professor B concluded, “Maybe if I think there's something particularly 
tricky going on, or maybe if I think a particular student is persistently making the same kind of 
error, then I wanna make sure they understand what I’m trying to say.” Professor A emphasized 
that she may answer questions “to help them think about what they might have done incorrectly.” 
Thus, the professors believe they answered questions to ensure the student gets an answer.  

 
Figure 2 An example of asking and answering a question, attributed to stream of conciousness. 

 
Some of the professors described asking and answering questions in a stream of 

consciousness. On a homework assignment in Professor D’s class, a student used the variable n 
as a positive integer, even though the task needed to be proven for any integer. Professor D 
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questioned the student’s assumption by asking, “What if 0 < 𝑥 < 1?” as seen in Figure 2, and 
explained to the student what would happen if that were true, thereby answering the question for 
the student. Professor D examined his practice, and said 

So, I guess I could have asked him to think about a case where it's not true. But, see, 
actually, when I mark a statement like this, I just naturally, as I read this, I, myself, give a 
counterexample to show that the student's logic is not true. So I guess I just put it down 
on paper. Might have been just a gut reaction to write that. I don't know if it implies that I 
wouldn't trust the student to create their own example, to show that what they've written 
is not true. I guess it does. Because maybe if it was an easy one, I would just say, 'Figure 
it out.' But here, I thought I should maybe say a little bit more. 

Here, Professor D gave multiple reasons for why he chose to answer the questions he posed to 
students. First, he explained that answering his own question is not always intentional, but a “gut 
reaction.” Professor D also reasoned that answering the question is also appropriate, if it is 
probable that the student cannot come to the solution on their own. Finally, Professor D 
concluded that answering the question allowed the student to see the correct solution. 

In general, professors answered the questions they pose to improve students’ proof 
production skills. Specifically, professors answered their questions to draw attention to an error 
with the expectation of the student not making the same mistake again, and to emphasize course 
concepts. Finally, the act of asking and answering the question may simply be a stream of 
consciousness. Regardless of the reason for answering the question, professors asked questions 
as written feedback to enhance students’ mathematical understanding and proof writing skills.  

 
Discussion 

Written feedback is a common instructional practice in upper-level mathematics courses 
to help students improve their proof writing (Moore, 2016). In this paper we investigated the 
practice of leaving written feedback in the form of a question. We found five clusters of 
questions: drawing attention to details, seeking explanations, questioning assumptions, 
structuring the proof, and finally, expressing confusion. Additionally, we presented two 
explanations for why the professors leave feedback in the form of a question. First, the 
professors asked questions to prompt the students to think, including training the students to ask 
questions themselves. Second, the professors claimed the questions mirror their thought process 
and personal grading style, including the desire to communicate corrections less harshly. Finally, 
we presented two explanations for why professors occasionally answer the questions they ask as 
feedback: to ensure students learned from their errors by having access to the answers to the 
questions, and because the professor asked and answered the question for themselves during the 
marking process. 

The findings of this study are consistent with the research on oral questioning in the 
classroom as the professors asked written questions for the same reasons they asked questions in 
classrooms, specifically to probe students’ thoughts and to encourage reorganization of students’ 
thoughts (Ellis, 1993; Martino & Maher, 1999). Thus, professors asked questions as written 
feedback for student self-reflection and to promote higher-order thinking. 

Questions as written feedback have limitations in their usefulness because the 
questioning sequence is incomplete. The students were not asked to revise and resubmit their 
proofs in any of the classes in this study, and as such, the responding and reacting move did not 
occur. The incompleteness may explain why the professors occasionally chose to answer their 
own questions; they desired to complete the moves of the questioning game.  
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The Role of Multiplicative Objects in a Formula  
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The goal of this article is to propose a way to think about the role of a multiplicative object in 
reasoning about formulas quantitatively and covariationally. Building off the works of others on 
the importance of constructing multiplicative objects when reasoning about graphical 
representations, I adapt their definitions to be able to include a meaningful way to discuss what 
it means to construct a multiplicative object with a formula. I then use the analysis of six sessions 
of a semester-long teaching experiment with a preservice secondary mathematics teacher to 
illustrate what it means not to construct and what it means to construct a multiplicative object 
with a formula. 

Keywords: Cognition, Precalculus, Preservice Teacher Education 

One of the upcoming avenues of research in the quantitative reasoning literature is studying 
the role the construction of a multiplicative object has in a meaning for a graph “as a continuum 
of states of covarying quantities” (Saldanha & Thompson, 1998) (e.g., Frank, 2016, 2017, in 
press; Stevens & Moore, 2017; Thompson, 2011; Thompson & Carlson, 2017). In this paper, I 
build on the research done with graphical representations by discussing the role constructing a 
multiplicative object has in a meaning for a symbolic representation (namely, a formula) that 
represents the varying measures of attributes identified in a situation. I propose a way to 
conceive of a multiplicative object with a formula. I then demonstrate the role of conceiving of a 
multiplicative object when constructing a formula to represent quantities in a situation. To do so, 
I will use the results of a four-month long individual teaching experiment designed to support a 
preservice secondary mathematics teacher’s covariational reasoning and construction of formulas 
through dynamic geometric environments.  

Background 

What is a Multiplicative Object? 
The notion of a multiplicative object first stemmed from “Piaget’s notion of ‘and’ as a 

multiplicative operator—an operation that Piaget described as underlying operative classification 
and seriation in children’s thinking” (Thompson & Carlson, 2017, p. 433) (e.g., Inhelder & 
Piaget, 1964; Piaget, 1970). Frank (2017) described Inhelder and Piaget’s notion of a 
multiplicative relationship as schemas that invoke an image of simultaneity. The general idea is 
for an individual to construct a new attribute that simultaneously incorporates two other 
identified attributes. For example, Frank (2017) noted that a person can conceive of objects that 
are red, objects that are circular, and simultaneously, objects that are red circles. The final object 
is a uniting of the two other attributes, and thus, involves a multiplicative operator. 

Saldanha and Thompson (1998) extended the idea of multiplicative objects by discussing it 
in terms of quantities (i.e., measureable attributes). For Saldanha and Thompson (1998), a 
multiplicative object involves constructing pairs of values. They described it as entailing a 
coupling of two quantities so that “one tracks either quantity’s value with the immediate, 
explicit, and persistent realization that, at every moment, the other quantity also has a value” (p.  
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299). In 1990, Thompson defined a quantity’s value as “the numerical result of a quantification 
process applied to it,” which at that time to him meant that either “direct or indirect 
measurement” was taking place. He has since updated his definition of quantification (see 
Thompson, 2011), but in that update, he did not offer a new definition for a value. Thus, I offer 
an updated definition of values that is rooted in the understanding of quantities’ magnitudes as 
Wildi magnitudes (see Thompson, 2011; Thompson, Carlson, Byerley, & Hatfield, 2014; Wildi, 
1991). He argued that a quantity’s magnitude (or amountness) is invariant of the unit used to 
measure it. I argue that the amount is the same regardless of the unit, but the value of a quantity 
necessarily depends on the unit chosen to measure it. Thus, a quantity’s value refers to an 
obtained or anticipated measure of a magnitude using a defined unit magnitude for the quantity. 
The resulting measure is expressed numerically.  

For the sake of clarity, when I refer to magnitudes, I refer to students’ images of quantities or 
unmarked bars representing the students’ conception of that quantity’s amountness (e.g., the red 
and blue bars in Figure 1) without explicit attention towards units. When I refer to values, I refer 
to measurements (using either assumed or anticipated units) expressed numerically or 
symbolized within formulas. Thus, I update Saldanha and Thompson’s (1998) definition of a 
multiplicative object by replacing “value” with “magnitude” in order to distinguish between 
reasoning about quantities vs. measurements. That is, a multiplicative object entails a uniting of 
objects so that one tracks a quantity’s magnitude with the immediate, explicit, and persistent 
realization that, at every moment, the other quantity (quantities) also has (have) a magnitude(s).  

Researchers have primarily discussed multiplicative objects in the context of graphing 
activities (Frank, 2016; (Frank, 2016; Stevens & Moore, 2017; Stevens, Paoletti, Moore, Liang, 
& Hardison, 2017). Frank (2016) discussed how to conceptualize a point in the Cartesian 
coordinate system as a multiplicative object. Figure 1 shows two quantities’ magnitudes 
represented on a pair of axes. The plotted point on the graph is the result of the uniting of the two 
quantities. Thus, each point on the graph represents the magnitudes of two quantities 
simultaneously. The result can be expressed as values in a coordinate pair using (x, y). Students 
do not always interpret a point in a Cartesian plane as representing a multiplicative object (Frank, 
2017; Stevens & Moore, 2017), and in this paper, I will demonstrate that the difficulty of 
representing multiplicative objects extends into reasoning with formulas as well. 

 
Figure 1. Frank’s (2016) image of a projection of two quantities’ magnitudes represented on axes and then 

projected to construct a single coordinate pair. 

Why is a Multiplicative Object Important in Covariational Reasoning? 
Based on the definition of a multiplicative object, there is an understanding that as two 

quantities’ magnitudes covary in Figure 1, the resulting location of the point will change with it. 
How students reason about the covarying of the two quantities is split into six levels of 
covariational reasoning (Thompson & Carlson, 2017, p. 441). Covariational reasoning, in 
general, occurs when students conceive of situations as composed of quantities that vary in 
tandem (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002), and researchers have deemed it important 
to understanding ideas about rate of change (Ellis, 2007; Johnson, 2015; Oehrtman, Carlson, & 
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Thompson, 2008; Thompson, 2011). A student cannot be classified in the top three levels of 
covariational reasoning if she has not constructed a multiplicative object. In Frank’s (in press) 
study of interviews from three pre-calculus students, she noted how the two students who 
engaged in emergent shape thinking (i.e., constructing a graph as an emerging representation of a 
covariational relationship) attended to the quantities’ values represented on the axes (i.e., the 
blue and red bars) as a way to help them conceptualize two attributes uniting. They represented 
this uniting by constructing a coordinate pair (x, y). She and others have concluded about the 
importance of supporting students in organizing images of varying quantities to construct 
meaningful representations. In the following section, I discuss how the idea of a multiplicative 
object is relevant to the construction of symbolic representations; namely, formulas.  

To illustrate an example of the process of constructing a multiplicative object and then 
reasoning covariationally, I use the city task in Saldanha and Thompson (1998) in which students 
“engaged in a sequence of tasks centered around the activity of tracking and describing the 
behavior of the distances between a car and each of two cities as the car moves along the road” 
(p. 300) (Figure 2). In looking at the situation, the two quantities in the situation are highlighted 
using dotted line segments; namely, they are the respective distances the two cities are from the 
car. The quantities are represented as perpendicular magnitudes to the left of the image, isolated 
from the remainder of the situation. By identifying unit lengths for the quantities, it is possible to 
construct a Cartesian coordinate system by partitioning along the magnitudes and beyond. (In 
doing so, the student also has a unit magnitude identified with which to produce values.) The 
point P in this Cartesian coordinate system now represents the correspondence of the magnitudes 
of the distances between both cities. Based on Thompson and Carlson’s (2017) levels of 
covariational reasoning, this correspondence is the first evidence that a multiplicative object has 
been constructed. To reason covariationally with this newly constructed multiplicative object, the 
student must anticipate changes in the magnitudes situated on the axes resulting in changing the 
correspondence point (i.e., the multiplicative object) as the car travels. If the point P is traced, a 
graph relating the two quantities emerges. For more details on the construction of the graph, see 
Moore and Thompson (2015).  

 
Figure 2. Saldanha and Thompson’s (1998) image of the City Travels Problem. 

How Does Constructing a Multiplicative Object Support Quantitative and Covariational 
Reasoning with Formulas?  

The previous example motivates a need for students to unite cognitively two quantities’ 
measures. For graphical representations, the purpose is clear; in order to construct a quantitative 
image of a graph, the student must construct a point P as a multiplicative object. What is unclear 
in the literature is how the role of a multiplicative object plays a role in either reasoning with 
formulas.  

Consider a known formula: A = ½bh, a commonly presented formula for the area of a 
triangle. Students first use this formula in the 6th grade “to find the area of right triangles, 
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triangles... by composing into rectangles or decomposing into triangles and other shapes” 
(National Governors Association Center for Best Practices, 2010). To do so, students identify a 
measure for a base, b, and its corresponding height, h, to calculate the measure for the area of the 
triangle, A. In this context, there is no intellectual need for a multiplicative object because there 
is no variation in the quantities. However, consider the case in which the measurement of the 
triangle’s height varies. Then, simultaneously, the measurement of the triangle’s area also varies. 
To use formulas to represent this covariation of quantities, a student must be able to unite the 
values of both the height and area of the triangle within the formula so that the united image of 
the quantities persists through the variation.  

There are a few difficulties to consider when constructing a multiplicative object of a formula 
rather than a graphical representation. First, there is no single object within the representation 
that simultaneously represents the two quantities’ measures as there is in a coordinate system. 
Rather, the uniting is an anticipation the student has that for any given instance of a triangle, 
there is a single pair of values (assuming the student has established units) to represent that 
instantiation. Secondly, and relatedly, there are no magnitude bars present in a formula; in a 
Cartesian graph, a student can identify magnitudes representing the values of quantities on the 
pairs of axes, and these magnitude bars change as the values for the quantities change. For a 
formula, however, glyphs (i.e., symbolic inscriptions) represent the values of the magnitudes of 
the quantities and these symbols do not alter as quantities in the situation vary. It is left to the 
student to have a meaning for those symbols that enables them to anticipate changing quantities’ 
values in either their image of the situation, of corresponding magnitude bars, or a sequence of 
numbers that the individual can imagine running through (Oehrtman et al., 2008). Lastly, in the 
same way that a situation has quantities a student has to push to the background of their mind so 
that they can instead focus only the two quantities under consideration, in a formula, the student 
must isolate the symbol (or group of symbols) that represent the two quantities under 
consideration. Figure 3 illustrates this idea by using colors to bring attention to the two quantities 
(height and area) that the student attempts to reason about covariationally (Figure 3). One can 
imagine the colors shifting to different quantities represented both in the image and the formula 
as the student conceptualizes varying different pairs of quantities.  

 
Figure 3. Constructing a multiplicative object between the height and area of a triangle using the formula A= ½ bh. 

Methods  
I explored how students construct and use multiplicative objects with formulas as part of a 

semester-long teaching experiment with three undergraduate students in a preservice secondary 
education mathematics program at a large public university in the southeastern U.S. The reason I 
chose preservice teachers is because of their vast mathematical experiences and their 
commitment to understanding secondary mathematics ideas through their undergraduate study. 
During the study, these students were enrolled in a course based on the Pathways Curriculum 
(Carlson, O'Bryan, Oehrtman, Moore, & Tallman, 2015) in which they learned about quantitative 
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and covariational reasoning. Each student participated in 12-15 teaching sessions, totaling 18-
19.5 hours of interview time per student. I video-recorded and screen-captured students’ work on 
a tablet and made scans of student work. At least one observer was present at all but one 
interview. During and after each interview, we took notes of students’ activities and planned 
future teaching sessions. Throughout the sessions, the importance of constructing and using 
multiplicative objects emerged, and thus, the analysis for this portion of the study focused on 
students’ development of that idea by coding videos of the data. In this particular study, I focus 
on Lily’s meanings for her formulas through the theoretical lens of her construction and use of a 
multiplicative object with two known formulas. I also attended to her levels of covariational 
reasoning based on Thompson and Carlson’s (2017) framework. I limited the analysis to Lily’s 
first six interviews because it was in these interview that she was working on problems with 
familiar formulas and first constructing multiplicative objects. I conducted a conceptual analysis 
(Steffe & Thompson, 2000) so that I could develop second order models of her thinking. 

Task Design 
In the first sessions of the teaching experiment, I updated a task based on the results of a 

previous study with preservice secondary teachers (Stevens, 2018). The task consisted of three 
parts, one given at each of the first three teaching sessions, each with the same starting prompt: 
“How would you describe the relationship between the height and area of isosceles triangles?” I 
particularly limited them to isosceles triangles in an attempt to limit the images students could 
have of what it would mean to vary the height of the triangle. In the first part, I gave the prompt 
without any other associated image. In the second part, I asked the question with a given static 
triangle. In the third part, I asked them to consider what would happen if the height of the 
triangle changed, providing them with a sketch created with dynamic geometry software in 
which they could drag one of the vertices of the triangle to change its height (as in the triangle in 
Figure 3 but without the green segment visible).  

Lily started working on the Painter Problem in her fourth interview. This problem is similar 
to the growing rectangle problems other researchers have used (Ellis, 2011; Kobiela, Lehrer, & 
VandeWater, 2010, May; Matthews & Ellis, in press; Panorkou, 2017). In this problem, I ask the 
student to “relate the length that Kent [who is painting a wall in his home] has pulled the paint 
roller and the area that he has covered in paint” (Figure 4).  

 
Figure 4. The Painter Problem. 

Results 
In the following section, I report on the results of the teaching sessions. The results are split 

into two parts characterize students’ thinking as it relates to constructing and using multiplicative 
objects as it relates to formulas. First, I describe instances in which Lily did not construct a 
multiplicative object with her formula and then I describe Lily’s first construction of a 
multiplicative object with her formula in the Painter Problem.  
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No Multiplicative Object Constructed in a Formula 
 One of the main aforementioned components of constructing a multiplicative object is to 
isolate two quantities. In the Triangle Problem, students are asked to consider the relationship 
between two quantities, the height and area of a triangle. Lily, when given this prompt, quickly 
identified the formula for the area of a triangle as the normative A= ½ bh. However, she 
struggled to continue to relate the height and area because of the presence of the b in the formula. 
She wanted to express the relationship symbolically with only A and h symbols present. The 
following transcripts show evidence of this reasoning. The parentheses beside the name indicate 
which interview number the statement occurred.  

Lily (1): This is the area formula. So we know that our area is 1/2 -- area of any triangle is 1/2 
base, height. But this is asking for the relationship between the height and the area, so the 
base is kind of like a -- I mean, I guess I'm trying to say that it's like not explicitly just 
between the height and the area, and the base is like in that [formula]. 

Lily (2): I [sees image of static triangle] – [pause] That's my triangle. [pause] Area. [pause] 
But I want to relate just the area to just the height, so I need to get rid of that [b in her 
formula]. Not get rid of it, but write it in terms of area and the height, because I'm 
specifically trying to relate [sighs] area and the height. So I'm going to do -- I didn't want 
to write A. [pause] Obviously area equals area but it blows my mind. 

As illustrated in the two transcript excerpts above, Lily wanted to use a formula to represent 
the relationship between the two quantities. However, she was dissatisfied with the presence of a 
third quantity, b, in her formula. In the second excerpt, she attempted to “get rid” of it by solving 
for b in her area formula and then re-substituting it into the formula. This resulted in her writing 
A=A. She was not satisfied with the outcome because then only one quantity, A, remained in her 
formula, rather than A and h.  

Lily’s reasoning here is an example of the importance of understanding that the relationship 
between two quantities might be influenced be a third quantity (or more), and that the presence 
of a symbol representing that quantity in a formula does not exclude that formula from 
representing the relationship between the two quantities under consideration. Because her 
meaning for formulas entailed an understanding that a formula relates all the quantities present in 
a formula, Lily did not isolate two quantities to construct a multiplicative object with her formula 
in the way illustrated in Figure 3.  

Coordinating Values Between Quantities as Evidence for Construction of a Multiplicative 
Object 

When given the Painter Problem in her fourth interview with the bars, Lily tried to solve for 
h (the length of the paintbrush) in her formula A=bh (A= area painted, b is length rolled) as she 
did in the Triangle Problem. However, she suddenly switched to consider how her formula could 
be used to describe the directional covariational relationship she identified in the situation (i.e., 
as the length swept out increases, the area painted increases). She pointed to the b and A in her 
formula [underlined in Figure 5], wrote down the calculations on the bottom right of Figure 5 
and stated the following:  

Lily (4): Yeah, the height stayed constant and we just changed the base [motioning along the 
orange highlighted base in Figure 5], and as it got bigger, the area got bigger [pointing to 
the results of her area calculations, 5 and 10]. Just because there's more space too, that 
he painted [motioning along rectangle]. Like if you stop here [draws in dotted line], 
[focusing on the rectangular image] the base would be smaller and there's not as much of 
an area. But if it gets bigger, there's more of an area. This got bigger [motioning along the 

22nd Annual Conference on Research in Undergraduate Mathematics Education 278



orange highlighted base]. This Dimension. And the amount [motioning along rectangle] 
got bigger as well.  

 

 
Figure 5. Lily’s initial activity on the Painter Problem. 

In order to isolate the two quantities in a formula, Lily connected how the quantities were 
changing or staying constant in the situation with her formula. That is, she noted that the height 
stayed constant in the situation, so h now also represented a constant (i.e., 5) to her. This idea 
enabled her to focus on what was changing, the base, and so she was able to consider different 
values for b. She then noted the results of her calculations as varying values for A, which she 
connected back to her situation by discussing “more space.” Thus, her construction of a 
multiplicative object when she was able to coordinate different pairs of values for h and b with a 
connected image of how those different values corresponded to the quantities in the situation. It 
is important to note that Lily’s activity here does not demonstrate that she envisioned changes in 
quantity’s values, and so she can only be said to have a coordination of values rather than images 
of covariation. In fact, evidence for her using her constructed multiplicative object to reason in a 
way in which she could connect reasoning about amounts of change in her situation with values 
in her formula were not present until the end of her sixth interview. However, her coordination of 
values here is example of the first level to include the construction of a multiplicative object. 

Conclusions and Discussion 
Lily’s activity over the course of six interviews demonstrated how her meaning for a formula 

developed as she was able to construct a multiplicative object within her formula that she could 
connect to her understanding of the dynamic situation. For her, writing the two calculations in 
Figure 5 was crucial to her conceptualizing the formula as able to represent pairs of values 
between two quantities using one formula that contained symbols for quantities that she was not 
trying to relate. I argue that providing Lily with a dynamic situation helped support her in 
accommodating her meanings for formulas in a way that enabled her to isolate quantities in her 
formula and construct a multiplicative object. Overall, I argue that in the same way that 
multiplicative objects are important for covariational reasoning within graphical representations, 
it is also important for symbolic representations, particularly formulas.   
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Our field has generally reached a consensus that active learning approaches improve student 
success; however, there is a need to explore the ways that particular instructional approaches 
impact various groups of students. Here we examined the relationship between gender and 
student learning outcomes in one particular context – abstract algebra, taught with an Inquiry-
Oriented Instructional (IOI) approach. Using hierarchical linear modeling, we analyzed content 
assessment data from 522 students. While the performance of IOI and non-IOI students was 
similar, we detected a gender performance difference (men outperforming women) in the IOI 
classes that was not present in the non-IOI classes. In response to these findings, we present 
avenues for future research on the gendered experiences of students in such classes.   
 
Keywords: undergraduate mathematics, gender, inquiry-oriented, assessment 
 

Broadly speaking, ‘active learning’ approaches to instruction in undergraduate science, 
technology, engineering, and mathematics (STEM) classes have been tied to improved student 
success and learning, with Freemen et al.’s (2014) meta-analysis of 225 studies providing 
compelling evidence. Additionally, a number of more isolated studies have suggested that active 
learning may be more equitable for students from historically marginalized groups (e.g., Laursen, 
Hassi, Kogan, & Weston, 2014; Eddy and Hogan, 2014). For instance, Laursen et al.’s (2014) 
study found that students who took lecture-based mathematics classes exhibited substantial 
decreases in their mathematics self-efficacy with women disproportionately underestimating 
their ability. In contrast, the decrease in self-efficacy was less drastic for students in Inquiry 
Based Learning (IBL) classes and consistent across genders – perhaps helping to “level the 
playing field” (p. 415) for women and men.  

However, the mechanisms linking active learning approaches to more equitable student 
outcomes are not well understood and the generalizability of these findings has been questioned 
(e.g., Hagman, 2017). In order to understand and replicate the positive results found for general 
student populations (e.g., Freeman et al., 2014) and the results for particular student groups (e.g., 
Laursen et al., 2014), it is important to identify the critical features of active learning that are 
empirically and theoretically linked to improved student outcomes. Indeed, Eddy and Hogan 
(2014) argue that any classroom intervention will impact different groups of students in different 
ways, and they extend Singer and colleagues’ (2012) call for identification of critical features in 
order to explore the ways that particular approaches impact various student sub-populations.  

In light of Laursen et al.’s findings, and in accordance with Eddy and Hogan’s (2014) and 
Singer et al.’s (2012) call to better understand the ways in which particular instructional practices 
may impact particular groups of students, we examined the relationship between gender and 
student learning outcomes in one very specific context – abstract algebra, taught with an Inquiry-
Oriented Instructional (IOI) approach supported through an ongoing and substantial professional 
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development program. Our work draws on data collected in an NSF-funded project, Teaching 
Inquiry-oriented Mathematics: Establishing Supports (TIMES). The TIMES project, in an effort 
to support instructors learning to teach in an inquiry-oriented manner, provided participants with 
curricular support materials, summer workshops, and weekly online workgroups as they worked 
to implement a set of inquiry-oriented instructional materials. Here, we restrict our analysis to 
those instructors implementing the Inquiry-Oriented Abstract Algebra (IOAA) curriculum 
(Larsen, Johnson, & Weber, 2013). IOAA is a research-based, inquiry-oriented curriculum that 
actively engages students in developing fundamental concepts of group theory and is designed 
for use in upper-division, undergraduate abstract algebra courses.  

We analyzed 522 completed Group Theory Content Assessments (Melhuish, 2015) to 
investigate performance differences between students whose instructors implemented the IOAA 
curriculum (with support from the TIMES project), and those who instructors did not. 
Specifically we address the following two research questions:  

1)  What is the relationship between inquiry-oriented instruction, as manifested by the 
TIMES program, and student performance on a content assessment? 

2) Is this relationship consistent across genders?  
Based on the work of Freeman et al. (2014) we would expect to find a performance advantage 
for the students in the IOI classes. Further, given the similarities between IOI and IBL, we expect 
to see Laursen et al.’s (2014) findings replicated in our study – i.e., we expected to see more 
differences between the performance of women and men in a comparison group than in the IOI 
population. Confirmation of these hypotheses would corroborate research supporting active 
learning in general and inquiry-approaches in particular, whereas contradictory findings might 
provide insights into the differential ways that particular instructional approaches impact various 
populations. 

 
Literature Review 

The intention of IOI is to reposition students as central to the process of constructing and 
reinventing important mathematical ideas. Informed by the instructional design heuristics of 
Realistic Mathematics Education, IOI curricular materials leverage students’ informal and 
intuitive ways of reasoning as starting points from which to build more sophisticated and formal 
mathematical understandings (Freudenthal, 1973). Specifically, the IOAA curricular materials 
include instructional units on groups and subgroups, isomorphism, and quotient groups. Each 
unit includes both a reinvention phase and a deductive phase. During the reinvention phase, 
students work on a sequence of tasks designed to help them develop and formalize a concept. 
Initial tasks in the sequence evoke student strategies and ways of thinking that anticipate the 
formal concepts. Then follow-up activities, and teacher guidance, leverage these ideas to develop 
the formal concepts. The end product of the reinvention phase is a formal definition and a 
collection of conjectures. The students then prove theorems that are typical of those found in 
other introductory group theory courses (Larsen, Johnson, & Weber, 2013). The cycles of inquiry 
and formalization, supported by the task sequence and guided by the instructor, are usually 
carried out in collaborative small-groups and whole-class discussions.  

Research carried out prior to the TIMES project suggests that IOI in general, and IOAA in 
particular, has the potential to improve student learning by supporting the development of more 
robust conceptual understandings (e.g., Larsen, Johnson, & Bartlo, 2013, Rasmussen et al., 2006) 
and by improving student retention (Kwon, Rasmussen, & Allen, 2005), as compared to students 
from more traditional courses. These findings from IOI courses align with the meta-analysis of 
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Freeman et al. (2014), which found that across undergraduate STEM courses “student 
achievement was higher under active learning” (p. 8411). They also align with the findings of a 
study on one form of active learning in undergraduate mathematics known as Inquiry Based 
Learning (IBL). Laursen et al.’s (2014) work found that “students in IBL math-track courses 
reported greater learning gains than their non-IBL peers on every measure” (p. 409). Further, 
Laursen et al. found that IBL may be more equitable for women, reporting that, even with 
equivalent success rates in subsequent math coursework, “in non-IBL courses, women reported 
gaining less mastery than did men, but these differences vanished in IBL courses” (p. 415).  

Laursen et al.’s (2014) findings are particularly relevant for our work because of the 
similarities between IBL and IOI. Laursen et al. (2014) characterize IBL as follows: 

…students construct, analyze, and critique mathematical arguments. Their ideas 
and explanations define and drive progress through the curriculum. In class, 
students present and discuss solutions alone at the board or via structured small-
group work… (p. 407) 

As this description is fairly consistent with (though more general than) the 
conceptualization of IOI adopted in the TIMES project, we had reason to believe that IOI 
classrooms would similarly support a “leveling of the playing field” for women and men. 

That being said, there may be aspects of IOI (but not necessarily of IBL) in which the 
opportunities for student experiences, shaped by their interactions with their peers and their 
instructor, to create a dynamic that may negatively impact students from historically 
marginalized groups. For instance, implicit bias (Hill, Corbett, & St Rose, 2010) and stereotype 
threat (Good, Rattan, Dweck, 2012) may impact the ways peers interact during small group 
work. Furthermore, whole class discussions are shaped by instructor choices. Such decisions 
have varying implications for how different students may experience the class.  

When considering the gendered experiences of students in collaborative classroom settings, 
there is reason to believe that these setting offer both affordances and constraints for women. 
Some literature suggests that classrooms emphasizing collaborative work, problem solving, and 
communication may be supportive for women (Du & Kolmos, 2009; Springer, Stanne, & 
Donovan, 1999). Moreover, there is research suggesting high school girls acclimate better than 
boys to learning environments that emphasize work on open-ended problems and conceptual 
understanding (Boaler, 1997; 2002). However, other research suggests that instructional 
approaches requiring students to develop their own problem-solving strategies may favor boys 
and men (e.g., Fennema, Carpenter, Jacobs, Franke, & Levi, 1998). Hyde and Jaffee (1998) 
offered a possible sociological explanation of such findings: the use of standard algorithms 
aligns with traditionally-valued feminine traits like compliance and meekness, whereas the use of 
invented strategies aligns with traditionally-valued masculine traits like confidence and 
independence. Research on the nature of social interactions in collaborative decision-making and 
facilitated discussions also offer insights into the way students may experience mathematics 
classrooms in gendered ways. Studies in non-mathematical collaborative settings have found 
that, when groups are tasked with arriving at a decision, women in groups made up 
predominantly of men spoke less and were interrupted more than men (Karpowitz, Mendelberg, 
& Shaker, 2012). Additionally, research indicates that during facilitated whole-class discussions 
in math classrooms students often receive qualitatively and quantitatively different opportunities 
to participate in ways that follow patterns of gender, race, and class (Black, 2004; Walshaw & 
Anthony, 2008).  
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In summary, Laursen et al. (2014) findings suggest that active learning approaches similar to 
IBL may have the potential to both improve student learning, and improve gender disparities, in 
undergraduate mathematics. However, the research literature also indicates that active learning 
classrooms have the to potential to reorganize the nature of classroom inequities – perhaps in 
ways that further marginalize historically under-represented populations. Our study has the 
potential to either corroborate Laursen et al.’s (2014) finding that active approaches like IBL can 
help eliminate gender disparity, or to problematize these findings and push us to more clearly 
articulate the conditions under which active learning classrooms are more equitable for various 
groups of students. 

 
Methods 

To investigate how IOI relates to student performance, we quantitatively analyzed data from 
522 student content assessments. Of those assessments, 147 were completed by students of the 
TIMES fellows; the remaining 375 were from students in the national comparison sample. Here 
we detail the TIMES program, the instrument, our samples, and our analysis.   

As part of the TIMES project, 13 mathematics instructors participated as abstract algebra 
TIMES Fellows. These fellows were provided support for implementing the IOAA curricular 
materials, which are formatted as task sequences that include rationale, examples of student 
work, and implementation suggestions. Due to documented challenges associated with 
implementing IOI (e.g., Speer & Wagner, 2009; Wagner, Speer, & Rossa, 2007), and IOAA in 
particular (Johnson & Larsen, 2012; Johnson, 2013), the TIMES Fellows were provided both 
prior and ongoing support. Summer workshops, held just prior to the instructors’ implementation 
of the IOAA materials, had two main goals: to help the instructors develop an understanding of 
the curricular materials, including an overview of the mathematical development of the concepts; 
and to develop a shared vision of IOI, focusing on the roles of the teacher, the students, and the 
tasks (See Kuster et al., 2017). Online workgroups, held throughout the term in which the IOAA 
materials were being implemented, were hour-long weekly meetings with two components: an 
open forum devoted to addressing issues and concerns for the Fellows as they arose (e.g., 
facilitating group work, particularly difficult class sessions) and lesson studies. During the two 
lesson studies, the workgroup would first discuss the mathematics of the lesson, followed by a 
discussion of student learning goals and implementation considerations. After instructors taught 
the unit, they would share video-recorded clips of their instruction for group reflection and 
discussion. Throughout the sessions, the workgroup attended to the critical components of IOI – 
generating student ways of reasoning, building on student contributions, developing a shared 
understanding, and connecting to standard mathematical language and notation (Kuster et al., 
2017).  

The TIMES Fellows asked their students to complete the Group Theory Content Assessment 
(GTCA) (Melhuish, 2015). This assessment, developed to measure conceptual understanding of 
key concepts in group theory, spanned the topics of binary operations and their properties, group 
structures (including subgroups, quotient groups, and cyclic groups), element properties, and 
functions (homomorphisms and isomorphisms). The GTCA instrument was informed by 
textbook analysis and literature on student thinking and was designed to be applicable across a 
wide range of group theory courses. Instrument validation was achieved through a combination 
of expert review and multiple rounds of pilot testing (including clinical interviews) in which 
open-ended tasks were converted to a multiple-choice format based on student responses. (For 
specific details regarding the instrument development, see Melhuish, 2015.)   
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From the 13 TIMES Fellows, there were a total of 174 students, 147 of whom (84%) 
completed the GTCA. For our control, we have a national sample (Not-TIMES), with 375 
students from 33 institutions. For Not-TIMES students we can presume (but not verify) that they 
did not experience IOI, as reports indicate that nationally the proportion of teachers using any 
form of non-lecture instructional approaches in abstract algebra is less than 10% (Keller, 
Johnson, Peterson, & Fukawa-Connelly, 2017).  

Between the treatment (TIMES, n = 147) and control (Not-TIMES, n = 375) groups, we have 
a total of 522 participants: 275 students who identified as male, 240 as female, and 7 who 
otherwise identify or declined to identify their gender. The gender makeup was not significantly 
different (p = .229) between Not-TIMES and TIMES (48% and 42%, respectively, identified as 
women). We address our two research questions in stages. First, we investigate the relationship 
between IOI, then gender, and student performance on the GTCA via an exploratory univariate 
analysis. We calculated descriptive statistics and ran t-tests to look for evidence of performance 
differences on the GTCA between TIMES and NOT-TIMES students (with regard to Research 
Question 1) and to look for evidence of gender differences on the aggregate and within 
subgroups (with regard to Research Question 2). 

The univariate analysis did provide evidence of significant differences when looking at the 
gender differences between the TIMES and Not-TIMES groups. Thus, in an attempt to control 
for compounding factors and to account for the nested structure of our data, we developed a 
Hierarchical Linear Model (HLM) to determine the robustness of the effects of IOI and 
interaction between IOI and gender. The appropriateness of a multi-level modeling approach for 
this data was determined by the sufficiency of the intraclass correlation (ICC) of the 
unconditional model (17%) and the results of the likelihood ratio test (χ2= 38.368, p < .001) 
comparing the 1-level and 2-level null models.  

As this was not a randomized treatment-control study, the inclusion of institutional nesting 
provides a means for accounting for differences between the TIMES institutions and the larger 
national sample. We conjectured that important institutional variables such as level of selectivity, 
75th percentile mathematics SAT scores (referred to as “SAT” for the rest of the paper), and 
Carnegie classification may account for performance differences on the GTCA. To test this, we 
developed an HLM model these variables as effects. Of these variables, only SAT was 
statistically significant; results indicating that a student at an institution one standard deviation 
above average would be estimated to score roughly half an item (0.564) higher on the GTCA 
(p=0.034). As a result, we incorporated normalized SAT as part of our model. Finally, we 
leveraged Snijders and Bosker’s (2012) guidelines to determine our effect sizes on a Cohen’s d 
(1988) scale, where effect sizes were calculated via looking at the cumulative effect of a variable 
of interest and dividing by the standard deviation of the control group.  

 
Results 

In looking for performance differences between students of TIMES Fellows as compared 
with the control group (i.e. Research Question 1), we see that TIMES students slightly 
outperformed Not-TIMES students by about half an item (6.64 vs. 6.21), but this difference is 
not statistically significant (t = -1.520, df = 520, p = .129). To investigate Research Question 2, 
we compared the GTCA performance by gender of the students in the two instructional groups 
(Figure 1). We found no significant difference in the Not-TIMES group where, on average, men 
outperform women by about half an item (p = .098). In the TIMES group however, men 
outperformed women by nearly 2 items on average (p < .001).   
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Figure 1. Gender Comparisons on GTCA Performance 

 
Our initial univariate exploration provided evidence that there was no significant TIMES 

effect – i.e., TIMES students did not significantly outperform Not-TIMES students. However, 
this (non)effect of TIMES was not consistent across genders. While men in TIMES classes 
significantly outperformed the women in TIMES classes (and men in non-TIMES classes), this 
gender performance difference was not seen in the Not-TIMES classes. 

Given the nested structure of the data, the univariate analysis does not rule out the possibility 
that these differences are better explained by differences in the instructor or by differences in the 
insitituion. Thus, we developed a series of HLMs to assess the robustness of the TIMES/Gender 
interaction effect. In revisting our first research question, this time controlling for instructor and 
SAT, we look at our simplified model. In this model, the estimated score for a TIMES student is 
6.47 items while the estimated score for a not-TIMES student is 6.20 – a performance 
discrepancy between groups that is not statistically significant (p = .600). Thus, after accounting 
for potentially confounding variables, we again find no significant differences between the 
performance of TIMES and Not-TIMES students.  

In revisting our second research question, again controlling for instructor and the inistutions’ 
SAT, we look to the full model (see Table 1). This model verified that the interaction between 
gender and TIMES was robust and remained a significant factor (p = 0.014) even when nesting 
students within instructors, accounting for institutional differences in terms of SAT, and 
controlling for the global gender effect favoring men (p = 0.086). This model estimates that, for 
students at institution with mean SAT, a man in TIMES scores 7.23, a not-TIMES man secores 
6.44, a not-TIMES woman scores 5.91, and a TIMES woman scores 5.86. So, while women are 
scoring roughly the same in TIMES and not-TIMES classes, men are scoring statistically 
significantly higher under the TIMES treatment.  
 

Instructional Format 
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Discussion and Future Research 

We found no difference in the performance of men and women in the national sample; 
however, under the TIMES treatment, a difference was present. Notably, this difference came 
from TIMES men outperforming Not-TIMES men, while the performance of women remained 
unchanged. While we see the detection of a gender performance difference within the IOI setting 
as an unfortunate finding, we are not arguing that the TIMES project, nor the implementation of 
IOI, is detrimental to women; in fact, both men and women under the TIMES treatment 
performed as well or better than students in the national comparison sample. However, the 
difference in learning outcomes between men and women among the TIMES population 
indicates that implementation of this curriculum is far from a guarantee of equitable instruction.  

We suspect that there are important instructional differences between IOI and IBL that may 
impact different groups differently. This includes the routine use of student presentations in IBL 
classrooms (Hayward, Kogan, & Laursen, 2016), which are often distributed evenly across 
students and thus may remove barriers to equal participation; and the reliance on small-group 
work and whole-class discussions to develop the mathematical agenda in IOI, which may 
provide more opportunities for microaggressions and implicit bias to emerge. Indeed, 
preliminary analysis of 42 TIMES Fellows’ instruction (across all content areas) suggests that, 
similar to the findings of Black (2004) and Walshaw and Anthony (2008), the TIMES instructors 
directed mathematically substantive questions at women at lower rates than men, and they re-
voiced and elaborated contributions made by women at substantively lower rates than those 
made by men (Smith, Andrews-Larson, Reinholz, Stone-Johnstone, & Mullins, 2018).  

We are hopeful that our future studies – investigating the gender performance difference we 
found in the IOI classes – will help us continue to refine our understandings of how features of 
student-centered instruction in undergraduate STEM can support robust student learning gains 
and equitable outcomes for all groups of students. It is our intention to use our findings to inform 
a critical examination of the effect of our interventions on the gendered experiences of our 
students and call on others in the field to do the same.     
 
 
 
 

Table 1 
Model with TIMES and Gender Variables 
 Coeff SE df p 
Intercept 5.913820 0.326461 67.321603 <.001 
TIMES -0.580915 0.600143 70.121264 0.336390 
 
Level 1 

    

Man 0.526703 0.306206 458.653547 0.086089 

TIMES*Man 1.372867 0.557205 453.700395 0.014115 
 
Level 2  

    

SAT75 0.434603 0.225540 34.585700 0.062234 
 

Variance SE 
  

Level 1 Residual 4757.087187 861.270931   

Level 2 Residual 1904.227364 1030.501765   
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Potential Intellectual Needs for Taylor and Power Series within Textbooks, and Ideas for 
Improving Them 

 
Steven R. Jones Haley Jeppson  Douglas L. Corey  

Brigham Young University 
 

Unfortunately, students far too often have little or no intellectual need for learning the second 
semester calculus topic of Taylor and power series. In this study, we examine the “potential 
intellectual needs” (PINs) provided by commonly used textbooks. While the textbooks used 
different approaches, they both often lacked problems developing intellectual need, suggesting 
that instructors must incorporate intellectual need by themselves. To assist in this endeavor, we 
focus part of the paper on a discussion of including PINs for this content. We found that it may 
be difficult to incorporate genuine problems for first-year students through an approach based 
on a “family of series” meaning for Taylor/power series, but that stronger problems could be 
incorporated through an approach based on an “extension of linear approximation” meaning. 
 
Keywords: calculus, intellectual need, Taylor series, power series 
 

Harel (2013) observed from his experience that “most students… feel intellectually aimless 
in mathematics classes because we (teachers) fail to help them realize an intellectual need for 
what we intend to teach them” (p. 119). While this observation likely holds true for many topics, 
we have especially seen it manifested in the calculus topic of Taylor and power series,1 despite 
this topic’s importance in mathematics and science. We have often heard students express 
confusion and frustration as to the purpose of learning them. If our work as mathematics 
educators is focused toward the ultimate goal of improving student learning, this topic cries out 
for our attention. We propose extending the nascent research work on Taylor/power series by 
examining the potential intellectual needs (Harel, 2008a, 2008b, 2013) offered to students in 
commonly used textbooks (Hughes-Hallett et al., 2012; Stewart, 2015). Our study was guided by 
the research question: what potential intellectual needs for Taylor/power series are offered to 
students in commonly used textbooks? After presenting our results, we devote a portion of this 
paper to a discussion of redressing the stark absence of intellectual need we observed. 

Brief Recap of the Limited Body of Related Research 
Research on series has mostly been restricted to basic series, ∑ 𝑎ஶ

ୀଵ  , which precede 
Taylor/power series. Two such studies related to our paper claim the importance for students to 
see sequences as functions from the naturals to the reals (McDonald, Mathews, & Strobel, 2000), 
and to also see partial sums as functions from the naturals to the reals (Martinez-Planell & 
Gonzales, 2012). As for power and Taylor series specifically, very little research has been done 
(see Speer & Kung, 2016). In some of the only studies on the topic, Martin (2013) and Martin & 
Oehrtman (2010) described distinct ways convergence can be imagined, such as looking at a 
specific x value, or looking at the function as a whole. Martin, Thomas, and Oehrtman (2016) 
then built on these results to develop a virtual manipulative in which multiple representations 
support connections between sequence convergence and Taylor series convergence. We note that 
this work is centered on Taylor series, rather than generic power series, which has connections to 
                                                 
1 A power series is given by ∑ 𝑐ሺ𝑥 െ 𝑎ሻஶ

ୀଵ . A Taylor series is a power series where 𝑐 ൌ 𝑓ሺሻሺ𝑎ሻ 𝑛!⁄  for some 
analytic function 𝑓ሺ𝑥ሻ. A Taylor polynomial is the first N terms of a Taylor series, ∑ 𝑓ሺሻሺ𝑎ሻ 𝑛!⁄ ሺ𝑥 െ 𝑎ሻே

ୀଵ . 
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our discussion in this paper. However, we also note that a missing component to this research is 
the intellectual need that students might have for learning this topic in the first place. 

 
(Potential) Intellectual Need 

Intellectual need is a part of Harel’s Duality, Necessity, and Repeated Reasoning framework 
(2008a; 2008b), and he has claimed that providing students with an intellectual need is 
paramount to learning (Harel, 2013). Harel (2013) explained that given a piece of knowledge 
possessed by an individual or community, intellectual need refers to the problematic situation 
that motivated the construction of the piece of knowledge. That is, the piece of knowledge 
resolves the problematic situation. Harel (2013) also differentiated between a major problem, 
referred to as a global intellectual need, and a smaller problem that becomes apparent along the 
way of resolving the global intellectual need, referred to as a local intellectual need. 

In the context of education, Harel (2008c) claimed that an intellectual need must be a genuine 
problem or puzzlement to a student in order for them to construct the intended knowledge. When 
a sufficient intellectual need is provided to a student, she/he is driven to solve an intrinsic 
problem. Otherwise, a student may only be driven to satisfy a teacher’s expectations or to 
improve her/his economic status by passing a required math classes for a certain degree. 

Because we focus on examining textbooks’ presentations of the Taylor/power series topic, 
and not on observing students directly, we operationalize intellectual need as motivations 
contained in a written curriculum that students might potentially adopt as their own intellectual 
need for the content. To distinguish against intellectual needs as actually experienced by 
students, we use the term potential intellectual needs (PINs) to refer to intellectual needs that 
curriculum might offer, including global potential intellectual needs (G-PINs) and local 
potential intellectual needs (L-PINs). 

 
Intended Knowledge for Taylor/power Series 

Because intellectual need depends on the intended knowledge, we find it important to preface 
our study with two different ways of knowing that instructors might use to scaffold their 
approach to Taylor and power series: family of series and extension of linear approximation. 

Family of series is based on perceiving that certain basic series have similar structures and 
that they can be grouped together into a common generalized format. For example, the series 
∑ ሺ1 2⁄ ሻஶ
ୀଵ , ∑ ሺെ2 3⁄ ሻஶ

ୀଵ , and ∑ 4ஶ
ୀଵ  can be thought of as individuals from a larger family 

with the same structure, and can be grouped under the common template ∑ 𝑥ஶ
ୀଵ . This general 

representation can now be explored without having to explore each individual series one at a 
time. In an instructional approach based on this way of knowing, power series would come first, 
with Taylor series being introduced later as an outgrowth or application of power series. 

Extension of linear approximation is a fundamentally different way of knowing, that grows 
out of function approximation concepts rather than series concepts. In linear approximation, the 
line tangent to the graph of 𝑓ሺ𝑥ሻ at a point x = a is seen to produce reasonable approximations to 
f near x = a, because they have the same value and first derivative (or rate of change) at x = a. 
However, tangent lines are limited in their approximation because the graph may curve away 
from the line. By seeking another simple function that can curve along with the graph, one can 
advance to finding a “tangent parabola” at x = a. This “tangent parabola” is required to have the 
same value of f at a, the same derivative as f at a, and the same curvature of f at a through equal 
second derivatives. The second-degree polynomial can now, typically, approximate better and 
over a greater interval than the tangent line. This process can be extended to “tangent cubics,” 
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and indeed to any order of polynomial, provided f is infinitely differentiable. In an instructional 
approach based on this way of knowing, Taylor polynomials come first as an extension of linear 
approximation, which are then extended to Taylor series and then general power series. 
 

Methods 
For our study, we first identified commonly-used textbooks. According to a large study done 

by the Mathematical Association of America (Bressoud, Mesa, & Rasmussen, 2015, as reported 
in Park, 2016), the most commonly used textbooks were Stewart (2015), Hughes-Hallett et al. 
(2012), and Thomas, Weir, and Hass (2014), which for convenience we refer to simply as 
Stewart, Hughes-Hallett and Thomas. Because Stewart and Thomas follow similar approaches, 
for brevity in this report we focused only on Stewart and Hughes-Hallett. We examined sections 
11.8-11.11 in Stewart and sections 9.5-10.4 in Hughes-Hallett. Prior to the main analysis, we 
classified each book by whether it seemed to use an approach based on family of series or 
extension of linear approximation, according to the descriptions given earlier. 

To begin the main analysis, we identified G-PINs and L-PINs of the textbooks as follows: A 
G-PIN was defined as the problem (if any) posed or contained within the very first part of each 
section that could be resolved by the intended knowledge of that section. For L-PINs, we then 
broke each section into smaller “intended knowledge units” (hereafter referred to as “units”), 
which were each smaller component of the intended knowledge of the section. For each unit, the 
L-PIN was the problem (if any) given within that unit that could be resolved by that specific 
piece of intended knowledge. We then analyzed the G-PINs and L-PINs by attending to (a) 
whether a problem was actually present, (b) whether that problem was explicitly stated, and (c) 
whether the textbook attempted to provide rationale as to its importance. If no problem was 
found within the unit, we still looked for whether the textbook attempted to motivate the content 
by describing, without posing a problem, that it was important for other uses. From this we 
created a ratings system of A, B, C, D, or E for each section’s G-PIN and each unit’s L-PINs, as 
follows: “A” was assigned to a section’s or unit’s PIN if there was an explicitly stated problem 
with rationale given for its importance. “B” was assigned to a section’s or unit’s PIN if there was 
either an explicitly stated problem without attention given to its importance, or if there was an 
implicitly contained problem whose importance was somehow demonstrated. “C” was assigned 
if the section or unit contained a problem, but the problem was both implicit and not motivated 
as important. “D” was assigned to a section or unit that had no problem (and technically no PIN), 
but that discussed where that intended knowledge might be useful, such as in advanced 
mathematics or science. “E” was assigned to a section or unit with no motivation at all, neither in 
terms of a problem (explicit or implicit) nor in terms of where it was useful in other areas. 

The three authors then independently rated each section’s G-PIN and each unit’s L-PIN 
within both textbooks. Our independent ratings had reasonable consistency, in that at least two 
authors agreed on approximately 85% of the ratings. After clarifying discussions, our agreement 
was strengthened to near 100% agreement between at least two authors (only one unit did not). 
Following the final ratings, for any instance where one author did not have the same code as the 
other two, we defaulted to the code agreed on by the other two authors. 

 
Results 

G-PINs and L-PINs within Stewart 
Stewart’s approach generally seems based on the family of series way of knowing by 

introducing power series as a specific class of series (11.8), describing how power series can 
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represent certain functions (11.9), exploring specific Taylor and Maclaurin series (11.10), 
explaining how Taylor polynomials are used in application (11.11). 

Section 11.8. Not only is there no problem posed at the introduction of power series in 
Stewart, but there is no explanation to precede it at all. Stewart simply states the intended 
knowledge by defining a power series and giving its characteristics. This means that the (lack of 
a) G-PIN received an E rating from all three authors. For the majority of the units in this section, 
there are no problems, whether explicit or implicit. However, we identified two instances of B 
ratings, including the book explicitly illustrating the problem that the Ratio and Root Tests will 
always fail when x is an endpoint of the interval of convergence. Yet, importance for finding the 
interval of convergence in the first place is never discussed in the book. 

Section 11.9. In this section, there are a few expository remarks, but nothing that provided 
any type of problem for the intended knowledge of the section. The book even admits, “You 
might wonder why we would ever want to express a known function as a sum of infinitely many 
terms” (p. 752). However, the introductory remarks do provide some importance for this 
intended knowledge by explaining that the topic can be useful in various applications, meaning 
that it was given a D rating. Most units in this section have no problems posed, meaning the (lack 
of) L-PINs receiving E ratings. However, there was one instance of a L-PIN with a D rating 
where the book stated that it can be useful to differentiate and integrate power series. There was 
also one A rating for the last unit’s L-PIN where the book explicitly attends to the problem that 
integrating 1 ሺ1  𝑥ሻ⁄  by hand is “incredibly difficult” (p. 756). The book then places 
importance on this problem by explaining that even computer algebra systems (CAS) return 
different forms of the answer that are all extremely complicated. 

Section 11.10. In this section, Stewart does create a global problem by asking “Which 
functions have power series representations?” and “How can we find such representations?” 
While these problems are explicit, the book provides no discussion of importance for this 
problem, meaning the G-PIN was rated as a B. Of the nine units in this section, five have no 
problem contained in them. For example, the majority of the chapter explores how to find the 
Maclaurin or Taylor series of various “important functions” without suggesting any reasons why 
this would be useful. The section does contain a couple of units with B-rated L-PINs, because the 
book explicitly describes the issue of knowing whether a Taylor series actually converges to its 
function. However, nothing in the discussion of power and Taylor series in the book gives reason 
why knowing such a thing would be important. 

Section 11.11. In this final section, the (lack of a) G-PIN received a D rating because Stewart 
does not provide a problem, but it does mention that Taylor polynomials are important within the 
mathematics and science communities. Despite the low G-PIN rating, this section does have 
better L-PINs than previous sections, including two As and one B. For instance, Stewart 
illustrates the problem of knowing the accuracy of an approximation of a function and the 
problem of knowing how large to take n in order to achieve a desired accuracy. Additionally, 
towards the end of the chapter, the textbook discusses the need for accuracy of approximations 
within the science topics of special relativity and optics. 
 
G-PINs and L-PINs within Hughes-Hallett 

Hughes-Hallett’s first section (9.5) is based on family of series by introducing power series as 
a special class of series with special characteristics. However, from sections 10.1 to 10.4 the 
textbook’s approach switches to being based on extension of linear approximation, by 
introducing Taylor polynomials as increasingly accurate approximations of functions (10.1), 
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discussing Taylor series as an extension of Taylor polynomials (10.2), exploring how to find and 
use Taylor Series (10.3), and discussing the error in Taylor polynomial approximations (10.4). 

Section 9.5. Hughes-Hallett introduces power series in much the same way as Stewart, 
without a problem that can be resolved with the intended knowledge of power series and interval 
of convergence. However, the text does at least open this section by explaining that power series 
can be used to approximate functions, “such as ex, sin(x), cos(x), and ln(x)” (p. 521), meaning it 
received a D rating. Four of the seven units in this section were rating as E, for having no 
problem or discussion of importance. The book simply defines and outlines characteristics of 
power series. However, we identified two B-rated L-PINs, similar to Stewart, where the text 
demonstrates the problem of the Ratio and Root tests failing to show whether a power series 
converges or diverges at its endpoints. 

Section 10.1. Hughes-Hallett does not provide a problem for the global intended knowledge 
for this section, but the book does explain that Taylor series are used to approximate functions. 
Thus, the G-PIN received a D rating. Of the section’s four units, two lacked any motivation (E 
rating), while the L-PINs for the other two were rated as a B. For one B-rated L-PIN, the text 
creates a problem by explaining that ln(x) cannot be centered at 0 as it is undefined for x = 0.  

Section 10.2. This section’s (lack of) G-PIN received an E rating, since there was no 
motivation given at all. The text only says that a Taylor series “can be thought of as a Taylor 
polynomial that goes on forever” (p. 546). In this chapter, three of the four units did not have any 
motivation or L-PIN. The remaining L-PIN received a B letter grade for explicitly raising the 
problem that the Taylor series for ln(x) does not converge at certain locations. 

Section 10.3. Here we identified the first A-rated G-PIN in our study. The textbook explains 
that it can be laborious and difficult to repeatedly take derivatives of certain functions in order to 
find the coefficients of their corresponding Taylor polynomials. This is likely a problem to which 
many students can relate, and the problem can be resolved through the different methods to find 
Taylor series illustrated in the chapter. This section also contained an A-rated L-PIN for 
presenting the problem of integrating 𝑒ି௫మ, a B-rated L-PIN for posing the problem of 
identifying which of two functions has larger values, and a C-rated L-PIN for estimating the 
value of 𝜋 (unfortunately without explicitly identifying the problem, nor its importance). 

Section 10.4. In this final section, Hughes-Hallett explicitly brings up the problem of 
knowing how to bound an approximation’s error “in order to use [that] approximation with 
confidence” (p. 560). This section yielded our only other A-rated G-PIN. Two units in this 
section had L-PINs with a B rating, by pointing out problems of bounding error and findings 
ways to approximate functions like cos(x). Unfortunately, discussion as to the importance of 
these problems was missing. 

 
Summary 

In summary, both textbooks unfortunately generally lacked PINs to offer students for the 
Taylor/power series sections. If the ratings are assigned the numbers A=4, B=3, C=2, D=1, and 
E=0, the G-PINs in Stewart had an average score of 1.25 and the L-PINs had an average of 1.36. 
In Hughes-Hallett, the G-PINs had an average score of 1.6 and the L-PINs an average of 1.33. 
 

Where to Go from Here? Ideas on Providing Intellectual Need for Taylor/Power Series 
The textbook analysis in this study showed a general lack of PINs, suggesting it may mostly 

be up to instructors to inject PINs into their own classrooms. As such, we consider it important to 
discuss hypotheses for providing PINs to our students, which we intend to examine in future 
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studies. Here we consider what might be added, by way of explicitly posed important problems, 
to these sections to provide PINs. We focus here only on the larger-grained global needs that 
need to be developed. While one might infer from the results that both approaches lack PINs to 
offer, we believe that one approach can be more easily imbued with strong PINs than the other. 
 
Intellectual Need for an Approach Based on Family of Series 

Both textbooks initially introduced power series with no discussion or motivation, let alone a 
problem that could provide intellectual need. What problems could be posed at the beginning of 
the introductory section to provide it? Because the intended knowledge is the definition of a 
power series and intervals of convergence, the problem would have to be resolvable by that 
content. We identified one possible problem to be, “Can we determine convergence of a whole 
class of series through examining one generic series?” This problem seems related to Harel’s 
(2013) need for computation, though the importance of this question to students would be highly 
dependent on the intellectual need they have for knowing whether basic series converge, or not, 
which is questionable in our experience. In the next section of Stewart (11.9), the intended 
knowledge is representing known functions as power series and learning how to manipulate them 
to determine additional power series for functions. The problem answerable by this intended 
knowledge may simply be, “Can we describe functions as power series?” However, since 
students are likely already comfortable with the existence of functions such as ln(x), cos(x), and 
ex, there does not seem to be a genuine issue with needing to express these functions in other 
ways. Rather, the students, as Stewart explicitly puts it, would likely “wonder why we would 
ever want to express a known function as a sum of infinitely many terms” (p. 752). 

These types of underlying problems for this content seem more the purview of advanced, 
proof-based mathematics focused on questions of existence, necessary conditions, or exhaustive 
cases. In fact, both textbooks state early on a theorem for all possible cases for radii of 
convergence. Stewart then goes on to provide theorems on the existence of derivatives and anti-
derivatives, the existence of Taylor series, and the necessary conditions for a Taylor series to 
converge to the function. Because the vast majority of students in first-year calculus are planning 
on studying science and engineering, with only a very small number of pure mathematics majors 
(Bressoud et al, 2013), we believe these problems would likely not be seen as important by them, 
and would likely not produce intellectual need. Thus, while it is true that genuine problems can 
be found in an approach based on family of series, we personally find it difficult to see that they 
would become intellectual needs for many typical first-year calculus students. 
 
Intellectual Need for an Approach Based on Extension of Linear Approximation 

Past the first section on introducing power series, Hughes-Hallett generally follows an 
approach based on extension of linear approximation, so we focus only on sections 10.1-10.4 
here. In section 10.1, the intended knowledge is the notion of improved approximation through 
linear approximation, quadratic approximation, and higher-order approximation. What 
underlying problem could be answerable by this intended knowledge? While Hughes-Hallett 
fails to actually provide the problem, it does state that the intention is to “see how to approximate 
a function by polynomials” (p. 538). However, this statement could be converted into a true 
problem by posing the following issue: Ask students to take out a calculator, or their phone, and 
input expressions like √1.03, 𝑒.ଵହ, or ln(1.1). The fundamental problem can be posed as, “How 
does your calculator determine the values of these (and essentially infinitely-many other) 
possible inputs?” This is also related to need for computation (Harel, 2013), but this need seems 
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much more relevant to the experiences of first-year calculus students. The problem posed here is 
answerable by the content in section 10.1 of Hughes-Hallett. Note that this PIN is not dependent 
on the intellectual need students may or may not already possess for knowing whether basic 
series converge or diverge. 

The intended knowledge in the second section (10.2) is identifying Taylor series and radii of 
convergence for the common functions cos(x), sin(x), and ex. Again, the book fails to provide a 
problem, but we see a problem as being easily attached to this content, though using different 
functions to start. In conjunction with the previous problem, one could ask the students, “Can the 
process of approximation developed in the first section be used to program a calculator to return 
values for these functions for any input?” As students attempt to build Taylor polynomials for 
different inputs, some students may identify some inputs, such as ln(4), where the series diverge 
to infinity. This problem leads to the need to identify the domains over which these Taylor series 
can be used to program calculators. 

In the last two sections (10.3 and 10.4), we note that the G-PINs were actually strong in 
Hughes-Hallett and that we would not see a need to change these. As a final point, though, we 
note that the first section (9.5) provides no G-PIN for general power series. As such, we would 
recommend not introducing power series first, but to place them after the complete development 
of Taylor polynomial approximation, Taylor series, and error analysis. In this way, power series 
may be introduced as a mathematical generalization of the already-motivated Taylor series. 

Connections to other research. These suggestions for providing PINs for Taylor/power 
series are in line with Martin et al.’s (2016) virtual manipulative focused on helping students see 
connections between the global and local convergence. We believe the importance students may 
attach to such connections and representations are inherently connected to the problems we have 
recommended for developing G-PINs for Taylor and power series. That is, such manipulatives 
would be strengthened if students felt an intellectual need for them. On a different note, we 
believe that the stronger PINs that can be added to an approach based on extension of linear 
approximation can help develop the idea of partial sums as a function from the natural numbers 
to the reals (Martinez-Planell & Gonzales, 2012; McDonald et al., 2000). In an approach based 
on family of series, power series are stated as “fact” in the form of a long list of added terms, 
which seems to build the “series as a list” conception. However, extension of linear 
approximation would focus on creating higher-order Taylor polynomials, which can make it 
more plausible that students would attend to mappings between integers n and partial sums.  
 

Conclusion 
In conclusion, we find that, unfortunately, textbooks may often not provide PINs that 

instructors can use in their courses, and that instructors may need to do the work on their own of 
infusing PINs into their classrooms. We believe that while an approach based on the family of 
series way of knowing can be motivated by true problems, those problems may be more 
appropriate for advanced calculus concentrated on proof and theory. For first-year calculus, we 
instead posit that an approach based on the extension of linear approximation way of knowing 
can provide stronger PINs for the students in those classes. While this textbook analysis serves as 
an introductory study on the topic, we call for research to test these hypotheses regarding PINs 
for Taylor and power series. We are certainly open to the possibility of other types of PINs that 
could be used to motivate this topic, and we welcome discussion and debate on this point. As 
Harel (2013) suggests, we believe such attention to intellectual need is necessary if students are 
to learn this important topic well. 
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Teachers’ Reasoning with Frames of Reference in the US and Korea 
 

 Surani Joshua Hyunkyoung Yoon Patrick W. Thompson 
 Arizona State University Arizona State University Arizona State University 

Our theory of what entails a conceptualized frame of reference is explained, along with items 
and rubrics designed to illuminate how teachers do or do not reason with frames of reference. 
We gave 551 teachers in the US and Korea frame of reference tasks, and coded the open 
responses with rubrics intended to rank responses by the extent to which they demonstrated 
conceptualized and coordinated frames of reference. Our results show that our theoretical 
framework is useful in analyzing teachers’ reasoning with frames of reference, and that our 
items and rubrics function as useful tools in assessing teachers’ meanings for quantities within a 
frame of reference. 

Keywords: Frames of Reference, Mathematical Meanings, Secondary Teachers, Quantitative 
Reasoning 

A frame of reference is an organizing tool most familiar in physics, yet it is also applicable to 
any mathematics task that involves quantities, or measurable attributes of objects (Thompson, 
1993). Every time a person thinks about a quantity, its meaning is only fully understood within 
the frame of reference within which it was measured. To say a plane is flying at 35,000 feet only 
has meaning when we know height was measured in a frame where the reference point is sea 
level; to say a ball’s free fall velocity changes by -9.8m/s/s only has meaning when we know that 
acceleration was measured within a directionality where the measurements are always away from 
the center of the Earth.  

If professional development programs and education researchers wish to address issues with 
how teachers help their students with the mathematics they teach, we first need more nuanced 
information about the teachers’ own understandings of the mathematics. Many current 
assessments that focus on mathematical knowledge for teaching (Hill, 2005) categorize teachers’ 
MKT by whether or not they can give normatively correct answers to tasks. Project Aspire 
wished to take an alternate approach by analyzing teachers’ responses by what those responses 
told us about the teacher’s current meanings (Thompson, 2016), and to compare different 
meanings by how productive they might be for helping students to develop coherent meanings. 
We did so by writing items and rubrics and analyzing responses from over 500 teachers in the 
US and Korea. Our work can be connected to critiques of the deficit model (Bak, 2001), in that 
we are interested in identifying what teachers do understand, in whatever ways they do. 

In this work, we draw on data from part of an assessment that was developed to analyze 
teachers’ mathematical meanings for frame of reference. The research question for this analysis 
is: In what ways do teachers reason about quantities within frames of reference on our tasks?  

Past Literature and Theoretical Perspective 
When we first began to write about teacher responses to frame of reference items (Joshua, 

Musgrave, Hatfield, & Thompson, 2015), our search of math education and physics education 
literature revealed no cognitive definitions of frame of reference. By ‘cognitive definition’ we 
mean a definition of what mental actions a student must engage in in order to use a frame of 
reference productively to solve tasks. Instead, the definitions we found in both textbooks and 
academic articles referred to physical objects, such as “a set of rigidly welded rods” (Carroll & 
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Traschen, 2005), “a set of observers” (de Hosson, Kermen, & Parizot, 2010), or “a coordinate 
system and a clock” (Young, Freedman, & Ford, 2011) among others. Several studies looked at 
ways in which students struggled with frame of reference tasks (Bowden et al., 1992; 
Trowbridge & McDermott, 1980) or reported results of interventions meant to improve 
performance on frame of reference tasks (Monaghan & Clement, 1999; Shen & Confrey, 2010), 
and one identified common student misconceptions about frames of reference (Panse, Ramadas, 
& Kumar, 1994). None gave a clear cognitive definition of frame of reference, which we 
concluded was needed to have a productive conversation about student or teacher reasoning on 
frame of reference tasks. 

When we speak about a person who has fully conceptualized a frame of reference, the frame 
of reference itself is not the primary object of consideration. Rather, the person is using one or 
more frames of reference as a systematic way to think about and organize the measures of 
quantities and their meanings, as well as the quantitative relationships between those quantities. 
This places our constructs of conceptualizing and coordinating frames squarely within the 
domain of quantitative reasoning. This clarification guided our eventual definition: 

An individual can think of a measure as merely reflecting the size of an object relative to 
a unit or he can think of a measure within a system of potential measures and 
comparisons of measures. An individual conceives of measures as existing within a frame 
of reference if the act of measuring entails: 1) committing to a unit so that all measures 
are multiplicative comparisons to it, 2) committing to a reference point that gives 
meaning to a zero measure and all non-zero measures, and 3) committing to a 
directionality of measure comparison additively, multiplicatively, or both. […] An 
individual is coordinating two frames of reference if she conceives each frame as a valid 
frame, stays aware of the need to coordinate quantities’ measures within them, and 
carries out the mental process of finding a relation between the frames while keeping all 
relative quantities and information in mind. (Joshua et al., 2015) 
We wish to emphasize that we are certainly not claiming that people explicitly say to 

themselves “I have decided to commit to a ____.” For most people these commitments are 
made implicitly, and are only observable indirectly by looking at how individuals reason 
through tasks and inferring the presence or lack of commitments that explain their responses. 
Our theory therefore functions as an explanatory framework for how people think about 
quantities. 

Methodology 
From 2012 to 2015, the Project Aspire team created the 48-item assessment Mathematical 

Meanings for Teaching Secondary Mathematics (MMTsm). A major goal of Project Aspire was 
to provide information to professional development leaders. We tried to write descriptions of 
rubric levels that would capture certain ways of thinking, without requiring that the scorer be 
familiar with the nuances of those ways of thinking. The Project Aspire team and the BEAR 
team at UC Berkeley ran several rounds of inter-rater reliability (IRR) and used the results to 
refine the items and rubrics. 

The second author translated each item into Korean. A Korean high school mathematics 
teacher who was a mathematics Ph.D. student translated the items back into English. The second 
author and the third author reviewed the back translations and the second author made 
adjustments to the Korean versions (Behling & Law, 2000; Harkness, Van de Vijver, Mohler, & 
fur Umfragen, 2003). We collected U.S. teacher data in 2014 and 2015 from multiple 
professional development settings and scored by the Project Aspire team, with some overlapping 
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scores with which to run IRR. The Korean data was collected in the summer of 2015 and scored 
by English-speaking Korean teachers that tested sufficiently high on the rubrics after training. 
The second author then scored a subset of responses to run IRR. 

Figure 1 shows the Willie Chases Robin task; this paper analyzes responses for Parts B and 
C. Willie Chases Robin “is a frame of reference context where an individual uses one clock to 
time two events that begin at different times…Thus, when an individual uses both times in the 
same expression and in the same unit, she must offset one time from the other to account for the 
differences in elapsed time. In addition, the item’s references to times are in two different 
units—speed (distance relative to time) measured in miles per hour, and the difference in their 
elapsed time measured in minutes”. 

Robin Banks ran out of a bank and jumped into his car, speeding away at a constant 
speed of 50 mi/hr. He passed a café in which officer Willie Katchim was eating a donut. 
Willie got an alert that Robin had robbed the bank, jumped into his patrol car, and 
chased Robin at a constant speed of 65 mi/hr. Willie started 10 minutes after Robin 
passed the café. 
Part A.  Let u represent the number of hours since Robin passed the café. Write an 
expression that represents the number of hours since Willie left the café. 
Part B.  Here are two functions. They each represent distances between Willie and 
Robin. 
  

i) What	does	x	represent	in	the	definition	of	f	?	
ii) What does x represent in the definition of g? 

Part C. Functions f and g both give a distance between Willie and Robin after x hours. 
But f(1)=6.67 and g(1)=4.17. Why are f(1) and g(1) not the same number? 

Figure 1. Willie Chases Robin MMTsm Item. ©2014 Arizona Board of Regents. Used with permission. 

We then scored the teacher results with the rubrics in Figure 2 and Figure 3. 
B4 Response: The teacher said both of the following things: 

- x in f(x) represents number of hours (or elapsed time) since Willie left café  
- x in g(x) represents number of hours (or elapsed time) since Robin left café  

B3 Response: Matches B4 response except that x in g(x) is since Robin left bank 
B2a Response: Matches B4 response except no reference points (café, bank) mentioned  
B2b Response: Matches B4 except teacher switched meanings for x in f(x) and in g(x) 
B1 Response: Teacher gave same meanings for x in f(x) as in g(x) 
B0 Response: The response doesn’t fit a higher level, cannot be interpreted, has no clear 

answer, or is off-topic, but isn’t blank or just the statement “I don’t know”. 
Figure 2. Willie Chases Robin Part B MMTsm rubric. ©2014 Arizona Board of Regents. Used with permission. 

Part B of the Willie and Robin item (see Figure 1) aims to see whether teachers would 
interpret the meaning of parts of function definitions by analyzing them quantitatively and with 
explicit reference to their domains. The highest level for this item, B4, is for responses where the 
teacher distinguished between both independent variables by the reference point of their 
magnitudes. The only way for two non-equivalent functions’ definitions to represent the same 
quantity (distance between the men) is for the independent variable in each to have different 
meanings, which is why responses that said both x’s have the same meaning were placed at the 

		

f (x)=65x −50 x − 16( ) , x ≥0.
g(x)=65 x − 16( )−50x , x ≥1/6.
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level B1. Levels B3, B2a and B2b were for responses that articulated the difference to some 
degree but did not specify the exact quantitative meaning of the x’s. Figure 2 summarizes our 
rubric for Part B. 
C2 Response: Teacher said f(1) and g(1) represent distance between men at two different 

moments in time, or made same statement for x=1 in f(x) and in g(x). 
C1 Response: Teacher said x=1 has different meanings in both functions but a) did not 

elaborate on the meaning of x, b) described both x’s as representing distances, 
or c) described f(1) and g(1) as representing time passed; or, described f(1) 
and g(1) as representing distances but not specifically distances between men.  

C0 Response: The response doesn’t fit a higher level, cannot be interpreted, has no clear 
answer, or is off-topic, but isn’t blank or just the statement “I don’t know”. 

Figure 3. Willie Chases Robin Part C MMTsm rubric. ©2014 Arizona Board of Regents. Used with permission. 

Part C of the Willie Chases Robin item (see Figure 1) is designed to see whether teachers 
could articulate why two very functions could represent the same quantity yet have different 
values for the same independent value. The answer, as in Part B, is that the meaning for x in each 
function is different. For example, if Robin passed the café at 4:00pm, then the distance between 
the two men at 5:00pm is given by either f(1)=6.67 and g(1.16)=6.67. Variables (and quantities) 
have no useful meaning without specified reference points from which we are measuring. Figure 
3 summarizes our rubric for Part C. 

Earlier we said that our theory therefore functions as an explanatory framework for how 
people think about quantities. By writing item-specific rubrics that described precisely what 
types of responses belong to each level, we sought to create rubrics that could categorize 
teachers’ meanings for frame of reference without requiring the scorer to fully understand the 
theory of what constitutes a conceptualized frame of reference. Our item and rubrics can then be 
used to either assess the needs of a particular group of teachers for teaching, research, or 
professional development purposes, or to function as pre- and post- items to evaluate the efficacy 
of an instructional intervention. 

 Results & Discussion 
In this section we discuss what individual responses can tell us about the teacher’s meanings 

for quantities within a frame of reference, by studying several representative examples through 
the lens of our theoretical framework. Korean responses were translated into English and 
handwritten by the second author, and the country of origin of each sample response is not 
identified (gender pronouns were selected randomly). 

Willie Chases Robin Part B Results 
Part B elicited a wide range of responses, and so we built a rubric that looked at all three of 

the commitments necessary to fully conceptualize a frame of reference: unit, reference point, and 
directionality of comparison. Figure 4 displays three teacher responses to Part B. 
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Part B. Here are two functions. They each 
represent distances between Willie and Robin. 

 

i) What does x represent in the 
definition of f ? 

 

i) What does x represent in the 
definition of f ? 

 

i) What does x represent in the 
definition of f ? 

 
ii) What does x represent in 
the definition of g? 

 

ii) What does x represent in 
the definition of g? 

 

ii) What does x represent in 
the definition of g? 

 
Figure 4. Teacher responses that were scored at a) Level B4, b) Level B2b and c) Level B0. 

The response in Figure 4a was scored at the highest level of B4 because of three aspects we 
deemed important, all of which allow us to build a hypothetical model of how the teacher was 
reasoning while answering this item. The teacher clearly specified “number of hours” and so was 
identifying each x as representing a quantity; other responses merely referred to “time” which 
could apply equally to the passage of time or the time of day. The teacher also specified 
reference points and used the appropriate reference points (leaving the café for both men) to 
make sense of the function definitions. Without reference points for a quantity’s measurement, 
there is no clear unambiguous relationship between a given measurement and the quantitative 
situation it represents. Finally, the teacher correctly identified that f gave the distance between 
the two men in terms of Willie’s time since leaving the café, where g is in terms of Robin’s time 
since leaving the café. In order to correctly identify each function’s independent value, the 
teacher had to reason about how one would adjust each man’s time in terms of the others to 
calculate his distance from the café, in terms of his speed times the number of hours he drove. 
Our model for how this teacher reasoned was that she conceptualized the quantity with an 
internal commitment to unit, reference point, and directionality of comparison. 

The response in Figure 4b was scored at Level B2b because it is identical to a B4 response 
except that the teacher reversed the meanings of the x in the definition of f and the x in the 
definition of g. The definitions he gave do not allow for f and g to represent the distance between 
Willie and Robin. The teacher’s response is consistent with using one directionality of 
comparison to define each measurement of time, but the opposite directionality of comparison to 
define each man’s time in the other man’s frame of reference. Our model for how this teacher 
reasoned about Part B was that he conceptualized the quantity with an internal commitment to 
unit and reference point; we hypothesize that instead of committing to a directionality of 
comparison the teacher took the +1/6 in (x+1/6) to indicate a later time and therefore a 
description of Willie’s behavior. In this case, the increase is seen as an indicator of “largeness”, 
instead of an indicator that x’s value needs to be augmented to represent the appropriate meaning 
within this frame. 
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The response in Figure 4c was scored at Level B0 because it did not fit any higher levels, 
and we can see why when we look at this response in terms of the commitments the teachers did 
and did not make. This teacher identified the difference in the x’s by a general indication that 
each one has something to do with one person in the context and referred to the difference of 1/6 
hours in starting time between the two men. We can see that the teacher is hinting at something 
relating to the difference in reference points for each man’s measurement of time, but she does 
not know how to interpret that difference by defining two quantities with different reference 
points. Our model for how this teacher reasoned is that she did not define either x in terms of any 
quantities (precise or vague) at all, so she made no commitments to unit, reference point, or 
directionality of comparison in this response. 

Willie Chases Robin Part C Results 
Part C was particularly difficult for teachers from both countries, as shown in Table 1 in the 

next section. In deciding how to differentiate responses in a meaningful way, we decided that the 
most valuable information from Part C responses was in how the teachers did or did not commit 
to a reference point. Therefore, our rubric for Part C is built around assessing commitment to a 
reference point. Figure 5 displays three teacher responses to Part C. 
 Part C. Functions f and g both give a distance between Willie and Robin after x 

hours. But f(1)=6.67 and g(1)=4.17. Why are f(1) and g(1) not the same number? 

 
  

Figure 5. Teacher responses that were scored at a) Level C2, b) Level C1 and c) Level C0. 
 
The response in Figure 5a was scored at the highest level of C2 because this teacher 

described f(1) and g(1) as both representing the distance between the two men, but at different 
points in time because of the different meanings of x in each function. The prompt in Part C sets 
up a seeming contradiction and asks the teacher to reason why the contradiction does not, in fact, 
exist. To do so, this teacher had to think about the quantitative meaning of the independent value 
x in each function, and realize that different reference points for the inputs necessarily implied 
different meanings for the dependent values as well. Our model for how this teacher reasoned is 
that he conceptualized all four quantities x [in f(x)], x [in g(x)], f(x) and g(x) with commitments to 
reference points. 

The response in Figure 5b was scored at Level C1 because this teacher described f(1) and 
g(1) as representing distances at different points in time, but not specifically distances between 
men. To reach this conclusion, she had to keep her commitment to the definitions of each x, but 
not make the same conclusions about the dependent values as the teacher in Figure 5a. Our 
model for how this teacher reasoned is that she conceptualized x [in f(x)] and x [in g(x)] with 
commitments to reference points, but not f(x) or g(x). 

The response in Figure 5c was scored at Level C0 because it did not fit any higher levels, and 
we can see why when we look at how this teacher was not able to resolve the seeming 
contradiction posed to him. We do not have enough information to speculate about how he 
conceptualized the quantities represented by x in each function, but we can conclude that he did 
not conceptualize the quantities f(x) or g(x) with commitments to reference points. 
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Scores For All Teacher Responses 
Table 1 shows a breakdown of responses to Part B and Part C, with 186 US and 365 Korean 

teachers responding. I/X responses consisted solely of “I don’t know” or were blank. We do not 
make any quantitative analyses or conclusions in this paper, but we find the distributions of 
interest to those who want to see how large samples of teachers answer this question. Though the 
purpose of our paper is not a comparison between countries, we must note that when we only had 
US data, many objections were raised to Project Aspire papers and presentations by saying that 
our items were too difficult and therefore inappropriate to be given to secondary teachers. Our 
Korean data shows that this is not necessarily true.  

Table 1. Responses to Willie Chases Robin. ©2014 Arizona Board of Regents. Used with permission. 

 Part B Results   Part C Results 

 US Korea    US Korea 

B4 
B3 
B2a 
B2b 
B1 
B0 
I/X 

23 (12.4%) 
5 (2.7%) 
5 (2.7%) 

35 (18.8%) 
29 (15.6%) 
81 (43.0%) 
9 (4.8%) 

144 (39.5%) 
8 (2.2%) 

73 (20.0%) 
25 (6.8%) 
33 (8.8%) 
74 (20.0%) 
10 (2.7%) 

  C2 
C1 
C0 
I/X 

12 (6.4%) 
24 (12.9%) 
140 (75.3%) 
10 (5.4%) 

56 (15.3%) 
139 (38.1%) 
160 (43.8%) 
10 (2.7%) 

   

Conclusion 
While other professional development projects continue to administer the MMTsm, the data 

discussed here shows that our theoretical framework is useful in analyzing teachers’ reasoning 
with frames of reference. Our rubrics, correlated to different levels of productive meanings for 
quantities within a frame of reference, allow us to analyze teacher responses to our tasks and 
characterize to what extent each teacher reasoned about quantities within frames of reference on 
our tasks. The MMTsm was designed specifically to investigate mathematical meanings for 
teaching; we are interested in modeling the kinds of meanings that teachers might convey to 
students in their classroom. While a teacher with productive meanings for quantities within 
frames of reference is not guaranteed to help her students develop productive meanings, it is 
certainly true that a teacher with unproductive meanings will have difficulty in doing so. 

One limitation of our data is that the teachers were pulled from voluntary participants in 
professional development programs (for the US) and voluntary participants taking exams 
mandatory for teachers finishing their fifth year of teaching (in Korea). Neither population is 
representative of their country as a whole. However, our non-random results do suggest that 
many teachers are probably not prepared to help their students reason through such tasks. It is 
important that mathematics and mathematics education professors are aware of teachers’ weak 
meanings for frame of reference and address them during undergraduate instruction and 
professional development settings. We cannot begin to address a problem until we have 
identified it, and teacher reasoning with frames of reference is an important yet heretofore 
unidentified area in need of further study and intervention. 
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The purpose of this study is to analyze student understanding of isomorphism as it is taught in a 
university level mathematics course. We collected and studied student responses to course 
assignments covering the concept of isomorphism. The findings of this study support previous 
research that suggests student understanding of isomorphism is largely reliant on an imaged-
based concept of symmetry. We found that student understanding is supported by an image-
based radical constructivist approach and detail the techniques students use when first working 
with isomorphic mappings.  

Keywords: Isomorphism, Abstract Algebra, Qualitative Methods 

The concept of isomorphism is a core component of all Abstract Algebra courses. It holds 
the power to traverse mathematical operations and meaning between different groups and 
between different realms of mathematics. Mena-Lorca and Parraguez (2016) describe it as a 
“difficult” concept for undergraduate students (p. 378). This is partly because the concept of 
isomorphism builds from multiple other concepts in mathematics. To understand isomorphism, 
one must first have thorough knowledge of functions, one-to-one correspondence, groups, and 
homomorphism (Pinter, 1990). Furthermore, understanding isomorphism is significant because it 
requires a high level of abstract thinking that is not often reached in lower level mathematics 
courses (Larsen, 2013). In this way, understanding isomorphism transitions students from lower 
level mathematics concepts to more advanced concepts. Altogether, a strong comprehension of 
isomorphism can equip students to successfully study group theory and other theoretical 
mathematics topics. Hence, there is a substantial need for analysis of how students understand 
the concept of isomorphism. This research seeks to gain knowledge of student understanding of 
isomorphism as it is introduced in an upper-level university mathematics course that practices 
radical constructivism. The purpose of this study is to describe how students develop an 
understanding of isomorphism to improve the quality and effectiveness of undergraduate 
mathematics education. 

Background Literature  
Relatively little attention has been given to teaching methodologies that aim to minimize 

the void between confusion and understanding for undergraduates studying upper-level 
mathematics. Moreover, almost no research is dedicated to the study of how students understand 
elementary Group Theory topics such as isomorphism. It has been the opinion of current 
researchers that “the teaching of abstract algebra cannot be considered a successful endeavor” 
because students must work with unfamiliar, abstract concepts when they have previously relied 
on strict, procedural proof techniques (Mena-Lorca & Parraguez, 2016, p. 378). The most recent 
studies of this topic (Mena-Lorca & Parraguez, 2016; Larsen, 2009, 2013) seek to address how 
students’ understanding of isomorphism stems from their pre-existing informal knowledge.  

A case study teaching experiment of two students investigated how students could 
reinvent the ideas of groups and isomorphism using pre-existing knowledge (Larsen, 2009). 
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Larsen’s guided reinvention approach used basic concepts such as the symmetries of an 
equilateral triangle to support student discovery. This study identified informal student strategies 
used to grasp the concepts at hand and suggested how these strategies could be evoked to support 
the reinvention process and learning of formal concepts (Larsen, 2009). In a similar study, 
Larsen (2013) formed a series of design experiments to support the reinvention approach to 
teaching group and isomorphism concepts. Most recently, a large-scale study published in 2018 
captured a representative, nation-wide sample of student responses while working with the 
concepts of subgroups, cyclic groups, and isomorphism. This study expanded previously 
conducted, non-representative studies, establishing the expanse of different student conceptions 
and re-analyzing current theories (Weber, 2001; Weber & Alcock, 2004) on student 
understanding of isomorphism, suggesting that students take a slightly more semantic approach 
when working with isomorphism than once perceived. That is, in the study, students tended to 
explore groups structurally rather than within the formal definition when determining 
isomorphism (Melhuish, 2018). 

Methods  

Participants 
The participants of the study consisted of students majoring in mathematics or 

mathematics education enrolled in an Abstract Algebra I course at a southeast university. Data 
was collected from a total of 19 students in two classes over two semesters. Abstract Algebra I is 
considered the first upper-level mathematics course for the participants hence, these students had 
no previous course study in upper-level mathematics topics such as Analysis, Graph Theory, or 
Number Theory that may also cover types of isomorphic structures and relationships. 

Task/Context 
The instructor of the course utilizes a radical constructivist approach (Glaserfeld, 1995) 

as the learning through to develop a set of materials called, Pathways to Abstract Algebra. These 
materials view the classroom as a place for exploration of concepts through creating conjectures 
and making discoveries. The role of the instructor is to create learning situations in which this 
exploration can happen. In class, students work on investigations covering basic Group Theory 
topics in groups of two to five students. The instructor facilitates and monitors small group 
discussion, periodically leading full class discussion over questions and tasks in the investigation 
being completed. This study focuses on the isomorphism investigation. This investigation is 
designed to allow students to develop an intuition that motivates the properties of isomorphism.  

This investigation begins with tasks that prompt students to use previously learned 
concepts and rudimentary skills such as matching to construct their own understanding of 
isomorphism. Initially, the students are encouraged to reason from the perspective of “labeling” 
groups as a way of motivating the function-based definition. Students are shown an example of 
two isomorphic groups, and , along with their corresponding, color-coded operation 
tables. In problem 1, students are asked to recreate similar corresponding tables for the group of 
triangle symmetries and the cross-ratio group. Through this exercise, students should form a 
visual relationship between the given isomorphic groups. After students gain a mental picture of 
isomorphism through this exercise, they work on questions that help winnow away false 
strategies that they may be using to determine if two groups are isomorphic to each other (i.e. 
exhaustively checking arrangements). Problem 2 asks students to determine if the triangle 
symmetries group and  are isomorphic and to explain why they come to their conclusion. 
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Problem 3 similarly asks students to determine if the groups and  are isomorphic and 
why. These questions give students the opportunity to recognize reoccurring properties of 
isomorphism that have not yet been revealed in the investigation.  
 

 
Figure 1. Problems 1, 2, 3, 4 and HW #3 of the Isomorphism investigation  

Following this process, students are introduced to the formal definitions of operation 
preserving functions, homomorphism, and isomorphism. These definitions are presented through 
a mini-lecture with the goal to show students that the assignments they have been using to 
determine isomorphism, in fact, correspond to a function. Students then work on questions that 
serve to clarify their current understanding of the definition. Problem 4 defines an arrangement 
between and  that is not an isomorphism and asks students to determine “what goes 
wrong” within the given assignment. Next, the preservation of identity and inverses property of 
isomorphism is finally presented as a theorem. Homework problem 3 asks students to prove that 
a given function is an isomorphism between  and . While this problem does not cover new 
information, it is a significant indicator of what understanding the students gain from class 
learning and discussion. Given the structure and goals of these materials, we aim to answer the 
following research question: how do students develop an understanding of isomorphism? 

Data Collection and Analysis 
We collected all assignments that included the topic of isomorphism. This includes in-

class assignments, homework assignments, quizzes, and exams. We also audio recorded class 
and small group discussions during the isomorphism investigation. However, for the purpose of 
this paper we will focus on their written and audio responses to the investigation and homework. 
All data was blinded and given pseudo-names for analysis.  

The problems from which we analyzed data mirror the problems described in the 
methods section. While students’ written work is shown, this is only to give readers a visual idea 
of student responses; the data analyzed is more extensive than the work displayed in this section 
and includes recorded discussion. We chose not to analyze data from 7 students because they had 

22nd Annual Conference on Research in Undergraduate Mathematics Education 310



previously taken Abstract Algebra I, chose to not be recorded, or were absent during the 
isomorphism investigation, resulting in a total of 11 students’ data. 

 To describe students’ understandings of isomorphism, data was analyzed qualitatively, 
open-coding for the different aspects of isomorphism, to identify understandings and 
misunderstandings (Creswell, 2007). We double coded all student responses to each question 
detailed in the methods section and resolved disagreements through discussion. Specifically, we 
focused on the techniques through which students completed each problem (i.e. creating 
operation tables, checking for certain properties). We examined the codes and determined themes 
of student understanding of isomorphism (i.e., table reliant understanding). These themes are 
detailed in the results section. 

Results  
The goal for Problem 1 is for students to develop an intuition for the meaning of 

isomorphism between two groups and informally recognize properties of isomorphism, such as 
the preservation of identities and inverses. Altogether, students should focus on the structure of 
the triangle symmetries and cross-ratio groups rather than the label of each individual element in 
these groups. Upon analysis, data showed that 91% (n=10) of students successfully found an 
isomorphic mapping between the triangle symmetries and cross-ratios groups. The same 91% of 
students began problem 1 by identifying the identity elements of each group and mapping them 
to each other. An example is shown in Figure 2. Here the elements  and  are first circled in 
each table and then the ’s are positioned in the bottom table to match the placement of the 
circled ’s in the triangle symmetries table. Then the assignment  is made (while 
this notation is incorrect, the students have not yet been introduced to correct notation). 

Of this 91% (n=10) of students who began by identifying the identity elements, five 
students moved on to map self-inverting elements to each other, three students moved on to 
mapping non-self-inverting elements, and two students were unable to make more progress and 
began randomly guessing full mappings. The ten students who were able to make progress and 
complete the isomorphic mapping tended to assign colors or shapes to the elements they mapped 
to each other, mimicking the example set forth by the instructor at the beginning of the 
investigation. Suzie’s work in Figure 2 demonstrates this by her markings in the given table of 
triangle symmetries. Finally, about one third of the students recognized that there are multiple 
isomorphic arrangements between the group of triangle symmetries and the cross-ratio group.  

 

 
Figure 2. William’s (left) identification of the identity elements and Suzie’s (right) use of colors 

Ultimately, almost all of the students started by mapping identity elements and then self-
inverting or non-self-inverting elements, suggesting that students were able to informally 
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recognize the preservation of identities and inverses within an isomorphic mapping. Moreover, 
two students recognized that there are multiple isomorphic mappings between the group of 
triangle symmetries and the cross-ratio group, suggesting they started to develop a greater 
intuition for the meaning of isomorphism.  

Problem 2 is designed to help students create a distinction between their mental picture 
and the isomorphism properties they found in problem 1. This problem aims to refine students’ 
mental image of isomorphism by helping them see what it is not. That is, problem 2 establishes 
that there is more to the concept of isomorphism than simple matching; isomorphism is, in fact, 
centered around the structure of the groups. We found that more than half of the students 
reasoned that the triangle symmetries group and  group are not isomorphic because they do 
not have the same number of self-inverting elements. Of these students who recognized the 
different number of self-inverting elements, all but one did not draw or create their own table to 
come to this conclusion. For example, Samantha states in her answer, “No, the number of times 
the identity appears across the diagonal is not the same,” meaning she found different numbers of 
occurrences of the identity in the diagonals of the operations tables for each group.  

Contrastingly, the 45% (n=5) of the students did not recognize the different number of 
self-inverting elements and drew tables for each group, reasoning that they were not isomorphic 
because they could not find a configuration of tables as they did in problem 1. These students did 
not consider self-inverting elements as the other half did and instead relied on the structure of the 
tables that they drew. Chase created several configurations of tables for the  group and 
ultimately concluded that the two groups are not isomorphic because there is no way to make 
them “look the same,” saying, “we can’t get this (a table for the  group) to look like that (the 
given table of triangle symmetries).” Another justification two students used was that there were 
“unequal instances of unique elements” on the main diagonal of  and “inconsistencies between 
rows and columns” when comparing the triangle symmetries and  tables. 

All the students (n=11) were successful in concluding that the given groups are not 
isomorphic. In this problem, we see an almost even split between the number of students who 
were able to reason from the perspective of isomorphism properties and the students who 
reverted to their techniques used in problem 1. This suggests that the students who continued to 
use tables did not yet understand the identity and inverse preserving properties of isomorphism.  

 
Figure 3. Jimmy’s method (left) and Rachel’s method (right) for completing problem 3  

Problem 3 uses the  and   groups to reiterate the ideas presented in problem 2. 
The goal of this problem is to reinforce the students’ conceptual understanding gained in 
problem 2. Upon analysis, data showed that 73% (n=8) of the students reasoned that the given 
groups were not isomorphic because each had a different number of self-inverting elements. Of 
these students who recognized the discrepancy in self-inverting elements, four used a table to 
come to this conclusion and four students did not use a table. In Figure 3, Jimmy draws two 
different configurations of the  table and compares them to his written  table before 
concluding that the groups cannot be isomorphic because they have a different number of “self-
inverses.” Rachel’s work in Figure 3 is an example of the work of students who did not use a 
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table to come to their conclusion but instead created a mapping and found the inverses of each 
element before concluding that “the inverses do not align.”  

Alternatively, two of the students did not mention that the groups had a different number 
of self-inverting or non-self-inverting elements but instead came to the correct conclusion by 
drawing a table for each group and comparing. One student drew a table and found that the 
diagonal “contains unequal instants (instances) of unique elements,” but did not explicitly state 
that the two groups possess different numbers of non-self-inverting elements in their work or 
group discussion. In problem 3, almost three-fourths of the students recognized that the groups 
had different numbers of self-inverting elements. This suggests that some students were able to 
transition from table-reliant work to a greater understanding of isomorphism properties between 
problems 1 and 2.  

The goal of problem 4 is to help students grasp the definition of operation preserving 
functions that has just been presented to them. Preferably, students will use the new definition of 
operation preserving functions to correctly answer problem 4. Every student was successful in 
finding a counterexample to show that the given mapping is not an isomorphism. We found that 
36% (n=4) of the students did this by reverting to using written tables for the groups and 
comparing them. These students had more trouble completing the task than their peers who used 
the definition. One student described that it was hard to use the tables to find “what goes wrong” 
specifically because there are multiple “wrong” arrangements that make each table appear to not 
be isomorphic to its counterpart.  

Conversely, 64% (n=7) of the students did not use tables to come to the correct 
conclusion. These students completed the task relatively quickly by finding counterexamples that 
did not preserve the operations of the groups. Samantha found a counterexample by checking if 

 preserved the operation of  when operated on elements  and  from the  
group. Her work showed 
“  

Altogether, the majority of the students successfully used the new definition of operation 
preservation to show that the given arrangement was not an isomorphism between the groups 

 and . Students who relied on the written tables encountered difficulties using this 
technique to solve the problem; their reluctance to use the new definition suggests that these 
students have developed a slightly weaker understanding of isomorphism than their peers. 

Finally, homework problem 3 was used to determine if students gained an adequate 
understanding of isomorphism. Approximately three-fourths (n=8) of the students answered 
question 3 sufficiently, meaning they showed suitable work to prove that the given function was 
an isomorphism. Of these students, four explicitly cited the definition of isomorphism and four 
did not. The four students who did not clearly state the definition of isomorphism showed that 
the given function was bijective and operation preserving but did not conclude that these factors 
proved the function was an isomorphism. Since the majority of the students answered homework 
problem 3 correctly, it suggests a passable understanding of isomorphism. The fact that only half 
of these students used the definition of isomorphism explicitly in their work could suggests that 
half of the students do not understand or feel comfortable using the formal definition. 

Discussion and Conclusion 
Isomorphism is a significant component found in multiple realms of mathematics. 

Moreover, it is a core concept introduced in beginning Abstract Algebra courses. Previous 
research shows that, while significant, the concept of isomorphism is “seldom understood by 
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students” (Mena-Lorca & Parraguez, 2016, p. 377), causing the teaching of isomorphism to be a 
difficult task for Abstract Algebra instructors. To pinpoint and address students’ understandings 
and misunderstandings of isomorphism, we conducted an in-class study on student responses to 
an isomorphism investigation that utilizes a radical constructivist approach. The goal of this 
investigation is to allow students to use previously learned concepts and rudimentary skills to 
construct their own understanding of isomorphism.  

Of the few studies that have been conducted on isomorphism, most analyze students’ 
reconstruction (Mena-Lorca & Parraguez, 2016) and reinvention (Larsen, 2009, 2013) of 
theorems on isomorphism. This curriculum deviates from the guided reinvention approach by 
supporting student construction of the concept of isomorphism. We believe this study expands 
upon and supports current findings on students’ understanding and provides new insight on 
student responses within the context of these new curricular materials.    

In agreement with past studies, we found that students’ have difficulties reasoning with 
the concept of isomorphism. This led us to conclude students are not prepared to learn the 
concept of isomorphism starting with the formal definition, but instead must initially gain an 
image-based understanding. Students who showed progress in their understanding tended to rely 
on either written operation tables or individual assignments when finding isomorphic mappings. 
Student responses to problem 1 of the investigation showed the most consensus and adherence to 
the instructor’s goal for the problem when compared to student responses to other problems in 
the investigation. This suggests that problem 1 was the most successful at helping students 
construct an understanding of isomorphism. Students who relied solely on operation tables in 
their work throughout the investigation reasoned that for two groups to be isomorphic, their 
tables must look the same, suggesting that their understanding was purely image-based and 
supporting the theory that “the context of geometric symmetry can provide a rich and natural 
context for developing the concepts of group theory” (Larsen, 2009, p. 136). These students 
informally recognized the properties of isomorphism through conditions for their tables (i.e. the 
corresponding tables must have an equal number of instances of the identity elements in their 
diagonals informally requires that the groups have an equal amount of self-inverting elements) 
but found it difficult to recognize these properties outside of the tables. This suggests that while 
students’ find the most progress in problem 1, the techniques learned in this problem have the 
danger of becoming “crutches” throughout the investigation. To attempt to resolve this problem 
future drafts of the materials could include a smoother transition in the investigation from the 
table-oriented problems to the formal definition of isomorphism. Contrastingly, students who 
were able to recognize and consistently use the properties of isomorphism in their work, showed 
a greater intuition when finding isomorphic mappings. In sum, we have detailed the techniques 
students use to approach varying challenges while learning the concept of isomorphism. The 
findings of this study support previous research that suggests students’ understanding of 
isomorphism is largely reliant on an imaged-based concept of symmetry (in this study, operation 
tables). Moreover, we found that students who progressed from a strictly imaged-based 
reasoning to a property-based reasoning demonstrated greater understanding of isomorphism. 
Even with these findings additional research is needed on how students develop an 
understanding of isomorphism and the impact of different curricula on students’ understanding.   
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Different Epistemological Frames Give Rise to Different Interpretations of College Algebra 
Lectures, Yet Pragmatic Decisions About Grades Swamp Productive Beliefs 

 
 Suzanne Kelley Benajmin Spiro Timothy Fukawa-Connelly 
 Temple University Temple University Temple University 

In this study, we present a comparative case study of two students with different epistemological 
frames watching the same college algebra lectures. We show that students with different 
epistemological frames can evaluate the same lectures in different ways, including very different 
evaluations of the goals and important content. Moreover, we illustrate that even when students 
have seemingly productive epistemological frames might give way to pragmatic decisions about 
earning a good grade when presented with too much information too fast. We argue that students 
might have productive dispositions towards mathematics, but default to a procedural orientation, 
and, as a result, appear indistinguishable in a class, from those who only have a procedural view 
of mathematics. These results illustrate how a student’s interpretation of a lecture is not 
inherently tied to the lecture, but rather depend on the student and her perspective on 
mathematics and factors in the control of the lecturer. 

Keywords: College Algebra, Evaluation of lecture, Student thinking, Epistemological frames 
 

Sitting in a lecture is one of the most common experiences that students have in a tertiary 
mathematics class from introductory classes through their proof-based work (e.g., Mesa, 2018; 
Johnson, Keller, & Fukawa-Connelly, 2018). At the same time, there is strong agreement among 
mathematics educators, and some mathematicians, that lecture is ineffective at helping students 
learn mathematics (e.g., Bressoud, 2011). While studies have investigated the results of student 
learning gains and attitudes following video watching of math lectures (c.f. CITES), few studies 
have explored the ways that students interpret and make sense of lecture. For example, Weinberg 
and Thomas (2018) asked 12 students to watch calculus lectures in video form and engage in 
reflective dialogue in real-time. They found that students attempted to self-monitor for 
understanding but were often doing so in ways misaligned with mathematical meaning. While 
Weinberg and Thomas identified some ways that students attend to particular moments within a 
lecture, these perspectives all require students to make identifications of queues within the 
lecture. More research is needed to determine what students value in mathematics lectures and 
why they value these. Student beliefs about mathematics and what it means to do mathematics 
hold promise for better understanding what they might take from a lecture. For example, 
significant evidence suggests that students believe that mathematics is about following rules (e.g. 
Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1980; Schoenfeld, 1989), and, consequently, 
Schoenfeld (1989) argued that student’s evaluation of teaching depended on whether the teachers 
clearly presented the rules and how to use them. Similarly, other researchers have argued that 
student’s beliefs interfere with their learning (e.g., Alcock & Simpson, 2004; Bressoud, 2016; 
Dawkins & Weber, 2017; Lew, Fukawa-Connelly, Mejía-Ramos, & Weber, 2016; Solomon, 
2006). Including the claim from Weinberg and Thomas (2018) that students are not always able 
to monitor their own understanding. Subsequent research has repeatedly suggested that their 
behaviors are indicative of their beliefs (Muis, 2015). Yet, little of this work has focused on how 
students interpret mathematics lectures. One notable exception is the work of Krupnik, Fukawa-
Connelly, and Weber (2017) who explored how two students’ differing epistemological frames 

22nd Annual Conference on Research in Undergraduate Mathematics Education 316



(e-frames) lead to different interpretations of the same real analysis lecture. We build on this 
work to explore the following questions: 

1. What meanings of mathematics do students have? 
2. How do those meanings shape how students interpret mathematics lectures? 
3. What other heuristics do students use to evaluate mathematics lectures? 

Like other recent studies, we explore student’s evaluation of lecture via the use of video for 
methodological reasons. 
 

Theoretical Framing 
Following Krupnik et al. (2017), we adopt Goffman’s (1997) concept of frames, further 

specifying that we focus on epistemological frames, based on Redish's (2003) description. For 
Goffman, a frame is a means for individuals to make sense of complex social spaces. As an 
example of a frame, we might consider the ‘art museum frame’ in which someone entering an art 
museum would expect to find art displayed on the walls of a building for perusal. At the same 
time, there are expectation of behavior for people entering that social situation that include things 
like; ‘quiet discussion’ and ‘don’t touch the art.’ Violations of these heuristics are likely to lead 
to some sort of social sanction. Such a frame might be counter-productive at a children’s 
museum, such as the Please Touch Museum in Philadelphia, which encourages people to touch 
and interact with the exhibits. 
 Physics educators, Redish (2004) included, refined the notion of frame for an academic 
setting. These epistemological frames (e-frames) guide people’s expectations for pedagogical 
settings such as mathematics classes. They might then not develop the desired conceptual 
understanding. Krupnik, et al summarized e-frames as such: 

“These consist of an individual’s responses to questions such as “what do I expect to 
learn?” and the related questions of “what counts as knowledge or an intellectual 
contribution in this environment?” and “by what standards will intellectual contributions 
be judged?” (Redish, 2003)(p. 174, 2018) 

Krupnik et al. (2017) used this notion to explore how two students reacted to the same real 
analysis lectures. They described Alice as holding the position that one needs to define a concept 
in order to reason about it, and, consequently, that making claims and providing justification 
requires precise definitions. Relatedly, Alice believed that providing a definition was a 
mathematical contribution. For Alice, this meant that the idea of re-defining the rational numbers 
was a mathematical contribution because then she could make claims and provide justification 
for those claims about the rational numbers. They claimed that Brittany did not concern herself 
with a formal definition, and, instead believed that definitions were better when they were 
comprehensible and provided new insight into a concept. Because Brittany believed that she had 
a strong understanding of the rational numbers, she believed the re-presentation of the rationals 
to be relatively useless. While she might write proofs that comply with the norms of the class, 
she may not substantively change her conceptions, and, miss fundamental ideas in real analysis.  

We might similarly reinterpret Weinberg, Wiesner, and Fukawa-Connelly's (2014) 
exploration of student sense-making in abstract algebra lectures. For example, Weinberg et al. 
(2014) showed an example where a professor drew a diagram off to the side of the main lecture 
notes. The stated goal of the lecture was to define the rational numbers as a set of equivalence 
classes. They claimed that a student, Jocelyn, used a communication-oriented frame to determine 
that the diagram on the side “was not the answers that he was looking for,” while noting that the 
diagram was a diagram representing generic equivalence classes. Another interpretation is that 
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the instructor might believe that making explicit connections between any particular example of 
equivalence classes and the abstract concept is a mathematical contribution and can help students 
build understanding of the abstract concept. In contrast, the student might believe that answering 
the asked question was the meaningful mathematical contribution. Our contribution is a further 
exploration of the relationship between student’s conceptions of mathematics and their 
evaluation of mathematics instruction. 

Methods 

Participants 
We solicited the participation of four students enrolled in a College Algebra class at a 

large, east-coast university although we only report on two here. The university requires four 
college-preparatory mathematics classes for admittance, meaning all of the students had passed, 
at the least, a precalculus class while in high school. We note that all four of the students were 
intending to major in some type of non-STEM education field. We do not know how this might 
shape their thinking about mathematics and mathematics teaching. 

Data Collection 
During the first interview, participants were shown two videos. The first was primarily 

procedural instruction of the mathematics topic while the second was a more conceptual 
viewpoint of the same topic. Following each video, participants were asked the same series of 
questions, which included the following: 

1.   What did you notice about the video? 
2.    What did you think was important to take away?  Why? 
3.    What in the video did you notice, but not find valuable? Why? 

To further probe thinking about the video content, participants were also asked about their prior 
knowledge of the content, as well as if they were confused by anything in the video content or 
presentation and if they thought the videos were similar or different in any way. Our purpose for 
asking these questions was to identify initial ideas about the e-frames of the participants. After 
the first interview, we listened to the audio of the interviews and developed initial hypotheses 
about the participant’s e-frames which guided our selection of the video for the second interview. 
For the second interview we showed the students a video that contained a mixture of procedural 
and conceptual content and we asked the same three-question protocol as in the first. Finally, 
participants were asked a series of questions to elicit information about their e-frames, including: 

• What does it mean to be good at math? Why? 
• What do you hope to get from attending lectures in mathematics? 
• What makes a good lecture? What makes a bad lecture? 
• What do you think it means to understand a mathematical concept? 
• What do you think makes a good mathematical explanation of a concept? 

Data Analysis 
The goals of our analysis were to develop a set of claims about the heuristics students 

evaluate instruction and ground those heuristics in their beliefs about what it means to know and 
do mathematics. As a result, after transcription, we followed Mason (2002) in our analysis of the 
student interviews and attempted to: 

(i) give an account of the e-frames that each student holds, 
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(ii) give an account for the evaluations that each of the students gave to the respective 
mathematics lectures (videos). 

We first coded each student’s claims about what it means to know and do mathematics. While 
many of these were made in response to specific prompts about these ideas, students often made 
unprompted comments in their other responses. We identified such instances when they made 
explicit claims about ‘math class’ or ‘doing math’ that moved beyond the specific context being 
discussed.  In our next round of coding, we summarized the student’s comments about the 
different videos. We particularly attended to two types of claims, when the students gave a 
statement about the mathematical goals or contribution that the professor was intending to make, 
or, when the students made evaluative comments and comparative comments about the 
mathematics of the videos. We distinguished those that focus on mathematical content and those 
that focus on aspects of the presentation. Then, we categorized each comment as either 
supporting or contradicting an e-frame for each student, or, as needed developing a new 
hypothesis for an e-frame. We rejected any hypotheses when we did not find sufficient support 
for it (e.g., few supporting claims), or, we found significant inconsistent evidence. We present 
the data as contrasting case studies to illustrate how these students hold different e-frames and 
evaluated the videos in different ways but might all appear to have a procedural focus. 

Data and Results 
 
Lauren’s Conception Of What It Means To Do Mathematics: Mathematics Includes 
Decontextualized Problems That Can be Solved Efficiently Through Memorized Equations 

Lauren believes that someone who is good at mathematics, “can solve problems really 
quickly and everything like that but I've come to know that it really means like memorizing 
equations.” That is, for Lauren, being proficient at mathematics means having equations 
memorized that she can then use to solve posed problems. She later claimed that “having those 
equations memorized” was a first step towards proficiency. For Lauren, the second step towards 
being good at mathematics requires, “knowing which equation goes with which type of 
problem.” We interpreted this claim as meaning that being good at mathematics requires being 
able to select an appropriate procedure to accomplish a required task. She later specified that she 
felt proficient at mathematics because “I know which equations to use, like I know how to do it 
at this point.” She repeatedly returns to the notion that “I prefer to see the equation,” because she 
feels that following a procedure gives certitude and she would only attempt something new or 
different “when you’re lost and don’t know what to do.” But, critically, “in the box thinking 
(procedural) is more important because math is very straight forward.” When she does 
mathematics, she prefers to use, one, single procedure in the way that it was taught. She stated, “I 
feel like I always like to use the equation,” which she contrasted with “outside the box” thinking.  
She reiterated a nearly identical claim repeatedly in the interviews, for example later claiming, “I 
always just think of it as, here's an equation, plug it in, and solve. I don't really think outside of 
the box I guess.” We summarize her perspective on mathematics as believing that mathematics is 
best done via procedure, and, it requires both memorizing procedures and knowing which 
procedure to apply at a particular time. 
 
Lauren’s Evaluation Criteria: Mathematics Instruction Is About Presenting Procedures 
And Explaining When They Are Used.  

Lauren’s Heuristic 1.1:  Good mathematics instruction involves clear presentations 
of procedures.  When Lauren evaluates pedagogical presentations she uses a variety of 
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heuristics, all of them tied to her goals for mathematical proficiency. The primary evaluative 
heuristic for a pedagogical presentation that Lauren uses is the clarity with which the instructor 
presents the steps in a procedure and when to use it. That is, she values a clearly presented 
procedure with examples of the process. When presenting an example of the procedure, this 
should also include an explanation of how each number was derived. She gave a positive 
evaluation of procedural videos, repeatedly noting that they are “really clear.” For example, she 
claims “like if you were to just skip from negative twenty to positive twenty someone else might 
be confused by that and then how he just wrote it out and just explained how he got each product 
and then which lead to the answer for y like that was clear as well.” In this quote, she specifically 
stated that the explanation of the derivation of a particular value was “clear” and she valued that 
he “explained how he got each product and then which lead to the answer,” we interpreted all of 
this as her valuation of a detailed presentation of steps, including derivation of numbers.  

Moreover, her only critiques of procedural videos came when she felt that the procedures 
or exemplification omitted details, for example, noting, “The only thing I got confused about… 
when he came up with the two for the vertex, I feel like he just pulled it out of thin air.” The 
moment referenced by Lauren occurred when the lecturer in the video derived the vertex from 
equation y=(x-2)^2-5. He began by stating that (x-2)^2 was necessarily greater than or equal to 
zero. He continued by reasoning that since the vertex was a minimum it could only occur when 
(x-2)^2 was zero, and hence x must be two. However, his argument was constructed from 
conceptual mathematical reasoning rather than procedural steps that could be followed. We 
interpret Lauren’s reaction that the value 2 was “pulled out of thin air” as part of an e-frame in 
which a procedureless justification was the same as no justification at all. 

Lauren’s Heuristic 1.2:  Good mathematics instruction involves explanations of 
when to use procedures. Lauren also wanted to know when to use a procedure and repeatedly 
praised videos that made this explicit. For example, “it was a pretty good video. I guess it's like 
important that you would use this equation when you have a complex equation like that one 
where it's not so easy to find what x is and everything so it was a good video. It was really clear.” 
Here, her evaluative focus is that the presenter specified that a particular process or equation can 
be used for a particular task. When evaluating a video focused on the different forms of a 
quadratic function she claimed,  “I liked how he made the chart showing what each equation, 
what you can see and what you can't see, that was really nice. Because it's just good to know … 
which one you wanna use, or what to expect when using it.” That is, she evaluated the 
presentation as good because it was explicit about when to use each form, again, giving rules for 
accomplishing a particular task. More, she specifically stated that a lecture should help a student 
understand, “why you use all the equations you use” where her use of ‘why’ means picking the 
right procedure to accomplish a task. The fact that these are Lauren’s primary heuristics for 
evaluating a pedagogical presentation in mathematics is perfectly aligned with her beliefs about 
what it means to do mathematics; to know procedures and when to use them.  

While Lauren repeatedly claimed to value conceptual explanations and used language 
that suggests this, such as, that she values “knowing what different equations mean regarding the 
shape of the function” we interpreted her claim as being able to link the graph of the function 
with the symbolic form, not that she can describe why the graph has that particular shape.  More, 
she repeatedly demonstrated that she is content to have only memorized procedures, repeatedly 
making a claim like, “I memorized it” and “it just is what it is.” That is, while she might use 
language that appears to value conceptual understanding, she appears to mean how and when to 
use a procedure. 
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Joseph’s Conception Of What It Means To Do Mathematics: Mathematics Is An Exercise In 
Problem-solving.  

Joseph considered mathematical skill to be the process of “just being able to figure out 
problems and stuff,” where we interpret the term problems to represent a decontextualized 
mathematical task. He believes that mastery of mathematics includes, “Being able to be given a 
problem maybe that you haven't seen before, but that connects a few of the concepts you've 
learned and you can reason your way around the things that you've learned to figure out what 
you're supposed to do about that.” When discussing the goal of mathematical knowledge, or the 
purpose of mathematical lecture, he often referred to math’s future applicability during an 
assessment situation. On four separate occasions he cited tests as the times he would be actively 
using mathematics. He gave no other examples of times in which he might use math. 
Additionally, he claimed to identify mathematical understanding in himself when, “–I can see a 
problem and particularly ... I think the most understanding is when you see a problem and you 
know what you can do to it and how to do it.” We interpret this to mean that he views 
mathematics as a set of problems to be identified and solved, as opposed to a set of concepts to 
be applied situationally. 
 
Joseph’s Evaluation Criteria 1: Mathematics Instruction Provides the Learner with 
Conceptual Information that Is Pragmatically Useful. 

Joseph’s heuristic 1.1: Good mathematics instruction includes generalizations of 
conceptual information. In addition to lessening the need for memorization, Joseph considered 
the generalizability of conceptual information to be more powerful than specific examples and 
evaluated instruction positively when it was included. He stated that he would prefer instruction 
that included a general problem over one with specific procedures because, “you can apply it to 
whatever example you're using.” He described his preference this way: 

And it makes it easier to understand ... 'cause sometimes on past math tests, math tests 
I've taken in high school, sometimes there might have been a concept I didn't really 
understand, and then in the middle of the test because I understood multiple concepts ... 
or rather not concepts, more like a problem I didn't understand ... because I understood 
multiple concepts I could figure it out and figure out something that I had missed or that I 
hadn't studied, and then I'd be able to answer the question correctly because I understood 
what was at work behind the stuff I was supposed to be doing. Maybe if I had forgot an 
equation I could figure out a different equation made up of other ones that I learned. 

We interpreted this to mean that Joseph values conceptual information for its general 
applicability for broad swaths of problem-solving situations. Joseph applied the application of 
general conceptual knowledge to a specific problem-solving situation during the interview. 
While solving a completing the square problem, he became confused by the video’s final step at 
the same point where Lauren did, as described in her Heuristic 1.1. However, Joseph noticed that 
the process of completing the square had converted the parabola’s equation into vertex form and 
was able to identify the vertex from this context rather than attempt to replicate the presenter’s 
reasoning, in doing so, he was able to actively apply conceptual knowledge in order to mitigate 
procedural confusion.  

Joseph’s heuristic 1.2: Good mathematics instruction involves conceptual 
information because it reduces the need for memorization. In evaluating a conceptual video 
Joseph described some information as being of the type that “you wouldn't really need to know 
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how to do as a student, but if you understand it, it makes other things a lot easier.” We took this 
to mean that although Joseph values more conceptual instruction, he is pragmatic in his 
valuation. Although he expresses that conceptual information is in itself unnecessary because it 
is not included on class assessments, he values this information because it can be applied to 
problem solving in testing situations. He specifically contrasted the instructional content in the 
conceptual lecture with procedural information that would be “needed for the test.” Joseph 
recognizes conceptual information as useful because “the more you actually understand the 
reasons behind what you're doing, the less that you have to memorize for the test.” While Joseph 
recognized that procedural fluency is what is assessed in exams, he also valued conceptual 
information from the lecture because it reduced the demands for memorization. He continued by 
stating, “It'd also be less memorization, of just memorizing equations and signs and stuff; you 
don't understand why they're the way they are.” Joseph acknowledged that although conceptual 
understanding of mathematical situations could be, “more valuable, it also takes more time and 
more effort to acquire.” However, he justified this burden explaining, “There's more bang for 
your buck, I guess you could say.” Joseph values instruction that includes conceptual content 
because it helps him to solve problems when he cannot remember memorized information.  
 

Discussion 
The purpose of this paper was to explore the relationship between what students believe 

to constitute mathematically valuable activity and their heuristics for evaluating mathematical 
pedagogical presentations. More, unlike Krupnik et al., (2017) work, these students were 
enrolled in the course for which they were evaluating the presentations, and, they could 
ostensibly derive benefit from the videos as they had not yet taken their final exam. In each case, 
the students’ beliefs about what constitutes mathematical activity guided their evaluations of the 
different pedagogical presentations. We note some limitations, we only studied 2 students and a 
few presentations of very limited duration. It is possible that neither the students nor the videos 
had sufficient variation to capture enough meaningful differences. At the same time, the two 
students had very different beliefs about what counts as mathematics, and, as a result, gave very 
different evaluations of individual lectures and even different components within the lectures. 
While Lauren valued only the procedures, Joseph valued conceptual explanations for a number 
of reasons. Yet, when those conceptual explanations might prevent the student from learning the 
procedure, they would stop attending to the conceptual aspects. The students made a rational 
decision in that both students recognized that only procedural proficiency was required to be 
successful on mathematics exams.  Thus, we note that while to an observer, it might appear that 
students only value the procedural aspects of a mathematics lecture this is not necessarily true. It 
might be a form of coping mechanism based on a rational decision-making process. More 
though, it means that even though students might have productive beliefs, these might not be 
visible to observers, instead it might appear that all students have a procedural focus.  In none of 
the videos did the instructor attempt to explain what it means to do mathematics. As a result, 
there was nothing to challenge either of the students’ beliefs, meaning students could only 
interpret the lectures through the beliefs that they already held. Perhaps by specifically teaching 
about meta-mathematical issues an instructor could change what students attend to and take from 
a mathematics lecture. Yet, as a final note, based on the very different desires of the students in 
terms of detail, it would be impossible to give a mathematics lecture that satisfies all students.  
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Research shows that definitions in mathematics are often not used correctly by students in 
mathematical proofs and problem-solving situations. By observing properties and making 
conjectures in non-Euclidean geometry, students can better develop their understanding of these 
concepts. In particular, Taxicab geometry is suggested to be introduced before other non-
Euclidean geometries since it is a considerably simpler space. To further investigate this, APOS 
Theory is used as the framework in this analysis of responses to a real-life situation from 
students enrolled in a College Geometry course at a university. Through the perspective of 
APOS Theory, this report provides two representative illustrations of the conceptual 
understandings found among these students in relation to the definition of circle. By adapting 
and applying their knowledge of definitions from Euclidean geometry to Taxicab geometry, these 
students provided insight as to how Taxicab geometry concepts are assimilated into their 
existing understanding of concepts in geometry. 

Key Words: Definitions, Geometry, Taxicab, Circle, APOS Theory 

Introduction 
 Edwards and Ward (2008) found mathematics majors exist that do not understand the 
role of definitions in a mathematically acceptable way but have been deemed successful students 
in advanced mathematical courses. The authors explain that this should be addressed in 
undergraduate mathematics, and research is needed to determine pedagogical strategies that help 
facilitate student’s understanding of the concept of definition. Emphasizing the importance of 
definitions in geometry, Güner and Gülten (2016) explain that geometry has three dimensions: 
definitions, images that represent these definitions, and their properties. In such context, since 
the properties of geometric figures are derived from definitions within an axiomatic system, it is 
important to note that a figure is “controlled by its definition,” (Fischbein, 1993, p. 141).  

In college geometry courses, Euclidean geometry and its axiomatic system is thoroughly 
studied, but other axiomatic systems receive little consideration (Byrkit, 1971; Hollebrands, 
Conner, & Smith, 2010). This is despite the fact that research shows by exploring concepts in 
non-Euclidean geometry, students can better understand Euclidean geometry (Dreiling, 2012; 
Hollebrands, Conner, & Smith, 2010; Jenkins, 1968). One example of a non-Euclidean geometry 
in which students can explore concepts is Taxicab geometry. This is the geometry that is the 
result of measuring distance as defined by the 𝐿1 norm. Siegel, Borasi, and Fonzi (1998) 
encourage the introduction to Taxicab geometry before other non-Euclidean geometries since the 
simpler space makes it easier for students to reason and thus abstract concepts. Consistent with 
this claim, Dreiling (2012) found that “through the exploration of these ‘constructions’ in 
Taxicab geometry… [students] gained a deeper understanding of constructions in Euclidean 
Geometry,” (p. 478). For this report, we present results and discussion on the following research 
question: In what ways do students assimilate the definition of a circle in Taxicab geometry into 
their existing understanding of this concept? 

22nd Annual Conference on Research in Undergraduate Mathematics Education 324



Theoretical Framework 
 APOS Theory is a constructivist theory based on Jean Piaget’s theory of reflective 
abstraction, or the process of constructing mental notions of mathematical knowledge and 
objects by an individual during cognitive development, (Dubinksy, 2002). In APOS Theory, 
there are four different stages of cognitive development: Action, Process, Object, and Schema 
(Arnon et al., 2014). In addition, there are mechanisms to move between these stages of 
cognitive development, such as interiorization and encapsulation. An Action in APOS Theory is 
being exhibited when a student is able to transform objects by external stimuli or perform steps 
to complete a transformation. As a student reflects on Actions, they are able to interiorize them, 
so they can imagine performing these Actions without actually doing so. In this case, we refer to 
interiorized actions as a Processes. A student can then coordinate processes with others within a 
schema in order to form connections between concepts. Once a student is able to think of a 
Process as a totality to which Actions or other Processes could be applied, we say that an Object 
is constructed through the encapsulation of the Process. Finally, the entire collection of Actions, 
Processes, Objects, and other Schemas that are connected to the original concept that form a 
coherent understanding is called a Schema (Dubinsky, 2002). We provide examples of evidence 
of the stages of cognitive development in APOS Theory for the concept of Radius within the 
context of this paper. When given two points and asked to find the center of a circle such that 
these two points are on the circle, if an individual does so by counting blocks or guessing and 
checking at radii lengths until they find an appropriate one, they are exhibiting an action 
conception of Radius. In the same scenario, finding the total distance between both points and 
dividing by two provides a possible radius for a circle whose center is equidistant from the two 
points. In this case, the individual is exhibiting a process conception of Radius. We note there 
are an infinite number of circles that can be constructed such that two given points are on the 
circle. If a student is aware of this and explains this implies there is more than one radius 
measure for which such a circle can be constructed, he or he is exhibiting an object conception of 
Radius since the student is performing an action of comparison on his or her Radius object. 

A genetic decomposition is defined as a “description of how the concept may be 
constructed in an individual’s mind,” (Arnon et al., 2014, p. 17). For this study, a genetic 
decomposition was developed to identify development pathways students may follow to adapt 
their working understanding of the definition of a circle to incorporate concepts in Taxicab 
geometry. In other words, this report focuses on how students assimilate the concept of Circle in 
Taxicab geometry into their existing circle schema. The subconcepts of Circle as defined in this 
report are Distance, Radius, Center, and Locus of points. In order to construct a Circle 
process, a student must have a process conception of at least two of these subconcepts. Figure 1 
shows a possible way a student can construct a Circle process by the coordination of his or her 
Distance, Radius, Center, and Locus of points processes.  

Figure 1. A construction of the Circle process. 
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A possible pathway a student may take in order to assimilate the concept of a circle in 
Taxicab geometry into their circle schema is shown in Figure 2. We show this assimilation using 
the subconcept of Distance but note that each of the subconcepts mentioned prior is expected to 
be assimilated into the circle schema in a similar manner.   

Figure 2. A possible way a student may assimilate Taxicab distance into his or her circle schema. 

Methodology 
 This research study was conducted at a university in a College Geometry course during a 
Fall semester, which has an introduction to proof course as a prerequisite. Since it is a cross 
listed course, there were both undergraduate and graduate students enrolled in the course. The 
textbook used in the course was College Geometry Using the Geometer’s Sketchpad (Barbara E. 
Reynolds & William E. Fenton, 2011), written on the basis of APOS Theory. This study 
consisted of sessions of instruction on Taxicab geometry by one of the authors of this report, 
followed up with interviews conducted by the other author. The material of the course covered 
concepts and theorems in Euclidean geometry often seen in a College Geometry course and 
included Taxicab geometry for four 75-minute class sessions at the end of the semester. Written 
work from the semester and videos from the in-class group work and discussion during the 
Taxicab geometry sessions were collected and used as data in the study. After the semester but 
before final exams, semi-structured interviews were conducted with participants from the course. 
These interviews were conducted with 15 of the 18 students enrolled in the course who 
voluntarily signed up to participate in the interviews. All 18 students consented for their in-class 
group work and discussion to be recorded, as well as written work and exams throughout the 
course to be collected. Results from the analysis of student responses to a question on the final 
exam pertaining to concepts in Taxicab geometry are presented below within the context of 
APOS Theory. We focus our attention in this paper to responses from two of the 18 students 
enrolled in this course who were both secondary mathematics teachers and graduate students. We 
note prior to presenting results that students learned a continuous model of the Taxicab metric 
(or the 𝐿1 norm). That is, distance between two points is measured continuously, not discretely. 
The problem on the final exam was stated as follows:  

Assume [a university’s] campus and surrounding streets are designed explicitly in a grid 
pattern, i.e.- distance is measured by Taxi-distance. You are looking for an apartment near 
campus, but you want to make sure that from your apartment, the walking distance to 
[Building 1] (located at (-2, -2)) is the same as the walking distance to the [Building 2] 
(located at (4, 3)), since you have classes in both locations. 

a. Draw a graphical representation of where your apartment could be located, given that it 
needs to be equidistant from [Building 1] and [Building 2].  

b. What mathematical term would describe what you have drawn in your sketch? 
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The expectation for this problem (and an ideal solution) would be for students to recognize that 
there are an infinite number of places they could have an apartment so that its location is 
equidistant from the two buildings, with a midpoint having the shortest distance. Further, 
students should identify that the set of points equidistant (in Taxicab geometry) from both 
buildings is the equivalent of the Euclidean perpendicular bisector of the segment connecting the 
two buildings. The problem was open-ended without explicitly asking for students to identify a 
specific location for their apartment, but rather asked them to draw a graphical representation of 
the problem. For this reason, responses were expected to vary with regard to what mathematical 
term students associated with their drawing.  

Results 
As representative illustrations, we provide the APOS Theory based analysis of Kym’s 

and Hannah’s solutions to the exam problem as they correspond to this preliminary genetic 
decomposition.  

Provided in Figure 3 is Kym’s solution to this problem on the Final Exam. Kym was a 
graduate student and secondary mathematics teacher enrolled in the course who also participated 
in the interviews prior to this exam. Note Kym seemed to be operating with a discrete model of 
Taxicab geometry, as evidenced by her note “let 1 unit = 1 block.”  

Figure 3. Part of Kym’s solution to the given problem. 

As we can see in the bottom right of Figure 3, Kym described her sketch as the Taxicab 
circle centered at her apartment with a radius of 5 units, mentioning prior that the two buildings 
would lie on this circle. Note that by saying she “plotted two points that [lie] on the taxi circle,” 
she has in a way reversed the direction of the problem, since the problem was to find a point 
equidistant from these two points, not to plot two points equidistant from some fixed point. In 
any case, she demonstrated with this statement that she understood a Taxicab circle has this 
property of equidistance between the center and the points that lie on the circle. By saying in part 
(a) she “kept moving one unit at a time” to count out her distance between these points, it 
appeared that Kym was creating/constructing two radii of this Taxicab circle. Kym seemed to 
have at least a process conception of Distance and Locus of points since she could imagine a 
circle with the buildings lying on this circle. With the evidence provided in her solution, by 
stating in the past tense how she found this point/center (operating within the context of this 

Building 1 

Building 2 Building 1 

Building 2 
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problem) and counting blocks to define the radii of the circle, Kym was exhibiting an action 
conception of Radius and Center. Her solution point of (0,2) was not actually the center of a 
circle with the buildings lying on the circle, since from her solution point to the buildings, one 
Taxicab distance is five and the other is six. However, we believe this inaccuracy was due to her 
operating with a discrete model of Taxicab distance. 

Like Kym, the next solution presented was provided by a graduate student and secondary 
mathematics teacher who also participated in the interviews prior to the exam. The following 
was Hannah’s solution where she provided an equation of this circle and exhibited an object 
conception of some of the subconcepts of Circle in a way not accounted for by the genetic 
decomposition.   

Figure 4. Hannah’s solution to the given problem. 

Seen in Figure 4 as her part (b), Hannah first described her sketch as a “model taxicab 
geometry circle.” It appears as though Hannah first thought the distance between the buildings to 
be 10 units, as seen in the mid-right area of her work with what she wrote as “𝑑𝑇 = 10,” 
although above this she corrected her initial calculation to be 11. This perhaps led to her labeling 
the radius to be 5 when she wrote “𝑅 = 5.” A closer look at Hannah’s drawing provides 
evidence she was attempting to find a center of a circle by constructing radii of length 5 or 6, 
with what looks like steps in her drawing. This is evidence that, like Kym, she most likely 
discretized the Taxicab metric which could be why she was counting radii of lengths 5 or 6. 
Hannah then tried to write the equation of the Taxicab circle she mentioned in part (b). By first 
finding a value for the radius and using this value to construct a possible circle, Hannah 
exhibited a process conception of Radius. Further, she attempted to plug this value into an 
equation of a Taxicab circle. Thus, Hannah had encapsulated her Radius Process into an Object 
since she was using it as an input into some function whose output was a Taxicab circle equation, 
performing an action on this Object. 

Given the location she chose as her apartment of (4, −2), indicated in the lower right of 
her graph as “Apt,” the correct equation of this Taxicab circle would be |𝑥 − 4| + |𝑦 + 2| = 5. 
However, she wrote this equation as |𝑥| + |𝑦| = 5. It is possible with her equation she was 
attempting to indicate for the center of the circle and a point on the circle, “the change in 𝑥 plus 
the change in 𝑦 is equal to 5,” but we do not have further evidence of this claim. Regardless, she 
was able to imagine that the solution would be the center of a circle, as indicated by her drawing 

Building 1 

Building 2 

(𝐵1 , 𝐵2) 
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and calculation of a possible radius for such a circle, which implies Hannah was exhibiting at 
least a Process conception of Locus of points. Although her equation of a circle is not indicative 
of a process conception of the algebraic representation of Taxicab circle, Hannah’s geometric 
solution and approach to the problem provides evidence of at least a process conception of 
Radius, Distance, and Locus of points in Taxicab geometry and that she had coordinated some 
of these processes. Hannah also exhibited evidence of an object conception of Distance and 
Radius.  

The mental structures necessary to write or derive the equation of a circle were not 
explicitly considered in the genetic decomposition. To write the equation of a circle, a student 
would need to identify an appropriate length for a radius and the center of a circle that is this 
distance from both buildings, specifying the metric used. It is possible that a student can write 
the equation for a circle but not understand or be able to explain how each part of this equation is 
a result of the definition of a circle and its subconcepts. In this case, he or she would most likely 
be memorizing a template for this equation. If the student has a process conception of several 
subconcepts, they may not have coordinated them with one another to make necessary 
connections to understand the equation’s derivation. In this case, a student exhibits an object 
conception of all of the subconcepts of Circle, since he or she is using them as inputs into a 
mental function, but does not have a coherent understanding of the underlying structure of the 
circle schema. This understanding may be gained by the student de-encapsulating his or her 
object conceptions of each of Distance, Radius, Center, and Locus of points and coordinating 
them with one another to observe these relationships. An illustration of this is provided in Figure 
5. In particular, the blue arrows indicate the de-encapsulation of all of these objects into 
processes. The red arrows in this figure indicate the possible coordination that could then occur 
among these processes.  

Figure 5. The de-encapsulation of objects to coordinate processes within the circle schema. 

For this problem on the final exam, no students exhibited an object conception of all 
subconcepts of Circle. This may be a result of the manner in which the problem was stated since 
it did not necessarily require students to utilize an object conception. In the Discussion section, 
we present suggested questions that can help probe for this, as well as guide students in the 
construction of mental structures that are necessary to encapsulate these processes.  
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Discussion and Concluding Remarks 
Fischbein (1993) explains that in geometrical reasoning, a major obstacle is the tendency 

to “neglect the definition under the pressure of figural constraints,” (p. 155). By designing a 
problem where a student is essentially told a definition and has to derive the associated 
mathematic term, we hoped to overcome this obstacle in that it would minimize any 
misconceptions a student may have associated with a concept. Supporting this notion, although 
Taxicab circles look different than Euclidean circles, Kym and Hannah were able to use their 
geometrical reasoning skills to arrive at a solution to the given problem. They did so by applying 
their knowledge of definitions to correctly identify a mathematical term that satisfies the 
conditions of the problem. This exam problem also illuminated a misconception which became 
evident in other students’ work in addition to Kym’s and Hannah’s: discretizing the Taxicab 
metric and not operating with it as a continuous measure. This led Kym and Hannah to 
somewhat disregard their understanding of the preciseness of the definition of a circle to identify 
locations which were almost equidistant from the buildings, but not exactly. This is consistent 
with Smith (2013) in that the author found it necessary to have conversations with students about 
how it was possible to draw line segments “through the grid” even though a car would not be 
able to drive through the blocks in a city. Referring back to Fischbein (1993) and this idea of a 
figural constraint creating pressure to neglect a definition, in these cases the figural constraint 
was the manner in which distance was defined. Thus, when introducing the Taxicab metric, 
educators should emphasize the continuity of the metric even when illustrating Taxicab concepts 
with situations that are discrete in real life. 

In this paper, illustrations of various understandings of concepts in Taxicab geometry 
exhibited by two students in a college geometry course were provided. In the given problem, we 
hoped to help students develop a deeper understanding of these definitions and how to apply 
them. By using APOS Theory to analyze these students’ solutions to a real-life situation, we 
were able to uncover some common misconceptions about Taxicab distance and circles. For 
example, multiple students believed it was not possible to travel in non-integer increments, i.e. – 
“split” units. This did lead to students attempting to optimize distance under a certain constraint, 
which was not intentional. These students could imagine a circle with a center that satisfied the 
problem but struggled to correctly identify a point that would actually be equidistant from the 
two buildings specified in the problem. We provide a suggestion to add as supplement to existing 
questions or to re-phrase the initial problem. By doing so, we hope to gather more details about 
how students understand the concept of Circle. This suggestion is as follows: Draw a graphical 
representation of how a Taxicab circle could be used to identify a location for your apartment, 
given that (i) You want to be exactly halfway between the buildings, and (ii) you do not want to 
be exactly halfway between the buildings. Is there more than one way to do each of these? What 
is this distance called in relation to the definition of a circle? Can you write the equation of either 
of the circles you have identified in (i) and (ii) using the definition of a circle? 

Future research would investigate if these questions would help students to better 
assimilate the concept of a Circle in Taxicab geometry into their existing circle schema. There 
are other concepts that could emerge from the initial question posed such as Midpoint and 
Perpendicular bisector. Further research would investigate what questions could be asked for 
students to better develop their understanding of these concepts as well.  
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Exploring Relationships Between Undergraduates’ Plausible and Productive Reasoning and 
Their Success in Solving Mathematics Problems 

 
 Andrew Kercher(1) Kathryn Rhoads(1) James A. Mendoza Álvarez(1) 

(1)The University of Texas at Arlington 

This study examines how the use of plausible and productive reasoning in mathematical problem 
solving (MPS) influences student performance on non-traditional problems. Data comes from ten 
individual, task-based interviews with College Algebra students. In general, students who 
demonstrated high use of plausible and productive reasoning had a higher percentage of correct 
answers on interview tasks than their peers. We propose reasons why a student may use 
plausible and productive reasoning and still arrive at an incorrect answer; we also consider how 
a student may use suboptimal reasoning and reach a correct answer. 

Keywords: mathematical problem solving, plausible mathematical reasoning, College Algebra  

 Schoenfeld (1985) indicated that possession of relevant mathematical knowledge, facts, 
algorithmic procedures, and other domain knowledge were not sufficient for student success in 
mathematical problem solving (MPS); students often fail at MPS for other reasons. The purpose 
of this study is to explore the relationship between entry-level undergraduates’ MPS practices 
and the correctness of their answers to mathematical problems. In particular, we focus on 
undergraduate students enrolled in a College Algebra course to explore the following research 
questions: a) To what extent is the amount of plausible and productive reasoning a student 
exhibits related to their success in accurately solving mathematics problems? b) What factors 
may contribute to perceived discrepancies between the amount of plausible and productive 
reasoning a student exhibits and their success in accurately solving mathematics problems?  

Theoretical Perspective 
The research literature contains several definitions for a mathematics problem (e.g., 

Schoenfeld, 1992; Wilson, Fernandez, & Hadaway, 1993). In our work, we adopt Lester’s (2013) 
definition that “… a problem is a task for which an individual does not know (immediately) how 
to get an answer …” (p. 247). We distinguish a problem from a mathematical exercise, which we 
consider to be a routine scenario for applying mathematical knowledge and skills (Schoenfeld, 
1983). By our definition, a particular mathematical task may be a problem for some students and 
not others (Schoenfeld, 1985). The problems we discuss in this paper are aimed at the audience 
of entry-level university students. 

The process of MPS has also been described and defined by several researchers, and 
Campbell (2014) analyzed 25 research articles focused on MPS to characterize the process. He 
categorized the explicit or implicit definitions of MPS in the reviewed articles. Álvarez, Rhoads, 
and Campbell (in press) revised and refined Campbell’s initial categorization and identified five 
key domains of MPS. 

• Sense-making: Identifying key ideas and concepts to understand the underlying 
nature of the problem. Attending to the meaning of the problem posed.  

• Representing/connecting: Reformulating the problem by using a representation not 
already used in the problem or connecting the problem to seemingly disjoint prior 
knowledge. Using multiple representations or connecting several areas of 
mathematics (e.g. geometric and algebraic concepts). 
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• Reviewing: Self-monitoring or assessing progress as problem solving occurs, or 
assessing the problem solution (e.g., checking for reasonableness) once the problem-
solving process has concluded. 

• Justifying: Communicating reasons for the methods and techniques used to arrive at 
a solution. Justifying solution method(s) or approach(es).  

• Challenge: The problem must be challenging enough from the perspective of the 
problem solver to engage them in deep thinking or processes toward a goal, “without 
an immediate means of reaching the goal” (Wilson et al., 1993, p. 57). 

We also draw on Lithner’s (2000) characterization of undergraduate students’ reasoning 
as they solve mathematical tasks. Lither argued that students’ reasoning could be plausible or 
based on past experiences. In using plausible reasoning, students rely on “the mathematical 
properties of the components involved in the reasoning” (Lithner, 2000, p. 167). Formal proof is 
an example of plausible reasoning, although Lithner’s definition also allows for less-rigorous 
reasoning, as long as it relies on mathematical principles to reach a conclusion. By contrast, 
reasoning based on experiences relies on the student’s past experiences in mathematics class or 
elsewhere. In this type of reasoning, students draw conclusions based on what they have 
observed or experienced in the past, without connection to the underlying mathematical 
principles. For example, when given a quadratic expression as part of a problem, students may 
assume it can be factored if they have worked primarily with factorable quadratics in the past. 
Lithner illustrated how plausible reasoning was sparser than experienced reasoning, but 
emphasized that reasoning from past experiences can be a useful strategy in MPS when students 
also use plausible reasoning in the process.  

In this paper, we describe undergraduate students’ MPS in terms of both the MPS domain 
they employ (Álvarez et al., in press) and the type of reasoning that underlies the use of that 
domain (Lithner, 2000). For example, a student may make a choice in representing a problem 
(representing/connecting domain) based on sound mathematical principles, or they may use a 
representation based on their past experiences. 

Research Methodology 

Setting 
The data for this study comes from the Mathematical Problem Solving Item Development 

Project, in which we aim to develop efficiently-scored survey items assessing undergraduate 
students’ MPS in each of the domains described by Álvarez et al. (in press): sense-making, 
representing/connecting, reviewing, justifying, and challenge. As part of the project, we use an 
MPS survey consisting of five mathematics problems and a number of associated items, with 
each item linked to one MPS domain. The problems were designed to be open-ended and 
appropriately challenging for undergraduates, but do not require knowledge beyond secondary-
school algebra. A sample problem is shown in Figure 1. (For additional survey information, see 
Álvarez et al., in press.) 

Fun Golf, a local mini-golf course, charges $5 to play one round of mini-golf. At 
this price, Fun Golf sells 120 rounds per week on average. After studying the 
relevant information, the manager says for each $1 increase in price, five fewer 
rounds will be sold each week. To maximize revenues, how much should Fun 
Golf charge for one round? 

Figure 1. Sample problem from MPS survey. 
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The MPS survey was administered during the fall 2016 semester at a large, urban 
university in the southwest United States. The survey was administered in College Algebra and 
Calculus courses designed for undergraduates intending to major in a STEM degree. A pre-test 
version of the survey was completed by 492 College Algebra students during class time at the 
beginning of the semester. 

Participants 
Participants for this study were 10 students chosen from the pool of 492 College Algebra 

students who completed the MPS pre-test in fall 2016. Interview invitations were sent to various 
students in an attempt to interview a diverse group of students in terms of gender and their 
performance on the pre-test. However, due to a limited number of responses to invitations, 
participants mostly represented a convenience sample. Of the students interviewed, four were 
male and six were female. All except one were 18 years old. All except one were STEM majors. 
All had completed a previous mathematics course at a level beyond second-year school algebra, 
graduated high school in spring of 2016, and were now enrolled in their first year of university 
studies. Eight had their last mathematics course within the last year. Pseudonyms linked to 
participant identification numbers were assigned to the students interviewed.  

During the fall 2016 semester, each of the 10 participants took part in an individual, one-
hour interview with one of the researchers. An interview consisted of completing three problems, 
during which the student was asked to explain their work while solving each problem1. Of the 
three problems, one was new to the interview participant. The other two problems were selected 
from the MPS pre-test the student had already completed. After solving one of these older 
problems, the participant was given a chance to review their original work and explain any 
differences in approach. All interviews were video-recorded and later transcribed, and all 
physical work was collected for analysis. 

Data Analysis 
To analyze the data, we used thematic analysis (e.g., Braun & Clarke, 2006; Nowell, 

Norris, White, & Moules, 2017). Interviews were conducted to understand the MPS practices of 
entry-level undergraduates, and we were particularly interested in the five MPS domains 
specified in the theoretical perspective. As such, a preliminary coding framework for the 
interviews was designed to identify only usage of the MPS domains (e.g., Miles & Huberman, 
1994). While coding, we discovered that identifying only instances of MPS domain usage was 
insufficient for describing the subtle differences in student work. The coding scheme was then 
adjusted using both inductive and deductive approaches to incorporate an array of subcategories 
within each MPS domain (e.g., Nowell et al., 2017). In particular, each specific instance of an 
MPS domain was simultaneously assigned two sub-categorizations intended to describe its utility 
and origin, respectively.  

The utility of an instance of MPS was further coded as productive, conditionally 
productive, or non-productive. Productive use of an MPS domain involved using that domain in 
a way that brought the student closer to an acceptable answer or that helped them avoid an 
unacceptable answer. Non-productive use of a domain corresponded to the negation of 
productive use. Conditionally productive MPS corresponded to work that led to a correct answer 
in the interview, but may lead to incorrect answers on other, similar questions. 
                                                 
1 Students also responded to corresponding MPS assessment items under development. Items are 
not discussed in this paper, but are described in Álvarez et al. (in press). 
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Along the other axis, we further granulated instances of MPS by examining the origin of 
the student’s MPS reasoning process. We adapted Lithner’s (2000) classification of reasoning 
styles as either plausible or based on past experiences—with the same dichotomy applied to 
MPS domain usage. We also made use of a third category, indeterminate, for cases when the 
origin of a student’s reasoning could not be determined. 

For example, Amy was able to make a rough sketch of three parabolas that helped her to 
make progress toward solving one of the problems, and this was coded as productive 
representing/connecting using plausible reasoning. By contrast, when solving a different 
problem, Amy guessed that the graph of a relationship would look like the graph of either a cubic 
function or a linear function. This inference did not help her to work towards an answer, and it 
was not clear on what reasoning her conclusion was based. This excerpt was coded as non-
productive representing/connecting with indeterminate reasoning. As a final example, when 
working on a problem involving revenue, Liz claimed that as the sales price increased, the 
revenue would increase to a point and then “it’ll start going down because people will stop 
buying.” In the problem, it was mathematically the case that the revenue reached a maximum 
and then decreased, but her conclusion is not generalizable to other situations. In addition, Liz’s 
reasoning was not based on mathematics but rather her past experiences. Hence, this situation 
was coded as conditionally productive sense-making using experiential reasoning.  

Transcriptions of the interviews were coded independently by at least two researchers. At 
multiple points in the coding process, the researchers compared excerpts of coding to refine the 
coding scheme and resolve conflicts. Once all coding was complete, the results were analyzed 
and collated, again resolving any remaining conflicts. 

To gauge student success on the MPS survey problems, it was necessary to establish a 
grading scheme for assessing their work generated during the interview. Although each student 
addressed three unique problems, the third problem was often not attended to with as much detail 
or rigor as the first two problems. So, we elected to score only the first two problems by 
assigning each question 50% of the student’s overall score for the interview; then, any problem 
that was comprised of more than one sub-problem divided its 50% equally among those sub-
problems. For example, a student who completed the problems Fun Golf (a one-part problem) 
and Air Travel (a three-part problem) during the interview could earn 50% credit for correctly 
answering Ken’s Garden and an additional 16.6% credit for each of the three parts of Air Travel 
they answered correctly. 

We then considered the correlation between instances of MPS coded in the interviews 
and the score on the interview problems. We were also interested in the factors that may 
contribute to perceived discrepancies between the amount of plausible and productive reasoning 
a student exhibits and their ability to accurately solve these problems. To explore this, we 
revisited the coded data and searched for possible explanations for discrepancies, using an 
iterative approach to refine these explanations (e.g., Yin, 2009). 

Results 

Observable Correlations 
We noted strong, positive linear correlations between students’ interview scores and two 

separate, but related, metrics: instances of productive MPS based on plausible reasoning (r = 
.813; shown as Plaus/Prod MPS # in Table 1), and the percent of MPS instances that were both 
plausible and based on productive reasoning (r = .807; shown as Plaus/Prod MPS % in Table 1).  

 

22nd Annual Conference on Research in Undergraduate Mathematics Education 335



Table 1. Percentage of Plaus/Prod MPS corresponding to “interview score”. 

 
Participant 

 
Score % 

 
Total MPS # 

Plaus/Prod  
MPS # 

Plaus/Prod  
MPS % 

Jill 0% 9 1 11% 
Amy 0% 11 2 18% 
Zoe 0% 8 2 25% 
Dan 25% 11 2 18% 
Sara 33% 20 5 25% 
Liz 33% 13 5 38% 
Ian 50% 7 1 14% 

Matt 50% 14 5 36% 
Bob 75% 14 6 43% 
Kim 100% 15 9 60% 

 
Although the strong linear correlations exist, we recognize that interview scores were 

more categorical than continuous and inconsistent among students. For example, Kim was given 
two problems that were each single prompts requesting one answer. Dan completed two 
problems that encompassed five total sub-questions. We also recognize that each student 
demonstrated a different number of discrete instances of MPS during their interview (Total MPS 
# in Table 1). For students who demonstrated a low overall frequency of MPS, the corresponding 
percent of plausible and productive MPS is also undesirably categorical. Ian and Zoe’s 
interviews were examples of this flaw, and removing them results in a large increase in both r-
values (to .940 and .942, respectively). 

Taking these limitations into account, we were interested in possible explanations for 
why the percent of plausible and productive MPS used by a student may not have provided a 
direct prediction for the percent score they made on the interview questions. We discuss possible 
reasons in the following sections. 

Plausible and productive reasoning in concurrence with incorrect answers 
We now discuss possible reasons why a student may demonstrate a nonzero amount of 

plausible and productive MPS practices but still earn an especially low score on the interview 
problems. In general, it is sufficient to note that a problem often requires more than one instance 
of “good” MPS to arrive at a correct answer.  

For example, Amy was solving a problem about two runners in a race. In her solving 
process, she revisited the problem statement and identified an error in her work, which is an 
example of productive reviewing using plausible reasoning: 

Amy: Alright, so looking at it… It just says that Brett finishes the 100 in 16 so that means that 
the 80 he did not complete in 16 so automatically I need to change that [erases mislabeled 
diagram]. So at this point if I don’t understand it, I’ll just take a guess. 

However, as shown in the excerpt, although Amy was able to refer back to the problem text to 
identify and avoid a mistake, she was then unable to use good sense-making to correctly orient 
herself in a more productive direction, and ultimately she decided to “take a guess” at an answer.  

Another example can be found in the interview with Zoe, who worked to solve the 
problem shown in Figure 1 regarding revenue at a mini golf course. After reading the problem, 
she made sense of the given conditions: 
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Zoe: Okay, so $5 for one round equals 120 rounds per week. And they're saying if they 
increase by $1, which could be $6 [per round], they will get 5 fewer rounds, which would 
be 115 rounds per week, and then they want to maximize their revenue, how much they 
bring in, so they have to charge a dollar decrease by $1 for $4 [per round] which would 
give them 125 rounds per week. 

Zoe demonstrated productive sense-making using plausible reasoning, both when describing the 
effects of changing the price for a round of golf and when correctly attending to the meaning of 
the word revenue. However, she then went on to display non-productive sense-making by 
incorrectly interpreting how to maximize the revenue, arriving at an incorrect answer. 

Limited plausible and productive reasoning in concurrence with correct answers 
We now propose possible reasons why a student can achieve an interview score 

significantly higher than the percent of plausible and productive reasoning they exhibit. First, 
non-productive or conditionally productive MPS need not lead to incorrect answers; and second, 
students who have false starts are able to later correct themselves through a combination of 
appropriately plausible and productive reviewing and sense-making. 

Kim’s work exemplified the first point. Her use of representing/connecting illustrates 
how our classifications of domain use may contribute to a misleading characterization of an 
approach. Kim displayed three unique instances of representing/connecting in her work across 
two problems. Each instance was plausible, but two were non-productive. These non-productive 
instances were “trivial” in that they did not explicitly lead to either a correct or an incorrect 
answer. For example, while working a problem involving the area of a rectangular garden, Kim 
drew a simple diagram representing the garden, which did nothing more than extract the relevant 
dimensional information from the problem text. This qualifies as representing/connecting and 
uses plausible reasoning, yet is non-productive because the diagram itself does not play a 
meaningful role in Kim’s approach to the problem. Had Kim used the diagram to robustly model 
the situation, it would have been productive. But by drawing the diagram, Kim lowered her 
percent of plausible and productive MPS but still answered the problem correctly. 

Kim provided another example, this time of conditional productivity, while working the 
Fun Golf problem (see Figure 1). Kim claimed, “Yeah. Cause I thought it would just keep going 
up, but I realized maximize and minimum would mean quadratic.” This is an example of 
experienced and conditionally-productive reviewing. Kim reasoned about the behavior of the 
revenue function using her experiential association of the word “maximum” with the vertex of 
quadratic functions. The revenue function in Fun Golf does happen to be quadratic, but certainly 
not every optimization problem involves second-degree polynomials. Thus, this particular 
instance of MPS is neither plausible nor explicitly productive by our definition. Still, it 
contributed to Kim’s eventual success in the Fun Golf problem by helping her assess her 
progress, lowering percent plausible and productive MPS but contributing to a correct answer. 

Finally, we consider a student who commits to an incorrect approach to a problem until 
recognizing a mistake and correcting herself with plausible and productive MPS. Sara worked on 
the Air Travel problem, as shown in Figure 2. 

A commercial jet is flying from Boston to Los Angeles. The approximate distance 
in miles between Los Angeles and the jet can be found using the function 𝑔𝑔(𝑡𝑡) =
−475𝑡𝑡 + 2650, where t is the number of hours the jet has been flying. (i) Find a 
function, f, modeling the plane’s distance from Los Angeles (in miles) in terms of 
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v, where v is the number of minutes the plane has been flying. (ii) How far has the 
plane flown after 12 minutes? 

Figure 2. Air Travel problem. 

When beginning part (i) of the Air Travel problem, Sara remarked, “So since v is the 
number of minutes, and then this one, t, is the number of hours, we'd have to do v times 60.” 
This excerpt is an example of plausible representing/connecting, because Sara drew a connection 
between the units using the variables given in the problem text, but the MPS is non-productive, 
because the relationship she described is not correct. However, Sara soon made the following 
realization when using her non-productive MPS as a basis for her approach to part (ii): 

Sara: f is equal to -475, 60 times 12 plus... [mumbling] ...is 720 minutes. Hmm. [using 
calculator] Mmkay, what I—sorry, I didn't write it down, what I was doing was trying to 
see-- I think you have to divide it by 60. Because you're dividing the minutes into the 
hours... And so, I just checked seeing what 12 divided by 60 was to see if it was a fifth 
and it is a fifth, so. It would-- this would be v over 60, I would think. 
This excerpt exemplifies plausible and productive reviewing. Sara realized that 60 times 

12 is 720 minutes, not 720 hours, as she had previously implied. She used this insight to evaluate 
an alternative—that minutes divided by 60 equals hours—and used a computation to judge that 
this relationship is more reasonable. In this way, Sara leveraged her initial non-productive MPS 
toward a correct answer by eliminating an incorrect possibility. A student who is often engaged 
in non-productive MPS may eventually arrive at a correct answer but with surprisingly low 
percent of plausible and productive MPS. 

Discussion and Implications 
Our results suggest that the amount of plausible and productive reasoning that 

undergraduate students use in solving mathematical problems may strongly correlate to their 
success on such problems. However, we also provide reasons why a student’s plausible and 
productive reasoning would not need to be extremely high to answer problems correctly and why 
a student may use plausible and productive reasoning yet answer problems incorrectly. As shown 
in our data, reasoning based on past experiences is not necessarily detrimental to the solving 
process, and in fact, as Lithner (2000) found, reasoning based on past experiences may be helpful 
in MPS. In addition, non-productive solving paths do not necessarily lead to incorrect answers. 

Nonetheless, as Lithner (2000) cautioned, students often generalize from the examples 
and exercises they see in mathematics class, sometimes inappropriately. This can lead to over-
application of experiential reasoning that is not balanced by plausible reasoning. Solving more 
non-routine problems may offer an opportunity for students to see that experiential reasoning is 
not always useful. Undergraduate mathematics instructors may want to ask students to explain 
their reasoning as they solve such problems and be attuned to the types of reasoning being used.  

Future research could explore whether the trends that we observed hold for a larger 
sample. A larger sample could also illustrate whether certain MPS domains are more often 
backed by plausible and productive reasoning (or experienced or non-productive reasoning). 
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Factors Influencing Linear Algebra Instructors’ Decision to  
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This study investigates factors that influence instructors’ decisions to implement inquiry-
oriented instruction. We analyzed entrance interviews with twelve Linear Algebra instructors, 
who participated in the Teaching Inquiry-Oriented Mathematics: Establishing Supports 
professional development project, to better understand the reasons why the instructors chose to 
shift from traditional lecturing to inquiry-oriented instructional approaches. We found three 
internal and three external factors that influenced the participating instructors’ choice to teach 
the inquiry-oriented Linear Algebra course. Implications for future research are discussed. 

 
Keywords: inquiry-oriented instruction, linear algebra 

 
Student-centered instructional approaches have received significant attention over the last 

several years. Although lecture is still the predominant way of teaching undergraduate 
mathematics courses (Eagan, 2016; Johnson, Keller, & Fukawa-Connelly, 2017), researchers 
suggest that implementing active student-centered instructional approaches, such as Inquiry-
Based Learning (IBL) or Inquiry-Oriented Instruction (IOI), may be more beneficial for 
students’ achievement, affect, and persistence in undergraduate mathematics (e.g., Freeman, 
Eddy, McDonough, Smith, Okoroafor, Jordt, & Wenderoth, 2014; Laursen, Hassi, Kogan, & 
Weston, 2014). To support the claim that inquiry-based teaching promotes positive student 
learning outcomes, Freeman et al. (2014) conducted a meta-analysis of 225 studies that 
compared achievement outcomes of students in undergraduate STEM courses taught via either 
active learning or traditional lecture approaches. The meta-analysis concluded that using 
teaching approaches that gave students opportunities to actively participate, rather than passively 
listen, reduced student failure rates and raised students’ scores on exams. Research has 
highlighted the effectiveness of IBL and IOI, so there is a need for training mathematics 
instructors to adopt such instructional approaches. Several projects have been designed to train 
and support instructors in student-centered teaching approaches, such as NExT Project, the 
Academy of Inquiry-Based Learning, and the TIMES (Teaching Inquiry-Oriented Mathematics: 
Establishing Support) project, which designed inquiry-based curriculum for undergraduate 
mathematics courses and provided professional development for instructors to implement 
student-centered instructional approaches. This study explores what influences instructors’ 
decisions to pursue such professional development opportunities to learn to implement IOI. 

We specifically focus on Linear Algebra instructors. Knowledge of Linear Algebra is vital in 
multiple areas of science. In many universities, the course of Linear Algebra is usually taken by 
students of diverse backgrounds and educational pursuits. Instructors’ pedagogical approaches 
play a crucial role in influencing students’ interest, motivation, and success in this course. 
Therefore, it is worthwhile to explore reasons why instructors choose to use a certain 
instructional approach to teach Linear Algebra. The purpose of the present study is to explore 
common factors that motivate instructors to use IOI to teach Linear Algebra. The following 
research question was addressed: What factors influence Linear Algebra instructors’ decision to 
implement IOI? 
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 Literature Review and Theoretical Perspective 
 Student-centered teaching approaches differ from what is considered traditional lecturing in 

mathematics courses. The aim of student-centered instructional approaches is to enhance 
students’ problem-solving skills, giving them opportunities to generate ideas, ask their own 
questions, and develop strategies for answering them (Laursen, Hassi, Kogan, & Weston, 2014). 
In inquiry-oriented classrooms, students are actively engaged in producing their own 
mathematical ideas in solving problems, rather than repeating algorithms demonstrated by the 
teacher. Students present their solutions in front of the whole class or in small groups, while 
other students critically analyze their peer’s solution and provide their feedback. IBL and IOI 
give students opportunities to “do mathematics like research mathematicians do mathematics” 
(Yoshinobu & Jones, 2012, p. 307). A growing body of research studies suggests student-
centered teaching has positive effects on student learning in undergraduate mathematics (e.g., 
Freeman, Eddy, McDonough, Smith, Okoroafor, Jordt, & Wenderoth, 2014; Laursen et al., 
2014). For instance, Kogan and Laursen (2014) analyzed data from 100 sections of 40 courses 
and found that students who had been engaged in an inquiry-oriented classroom were more likely 
to succeed in subsequent mathematics courses than students who had been taught via the 
traditional lecture approach. This highlights the benefits associated with incorporating student-
centered instruction. 

A historical predecessor of IBL is the Moore Method, named after mathematician R. L. 
Moore (Coppin, Mahavier, & May, 2009). The implementation of this method varies among 
instructors, but the core idea is that instead of using a certain textbook, the students are given a 
list of theorems, which they are expected to prove using given definitions. After the students 
prove a theorem, they present it in class, while their class peers evaluate the validity of the proof. 
There are several differences between the Moore Method and IOI, albeit they are both forms of 
student-centered instruction; an example of such would be that students’ collaboration is 
prohibited in the Moore Method, whereas student collaboration is expected in IOI. 

IOI is informed by Realistic Mathematics Education, an instructional design theory, which 
considers mathematics as a human activity (Freudhenthal, 1973). One of the most important 
heuristics of RME is that the instruction should provide students opportunities to reinvent key 
mathematical concepts with the guidance of the instructor (Stephan, Underwood-Gregg, & 
Yackel). In this guided reinvention process, mathematical concepts are not presented to students 
by the instructor, as in traditional lecture. In contrast, the instructor poses carefully designed 
mathematics tasks for the students to collaboratively work on. These tasks are designed to 
promote the emergence of the mathematical concepts, as students develop an intuitive 
understanding of the concepts. The instructor then formalizes the students’ knowledge of the 
mathematical concepts. In short, guided reinvention in IOI involves the students reinventing 
mathematical concepts with the support of the instructor.  

The instructor plays an essential role in IOI courses (Rasmussen & Kwon, 2007). Kuster, 
Johnson, Keene, and Andrews-Larson (2017) emphasized, “by inquiring into student thinking, 
teachers are able to support students in generating more sophisticated ways of reasoning” (p. 6). 
Cobb, Wood, and Yackel (1993) argued that the teacher plays an important role in developing 
students’ conceptual knowledge and providing opportunities to share the acquired knowledge 
with peers through collective discussion. Along with asking students questions and facilitating 
discussions, instructors are responsible for establishing and sustaining classroom norms which 
allow students to share with their mathematical ideas (Stephan et al., 2014). 
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Several studies over the past decade have examined factors that influence instructors’ 
decisions to move away from using traditional lecture to implement inquiry-based teaching 
approaches. Johnson, Keller, and Fukawa-Connelly (2017a) investigated what affordances and 
constraints on the use of non-lecture practices Abstract Algebra “lecturers” perceive. The authors 
administered a national survey to Abstract Algebra instructors, which gathered data on their 
typical teaching practices, beliefs about teaching and learning, and contextual affordances and 
constraints for using certain teaching practices. The data revealed a number of contradictions in 
the participants’ responses. On one hand, several instructors suggested a lack of time, curricular 
resources, knowledge, and supports were reasons why they would not choose to use instructional 
methods other than lecturing. On the other hand, the same instructors claimed that they might 
have time for redesigning their instruction, they did not feel pressure from their departments to 
cover a certain amount of material, and there were funds available for teaching professional 
development opportunities. Despite this reluctance to adopt student-centered instructional 
practices, Johnson et al. found that 65% of lecturers from institutions that offer Bachelor’s and 
Master’s degrees and 48% of lecturers from PhD-granting institutions would consider switching 
to non-lecturing instructional approaches. In another study, Johnson, Keller, Peterson, and 
Fukawa-Connelly (2017b) explored Abstract Algebra teachers’ beliefs, habits, and constraints at 
Bachelors-granting institutions, i.e. traditionally “teaching colleges.” Johnson et al. (2017b) 
investigated the extent to which these Abstract Algebra instructors employed non-lecture 
approaches. They found that in these institutions, lecturing is the predominant way of teaching. 
The authors concluded that reformers still have a long way to go in helping instructors 
implement student-centered practices in mathematics. This motivated the present study to 
explore why instructors chose to switch to using a non-lecture approach. 

We follow Henderson and Dancy’s (2009) theoretical framework of aspects that influence 
instructional practices: experience with and attitudes toward teaching innovations, instructional 
goals, and perception of department support. We expand this theoretical framework by adding 
instructors’ beliefs about students’ difficulties in learning Linear Algebra. We also conduct more 
detailed analysis of external pressures that affect instructors’ choice to use IOI. One of the goals 
of our research is to further explore Johnson et al.’s (2017a) findings regarding the influence of 
departmental pressure on the instructors’ choice to use certain pedagogical practices. We also 
aim to discover other influential factors that were not previously found in the literature.  

 
Methods 

The following section describes the context of the study, the teaching experience of the 
participating instructors, and the methods we used for data collection and analysis. 

 
Context of the Study 

This study is part of a larger research program, the NSF-funded TIMES project, which is a 
professional development program designed to support undergraduate mathematics instructors of 
Linear Algebra, Differential Equations, and Abstract Algebra in learning how to implement IOI. 
The professional development program provided instructors with training in a three-day summer 
workshop, as well as support through the provision of curriculum materials and weekly online 
peer working groups. This study explores the factors that influenced Linear Algebra instructors 
to implement IOI through participating in the TIMES project. 

 
Participants 
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Thirty-six undergraduate mathematics instructors participated in the TIMES project as 
fellows. This study considers a subset of twelve of those instructors, all of whom taught the 
Inquiry-Oriented Linear Algebra (IOLA) course. These instructors came from a variety of 
institutions across the United States. The participating instructors exhibited differences in their 
amount of experience in teaching Linear Algebra. Two (17%) of the instructors had taught 
Linear Algebra three or more times before, six (50%) of the instructors taught this course a 
couple of times, and four (33%) of the instructors of instructors had never taught the course prior 
to teaching the IOLA course. The instructors also exhibited differences in their previously used 
teaching practices (i.e. lecture, IBL, or a combination of both). Five (42%) of the instructors 
described their own teaching practice as mostly lecture, five (42%) of the instructors claimed 
they used mostly IBL methods, and two (16%) of the instructors claimed to use both methods.  

 
Data Collection 

Semi-structured interviews were conducted by project personnel with each of the instructors 
after they took part in summer workshops, in which they learned how to implement the IOLA 
curriculum. These interviews took place before the teachers began using IOI in the classroom. 
An interview protocol was written and administered in each interview to ensure the participants 
responded to the same questions.  Some follow up questions were posed by the interviewer to 
elicit clarification or more detailed responses from participants. The questions prompted the 
instructors to describe their past teaching experiences, their reasons for wanting to implement 
IOI, and the nature of the support they received from their colleagues. The interviews were audio 
recorded and transcribed for retrospective analysis. 
 
Data Analysis 

The first author analyzed the interview transcripts using thematic analysis, coding common 
themes that emerged from the data (Roulston, 2010). Initial codes were produced based on the 
author’s interpretation of the data. Similar codes were reorganized into categories during second 
cycle coding (Miles, Huberman, & Saldana, 2014). To ensure dependability of the qualitative 
analysis, both authors met to discuss the codes and their pertinence to answering the research 
question. The authors compared the different instructors’ responses to find trends in the topics 
the participants discussed.  

 
Results 

As themes emerged from the data, we recognized the themes could be categorized as either 
internal factors related to instructors’ interests, beliefs, and goals, or external factors related to 
departmental or student expectations. Our research findings are presented in the following two 
sections organized by the nature of factors that influence the instructors’ choice to use IOI. The 
first section discusses the internal factors, and the second section describes the external factors 
that appeared to influence the instructors’ choice to implement IOI. The discussion in each of the 
subsequent sections describes the nature of the different internal and external factors that were 
evident in the interview data. 

 
Internal factors 

In this section we describe internal factors that seemed to influence the instructors’ decision 
to implement IOI. These internal factors include the instructors’ interests in implementing IOI, 
beliefs about students’ difficulty in learning concepts in Linear Algebra, and instructional goals.  
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Instructors’ interests in IOI. The instructors’ interests in IOI seemed to influence their 
choice to pursue inquiry-oriented instructional methods, so we explored the instructors’ given 
reasons for their interests in IOI. Several instructors (42%) cited their past student experience as 
a reason to move away from traditional lecturing. Some of the representatives of this group had 
negative experiences as students of lecturers. One such instructor claimed, “Reflecting back on 
my own schooling, I fell asleep in Calculus and in most of my math classes because I only had 
experienced a lecture style.” Other instructors experienced positive effects on their learning after 
participating in inquiry-based courses. One of these instructors asserted, “When I was an 
undergraduate student, I had IBL topology. I hated it when taking it, but it helped me greatly.” 
These past student experiences were influential in motivating these instructors to develop 
interests in IOI. 

Many instructors (25%) attributed their interests in IOI to their involvement in professional 
development events, such as conferences, professional seminars, and workshops. We also found 
15% of the respondents mentioned they were satisfied by their lecture-based approach, but they 
were curious if there were other ways of teaching that could be more beneficial for students. 
Another 15% of the instructors were inspired by the successful inquiry-oriented practices of their 
colleagues and the desire of their department heads to incorporate innovative ways of teaching in 
mathematics courses. All of these reasons for instructors’ interests in implementing IOI seemed 
to influence the instructors’ decisions to change their instructional approaches. 

Instructors’ beliefs about students’ difficulty in learning Linear Algebra. The 
instructors’ perceptions of students’ difficulty in learning Linear Algebra influenced their 
decision to use IOI in the classroom. When asked what they perceived as the most difficult 
aspect of the course for students, half of the instructors referenced the shift from doing basic 
computations to solving abstract problems. One of these instructors claimed the most difficult 
part of Linear Algebra is, “the abstract nature of the subject, especially for those who have just 
been through the calculus series.” Additionally, 25% of the instructors cited formal proof writing 
as the most challenging part of the course, and 17% of the respondents argued that the greatest 
difficulty the students faced in Linear Algebra was understanding how “everything is 
interconnected.” None of the instructors cited computation as a challenging aspect of the course.  

These beliefs about what students struggle with in the Linear Algebra course contributed to 
the instructors’ decision to implement IOI. Several instructors highlighted the usefulness of 
inquiry-oriented teaching in helping students gain deep understanding of abstract concepts. For 
instance, one instructor said, “I discovered that students have a quite difficult time when starting 
the concept of basis and span… so I started thinking this is where the IBL can be useful.” The 
instructors perceived IOI as a method that could facilitate students’ development of meaningful 
understanding of the abstract concepts in the course. Overall, instructors’ beliefs regarding 
students’ difficulty in learning Linear Algebra and their views regarding the potential benefits of 
IOI in helping students overcome these difficulties served as contributing factors that influenced 
the instructors’ decision to implement IOI. 

Instructional goals. The instructors’ teaching goals seemed to influence the instructors’ 
decision to implement IOI. The instructors seemed to believe implementing IOI would provide a 
way for them to achieve their instructional goals. Half of the instructors had instructional goals 
of helping their students be able to “build arguments,” “explain their reasoning”, “reflect on 
others ideas,” and “provide critical feedback.” One such instructor described how using IOI 
could help in pursuing these goals, claiming, “If [the students] have conversations with others 
early, later they can have conversations with themselves.” This instructor seemed to believe IOI 
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provided opportunities for students to build habits of communicating their mathematical 
reasoning, which would be useful for the students as they take future mathematics courses. This 
notion was echoed in the instructional goal held by 33% of the instructors, which was that of 
fostering greater mathematical maturity in their students and preparing them for other 
mathematics courses. These instructors viewed IOI as a way to achieve their instructional goals 
of giving students opportunities to communicate about mathematics and develop mathematical 
maturity. Therefore, the instructors’ instructional goals were influential in their decision to 
implement IOI. 
 
External factors 

The following section addresses the external factors that seemed to influence the instructors’ 
decision to employ inquiry-oriented teaching methods. These external factors include pressure 
from student evaluations, departmental support, and content coverage expectations. 

Pressure from the effect of student evaluations on tenure status. The instructors’ 
perceived pressure from the effect of student evaluations on their tenure status might have a 
negative influence on some instructors’ decision to implement IOI. One instructor described 
waiting to try innovative teaching methods until he was tenured because he was cautioned “not 
to rock the boat with students until after [his] job is secured.” Students’ potential lack of 
appreciation for innovative teaching may be exhibited in poor student evaluations of instruction, 
which could have a negative impact on instructors’ tenure process. Another instructor confessed 
that his department chair advised him not to try anything new until he had been tenured, since 
negative evaluations may adversely affect his pursuit of tenure. This fear of poor student 
evaluations might deter some instructors from choosing to implement IOI. However, the majority 
of the instructors (58%) participating in this professional development were untenured or were 
not on a tenure track, so this worry of negative student evaluations did not seem to deter them 
from choosing to implement IOI. Some of these instructors mentioned that they did not really 
worry about students’ evaluations. Overall, some instructors felt pressure of potentially being 
negatively evaluated by students, but this did not deter them from choosing to implement IOI. 
However, fear of negative student evaluations can influence instructors to not choose to 
incorporate innovative teaching approaches.  

Departmental support. Several instructors perceived supportive attitudes from their 
department chairs and colleagues regarding their intent to implement innovative teaching 
methods. One of the instructors specified the nature of this support from his department chair, 
claiming, for “anybody who goes in with a new idea, and whether it is about an instructional 
approach or instruction needs for the classroom, he is supportive in finding a way to make those 
things happen.” The instructors claimed to be given full autonomy to implement whatever 
teaching methods they chose. The instructors asserted that, in general, most of their colleagues 
were very supportive of their decision to implement inquiry-oriented approach. This supportive 
departmental environment seemed to influence instructors’ decisions to implement IOI, in that 
they did not feel any discouragement from colleagues that would inhibit them from doing so.  

Content coverage expectations. The instructors generally felt no constraint to comply with 
covering specific topics other than those usually covered in Linear Algebra. One instructor 
specified that the only concepts he was required to cover were vector spaces, maps, eigenvalues, 
eigenvectors, and some proofs. Another instructor claimed, “I don’t have to serve anybody else’s 
wishes.” Several instructors reported they were not required to cover a certain list of topics, 
assign certain homework assignments, or administer certain exams. One of the instructors 
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mentioned that there was a textbook he was required to use, but he was encouraged to 
incorporate supplemental instructional material. The instructors generally did not feel much 
pressure from the department to cover certain content. This lack of curriculum constraints and 
freedom to use alternative curriculum materials seemed to serve as contributing factors in the 
instructors’ decision to implement IOI. 

 
Discussion 

This study explored influential factors that seemed to affect instructors’ decisions to 
implement IOI. We found three internal and three external factors that seemed to influence the 
participating instructors’ choice to teach the IOLA course. The internal factors included 
instructors’ interests in IOI, beliefs about students’ difficulty in learning Linear Algebra, and 
instructional goals. With this finding, we propose expanding Henderson and Dancy’s (2009) 
theoretical framework of aspects that characterize instructional practices by adding the 
instructors’ beliefs about students’ difficulties in learning mathematical concepts.  

The instructors in this study viewed implementing IOI as a way to achieve their instructional 
goals. Future research can explore how professional development opportunities can leverage 
instructors’ beliefs and goals to align them with the aims of the professional development 
program. Furthermore, these instructors had interests in the potential benefits of IOI, which 
influenced their decision to change their instructional approach to IOI. Therefore, dissemination 
efforts need to be made to increase mathematics instructors’ awareness of the benefits of IOI and 
spark instructors’ interests in using non-lecture teaching approaches.  

The external factors that influenced instructors’ decisions to incorporate IOI into their 
teaching include pressure from student evaluations, departmental support, and content coverage 
expectations. Typically, mathematics instructors’ arguments against using non-lecture 
approaches like IOI reference departmental constraints and coverage concerns (Johnson et al., 
2017a). Some instructors believe using primarily lecture-based instructional approaches helps 
them cover all the course content within certain time constraints, and they believe using non-
lecture approaches would not allow them to do so. Departmental requirements and lack of 
support from colleagues can also deter instructors from implementing IOI. Contradictory to these 
typical excuses for not using innovative instructional methods, the instructors in this study 
generally did not receive discouragement from other faculty members for implementing IOI, nor 
did they reveal any pressure from requirements to cover a specific amount of content. The 
instructors generally felt a sense of support from their department chairs for choosing to use IOI 
in their Linear Algebra course. This finding could imply that instructors with supportive 
department chairs are more willing to try using IOI, or this could mean that arguments against 
implementing IOI concerning coverage constraints and departmental discouragement are ill-
posed. Further research is needed to explore these hypotheses. There is also a need to investigate 
the source of mathematics instructors’ perceived pressures to cover certain content and comply 
with supposed departmental expectations. Further research can explore how to help mathematics 
instructors, particularly lecturers, see the potential benefits of using IOI in their classrooms to 
allow for more widespread adoption of IOI in undergraduate mathematics courses. 
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In this study we investigated how a small sample of students used variational reasoning while discussing 

ordinary differential equations. We found that students had flexibility in thinking of rate as an object, 

while simultaneously unpacking it in the same reasoning instance. We also saw that many elements of 

covariational reasoning and multivariational reasoning already discussed in the literature were used by 

the students. However, and importantly, new aspects of variational reasoning were identified in this 

study, including: (a) a type of variational reasoning not yet reported in the literature that we call 

“feedback variation” and (b) new types of objects, different from numeric-quantities, that the students 

covaried. 
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Ordinary differential equations (DEs) are complex constructs that require reasoning about an 
interconnected set of relationships. A few researchers have provided deep insight into how students 
broadly understand DEs (e.g., Habre, 2000; Keene, 2007; Rasmussen, 2001). The literature on DEs 
reveals the importance of two mathematical concepts: function and rate of change. The importance of 
function is evident in results concerning student understanding of: solutions to DE’s (e.g., Arslan, 2010; 
Dana-Picard & Kidron, 2008; Rasmussen, 2001; Raychaudhuri, 2014), understanding the quantities 
involved in DE’s (Stephan & Rasmussen, 2002, Raychaudhuri, 2008), and existence and uniqueness 
theorems (Raychaudhuri, 2007). Donovan (2007) noted that when students were able to conceptualize 
first-order DEs as functions, they were afforded rich ways of reasoning about the solutions. Student 
notions of rate have emerged in the literature in a few different ways. For instance, Keene (2007) 
identified reasoning about time as a dynamic quantity in relation to other quantities as an important way 
of reasoning about solutions. Rasmussen & Blumenfeld (2007) outlined how students could use their 
notion of rate of change to construct solutions to systems of differential equations.  In addition, 
Whitehead and Rasmussen (2003) identified  rate use, where students used rate as a tool for determining 
solution functions.  

These studies have provided important insight into how students reason about DEs and their 
solutions. However, there is a key component implicit to much of this work that has not been directly 
studied: how students use variational reasoning while thinking about DEs. Knowing how students use 
such reasoning could give insight to instructors both in terms of recognizing and eliciting student 
reasoning. In response to this gap in research, the study we present in this paper was guided by the 
question, “How do students use variational reasoning when interpreting and discussing DEs?” 

 

Variational Reasoning 
We use the generic term “variational reasoning” to mean reasoning about any situation involving a 

changing quantity. The term “quantity” refers to an object with an attribute that can be measured 
(Thompson & Carlson, 2017, p. 425). We use co-variation to mean how two quantities change in relation 
to each other, based on the extensive focus in the literature on two-quantity covariation (e.g., Carlson et 
al, 2002; Confrey & Smith, 1995; Johnson, 2015; Moore et al, 2013; Saldanha & Thompson, 1998). 
Thompson and Carlson (2017) have recently published a new covariational framework based on previous 
covariation research, consisting of six reasoning levels. We use this framework, except for the first level, 
in which a student does not engage in any coordination. Instead, we retain the first mental action, 
recognize dependence, from Carlson et al.’s (2002) original framework. Consequently, our first level is 
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recognize dependence, in which a student perceives two quantities as being dependent in some way. The 
second level (now from the new framework), precoordination, involves imagining two quantities 
changing, but “asynchronously” (p. 441), meaning that the person envisions a change in one quantity first, 
then a change in the other. The third level, gross coordination, contains an image of two quantities 
changing together, but in a generic way, such as “this quantity increases while that quantity decreases” (p. 
441). The fourth level, coordination, involves “coordinat[ing] the values of one variable (x) with values of 
another variable (y)” (p. 441). The fifth level, chunky continuous reasoning, involves imagining 
continuous change, but always by completed intervals, or “chunks,” of a fixed size. In the sixth level, 
smooth continuous covariation, the person envisions the changes in the two quantities “as happening 
simultaneously” and with “both variables varying smoothly and continuously” (p. 441). Note that we use 
this framework as a “descriptor of a class of behaviors” (p. 441), rather than as a judgment of overall 
ability. That is, a student’s usage of one level does not imply the inability to use a higher level. 

Next, we use multi-variation for situations in which more than two quantities change in relation to 
each other (Jones, 2018). For our purposes, we use three types of multivariation. Independent 

multivariation involves two (or more) independent quantities influencing a third quantity, but where the 
independent quantities do not directly influence each other. Dependent multivariation involves three or 
more interdependent quantities where a change in one typically induces changes in all other quantities in 
the system simultaneously. Nested multivariation involves a chain of related dependencies, like the 
structure of function composition, z = f(y(x)). We use the term “multivariational reasoning” to mean the 
reasoning one does about the quantities involved in one of these types of multivariation. 
 

Methods 
As a preliminary step to our study, we conducted a conceptual analysis for ourselves on how one 

might interpret basic DEs of the forms , , and . This confirmed to us that(y)y′ = f ’ (t)y = f ’ (t, )y = f y  
there would likely be many aspects to variational reasoning in interpreting these equations. Encouraged, 
we conducted our study using pre-existing data that came from a series of five task-based, semi-structured 
interviews done with eight students enrolled in a traditional ordinary differential equation course (not 
taught by the researcher). This data was collected as part of an earlier investigation by one of the authors 
in an effort to explore the connection between ideas involving function and rate of change in relation to 
student understanding of differential equations.  For the purposes of this study we identified four tasks 
within these interviews that had DEs matching the three basic forms, including two that had symbolically 
written DEs and two that had visual graphs associated with DEs. The four tasks are shown in Figure 1. 
Note that tasks I2T4 and I4T2 were adapted from the IODE curriculum (Rasmussen, Keene, Dunmyre & 
Fortune, 2017). For the purposes of this conference report, we chose a small sample of three of the eight 
students to analyze, based on those that were most talkative and that articulated their thinking. 

We analyzed the interview data at two levels: holistically and per instance of student reasoning. The 
second author went line by line through the transcript to identify each instance of student variational 
reasoning, done by noting any time a student talked about two or more quantities at the same time. For 
each identified instance of variational reasoning, a timestamp and the associated utterance were recorded, 
as well as the type of variation (co-, multi-, or other) and the quantities involved. For covariational 
reasoning, the instance was coded according to the Thompson and Carlson (2017) framework, with the 
inclusion of the recognize dependence level. For multivariational reasoning, the instance was classified in 
terms of the type of multivariation. The conceptual analysis helped us be sensitive to certain ways 
students might using variational reasoning. Independently, the first author took a more holistic approach, 
identifying the general steps and lines of reasoning the student utilized to complete each task.  Within 
each line of reasoning, the researcher identified the main types of variation, the objects being varied, and 
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key mental actions associated with the approach. For each interview task, the two authors then met and 
discussed the findings until a consensus was reached. 

 
Interview 1 Task 2 (I1T2): What does the following differential equation mean to you? PP ′ = 3  
Interview 1 Task 3 (I1T3): Suppose the equation  can be used to model the fish population in the campus duckP tP ′ = 2 + 2  
pond.  How might it be used to determine the number of fish in the pond at a given time ?t  
Interview 2 Task 4 (I2T4): Below are three different tangent vector fields and six rate of change equations.  Without using 
technology, identify which differential equation is the best match for each tangent vector field (thus you will have three rate of 
change equations left over). Explain your reasoning. 

 

Interview 4 Task 2 (I4T2): Below you are provided with a graph of a rate of change 
equation rather than the equation itself (Note that dy/dt depends only on y). Figure out 
the long-term behavior of possible solution functions, illustrate your conclusions with a 
suitable graph or graphs, and state your conclusions about the long-term behavior of 
these solutions. 

 

Figure 1: The four interview tasks we analyzed for this paper 
 

Results 

We organize our results by first describing how the students in this study reasoned about rate, and 
how they generally employed covariational and multivariational reasoning. We then discuss novel 
findings regarding the variational reasoning used by the students, including (a) the importance of 
dependence, (b) a new type of variational reasoning, and (c) new types of objects used in covariation. 
 
Student Interpretations of Rate  

Our students often referred to variables such as and dy/dt by name, but also as a slope, derivative, P ′  
value or ratio, and sometimes represented them graphically with direction vectors. Our purposes here 
were to understand what quantities students were varying and the variational reasoning they used to do so, 
and as long as the students seemed to see some equivalence between these different interpretations of 
derivative, or “rate,” we did not analyze according to which interpretation was being used. That is, while 
the students expressed these various images for rate, we did not focus on the specific properties of the 
representation (e.g., slopes, variables, vectors, etc), but rather on how the students reasoned about changes 
in the values associated with those objects.  Categorically speaking, the students used their different 
understandings of rate in two key ways: as a single quantity in its own right and as a quantity that could 
be unpacked to indicate how the values of two distinct quantities changed in relation to one another. 
These two ways of using rate were often associated with different relationships in the DE’s.  
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Students in our study often used rate as a single quantity/object with a numeric value when reasoning 
about the relationship explicitly defined in the DE.  For instance, while discussing P’ = 3P, Student 1 
noted that the DE “is indicating that as x goes towards infinity the rate of change is increasing 
dramatically, it gets bigger as time goes on.”  Similarly, on the same task Student 2 noted “as increases, P  
or as t or whatever it is related to increases, the rate of change increases.” Both of these students used the 
DE to determine how the value of one variable was related to the value of the other. While they were both 
sensitive to being a rate of change (of P), their reasoning did not rely on this intrinsic characteristic of’  P  
the DE; their reasoning was similar to thinking of the relationship between y and x in the equation  x  y = 3
(where y and x share no other inherent relationship). 

On the other hand, the students also often unpacked rate in different ways. For task I1T2, Student 1 
used to indicate the general behavior of the solution function: “as x  increases P is going to increase P ′  
faster and faster as indicated by ”.  While this statement does not accurately capture cases where  is P ′  P ′  
negative,  it does represent the idea that  can be used to compare how P is changing as x continually P ′  
increases, namely that P increases “faster and faster.” While completing the same task,  Student 3 used 
rate as an indicator for both speed and direction in which P would change over time: “if this number [ ] P ′  
is really big then in short amounts of time the population goes through a lot of growth.  but ... if it was 
negative then the population would be decaying as time goes on."  When completing I4T2, Student 3 
noted “dy/dt is the derivative of y, its how y is changing at t.”   In addition he said soon after, “the thing is 
that since dy/dt is the derivative of it’s the slope of, it’s basically y over t, it’s the slope of y as a(t)y  
function of t.”  In both cases he unpacked dy/dt as an indication of how y was changing at a particular t 
value. However, the second statement is slightly more complex as he notes that this change depends on t 
(“the slope of y as a function of t”).  

While these two ways of interpreting rate are important independently, the students in our study often 
used them in combination while reasoning about the behavior of solutions.  In fact, we feel that being able 
to simultaneously attend to a rate as single quantity and unpack it was a critical part of thinking about DEs 
for these students.  Aside from instances when students engaged in the utilization of analytical solution 
methods, our students often made single statements that indicated both ways of interpreting rate.  For 
instance Student 2 when working with task I1T3 said, "there is a positive correlation between the 
population of fish and the rate of change. So the more fish there are the faster the fish population will 
grow."  Here, Student 2 reasoned about how was changing as P changed (both increase; “a positive P ′  
correlation”), and simultaneously unpacked rate to determine how P was going to change (“the more fish 
there are the faster the fish population will grow”). It is important to note that this last determination was 
more detailed than simply direction or an amount of change in a single instance; the phrase “the faster the 
fish population will grow” indicates a comparison over various instances. Namely, Student 2 interpreted 
rate as a single quantity that changed in relation to P, and simultaneously unpacked rate to not only 
determine the fish population would increase (presumably with respect to changes in time), but that it 
would increase faster as time changed. 

  
Students’ Usage of Covariational and Multivariational Reasoning 

General usage of covariational reasoning. Essentially every level of covariational reasoning was 
used by these three students, suggesting the need for fluency with covariation when reasoning with DEs. 
The only level not directly observed was chunky continuous reasoning, likely because the interview 
questions were not set up to prompt its usage. Importantly, despite three quantities (t, P, and P’) being 
part of the DEs, the students often focused only on two of these quantities at a time. For example, while 
discussing P’ = 3P, Student 2 stated, “As P increases, the slope of P increases.” This coordination 
involved the two quantities directly present in the equation, without explicit attention to t, even though 
Student 2 had previously recognized its implicit presence. Even with equations with all quantities present, 
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as in P’ = 2P + 2t, the students often still focused only on two at a time. For example, Student 1 stated, 
“As t goes up, just, this number [i.e. 2t] is going to increase, and since it is being added, P’ is going to be 
greater.” This coordination involved only t and P’ in this statement. It was in a separate instance of 
reasoning that Student 1 coordinated P and P’. 

The importance of recognizing dependence (and non-dependence). In our usage, the first mental 
action in covariational reasoning is to recognize dependence (see Carlson et al., 2002). This may seem 
quite trivial, as evidenced by the fact that recognition is not even explicitly a part of the new Thompson & 
Carlson (2017) framework. However, a significant part of our students’ cognitive efforts in reasoning 
about DEs involved recognizing quantities that may or may not be dependent on each other. For example, 
when discussing P’ = 3P, Student 1 stated, “Since P is a function of time, P’ is also a function of time.” 
Note that task I1T2 contains no mention of time, nor a variable t. Student 1 recognized that such a 
variable should be implicitly present. All three students made such recognitions, where the third variable 
was often envisioned as time, though Student 2 did acknowledge that it could be “x or t or whatever this 
P’ is taken with respect to.” 

In the case of DEs, there also appears to be an important parallel mental action to recognizing 
dependence, wherein students recognize when quantities are not dependent on each other. For example, 
while discussing the equation P’ = 3P, Student 2 stated that the variable t “is completely irrelevant in 
terms of the behavior” of the derivative P’. He clarified that a specific solution function P(t) is  dependent 
on the variable t, but that the rate of change, P’, is not impacted by t. As another example, while Student 3 
was working on task I2T4, matching equations to graphs, he explained, “The way this one [the first slope 
field] didn’t change with t, this one [the third slope field] isn’t really changing with y.” This reasoning 
action greatly facilitated Students 2’s and 3’s identification the corresponding DEs on task I2T4. 

Multivariational reasoning. While students often discussed only two quantities at a time, they at 
times engaged in multivariational reasoning. All three students invoked dependent multivariation by 
recognizing that t, P, and P’ were interdependent quantities. For instance, Student 1 stated, “Since P is a 
function of time, P’ is also a function of time.” Sometimes students noted non-dependence, as described 
in the previous subsection, where they recognized that a change in one quantity might not correspond to 
changes in another quantity, suggesting independent multivariation. There was also an occasional use of 
nested multivariation, as seen in the excerpt from Student 2, given earlier, while discussing the equation 
P’ = 2P + 2t. He explained that an increase in t first led to an increase in 2t, which in turn led to an 
increase in P’. Thus, we can see the nested structure of t → 2t → P’. It appears, then, that multivariational 
reasoning may be an important aspect of interpreting DEs, in addition to two-quantity covariation. 
 
A New Type of Variational Reasoning: Feedback Variation 

In our study, we identified a type of variational reasoning not previously described in the literature. 
To exemplify, consider Student 3 discussing the equation P’=3P: “So, say as P increases, like if P is 
positive, the rate is positive, so then P would be increasing, and that would in turn increase the rate, then 
in turn increase P.” Later, while discussing the equation P’ = 2P + 2t, Student 3 also said, “As P changes, 
it’s also affecting its own rate because of this equation.” In typical covariation, it is imagined that changes 
in one variable (x) are related to changes in a separate variable (y). However, in this case, Student 3 was 
explaining how P is related to changes in itself. Student 2 made similar statements, by couching P in the 
real-world context of fish population: “ As there is more fish, it supports more growth… If you have more 
fish, more fish make more fish.” Like Student 3, we see Student 2 explaining how a quantity’s value 
dictates how that same quantity will change. It is true that covariation between population and time is 
implicit, because population cannot change without elapsed time, but the student’s focus is on the single 
quantity P, and how it influences changes in itself. In another task involving y and dy/dt, Student 2 stated 
explicitly that a DE “is representing what is the effect of [y] with respect to itself.” We call this type of 
variation feedback variation, because of how it reminds us of a feedback loop in a microphone/speaker 
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system. In the analogy, the output from the speaker continuously feeds back into the microphone and back 
out through the speaker, increasing the feedback volume. For P’=3P, one might imagine the speaker to be 
analogous to P and the microphone to be analogous to P’. 

Further, we see a slight nuance to some of the articulations of feedback variation. Notice that in the 
first excerpt from Student 3, the flow of reasoning is that the quantity P has a value, then the rate is 
positive, then the quantity increases, then the rate increases, and so on. The language suggests imagining a 
sequence of discrete steps, similar to what Thompson and Carlson (2017) call precoordination. Thus we 
call this type of reasoning precoordination of feedback variation. Of course, the way Student 3 articulated 
his reasoning may simply be an artefact of attempting to communicate his thoughts to the interviewer. For 
example, in the second excerpt from Student 3 given above, he explained “As P changes, it’s also 
affecting its own rate.” This statement could indicate thinking not of discrete steps, but of a continuously 
evolving system in which P is always impacting its own rate of change. If a person envisions such a 
continuously evolving system, we call it continuous feedback variation. 
 
New Types of Objects Used in Covariational Reasoning 

At one point while discussing a DE involving y and dy/dt, Student 1 drew a graph of a solution 
function. When the interviewer asked if it was the solution function, Student 1 clarified that it was “one of 
the potential y of t functions, because there is an infinite [number of them], based on your initial 
condition.” Student 1 recognized that different initial conditions would be associated with different 
specific solution functions, y(t). Student 2 expressed a similar idea when he stated, “The y-naught allows 
you to put it to a specific situation… Then just literally sliding it [i.e. the graph] over to the point that you 
need.” Here it appeared that Student 2 imagined a continuously changing solution graph that ranged over 
many possible initial conditions until it reached the desired initial condition. In other words, as the initial 
condition changed, the solution graph changed. Further, Student 3 talked more explicitly about how initial 
conditions might pair with different solutions. When discussing the task shown in Figure 2, he stated, “So, 
based on what initial conditions you have, wherever you start on the curve, you are gonna, like, if you 
start between -2 and 2, the curve will plateau off at 2. If you start below -2 it will plateau off at -2, and 
above, the curve will plateau off at 2.” Despite the incorrect assertion for initial conditions below -2, the 
point is that he imagined changes in initial conditions leading to changes in the solution function. 

These three students appeared to be covarying initial conditions and solution functions. Typical 
covariation usually deals with two numeric quantities, such as x and y (e.g., Carlson et al, 2002; Confrey 
& Smith, 1995; Johnson, 2015; Moore et al, 2013; Saldanha & Thompson, 2002). However, our students 
imagined covariation as happening between initial conditions and solution functions, which are different 
types of objects than discussed in the literature. Of course, depending on the definition of covariation, this 
may or may not even be considered “covariation,” if covariation is only between numeric-value-type 
objects (see Thompson and Carlson 2017, p. 423). However, we suggest it may be appropriate to consider 
other objects to be covarying as we move into more abstract forms of mathematics. Our analysis suggests 
students have images of initial conditions and solution functions as changing (varying) together (co). 
Because these objects do not have “values” in the same way as numeric quantities do, some mental 
actions like coordination of values might not have matches for this context. However, Student 2 may even 
have employed continuous covariational reasoning by imagining a graph sweeping through initial 
conditions until the desired initial condition was reached. 
 

Discussion 

Our results show that variational reasoning is important for unpacking and understanding DEs. Our 
results further indicate that there may be unique aspects to variational reasoning for DEs. A key part of 
our students’ mental work was recognizing what quantities are implicitly contained in a DE, what 
quantities are dependent on each other, and what quantities are not dependent on each other. This greatly 
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expands the recognize dependence mental action in Carlson et al.’s (2002) original framework, and 
underscores its importance. Thus, we suggest that it should not be dropped from the new covariational 
framework (Thompson & Carlson, 2017), but be incorporated as an important skill students may need as 
they advance to more complicated mathematics. Additionally, we have identified a new type of 
variational reasoning outside of current covariation and multivariation frameworks (Carlson et al., 2002; 
Jones, 2018; Thompson & Carlson, 2017). DEs have a unique structure wherein a quantity is explicitly 
related to changes in itself. In other words, its current value indicates how it will change. This does not 
occur in covariation between, say, x and y, where x is free to vary as a, literally, independent variable. 
Finally, we saw that students appeared to employ covariational reasoning with new types of objects 
beyond what it typically described in the literature. In addition to covarying numeric quantities, the 
students covaried points (initial conditions) and functions (particular solutions). There are even likely 
different levels to covarying these types of objects. One could imagine a change in initial condition then a 
change in particular solution (precoordination), a generic imagine of the initial condition moving to the 
right as the solution function changes in some way (gross coordination), or one could imagine a 
“sweeping” initial condition with specific values that continuously passes through infinitely many specific 
particular solutions (continuous covariation). 

 
Our work also illuminates the importance of reasoning with rate as both a single quantity and as a 

relationship between two varying quantities when making sense of DEs and their solutions. While the 
covariation literature discusses constructing rate by composing amounts of change in two related 
quantities, much of our students’ mental work consisted of decomposing rate. That is, they reasoned with 
the DE as if it were a function to understand how the values of the various quantities changed, but then 
also unpacked the rate to make sense of how the intrinsic quantities behaved. They used both notions of 
rate to conceptualize the solution functions. They took a rate as a single, changing quantity, decomposed 
it into two quantities and used it to perceive the relationship between the two quantities so that they could 
construct a solution function.  Further, they often simultaneously coordinated changes in the rate (as 
indicated by the DE itself) with changes in the two quantities from which it was composed.  Our findings 
regarding students’ frequent utilization of variational reasoning and the various ways of working with rate 
align with and add to the thematic nature of function and rate of change in the research literature on DEs. 
For instance, our findings bring together and strengthen Donovan’s (2007) assertion regarding the 
importance of conceptualizing a DE as a function, Keene’s (2008) work regarding student reasoning with 
rate of change, and Whitehead and Rasmussen’s (2003) discussion of rate use.  In this case, examining 
how the students reasoned about relationships between varying quantities allowed us to understand some 
of the ways these two concepts come together when reasoning about DEs. 

 
This work suggests it is important for instructors to provide students with opportunities in which they 

engage in reasoning with DE’s in two ways: as a relationship between bare variables, and as a relation 
between the value of a function and its corresponding rate of change at a particular instance.  The latter 
may require focused and meaningful attention on the often implicit inclusion of the functions independent 
variable.   Importantly, instructors must get students to consider both of these relationships 
simultaneously. 
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More than Meets the I: Inquiry Approaches in Undergraduate Mathematics 
 

 Sandra Laursen Chris Rasmussen 
 U. Colorado Boulder San Diego State University 

In the United States (US) and worldwide, undergraduate mathematics instructors are 
increasingly aware of the value of inquiry-based instruction. We describe the intellectual origins 
and development of two major strands of inquiry in US higher education in mathematics, offer 
an explanation for apparent differences in these strands, and argue that they be united under a 
common vision of Inquiry-Based Mathematics Education (IBME). Central to this common vision 
are four pillars of IBME: student engagement in meaningful mathematics, student collaboration 
for sensemaking, instructor inquiry into student thinking, and equitable instructional practice to 
include all in rigorous mathematical learning and mathematical identity-building. We conclude 
by calling for a four-pronged research agenda focused on learning trajectories, transferable 
skills, equity, and an educational systems approach.  

Keywords: Inquiry-based learning, Inquiry-oriented instruction, Inquiry-based mathematics 
education, Active learning 

In the United States (US), a growing chorus of voices is calling for post-secondary 
mathematics teaching to provide students with learning experiences that are rich and meaningful: 
centered on students’ ideas, requiring their mental engagement in and out of class, and 
accountable to their prior understandings. These calls are grounded in evidence from education 
research that such research-based, student-centered teaching practices benefit student learning, 
attitudes, success and persistence in mathematics and related fields (see e.g., Freeman, et al., 
2014; Kober, 2015). And, because success in mathematics courses is essential for many 
education and career paths, these experiences and outcomes also support students to pursue 
interests in many other fields. While research-based instructional practices are not yet the norm 
in North American classrooms, they are becoming more mainstream (Stains et al., 2018)—as, 
indeed, they must in order to have widespread benefit.  

Such calls for reformed instruction are often motivated by national or regional concerns for 
economic competitiveness—for education that prepares STEM workers to fuel the innovation 
economy (e.g., President’s Council of Advisors on Science & Technology (PCAST), 2012; 
Rocard, et al., 2007; West, 2012). As Artigue and Blomhøj (2013) note, such sociopolitical 
justifications merit critical consideration of the intellectual origins and pedagogical practices that 
are endorsed. Within the discipline of mathematics, leaders of professional societies (CBMS, 
2016; MAA, 2017; Saxe & Braddy, 2015) have emphasized how students benefit in ways that in 
turn strengthen the discipline. These statements are both responses to and drivers of the growing 
visibility of active learning within mathematics.  

As scholars who have studied active learning and teaching in postsecondary mathematics 
education, especially approaches known as inquiry-based learning (IBL) and inquiry-oriented 
instruction (IOI), we are encouraged to see this growing interest in educational practices we 
know to be effective for students. We have also observed growing concern for defining and 
differentiating particular strategies (e.g., Cook, Murphy & Fukawa-Connelly, 2016; Kuster, 
Johnson, Keene, & Andrews-Larson, 2017). Here we propose some key principles of 
mathematical inquiry in the undergraduate classroom, describe the history and development of 
two major strands of inquiry in US higher education, and offer an explanation for apparent 
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differences in these strands Because the commonalities are more important than the differences, 
we argue for a common educational vision and research agenda for Inquiry-Based Mathematics 
Education, focusing on how inquiry experiences matter for students, instructors, mathematics 
departments, and the profession.  

What is Inquiry in Mathematics?  
We begin by situating inquiry within the broader landscape of active learning and 

teaching. Decades ago, Bonwell and Eison (1991) defined active teaching strategies as those that 
“involve students in doing things and thinking about what they are doing” (Bonwell & Eison, 
1991, p. 19). Students may “do” and “think” by reading, writing, discussing, or solving 
problems, but they must take part in higher-order thinking tasks such as analysis, synthesis and 
evaluation. We add to this definition the explicit expectation that students talk to each other 
about what they are doing and thinking, as conversations are powerful in clarifying, solidifying, 
and elaborating learners’ ideas. They also take advantage of the inherently social nature of 
classrooms and provide the instructor with the feedback needed to identify fruitful next steps 
toward her learning goals for students.  

The instructor’s role is to orchestrate this doing, thinking, and talking—to choose the 
important mathematical ideas and to develop tasks that enable students to meet and grapple with 
them. As Campbell and coauthors (2017) show in their multi-institution observation study, these 
cognitively responsive practices are often missing, even in classes that feature interactive and 
hands-on activities. Instructor skill and thought are required to make active learning truly active.  

We consider inquiry a subset of active learning. As with active learning more generally, 
students in inquiry classrooms are engaged in doing mathematics, and the instructor is 
orchestrating and structuring student learning opportunities. Inquiry, however, has several 
additional distinguishing characteristics. First, inquiry curricula exhibit a longer-term trajectory 
that sequences daily tasks to build toward big ideas. These coherent task sequences scaffold 
students’ mathematical work on challenging problems over weeks of instruction and may lead to 
proving a major theorem or (re)inventing a mathematical idea, definition, or procedure. To 
support such task sequences, instructors must deeply understand the mathematics so they can 
capitalize on students’ mathematical ideas, thus recognizing and nurturing the seeds of student 
ideas that have the potential to grow and develop, without getting lost in the weeds. A good task 
sequence of course helps to provide the framework.  

A second distinguishing characteristic of inquiry is the nature of students’ mathematical 
work. In inquiry classrooms students reinvent or create mathematics that is new to them. They do 
so by engaging in mathematical practices similar to those of practicing mathematicians: 
conjecturing and proving, defining, creating and using algorithms, and modeling (Moschkovich, 
2002; Rasmussen, Zandieh, King, & Teppo, 2005). Thus students develop not only deep 
mathematical understanding, but also a sense of ownership through creation and reinvention. 
Instructors, for their part, allow students intellectual space to be creative, while at the same time 
they seek ways to extend student ideas and connect these to formal or conventional mathematics. 
This requires adaptive and responsive facilitation skills, not just expertise in exposition and 
delivery of content. 

A third distinguishing characteristic of inquiry is a consequence of the previous two: it offers 
students and instructors greater opportunity to develop a critical stance toward previous, perhaps 
unquestioned learning and teaching routines. A critical stance is “an attitude or disposition 
towards oneself, others and the object of inquiry that challenges and impels learners to reflect, 
understand and act in the milieu of potentiality” (Curzon-Hobson, 2003, p. 201). For example, 
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inquiry provides occasions for students to reconsider their past experiences and think anew about 
what mathematics is, and about what it means to know math, to do math, and to teach math. For 
instructors, listening to and making sense of student thinking may challenge how they think 
about the process of learning something new—how ideas may develop, what it means to “cover” 
material, and how tentative ideas and errors contribute to the learning-teaching process. A 
necessary part of developing a critical stance is to have learning experiences that differ from past 
experiences, and the opportunity to reflect on those experiences. Inquiry classrooms can offer 
such experiences.  

Inquiry learning in mathematics may seem distinct from how this term has long been used in 
science education (see Bybee, 2011, for a brief history and key references). Yet at the core, these 
approaches are the same in seeking to involve students in the behaviors and practices of expert 
scientists or mathematicians.  

We focus on two main traditions of inquiry in U.S. post-secondary mathematics, known as 
inquiry-oriented (IO) instruction and inquiry-based learning (IBL). We argue that the similarities 
are more important than the (apparent) differences; to do so, we first trace their intellectual 
origins and practical reach in the United States.  

IOI: Inquiry-oriented Instruction  
Several different IO curricula cover a variety of content areas for post-secondary 

mathematics, including abstract algebra, differential equations, linear algebra, and mathematics 
for future elementary school teachers. A major intellectual source of inspiration and influence for 
this work (especially in differential equations and linear algebra) comes from the pioneering 
research of Paul Cobb, Erna Yackel and colleagues in elementary school classrooms (e.g., Cobb 
et al., 1991; Cobb & Yackel, 1996; Yackel & Cobb, 1996; Yackel, Cobb, & Wood, 1991). Their 
innovative, classroom-based work was grounded in both cognitive and social theories of 
learning. Their use of the term “inquiry” came from Richards (1991), who characterized inquiry 
classrooms as those where students learn to speak and act mathematically by discussing and 
solving new or unfamiliar problems. The classrooms Cobb and Yackel studied were 
characterized by students routinely explaining their own thinking, listening to and attempting to 
make sense of others’ thinking, asking questions if they didn’t understand someone’s work, 
offering different solution strategies, and indicating their agreement or disagreement, with 
reasons. Such patterns of classroom talk represent social norms and could aptly apply as well to 
a science class or a history class (Yackel & Cobb, 1996).  

Cobb and Yackel also identified classroom talk that was specific to mathematics. For 
example, when students routinely offer different solution strategies, a relevant mathematical 
issue is what constitutes a different solution. Is Angie’s solution different from Juan’s? If yes, 
how so and why? When someone explains their reasoning, what makes for a mathematically 
acceptable solution, or what constitutes an elegant solution? Difference, acceptability, and 
elegance are all criteria that fall under the realm of mathematics and are thus referred to as 
sociomathematical norms (Yackel & Cobb, 1996). While this work originated in second and 
third grade classrooms, the constructs of social and sociomathematical norms provide powerful 
and useful tools for researchers and practitioners in IO approaches at the university level (e.g., 
Rasmussen, Yackel, & King, 2003; Yackel, Rasmussen, & King, 2000).  

Another cornerstone of IO curricula is their grounding in the instructional design theory of 
Realistic Mathematics Education (RME). Traditional curricula are typically designed based on 
expert understanding of the mathematics, but RME takes a bottom-up approach where curricula 
are designed based on how learners might reinvent important mathematical ideas and procedures 
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(Freudenthal, 1991; Gravemeijer, 1999). That is, rather than seeing mathematics as a collection 
of pre-established truths and procedures that learners must assimilate, RME offers a set of design 
heuristics where students can, with the support of their instructor, reinvent mathematics at 
successively higher levels. The classroom, design-based research approach is an ideal method for 
revealing and generating such routines and practices as well as the kinds of knowledge and 
dispositions that instructors need (Andrews-Larson, Wawro, & Zandieh, 2017; Johnson, 2013; 
Johnson & Larson, 2012; Kuster et al., 2017; Marrongelle & Rasmussen, 2008; Rasmussen, 
Zandieh, & Wawro, 2009; Wagner, Speer, & Rossa, 2007). 

Visitors to IO classrooms would see students working in small groups on unfamiliar and 
challenging problems, students presenting and sharing their work, even if tentative, and whole-
class discussions where students question and refine their classmates’ reasoning. The students’ 
intellectual work lies in creating and revising definitions, making and justifying conjectures and 
justifying them, developing their own representations, and creating their own algorithms and 
methods for solving problems.  

IBL: Inquiry-based Learning 
In contrast to the research-based history of IO instruction, IBL emerges from practical work 

by educators and the collegial community they formed. Key support for this community has 
come from the Educational Advancement Foundation (EAF). Former students of UT Austin 
topologist R. L. Moore, aided by the EAF, initially sought to commemorate and share Moore’s 
distinctive teaching style, known as the “Moore method” (W. S. Mahavier 1999; W. T. Mahavier 
1997; Parker 2005). Although student-centered pedagogies had appeared in the US and Europe 
well before the 1990s (Artigue & Blomhøj 2013), this Moore-derived movement developed 
largely independently of those concepts and practices, primarily through collegial exchange and 
a bootstrapping approach to professional development. Moore did not refer to his method as 
inquiry-based learning, but early leaders of the movement saw similarities between Moore’s 
teaching and the general principles of inquiry-based teaching that were gaining momentum in 
higher education at the time (NSF 1996; Brint 2011); the term inquiry-based learning and the 
initialism IBL came into currency within this community at this time. As the movement grew in 
size and vitality, it broadened its conception of IBL teaching practices to what is known as the 
“big tent” (Hayward, Kogan & Laursen, 2016; also Ernst, Hodge & Yoshinobu, 2017; Haberler, 
Laursen, & Hayward, 2018; Haberler, forthcoming). Whereas IOI continues to develop through 
design-based research on different courses, the IBL community continues to grow as a lively 
place for practitioners to exchange ideas and deepen their practice—a network of people and 
events, such as workshops, conference sessions, and practitioner-authored publications.  

Typically, IBL courses are based on a carefully scaffolded sequence of problems or proofs, 
set up so that as students work through these problems they jointly build up the big ideas of the 
course through discovering and explaining the mathematical arguments. Commonly, the problem 
sequences or ‘scripts’ are based in instructors’ mathematical knowledge and classroom 
experience with how students may productively develop ideas. But they may not be grounded in 
instructional design principles from education research; they are shared colleague to colleague 
through informal networks or a course repository. While traditionally Moore method courses 
emphasized upper division topics such as real analysis and abstract algebra, today IBL 
approaches have been adapted to nearly all courses in the mathematics curriculum, and for 
general education, teacher education, and mathematics specialist audiences. 

Visitors to IBL courses would see class work that is highly interactive, emphasizing student 
communication and critique of these ideas, whether through student presentations at the board or 

22nd Annual Conference on Research in Undergraduate Mathematics Education 360



5 

small group discussions. Whole-class discussion is used to aid collective sense-making, and 
instructor mini-lectures may provide closure and signposting. Instructors’ classroom role is thus 
shifted from telling and demonstrating to guiding, managing, coaching and monitoring student 
inquiry. There is a long tradition of practical literature from reflective educators describing IBL 
teaching practices and curricula, but more recently, IBL practices have been characterized by a 
team of researchers who sought to understand student outcomes emerging from multiple IBL 
courses taught at four institutions (Laursen, 2013; Laursen, Hassi & Hough, 2016; Laursen, 
Hassi, Kogan, Hunter & Weston, 2011; Laursen, Hassi, Kogan & Weston, 2014). This research 
has in turn provided language and foundations for deeper practitioner inquiry. Thus, we do not 
describe IBL as “research-based” practice but rather as consistent with and supported by 
education research (Laursen et al., 2014). 

Differences in the Research Bases for Inquiry Traditions 
It is in the research studies of IBL and IOI where apparent differences arise between these 

traditions—largely due to different emphases in what are still small literatures. We will highlight 
differences in the types of study samples, study methods, and research questions of interest that 
give rise to these differences in the literature bases for IOI and IBL. Despite these differences, 
studies of student outcomes show broadly similar results, with greater benefits to students in 
inquiry classes than to their peers in non-inquiry classes across cognitive and non-cognitive 
domains. Some outcome measures show no difference; importantly, there is no evidence of harm 
done to students in inquiry classes, despite reduced content “coverage.” 

In addition to differences in focus and methods of the existing research studies, we note 
differences in the researchers’ stance with respect to the teaching tradition. As mathematics-
trained researchers, IO scholars were interested in developing and studying student reasoning 
about particular ideas, instructors’ practices and the knowledge they find useful in IO teaching. 
Instructors taking part in these studies tended to be part of the extended research team, typical of 
design-based research. In contrast, Laursen and colleagues brought an external perspective to 
IBL. While the research team included people trained in mathematics as well as in other areas of 
natural and social science, they were not IBL instructors themselves, and began their work with a 
very practical orientation as evaluators, embedding themselves in the IBL community and 
attentive to its place in the broader national landscape of STEM higher education.  

We describe these differences not to value one approach over another, but to point out some 
differences in the bodies of RUME scholarship emerging from these two inquiry traditions. 
These differences in the research questions, methods and perspectives may lead RUME 
researchers and practitioners to focus on the differences between IBL and IOI methods, rather 
than on their commonalities. But we argue that the commonalities are more significant for 
improving practice and for generating fruitful and impactful research. 

The Four Pillars of Inquiry-Based Mathematics Education 
Because these descriptions make clear that IBL and IOI mathematics share common 

foundational practices despite their different origins, we discuss them jointly under the term 
Inquiry-Based Mathematics Education, or IBME (Artigue & Blomhøj, 2013). In their study of 
student outcomes, Laursen and coauthors (2014) identified “twin pillars” (p. 413) that support 
student learning: deep engagement with meaningful mathematics and collaborative processing of 
mathematical ideas. Deep engagement occurs as students encounter and grapple with important 
ideas, in and out of class. And, as students discuss, elaborate and critique these ideas together, 
they deepen their understanding and build communication skills, collaborative skills, and 
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appreciation for diverse paths to solutions. These pillars of learning emphasize what students do 
that leads to the good outcomes; they imply, but do not make explicit instructors’ roles in 
selecting and staging meaningful tasks and orchestrating students’ conversation about them. 
Rasmussen and Kwon (2007) characterized inquiry using two similar pillars and a third, 
instructor inquiry into student thinking. This pillar emphasizes the instructor’s role to strengthen 
the student pillars by eliciting student ideas and making them public, building a classroom 
community where students can fruitfully engage with and refine those ideas together, and 
elaborating and extending student ideas—a role that requires that instructors value and attend to 
students’ ideas.  

We add to these three a fourth pillar, equitable instructional practice. The research base in 
undergraduate mathematics education does not reveal just how to accomplish this in inquiry-
based college classrooms. Current studies show that inquiry classrooms can level the playing 
field for women (Laursen et al. 2014) and offer evidence and arguments for why this may occur 
(Hassi & Laursen, 2015; Tang, Savic, El Turkey, Karakok, Cilli-Turner, & Plaxco, 2017) but 
also show that this is not automatic (Andrews, Can & Angstadt, 2018; Brown, 2018; Ellis, 2018; 
Johnson et al., 2018). Research on high school classrooms offers useful lessons, however Boaler 
(2006) describes seven teaching practices that yielded higher and more equitable educational 
attainment and fostered students’ respect and felt responsibility for each other. It is striking, yet 
no coincidence, that these practices overlap well with the first three pillars of inquiry. For 
example, asking students to justify their answers and share their reasoning is a form of instructor 
inquiry into students’ mathematical thinking—but as Boaler’s study showed, this also 
contributed to equity and respect, instilling a norm that students explain their own ideas and ask 
for others’ explanations and help. However, equity-oriented practices such as assigning 
competence—publicly raising the status of a student’s intellectual contribution—require 
instructor attention to interpersonal classroom dynamics as well as mathematics. Instructors must 
consider not just what students think but what they may feel and experience; they must notice 
whose thoughts are heard, acknowledged and valued and actively shape those experiences in 
ways that foster respect and responsibility. 

To recap, four pillars of IBME support student learning. Two emphasize student behaviors 
and two emphasize instructor behaviors: 

• Students engage deeply with meaningful mathematical tasks 
• Students collaboratively process mathematical ideas 
• Instructors inquire into student thinking 
• Instructors foster equity in their design and facilitation choices. 

Research Agendas for Inquiry-Based Mathematics Education 
As core IBME principles, these four pillars are the foundations of effective IBME practice; 

they account for student learning and thus offer guidance to instructors seeking to develop their 
teaching practice. The four pillars also offer guidance to researchers interested in IBME about 
fruitful and important questions to pursue. We will make a case for four research agendas as 
important for researchers and practitioners to explore: 

• the learning trajectory agenda: IBME classrooms offer ideal settings for surfacing 
student ideas and explicating learning trajectories. At the elementary and secondary 
school levels, research and development on learning trajectories holds great promise 
to make significant impact on learning and teaching (Daro, Mosher, & Corcoran, 
2011; National Research Council, 2007). Comparable work at the post-secondary 
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level, however, is relatively sparse, both in general and in particular to inquiry 
curricula.  

• the transferable skills agenda: IBME classrooms emphasize collaboration, 
communication, teamwork, and other valued transferable skills. IBME classrooms are 
well suited to explicitly teach and assess transferable skills, so we call for researchers 
and practitioners to take up this agenda. Challenges for researchers include whether 
inquiry curricula do indeed generate such skills, and how to measure them, how to 
design curricula and identify teacher knowledge and practices that support students to 
develop transferable skills. 

• the equity agenda: IBME classrooms offer opportunities and challenges for making 
mathematical inquiry fair and accessible to all and for understanding what practices 
and contexts best accomplish this goal. Attention to equity in IBME classrooms may 
mean designing studies that have the statistical power needed to unpack average gains 
or outcomes in more intersectional ways, or developing measures to probe particular 
phenomena classroom more deeply (e.g., Reinholz & Shah, 2018). There are 
opportunities to explore new theoretical perspectives (see Adiredja & Andrews-
Larson, 2017) and build theory across multiple instantiations of IBME when 
examining topics such as teaching practice, classroom discourse and power, 
epistemological ownership, intersectionality and student identity. 

• the educational systems agenda: IBME classrooms offer a distinctive space for 
considering how teaching and learning are affected by the broader disciplinary and 
institutional contexts where instruction occurs. Attention to systems may give rise to 
fruitful questions about whether and how instruction is changing within departments 
or in networked communities to align with recommended practices in the discipline 
(e.g., Apkarian, 2018). Fine-grained studies in multiple settings may reveal 
interesting variations in student experiences or outcomes that depend on classroom 
dynamics or instructors’ facilitation skills or they may demonstrate ways to adapt 
IBME for different student audiences. Systems-focused studies must attend to 
variability, recognizing that one size does not fit all and accommodating that 
variability as a feature—not a bug—of the research design.  

Conclusion 
Investigation of these challenging, higher-order problems will benefit both research and 

practice. For research, these agendas will generate greater coherence of the body of knowledge 
across all IBME traditions and will focus scholars’ attention on challenging educational 
problems of wide interest, with potential for significant impact. Practitioners will likewise 
benefit from greater commonality and coherence in the body of research-based advice for 
improving their practice. The shared agenda is reflected in the shared terminology and four 
pillars of inquiry-based mathematics education. 
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The Pathways to College Algebra curriculum aims to build concepts that cohere with the big 
ideas in Calculus, and initial results suggest improved readiness for Calculus by students who 
have taken a Pathways class. However, less is known about how Pathways might influence 
students’ initial understanding and reasoning about calculus concepts. Our study examines 
similarities and differences in how Pathways and non-Pathways students initially understand 
and reason about the calculus concept of the limit. Our findings suggest that Pathways students 
may engage a little more in quantitative reasoning and in higher covariational reasoning, and 
have more correct and consistent initial understandings. Further, the Pathways students were 
explicitly aware of how their Pathways class may have benefited their understanding of limits. 
 
Keywords: Pathways College Algebra, Calculus, Limits, Understanding, Reasoning 
 

A critical idea in mathematics education is coherence across curriculum (NCTM, 2006; 
NMAP, 2008; Newmann, Smith, Allensworth, & Bryk, 2001; Schmidt, Wang, & McKnight, 
2005). Thompson (2008) argues that coherence should be viewed through ideas and meanings 
rather than topical structures and orderings. Such coherence seems to be lacking between 
calculus and its prerequisite classes, like College Algebra, which often focuses on calculations 
and procedures (see Blitzer, 2014; Sullivan, 2012). While knowing procedures can help students 
manually work out calculus problems, it is hard to see how these cohere with the big ideas in 
Calculus of limits, rates of change, and accumulation (see Kaput, 1979; Thompson, 1994). 

To address this issue of coherence, a recent curriculum for College Algebra, Pathways to 
College Algebra (Carlson, 2016, hereafter referred to as “Pathways”), aims to build Algebra 
concepts through quantitative and covariational reasoning. The curriculum was developed 
specifically to cohere with big ideas in calculus and data has shown that students who used the 
Pathways curriculum tend to be better prepared to enter Calculus (Carlson, Oehrtman, & 
Engelke, 2010). However, little work has been done in documenting exactly what students who 
have used the Pathways curriculum do differently than their non-Pathways peers. This study 
examines one specific area, namely how a Pathways experience might influence students’ 
understanding and reasoning about limits at the beginning stage of limit instruction. Our guiding 
research question is: What differences or similarities are there between calculus students who 
took non-Pathways algebra versus Pathways algebra, in terms of how they initially understand 
and reason about limits? 
 

Brief Background on Pathways Curriculum 
The Pathways curriculum (Carlson, 2016; Carlson, Oehrtman, & Moore, 2017) was 

developed to provide a coherent and meaningful course for students that would help them 
understand the foundational aspects of calculus. The Pathways curriculum was informed by 
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research on learning functions (Carlson, 1995, 1998), the processes of covariational reasoning 
(Carlson, Jacobs, Coe, Larsen, & Hsu, 2002), mathematical discourse (Clark, Moore, & Carlson, 
2008), and problem-solving (Carlson & Bloom, 2005). The curriculum contains modules based 
on research of student learning and conceptual analysis of the cognitive activities conjectured to 
be necessary to understand and apply the module’s central ideas. Specific concepts that are 
targeted include rate of change; proportionality; functions: linear, exponential, logarithmic, 
polynomial, rational, and trigonometric; polar coordinates; vectors; and sequences and series. 
The curriculum also supports a problem solving approach to mathematics, where students are 
expected to engage in novel contexts and reasoning to construct mathematics. 
 

Initial Understanding and Reasoning about Limits 
In this section, we articulate our perspective on “initial understanding and reasoning about 

limits,” based on the research literature. Of course, our perspective outlined here will not contain 
everything that may be involved in understanding or reasoning about limits, because of the fact 
that our study only deals with understanding at the beginning stages of learning limits. 

We define “initial understanding” as a student’s early concept image of limit at the initial 
stage (Tall & Vinner, 1981), which we would expect to be fairly narrow and incomplete. Also, 
because some misconceptions are nearly “unavoidable” (Davis & Vinner, 1986) and take 
considerable exposure to examples, counterexamples, and contexts to address (Cornu, 1991; 
Przenioslo, 2004; Swinyard, 2011), we are less interested in documenting misconceptions 
students have. Rather, we are interested in comparing students’ initial understanding with 
standard informal definitions of limit. In our study, we examine cases of both the limit at a point, 
lim
𝑥→𝑎

𝑓(𝑥) = 𝐿, and the limit at infinity, lim
𝑥→∞

𝑓(𝑥) = 𝐿. While the students in our study had not 
yet discussed limits at infinity in their classes, we wanted to know how they might attempt to 
understand and reason about them with only the first day of limit instruction. Our informal 
definition of limit at a point is that the limit of f(x) is L “if we can make the values of f(x) 
arbitrarily close to L… by restricting x to be sufficiently close to a… but not equal to a” 
(Stewart, 2015, p. 83). Our informal definition of limit at infinity is that “the values of f(x) can be 
made arbitrarily close to L by requiring x to be sufficiently large” (Stewart, 2015, p. 127). 

We define “initial reasoning” through two aspects of reasoning that the literature has claimed 
are important for limits. First, Kaput (1979) has stated that “virtually all of basic calculus (the 
study of change) achieves its primary meaning through an absolutely essential collection of 
motion metaphors” (p. 289). As such, changing quantities are a part of early reasoning. However, 
standard curricula often focus heavily on algorithms for finding limits (e.g., Stewart, 2015; 
Thomas, Weir, & Hass, 2014). Nagle (2013) claims that this approach likely leads students to 
have “independent, unconnected conceptions” of limits that are based on quantities and 
computation (p. 3). Consequently, the way students use quantitative reasoning versus 
computational reasoning is one part of their “initial reasoning about limits.” 

Second, some researchers have noted strong relationships between covariational reasoning 
and understanding limits, due to a limit inherently dealing with two changing quantities (Carlson 
et al., 2001; Carlson et al., 2002; Nagle, Tracy, Adams, & Scutella, 2017). The informal, “as x 
approaches a, y approaches L,” strongly suggests covariation between x and y. Carlson et al. 
(2002) even claimed that, “Students' difficulties in learning the limit concept have been linked to 
impoverished covariational reasoning abilities” (p. 356). Because of the importance of 
covariational reasoning, even at the early stage of learning limits, we consider how students use 
covariational reasoning as the other part of their “initial reasoning about limits.” 
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Methods 
Twelve Calculus 1 students at a large private university participated in the study. All students 

had taken College Algebra at the university during the previous year, with five having taken 
Pathways (P) and the other seven having taking non-Pathways Algebra courses (N-P). The 
students’ Algebra grades and Calculus pre-test scores were similar across the two groups, though 
three of the N-P students had completed Calculus previously. Students were interviewed about 
limits the day of or the day after their initial lesson on limits in Calculus 1. Unfortunately, one P 
student had not attended his calculus class the day limits were introduced, so we excluded him 
from the study. Because we ended up with only four P students in the data, we are careful to state 
that the results of this study can only be suggestive, not conclusive. We label the P students as 
PA, PB, PC, and PD and the N-P students as N-PA, N-PB, N-PC, N-PD, N-PE, N-PF, and N-PG. 

The interview contained four questions: (1) Explain the meaning of lim
𝑥→𝑎

𝑓(𝑥) = 𝐿. (2) If you 
found the limit, lim

𝑥→∞
4𝑥2 (𝑥2 − 5𝑥 + 6)⁄  , what would you be finding? (3) Select the graph(s) 

[among six graphs given to the students] that correspond to each limit expression, (a) 
lim
𝑥→∞

𝑓(𝑥) = 1, (b) lim
𝑥→0−

𝑓(𝑥) = −∞, (c) lim
𝑥→3−

𝑓(𝑥) = 0. (4) The equation 𝑣𝑜𝑟𝑏𝑖𝑡 = √𝐺𝑀 𝑟⁄   
relates a satellite’s required velocity for a stable orbit, vorbit, with its distance from Earth, r 
(where M is the Earth’s mass and G is a constant). What is lim

𝑟→∞
𝑣𝑜𝑟𝑏𝑖𝑡? After questions 2 and 4, 

students were also asked to identify any connections they saw from their college algebra class 
that might have helped them understand limits. 

We analyzed the students’ responses according to their reasoning and understanding as 
follows. We first analyzed how students used quantitative reasoning versus procedural reasoning 
in their responses. Quantitative reasoning was operationalized as using number sense and 
relationships between quantities to discuss the limits. Procedural reasoning was operationalized 
as using an algorithm or memorized set of steps to solve the problem, without explaining why 
the process worked, regardless of whether the student used the procedure correctly or not. 
However, if the student explained why the process worked, it was coded as quantitative 
reasoning, rather than procedural. We note that we applied this analysis only to the questions 
where students could potentially compute the limit, questions 2 and 4. 

Second, we analyzed students’ covariational reasoning behavior from all four questions by 
classifying individual responses according to the reasoning levels in Thompson & Carlson’s 
(2017) framework: no coordination, precoordination, gross coordination, coordination of 
values, chunky continuous covariation, and smooth continuous covariation. We further grouped 
these levels into “high,” “mid,” and “low” categories. High covariational reasoning included 
coordination of values, chunky continuous covariation, and smooth continuous covariation, 
because these were less commonly exhibited types of reasoning. Mid covariational reasoning 
included only gross coordination, because it was the most commonly used reasoning level. 
However, during analysis two subcategories emerged within the mid level: (1) We attended to 
whether students were specific about the quantities involved in the covariation, or whether they 
used imprecise language to refer to the quantities (Leatham, Peterson, Merrill, Van Zoest, & 
Stockero, 2016). (2) Some students were close to the boundary between gross coordination and 
coordination of values, by explicitly attending to the limiting values that x and y were 
approaching. We labeled this as a new reasoning level, gross with limiting values (GLV), as 

22nd Annual Conference on Research in Undergraduate Mathematics Education 370



opposed to regular gross coordination (GC), and we consider GLV to be on the higher end of the 
mid category. Finally, low covariational reasoning included precoordination and no 
coordination. Also, when students were consistently incorrect about the relationship between x 
and y (e.g.,  interpreting x →infinity as y→infinite), those instances of reasoning were also coded 
into the low category. 

The last step of analysis was to infer student’s initial understanding of limits by documenting 
their description of what a limit was by the end of questions 1, 2, and 3. We decided not to 
include question 4 here because the students generally struggled with it. We recorded whether 
the students’ descriptions were mathematically correct according to our informal definitions. We 
also noted whether a student’s descriptions were consistent across questions, including for limit 
at a point at the end of questions 1 and 3 and for limit at infinity at the end of questions 2 and 3.  

 
Results 

 
Procedural versus Quantitative Reasoning 

We grouped the students into three categories based on their reasoning: reliance on 
quantitative reasoning, reliance on procedural reasoning, or reliance on combined reasoning. To 
illustrate an example of a student who relied on quantitative reasoning, consider N-PA’s 
explanation for how he found the horizontal asymptote in question 2: 

 
N-PA: So as x gets increasingly large, only the most powerful exponents of x are actually going to have much of 

a difference. ... And so as you get bigger and bigger to 100 or 1,000, or 100,000, then these values here on 
the bottom become pretty much obsolete or irrelevant. At that point, you can just look at the highest 
exponent of x [circles 4𝑥2over 𝑥2]. In those really large number areas, we have two exponents that are 
equal to each other… so we know that in the end, it’s approaching a positive value of 4 at some very, very 
far distance down the road. 

 
Compare this example of quantitative reasoning in identifying the horizontal asymptote to an 

example of a student who mostly relied on procedural reasoning. When N-PE was initially asked 
question 2, he stated, “I don’t have the slightest.” He continued, 

 
N-PE: I know that I would search for asymptotes. That would be one of the first things that I would search for. 

… I would look for vertical asymptotes, which is where x is equal to 0 [points to denominator]. I would 
break that apart which would be -3 and -2, right? Yeah, -3 and -2 [writes (𝑥 − 3)(𝑥 − 2) and points to 
numerator] and that doesn't break up into 𝑥 = −3 or 𝑥 = −2, so there would be vertical asymptotes when 
𝑥 = 3 and 𝑥 = 2. That's where I would start. 

 
This student, upon seeing a rational function, appealed directly to the procedure for finding 
vertical asymptotes, which is unproductive in this context. The point is that N-PE relied on trying 
to identify and use a procedure when encountering an unfamiliar question. 

We identified a third category of combined reasoning, that we defined as students who used 
both quantitative and procedural reasoning during these questions. As an example, in Question 4, 
PD began by using quantitative reasoning to explain how the function 𝑣𝑜𝑟𝑏𝑖𝑡 = √𝐺𝑀 𝑟⁄  behaves 
until he became stuck on an inability to remember a specific set of rules.  

 
PD: The way I'm thinking, as r is getting bigger, this fraction inside ... is getting smaller inside of the square 

root. And the denominator is going to continuously get larger ... then the fraction will get smaller. The 
fraction [pause]. I'm really not sure with this one. The problem is that I can't remember, because usually 
with square roots and things like that there are all of these rules. … I can't remember what would happen if 
you would take the square root of that. I mean the square root would give you a larger number or if it gets 
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even smaller. I can’t remember… So I really don’t know. 
 

Three of the four P students and one of the seven N-P students relied on quantitative 
reasoning to answer questions 2 and 4. Three N-P students relied on procedural reasoning. One P 
student and three N-P students reasoned with combined reasoning. These results suggest a skew 
for the P students toward quantitative reasoning and a skew for the N-P students toward 
procedural reasoning. We also note that the three N-P students who relied on procedural 
reasoning were consistently unsuccessful in completing question 2 and 4. 
 
Covariational Reasoning 

In this subsection, we provide examples of high, mid, and low covariational reasoning, and 
explain the trends between the P and N-P groups in terms of their covariational reasoning. 

High covariation. Of all instances of covariational reasoning among the four P students, 
12% of their instances were coded in the high category, with three of the four students having 
instances in this category. Of all instances of reasoning among all seven N-P students, 3% were 
coded in the high category, with three of the seven students having instances in this category. To 
exemplify reasoning at these higher levels, consider PA, who displayed continuous covariational 
reasoning in his response to the expression lim

𝑥→3+
𝑓(𝑥) = 0 in question 3. When asked to explain 

why he only looked at x-values coming from the right side, he said,  
 
PA: The little positive symbol right there, by 3. It’s asking for values that are just bigger than three… In graph 

number one [points to a graph], there is a hole and so at the value of 3 there is no output for f(x). But if we 
were to get infinitely close to three, with values just bigger than three like 3.1, 3.01, 3.001. We're getting 
closer to the output value of zero.  

 
Mid covariation. Students most commonly reasoned at this level of covariation. Of all 

reasoning instances for the four P students, 85% were in the mid category, and of the seven N-P 
students, 69% of all reasoning instances were in the mid category.  

To illustrate the differences between specific versus unspecific reasoning, and GLV versus 
GC reasoning, consider the following examples. First, when N-PD was justifying his choice of 
graph for lim

𝑥→3+
𝑓(𝑥) = 0 in question 3, he stated, “As it moves from the positive side, it looks 

like it will be 3” [emphasis added]. Note that N-PD used the ambiguous language “it.” Further, 
this statement suggests basic GC because of the generic description of “increasing.” Thus, we 
consider this reasoning instance to be unspecific and at the level GC. 

By contrast, consider N-PD’s response to the same question: 
 
N-PD: As x approaches 0 from the negative side. We have f(x) approaches negative infinity. So, this graph 

[point to a graph] is approaching zero from the negative side [motions horizontally across the left side of 
the x-axis]. And as it does the value of f(x) plummets to negative infinity [motions vertically along the 
bottom half of the y-axis]. 
 

Unlike N-PD, PC always specified which quantity he was attending to, whether x or f(x). 
Also, in addition to general statements about “increasing,” PC was specific about the values the 
quantities x and f(x) were approaching, zero and infinity. Thus, we consider this reasoning 
instance to be specific and to be at the level GLV. 

Generally, the P students were specific in their reasoning more often than N-P students. P 
students were specific for 72% of all reasoning instances in the mid category, while N-P students 
were specific for 38% of all reasoning instances in the mid category. However, within just the 
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mid category, the P and N-P students had similar percentages of reasoning instances at the GC 
level versus the GLV level, with about two-thirds of all mid category reasoning instances being at 
GLV. Table 1 summarizes the results for the mid category of covariational reasoning. 

 
Table 1. Results for specific versus unspecific and GLV versus GC within the mid category 

 Specific versus Unspecific GLV versus GC 
 Specific Unspecific GLV GC 
P students 72% 28% 65% 35% 
N-P students 38% 62% 67% 33% 

 
Low covariation. Of all reasoning instances among the P students, 3% were in the low 

category, and among all instances for the N-P students, 28% were in the low category. A 
common example of this category was when students reasoned about a graph as an object, rather 
than as two variables coordinated together. For example, consider N-PF’s reason why she 
believed that lim

𝑥→0−
𝑓(𝑥) = −∞ should be matched with a graph of the horizontal line y = 1 with a 

hole at x = 0: 
 
N-PF: So we have 0 to the negative, which means we're going to look at a point just smaller than 0… And you 

see that it's going to approach negative infinity. It is going to go on forever in the negatives [gestures 
horizontally along the x-axis towards negative infinity]. 
 

It appeared she was thinking of  0− and −∞ both in terms of x alone, without attention to y, 
meaning she was not coordinating two variables. Another typical reasoning among the low 
category instances, typified by N-PF for the same limit and graph, was, “This [graph] makes 
somewhat sense because the line goes on forever and it's at 1.” 

Another type of reasoning we categorized as low was when students attempted to covariate 
but mixed up x and y values. As an example, N-PG did so for the limit in question 2 when she 
said the limit would be approaching a vertical asymptote, imagining that y was approaching 
infinity, rather than x. She showed this same confusion in question 3 when she incorrectly 
claimed that the limit lim

𝑥→∞
𝑓(𝑥) = 1  indicated a vertical asymptote at x = 1. 

In summary, the results for the students’ covariational reasoning suggest a similarity between 
the two groups in that both had a majority of reasoning instances in the mid category. However, 
we can see that P students’ covariational reasoning was overall skewed somewhat higher than the 
N-P students, and that they were more specific in articulating that covariation. 

 
Initial Understandings for Limit 

Finally, no student had a perfect initial understanding for limits, as we expected. However, 
five of the students across the two groups had understandings that were “correct,” according to 
our informal definitions, and whose descriptions of a limit remained consistent across the 
interview questions. As an example, by the end of question 1 PC had described a limit as, “We're 
not necessarily looking for the value of the function at a specific x point, but what f(x) is 
approaching at that certain point, from both sides.” This description remained consistent through 
question 3 as well. Three of the four P students were in this group, as well as two of the seven N-
P students. Note that both of the N-P students in this group had completed calculus before, while 
none of the P students had. We find it impressive that these three P students had correct, 
consistent limit definitions after just one day of learning about them. 
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Three of the N-P students and one of the P students often referred to the limit as giving the 
slope of f(x), possibly based on how their instructors introduced limits during class. The other 
two N-P students simply had many varying ideas throughout the interview or would mix up the 
input and output values when the limit approached infinity. 

 
Connections to Algebra Experience 

When asked for connections to their College Algebra course during the interview, students 
from both groups mentioned several topics they remembered. However, four of the seven N-P 
students only listed computational procedures, such as finding vertical asymptotes or finding the 
inverse of a function. The other three N-P students primarily cited graphing as a connection. The 
N-P students generally were explicit in stating that their College Algebra course was not helpful 
in learning about limits in calculus. 

By contrast, three of the four P students discussed a change of thinking. Students said that 
their College Algebra courses helped them reason on their own or gave them an understanding of 
how concepts work. The remaining P student mentioned both this change in thinking and 
procedures like discontinuities and parent graph functions. All of the P students indicated that 
their College Algebra experience directly helped them in learning limits in calculus. 

 
Discussion 

In discussing the trends seen in the results, we again caution that our small sample is only 
suggestive, and cannot imply generalization to the larger Calculus student population. However, 
within our small sample, we certainly observed differences in trends for how the overall group of 
P students reasoned about and understood limits compared to their N-P counterparts. Of course, 
there was overlap in how the students reasoned about limits. For example, students from both 
groups were seen to reason quantitatively and procedurally. Students from both groups were seen 
to reason at lower and higher levels of covariational reasoning. Yet, taken in aggregate, P 
students were shifted more toward using quantitative reasoning than procedural reasoning, and 
were overall shifted somewhat toward higher levels of covariational reasoning. Their initial 
understandings for limits were also more on the correct/consistent side of the spectrum. This 
certainly does not mean that N-P students cannot engage in these types of reasoning nor hold 
those types of understandings for limit, as seen in our results. But it does suggest a small net 
effect for the students having taken Pathways College Algebra in using higher reasoning and 
having better developed personal meanings. In other words, the Pathways curriculum seems to 
cohere with initial limit instruction, which is an important aspect of sound curriculum (NCTM, 
2006; NMAP, 2008; Newmann et al., 2001; Schmidt et al., 2005; Thompson, 2008). This 
coherence suggests a possible advantage for P students when encountering the difficult limit 
concept for the first time. While it may only be small, if it is combined with a net advantage for 
other concepts as well, such as the derivative and integral, it begins to build a picture as to why P 
students might be more successful in calculus (see Carlson, Oehrtman, & Engelke, 2010). In fact, 
the students themselves seemed aware of the ways in which their Pathways curriculum 
connected to the limit concept they were in the process of learning about. 

We suggest building on this work by sampling a larger group of Pathways versus non-
Pathways students to see if the trends observed in our small sample hold for that larger group. 
Our study suggests that there may be differences, and such future work would be needed to gain 
the desired generalizability to the larger student population. 
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Undergraduate mathematics instruction contributes to marginalization among women and 
racially minoritized individuals’ experiences. This report presents an analysis from a larger 
study that details variation in minoritized students’ perceptions of potentially marginalizing 
events in undergraduate mathematics instruction. With past research on  undergraduate 
mathematics experiences largely focused on students’ post-hoc reflections and one or two race-
gender intersections, this analysis extends prior work by attending to variation in students’ in-
the-moment perceptions of mathematics instruction across various race-gender intersections. 
Findings highlight how issues of underrepresentation, stereotypes, and instructor care 
contributed to interpretations of instruction-related events as potentially marginalizing. The 
report concludes with implications for teaching practices in undergraduate mathematics that 
academically support and socially affirm students from historically marginalized backgrounds. 
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Undergraduate mathematics instruction contributes to marginalization among women and 
racially minoritized students underrepresented in STEM (science, technology, engineering, and 
mathematics; Bressoud, Mesa, & Rasmussen, 2015; Seymour & Hewitt, 1997). Prior research 
has also documented minoritized students’ reflections about marginalizing experiences in 
undergraduate STEM, particularly at one or two intersections of race and gender identities (e.g., 
Borum & Walker, 2012; McGee & Martin, 2011). The present analysis extends past research by 
detailing variation in minoritized students’ perceptions of potentially marginalizing events in 
instruction across various intersections of racial and gender identities. Such research is especially 
critical in entry-level undergraduate mathematics courses, such as pre-calculus and calculus, that 
operate as racialized-gendered gatekeepers into STEM majors (Chen, 2013; Ellis, Fosdick, & 
Rasmussen, 2016). By drawing on minoritized students’ in-the-moment reflections on classroom 
events that they found potentially marginalizing, this study also advances past research that has 
largely focused on students’ post-hoc reflections on their mathematics experiences.  

 
Research Questions 

This research addresses two questions to detail intersectional (namely, race-gender) variation in 
minoritized students’ perceptions of undergraduate pre-calculus and calculus instruction: 

1. What aspects of undergraduate pre-calculus and calculus classrooms, including 
instruction, leave women and racially minoritized students feeling marginalized? 

2. Why do students from different intersections of racial and gender identities perceive these 
classroom aspects as marginalizing? 

Findings can inform the design of more equitable undergraduate mathematics instruction that 
academically supports and socially affirms students from historically marginalized backgrounds. 
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Theoretical Perspective: Positioning Theory 
The focus on undergraduate students’ interpretations of pre-calculus and calculus instruction 

as marginalizing of their race-gender identities was informed by positioning theory (Davies & 
Harré, 1990; Holland, Lachiotte, Skinner, & Cain, 2001). Positioning theory considers how 
different actors develop expectations about themselves and each other, as well as highlights what 
norms are structuring participation in pedagogical contexts (Esmonde, 2009). The racialized-
gendered nature of mathematics classrooms, as documented in extant research (e.g., Battey & 
Leyva, 2016; Borum & Walker, 2012; Rodd & Bartholomew, 2006), can position white women 
and racially minoritized students as being less welcome to participate or as feeling an increased 
pressure to demonstrate their ability through participation (Engle, Langer-Osuna, & McKinney 
de Royston, 2014; Suh, Theakston-Musselman, Herbel-Eisenmann, & Steele, 2013). Use of 
positioning theory in this study, therefore, guided inquiry into variation in how students from 
different intersectional backgrounds interpreted features of undergraduate pre-calculus and 
calculus instruction as positioning them in marginalizing ways. 

 
Research Methodology 

The central goal of this analysis was to capture intersectional variation in historically 
marginalized students’ perceptions of the ways they found particular features of undergraduate 
mathematics instruction to be discouraging. From a critical race theory perspective (Solórzano & 
Yosso, 2002), the analysis foregrounded the voices of undergraduate white women and racially 
minoritized students to challenge exclusionary framings (e.g., color- and gender-blindness of 
ability) and enactments of undergraduate mathematics instruction. To do this, the study was 
designed so undergraduate students can take note, share, and reflect on details about potentially 
marginalizing events from their mathematics classroom experiences. The study methodology, as 
detailed below, created space for participants to further examine shared events and reflect on 
why they interpreted them to be potentially marginalizing for different race-gender identities. 
 
Study Context and Participants 

This study took place in a large, public research university in the northeastern U.S. with a 
diverse yet predominantly white student population. The analysis presented in this report is based 
on data collection that took place during fall 2017 and spring 2018. A total of 16 first-year 
undergraduate students enrolled in a section of pre-calculus or calculus were recruited, including 
4 Black women, 3 Black men, 4 Latinx women, 2 Latinx men, and 3 white women.   
 
Data Collection 

Journaling. Student participants journaled about events in their pre-calculus and calculus 
courses that made them and others feel discouraged or uncomfortable. Participants were asked to 
begin journaling during pre-calculus and calculus classes to capture in-the-moment details about 
the events and their interpretations.. Journal entries included the date and time of occurrence, 
whether it happened in lecture or recitation, an event description, and a reflection of why they 
found the event to be problematic. Events submitted as journal entries included instructor-student 
interactions, instructors’ general comments to the whole class, and peer interactions. 

After compiling participants’ journaled events, the research team organized them into 
categories (e.g., the instructor ignoring a student response, laughing at a student’s contribution). 
These categories guided the development of an interview protocol centered around 4-5 stimulus 
events from categories that ranged from being less to more commonly occurring. For example, a 
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more frequently occurring event was the instructor advising students to drop down a level in 
mathematics if they could not quickly complete steps to solving a problem. An example of a less 
frequently occurring event in the interview protocol was an instructor accusing a student of not 
owning a calculator that was provided by a university support program aimed to financially help 
underserved student populations at the university. Any details about racial and gender identities 
as well as emotionally-charged language from the submitted events were removed in the 
protocol, so participants had opportunities to experience stimulus events in different ways.     

Interviews. The individual interviews with the 16 study participants were semi-structured, 
audiotaped, and lasted between 60-90 minutes. Participants were asked three sets of questions for 
each of the stimulus events. First, since events in the interview protocol may not have been 
submitted by the interviewed participant, we asked participants to describe what they saw 
happening in each event. Then, we asked if they found the event to be uncomfortable, why or 
why not, who they thought would feel uncomfortable, and if there is anyone who would not feel 
uncomfortable. Lastly, we asked participants if they saw the race or gender of the instructor or 
student(s) playing a role in their interpretations of each event. During the interview, interviewers 
probed about various student-generated themes that arose from their interpretations of the events.  
 
Data Analysis 

To address the first research question, the data analysis focused on aspects of undergraduate 
mathematics classrooms, including instruction, that participants described as positioning them or 
other students in marginalizing ways. We listened to the interviews multiple times and noted 
differences in participants’ responses for each event, including whether or not they saw the event 
as potentially marginalizing, the extent to which race and/or gender played a role, and how they 
had or would have experienced the event as a student. After this initial pass through the 
interview data, we openly coded for features of undergraduate mathematics classrooms and 
instruction that influenced participants’ perceptions of classroom events as potentially 
marginalizing. These codes were synthesized into three broad themes of features that made the 
events marginalizing: (i) underrepresentation, (ii) stereotypes, and (iii) instructor care.  

To address the second research question, we examined similarities and differences in 
participant responses within each broad theme to document variation across as well as within 
intersectional subgroups. We used axial coding to identify such similarities and differences in 
participant perceptions across race-gender intersections of identity. For member checking 
purposes, we completed follow-up interviews with 10 of the 16 participants to ensure accuracy 
of the emergent themes. These member checks clarified participants’ perspectives that were 
shared during the initial interviews and prompted participants to respond to themes from our 
analysis. Research team members (1 Black woman, 1 Latinx women, 2 Latinx men, 2 white men, 
and 3 white women) brought awareness of their respective positionality to the data analysis in 
efforts to minimize threats of both social proximity and distance to participants (Milner, 2007). 

 
Findings 

Below we elaborate on the three themes revealed across participants’ perspectives about what 
can make events from undergraduate mathematics instruction potentially marginalizing: (i) 
underrepresentation, (ii) stereotypes, and (iii) instructor care. We infuse voices from participants 
across race-gender intersections to capture variation in students’ perspectives within each theme. 
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Underrepresentation 
Classrooms. Twelve of the 16 participants related the potentially marginalizing effects of 

instructional incidents to racial-gendered underrepresentation in undergraduate mathematics 
classrooms. Black and Latinx students, in particular, expressed how events would impact them 
emotionally if they were one of the only women or racially minoritized students in the class. 
Such emotional impact includes pressure to prove themselves (Beatriz, Quinton), self-doubt 
about participation (Jasmine), hypervisibility of race (Jasmine), and “feel[ing] uncomfortable” 
(Parker). In response to an event about an instructor suggesting students drop down a course 
level, Jasmine (Black woman) described the importance of having a “support system” of same-
race peers who could counter the instructor’s discouraging remarks. These same-race peers could 
also lessen the high stakes associated with the instructor’s remark for racially underrepresented 
students like Jasmine, managing pressures of “feel[ing] like [they’re] the representation of [their] 
entire ethnic group” in the classroom. 

Quinton (Black man) similarly acknowledged how being the only Black student in an 
undergraduate mathematics class can limit opportunities to find affirmation from same-race 
peers about instructors’ potentially racialized interactions. Responding to the event about an 
instructor laughing at and disregarding a student’s question, Quinton described how a Black 
student in a predominantly white classroom experiencing this will not be able to check in with 
Black classmates about whether or not they also perceived the instructor’s actions as racialized. 
Quinton reflected, “You’re surrounded by white faces... a white professor… You’re looking like 
you’re the one who’s the problem… There’s no one to really say, ‘No, you’re [the professor’s] 
wrong. You need to answer the question.’” Furthermore, Quinton interpreted the instructor’s 
laughter and student disregard in the event as reflective of the instructor’s possible perception 
that the student “didn’t belong there [in the class].” He described how Black students, for 
example, are often viewed as getting into college through athletics rather than academic merit, 
leaving them with the burden of having to “prove [their] worth” and belongingness. 

STEM fields. Participants also reflected on how racialized-gendered underrepresentation in 
STEM fields influenced their interpretations of instructional events as potentially marginalizing. 
Reflecting on an event where an instructor confused two students, Uzma (Black woman) 
conjectured that a woman would not feel as comfortable as a man because the “masculine 
presence in STEM majors” brings men to feel like they belong in the undergraduate mathematics 
classroom. Victoria (Latinx woman) perceived the instructor’s whole-class comment about 
dropping down a course level as discouraging women from persisting in male-dominated STEM 
fields. She argued how women may interpret the comment as confirming gendered 
representation in STEM, bringing them to think “Maybe STEM isn’t for me.” 

In addition, women participants used racialized-gendered STEM representation as a lens to 
interpret events as reflecting inequitable opportunities for classroom participation. Amy (white 
woman) described how instructors may perpetuate notions of STEM as a “predominantly 
masculine field” through “giving them [men] more time” to ask questions and receive support. 
To illustrate, Amy referred to gendered patterns in the quality of her mathematics instructor’s 
responses to student questions that brought her to limit her classroom participation. Jasmine 
(Black woman) argued that racialized-gendered associations of STEM through representation 
shape instructors’ differential responses to student contributions based on students’ race and 
gender. For example, Jasmine referred to the lack of expressed gratitude for a woman or student 
of color correcting an instructor (a white or Asian man) as a “power move” because the 
instructor might perceive the correction as the student “encroaching on space that doesn’t belong 
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to [them].” She described these “very disheartening” classroom moments as contributing to the 
lack of representation and support for marginalized groups in STEM. 

Summary. Participants, thus, varyingly interpreted the potentially marginalizing nature of 
events in relation to racialized-gendered underrepresentation in mathematics classrooms and 
across STEM fields. At the classroom level, racially minoritized students expressed how the 
absence of same-race classmates can bring them to interpret instructors’ actions and words with 
racialized implications about their academic potential and belongingness. Women participants 
raised how gendered representation in STEM can shape potentially gendered double standards of 
how instructors interact with students, such as allowing men to take up more space than women 
and deeming women’s contributions as less worthy of acknowledgment. 

 
Stereotypes 

Racial stereotypes. Fifteen of the 16 participants interpreted events being potentially 
marginalizing due to the activation of stereotypes in and beyond STEM. One set of stereotypes 
was related to racially minoritized students’ limited mathematics ability and lack of academic 
effort. Angelica (Latinx woman) interpreted the event of an instructor not reviewing an “easy 
problem” during class and claiming a student’s exam problem solution was “so wrong” as being 
more likely to happen between a white instructor and student of color. In particular, Angelica 
perceived this event as an implicit form of racial bias with an instructor positioning students of 
color as “trying to get more points because they don’t want to try,” thus “undermining their 
intelligence and the effort they put in on an exam.” Both Jasmine (Black woman) and Quinton 
(Black man), in responding to an event about a student with their hand raised being ignored, 
acknowledged how such deficit stereotypes about students of color can also frame racially 
minoritized instructors’ teaching practices. Jasmine, for instance, explained how “the culture 
of… ‘these are what we interpret as the smart kids’” in STEM can produce “implicit biases… 
even within minority teachers” that could bring women’s and racially minoritized students’ 
contributions to be deprioritized. 

Participants also acknowledged how the racial stereotype that Black and Latinx people are 
criminals could play a role in the event when an instructor accused a student of not owning a 
university-provided calculator (Amy, Beatriz, Leonardo, Nadine, Parker, Sarah, Uzma, Victoria). 
Leonardo (Latinx man), for example, reflected on how the event would bring him to “feel like 
the teacher thinks [he is] a thief.” If the student in the event was a Black or Latinx student, 
Leonardo conjectured that the instructor’s remark may be bring classmates to “assume ‘Oh, well 
it isn't hers. She's black. Well, she must have stole it.’”   

Gender stereotypes. Another set of stereotypes raised in participants’ reflections about how 
the classroom events could produce discomfort or discouragement was related to gender. 
Participants referred to the gendered stereotype that women are less mathematically able than 
men in explaining instructors’ potentially marginalizing actions through teaching (Delma, Sarah) 
and women’s pressure to challenge others’ underestimation of their ability (Anne). Sarah (white 
woman), for instance, described how this gendered perception of ability can explain the logic 
behind an instructor’s disregard of a women’s request to do a similar follow-up problem, “Just 
because this one girl has another question doesn’t mean I have to do it for the rest of the class.” 
Anne (white woman) interpreted the event of a student apologizing for asking a question that the 
instructor curtly refused to answer as potentially gendered, particularly because the student was 
likely a woman who felt she must apologize for asking something that was simple or obvious. 
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Summary. These student reflections capture how they perceived the operation of racial and 
gender stereotypes in framing what could be experienced as potentially marginalizing instances 
of classroom instruction. Racial and gendered stereotypes of academic ability were raised in 
explaining disparities of student acknowledgment and participation due to implicit biases among 
instructors, including those from minoritized backgrounds. Furthermore, as exemplified in 
Leonardo’s reflection, the influence of an instructor is evident in how their stereotypical 
framings of classroom interactions can bring students to similarly position marginalized peers in 
deficit or negative ways.  

 
Instructor Care 

Getting to know students. Thirteen of the 16 participants, especially among women of 
color, interpreted events as being potentially marginalizing due to the level of care that 
instructors exhibited. For example, instructor comments were interpreted as them not caring to 
know their students personally. Nadine (Black woman), in reflecting on her submitted event 
where an instructor confused her with another women, shared how offended she felt when she 
learned that her instructor did not know her name mid-semester. As one of only two women in 
the classroom, Nadine described the instructor’s confusion as “careless” which she took 
personally, especially since she had “taken the time to learn the professor’s name and ... put 
effort into the class.” Nadine states, “I always get really upset when that happens. It’s an honest 
mistake, but the reaction after you’re [the instructor] corrected shouldn’t be like ‘Yeah 
whatever.’... I’m a person with my own identity and my name is a part of that.” Sarah (white 
woman) similarly discussed how such confusion of two students could reflect the instructor 
“group[ing] them off in their mind based on race or gender.” She argued that this captures how 
“a teacher really does decide not to get to know their students” at an individual level. 

Student support in understanding. Another interpretation of classroom events was 
instructors not caring to make sure students understand the material. Jasmine (Black woman), in 
response to an event with an instructor declining to review an “easy problem” and laughing at a 
student’s request to earn more points, described how most mathematics instructors do not worry 
much about having rushed through the material and whether students understood what was 
presented in class. In particular, she commented on how instructors may not ask themselves, 
“Maybe I missed something? Maybe it was a rushed job? Maybe I didn’t teach it at all?”. 
Jasmine further acknowledged how, if she was the student in the event, the instructor’s lack of 
care “discourages [her] from asking a question about [her] exam or just asking a question about a 
concept.” Sarah (white woman) interpreted an event (namely, one with an instructor ignoring a 
student’s question) as the instructor rationalizing that they can’t “waste time” if only some 
students don’t understand the material, thus communicating “a lack of care for explaining and 
helping other students.” In Sarah’s reflection, she described being brought to “feel a little 
unimportant” and, similar to Janiya’s reflection about discouraged participation, may cause 
students in general to not ask questions because the instructor has “no interest in helping them.” 
Beatriz (Latinx woman) commented on how instructors ignoring students’ questions makes her 
feel as though she needs to “practice what [she] need[s] to practice and just look out for 
[herself]” since she “can’t rely on the professor” to answer her questions.  

Impact of classroom interactions. A final interpretation students had was that instructors 
may not be aware of the potential impact their behaviors and words on white women and racially 
minoritized students. For the event when an instructor asked a student if they owned the 
calculator that a university support program provided low-income students, Uzma (Black 
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woman), perceived the instructor as having a “level of ignorance in how certain programs in the 
university work” that could bring the student to feel the instructor was not “sensitive to [their] 
situation.” Sarah (white woman) believed that the instructor’s actions for the calculator-related 
event could be an “innocent mistake.” However, Sarah felt that the instructor should still be 
responsible in learning about the support program to avoid offending future students, “If a 
professor were to learn what it [the program] is, they would see why the mistake could be 
offensive.” For the event where the teacher told students they should consider moving down a 
course level in mathematics, Victoria (Latinx woman) commented on how instructors might not 
realize some students, particularly from minoritized backgrounds, might interpret comments in 
discouraging ways, such as “If you can’t do this, you might as well not be a doctor”.  

Summary. Participants perceived events as reflections of instructors’ lack of care in building 
relationships with students, deepening students’ understanding of content, and acknowledging 
students’ social backgrounds and life circumstances beyond the classroom. These reflections 
highlight how such lack of care could be disrupted through instructors getting to know students 
more personally and providing more opportunities for student support in instruction.  

 
Implications for Teaching Practice 

Findings from this analysis raise implications for socially affirming teaching practices in 
undergraduate mathematics education across different intersections of students’ racial and gender 
identities. The theme about underrepresentation captures the importance of teachers challenging 
racialized-gendered frames about students’ ability to shape instruction in ways that establish 
equitable participation opportunities and affirm underrepresented students’ sense of 
belongingness in STEM. In addition, the theme about instructor care raises considerations about 
the extent to which instructors design classroom learning opportunities to build relationships 
with their students and learn more about them as whole individuals. Participants reflected on 
how instructors learning more about their students, including their names and university program 
affiliations, could allow them to feel their individuality appreciated rather than being positioned 
as one of the only white women or racially minoritized students in the classroom. Such 
intentional considerations for the relational spaces of undergraduate mathematics classrooms is 
especially important in entry-level mathematics classes and larger institutions of higher 
education where high enrollment can present challenges in getting to know students personally. 

Furthermore, the fast-paced instruction and lack of student support opportunities that 
characterized the theme of instructor care points to the significance of designing undergraduate 
instruction that prioritizes student understanding. Instructor acknowledgment of how students’ 
questions and volunteered answers (regardless of correctness) advance the understanding of 
content can contribute to building supportive learning environments that challenge the 
construction of status or hierarchies of ability. With women and minortized students of color 
navigating deficit stereotypes of ability, such broadening of instructor support can minimize the 
discouragement that participants felt about asking questions and seeking help due to instructors’ 
lack of care. Findings related to the role of stereotypes capture the importance of instructors 
being mindful of how whole-class messages can be interpreted in more or less discouraging ways 
among students from different social backgrounds and histories of educational experience. 
Findings from this study, thus, build on previous research by outlining how specific actions in 
undergraduate mathematics instruction might be marginalizing for students underrepresented in 
STEM, rather than attributing such experiences of marginalization to an ethos.  
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Using a Computational Context to Investigate Student Reasoning About  
Whether “Order Matters” in Counting Problems  

 
Elise Lockwood 

Oregon State University 
 

Abstract. Students often struggle with issues of order – that is, with distinguishing between 
permutations and combinations – when solving counting problems. There is a need to explore 
potential interventions to help students conceptually understand whether “order matters” and to 
differentiate meaningfully between these operations. In this paper, I investigate students’ 
understanding of the issue of order in the context of Python computer programming. I show that 
some of the program commands seemed to reinforce important conceptual understandings of 
permutations and combinations and issues of order. I suggest that this is one example of a way in 
which a computational setting may facilitate mathematical learning. 
 
Key words: Combinatorics, Computational Thinking, Permutations, Combinations 

 
Introduction and Motivation 

Determining whether or not “order matters” in a counting problem is a perennial issue in 
combinatorics, and students often struggle with whether to use a formula involving permutations 
or combinations when they approach counting problems (if either formula is appropriate). In this 
paper, I report on a study in which students were given opportunities to engage in computational 
activity (in the form of elementary programming tasks) as they solved combinatorial problems. 
In this report, I elaborate episodes that demonstrate the ways in which computational activity 
may have served to advance students’ mathematical thinking. Specifically, I focus on the 
particular case of students engaging in computer programming to reason about permutations, 
combinations, and differences between these two fundamental operations.  

I seek to accomplish two goals in this paper. First, I want to highlight a potential pedagogical 
innovation that sheds light on our understanding of how students might reason about an 
important combinatorial idea in a meaningful way (namely, the difference between combinations 
and permutations). That is, I am interested in the combinatorial goal of identifying an activity, 
which involves computing, that might help students understand this important combinatorial 
distinction. Second, I want to provide an example of what computational thinking and activity 
might look like in a mathematical context. In this way I want to contribute to the conversation of 
how computing might be leveraged to help students to reason about mathematical concepts. I 
seek to answer the following research question: In what ways did programming commands help 
students to reason about whether or not “order matters” in a counting problem?  
 

Literature Review and Mathematical Perspective 
Literature on combinatorics. Permutations and combinations are two foundational 

combinatorial ideas, and they form the basis of much of the counting that students do. The key 
difference is that permutations count arrangements of objects – that is, differently ordered 
arrangements of elements of a set are counted as distinct outcomes. When counting 
combinations, on the other hand, differently ordered arrangements of elements are not counted as 
distinct outcomes. For example, suppose we have the set S = {1, 2, 3, 4}, and we wanted to count 
permutations (and combinations) of 3 of the elements of S. There are 24 such permutations 
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(Figure 1), and there are only 4 such combinations: 123, 124, 134, 234. An in-depth discussion 
of the formulas for permutations and combinations is beyond the scope of this paper.  

 
123, 124, 132, 134, 142, 143 
213, 214, 231, 234, 241, 243 
312, 313, 321, 324, 341, 342 
412, 413, 421, 423, 431, 432 

Figure 1 – Permutations of three of the numbers 1, 2, 3, and 4 
 
There is ample evidence that students struggle to learn and distinguish between these two 

ideas (e.g., Annin & Lai, 2010; CadwalladerOsker, Engelke, Annin & Henning, 2012). In 
particular, many researchers have cited that a common error and struggle for students is to 
determine when to use a combination formula or a permutation formula. Batanero, et al., (1997) 
cite “errors of order” as being one of the primary errors that students encounter, and Annin and 
Lai (2010) discuss difficulties that students have maneuvering issues of order in counting. 
Lockwood (2014) previously showed examples of students not being sure of how to differentiate 
between when “order matters” and when it does not. Lockwood reports that when solving a 
counting problem, an undergraduate student, Kristin, said “I’m doing the combination ones 
because I’m pretty sure order doesn’t matter with combination” (Lockwood, 2014, p. 33). When 
asked why, Kristin said, “I’m not sure about that one (laughs). I just kind of go off my gut for it, 
on the ones that don’t specifically say order matters or it doesn’t matter” (p. 33). This response is 
perhaps indicative of students’ approaches to the distinction between permutations and 
combinations – often they do not have well-understood ways to differentiate between the two. 
Some have reported on ways to try to address this. Lockwood (2013, 2014) contends that by 
focusing on the set of outcomes, students can reason about the nature of outcomes as a way to 
clarify what is being counted, thus helping to determine whether or not counting matters.  

Literature on computational thinking and activity. Mathematics departments across the 
country increasingly emphasize the importance of computation. As evidence for this trend, 
consider a) departments that include “computational requirements” for their mathematics majors, 
b) the growth of the branch of computational mathematics, and c) the myriad applications of 
computational mathematics, ranging from work with big data to modeling real-world problems 
using sophisticated software. Science, Technology, Engineering, and Mathematics (STEM) 
education researchers have focused on computation in the last decade especially, and computer 
scientist Wing (2006, 2008) coined the term computational thinking as analytical thinking that 
“takes an approach to solving problems, designing systems, and understanding human behavior 
that draws on concepts fundamental to computing” (Wing, 2008, p. 3717). In addition, the Next 
Generation Sciences Standards (NGSS Lead States, 2013) includes “using mathematics and 
computational thinking” (p. 37) as one of eight key scientific practices. I currently adopt the 
following definition of computational thinking, adapted from Wing (2014): Computational 
thinking is the way of thinking that one uses to formulate a problem and/or express its solution(s) 
in such a way that a computer (human or machine) could effectively carry it out.  

Weintrop, et al. (2016) developed a “taxonomy of practices focusing on the application of 
computational thinking to mathematics and science” (p. 128). I use this taxonomy of practices, 
especially the computational activities associated with Computational Problem Solving Practices, 
to characterize computational activity. These include preparing problems for computational 
solutions, programming, choosing effective computational tools, assessing different 
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approaches/solutions to a problem, creating computational abstractions, and troubleshooting and 
debugging (p. 135). Practically, for the results described in this paper, the students engaged in 
basic programming tasks in Python, and this primarily included preparing problems for 
computational solutions, programming, and troubleshooting and debugging. 

 
Theoretical Perspectives 

Characterizing combinatorial thinking and activity. In considering students’ 
combinatorial thinking, I use Lockwood’s (2013) model, which frames students’ combinatorial 
thinking in terms of three key components: Formulas/Expressions, Counting Processes, and Sets 
of Outcomes. Formulas/Expressions are mathematical expressions that yield some numerical 
value. A formula or expression is what a student may write as “the answer” to a counting 
problem. Counting Processes are the imagined or actual enumeration processes in which a 
student engages – that is, the steps or procedures that one completes when solving a counting 
problem. Sets of Outcomes are the sets of elements that are being counted. The cardinality of the 
set of outcomes typically determines the answer to the problem.  

Reinforcing the relationship between counting processes and sets of outcomes. The 
relationship between counting processes and sets of outcomes is particularly important for 
students to develop. In terms of the model, one way to frame students’ difficulties with counting 
is that students do not clearly connect their counting processes with the outcomes they are trying 
to enumerate (Lockwood, et al., 2015). Thus, a possible solution to improve students’ 
combinatorial problem solving is “to reinforce the relationship between counting processes and 
sets of outcomes, and to help students integrate the set of outcomes as a fundamental aspect of 
their combinatorial thinking and activity” (Lockwood, 2014; p. 36). One way to establish and 
strengthen this relationship is through the systematic listing of outcomes. 

Lockwood and Gibson (2016) showed that listing behavior (taken as partial and complete 
listing) was positively correlated with correctly answering combinatorial problems for novice 
counters. Lockwood and Gibson hypothesized potential reasons for this correlation, namely that 
in terms of the model, listing supports the relationship between counting processes and sets of 
outcomes. This prior work suggests that the activity of listing has the potential to strengthen the 
important relationship between counting processes and sets of outcomes, and thus serve as an 
avenue by which students can solve combinatorial problems more successfully.  

Computational activities represent a natural extension of listing. Even though prior work 
has demonstrated that listing is a potentially valuable combinatorial practice (Lockwood & 
Gibson, 2016), solutions to combinatorial problems can be enormous (there are ten billion 10-
digit PIN numbers, for example). It is often not feasible for students to generate complete lists of 
outcomes by hand. Partial listing also has limitations, as patterns do not always extend to all 
cases, and students often fail to detect subtle errors. Thus, there is a dilemma – we know that 
listing can be valuable, but listing by hand has clear drawbacks. This leads to a question of how 
we can move past limitations of by-hand listing in order to facilitate listing in more complex 
problems and contexts. Fortunately, there is a natural solution to this question: we can leverage 
technology and computational activities, allowing students to reap similar benefits of by-hand 
listing by designing algorithms and computer programs to enumerate lists. I hypothesize that 
such activity can potentially strengthen the relationship between counting processes and sets of 
outcomes, which can help students solve counting problems. As noted in the Literature Review, I 
adopt Weintrop, et al.’s (2016) taxonomy in defining computational activity. I particular focus on 
programing, trouble shooting, and debugging as the primary computational activities.  

22nd Annual Conference on Research in Undergraduate Mathematics Education 387



 
Methods 

Participants and Data Collection. In this paper I report on data from a teaching experiment 
(Steffe & Thompson, 2000) that consisted of 15 hours of contact time with two students in 60-90 
minutes sessions. The participants I discuss in this paper were two vector calculus students who 
were interviewed as a pair (pseudonyms Charlotte and Diana). Both were novice counters and 
had no programming experience in high school or in college, and they were chosen based on 30-
minute selection interviews. They were paired together because they had relatively similar 
backgrounds and abilities, and they also had schedules that allowed them to meet together for 15 
hours over the term. Charlotte was a sophomore and Diana was a freshman at the time of the 
interviews, and both students were majoring in chemistry with an interest in forensic science.  

During the TEs, the students sat together and worked at a desktop computer in the 
programming environment PyCharm. I gave them paper handouts and also wrote the tasks and 
prompts in PyCharm, and the students used PyCharm to edit and run the Python code. To capture 
the interviews, I videotaped and audiotaped the interviews, and I also took a screen video 
recording of their work on the computer. This allowed me to view the students’ on-paper work 
and their interactions, as well as what they programmed and how they used the computer.  

Tasks. Over the course of the TE, I gave the students a variety of tasks in which they were 
asked to use the computer to determine the answers to counting problems. I created these tasks 
with the goal of targeting some fundamental combinatorial ideas, particularly focusing on the 
relationship between counting processes and sets of outcomes. The tasks overall followed a 
trajectory toward helping students reason about key combinatorial ideas including the 
multiplication principle, basic operations of permutations and combinations, and aspects of 
positional reasoning and encoding outcomes. For example, the tasks in Figures 2 and 3 
represents typical tasks in the TE. Generally, I had them engage in programming directly by 
writing and running code, or I had them evaluate excerpts or outputs of code. I frequently asked 
for follow up questions or asked them to reflect on their thinking and activity. In this way, the 
interviews were interactive.   

For the purposes of this paper, I focus especially on the tasks involving the development of 
permutations and combinations. In developing such tasks, I had considered some ways in which 
these ideas of permutations and combinations might be coded using Python. In particular, the 
task in Figure 2 shows how the symbol != helps to count permutations of 5 of the letters in the 
word PORTLAND. Note that != means “not equal to,” and the if statements within the for loops 
indicate that the outcomes will not be printed if any of the characters are equal to previous 
characters. In this way, the inclusion of != in this code counts permutations in which repetition of 
characters is not allowed.   

In a similar way, the task in Figure 3 shows how the symbol “>” might function in Python. 
By encoding the elements we want to count (books, in this case) as numbers, we can compare the 
elements using the greater than symbol. Thus, the “if j > i” condition will only consider 
arrangements for which a subsequent character is strictly greater than previous characters. 
Essentially, this would count something like 1, 2, 3, but it would not count 1, 3, 2 or 2, 1, 3, or 
any other arrangement of the numbers 1, 2, and 3. This is exactly what we want to count with 
combinations – subsets, but not arrangements, of some elements. The students were able to make 
sense of what the commands might mean and might do in terms of outcomes. As we will see in 
the results, the act of programming these ideas seems to have beceme meaningful and useful for 
them. 
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Figure 2 – A task to elicit permutations 

 

 
Figure 3 – A task to elicit combinations 

 
Data Analysis. For the results shared in this paper, I reviewed transcripts, particularly 

episodes in which the students used, referred to, or reflected upon the “not equal to” or “greater 
than” symbols in their code. This allowed me to analyze the students’ reasoning about these 
symbols, and I sought to understand and create a narrative (Auerbach & Silverstein, 2003) about 
their reasoning about and use of those symbols.  
 

Results 
In this section I describe the students’ reasoning about the “not equal to” and “greater than” 

symbols as ways to express certain combinatorial constraints. In having to communicate with the 
computer via Python code, the students had to think about how the computer interpreted these 
different symbols and what the resulting output of the code would be. I will make the case that 
this experience helped the students make a meaningful distinction between these symbols and 
could clearly make a connection between these two ideas and what they did in terms of the 
outcomes. The students established meanings of these symbols as commands they gave the 
computer, and that this experience helped them to understand important aspects of counting.  

The students first thought about the not equals to symbol (!=) in a problem in which they had 
to think about code that listed the number of ways to list arrangements of 5 people. In the excerpt 
below, we see the students initially interpreting and considering the != notation.  
 
Int.: What do you this the code’s doing. 
Charlotte: Gosh a lot of code.  
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Diana: I think for sure that the statements have the exclamation point each time, that’s 
making it so that these values will not repeat, which makes sense when you have five 
people because you can’t just repeat a person. 

Charlotte: Yeah, that makes sense. Yeah, kind of what she was saying, I think the code, yeah, 
just trying to figure out how many different arrangements each person can be in and 
then yeah, each of these exclamation points, like Diana said, is to make sure John 
isn’t sitting in two different seats at the same time. 

 
As we see in the underlined portion, the students were beginning to understand what the != 
symbol might be doing in terms of the context of the problem – namely, not allow for John to sit 
in two different seats at the same time.  

Later in the teaching experiment the students were working on the Lollipop problem, which 
says, “How many ways are there to distribute 3 identical lollipops to 8 children?” The students 
had written code in which they used a greater than sign. Here they had established that they 
wanted to count sets of 3 numbers from the numbers 1 to 8, which would represent which 
children get lollipops. They noted that they did not want to count arrangements of these numbers 
because the lollipops are identical. In the excerpt below, we see Diana articulate the important 
fact that the use of “greater than” eliminates duplicates, in the sense of not allowing for both 
outcomes of 1, 2, 3 and 2, 3, 1 to be counted.  
 
Charlotte: Because, yeah, then it eliminates the factor of duplicates.  
Int.:  Okay. And can you say again, how that ‘greater than’ sign eliminates the duplicates 

like you said? 
Diana: So, like it says that k is not able to be less than j, it always has to be greater than. So, 

and in the example of the 1, 2, 3, it’ll print 1, 2, 3, but then when it comes to printing 
2, 3, 1, it won’t be able to do it because k can’t be 1 when these two are 2 and 3.  

 
I suggest that, in these examples, the students were engaging in computational thinking. Diana’s 
comments above suggest that she was considering what the computer would output, which 
suggests that she was thinking about what steps and procedures the computer was engaging in as 
it completed the program. In this way, the students seemed to be reasoning about the solution in 
such a way that they were considering what the computer must have done to carry it out.  

Throughout the remainder of the interviews, the students continued to make this distinction 
and to use it in reasoning about problems. While I do not have space to detail each of these 
occurrences, I conclude these results with a wrap up discussion from the final session. We had 
explicitly asked the students some reflection questions about their coding and how they thought 
about certain aspects of their code. In the excerpt below, we see the students responding to a 
prompt that asked them to reflect on the difference between the > and != symbols. 
 
Charlotte: Okay. So, the greater than symbol definitely plays an important role. In this problem 

with the alphabet, the greater than symbol played a role because you didn’t wanna 
have A, E, I, O, and U not in alphabetical order. So, it helps arrange them in that 
order because A representing one, E representing 2, I representing 3, O for 4, and U 
for 5. You don’t wanna have 3, 4, 5, 2, 1. So, that greater than symbol helps play a 
role for that. Do you wanna explain the not equal to? 

Diana: Sure. So, the not equal to sign helps prevent the outcomes from being 1, 1, 1, 2, 2, 2. 
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And in the case of the lollipop and the red balloon problem, you don’t want one kid, 
which would be 1, 1, 1, getting all three lollipops. So, you use the not equal to 
statement. 

 
In sum, while the students referred to particular problems in discussing the utility of each 
command, I contend that they were establishing ways of reasoning about these commands and 
issues of order in solving counting problems. They could clearly articulate the different commands 
and what they counted in terms of the sets of outcomes. 
 

Discussion, Conclusion, and Implications 
In this paper, I offered evidence of ways in which students reasoned about commands in 

Python in order to think about whether order should matter in solving counting problems. The 
students did eventually come to understand more general formulas for permutations and 
combinations, although they did not necessarily refer to them by those names. The point is that 
the students seemed to have established meaningful ways of thinking about generating outcomes 
through a program, and the symbols in the commands put certain constraints on what outcomes 
were being generated. In this way, the students were formulating a relationship between the 
counting process (the programs that involved nested for loops) and the outcomes that were being 
generated. By specifying that i != j or j > i, the students were imposing constraints that dictated 
the nature of the outcomes.  I contend that the computing environment in particular leveraged 
this kind of activity and reasoning about these important combinatorial ideas. 

There are obviously many different productive ways that students can reason about counting 
processes and outcomes. I am not claiming here that this is a superior way for students to reason, 
nor that it is the only way that they should reason about these ideas. But, the students seemed to 
demonstrate a solid and meaningful understanding of these ideas. Their understanding of what 
the greater than sign indicated in terms of duplicates stands in contrast to Lockwood’s (2014) 
student who said she just went “off her gut.” I certainly do not want to simply have mantras of “< 
means order doesn’t matter” or “!= means order does matter”, but I do not this was how the 
students were reasoning. Rather, it seems that by actually thinking carefully about what the 
program was doing in terms of those symbols, and thinking about both what those commands 
told the computer and how the computer implemented and carried them out, the students 
developed a better understanding of how the outcomes were being generated.  

These findings provide an existence proof that meaningful mathematical ideas can be 
introduced and reinforced in computational settings. This suggests that there is more to study and 
learn related to the relationship between computational activity like programming in students’ 
mathematical reasoning and activity.  
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Conversations on Density of ℚ in ℝ 
 

 Ofer Marmur Ion Moutinho Rina Zazkis 
 Simon Fraser University Universidade Federal Fluminense Simon Fraser University 

We explore the notion of density of the set of rational numbers in the set of real numbers, as 
interpreted by undergraduate mathematics students. Participants’ responses to a scripting task, 
in which characters argue about the existence of one or infinitely many rational numbers in a 
real number interval, comprise the data for our study. The framework of reducing abstraction is 
used in explaining the participants’ mathematical behavior when coping with the task. The 
analysis reveals informal ideas related to density as well as unconventional understandings of 
density-related concepts of rational numbers and infinity. 

Keywords: density, rational numbers, scripting tasks, reducing abstraction 

The notion of density is one of the main characteristics of the rational numbers, which 
distinguishes these from natural numbers and integers. However, the notion of density has not 
yet received significant attention within the growing body of research in mathematics education 
at the tertiary level. While the notion of density is the main focus of this paper, we demonstrate 
how engaging students in a discussion on density brings to light some of their underlying ideas 
on the structure and nature of rational numbers. However, prior to presenting the details of our 
study, we supply an overview of the notion of density in mathematics education research, 
followed by a discussion on mathematical nuances related to the concept. 

The Notion of Density in Mathematics Education Research 
The investigation of learners’ understanding of the notion of density in prior research was 

associated with the development of understanding of rational and irrational numbers. In this 
regard, Vamvakoussi & Vosniadou (2004) argued that the understanding of rational numbers 
requires a conceptual change, which is a lengthy and gradual process. They further assumed that 
the idea of discreetness, developed through experience with natural numbers, is a “fundamental 
presupposition which constrains students’ understanding of the structure of the set of rational 
numbers” (p. 457). 

In studies that focused on learners’ ideas in relation to density, middle and high school 
students were often given a particular interval (such as “numbers between 0.21 and 0.22” or 
“numbers between 1/10 and 1/11”), and subsequently asked multiple variations of similar-idea 
questions – such as whether there exist any rational numbers in the interval, how many rational 
numbers exist in the interval, and so forth (e.g., Vamvakoussi & Vosniadou, 2004, 2007; 
Vamvakoussi, Vosniadou, & Van Dooren, 2013). The findings pointed to a natural number bias, 
in the sense that the discreetness of natural numbers, as well as the existence of a successor in 
natural numbers, were extrapolated to rational numbers. This resulted in frequent mistakes, 
reported both with common fraction and decimal fraction representations of rational numbers. 

In several studies that explored teachers’ understanding of irrational numbers, the issues 
related to density appeared as part of the tasks. For example, Sirotic and Zazkis (2007) focused 
on the density of both sets of rational and irrational numbers, and inquired into how prospective 
secondary teachers’ “fit together” these two sets. In particular, they asked participants to 
determine whether it was possible to find a rational (or irrational) number between any two 
rational (or irrational) numbers. We note that in the density related items there was no specific 
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attention to the option of a general interval of real numbers, that is where one endpoint may be 
rational and the other irrational. In the current paper we address this aspect and attend to the 
more general property – the density of the set of rational numbers in the set of real numbers. The 
following section elaborates on this issue. 

On Density: Density of#ℚ vs. Density of ℚ in ℝ 
We observed that most of the studies that explicitly discuss the density of rational numbers 

attend exclusively to the set of rational numbers. However, the notion of density of the rational 
numbers is more general: not only that the set of rational numbers ℚ is dense, i.e., dense within 
itself, but it is also dense in the set of real numbers ℝ. Formally, we attend to the  following 
definitions:  

•! Definition 1: Given a $ ⊂ ℝ, we say that X is dense if for every &, ( ∈ $ there is 
a * ∈ $ such that & < * < (. 

•! Definition 2: Given a subset $ ⊂ ℝ, we say that X is dense in ℝ if for every 
&, ( ∈ ℝ there is a * ∈ $ such that & < * < (. 

Note that Definition 2 appears in formal mathematics texts (e.g., Bartle & Sherbert, 2011; 
Courant & John, 2012), while variations of Definition 1 are implied in the mathematics 
education research literature (e.g., Vamvakoussi & Vosniadou, 2010; Malara, 2001). That is, 
mathematics education research has primarily focused on the existence of rational numbers in a 
rational number interval, rather than in the interval of real numbers. However, the density of a 
set does not imply its density in ℝ.  Consider for example the set X = (0, 1) ! ℚ, which is dense 
(meaning within itself), yet not dense in ℝ. Hence, the density of ℚ in ℝ cannot be deduced from 
the density of ℚ, and therefore requires a separate consideration. As such, our study attends to 
the notion of density of ℚ in ℝ, specifically as understood by undergraduate students.  

Theoretical Framework: Reducing Abstraction 
The framework of reducing abstraction was introduced by Hazzan (1999) when inquiring 

into students’ struggles with concepts and ideas of Abstract Algebra. The basic premise of the 
framework is that when solving mathematical problems, students may operate on a lower level of 
abstraction than is intended by the task or the instructor. The framework is based on three 
different interpretations of abstraction discussed in the literature, described briefly below. It is 
important to note that these interpretations are neither mutually exclusive nor exhaustive. 

a)! The interpretation of abstraction level as the quality of the relationship between the object 
of thought and the thinking person is based on the idea that abstraction is not a property 
of an object, but rather on “a property of a person’s relationship to an object” (Wilensky, 
1991, p. 198). An illustration of this idea is provided by Noss and Hoyles (1996) who 
wrote “To a topologist, a four-dimensional manifold is as concrete as a potato” (p. 46). 

b)! The interpretation of abstraction level as reflection of the process–object duality is based 
on the process–object duality, suggested by several theories of concept development in 
mathematics education (e.g., Dubinsky, 1991; Sfard, 1991). Despite the differences in 
further elaborations, researchers agree that during learning stages of a mathematical 
concept, its conception as a process precedes – and as such is on a lower level of 
abstraction – than its conception as an object. 

c)! The interpretation of abstraction level as the degree of complexity of the mathematical 
concept is based on the assumption that a more complex object is more abstract. For 
instance, a particular example demonstrating a property is less abstract than a general 
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claim justifying a property; a particular element of a set, or a particular subset, is less 
abstract than the set itself; and so forth. 

In addition to the initial work in Abstract Algebra (Hazzan, 1999), the framework was 
employed in different areas of mathematics, such as differential equations (Raychaudhuri, 2014) 
and a variety of topics in school mathematics (Hazzan & Zazkis, 2005). Hazzan (2003) provided 
a comprehensive report that illustrated the application of the reducing abstraction framework in a 
variety of situations and topics taken from undergraduate mathematics. In this paper we describe 
an application of the framework in analyzing students’ ideas of density, and demonstrate the role 
of reducing abstraction in students’ conceptions of real and rational numbers.  

The Study 

Participants and Setting 
The participants of the study were 95 first-year undergraduate students enrolled in a 

Bachelor’s degree in mathematics in a highly-ranked university in Brazil. At the time of data 
collection the students were enrolled in a “Foundations of Mathematics” course, which provided 
a foundation for subsequent Pre-Calculus, Calculus, and Real Analysis courses. It was assumed 
that the students were familiar (at least to some degree) with how rational numbers are defined, 
with different representations of rational numbers, and with the relation between different 
number sets (natural-, integer-, rational-, irrational-, and real numbers). During the course, 
special attention was given to the representation of numbers and intervals on the real number 
line. In the middle of the course, the students responded to a task that dealt with the notion of 
density, as described in the following section. 

The Task and Research Questions 
The task that was presented to the participants of the study belongs to the genre of scripting 

tasks. In such tasks, participants are typically given a beginning of a dialogue, referred to as a 
prompt, and are asked to extend the dialogue in a way they find mathematically and 
pedagogically fit. Scripting tasks were used in prior research in various mathematical contexts 
(e.g., Kontorovich & Zazkis, 2016; Marmur & Zazkis, 2018; Zazkis & Herbst, 2018), and their 
advantages were elaborated upon in detail (e.g., Zazkis, 2018). In particular, a significant feature 
of scripting tasks is that they provide script-writers the opportunity to consider or revisit the 
mathematical ideas related to the task, and offer researchers a lens on the script-writers’ 
understanding of these particular mathematical concepts and relations. 

The prompt for the particular task analyzed herein (see Figure 1) presents a disagreement on 
how many numbers can be found in a given interval of real numbers.  

 
Pedro:!! Hello,!Maria!!Did!you!manage!to!explore!the!applet1?!
Maria:!! Yes,!it!was!quite!nice.!Here's!my!conclusion:!Given!two!distinct!numbers!on!the!line,!a!and!

b,!we!can!always!find!a!rational!number!between!a!and!b.!
Pedro:!! Wow,!my!conclusion!was!very!similar!to!yours,!but!there!is!a!difference.!See:!Given!two!

distinct!numbers!on!the!line,!a!and!b,!there!are!infinitely!many!rational!numbers!between!a!
and!b.!

Maria:!! I!don’t!think!so,!how!did!you!come!to!that!conclusion?!
Pedro:!! ...  

Figure 1: Prompt for the scripting task  

                                                
1 The applet (https://www.geogebra.org/m/nruYwQAd) provided an interactive and virtual environment to explore 
density. However, students’ interaction with the applet is outside the scope of our analysis in this paper.  
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In addition to continuing the dialogue (Part-A of the task), the participants were asked to 
present a mathematical analysis reflecting their personal understanding of the issue (Part-B). 
This was in order to be able to distinguish between student-character statements that might 
represent a “student way of thinking”, and statements that represent the script-writer’s own ideas.  

The task was designed to uncover the participants’ informal ideas about the density of ℚ in 
ℝ, ideas on which the formal proof is built in a later course. Note that while the claims of Maria 
and Pedro are presented in a form of disagreement in the task, they are in fact equivalent as each 
claim implies the other. 
Initially, the task was designed to address the following research question: 

•! What is revealed in the participants’ claims in regard to their informal ideas about the 
density of ℚ in ℝ?  

Through the examination of data, we added another research question, to which we attend herein: 
•! What is revealed in the participants’ claims in regard to their understanding of infinity, as 

well as real and rational numbers?  

Data Analysis 
The data for this study are comprised of the scripted dialogues composed by the participants, 

together with their personal mathematical analyses of the issues at hand. As in prior research that 
used script-writing for data collection, we regarded the ideas expressed in the scripted dialogue, 
on which both characters agree, as ideas held by the student who composed the dialogue, unless 
explicitly stated otherwise in the mathematical analysis section.  

In the first round of analysis we identified with which character (Maria or Pedro) the script-
writers agreed. In the second round we focused on the arguments that were provided in support 
of one of the characters’ views. While focusing on the existence of rational numbers in an 
interval, the participants revealed in the voices of their characters some unconventional 
understandings of rational numbers and ideas related to infinity, which are in discord with 
mathematical convention. Accordingly, in the third round of analysis we identified and analyzed 
these unconventional and at times idiosyncratic understandings by utilizing the framework of 
reducing abstraction (Hazzan, 1999). The findings from this round are presented below.  

Findings 
While the instruction of the task did not require the students to choose which statement they 

thought was correct, most of the participants explicitly agreed with one of the characters in the 
dialogue. In fact, out of the 95 participants, the majority (n=69) sided with Pedro. The other 
students either agreed with Maria (n=10), or with both (n=11), or did not voice any explicit 
agreement with either character (n=5). However, regardless of the chosen claim (Maria’s or 
Pedro’s), the students’ arguments and justifications were at our focus of attention, as they 
provided a lens into their understanding of density and related concepts. In what follows we 
exemplify participant ideas related to density, though at times incomplete or erroneous, that 
illuminate their understanding of real and rational numbers.  

Referring to a Ruler to Spread Rational Numbers on the Number Line 
One method students employed in order to deal with the task was to first “spread” rational 

numbers all over the number line, typically represented with a ruler, and only subsequently place 
the points & and ( in their accurate location, whilst already having rational numbers “ready-
made” in between.  
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Pedro: Don’t you know that between two points on the number line we have several other 
points? 

Maria: Yes, I know! But I don’t agree that there are infinite numbers.   
Pedro:  I'll explain with a ruler how I came to this conclusion and you're going to agree with 

me. When we get the school ruler we can see the cm because we have the traces, right? 
So we can also do with millimeters. 

Maria: Yeah. But what does this have to do with what I said? 
Pedro: Calm down, I'm getting there! After we have observed that between the cm exists the 

mm, and that to arrive at the value of 1 cm we need to count 10mm, then we can 
conclude that in order to arrive at the value of 1 mm, we will need to count another 10 of 
some value that we do not use normally and so on. As you can see, my points A and B 
are between 0 and 1, and when we partition that same measure we realize that there can 
be found infinite numbers between them. The more partitioned, the more numbers are 
found! 

We regard this type of mathematical behavior as reducing the level of abstraction in the 
following three ways. First, we recognize this abstraction reduction as reflection of the process-
object duality (Hazzan, 1999). That is, the students attend to the process of creating infinitely 
many rational numbers using “smaller and smaller” partitions, rather than to the existence of 
these numbers. We note that the above excerpt does not actually demonstrate the existence of 
infinitely many rational numbers between & and (, but only points towards a process that can 
continue indefinitely in order to produce them.  

Secondly, we view the abstraction level in regard to the applicability, concreteness, and 
tangibility of the mathematical object. In this case, the rational numbers are related to a real-life 
application of measuring distances, and exist in a physical form as lines on the measuring ruler. 
Thirdly, we consider the abstraction reduction in relation to the logical complexity of the given 
statement. Meaning that instead of demonstrating the existence of rational numbers (whether one 
or infinitely many) for a given segment, the students herein swap the logical order by first 
creating rational numbers with a ruler, and only then positioning the segment on the number line. 
This mathematical behavior is in line with the logical difficulties observed by Dubinsky and 
Yiparaki (2000), where students confuse between AE and EA statements (i.e., ∀-#∃/#0(-, /) 
versus ∃/#∀-#0(-, /) ).  

Particular Intervals and Sequences with Discernable Patterns 
Many students chose to work with specific intervals in which rational numbers were searched 

for (that is, with particular choices for a and b), typically accompanied by a construction of a 
sequence with a clear pattern. The following excerpt illustrates this tendency:  

Pedro: Now we can take as an example a number that is between 0 and 1, tell me all that 
comes to your mind. 

Maria: Well, we can think of half of 1 = 1/2 = 0.5. 
Pedro: Yes, we can, this number is certainly between 0 and 1 right there in the middle. But 

we can get a lot more numbers. Think of a few more. 
Maria: Okay, how about these: 1/3, 1/4, 1/5. 
Pedro: Perfect, those are certainly between zero and one. Did you notice that you can 

increase the denominator until you get tired? 
Similarly, other sequences in various participants’ scripts followed an easy-to-guess pattern, 

such as the sequence 0.11, 0.101, 0.1001, 0.10001, …, given between 0.1 and 0.2. Most 
sequences approached one of the endpoints of the interval (in fractional or decimal 
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representation), though some were placed somewhere “in between”, e.g., the sequence 0.1, 0.11, 
0.111, 0.1111, …, in the interval (0,1). This demonstrates an abstraction reduction towards the 
process (versus object), where students focus on the calculative aspect of producing particular 
sequences of rational numbers in an interval. Furthermore, we suggest that by producing simple-
patterned sequences as illustrated above, the students were not attending to the arbitrary nature of 
the segment (&, (), and how rational and irrational numbers are situated in it. 

Additionally, the level of abstraction is reduced here in relation to the degree of complexity 
of the concept of thought (Hazzan, 1999). Not only is there a preference towards particular 
numbers rather than arbitrary real & and (, but also & and ( are always chosen as integers or 
rational numbers, thus reducing the complexity degree of the concept of an interval. 
Consequently, the level of abstraction being reduced is also manifested by students accepting 
particular examples as a valid justification (see Hazzan & Zazkis, 2005). In most cases we could 
find no evidence, neither in the scripts nor in the accompanying mathematical analysis, which 
demonstrated awareness that the particular examples were not generic, in the sense that the 
general case could not be concluded from the chosen examples. To the contrary, we witnessed 
cases in which the consideration of segments with irrational endpoints was explicitly rejected, 
demonstrating that working in a reduced level of abstraction was a conscious choice.  

Pedro: I imagined A and B as integers…  
Maria: But, does it work for my numbers? Is this a rational number that I find between A and 

B? 
Pedro: I'm not sure. I think that for this rational number to be the midpoint it is necessary for 

A and B to be rational numbers. Imagine if the points were √2 and π. I think the midpoint 
would be irrational because √2 and π are irrational. 

Maria: Ihh! It's already complicated. Let's stay with rational numbers for now? 

Fractions are Small Numbers 
As illustrated in the previous sections, we noticed that many students not only chose to work 

with specific intervals, but also situated the problem around the number zero. This led us to 
suspect that some students have a concept image (e.g., Tall & Vinner, 1981; Vinner, 1983) of 
fractions as “small numbers”, that is, what we refer to as positive proper fractions. The following 
representative excerpt supports this interpretation, exemplifying only positive proper fractions 
without attention to the interval in which rational numbers are being sought: 

Pedro: Note that if I divide a unit into 2,3,4,5 parts and get one of them, ex. 78, 
7
9, and so on ... 

I'm dividing this unit into smaller and smaller parts but I'll never get to zero. And as I can 
put any integer value, there will be infinite parts without reaching zero. 

Maria: I had not thought of it this way, but that does not mean that my statement is wrong. 
Pedro: Yes, I agree with you that we will always find a point between a and b. But my 

demonstration goes further and shows that we can find infinite points between a and b. 
As Raychaudhuri (2014) elaborated, students can reduce the abstraction level of a problem or 

concept by ignoring or “freeing” the context in which it is situated. In the current case this is 
done by attending to rational numbers with no regard to the segment (a, b) in which they are to 
be found. Our interpretation of this tendency as illustrative of students’ abstraction reduction is 
further supported by Zazkis (2014), who regarded the students’ evoked example space (Watson 
& Mason, 2005) – which “accounts for what specific examples are actually used” (Zazkis, 2014, 
p. 34) – as indicative of how students reduce the abstraction level of a concept by attending to 
particular examples.  
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Personal Meaning of “infinite rational numbers” 
Another phenomenon we observed in the data was students’ preference towards their own 

personal meaning of mathematical concepts over conventional interpretations. Note that the 
Portuguese formulation of the task “infinitos números racionais entre a e b” literally translates to 
“infinite rational numbers between a and b”, though for the purpose of this report was translated 
to “infinitely many rational numbers between a and b”. However, some students interpreted the 
expression “infinite rational numbers” as a rational number that has an infinite decimal 
representation, rather than the intended meaning of an infinite amount of rational numbers. Once 
such a number was found (e.g., 0.666…), the subsequent conclusion was that Pedro’s assertion 
was correct, and therefore there are “infinite rational numbers” between & and (. 

Related to Hazzan (1999) interpretation (a) above, Raychaudhuri (2014) found that one way 
in which students reduce the level of abstraction is by referring to their own personal meaning of 
a concept. That is, they choose their own interpretation, which is based on their personal 
mathematical (and non-mathematical) experience, rather than search for and base their ideas on 
conventional mathematical meanings. By regarding 0.666… as “infinite numbers”, the script-
writer reduced the abstract nature of grasping a non-concrete infinite amount of numbers, and 
changed the meaning to a single and concrete number whose digits continue indefinitely. 

Discussion and Conclusion 
The current research was designed to gain deeper insight into undergraduate students’ 

understanding of the density of rational numbers within the set of real numbers. The findings 
demonstrate the complexity of this notion for learners. In particular, the participants in this study 
demonstrated difficulties in justifying their chosen mathematical claims in an appropriate 
manner. This revealed unconventional yet somehow limited understandings of the relation 
between rational and irrational numbers, as well as the notion of infinity.  

When analyzing the data, the framework of reducing abstraction proved to be a valuable tool 
in explaining the participants’ mathematical behavior and their coping mechanisms with the task. 
Rather than attending to the general structure of a segment on the real number line, and how 
rational and irrational numbers interlay within it, it seems that the participants concentrated on 
specific examples, contexts, processes, and personal meanings, consequently reducing the 
intended abstraction level of the task. This also revealed certain mathematical conceptions and 
ideas held by the participants: a concept image of fractions as small (positive) numbers; a 
restricted view on the notion of infinity which is solely regarded as a process (e.g., Dubinsky, 
Weller, Mcdonald, & Brown, 2005); and a rational-number bias in the sense of: (a) a strong 
preference towards working with rational numbers whilst rejecting cases with irrational numbers, 
and (b) regarding particular examples with rational numbers as explanatory justifications of the 
general case which includes real numbers as well.  

In conclusion, the contributions of our findings are twofold. First, our study expands on 
previous research in mathematics education, and explores not only learners’ understanding of the 
density of ℚ (within itself), but also of the density of ℚ in ℝ. The findings suggest that by 
placing the discussion in the context of real numbers rather than rational numbers only, the level 
of mathematical complexity rises, which may also explain the resulting student behavior of 
reducing the level of abstraction. Secondly, when examining the scripts that are situated in this 
more general mathematical context, the findings demonstrate mathematical ideas that are held by 
learners not only in relation to rational numbers, but also in relation to irrational numbers and the 
notion of infinity. These insights into unconventional student understandings could in turn be 
utilized for the development of suitable teaching practices that address these student conceptions. 
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Example Spaces for Functions: Variations on a Theme 
 

 Ofer Marmur Rina Zazkis 
 Simon Fraser University Simon Fraser University 

In this study we focus on example spaces for the concept of a function provided by prospective 
secondary school teachers in an undergraduate program. This is examined via responses to a 
scripting task – a task in which participants are presented with the beginning of a dialogue 
between a teacher and students, and are asked to write a script in which this dialogue is 
extended. The examples for functions fulfilling certain constraints provide a lens for examining 
the participants’ concept images of a function and the associated range of permissible change. 
The analysis extends previous research findings by providing refinement of students’ ideas 
related to functions and the concept of the function domain.  

Keywords: function, script writing, example space  

The Function Concept 
The concept of a function is fundamental in mathematics, and it has been repeatedly regarded 

in the education literature as a central concept in the mathematics curriculum from school to 
undergraduate studies (e.g., Ayalon, Watson, & Lerman, 2017; Dreyfus & Eisenberg, 1983; 
Dubinsky & Wilson, 2013; Hitt, 1998; Paz & Leron, 2009). However, it has been demonstrated 
that undergraduate students often struggle with similar difficulties as those attributed to 
secondary school students. These include difficulties in recognizing what is or is not a function, 
especially in cases of “irregular” curves; difficulties in defining what a function is, and not 
alluding to the definition when working with functions; difficulties in linking and changing 
between different representations of functions; incorrect assumptions that all functions are 
continuous and smooth, or need to be expressed as a single formula, equation, or rule; 
overemphasis on graphic representation and reasoning (such as the vertical line test); and 
overreliance on procedural algebraic computations (compiled from Dreyfus & Eisenberg, 1983; 
Even, 1998; Hitt, 1998; Leinhardt, Zaslavsky, & Stein, 1990; Sánchez & Llinares, 2003; Steele, 
Hillen, & Smith, 2013; Thomas, 2003). As articulated by Huang & Kulm (2012), these types of 
mistakes are “serious and striking” (p. 427).  

The current study is focused on function examples generated by a group of prospective 
secondary school teachers in an undergraduate program in response to an imagined mathematics-
classroom situation. We analyze the generated examples, and demonstrate how the collective 
example space of the group provides insight into students’ ideas and conceptions of a function. 

Theoretical Underpinnings: Example Spaces and their Features 
Watson and Mason (2005) introduced the notion of example spaces, which are collections of 

examples that are central in mathematical teaching and learning, in the sense that they “require 
the learner to see the general through the particular, to generalize, to experience the particular as 
exemplary to appreciate a technical term, theorem, proof, or proof structure, and so on” (p. 4). 
Example spaces include not only exemplifying mathematical objects, but also a range of related 
associations and construction methods (Goldenberg & Mason, 2008). Subsequently, Watson and 
Mason (2005) borrowed and extended terminology from Marton and Booth’s (1997) Variation 
Theory to describe the structure of example spaces. They used the term dimensions of possible 
variation to address the generality of example spaces, meaning those example characteristics that 
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may be varied without changing their exemplifying essence. Additionally, with the associated 
term range of permissible change, they referred to the defining “borders” of example spaces, 
meaning the extent to which each dimension may be varied. As explained by Goldenberg and 
Mason (2008), the latter term was introduced to address learners’ “unnecessarily restricted sense 
of the scope of change available in any given dimension” (p. 187). Furthermore, Sinclair, 
Watson, Zazkis, and Mason (2011) described the following features of example spaces: 
population, meaning how scarce or dense available examples are within an example space; 
connectedness, that is whether different examples in a space are interconnected; generality, 
namely whether the example represents a class of related examples; and generativity, which 
regards “the possibility of generating new examples within the space using given examples and 
their associated construction tools” (p. 301). 

Within the discussion on example spaces, special attention has been given to learners’ 
capability of generating new examples in order to enlarge their example spaces and deepen their 
understanding of the related underlying mathematical structures. Accordingly, it has been argued 
that learner generated examples (LGEs) can be used as a valuable pedagogical tool to promote 
conceptual learning and understanding (Watson & Mason, 2005; Watson & Shipman, 2008). 
Zazkis and Leikin (2007) extended this argument, noting that LGEs are a valuable research tool, 
since the generated examples provide researchers with a lens into learners’ cognitive structures.  

The Study 

The Participants, Course, and Scripting Task 
The participants of the study were twenty prospective secondary school teachers who were 

studying in a teacher-education undergraduate program. At the time of data collection they were 
in their final term, enrolled in a course titled “Investigations in Mathematics”. During the course 
the participants completed a series of scripting tasks, one of which is described below and serves 
as the data for our report.  

The task that was presented to the participants of the study belongs to the genre of scripting 
tasks. In such tasks, participants are typically given a beginning of a dialogue between a teacher 
and students, referred to as a prompt, and are asked to extend the dialogue in a way they find 
mathematically fit. Scripting tasks were used in prior research in various mathematical contexts 
(e.g., Zazkis & Kontorovich, 2016; Zazkis & Herbst, 2018), and their advantages were 
elaborated upon in detail (e.g., Zazkis, 2018). In particular, a significant feature of scripting tasks 
is that they provide students the educational opportunity to consider or revisit the mathematical 
ideas related to the task, and offer researchers a lens on the script-writers’ understanding of these 
particular mathematical concepts and relations. 

The current study focuses on a particular prompt for a scripting task, presented in Figure 1. In 
addition to writing a script that extends the dialogue (Part-A), the students were asked to explain 
their choice of the presented instructional approach (Part-B). Furthermore, the participants were 
asked to note if their personal understanding of the mathematics involved in the task differed 
from what they chose to include in the scripted conversation with students (Part-C), providing us 
with a finer-tuned lens into their personal mathematical ideas. In the task the participants were 
presented with a table of values, and invited to explore an imaginary student question, whether 
there are functions other than ! = 3$ that satisfy the same table of values. 

From a mathematical perspective, the task was designed to address known misconceptions 
regarding the function concept that are attributed in the literature to undergraduate students. In 
particular, the task attends to the phenomenon of linear functions as “overpowering” prototypical 
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examples (e.g., Dreyfus & Eisenberg, 1983) and the reported lack of understanding of the 
arbitrary nature of how a function may be defined (e.g., Even, 1990). From a pedagogical 
perspective, the design of the task draws on underlying principles of Variation Theory (Marton 
& Booth, 1997; Runesson, 2005), which regards variation as a pivotal role in the learning 
process, as it promotes and facilitates the learner’s capability to discern and separate critical 
aspects of mathematical objects. Accordingly, effective task design should foreground variation 
against invariance of other aspects in the task (Watson & Mason, 2006). The current task sets the 
four points in the table of values as invariant “pillars”, whilst promoting variation through the 
exploration of the range of permissible change in which functions satisfying the table of values 
exist. As claimed by Watson and Mason (2005), through the awareness of the dimension of 
possible variation, learners’ example spaces may be enriched. 

Teacher:     Consider the following table of values.  
What function can this describe? 

Alex:           !% = %3$ 
Teacher:     And why do you say so? 
Alex:          Because you see numbers on the right are 3 

times numbers on the left 
Jamie:         I agree with Alex, but is this the only way? 
Teacher:   … 

$ ! 
1 3 
2 6 
3 9 
4 12 
5  
6  

 

Figure 1: A prompt for the Table of Values scripting task 

The participants’ responses to the “Table of Values” scripting task comprise the data corpus 
for this study. The scripts were analyzed with a focus on the particular examples of functions 
considered in the dialogues. The following research question guided the analysis: What are the 
participants’ example spaces for a function that satisfies the task? More specifically, what are 
the dimensions of possible variation and associated range of permissible change that are evident 
in the collective example space of the participating prospective teachers? 

Analysis and Results  
The analysis is presented by the main themes that were identified in the scripts. Both authors 

independently categorized the different examples included in the scripts, and subsequently 
resolved any discrepancies by discussion and reconsideration of the identified themes. The 
structures of the exhibited example spaces were then examined in terms of their population, 
connectedness, generality, and generativity. We distinguished between examples used in Part-A, 
that could have been purposefully restricted in the scripts based on pedagogical and instructional 
considerations, and the examples mentioned in Part-B or Part-C, which pointed to participants’ 
personal example spaces triggered by the task.  

In designing the prompt, Jamie’s question “is this the only way?” was intended to direct the 
script-writers to consider and explore alternative functions. Indeed, 11 out of 20 scripts included 
a variety of examples of other functions that satisfy the given table of values, which we 
categorized into five different dimensions of possible variation. Figure 2 indicates the frequency 
of occurrences of each cluster of examples pointing to a common dimension. Note that the 
overall number of occurrences (21) is higher than their associated number of scripts (11), as in 
most of these scripts multiple types of examples were considered. However, 9 out of the 20 
participants did not produce any alternative functions, other than representational variations on 
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the linear option ! = 3$. Due to the limited scope of this paper, in the subsequent sections we 
focus only the first three dimensions of possible variation in the script-writers’ example spaces. 

Alternative options to ! = 3$  11 scripts 
Single formula expressions 5  

Total: 
21 

Restricting the domain 5 
Graphical representation 5 
Piecewise functions 4 
Recursive relationship 2 

  
No production of functions other than ! = 3$ 9 scripts 

Different algebraic representations of ! = 3$ 4 
“Shield” 5 

Figure 2: Dimensions of possible variation in the generated examples 

Single formula expressions. Five scripts included single formula expressions to describe 
functions other than ! = 3$ that satisfy the given table of values. These included two possible 
options: the absolute value function ! = |3$| (three scripts) and a polynomial function (three 
scripts). We note that both these function types are continuous functions that are defined for all 
real numbers. Due to the mathematical challenge involved in generating a polynomial function 
that satisfies the given table of values, we focus our attention on this option, as illustrated in the 
excerpt from Logan’s script: 

Teacher: Well in all of these cases we have assumed something subtle. If we filled the table 
of values what would we get for the remaining y entries? 

Alex: 15 and 18 
Teacher: Does it have to be those values? What if I put 16 and 23?  
Jamie: … Can you do that? 
Teacher: Why not? The points could be modeling anything! There is nothing there that says 

it has to be a line. 
Jamie: Can we find an equation for that though?  
Teacher: Certainly, but I need to talk about degrees of freedom. In our table of values we 

could make up 6 values of y and therefore we have 6 degrees of freedom. Simple 
enough? 

Jamie: Mhmm. 
Teacher: So we need to find a polynomial with at least 6 degrees of freedom to describe it, 

that is a polynomial with at least 6 terms. 
Alex: So a 5th order polynomial? 
Teacher: Exactly Alex, we could find a polynomial of the form ! = '$( + *$+ + ,$- +

.$/ + 0$ + 1 that fits the table of values. 
Jamie: But how can we ever assume that any patterns we see in a table of values continues?  
Teacher: An excellent question, short answer is we don’t. When we make these equations we 

are assuming that the trend we observe will continue. When making this assumption we 
need to look for reasons to explain the trend and then ask if we expect those factors to 
stay the same. Maybe the data was showing the population of a species but at $ = 5 more 
food is introduced or a predator is removed and the species can grow at a faster rate. 

While general solutions are usually considered in mathematics as more valuable than specific 
ones, Zazkis and Leikin (2008) noted that often general examples point to an individual’s 
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inability to generate a specific one. In this case, the presented example of a polynomial function 
can be seen as a generality of Logan’s personal example space, while it may also point to 
Logan’s difficulty in producing an explicit formula for the polynomial. 

While Logan noted the existence of a polynomial function, Corey provided the polynomial 
! = $+ − 10$- + 35$/ − 47$ + 24 “out of the blue”, and left it for the imaginary students in 
the script to verify that it is consistent with the entries in the table of values. In his commentary, 
Corey added that the polynomial was generated by a computer program, using matrices to solve 
systems of linear equations. He felt, however, that this material was inappropriate for secondary 
school students, and in Part-B he wrote: “The level of math needed to determine the final 
function is beyond what I consider high school level math. After being given the function the 
answer can be easily revealed, but it still is not easy.” We note that Part-C of the task did not 
demonstrate any alternative higher-level mathematical explanations on how to find fitting 
polynomials.  

Restricting the domain. Five scripts included an example of the function ! = 3$ in which 
the domain was restricted to either integers or natural numbers, as demonstrated in the following 
excerpt from Jill’s script: 

Teacher: You plotted the points in the table of values, totally correct. Then you connected the 
dots using a straight line, what is the assumption here?  

Alex: Assumption? ……  
Teacher: The table of values only gives you the natural numbers, 1, 2, 3, and so on.  
Alex: Oh, I guess I assumed that all the points in between follow the same pattern.  
Jamie: Well, I guess so too. But now that the teacher mentioned it, maybe the points in 

between don’t have to follow the same pattern?  
Alex: I guess so… because they are not in the table of values anyways.  
Teacher: That’s right! So what other functions can you have?  
[Alex and Jamie look at the graph and think.]  
Alex: Can we just have those points in the table of values?  
Jamie: Like this?  
Alex: Yah. It looks a little wired. But it is still a function, right?  
Jamie: Right, because it passes the vertical test. It is a function. How do we write the 

equations then?  
[Alex and Jamie feel stuck here.]  
Teacher: What is the difference between graph 1 and graph 2?  
Jamie: Graph 1 has all the $ values, and graph 2 only has natural numbers.  
Teacher: Can you describe this difference in more mathematical terms?  
Alex: They have different domains?  
Teacher: Right, now, can you write the domains for both functions?  
Alex: The first one is all real numbers.  
Jamie: The second one is all natural numbers.  
Teacher: Exactly, when you write the equations, you need to specify domains. By restricting 

the domains, you have different functions. 
As opposed to the previous section, the function examples here are neither continuous nor 

defined for all real numbers, yet the domain consists of an infinite and unbounded set of 
numbers. Moreover, these examples demonstrate a recognized human tendency of “continuing 
the pattern” (e.g., Rivera, 2013), that is, assigning the same rule of multiplication by 3 to all 
integers. In this sense, the assignment of the same rule to a restricted domain demonstrates the 
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arbitrary choice of the domain in the function concept, though not the arbitrary choice of 
correspondence between the domain and codomain. In terms of the features of example spaces, 
on the one hand we note the connectedness between the examples, highlighted through the 
different attributes of non-identical domains. On the other hand, we notice a “missed 
opportunity” for generativity, as these examples do not lead to additional generated examples in 
the scripts that allude to the various options for choosing the domain. 

Graphical representations. While in the above excerpt from Jill’s script, the teacher 
confronts students’ tendency to connect the points, in other scripts “connecting the points” 
appears to be the convention that is either supported or invited by the teacher. Taylor exemplifies 
this tendency: 

Teacher: Excellent question Jamie, what’s your instinct, are there other ways? 
Jamie: Well I don’t know, I guess there could be, but how could we tell? 
Teacher: Why don’t we start by plotting these points. And by we I mean you. 
[Students plot the points] 
Teacher: Good, so how would it look if we used Alex’s function? 
Jamie: It would have a straight line through all the points. 
Teacher: Yes, but how else can we connect these points? 
Jamie: I suppose we could do a zig zag line.   
Teacher: Sure, that would work.  But we want this to be a function, so what rule do we need 

to follow? 
Jamie: The vertical line test. 
Teacher: Which is the easy way of remembering what? 
Jamie:  Each output can only have 1 input.  
Teacher: Correct, so how can we connect these points then? 
Jamie: Any way we want as long as we don’t break the vertical line test. 
In this excerpt, the teacher’s question “how else can we connect these points?” leads students 

to explore alternative options to the straight line. All other scripts that used graphical 
representation as dimension of variation also alluded to the arbitrary choice of how to “fill the 
gap” in between the points, presented both via verbal explanations and graphical illustrations, 
including also non-continuous “step functions” (see Figure 3 taken from one of the scripts). All 
examples in this dimension explicitly or implicitly regarded the domain as the set of all real 
numbers. As in Taylor’s script above, in the other scripts the determining factor for how to 
“connect” the points was the vertical line test, serving as the identifying criterion for a function. 

While in this dimension, connecting the points extends the population feature of the example 
space, various ways of connecting the points “anyway we want” (in student words) indicate the 
generativity, as well as the generality, of the resulting example spaces. However, and in line with 
previous arguments, this generality may be accompanied by the participants’ inability to produce 
specific algebraic representations for the graphically represented examples.  

 
Figure 3: Graphically represented functions 

 
                                    
 
                                   
 
 
 
 
 
 
 
Teacher: That’s a nice function! 
Alex: Actually, we can have millions of functions like this. You can times 1.5 by any 
number: 4, 5, 6, 7, etc. 
Jamie: Or, you can multiple all quarter points by the same number, for example, 1.25 x 2, 
2.25 x 2, 3.25 x 2, etc… 
Alex: Or any patterns between the points, as long as they are functions. For example, I 
can have a wave like this. 
 
Alex draws waves in between the integer points, such as in graph 7. 
 
 
 
                                    
 
                                   
 
 
 
 
 
 
 
 
Jamie: Totally, there are endless functions for this table of values. 
Teacher: You have reached great conclusions. To summarize, table of values alone 
cannot tell us exactly what the functions are. We have to know the domain as well. 
Sometimes table of values are easier to see the patterns, other times graphs are more 
direct. 
Alex: It’s pretty fun to explore different options. 
Jamie: Agree! 
Alex and Jamie: Thanks, teacher! 
Teacher: You’re welcome. 
  
Part 2: 
 

Teacher: Yes, definitely you can. This is actually a very common function in computer 
science, and it’s called Round Up function. You can see such a function in almost every 
programming language and some software like Excel. 
Alex: Cool! 
Jamie: Do they have a way to express it or just use words? 
Teacher: In Computer Science, they usually use          to represent it. 
Jamie: Let me write it down.  
 
Jamie writes this function down on the board. 
                         For graph 4:      y = 3 x , x is all real numbers  (x€℟) 
 
Teacher: One more thing on your graph. Look at the integers on your graph. Each one has  
two values. 
Alex: Oh, yes. When x = 1, y value is both 3 and 6. 
Jamie: We need to restrict it to only 3. 
Teacher: We do this by putting a hollow circle on a point, like this. 
 
Teacher draws the correct graph on the board as in graph 5. 
 
 
 
                                    
 
                                   
 
 
 
 
 
 
 
Alex: Awesome! We got three functions so far.  
Jamie: I think we could get more. I just got an idea. How about we keep all integers as 
multiplying by three, but all half points multiplying by 2, like when x = 1.5, y = 1.5 x 2 = 
3; when x =  2.5, y = 2.5 x 2 = 5; and so on. 
Alex: Sounds good! We can draw it here. 
 
Alex and Jamie draw the graph for this function on the board, like in graph 6.  
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Discussion 
The scripts in response to the “Table of Values” task provided a lens into the participants’ 

personal example spaces of functions. Whereas in almost half of the scripts the example space 
was limited (i.e., no production of functions other than ! = 3$), the other scripts demonstrated 
example spaces that were well connected. Within these, the population feature of the 
participants’ example spaces was not extensive; however, generality and generativity were 
featured in scripts that included multiple examples. 

More specifically, the analysis led to two kinds of observations in regard to the participants’ 
example space and concept image of a function (see Vinner, 1983). First, the participants’ 
example spaces provided further support to features that have been previously discussed in the 
education literature. The students’ examples clearly demonstrated the conception that a function 
should be represented by a single formula (e.g., Vinner & Dreyfus, 1989), typically describing a 
continuous function (e.g., Hitt, 1998) in which “other points follow the same pattern”. Moreover, 
students’ reliance on the “vertical line test” (see Wilson, 1994) was clearly present in the scripts 
as an identifying criterion for a function. 

Secondly, the participants’ example choices point to a specific identifying feature of 
undergraduate students’ example spaces of functions, which was not elaborated upon in prior 
research: that the domain of a function is infinite and unbounded. Focusing on the domain, Bubp 
(2016) noted that in an attempt to prove mathematical statements, students often used “implicit, 
unwarranted assumption that the domain of the function 1 was ℝ” (p. 592) and that “a function 
cannot have a restricted domain” (p. 593). The current findings provide further refinement of this 
issue, by noting that even in the examples in which the domain was in fact restricted, it still 
included infinitely many points (integers or natural numbers). We note that no example of a 
finite domain or a function on a bounded interval was given by any of the students. 

Viewing the findings in a broader context, we suggest that the analysis of scripting tasks not 
only can provide a theoretical contribution for research, but also a practical utility for 
undergraduate instruction. In the current case, we also used the analysis of the scripts to plan for 
follow-up activities that were based on the collective example space of the group, with the goal 
of extending the participants’ personal example spaces, and in such extending their 
understanding of the concept of a function. These activities are elaborated in detail in Zazkis and 
Marmur (2018). However, as an illustrative example, one of these activities focused on 
generating an explicit formula for a non-linear polynomial function consistent with the given 
table of values. During this activity, we provided one of the examples from the students’ scripts, 
a polynomial of degree 3, for classroom discussion. This led to recalling the Fundamental 
Theorem of Algebra, and to the subsequent realization that the example was not feasible, as there 
cannot be a cubic function that intersects a line in 4 different points. This discussion, which made 
an explicit connection between undergraduate and secondary school mathematics, highlighted 
the “borders” of the relevant example space, or in Watson and Mason’s (2005) terms, the range 
of permissible change. To conclude, the seemingly simple task of considering a given pattern in 
a table of values – an exercise that often appears in middle school mathematics lessons – served 
to advance mathematical understanding of undergraduate students. This by utilizing the 
collective example space found in the scripts as a springboard for describing the structure of this 
space, examining what kind of functions belong to the space, determining its confining borders, 
and enriching the examples of functions that exist within it. 
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What is a Differential? Ask Seven Mathematicians, Get Seven Different Answers 
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The symbol “𝑑𝑥” is one example of a differential, which is a calculus symbol that is found in a 
variety of settings and expressions. We wanted to explore how expert mathematicians think about 
differentials in some of these settings and expressions, in order to see what levels of consistency 
might appear among their views. To that end, we created an interview protocol that contained 
differentials in the contexts of derivatives, definite and indefinite integrals, and separable 
differential equations, interviewed seven mathematicians, and analyzed their responses using a 
form of thematic analysis. Overall, we found no instances of total agreement among all subjects, 
but did find several common and recurring themes, including some that were unexpected and not 
found in our previous studies. 
 
Keywords: Differentials, Calculus, Concept Image, Derivatives, Integrals 
 

In this contributed report, we analyze how seven mathematicians view the roles, if any, that 
differentials play within various mathematical expressions and situations. When discussing the 
term “differential,” we refer to a letter 𝑑 followed by a second letter that is usually dependent on 
a particular context. Examples of these include 𝑑𝑥, 𝑑𝑡, and 𝑑𝐴, and for this paper, we will use 
“𝑑𝑥” to reference a generic differential. These symbols are common in calculus, and can be 
found in many places, including Leibniz notation for derivatives, definite and indefinite 
integrals, the process of integration by substitution, and several types of differential equations.  

We have found research in both mathematics and physics education literature that describes 
how students perceive the 𝑑𝑥 in a definite integral. For some students, this differential might 
have no meaning at all (Artigue, 1991; Hu & Rebello, 2013). If it does have a meaning, it might 
only serve to indicate the variable of integration (Artigue, 1991; Jones, 2015), or it could 
represent a small amount of a quantity (Artigue, 1991; Nguyen & Rebello, 2011; Von Korff & 
Rebello, 2012) or a small change in a quantity (Sealey & Thompson, 2016; Von Korff & 
Rebello, 2012). Outside of these particular student interpretations, a differential might function 
as a linear estimate (Henry, 2010; López-Gay, Martinez, & Martinez, 2015) or represent a 
formally-defined infinitesimal as found in nonstandard analysis (Keisler, 2012; Robinson, 1961). 

Most of this particular literature discusses student interpretations of the definite integral, but 
only minimally addresses the interpretations of the instructors and expert mathematicians who 
teach these students. We have felt that there is an opportunity to broaden the above research by 
expanding the list of expressions containing differentials as well as exploring the interpretations 
of experienced mathematicians.  Therefore, the main research question we address in this paper 
is “What concept image(s) (Tall & Vinner, 1981) do expert mathematicians hold of the 
differential throughout its various mathematical contexts?” Two other areas we wish to explore 
are analyzing each expert’s interviews to see how consistent his or her responses are throughout 
the interview, and looking at each context in which a differential exists (e.g. indefinite integrals) 
and comparing each expert’s views on the differentials in that context, to see what patterns or 
consistencies, if any, might emerge. 

Preliminary work was conducted via two smaller-scale studies. An initial study involved four 
mathematicians who were asked about how they conceived the differentials in expressions 
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involving integration, Leibniz derivative notation, integration by substitution, and ordinary 
differential equations. We concluded that, while some subjects gave common responses at times, 
there was no overarching formal concept definition for the differential (McCarty & Sealey, 
2017). A second study included two mathematicians and one physicist who were interviewed 
about similar expressions and contexts, and found not only a similar lack of an overall formal 
concept definition for differentials, but also the suggestions of a split between mathematicians’ 
views and physicists’ views. (McCarty & Sealey, 2018). In this current paper, we focus only on 
mathematician interviews and leave physicist interviews for future research.  
 

Theoretical Perspective 
 

Discussing the notations 𝑑𝑦
𝑑𝑥

 and ∫ 𝑓(𝑥) 𝑑𝑥, Tall (1993) questions what relationship might 
exist between the two “𝑑𝑥” portions of those notations and notes: 

Giving a modern meaning to these terms that allows a consistent meaningful 
interpretation for all contexts in the calculus is possible but not universally recognized. 
On the other hand, failing to give a satisfactory coherent meaning leads to cognitive 
conflict which is usually resolved by keeping the various meanings of the differential in 
separate compartments. (Tall, 1993, p. 6) 

 
Thus, one might use only one conceptualization for all differentials at all times, or one might 

possess and use different conceptualizations for differentials depending upon the context in 
which they are found (for example, viewing the 𝑑𝑥 in an indefinite integral as indicating the 
variable of integration and the 𝑑𝑥 in the derivative notation 𝑑𝑦

𝑑𝑥
 as a small amount of the quantity 

represented by the independent variable, 𝑥.)  
Because multiple interpretations of differentials are possible, we believe that Tall and 

Vinner’s (1981) concept image is an appropriate theoretical perspective for our research. 
Concept image is defined as “the total cognitive structure that is associated with the concept, 
which includes all the mental pictures and associated properties and processes” (Tall & Vinner, 
1981, p.152), and if one has multiple interpretations of differentials, then the words “total” and 
“all” in that quote take on greater meaning. During our interviews, we attempted to gain as 
complete an understanding of our subjects’ concept images as possible, with the following 
questions in mind: Within these possible multiple interpretations, would any subjects exhibit 
potential conflict factors, defined as aspects of their concept image that showed contradiction? If 
so, would they be aware of any of their contradictions, making them cognitive conflict factors? 
Would all subjects’ responses be able to be distilled into a personal concept definition that fully 
defined how they viewed differentials, and if so, would multiple personal concept definitions be 
able to come together to form a possible formal concept definition? 

 
Methods 

 
For this study, seven mathematicians (pseudonyms André, Bryan, Christopher, Diane, 

Eugene, Francis, and Gustav) from the same large research university were given semi-structured 
interviews that used the interview protocol summarized in Table 1. Each subject was asked the 
same questions about the expressions and contexts given in the protocol, but follow-up questions 
were asked when needed to clarify subjects’ initial responses. Including these additional 
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questions and introductory questions that asked the subjects’ background information, the 
average length of the interviews was approximately forty-five minutes. All interviews were 
videorecorded, with six interviews conducted in person, and a seventh conducted over Skype and 
recorded with Open Broadcasting Software. 

 Data analysis was done in the style of Braun and Clarke’s (2006) thematic analysis. The 
videotaped interviews were transcribed and analyzed for data points, which we defined to be the 
specific instances in which differentials were discussed. These data points were assigned codes 
based on how we perceived the tenor of the subjects’ views toward the differentials. The lists of 
codes from all seven interviews were analyzed, and similar codes found across multiple 
interviews were pulled together, to create an initial list of themes. The themes in this initial list 
were compared with one another to see which of them might be consolidated and streamlined 
into a smaller list of larger, overarching themes. Finally, the transcriptions were read one last 
time and compared with this final list of themes, to make sure that the themes described by this 
list encompassed all responses within the entire data set. 
 
Table 1 
A Summary of Our Interview Protocol 

Description The Specific Questions 

Five Expressions 
Presented with no 

Context 
 

x 𝒅𝒚
𝒅𝒙

 , ∫ 𝒇(𝒙)𝒃
𝒂 𝒅𝒙 , ∫ 𝒈(𝒙) 𝒅𝒙 , ∫ ∫ 𝒇(𝒙, 𝒚)𝟑

𝟐 𝒅𝒚 𝒅𝒙𝟏
𝟎  , and 𝒅𝒚 = 𝟐𝒙 𝒅𝒙  

x For each of these, subjects were asked how they conceptualized the 
differentials in the expressions, and whether they thought the 
differentials had (a) a graphical representation, and (b) a size.  

 

Three Expressions 
Presented within a 

Context 
 

x A “Law of Cooling” ODE: 𝒅𝝉
𝒅𝒕

= −𝒌𝝉,   𝝉(𝟎) = 𝟐𝟎  

x A “Work” problem involving the integral ∫ 𝟕𝟎𝟎 − 𝟑𝒙 𝒅𝒙𝟓𝟎
𝟎   

x 𝒅𝒖 = 𝟏
𝟐√𝒕

 𝒅𝒕, used in the evaluation of the integral ∫ 𝐜𝐨𝐬 √𝒕
𝟐√𝒕

𝟒
𝟏 𝒅𝒕  

 

Three Additional 
Questions 

x At the beginning of the interview, subjects were asked what the word 
“differential” meant to them. 

x After the word “Delta” was first mentioned by the subject, he or she 
was asked to clarify the differences, if any, between Δ𝑥 and 𝑑𝑥. 

x After their first use of a phrase like “infinitely/infinitesimally small,” 
subjects were asked if they could clarify/quantify their phrase. 

 
Data and Results 

 
We found many themes during data analysis, some of which were expected from our prior 

research and our analysis of recent literature, some that were new to us, and some that were 
stronger than expected. We summarize the major themes below. 
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Algebra with Differentials versus “Algebra” with Differentials 
The use of the quotation marks in this subtitle is to represent the idea that some experts were 

not willing to describe certain common manipulations of differentials by directly using words 
like “multiply,” “divide,” and/or “cancel.” To give one example, when some subjects brought up 
“Chain Rule” notation, 𝑑𝑦

𝑑𝑡
= 𝑑𝑦

𝑑𝑥
𝑑𝑥
𝑑𝑡

, Bryan, Christopher, and Diane each had no problem with 
notating it this way, but stopped short at saying that what was happening was true division or 
cancelling of the 𝑑𝑥. Christopher said that it was “as if” we cancelled the 𝑑𝑥, Bryan said that 
“there’s a little bit more going on than just cancelling,” and Diane said that she wasn’t sure if 
they cancel, and that books “come up with some funny, hand-wavy thing to explain what they’re 
doing there.”  

Another example of “algebra” with differentials occurred during the discussion of the 
separable ODE 𝑑𝜏

𝑑𝑡
= −𝑘𝜏. Subjects who claimed either that the expression 𝑑𝜏

𝑑𝑡
 was not a ratio 

(Eugene, Francis) or that they weren’t sure if it was a ratio (Diane) still ended up separating the 
expression when solving the ODE. This separation was rationalized by either claiming that this 
separation stood in for the integration ∫ 𝑑𝜏

𝑑𝑡
 𝑑𝑡 = ∫ −𝑘𝑡 𝑑𝑡 (Eugene, Francis), or that we just 

“think of” 𝑑𝑡 as being a quantity and act like we’re “multiplying” (Diane). It is perhaps worth 
noting that, even though some subjects refused to say personally that separation of variables 
entailed “multiplying by 𝑑𝑡,” none of the subjects would outright object if their students 
described their solution to a separation of variables problem this way. Five of the seven subjects 
said they would have no problem if their students used the words “multiply by 𝑑𝑡,” while the 
other two (Diane and Eugene) were not certain if they would allow their students to do this. 

There were clearer statements of actual algebra made as well. Some subjects stated directly 
that one could manipulate differentials by multiplying or dividing, and there were statements that 
implied multiplication and division were acceptable, including André’s and Christopher’s 
separation of variables in the ODE without any qualms as to the legality of such multiplication. 
There were also contrary, clear statements that one could not multiply nor divide, and some of 
these “Yes, you can” and “No, you can’t” statements were in direct opposition to one another. 
One example of this was Bryan and Christopher saying that the “𝑓(𝑥)𝑑𝑥” in ∫ 𝑓(𝑥)𝑏

𝑎 𝑑𝑥 was an 
actual multiplication of 𝑓(𝑥) and 𝑑𝑥 and Diane saying that it was not a multiplication. 
 
Subjects’ Uneasiness with Differentials 

Given the lack of consensus found in all of our studies and the lack of a clear formal concept 
definition for differentials, it was not surprising that some subjects admitted a level of 
uncertainty to some of their responses. This uncertainty manifested itself in various ways: some 
subjects claimed that they had no formal definition for some of our expressions, some claimed 
that they had an intuition about the expressions but could not put this intuition into words, and 
some gave a partial explanation while admitting that they knew there was “more” to the concept 
but that they could not put this “more” into words. 

There were definite instances of cognitive conflict factors. To give one example, Francis 
noted and called attention to his conflicting statements when they occurred. After claiming the 
differentials in the earlier expressions 𝑑𝑦

𝑑𝑥
 , ∫ 𝑓(𝑥)𝑏

𝑎 𝑑𝑥 , ∫ 𝑔(𝑥) 𝑑𝑥 , and ∫ ∫ 𝑓(𝑥, 𝑦)3
2 𝑑𝑦 𝑑𝑥1

0  had 
no size, he gave what we call the standard “linear approximation” explanation of 𝑑𝑦 = 2𝑥 𝑑𝑥, 
stating that these 𝑑𝑦 and 𝑑𝑥 were measurable quantities. He noted the inconsistency, saying “… 
now I’m being cognizant of what I think about this, and what I originally said, no. That these 
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[pointing at the 𝑑𝑦 and 𝑑𝑥] are not quantifiable. [Thinking] And I’d have to really think about 
rectifying this.” 
 
The 𝒅𝒙 is a Real Number or a Formal Infinitesimal 

Our previous work as well as the recent literature shows that an interpretation of a 𝑑𝑥 as an 
unquantified, not formally-defined “small” amount is common and not unexpected; what was 
slightly unexpected in our research was the emergence of themes in which subjects specifically 
stated that the 𝑑𝑥 represented a real number or a formal infinitesimal. Francis mentioned one 
area in which textbooks commonly assert that 𝑑𝑥 and 𝑑𝑦 are real, the idea of linear 
approximation, usually represented as Δ𝑦 ≈ 𝑑𝑦 = 𝑓′(𝑥)𝑑𝑥. André and Bryan described some 𝑑𝑥 
as being on a smaller scale than every other entity in the problem, a description I liken to 
Courant and John’s (1965) “physically infinitesimal.” For example, Bryan defined his 𝑑𝑥 as 
“relatively small,” and gave examples of 𝑑𝑥 possibly equaling 100,000 miles if one is discussing 
astronomical phenomena, but 𝑑𝑥 equaling one Ångström if one is discussing molecules. Either 
way, no matter at what scale one is measuring a specific problem, for these two subjects, the 𝑑𝑥 
represents a real number. For the purposes of this report, we can define a positive, nonstandard 
analysis infinitesimal, 𝜖, as 0 < 𝜖 < 𝑟 where 𝑟 is any real number (Keisler, 2012). Gustav 
directly stated that one could view any 𝑑𝑥 as one of these formal infinitesimals, and while 
Eugene and Francis did not view differentials in this way, they acknowledged that others might, 
and that formal infinitesimals were a valid interpretation of differentials.  

 
The 𝒅𝒙 is not Specifically Sized 

This is a common theme, found both in the literature and in our previous work, though our 
current research has found more nuance to this theme than we reported previously (McCarty & 
Sealey, 2017). A differential might be described or implied to be “small” without a precise 
definition of what “small” means (as opposed to defining differentials as real numbers or formal 
infinitesimals, both concepts with precise definitions.) This occurred at the beginning of every 
interview, when the subjects were asked what the word “differential” meant to them, and all 
replies contained a reference to “smallness” that was not explicitly defined. Other versions of 
this were Diane describing differentials as “infinitely small” while claiming that “infinitely 
small” could not be defined, and Eugene claiming that the 𝑑𝑥 was a small entity that was the 
result of the limit of Δ𝑥 going to zero. 

We include in this theme comments that did not state directly but seemed to imply that the 
𝑑𝑥 might be a real number or formal infinitesimal. Eugene described the 𝑑𝑥 in a definite integral 
as being a stage in the limit process. In this case, if Δ𝑥 is going to zero step-by-step, and the 𝑑𝑥 
represents one of those steps, must not 𝑑𝑥 be a real number?  Other subjects made statements 
that might be interpreted as referencing nonstandard infinitesimals. André described the 𝑑𝑥 as 
being “what’s left of Δ𝑥 after it goes to zero,” and Diane said that when the two points that 
define a secant line “are on top of each other”, then we can think of the Δ𝑥 as a 𝑑𝑥. One might 
interpret both of these ideas in a nonstandard manner: in each case, the subject describes a 
process that goes through all real numbers and results in a distance of zero, yet the 𝑑𝑥 still exists. 
This might be possible if one views these 𝑑𝑥 as the epsilon described above: an entity that still 
exists yet is outside of the reals. 

 
The 𝒅𝒙 Indicates a Variable or Process 
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It is also possible that a differential might not have a size because it indicates a variable or 
references a process. Differentials might only be used to call attention to a particular variable, as 
in the 𝑑𝑥 serving as an indicator of the variable of integration in an indefinite integral or the 𝑑𝑦 
and 𝑑𝑥 indicating the “directions” of integration in the double integral. Differentials might also 
serve to indicate a process, with some subjects saying that the 𝑑𝑥 in a definite integral only 
represented that the limit of a Riemann sum was taken, and that a “𝑢-substitution” made in the 
evaluation of an integral was a representation of the Chain Rule.  
 

A small sample of the themes we found in the discussions of some of our questions can be 
found in Table 2. A quick look at this table and the number of themes found in it can determine 
our answers to the questions posed earlier in this paper: there is no formal concept image for the 
differential across all contexts, and only some areas of consistency within one expert or within 
one expression. Many experts stated that one’s views on differentials also depends on the context 
in which the differentials were presented, and thus it is even possible to discuss inconsistencies at 
a level more fine than the level implied by this table. 
 
Table 2 
A Summary of Some of Our Results (Only the Expressions Presented without Context) 

Expression André Bryan Chris Diane Eugene Francis Gustav 

𝒅𝒚
𝒅𝒙

  A, C, R C, R, V IR, P P, S V II, P, V I, V 

∫ 𝒇(𝒙)𝒃
𝒂 𝒅𝒙  II, P A, R, P P, S P, S, V C, S, V P C, I, V 

∫ 𝒈(𝒙) 𝒅𝒙  V N A, S V V N V 

∫ ∫ 𝒇(𝒙, 𝒚)𝟑
𝟐 𝒅𝒚 𝒅𝒙𝟏

𝟎   C, II, P, 
V C, P, R S P P, S, V C, P, S, 

V V 

𝒅𝒚 = 𝟐𝒙 𝒅𝒙  P C, U, R A, IR, S “A”, U P, U R, U A, R, S 
The letters in the table correspond to the presence of the themes described above:  
A: Algebra with Differentials, “A”: “Algebra” with Differentials, C: Differential Interpretation 
Depends on Context, I: Differential is a Formal Infinitesimal, II: Differential is an Implied 
Infinitesimal, IR: Differential is an Implied Real Number, N: Differential Has No Meaning, P: 
Differential Represents a Process, R: Differential is a Real Number, S: Differential is “Small” 
(Not Specifically Sized), U: Subject Expressed Uneasiness about Differentials, V: Differential 
Indicates a Variable 
 

Discussion 
 
Given the number of themes we found in our research and the number of different opinions 

within each theme, it should not be surprising that we conclude there is no formal concept 
definition of the differential. To be more direct, we found no instances where all seven subjects 
agreed on the interpretation of any one differential in any one mathematical context. It appears 
that the second half of Tall’s (1983) quote applies, and that the lack of one overarching meaning 
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for 𝑑𝑥 means that our subjects’ concept images of 𝑑𝑥 consist of many different meanings for the 
differential compartmentalized in separate “locations.” 

This leads to some implications for instruction and suggestions for future research. One 
might ask if it matters that individuals possess such disparate views of the differential. After all, 
these seven subjects are accomplished mathematicians and experienced instructors; the fact that 
each of them views differentials in their own way did not prevent them from earning their 
doctorates. However, one might counter that argument with the idea that many, if not most, 
notations in mathematics are not ambiguous at all. For example, we would submit that a study 
that asked subjects their interpretations of the notations "Σ", "√3 ", and "! "  would show no 
ambiguity in subject responses. If many notations have only one clear, direct, single 
interpretation, one might argue that 𝑑𝑥 should have one clear, direct, single interpretation as 
well. Indeed, a few subjects in our study expressed personal discomfort when noting that 
sometimes differentials are taught in a “hand-wavy” way, without real support (Diane), or that 
instructors sometimes teach differentials less formally than they should (Francis). We suggest 
that the reason for this discomfort is the fact that there is no consensus on what a differential is. 
Perhaps further research could investigate how (or if) instructors having disparate views of the 
differential affects student learning. 

Another teaching implication might come from the first past of Tall’s (1983) quote: “Giving 
a modern meaning to these terms that allows a consistent meaningful interpretation for all 
contexts in the calculus is possible but not universally recognized. (p.6)” It is possible that the 
differential as a nonstandard analysis infinitesimal would be the most consistent approach. There 
are certainly textbooks that teach calculus this way (e.g. Henle & Kleinberg, 2003; Keisler, 
2012), but, as Tall stated, such an approach is not universally recognized. Further research might 
explore the efficacy of such an approach. An idea for future research comes from the notion, 
mentioned above, that some subjects claimed that there were “Physics” and “Mathematics” 
approaches to differentials. This idea was touched upon in our pilot study (McCarty & Sealey, 
2018) but not in this study. Further research might wish to explore how physicists view 
differentials and how consistent their views are with mathematicians’, especially since many 
first-year physics majors take calculus classes that are taught by mathematicians.  

We conclude this paper by quoting what Christopher said at the end of his interview, 
regarding the usefulness of differentials: 

Yeah, they’re very useful, ‘cause they have a lot of content. There’s a lot of, sort of 
conceptual content in there, and if you shy away from them, you’re robbing the students 
of sort of conceptual content where they can think about things – these things actually 
mean something, rather than being things that are so abstruse that they can only be 
handled with a course in advanced calculus. I think a lot of that – all that developed just 
from physical reasoning and – although the mathematics by itself is not rigorous, you can 
make it rigorous, and the reasoning is valid. So I don’t see any reason to avoid talking 
about them 

 
At this time, we are in no position to say with certainty that one view of differentials is 

superior to any other. If there were any conclusion we might make, it is that we are in agreement 
with our interview subjects who are not comfortable with textbooks or teaching methods that 
either ignore differentials entirely or give them short shrift. We agree with Christopher that 
differentials are useful and worthy of classroom discussion, and it is our hope that our research 
inspires and motivates further work that will help explore the utility of differentials. 
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Functions play a fundamental role both in abstract algebra and earlier courses in the 
mathematics curriculum. Yet little attention has been paid to how students’ understanding of 
function (informed by their prior experiences) supports or constrains their activity when dealing 
with functions in abstract algebra. In this study, we report on six abstract algebra students’ 
understanding of function, their function-activity in abstract algebra tasks, and the degree to 
which their understanding of function from prior experiences is connected to their understanding 
in this new setting. We conclude with two cases contrasting the activity of two students with 
divergent levels of connection between their function understanding and the abstract algebra 
setting. In general, we found that function served an important role in students’ activity and 
provides implications for instruction and future research. 

Keywords: Abstract Algebra, Functions, Student Understanding 

Functions are one of the core topics threaded throughout the mathematics curriculum. In 
abstract algebra, students encounter a number of important classes of functions including 
isomorphisms and homomorphisms. The treatment of functions in this setting is often more 
formal and abstract; however, students’ extensive exposure to functions in prior courses likely 
plays a role as they grapple with new function contexts and definitions. The degree to which this 
occurs is particularly pertinent due to the extensive documentation of complexities involved with 
understanding functions at the secondary level (Oehrtman, Carlson, & Thompson, 2008). 
Understanding functions involves integrating function-properties (e.g., Slavit, 1997), flexibly 
understanding multiple representations (e.g., Schwarz, Dreyfus, & Bruckheimer, 1990), 
leveraging appropriate metaphors (e.g., Zandieh, Ellis, and Rasmussen, 2017), and moving 
beyond action conceptions to process and object conceptions (e.g., Breidenbach, Dubinsky, 
Hawks, and Nichols, 1992). In parallel, the abstract algebra literature illustrates that students 
often struggle with aspects of specific functions such as isomorphisms (e.g., Leron, Hazzan, & 
Zazkis, 1995), binary operation (Melhuish & Hicks, 2018), and homomorphisms (e.g., Rupnow, 
2017).  With these results in mind, we developed a survey and interview study to address:  

1. What are students concept images of functions at the end of an abstract algebra 
course? 

2. How do they see functions from prior courses as connected to functions in abstract 
algebra? 

3. How does their understanding of functions play out in their abstract algebra activity? 

Literature Review 
The complexities involved in understanding function have been well documented. 

Students have been found to possess several alternate or incomplete conceptions of function that 
can persist even throughout the secondary and undergraduate level (Oehrtman et al., 2008). For 
example, students may interpret functions as necessarily having an explicit symbolic rule (e.g., 
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Vinner & Dreyfus, 1989; Thompson, 1994). Students may also struggle with definitional 
properties such as delineating between the requirement for a well-defined function and that of a 
function being injective (Dubinsky & Wilson, 2013). Further, their conceptions of functions may 
reflect different degrees of sophistication such as in Breidenbach, Dubinsky, Hawks, and 
Nichols’ (1992) documentation of students conceiving of functions as actions, process, or 
objects. 

Understanding of function has been treated through different lenses including the 
aforementioned action, process, and object hierarchy. Slavit (1997) posited an alternate route of 
function understanding relying on important properties of functions and distinguishing between 
functions possessing or lacking properties. Another marker of understanding of function is 
proficiency with multiple representations of functions. Numerous researchers have documented 
students’ preferences for a particular representation even when alternate representations would 
be supportive (e.g., Knuth, 2000), students’ lack of flexibility moving across representations 
(e.g., Akkoç, & Tall, 2002), and even students seeing alternate representations as unique 
functions (Elia, Panaoura, Eracleous, & Gagatsis, 2007). As is the case with representations, 
students may also leverage multiple function metaphors while reasoning about functions. Such 
metaphors may reflect the input-output machine (Tall, McGowen, & DeMarois, 2000) or 
directionality between sets (e.g., Lakoff & Núñez, 2000). Zandieh et al. (2017) identified five 
clusters of metaphorical expressions with which students engaged in linear algebra: input/output, 
traveling, morphing, mapping, and machine. Properties, representations, and metaphors provide 
additional components to be situated in a students’ larger concept image of function. 

The concept of function then plays a vital role in more advanced courses such as abstract 
algebra. While little research has treated function explicitly at this level, existing literature in 
abstract algebra suggests that students struggle to develop rich conceptions of abstract algebra 
concepts that rely on functions (Dubinsky, Dautermann, Leron & Zazkis, 1994; Hazzan, 1999). 
Students in abstract algebra tend to struggle with particular kinds of functions such as 
isomorphisms and binary operation. For example, Leron et al. (1995) found that students 
struggled with constructing specific isomorphisms and formulating definitions about 
isomorphisms. Rupnow (2017) shared cases where students struggled with homomorphism when 
they did not have metaphor flexibility. Melhuish and Hicks (2018) documented that students may 
bring some of the same function representational limitations to the context of binary operations. 
In sum, the results from prior research suggest that explicitly studying student conceptions of 
function may provide insight into their abstract algebra activity. 

Theoretical Orientation and Analytic Framework 
In this paper, we rely on two key constructs to make sense of students’ understanding: 

Tall and Vinner’s (1981) concept image and Zandieh et al’s (2016) unified notion of function. A 
student’s understanding of function involves not only the words used to specify the concept 
(personal concept definition), but also all of the surrounding cognitive structures (concept 
image). These various components may or may not be coherent and they may or may not align 
with mathematics’ communities accepted definition for a given concept. In terms of functions, a 
number of components have been associated with concept images including metaphors (e.g., 
Zandieh, et al., 2016), representations (e.g., Hitt, 1998), properties (e.g., Tall & Vinner, 1981), 
and evoked examples (reflecting a students’ personal example space, Sinclair, Watson, & 
Mason, 2011). Due to space limitations, we share the specific categories from our analytic 
framework in Table 1.  
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Our primary research goal was to address each of these components of abstract algebra 
students’ concept image of functions at the completion of an introductory course. Further, we use 
Zandieh et al’s unified notion of function to address the degree to which students understood 
“various constructs [of functions] as examples of the same phenomenon” (p. 24). That is, did 
students see functions presented in abstract algebra as instances of their larger function concept? 
We address this question through analysis of both students’ self-reported understanding and their 
activity as they engaged with relevant tasks. We conjectured the connectedness of their function 
understanding would play out through explicit questions about functions in abstract algebra, 
explicit reference to functions in their abstract algebra activity, and components of their function 
concept image implicitly playing out in their activity. 

Methods 

Data Collection 
Surveys were given to four undergraduate-level modern algebra classes at two public 

universities. The survey was composed of one part concerning functions in general and another 
part concerning homomorphisms and kernels in group theory. In the first part of the survey, 
students were prompted to provide formal and informal definitions of function, examples of 
functions, and representations for functions. In the second part, students provided formal and 
informal definitions of group homomorphism, and kernel. They also were given a series of tasks 
where they needed to leverage the definition of homomorphism or kernel to address prompts in 
particular contexts (such as determining if a given map is a homomorphism.) In addition to the 
surveys, we conducted six semi-structured follow-up interviews (three at each university) with 
the goal of obtaining a more robust interpretation of the participants’ survey responses. The 
interviews included additional tasks that the students were asked to complete including 
addressing homomorphisms in the context of Cayley Tables and function diagrams, and 
producing formal proofs of standard homomorphism and isomorphism prompts. Two such 
prompts include determining if the function diagram in Figure 1 could potentially be of a 
homomorphism, and identifying the kernel for the homomorphism in the following map from ℤ  
to {i,-i,1,1}: 

Φ(n)=in. 
 

  
Figure 1. A Diagram Representing a Non-Function 

At the end of the interview, the participants were prompted to reflect on functions in their 
abstract algebra class by identify if and what functions were in the subject. They were then asked 
to reflect on whether “functions in modern algebra the same as functions from high school?” 
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Analysis 
To analyze the transcripts of the interviews, each of the four authors independently open 

coded (Strauss & Corbin, 1990) the transcripts looking across all prompts. Through this process, 
a coding framework was developed to target specific aspects of student thinking that were 
deemed pertinent to the research questions. In particular, this framework included the properties 
that students attended to, the metaphors (adapted from Zandieh et al. 2017) and representations 
(adapted from Melhuish 2015) and Mesa 2004) utilized, the students’ evoked example space for 
functions and non-functions, and the similarities and differences that the students noted between 
functions in abstract algebra and functions in lower level courses. The four authors then 
independently coded the transcripts (for all items related specifically to functions as a general 
construct) using the framework. From these coded transcripts, profiles for of the six cases were 
compiled leveraging the five targeted categories.  

We then returned to the transcripts to further unpack the activity on the second set of 
prompts: prompts where students engaged in representations and proofs related to 
homomorphism and isomorphism. These transcript portions were analyzed with the intent of 
exploring whether a student’s conceptions of functions aligned with their abstract algebra 
activity (implicitly or explicitly), and the degree to which their function conceptions appeared to 
support or constrain their abstract algebra activity.  

Results 
In Table 1, we share the variety of ways functions were addressed by our participants in 

terms of their definitional properties, metaphors, representations, and evoked examples. These 
components stem from analysis of the general function prompts.  
 

 Properties Metaphors Representations Examples  Functions in AA 

Student A WD T, Mp S, G, V, E F, AA Different Domains, 
New Properties 

Student B WD, ED Mp S, G, V F, AA Different Reps, 
Expansion 

Student C WD, ED IO, T, Mp S, G, D F, AA Same, Restructured 

Student D WD, 1-1 IO, Mh, 
Mc, Mp 

S, G F Different Reps, More 
Complex 

Student E NA T, Mp, Mc S, V F Expansion 

Student F WD T, Mp S, G, V F Expansion 

Properties: WD: well-defined, ED: everywhere-defined, RB: relation-based, EB: equation/rule-based;  
Metaphors (adapted from Zandieh et al., 2016): T: traveling, IO: input/output, Mp: mapping, Mc: Machine, Mh: 
Morphing 
Representations (adapted from Mesa, 2004; Melhuish, 2015): S: Symbolic Rule, G: Graphical, V:Verbal, 
E:element-wise defined, D:Diagram 
Examples: F: familiar secondary level algebra functions, AA: abstract algebra context 
Table 1. Evoked Components of Abstract Algebra Students’ Concept Image of Function 
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 Across 
our six cases, we note significant differences in the students’ evoked concept images. In terms of 
definitional properties, five of the six students articulated some understanding of well-
definedness. However, in one case, the student had not delineated well-defined from a map being 
one-to-one. In a second case, the student relied on a function as a rule with no additional required 
properties. In terms of metaphors, mapping was leveraged by all of our students. Various 
individuals leveraged it to greater or lesser success depending on a number of other factors. In 
terms of representations, all students had a dominant image with explicit symbolic rules. This is 
not surprising in light of both the literature and the common usage of such representations (as in 
Melhuish’s (2015) curriculum analysis.) Student D, E, and F particularly leaned on symbolic 
rules. In terms of examples, we saw a similar trend where Student D, E, and F shared examples 
of typical (explicit, symbolic rule) functions from earlier settings such as f(x)=x2.  In contrast, 
Student A, B, and C all provided examples that were particular to abstract algebra such as 
functions whose domain was dihedral group.  
 We then analyzed how students were seeing functions in abstract algebra as the same or 
different from high school. In general, the students reported that functions in abstract algebra 
expanded ideas from functions including new qualities such as properties or representation types. 
However, we note that even though students made these statements, half of the students did not 
provide examples in an abstract algebra context specifically even with explicit prompting (after 
having engaged with abstract algebra function prompts) leading us to question the depth of this 
declared unified conception. To further instantiate the trends in our data, we share two 
contrasting cases: Student D and Student C. 

Case 1: Student D 
Throughout the interview, Student D used typical functions from the secondary algebra 

and calculus settings when prompted to provide examples of functions and struggled to provide 
specific examples of functions in an abstract algebra context. Moreover, when asked if she 
viewed functions in abstract algebra as the same as functions in previous courses, she stated that 
they are “completely different” and explained: 

That's what threw me off from the very beginning, was the functions weren't the same. It 
was a totally different way of thinking. I mean, you're not thinking in terms of ... I'm 
thinking in groups.  

She explained that she had previously relied on graphical representations of functions to aid her 
understanding and that the lack of graphs to represent functions in abstract algebra presented 
challenges for her understanding. Student D suggested that functions in abstract algebra were too 
large to draw pictures, as they could involve sets such as the set of integers. Overall, throughout 
the interview Student D’s responses did not suggest that she connected her understanding of 
functions in previous courses to this context.  

In the second half of the interview regarding the concepts of homomorphisms and 
kernels, Student D’s disconnect between functions in prior settings and functions in abstract 
algebra is made particularly clear. When presented with Figure 1 and asked if the function 
diagram could represent a homomorphism, Student D responded that “I would say [...] is a 
homomorphism because all of the elements in G get mapped to a particular H value,” Thus, 
Student D is attending to the need for every element in the group G to be mapped to some 
element in H.  

However, when explicitly asked if the diagram represented a function, Student D 
correctly identified that this diagram fails to meet the requirements of a function: “two x values 
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with different y values in it wouldn't be able to be defined as a function.” Meanwhile this does 
not perturb her previous classification of this diagram as a possible homomorphism. We interpret 
this as further evidence of Student D’s disassociation of the concepts of function and 
homomorphism.  

This disassociation continues to play out in the portion of the interview regarding kernels. 
While Student D’s definition of a kernel of a group homomorphism, “the set of elements in 
group G that mapped to the group H, to the identity element”, is largely correct; she continued:, 
“One group, one set of elements is going to map to another set of elements, but, in a sense, the 
reversal map from that final group to the initial group is what the kernel is, so it maps.” Thus, we 
see that Student D does not necessarily see the kernel of a group homomorphism as a pre-image, 
but rather the image of an inverse function.  

Her response to the Kernel Task provides further evidence that she may be working with 
an action conception of the homomorphism. When asked for the kernel she explained, “... I wrote 
that the kernel was zero1, because you would get one, which was your identity element in H.” 
Student D’s kernel candidates focused on identifying a single element of the set of integers 
which maps to the identity in H. She was testing individual values in the function, but not 
considering the full preimage of the identity. Such focus on individual pairs of input/outputs 
likely reflects an action conception of this mapping. If a student lacks a process understanding of 
function, they may be limited to proceduralized ways of dealing with inverse and preimage 
(Oehrtman, et al., 2008). When explicitly asked if kernels can have multiple elements, Student D 
agreed. When further probed about this particular map, she identified one more element, but 
remained focused on individual inputs and outputs.  

Student D presents a case of a student who did not appear to have robust connections 
between her prior function knowledge and the abstract algebra setting. Further, we may 
reasonably conjecture that her limited conceptions of function implicitly constrained her ability 
to work with the kernel concept, a concept that necessitates ability to deal robustly with 
preimage.  

Case 2: Student C   
In contrast to Student D, Student C flexibly leveraged function metaphors, attended to 

important properties of functions, and provided an array of examples and representations of 
functions. Notably, Student C provided examples of functions situated in the abstract algebra 
context throughout the interview pairing standard secondary algebra examples (e.g., f(x) = x2) 
with abstract algebra examples (h(a,b)=b2) when prompted to share examples of functions. This 
integration was further evidenced when Student C was asked explicitly to address functions in 
abstract algebra listing out typical functions in this setting including isomorphisms, and 
homomorphisms. When asked if functions seen in their abstract algebra class are the same as 
functions that they’ve seen in other classes, Student C explained:  

But I mean, when we go through the isomorphisms and the homomorphisms, we're really 
going back to those simple kind of equations that we did in the beginning of algebra. Or 
in linear algebra kind of thing. It's not necessarily like we're coming up with whole new 
ideas. It's just restructuring them. 

                                                
1 Note: This student also suggested another singleton candidate for the kernel as she worked to make sense of the 
identity in H. Unpacking this portion of her response is beyond the scope of this paper. 
2 Note: The student is treating the input element as an ordered pair, but only included the single set of parentheses in 
their notation. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 424



In contrast to several of the other participants in our interviews, Student C treated functions in 
abstract algebra as naturally connected to functions from other courses. 

We also saw this play out in Student C’s engagement with abstract algebra specific tasks. 
She responded to the diagram in Figure 1 by immediately evaluating if the diagram was of a 
function. 

The second one is kind of what I was talking about earlier with function that everything 
has to be taken to exactly one spot. I feel like reverse it would've been fine. Like it was 
taking H to G. I'm trying to think of a function that would do this and really there’s not 
one because it’s not a function. 

She concluded the map could not be a homomorphism because it is not even a function. This 
consideration to a homomorphism being a function evidenced her connected knowledge.  

A second case where we witnessed Student C’s connected function knowledge was 
addressing kernels. Student C explained the kernel as, “…the group of elements, like if you have 
a homomorphism, let's call it Φ from G to H. It's the group of elements in G that get mapped to 
the [identity] element of H.” She leveraged mapping metaphors for function and was easily able 
to approach the preimage of a function without constructing a map from the codomain to the 
domain. For example, when identifying the kernel from the Kernel Task, Student C explained: 

So I said that the kernel of phi was actually the integers times 4. So with that, it was 
because we didn't have some element ... I just called it the first group G. Well, ℤ. So 
some element of that takes i to that power and gives us out 1, which would be the identity 
element for H. Because is gonna i1give us i. i2 is gonna give us - i, so on. So in order for i 
to be taken to a certain power and give us 1, it needs to be a multiple of 4. And that's to 
do with 2i is negative 1. So negative 1 times negative 1. And as long as that's a multiple 
of 4, we're good to go. 

These instances were representative of the way that Student C engaged in tasks. Her function 
understanding appeared to play a supportive role in her abstract algebra activity.  

Discussion 
This report addresses six undergraduate abstract algebra students’ understanding of 

functions and provides two cases to illustrate how these understandings play out in their abstract 
algebra activity. As this work is exploratory, we are not attempting to make generality claims. 
Rather these varied cases provide images of the complex ways that function knowledge plays out 
in abstract algebra. The students in this study ranged in terms of their evoked concept image of 
functions. While all students’ concept images contained explicit symbolic rules, several students 
saw the rule as essential for functions. These same students tended to evoke examples of typical 
function families such as polynomials without connections to abstract algebra. In contrast, the 
other students had more varied representations and evoked examples including those explicitly 
connected to abstract algebra. As seen with Student D, this unified understanding may play a 
supportive role in abstract algebra activity. 

This work has several implications. First, we see that even students in an advanced 
mathematics course towards the end of their undergraduate tenure can struggle to grasp the 
complex and nuanced concept of function. From a research standpoint, we may want to explicitly 
consider the role of function understanding in student activity in advanced mathematics. From a 
teaching perspective, instructors may want to take stock of students’ function understanding even 
in advanced courses. Second, instructors may want to attend to the ways their students’ function 
understanding plays out in courses and consider how one might more proactively connect their 
prior function experiences with the new types of functions found in abstract algebra. 
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Abstract Algebra Instructors’ Noticing of Students’ Mathematical Thinking 
 
 Kathleen Melhuish Sharon K. Strickland 
 Texas State University Texas State University 

Examining teaching practices in advanced mathematics is a relatively new field of scholarship 
despite a long history in K-12 settings. One important research area in this setting is 
documenting teacher noticing of students’ mathematical thinking. In this report, we extend this 
line of work to explore how undergraduate mathematics instructors attend to, interpret, and 
respond to student thinking (Jacob, Lamb, & Philipp, 2010) in abstract algebra. We surveyed 25 
abstract algebra instructors with a range of experience. Overall, we found that our participants 
focused on student thinking to a greater degree than the elementary teachers in earlier studies. 
Further, their interpretations spanned two distinct foci: understanding of concepts and the 
formal representation system. Their proposed responses then reflected a wide span of teaching 
actions. This exploratory analysis unveiled a number of previously undocumented characteristics 
of instructor noticing at the undergraduate level which can serve to inform future research on 
teaching practices.  

Keywords: Abstract Algebra, Teaching, Noticing 

The mathematics education community has moved towards models of teaching where 
instruction is tied to students’ mathematical thinking (Jacobs & Spangler, 2018). Jacobs and 
Spangler identified teacher noticing as one of two core instructional practices needed for this 
type of instruction. While this construct has been studied and unpacked from a multitude of 
lenses at the K-12 setting (e.g., Jacobs, Lamb, & Philipp, 2010; Sherin & van Es, 2005; Star & 
Strickland, 2008), very little is known of instructor noticing at the undergraduate level. A lack of 
research in this setting is unsurprising in light of Rasmussen and Wawro’s (2018) recent look at 
research at the post-calculus level where teaching is just beginning to be studied.  

In this report, we share results from an exploratory study unpacking a particular aspect of 
instructor practice: noticing of students’ mathematical thinking. We adapt this lens from the 
work of Jacobs, et al. (2010) who have decomposed teachers’ in-the-moment noticing into three 
related acts: (a) attending to children's strategies, (b) interpreting children's understandings, and 
(c) deciding how to respond on the basis of children's understandings. Our study is situated in 
the context of abstract algebra, a standard upper level undergraduate course. We leverage pieces 
of student work that reflect documented ways students reason about the core concepts of identity, 
subgroups, and cyclic groups. Through surveying a variety of instructors, we introduce analysis 
of how mathematics instructors are attending to, interpreting, and responding to the student 
responses. We pay particular attention to how these responses diverge from the responses 
documented in the K-12 literature in order to contribute to our knowledge of teaching practices 
at the advanced undergraduate level.  

Background 
In this section, we provide background both on noticing research at the K-12 level and 

the larger research base on teacher practices at the advanced undergraduate level. 
 
Noticing at the K-12 Level       
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Noticing student thinking is a “core practice of high-quality mathematics instruction 
because it is foundational for teachers’ in-the-moment decision making” (Jacobs & Spangler 
2017, p. 192). Which aspects of student thinking teachers give their attention to and how they 
interpret what they see or hear, influences their instructional decisions (Jacobs et al., 2010; 
Schoenfeld, 2011). Researchers have documented that teachers and prospective teachers notice a 
multiple of things when engaging with videos of classrooms (e.g., Sherin & van Es, 2006; Star & 
Strickland, 2008). Jacobs and colleagues (2010) developed a framework to distill one aspect of 
this noticing: noticing students’ mathematical thinking. This framework can be leveraged to 
explore teacher noticing in the context of written artifacts or short video clips of students 
engaged in mathematical tasks. As teachers engage in describing, interpreting, and deciding how 
to respond to artifacts of student work, they demonstrate their skill in noticing mathematical 
thinking.  

A number of researchers have built off of this work from the elementary level to study 
varying populations of teachers including Simpson and Haltiwanger’s (2017) recent work at the 
secondary level. As noted by Nickerson, Lamb, and LaRochelle (2017), expanding beyond the 
elementary level brings additional challenges including the availability of artifacts, the 
availability of well-articulated frameworks around student thinking, and the availability of expert 
responses. Such work may also require adaptations to the original framework in light of the new 
contexts (see Simpson & Haltiwanger’s additional distinctions.)   

The summative results from these studies reflect that (a) professional noticing of student 
thinking is an essential skill for teachers and (b) it is a skill that can be developed through 
appropriate support (Fernandez, Llinares, & Valls, 2013; Jacobs, Lamb, & Philipp, 2010; Miller, 
2011). Examining noticing at the advanced undergraduate level likely requires both 
consideration to the elementary literature base and consideration of what aspects of noticing may 
be informed by the particulars of the advanced mathematics context. 

Teaching at the Advanced Undergraduate Level 
 Few studies at the advanced undergraduate level have focused “directly on teaching 
practice—what teachers do and think daily, in class and out, as they perform their teaching 
work” (Speer, Smith, & Horvath, 2010, p. 99). A few exceptions have begun to unpack some of 
the relevant practices including the nature of lectures (Weber, 2004), question types in lecture 
(Paoletti, Krupnik, Papadopoulos, Olsen, Fukawa-Connelly & Weber, 2018), and grading student 
proofs (Moore, 2016). Little work has explored the nature of teaching practices directly related to 
engaging with students and their thinking.  The studies that have begun unpacking this work are 
situated largely in the implementation of inquiry oriented-instruction (IO), a pedagogy that relies 
heavily on instructor use of student ideas as a component of lessons aimed to move from 
informal to formal understanding of ideas (Rasmussen & Wawro, 2018).  

Instructors using both the differential equations IO materials and abstract algebra IO 
materials have been documented to struggle to support productive discussions and leverage 
student reasoning without strong pedagogical content knowledge (Speer & Wagner, 2009; 
Johnson & Larsen, 2012). While mathematician instructors likely have very strong mathematics 
content knowledge, their knowledge of student reasoning and connections to pedagogy may not 
be as fully formed. Pedagogical content knowledge provides the lens through which instructors 
can interpret and respond to student thinking. In this way, teacher noticing is a specific practice 
or skill, related to pedagogical content knowledge, that becomes critical for instructors striving to 
adjust their lessons based on student thinking, as is often the case in IO classrooms. 
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Johnson and Larsen (2012) and Johnson (2013) provide perhaps the most nuanced look 
of addressing and leveraging (or failing to leverage) student reasoning in advanced 
undergraduate settings through their look at IO curriculum implementation in the abstract algebra 
classroom. In particular, Johnson and Larsen highlight the role of generative listening. This 
listening occurs when an instructor is able to interpret students’ reasoning and adjust the lesson 
trajectory accordingly. Johnson and Larsen noted that their case study instructor often lacked 
knowledge of the specifics of student reasoning such as seeing operating on symmetry elements 
left-to-right, and thus failed to appropriately respond. In Johnson’s follow-up work, she provides 
contrasting images of abstract algebra instructors’ productive mathematical activity that was 
needed to interpret and analyze student ideas, as well as make connections between these ideas 
and the larger mathematical goals of the lessons. These studies provide cases that establish the 
important role of noticing student reasoning in order to promote student-centered instruction. 
They also illustrate that the knowledge and skills involved in supporting students in abstract 
algebra is non-trivial.  

Theoretical and Analytic Orientation 
Our work is orientated towards teaching practices, the work teachers do in their daily 

lives as instructors (Speer, et al., 2010). In particular, we focus on their noticing of student 
thinking, and ultimately the nature of the responses connected to this noticing. We make the 
assumption that “teacher noticing is worthy of study because teachers can be responsive only to 
what has been noticed” (Jacobs & Spangler 2017, p. 192). We leverage the framework 
introduced by Jacobs, Lamb, and Philipp (2010) that unpacks noticing as three interrelated 
practices: (a) attending to children's strategies, (b) interpreting children's understandings, and 
(c) deciding how to respond on the basis of children's understandings. Each practice can range 
from noticing that is disconnected from students’ thinking to noticing meaningfully and richly 
coupled with student thinking.  

Beyond the scope of the original framework, we incorporate other theoretical distinctions 
to produce a more detailed image of instructors’ interpretations and responses to students. First, 
at this level, interpreting can have both a semantic orientation, focused on concept 
understanding, and logio-structural (formal) orientation, focused on aspects of proof and the 
formal structure emphasized in advanced mathematics (c.f., Weber, 2004). We also parsed the 
nature of responding to not just how coupled the response was with student thinking, but also the 
nature of the response itself--what did these instructors say they would do next with this student? 
Responding is a practice that has substantial theoretical breakdowns at the K-12 level (e.g., 
Boaler & Humphreys, 2005; Herbel-Eisenmann, Drake, & Cirillo, 2009; Milewski & Strickland, 
2016) focused on the nature of teacher questions and actions. To analyze our instructor 
responding moves, we leveraged various literature to identify key ways of responding in terms of 
question types (Sahin & Kulm, 2008), and other responding moves (Milewski & Strickland, 
2016). We expand upon our categories in the next sections. 

Methods 
For this study, we surveyed 25 Abstract Algebra instructors representing a range of 

experience and institution types. Table # reflects the demographic information of the 
participants. 
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Table 1. Background on Participants. 

Research Focus 
Experience 

Teaching Algebra Position 
Institution Type (highest 

mathematics degree) 

Abstract Algebra n=11 <5 times  n=8 Assist. Prof. n=2 Ph.D. n=10 

Math Education  n=5 5 - 9 times n=10 Assoc. Prof. n=9 M.S. n=8 

Other Math Pure n=9 > 9 times n=7 Full Prof. n=11 B.S. n=6 

    Other n=3 NA n=1 

The Survey 
The survey was directly adapted from Jacobs, Lamb, and Philipp (2010) and Jacobs, 

Lamb, Philipp, and Schappelle (2011). The instructors were given five pieces of student work. 
For each piece of student work, instructors were asked: 

• Please describe in detail what you think this student did in response to this prompt. 
• Please explain what you learned about this student’s understanding.  
• Pretend that you are the instructor of this student. Describe some ways you might 

respond to this student, and explain why you chose those responses. 
The student work stemmed from a large-scale project collecting data about student 

understanding in group theory (Melhuish, 2015). Table 2 contains three pieces of student work 
that are the focus of this report. 
 
Table 2. Sample Student Work Provided to Participants 

(1) Given L the set of all positive rational 
numbers, consider the binary * defined:    

x*y=x/2+y/2+xy   
Determine if this operation has an identity. If 
so, identify the identity. 
 

 

(2) Is Z, the group of integers under addition, a cyclic group? 
 
 

 

(3)  
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Each response was selected due to its connections to established ways of thinking about 
group theory topics from the literature. Response one stems from a task identified by Novotná 
and Hoch (2008) as reflecting structure sense for operation where students may or may not 
recognize that an identity element must serve as an identify for all elements in the set. The 
second piece of student work reflects incomplete coordination of the binary operation with 
subgroups where students may rely on a subgroup test without attending to the differing 
operations between Z3 and Z6 (e.g., Melhuish, 2018; Dubinsky, Dautermann, Leron, & Zazkis, 
1994) The third piece of student work reflects a common conception of cyclic groups where 
elements only generate via repeated operation and thus do not take on negative powers 
(Melhuish, 2018; Lajoie & Mura, 2000).  

Analysis 
To analyze the data, we incorporated a two-fold approach. First, we analyzed the data 

using the original scheme developed by Jacobs, Lamb, & Philipp (2010) addressing whether 
instructors attended to student thinking, the robustness of their evidence of interpretation, and the 
degree to which their responding actions were connected to the student’s thinking. Second, we 
took a more grounded approach to account for the fact that the advanced tertiary level may lead 
to substantially different characteristics of instructor noticing. The initial passes were done by the 
authors independently. In collaboration, we then arrived at a coding scheme where all responses 
were classified. A subset of the scheme can be found in Table 3. All instructor responses were 
then coded in tandem with discussion serving to settle disagreement in codes. 

 
Table 3. Background on Participants. 

Noticing Practice Categories (Codes) 

Attending Connected to Student Thinking (Y:Yes, N:No) 

Interpreting  Evidence Level (N: No Evidence Provided, L: Limited evidence 
provided, R: Robust Evidence Provided); 
Aligned with Literature Interpretations (Y:Yes, N:No); 
Formal Representation System (D: Definition, A: Implicit 
Assumptions, P: Proof, Q: Quantifiers) 

Responding Connected to Interpretation of Student Thinking (Y:Yes, N:No);  
Nature of Response (E:Praise, T:Telling, G:Guiding, P:Probing, 
C:Command) 

Results 

Attending & Interpreting 
The abstract algebra instructors provided quite different profiles in terms of noticing. 

Compared to the documented literature on elementary teachers, these instructors were much 
more likely to attend to students’ thinking. A typical interpretation looks as follows: 

The student understands which binary operation is in question. The student has 
done some elementary algebra correctly, from which the question could be 
answered. But I would infer from the response stopping at this point, that the 
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student thinks that there is an identity and that it has been found (referencing task 
3). 

In fact, across our three focal tasks, we documented zero instances of not paying attention to 
students’ thinking and only 7% of responses provided largely evaluative statements. For 
example, one instructor made comments such as, “[I]mpressive written response, a good 'abstract 
algebra' presentation...” Such a response illustrates a focus that was more evaluative with 
language about the quality of the response, and less focus on the student thinking offered. While 
the instructors did largely attend to student thinking, there was range of evidence provided as 
(see Table 4).  
 
Table 4. Percentage of Interpretations with Particular Characteristics 

Task Level of Evidence 
Provided  

Aligned with 
Literature 

Focused on Aspects of 
Formality 

Task 1 (Identity) R: 12% L:40% N:48% Y:48% Y: 60% 

Task 2 (Subgroup) R: 38% L:48% N:14% Y:65% Y: 54% 

Task 3 (Cyclic Group) R: 14% L:52% N:38% Y:73% Y: 60% 
One feature that differed across our participants was attention to aspects of the formal 

representation system which split the interpretations.  Non-formal interpretations included 
statements like “confused the notions of subset and subgroup.” For formal interpretations, the 
role of definition was particularly prominent (52%1) (e.g., “the student does not appeal to the 
literal definition"), followed by hidden assumptions (14%) (e.g., “The student assumed the 
distributive law holds.”), quantifiers (14%) “e.g., “Student has a weak grasp of the words ‘for 
all’.”, and issues of proof (12%) (e.g., "[I]t does [not] formally  'prove' that an identity element 
exists"). 

Deciding How to Respond 
Deciding how to respond to a student is an important aspect of noticing, but is also its 

own area of research in K-12 scholarship on teaching with little corresponding research at the 
tertiary level. In terms of the original noticing framework, we note that almost all of the 
mathematician responding choices were connected to their interpretations of student thinking 
(97%). This attention was a dramatic shift from what was documented with elementary teachers 
where a sizeable portion did not attend to student thinking (Jacobs, et al., 2010). 
Table 5. Percentage of Response Types 
 
Type Example Response % 1  (n=72) 

Command “Please review the definition of subgroup which has three parts 
(closure, identity, inverses). Then come to my office hours.” 

8% 

Praise “First is praise the amount of good work that happened.” 8% 

Probe "Tell me your reasoning for what you did? What does this answer 17% 

                                                
1 Interpretations could include multiple components. Percentages are not intended to sum to 100% 
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mean?" 

Tell “I remind you that identity cannot depend on x” 35% 

Guide “I think this student is ready for direct questions about their 
solution. For example: Is it a problem that x=1 and x=2 result in 
different values for e?” 

65% 

1. Percentages sum to greater than 100% because some responses included multiple response types 

 
Even though responses were connected to student thinking, the nature of the responses 

varied. Guiding questions, questions intended at move students’ mathematics to the correct 
mathematics were by far the most prevalent for these instructors. However, there was also 
substantial telling responses along with commanding, praising, and probing. See Table 5 for 
examples of each type of response and the respective percentages.  

Discussion 
The abstract algebra instructors provided a contrasting profile to what has been 

documented about teachers at the K-12 level. First, with a few exceptions, the abstract algebra 
instructors attended to the students’ mathematical thinking. Second, their responses nearly 
always aligned with their description and interpretation of this thinking. As such, differentiating 
based on these categories was not a meaningful way to distinguish the nature of the instructors’ 
noticing.  However, when going beyond connections to student work, the instructor responses 
ranged across our participants. In terms of interpretation of student work, we found that attention 
to formality was particularly helpful to distinguish amongst responses. Close to half of the 
instructors focused exclusively on elements of concept understanding (without attention to 
formality) while the other half of participants focused on aspects of formality. Definition was the 
most common formal aspect attended to. This is not particularly surprising in light of how 
closely formal definitions are tied to concepts at this level. Further, the student work responded 
to prompts that may engage them with definitions, but not require formal proofs. In terms of 
deciding how to respond, the most significant difference across our participants was the nature of 
the teacher moves. Guiding questions seemed particularly prevalent among our sample. This 
exploratory analysis of our data can support a more nuanced look at these responses. For 
example, to what degree are the guiding questions intended to funnel students towards correct 
answers versus lead towards open exploration? Due to our sample size, we are hesitant to make 
generalizability claims. Follow-up research may look explicitly at the role that specific tasks and 
experience play in this noticing through larger samples or qualitative interviews. 

Implications of our study are mostly research-based. This exploratory study provided 
evidence that mathematicians’ noticing (in terms of interpreting and responding) ranged greatly 
in even a small sample. Noticing at the tertiary level likely includes parallel constructs of 
noticing conceptual understanding and noticing formal representation aspects. Further, the nature 
of the participants responses illustrated components of the practice of responding to an individual 
student. The nature of these responses was significantly different than question types that were 
recently documented during lectures (Paoletti et al., 2018), and as such may serve as a starting 
ground to examine the instructor responses outside of the traditional lecture. 
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Examining Graduate Student Instructors’ Decision Making in Coordinated Courses 
 

Erica R. Miller 
Virginia Commonwealth University 

In an effort to improve teaching and learning in undergraduate mathematics courses and help 
graduate students learn how to teach, many departments across the United States have begun 
coordinating courses. Although coordination may provide structure and remove some variability 
in the classroom, there are still many decisions made in the classroom that cannot be 
coordinated. The purpose of this study was to examine the “uncoordinated” decisions that 
graduate student instructors made when enacting examples in the classroom. To examine this 
phenomenon, I studied the cognitive demand of the examples that graduate student instructors 
chose to enact and the roles that they took on while enacting high cognitive demand examples. 
As a result, I found that less than 27% of the examples that I observed were enacted at a high 
level of cognitive demand and that there were three roles (modeling, facilitating, and 
monitoring) that instructors took on while enacting examples. 

Keywords: graduate student instructors, coordinated courses, cognitive demand, examples, 
decision making 

The purpose of this study is to examine graduate student instructors’ (GSIs) decision making 
in coordinated courses. In the department where I conducted my study, precalculus courses are 
primarily taught by GSIs and are highly coordinated. This coordination involves common lesson 
guides, student worksheets, WeBWorK homework assignments, and exams. These courses are 
coordinated primarily by a GSI who serves as the Associate Convener, but there is also a Faculty 
Convener. Although the high level of course coordination means that GSIs do not have to make 
many of the decisions regarding course structure and assessment, the lesson guides provided to 
GSIs allowed them flexibility regarding what examples they chose to do and how they chose to 
present them. So, for this reason, I chose to examine the examples that GSIs enacted in their 
classrooms by looking at both the cognitive demand and the roles (modeling, facilitating, or 
monitoring) that the GSI took on while enacting the example. 

Background 
The cognitive demand of mathematical tasks is something that has been widely studied in the 

literature (Boston & Smith, 2009; K. J. Jackson, Shahan, Gibbons, & Cobb, 2012; Kisa & Stein, 
2015; Smith & Stein, 1998; Stein, Grover, & Henningsen, 1996). Studies have found that high 
cognitive demand tasks provide students with more opportunities to learn (Floden, 2002; K. 
Jackson, Garrison, Wilson, Gibbons, & Shahan, 2013; Smith & Stein, 1998; Stein, Remillard, & 
Smith, 2007). Researchers have also found that high cognitive demand tasks are difficult for 
instructors to enact (Henningsen & Stein, 1997; Rogers & Steele, 2016). But what would it mean 
to have a high cognitive demand mathematical example? Examples are different from 
mathematical tasks that are primarily worked on by students. Examples may involve input from 
students or opportunities for students to work independently or in groups on parts of the 
example, but usually the teacher plays a leading role in working out or explaining the 
mathematics. Although studies have shown that students do not learn as much from observing a 
worked out example as they do from actively engaging in the problem solving process (Richey & 
Nokes-Malach, 2013), the examples that teachers use still play an important role in the learning 
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process (Chick, 2007; Muir, 2007; Rowland, 2008; Zaslavsky & Zodik, 2007). In particular, Ball 
and her colleagues (TeachingWorks, 2017) identified “explaining and modeling content, 
practices, and strategies” as a high-leverage teaching practice. 

Methods 
The GSIs that I observed (Dan, Emma, Greg, Juno, Kelly, and Selrach) were all experienced 

graduate students who were teaching precalculus. These GSIs were experienced in two ways. 
First, they were in at least their third year of graduate studies, had earned their M.S. in 
Mathematics, and were working towards their Ph.D. Second, they were all teaching their 
respective course for at least the third time. It is also important to note that many, but not all, of 
the GSIs had went through a one-year course on Teaching Mathematics at the Post-Secondary 
Level. This 3-credit course was taught by a faculty member in the department who was the 
Director of First-Year Mathematics. All second-year GSIs were required to take this course in 
addition to their normal 9-credit course load, but were also given a course release during the fall 
semester to compensate for the extra time. Alex and Dan were in the first cohort of GSIs who 
took this course during Year 1. Greg was not required to take this course, but chose to with the 
first cohort. Emma, Juno, and Kelly were in the second cohort of GSIs who took this course 
during Year 2. Selrach did not take this course, as it was not offered when he started the program 
and he did not opt in to take it later. The goal of this course was to support GSIs as they became 
evidence-based practioners of mathematics education. So, the course aimed to help make GSIs 
aware of mathematics education research, issues, and terminology so they could apply what they 
were learning in their own classrooms and become reflective teachers. 

For this study, I conducted semi-structured pre-observation interviews, classroom 
observations, and semi-structured post-observation interviews. I also collected copies of the 
lesson guides that were provided to the GSIs, the individual lesson plans that the GSIs prepared, 
and the student worksheets. During the pre-observation interviews, I asked questions about the 
previous and next class and focused on what examples they planned to use and why. During the 
classroom observations, I collected video data and took field notes. After each observation, I 
watched the video and selected one or two examples to discuss with the GSI during the post-
observation interview and tagged interesting moments to use for video-stimulated recall. 

Each enacted example was first coded using a modified version of Smith and Stein’s (1998) 
framework for the cognitive demand of examples. A full description of this modified framework 
can be found in Miller (2018), but included four categories for the cognitive demand of 
examples: memorization, procedures without connections, procedures with connections, and 
doing mathematics. Next, I open coded the high cognitive demand examples to examine the roles 
the GSIs took on while enacting (note that I did not code low cognitive demand examples). 
Three roles emerged out of this open coding (modeling, facilitating, and monitoring), which I 
have defined below in Table 1. I then went back and recoded each high cognitive demand 
example using the final coding scheme for GSI roles. 

For this study, I observed each GSI three times throughout the semester. In the first semester, 
I observed Alex, Greg, and Kelly and asked them to choose three dates (spread out from 
September-December) that worked best for them. During the second semester, I observed Dan, 
Emma, Greg, and Selrach and chose specific lessons that I wanted to observe. The lessons that I 
chose for the second semester were more procedural, because I thought they would provide me 
with an opportunity to see whether GSIs chose to present examples as procedures without 
connections or procedures with connections. Also, I only observed one day of instruction in the 
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first semester, regardless of whether or not the lesson was spread out over two days. However, if 
a lesson was spread out over two days in the second semester, I observed both days. 

Table 1. Definitions of the three types of roles (modeling, facilitating, and monitoring) 

Term Definition 

Modeling 
 
 
Facilitating 
 
Monitoring 
 

An instructor is modeling content, practices, and strategies if they are working 
through an example independently and expecting students to follow along by 
taking notes. 
An instructor is facilitating a whole class discussion if they work through an 
example together with input from their students. 
An instructor is monitoring if they are requiring students to work through an 
example independently or in small groups. 

Results 
Of the 93 examples that I observed, I coded 25 of them as high cognitive demand examples. 

When enacting high cognitive demand examples, GSIs used a variety of approaches. Although 
some GSIs took on primarily one role when enacting high cognitive demand examples, others 
transitioned back and forth between different roles. Figure 1displays the aggregate role profiles 
for the high cognitive demand examples that I observed each GSI enact. These role profiles were 
constructed by summing the total time each instructor spent in each role across all of the high 
cognitive demand examples that I observed and provide a glimpse of which roles each instructor 
tended to take on. In this paper, I will focus on three role profiles: modeling, modeling and 
facilitating, and facilitating and monitoring. Although there were several GSIs who enacted 
examples using these different role profiles, I will focus on specific examples enacted by Emma, 
Greg, and Kelly in order to illustrate the different ways in which these GSIs chose to enact high 
cognitive demand examples in their classrooms. 

 
Figure 1. Aggregate role profiles for each GSI 
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Model: Emma 
Many GSIs chose to take on different roles when enacting examples, but some chose to just 

model examples for their students. Although students do not have an opportunity to struggle with 
the mathematics in this type of setting, they do have an opportunity to have high cognitive 
demand processes modeled for them. In order to maintain the cognitive demand while modeling, 
GSIs focused on making their cognitive processes explicit and attending to student 
understanding. The example that I observed Emma enact at a high level of cognitive demand was 
situated at the end of a chapter on function transformations. Emma chose the example because it 
was a question on the chapter quiz that many of the students had struggled with. In particular, 
she wanted to reemphasize the connection between order of operations and order of 
transformations and explain how to check their work using an alternative method. The example 
gave the graph of a piecewise linear function and asked students to sketch a graph of 
3"($ + 1) − 2 for 0 ≤ $ ≤ 9 on a provided grid. 

Since so many of her students had struggled with this problem on the quiz, Emma chose to 
model it for her students at the beginning of the next class. Emma worked through the example 
by first identifying the order of transformations. She emphasized that it did not matter if they did 
horizontal transformations before or after vertical transformations, but that they did need to 
attend to the order of the vertical transformations. To help her students understand why the 
vertical stretch had to occur before the vertical shift, she explained how function transformations 
are related to the order of operations. Next, Emma explained that they could transform the 
endpoints and corners of the graph and then connect these points with straight lines. Emma also 
noted that one of the transformed endpoints fell outside the domain 0 ≤ $ ≤ 9 and explained 
how to find the new endpoint. Since so many of her students had struggled with determining the 
correct order of transformations, Emma also presented an alternative method for graphing the 
transformed function that did not rely on memorizing information related to order of 
transformations. Instead, she explained how students could use the equation 3"($ + 1) − 2, the 
original graph, and integer values in [0,9] to graph the transformed function. 

I coded this as a procedures with connections example because of the following reasons. 
First, Emma focused students’ attention on the use of procedures for the purpose of developing 
deeper understanding of mathematical concepts and ideas. To help her students remember the 
order of vertical transformations, she focused on the underlying mathematical concept of order of 
operations. Also, to help her students find exact output values, she focused on the underlying 
concept of slope and how to interpret it in a way that is helpful for calculating non-integer 
values. In her example, Emma presented two different pathways that students could follow to 
solve the problem (using order of transformations to move points or using an input-output table). 
In explaining each pathway, Emma focused on the underlying conceptual ideas (order of 
operations and evaluating function compositions), instead of the narrow algorithms. The example 
involved graphical, algebraic, and tabular representations and Emma often made connections 
between each of them. Finally, the number of student questions and the prevalence of student 
struggle on the problem when it was presented on the quiz are evidence that the example 
required some degree of cognitive effort for students to follow. 

Model and Facilitate: Greg 
The high cognitive demand example where Greg switched back and forth between modeling 

and facilitating was situated in the second day of an extended lesson on finding all solutions to 
trigonometric equations. After spending the first day exploring the structure of the infinite 
families of solutions and working through simpler problems that did not involve shifts and 
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stretches, Greg introduced more complicated sinusoidal functions. First, Greg did two examples 
that only involved vertical transformations. For his final example, Greg chose to find all 
solutions to sin(33 − 1) = 1/4. Greg chose this function for several reasons. First, he wanted 
his students to learn how to find all solutions when the period is not equal to 27. Second, he 
wanted to give an example with both a horizontal shift and a period change because he knew that 
problems of this type would come up on the online homework as well as the exam. Finally, he 
did not want to use a standard unit circle angle and instead force students to use arcsine. 

Greg started by first modeling content, practices, and strategies for students. To make the 
equation more clear and appear less complicated, Greg decided to define the variable 8 = 33 −
1. Greg chose to do this because he wanted to remove the part of the equation that looked 
unfamiliar and highlight that first they needed to isolate the input of sine. Next, Greg switched to 
facilitating a whole class discussion. First, he asked how they could proceed from sin(8) = 1/4 
to solve for 8. A student suggested that they could use arcsine, so Greg wrote 8 = sin9:(1/4) 
and explained that this gave the first solution. When Greg asked where the second solution came 
from they were able to come up with 8 = 7 − sin9:(1/4) with some assistance from Greg. 
From here, Greg switched back to modeling. He explained that since they had started with 3s, 
they needed to end with 3s and substitute out the 8s. Doing this resulted in the following two 
equations: 33 − 1 = sin9:(1/4) and 33 − 1 = 7 − sin9:(1/4). Before solving for 3, Greg 
paused to explain that this problem “was a little bit more involved than the other [examples] 
because we generate our initial solutions and then we have to keep working to…find the initial 
solutions just in terms of 3.” From here, Greg worked through the algebra to solve for 3, which 
resulted in 3 = 1/3(sin9:(1/4) + 1) and 3 = 1/3(7 − sin9:(1/4) + 1).  

 
Figure 2. Role profile for Greg’s example 

At this point, Greg switched back to facilitating by pausing and asking for student questions. 
Students asked, “Why divide by 3? Where did the 1/3 come from?” and Greg explained the 
algebraic step the student was stuck on. Next a student asked, “Will we still involve adding the 
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possible solutions and reminded the class that they should be of the form (initial) + (period);. 
To start this conversation, he asked, “What is the period of [sin(33 − 1)]?” After working 
collaboratively, the students were eventually able to identify that the period was 27/3 and then 
wrote up the final solutions. Throughout this conversation, Greg switched frequently back and 
forth between modeling and facilitating. At the end, Greg took the time to summarize the whole 
process and the general procedure that they had followed.  

I coded this example as procedures with connections for the following reasons. Although 
parts of this example strayed into lower cognitive demand tasks, the majority of the problem was 
focused on the broad general procedure of using the initial solutions and the periodicity of 
sinusoidal functions to find all solutions. Greg consistently focused students’ attention on the 

1:32 1:02 1:54 5:56 0:450:400:45 0:44

0% 20% 40% 60% 80% 100%

Model Facilitate

22nd Annual Conference on Research in Undergraduate Mathematics Education 441



underlying structure of solutions to trigonometric equations: (initial) + (period);. There was a 
lot of algebra involved in getting the initial solutions and students struggled to find the period, 
but Greg always brought the focus back to this underlying concept. Although the example was 
computational, Greg emphasized the connections between the general form of solutions to trig 
equations and the specific families of solutions that they had found. Also, the number of 
questions asked by students is one form of evidence to support the claim that this example 
required some degree of cognitive effort for students to follow. 

Facilitate and Monitor: Kelly 
The high cognitive demand example that Kelly presented by both facilitating a whole-class 

discussion and monitoring students as they worked individually or in small groups was situated 
at the beginning of the lesson introducing exponentials. To start class, Kelly asked her students 
to work on a problem that asked students to compute the account balances in an account that 
earned simple interest and an account that earned compound interest. During this time, she asked 
a group to write the balances in both accounts after one year on the board. After a few minutes, 
Kelly brought the class back together to see if everyone agreed with what the students had 
written on the board. She then asked a student to volunteer the balances after two and three years 
and wrote those on the board. Kelly then asked, “Which one would you chose?” A choral of 
students said responded with the same answer and Kelly explained why that was correct.  

 
Figure 3. Role profile for Kelly’s example 

At this point, Kelly gave her students a similar problem to work on: “Suppose you are 
investing $500 at an annual rate of 4.5%. Create a table that shows the balance after 0, 1, 2, and 
3 years. What is the balance after $ years?” As students began working individually and in small 
groups on this problem, Kelly monitored their progress by walking around the room and 
interacting with different student groups. After almost six minutes of work time, Kelly brought 
the whole class back together for a discussion of the general formula. First, Kelly asked students 
what values they found for the table and verified that everyone had gotten the same answers. 
Then Kelly asked, “So how are we getting these numbers?” One student explained that they were 
using the formula H(1 + I)J and Kelly acknowledged that this was correct, but she wanted them 
to figure out why that formula made sense.  

To help start the discussion, Kelly asked, “How did we get from $500 to $522.50?” Another 
student responded with, “Times 500 by 0.045.” Kelly agreed that this would work, but asked if 
anyone knew an easier way of doing that. A new student piped up and said, “Times 500 by 
1.045.” Kelly responded by explaining how we could factor out a 500 from both terms in 500 ∗
0.045 + 500 and get 500(0.045+ 1). Next Kelly asked how they had found that $546.01 was 
the balance after two years. A student responded with, “522.5 times 1.045,” which Kelly agreed 
with. Kelly asked, “What’s another way of writing 522.5?” After working together, the students 
were eventually able to refer back to the equation 522.5 = 500(1.045). Kelly then explained 
that to get 546.01, we needed to multiply that again by 1.045 to end up with 
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500(1.045)(1.045) = 546.01. After writing this all on the board, Kelly asked her students if 
they saw a pattern and if they could guess what the formula for t years would be. A student 
responded with 500(1.045)J. Kelly then encouraged her class to plug in $ = 3 and verify that 
the value agreed with what they found in their table. Kelly asked for any final questions, with no 
response, and then asked, “So what kind of formula is that?” A student responded with 
exponential and Kelly explained that this is what the new chapter was all about. 

I coded this as a procedures with connections example for the following reasoning. First, 
Kelly expected her students to be familiar with exponentials and know how to work with them 
computationally, but she really focused the example on the underlying concept of multiplicative 
growth. Students were not provided with any specific pathways to follow and Kelly encouraged 
them to solve the problem in different ways in order to check their work. Kelly also used tabular 
and algebraic representations of the problem. Finally, not every student was able to come up with 
a formula during their small group time, so we know that it required some degree of cognitive 
effort for students to complete. 

Conclusion 
In this study, I examined the decisions that GSIs made while teaching in highly coordinated 

courses. Using my modified framework for the cognitive demand of examples, I analyzed 93 
examples that were enacted and found that 25 of them were enacted at a high level of cognitive 
demand. In these examples, I found that there were three roles that GSIs took on during the 
enactment: modeling, facilitating, and monitoring. Although some GSIs chose to just model 
examples for their students (e.g., Dan and Emma), others chose to switch between different roles. 
Juno also modeled examples for her students, but often asked for student involvement and 
switched to facilitating. On the other hand, Alex and Greg switched back and forth between all 
three roles, while Kelly chose to never model and instead just facilitated a whole class discussion 
or monitored her students as they worked on parts of the example independently or in small 
groups. 

One limitation of this study is that the data I collected focused on the GSI and did not 
incorporate the student perspective. Therefore, I had to assess the cognitive demand of each 
example based upon the questions that students asked and the mathematical content of each 
example. Although I tried to define the four different levels of cognitive demand so that a 
classroom observer could categorize examples, it was still difficult at times to determine whether 
or not an example required cognitive efforts for students to follow or understand. Another 
limitation of this study was that is difficult to determine when an GSI is switching between 
modeling and facilitating. In particular, facilitating still requires contributions from the teacher, 
so it can be difficult to determine exactly when an GSI stopped modeling and started facilitating 
a whole-class discussion. Therefore, the role profiles should be interpreted as having a margin of 
error any time an GSI switched between modeling and facilitating. 
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Learning Through Play: Using Catan in an Inquiry-Oriented Probability Classroom 
 

Susanna Molitoris Miller 
Kennesaw State University 

Research has documented the power of play to affect learning at all ages. This research shares 
the kinds of mathematical student thinking elicited by incorporating the board game Catan into 
an inquiry-based classroom. The class was composed of 25 students, not majoring in STEM 
fields, who were enrolled in a freshman seminar course intended to provide an opportunity to 
engage in research-like inquiry. Students had played Catan in class and to engaged inquiry-
oriented instruction sessions focusing on the relationships between mathematics and Catan. 
Student work is provided for arguments related to the value of each resource and selecting 
locations for initial settlements, with connections between this work and topics traditionally 
taught in probability classes 

Keywords: probability, games, inquiry-oriented instruction 

The phrase “learning through play” often evokes images of elementary age students, however 
play can be an important part of the learning process for learners of all ages (Rieber 1996). In 
mathematics games have often been used to address relatively simple probability concepts such 
as rolling dice or choosing cards from a deck (Goering, 2008; Hoffman & Snapp, 2012/2013). 
The board game, Catan (Mayfair Games, 1995), provides unique opportunities for learners to 
engage with both these probability basics as well was several other mathematical ideas including 
more advanced ideas related to probability and expected value. Here I share evidence of how 
Catan provided a relevant context in which students used concepts of probability and expected 
value to address two important questions related to strategic game play: (1) determining which 
resource is most valuable and (2) deciding where to place one’s initial settlements.  

A Brief Introduction to Catan 
Catan is a property building and resource trading based Euro-style board game for 3-4 

players. Since its introduction in 1995, Catan has gained world-wide recognition, winning 
several awards, being translated into over 30 languages, and revolutionizing the board game 
industry (Law, 2010). At the start of every game the board is constructed from resource tiles, 
numbers, and ports. This makes Catan a perfect setting for abstract thinking about patterns and 
generalities rather than strategies that optimize play on one unchanging board. The benefits of 
this dynamic nature has already been noted by both mathematicians (Austin & Miller, 2015) and 
computer scientists (Szita, Chaslot & Spronck, 2010).  

The board is assembled by arranging 19 hexagon tiles into a larger hexagonal formation 
as shown in Figure 1. These tiles dictate what resource will be produced at a location: brick/clay 
(3 tiles), lumber/wood (4 tiles), wool/sheep (4 tiles), grain/wheat (4 tiles), ore/stone (3 tiles), or 
nothing/desert (1 tile).   Next each tile except the desert receives a number chip, this will dictate 
when the resource is produced. There is one ship for 2, one for 12, and two for every number 
from 3 to 11 excluding 7. Whenever the number on a tile is rolled by any player, the players with 
settlements or cities adjacent to that tile will collect the given resources. Finally, eight ports are 
distributed around the board, but they do not affect the mathematics discussed in this work. 
Settlements will be placed at the intersection of the corners of the hexagon tiles. Roads will be 
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built along the edges of the tiles.  Only one settlement or road may occupy a given space and 
there must be at least two edges between any two settlements on the board.  

The game begins with each player placing two settlements in reverse draft order. 
Choosing initial settlements is a very important part of the game because it affects what 
resources you have immediate access to and which resources you may have the opportunity to 
build to; all new settlements must be connected to one of the player’s initial settlements by at 
least two roads.  
 On a player’s turn they roll two standard dice and all players who have a settlement on a 
tile with that number collect the corresponding resources. If a seven is rolled the player whose 
turn it is has the opportunity to move the robber, which is another detail which does not affect 
the mathematics in this research.  Next the player whose turn it is has the opportunity to build 
additional road or settlements, upgrade a settlement to a city, or purchase a development card, 
which gives various bonuses. Each of these things contributes to a player earning victory points; 
the first player with 10 victory points wins. For complete rules please see, 
https://www.catan.com/en/download/?SoC_rv_Rules_091907.pdf.  
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: This is one sample Catan board, but there are many more possibilities. 

Setting and Methods 
Data for this study were collected from a freshman learning community focusing on the 

relationship between mathematics and Catan; it consisted of the same cohort of students enrolled 
in both a common pre-calculus course section and a freshman seminar section which provided 
the majority of the focus on Catan. Students in the learning community were all first semester 
freshman at a large college in the southeastern US. The class included 25 students from a variety 
of majors, none of whom had officially declared majors in the university’s science and math 
focused college. 24 students consented to participate in the study.  

 The freshman seminar course was intended to orient students to college life and to 
provide them with an opportunity to engage in some accessible research-like activities which do 
not have an easily found answer or explicit method for solving. The course met three days a 
week for 50 minutes, with roughly 1/3 of time dedicated to orientation content, 1/3 of time 
dedicated to playing Catan, and 1/3 of time dedicated to inquiry-oriented instruction (Rasmussen 
& Kwon, 2007) to explore the mathematics of Catan. The mathematical components of the 
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course were presented to students as practical questions in the context of the game, which they 
were then asked to answer using mathematical reasoning. Explorations were often proceeded or 
followed by a game played on a board strategically chosen to highlight the concept in question. 
Methods of exploration included individual explorations, group work, debates, and whole-class 
student-led solutions. Previous analyses have shown that the course was effective in engaging 
students in mathematical reasoning (Molitoris Miller & Hillen, 2018). The goal of this report is 
to provide more detailed analysis of the kinds of mathematical reasoning the students used. 
These results answer the research question: What kinds of mathematical thinking are elicited by 
the board game Catan, in a student-driven inquiry-based classroom? 

The data for this analysis came from a final exam item, which is very closely related to the 
student-centered inquiry-based theme of the course. It stated, “Describe five ways you can use 
mathematics to improve your chances of winning in Catan. For each mathematical application, 
describe it in detail and provide an example of how it works.” Students were given this prompt 
one week before the exam to think about it in advance but were not permitted to bring any 
prepared materials into the exam with them and two sample boards were provided. Although 
different students took more or less vocal roles in classroom or group discussions, the final 
exams better measure what each individual student eventually learned. Inductive coding was 
used to code the 120 responses from the 24 consenting students and group them into categories 
according to the topic they addressed. The results in this paper focus on the two largest 
overarching themes present in the student’s final exam responses, the value of each resource, and 
settlement location.  

Determining Resource Value 
The first main theme that demonstrates the kinds of student thinking elicited by the game 

focuses on assigning value to the resources. During the game, players may opt to trade resources 
with one another; thus, the value of each type of resource comes into question to determine if a 
certain trade is advantageous or at least fair.  

First students began contemplating the usefulness of any resource in general as they relate to 
building in the game. In one approach, students highlighted that brick, lumber, wool, and ore are 
each used in two out of the four building processes, but grain is the only one used in three of the 
four building possibilities, thus they claimed that grain is the most valuable resource. Their 
argument rested on the idea that not having any access to grain would greatly limit ones’ ability 
to progress in the game.  

Other students used a more weighted average, where the student determined how many of 
each card was needed to build one of everything. This strategy found brick, lumber, and wool 
were equally valuable because you would need only two of each of those resources. Grain and 
ore were also equally valuable, requiring two of each. Students then looked to the number of tiles 
of each type to determine that ore was more valuable because there are only three tiles which 
produce ore opposed to four tiles which produce grain. This strategy suggests that while you 
need access to both grain and ore, you would have a stronger advantage if you have slightly 
better access to ore.  

Both of these solution methods were completely student-generated in class. This variety of 
arguably equally valid methods or measuring value provide opportunities to discuss the 
complexity of measuring more abstract judgement-based attributes such as value. This discussion 
could be taken further to include strategies like tracking how many of each resource is used in an 
average game, or a combination of general usefulness and rarity on a particular board. 
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Figure 2: This student used probability to determine which resources will be rare and common 
 

Raising the connection to the game board lead students to consider not only the resources’ 
usefulness in general, but also the usefulness of each resource in terms of supply and demand on 
a given board. This question was encouraged by asking students to play on a certain board with 
one particularly rare resource. Students used the expected number of cards of each type produced 
on any given roll to determine “how many of each resource you would get if you rolled all 36 
possible rolls each exactly once.” Student work corresponding to this strategy can be found in 
Figure 2. This work involved considering the probability of rolling each number two through 
twelve with a pair of standard six-sided dice, as well as when adding probabilities is appropriate 
or not, and how to handle duplicate numbers, such as two grains tiles with 5’s on them. 

 

 
Figure 3: This student compared two potential settlement locations based on expected number of cards produced. 
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Settlement Placement 
Knowing which resources are most important in general or on a specific board is only one 

part of what informed student’s mathematical justification of their decision process when 
choosing where to place initial settlements. The most basic intuition is that being on more 
resource producing tiles is better than being on fewer; however, when presented with this 
proposal, students were able to create examples where it could be statistically advantageous to be 
on a single very productive tile over a location with three low production tiles. After considering 
these ideas students began to evaluate each location based on the expected number of cards each 
location would produce, as shown in Figure 3. Students also considered resource rarity to 
determine which tiles were most important to settle near. This lead to an informal exploration of 
conditional probability and possible applications of reasoning aligned with Bayes formula. 

Other Catan Applications 
The student work provided above demonstrates the kinds of mathematical thinking that can 

be elicited by the use of a board game such as Catan in a course focused on exploring probability 
and expected value. Other topics explored included, the probability a certain number would be 
rolled before it is your turn to build again, the largest number of cards you could have in your 
hand with no more than three-of-a-kind and not be able to build anything, and various 
combinatorial considerations related to how to acquire the required ten victory points and win the 
game. These questions are not unlike others seen in probability classes but they are uniquely 
motivated because of the relevance to the game and game play. Recall that this work was 
completed with freshman non-math majors who were co-enrolled in a pre-calculus course. 
Employing similar techniques in a higher level probability or discrete math course intended for 
mathematics majors would likely lead to the same conclusions more quickly and provide further 
opportunities for extensions.  

References 
Austin, J.& Molitoris Miller, S. (2015). The Settlers of Catan: using settlement placement 

strategies to explore probability and expected value. College Math Journal. 46(4).   
Hoffman, T. R., and B. Snapp. (2012/2013)“Gaming the Law of Large Numbers.” The 

Mathematics Teacher 106, no. 5, 378-383. 
Law, K. (2010). Mental Floss, Settlers of Catan: Monopoly killer? Retrieved from: 

http://mentalfloss.com/article/26416/settlers-catan-monopoly-killer. 
Mayfair Games. (1995). “Catan.”  
Molitoris-Miller, S., & Hillen, A. F.(2018) Using Catan as a vehicle for engaging students in 

mathematical sense-making. Proceedings of Special Interest Group of the Mathematical 
Association of America Conference on Research in Undergraduate Mathematics Education. 
Mathematical Association of America. San Diego, CA.  

Rasmussen, C. and Kwon, O. N. (2007) An inquiry-oriented approach to undergraduate 
mathematics. Journal of Mathematical Behavior, 26, 189-194. 

Rieber, L. P. (1996). Seriously considering play: designing interactive learning environments 
based on the blending of microworlds, simulations, and games. Educational Technology 
Research and Development 44, no. 2, 43-58.  

Szita, I., G. Chaslot, and P. Spronck. (2010). Monte-carlo tree search in Settlers of Catan. 
Advances in Computer Games, 21-32. Springer, Berlin. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 449



Peer Tutors Attending to Student Mathematical Thinking 
 
 Melissa Mills Carolyn Johns Megan Ryals 
 Oklahoma State University The Ohio State University University of Virginia 

Attending to and leveraging student thinking is known to be an effective teaching practice, but 
little research has been done to investigate the ways in which mathematics tutors attend to 
student thinking. This study will use the construct of decentering and Ader & Carlson’s (2018) 
framework for analyzing teacher-student interactions to describe the ways in which tutors attend 
to student thinking in the moment. We will also provide examples of how written reflections and 
stimulated recall interviews can contribute to a tutor’s ability to attend to student thinking. 

Keywords: decentering, mathematics tutoring, observable behaviors, student thinking 

Mathematics tutoring has been linked to improved grades (Byerley, Campbell & Rickard, 
2018; Rickard & Mills, 2018) and increases in confidence and positive attitudes towards 
mathematics (Duranczyk, Goff, & Opitz, 2006). It is very common for universities in the United 
States to offer peer tutoring for entry-level mathematics courses such as Calculus (Bressoud, 
Mesa, & Rasmussen, 2015). While there is evidence that tutoring is effective, there have been 
few studies investigating exactly what happens in a peer tutoring session at the university level. 
Tutors working one-on-one with a student have the opportunity to make sense of and build upon 
students’ thinking, however, it is unknown if tutors take advantage of this opportunity. 

In the context of teaching, carefully listening to student thinking and using it to inform 
instructional decisions is considered an effective practice (NCTM, 2000). However, studies have 
shown that teachers are often not naturally able to implement the professional practice of 
attending to and building upon student thinking (Wallach & Even, 2005). Mathematics 
professors even have difficulty with making sense of their students’ thinking despite their 
content expertise (Johnson & Larsen, 2012; Speer & Wagner, 2009). Thus, we cannot expect that 
it will be typical for tutors to make sense of and use student thinking in the moment without 
training in these skills. It has been found that dialogue patterns between tutors and students tends 
to focus on the steps of the solution, with the tutor choosing the path and asking the student to 
contribute to calculations (James & Burks, 2018; Van Lehn, Siler, Murray, Yamauchi, & 
Baggett, 2003).  

In this paper, we address the research question: What is the nature of decentering among 
college math tutors who have no training in decentering? We present examples from tutoring 
interactions in which undergraduate mathematics tutors attend to student thinking at varying 
levels. We also give evidence that written reflections and one-on-one stimulated recall interviews 
can help tutors begin to consider mathematical thinking from the student’s point of view.  

 
Literature Review 

Thompson (2000) describes an unreflective interaction as one in which the teacher is not 
attempting to set aside his/her own understanding to discern the mental actions that are driving 
the student’s behaviors. In this instance he would say that the teacher is operating from a first-
order model, projecting his/her own cognition onto the student. In contrast, a teacher who is 
interacting reflectively is actively trying to build a second-order model of their student’s thinking 
by asking questions. The term decentering, first used by Piaget (1955), is used by Teuscher, 
Moore, and Carlson (2016) to refer to the teacher’s action of trying to understand a student’s 
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perspective in the moment. Teachers who are motivated to decenter believe that the student has 
some viable set of meanings that contribute to his or her actions, even though the student may 
have an idiosyncratic understanding (Teuscher, et al., 2016). Thus the teacher actively asks 
questions and strives to make sense of the student’s thinking without assuming that the student’s 
thinking aligns with their own. Decentering has been used to analyze teacher decision making in 
the moment with Ader & Carlson (2018) and Teuscher et al. (2016) providing examples from 
authentic classroom interactions.   

One way teachers have been trained to focus on student thinking is through discussions of 
video clips of their own teaching with their colleagues in which they craft questions that the 
teacher could have asked to probe student thinking. Participation in video clubs of this type has 
been shown to have an impact on teacher practice (Sherin & Van Es, 2009).  

Much of the literature related to decentering has focused on classroom instruction (Ader & 
Carlson, 2018; Teuscher, Moore, & Carlson, 2016) and not one-on-one tutoring interactions. 
There are many ways in which tutoring differs from teaching. Undergraduate peer tutors are not 
content experts and have often not received training in pedagogy, but they have a skill set that is 
different than instructors. They have been successful students themselves, they know how the 
mathematics applied their subsequent courses, they can communicate informally with students, 
and they may be better able to sympathize with the concerns of students (McDonald & Mills, 
2018). Since the context of teaching and tutoring are so different, it is necessary to examine what 
decentering could look like in the context of peer tutoring. 

While the classroom is certainly an important part of student learning, much of the learning 
takes place when students are working through the homework, and interactions with tutors could 
be just as formative for students. Also, while university professors may be resistant to changing 
their classroom pedagogy, hourly paid undergraduate tutors can be trained to implement any 
approach that we deem beneficial to students. Thus, the impact of training tutors on student 
learning can be more immediate than attempting to change departmental attitudes towards 
progressive teaching methods. 

 
Theoretical Framework 

Decentering occurs in the mind of the teacher or tutor, and thus it is impossible to determine 
precisely whether or not a teacher or tutor is decentering. However, in order for a tutor to 
decenter and take on the perspective of another person, the tutor must do more than simply 
project their own cognition about the mathematics onto the student. Ader & Carlson (2018) focus 
their analysis on observable behaviors of the instructor as an indicator of decentering. We will 
briefly describe their four levels of interaction and associated observable behaviors.  

Interactions in the first two levels of Ader and Carlson’s (2018) model describe unreflective 
interactions when the teacher operates from a first-order model. In these interactions, the teacher 
does not attempt to understand the student’s thinking, but assumes that the student’s thinking is 
identical to his or her own. In a Level 1 interaction, the teacher does not pose questions aimed at 
understanding student thinking. Teachers engaged in a Level 2 interaction ask questions to reveal 
student thinking, but do not attempt to understand student thinking and rather guide the student 
to the teacher’s own way of thinking. Levels 3 and 4 are reflective interactions in which the tutor 
asks questions to understand the student’s thinking, taking on his or her perspective and building 
a second-order model to inform his or her instructional decisions. Level 3 interactions are 
characterized by the teacher “asking questions to reveal student thinking and then following up 
on student responses to perturb students in a way that extends their current ways of thinking,” 

22nd Annual Conference on Research in Undergraduate Mathematics Education 451



and attempts to move the student towards his/her way of thinking. In a Level 4 interaction, the 
teacher is focused on using and developing student’s idiosyncratic ways of thinking by posing 
questions or giving explanations that are attentive to students’ thinking.  
 

Methods 
The data were collected from a drop-in mathematics tutoring center in a Midwestern research 

institution. Tutors in this study are undergraduates who are trained to spend 5-10 minutes with 
each student and move around the room. The students that the tutors are working with are 
enrolled in a wide variety of classes from college algebra through differential equations. The 
tutoring center employs 40 tutors who work from 6-12 hours per week.  

As part of their training, tutors were required to record a tutoring session, and they had a 
week to transcribe the session and respond to written reflection questions addressing the student 
participation level, student mathematical thinking, questioning, and the tutor’s listening skills. 
They then scheduled a 10-15 minute interview with the researcher in which they watched the 
interaction together and the interviewer went through the session line by line asking questions 
such as “What do you think the student meant by that comment?” and “Why did you choose to 
ask that question?” and “What was your goal in giving that example?” 

The written reflection and interview served two purposes. First, they gave the tutor a chance 
to elaborate on his or her in-the-moment decision making. This is helpful for training purposes 
because it allows the supervisor to better understand the tutor’s methods. For this study, it has 
helped us to triangulate the data to build a better case for our classification of tutor moves. 
Second, it gives the tutor the opportunity to think critically about what they believe the student 
might have been thinking, and what the tutor could have done differently. 

Several interactions were analyzed and heuristic cases which exemplify varying levels of 
tutor decentering were selected for presentation. During analysis, we examined the LiveScribe 
recording of the interaction and the transcript to look for observable behaviors of the tutors that 
indicated their level of decentering. We then read the written reflections and listened to the 
audiotaped interviews for further evidence of the tutors’ attention to student thinking. We should 
note that in the same manner as Nardi, Jaworski, & Hegedus (2005), we are classifying episodes 
rather than tutors. Individual tutors can display varying levels of attending to student thinking 
even in the same 10-minute tutoring session, thus it is not feasible to label tutors according to 
their tendency to focus on student thinking.  

 
Results 

In the observation data that we collected, we have many examples of tutors leading the 
student through procedures without asking for the student to express his or her thinking. This is 
consistent with results in physics tutoring (VanLehn, et al., 2003) and undergraduate 
mathematics tutoring (James & Burks, 2018). Because we want to examine decentering in the 
context of tutoring, we focus on instances in which students were asked to explain their thinking.  

Here we will present three naturalistic tutoring sessions illustrating varying levels of 
decentering in a drop-in tutoring environment. We will also give an example of how reflecting 
on a tutoring session can lead a tutor to think more deeply about student thinking and formulate 
questions that he or she could have asked. 
 
Episode 1: Tutor Decentering In-The-Moment 
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In this episode, Abby was working with a student to compute the derivative of 
5 6( ) (3 )f x x x � . Abby had already asked the student if he knew how to take the derivative but 

the student did not suggest using the product rule, so Abby proceeded to walk him through it.  
Abby:  So the product rule is the first times the derivative of the second plus the second 
times the derivative of the first, so we take the first (writes down 5x ) and we take the 
derivative of the second, so what’s that derivative? 
Student: ummm… six times three minus x to the fifth 
Abby: Awesome. But soo… three minus x to the fifth. That is not just x to the fifth, right? 
Student: Right. 
Abby: So it has a function inside of it  
Student: mhm 
Abby: So that means you’ll have to do that chain rule 
Student: Oh okay, yeah 
Abby: Okay so what’s the derivative of three minus x. 
Student: One 
Abby: Ok, so… Why would you say one? 
Student: Because three turns into zero and x the one turns into zero, so it’s x to the zero, 
which is one. 
Abby: Okay, so not quite, whenever you just have the equation y x . What’s that 
derivative? 
Student: uhhh… one. 
Abby:  Right, so…. y prime is equal to one, but if you have – x, what would that turn 
into? 
Student: Negative one 
Abby: Right, so… 
Student: Oh okay… It would be negative one. 
 

When the student gave the unexpected answer that the derivative of 3 – x  is 1, Abby asked 
the student to explain his thinking further. She then followed up on the student’s response to give 
examples that perturbed the student’s thinking in a way that extended his current way of 
thinking. In her interview, Abby elaborated on her interpretation of the student’s thinking.  

 
Interviewer: And then the student is saying that the derivative of 3 – x is 1. 
Abby: Mmm-hmm.  
Interviewer: And then how did you... what were you thinking about that? 
Abby: I’m like, there are so many ways that they could have gotten to 1, so I wanted to 
know how they got to 1.  
Interviewer: So you really ask an open ended question there: “Explain why you said 
that?” 
Abby: And they are like “because 3 turns into 0” that’s right, and “x to the 1 turns into 
zero” so I assume that they mean x to the first, so they are trying to do the [power] rule, 
and they are like “that goes down, and so it’s x to the zero and that’s just 1.” And so 
that’s technically right, but… 
Interviewer: They are missing the sign.  
Abby: Yeah.  
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Interviewer: And so you ask a series of questions, or actually kind of give another 
example to lead them to that, so… Why did you choose to do that instead of just saying 
“Oh, you missed a negative?” 
Abby: Because a lot of people had been not knowing, like they are like 3 – x, I just don’t, 
like so many people had been missing that negative because I had done this problem like 
three times before already. And so, I’m like, “well, if y is x, then…” So, it makes a lasting 
impression. 
 

Abby asked the student to explain his thinking because she was genuinely curious how he 
“got to 1.” When she listened to his thinking, she interpreted his explanation as a correct 
application of the power rule and deduced that he is just missing the negative sign in the 
derivative of –x. We can see that in this instance, Abby has the natural inclination that leading a 
student through a series of examples to perturb his thinking will make more of a “lasting 
impression” on him than just telling him that he missed the negative sign.  

We label this interaction as a Level 3 in terms of Abby’s decentering actions because she 
asked a question to reveal the student’s thinking and then followed up with two simpler 
examples designed to perturb the student in a way that extended his current way of thinking.  

 
Episode 2: No Evidence of Tutor Decentering In-The-Moment 

Bernard was working with a student to solve a quadratic equation. We can see that the 
student explained his first step, but Bernard lead the student in a different direction.  

 
Bernard: Okay so the problem is 23 2 5 0x x� �  . So what we tried before was… 
Student: Multiplying -5 and 3 to get -15 and getting the factors of that to get it. 
Bernard: Right, so that’s kind of along the right track. So we want to work on the rational 
roots theorem, which is we take the factors of the last term which in this case is… 
Student: 1 and 5 
Bernard: 1 and 5. So I’ll put that on top here. So 5 and 1, and we’ll put that over the 
factors of the first term which is... 
Student: 3 and 1. 
Bernard: 3 and 1 right. And so it could also be plus or minus any one of these values so 
what we could have is +1, +5, +5/3 and +1/3 does that make sense? 
 

Although Bernard prompted the student to outline his strategy, he did not ask the student to 
elaborate on his thinking, but evaluated the student’s response in light of his own way of 
thinking. He then posed questions that focused on procedures requiring little thinking on the part 
of the student. It is unclear what Bernard understood about the student’s strategy and what he 
meant by “you are on the right track.” In the interview, Bernard was asked to explain what he 
thought the student was thinking.  
  

Bernard: So, he, I think like in the very beginning he tried multiplying the negative five 
and the three together and finding the factors of that.  
Interviewer: So, what do you think he meant by that?  
Bernard: I think, like, so I mean, that’s kind of, sort of... meh... At least he was realizing 
that he needed something from the last term and something from the first term.  
Interviewer: Right.  

22nd Annual Conference on Research in Undergraduate Mathematics Education 454



Bernard: I can’t remember if there’s a way... like another theorem or something where 
you do that, but I don’t remember what...  
Interviewer: Yeah. So, you’re feeling like, he knew he needed something from that 
negative five and something from the three, but he was multiplying instead of dividing?  
Bernard: Yeah. Yeah. 

 
As experienced mathematics instructors, we realize that the student could be attempting to 

transform 23 2 5x x� �  into 23 5x ax bx� � � , where a and b are factors of 15�  so that he could 
factor by grouping. Since Bernard did not probe the student’s thinking, it is unclear whether or 
not the student was attempting to use this strategy. It seems that Bernard was not aware of this 
method and assumed that the student was incorrectly applying the rational roots theorem, 
although he acknowledged in the interview that the student may have been using a theorem that 
he didn’t remember. This interaction is categorized as Level 1 because when the student gave a 
response that did not match with Bernard’s own method, Bernard did not ask the student 
questions to understand the mental actions driving the student’s behaviors.  

Towards the end of his interview, Bernard said, “Yeah. It made me realize that I do a lot of 
the talking, and it’s not as interactive as I’d like it to be. I still ask questions that make sure they 
understand what’s going on, but maybe having them reproduce what I’m writing or having them 
write down what I’m saying and see if that maybe clicks with them.” This gives further evidence 
that for this problem Bernard was focused on helping the student to adopt his own way of 
thinking rather than understanding and building upon the student’s thinking. 

 
Episode 3: Tutor Develops Awareness of Decentering  

The student was attempting to find the intersection of the lines !��! � 2,1,11,1,0)(1 ttr  
and !��! � 4,4,13,0,2)(2 ssr . The student had constructed six equations: x t , 1y t � , 

1 2z t � , 2x s � , 4y s , 3 4z s � . Emma led the student to set the x, y, and z equations 
equal to one another. Then, the following interaction occurred:  
 

Student: So does it want it in terms of t then or s or what? 
Emma: So first let’s, um, set them equal to each other and find what our t and s values 
are. 
[… tutor and student set up the equations and solve them together] 
Student: So subtract an s, and it’s 3s = 3? And s = 1? 
Emma: Exactly. 
Student: So, and then I just use that to find t, and get t = 3? 
Emma: Uh huh. So using that first equation 
Student: So is that the point then? That intersects? 
Emma: Um. 
Student: Or is that, or it’s in three dimensions, so… 
Emma: So, uh, we, you found your s and t values, so, if we are looking at where they 
intersect and where they equal each other, we are looking at a point on both 1( )r t  and 

2 ( )r s , so that means that if we plug in t for 1( )r t  or s for 2 ( )r s , we can pick which one, 
uh, we should be getting the same answer. So you just pick one of the variables and plug 
it back in. 
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This in-the-moment interaction is classified as Level 2. During the tutoring session, Emma 
did not ask the student to elaborate on his thinking, but continued to ask questions to lead him 
through the procedure of the problem. She showed interest in the student’s thinking to the extent 
that it revealed the student’s misconception, and then she attempted to guide the student to her 
own way of doing the problem.  
 

Emma: A lot of what he’s been doing before is just solving for the variable, and the 
variable has been the answer, and so maybe here he was thinking, “the variable, is that 
the answer? But then those are different numbers, but that doesn’t really make sense for 
an intersection... ” I think he was just kind of confused on that. 
[…] 
Interviewer: So talk about what the student might be thinking there.  
Emma: So he’s found the s and t variables, and I think he’s thinking it’s kind of like an x 
and a y, you know, two dimensional, but then he realizes that we’re in three dimensions 
because we have x, y, and z, and so he’s trying to figure out how to turn s = 1 and t = 3 
into an answer.  

 
Emma verified that she thought that the student initially thought that the s and t values were 

the solution, and then the student expressed cognitive dissonance when he realized that he 
needed a three dimensional answer. Whether she had this view of the student’s thinking in the 
moment is hard to say, but in the written reflection, Emma said, “I could have asked what t and s 
are used for and why we’re trying to find them.” This question would be useful for developing a 
second order model of the student’s thinking, and if she had asked it in the moment, the 
interaction may have been classified as Level 3. Thus, we can see that the process of going 
through the reflection afforded Emma the opportunity to construct a question that would further 
reveal the student’s mental actions.  

 
Discussion 

The main contribution of this paper is the application of decentering to the context of 
undergraduate peer tutoring. We have given examples of tutoring interactions that display 
varying levels of tutor decentering in the moment and we have also shown an example of how 
the process of writing a reflection and re-watching the recording of their interaction can aid 
tutors in formulating questions to draw out student thinking. Our analysis of decentering was 
based on both the observable behaviors and the tutor’s reflections. Many of the tutoring 
interactions that were analyzed for this study were Level 1, but we have presented examples of 
un-trained tutors decentering in the moment to varying degrees.  

A limitation to this study is that the tutors self-selected the session that they wanted to 
transcribe, so the sessions may not be reflective of their typical tutoring. The stimulated recall 
interviews were not always consistent, and so some of the tutors may have been prompted more 
than others and  the interviewer may have asked the student to comment on a moment that the 
student may not have spontaneously commented on. Another limitation includes our inability to 
determine if the questions constructed by the tutors in their reflections will enable them to 
decenter more frequently. The interactions that we recorded will be used to refine our reflection 
questions and design tutor training programs that incorporate real tutoring interactions. We can 
also design studies to investigate whether a focus on decentering in tutor training can improve 
tutors’ ability to understand and leverage student thinking.  
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The learning of mathematics is a complex phenomenon that is influenced by both cognitive and 
affective factors. Little is known about the relationship between students’ affective and cognitive 
outcomes, as much work focuses on one or the other, but not the intersection of the two. 
Therefore, this study examines the relationship between students’ affective learning gains as 
reported on the SALG survey and their content assessment scores for differential equations 
courses. The goal was to determine if there was a relationship and then investigate if this 
relationship held for male and female students, as well as those in inquiry-oriented classes. 
Mixed linear models were used to examine this relationship, while simultaneously taking into 
account the nesting of students within instructors. Results showed there are some significant 
relationships between affective learning gains and content assessment scores, but these 
relationships are not consistent across sub-groups by gender nor instruction type. 

Keywords: Student Affective Learning Gains, Content Assessment, Differential Equations 

In order to fully understand the complexity of mathematics learning, cognitive and affective 
factors must be explored. Cognitive outcomes relate to students’ mental actions and the 
application of those actions. Some researchers define these outcomes in terms of “remembering, 
understanding, applying, analyzing, evaluating, and creating” (Burn & Mesa, 2015, p. 47). With 
this stance, researchers look at student performance, achievement, grades, and even in a broader 
sense, knowledge and skills (Dochy et al., 2003; Freeman et al., 2014; Kuster et al., 2017; 
Laursen et al., 2014; Lazonder & Harmsen, 2016). Only considering student performance can be 
misleading, as it does not fully capture students’ abilities nor how students are participating in 
class.  For example, research has shown that there is a difference in male and female 
performance in mathematics, with males having higher performance, however, Fennema and 
Sherman (1977) contribute this difference to low participation from females, as mathematics is 
typically stereotyped as a masculine subject. By only considering student performance, 
researchers would miss the intersection of cognitive and affective outcomes that can help explain 
the differences between males and females in mathematics. 

In contrast to cognitive outcomes, affective outcomes consider students’ internal factors. 
These are typically defined in terms of “beliefs, attitudes, and perceptions” (Burn & Mesa, 2015, 
p. 97). Although much research has been conducted on students’ beliefs and attitudes toward 
mathematics, researchers are challenged with ways to infer beliefs and attitudes from student 
behavior (Leder & Forgasz, 2002). Because of the synonymous nature of words such as attitude, 
perception, value, and belief, it is difficult to define a belief (Leder & Forgasz, 2002), making 
this investigation even more difficult. Nevertheless, affective outcomes can include such things 
as confidence, enjoyment, persistence, interest, and even an approach to learning (Laursen et al., 
2014; Sonnert & Sadler, 2015). These factors are more difficult to identify and investigate as 
they are personal and not easily observable. While, research has shown that there is a difference 
between male and female affective outcomes specific to mathematics (Chouinard & Roy, 2008), 
there is more work to be done to better understand these outcomes. Instead of obtaining a 
snapshot of what is happening in classes by focusing exclusively on cognitive outcomes, 
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researchers are able to paint a clearer picture by matching cognitive outcomes with affective 
outcomes. Therefore, the purpose of this paper is to investigate student’s affective learning gains 
(ALG) in relation to their content assessment (CA) scores. 

Literature Review 
As previously mentioned, it is often difficult for researchers to identify beliefs, as there is no 

one definition that captures their essence. Philipp (2007) states that “affect is comprised of 
emotions, attitudes, and beliefs” while beliefs are also “more cognitive than emptions and 
attitudes” (p. 2.59). Leder and Forgasz (2002) also deduce that beliefs and attitudes are 
“intrinsically related and that beliefs and attitudes have cognitive, affective, and behavioral 
components” (p. 96). Due to this overlap in cognitive and affective components concerning 
beliefs, it is important to note that this can create room for biases, as well as the use of multiple 
methods and frameworks, and can result in contradictory findings. 

Throughout psychological literature, there is a focus on affective issues in relation to 
mathematics; demonstrating an expansive range of beliefs, which are measured in a variety of 
ways (Leder & Forgasz, 2002). Even though the methods and definitions vary, many studies 
show there is a difference in males’ and females’ motivation when it comes to mathematics (e.g., 
Chouinard & Roy, 2008). When males and females have similar levels of achievement, females 
demonstrate lower competence beliefs and more anxiety (Eccles et al., 1985; Kloosterman, 1990; 
Seegers & Boekaerts, 1996; Stipek & Gralinski, 1991). Males contribute their success to ability 
and failure to bad luck or lack of help (Hackett & Betz, 1992; Randhawa et al., 1993), which is 
in stark contrast to females who perceive their success comes from being determined, receiving 
help from others, or being provided with simple tasks (Stipek & Gralinski, 1991). This highlights 
the differences in males’ and females’ affective outcomes in mathematics. 

Over time, there is a substantial transformation in student attitudes toward studying 
mathematics (Eccles et al., 1985; Fredricks & Eccles, 2002; Jacobs et al., 2002; Ma & 
Cartwright, 2003). Many high school students are more pessimistic when it comes to their ability 
to succeed in mathematics and they also place a lower value on their feelings toward 
mathematics (Chouinard & Roy, 2008). In their work, Chouinard and Roy (2008) examined high 
school students’ attitudes towards mathematics. They specifically looked at whether their 
attitudes change over time, if changes are related to grade level, and if there are gender 
differences. Overall, results showed there was a regular decline in mathematics motivation 
throughout high school, especially between 9th and 11th grade, where the gradual drop 
represented a decrease between and within grade levels. These results confirm a steady decrease 
in students’ attitudes towards the utility of mathematics for male and female students, and 
additionally indicate a more significant decrease for males than females.  

Although Chouinard and Roy (2008) found a greater decrease in males’ attitudes toward 
mathematics than females’, other studies indicate a decline in positive attitudes toward 
mathematics has more of an effect on females than on males (e.g., Eccles et al., 1985; Fennema 
& Sherman, 1977). Additionally, researchers have found there are differences in confidence and 
anxiety between females and males, with females having lower levels than males (Leyva, 2017; 
Lubienski & Ganley, 2017). Not only are there differences between genders in terms of affective 
outcomes, research has shown that there are also differences in cognitive outcomes, based on the 
type of instruction provided. For example, Laursen et al. (2014) found that students in inquiry-
based learning (IBL) classes had higher cognitive and affective outcomes than students not in 
IBL classes. Results from their study also showed that that students in IBL classes reported 
higher cognitive gains than those in non-IBL classes. Based on the self-report, IBL students had 
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a better understanding and could think more deeply about the mathematics than their non-IBL 
peers. Although this research base has greatly contributed to the body of knowledge on student 
attitudes, beliefs, cognitive and affective behavior, future research is necessary to expand these 
findings. Therefore, we accept this charge and explore the relationship between students’ 
cognitive and affective outcomes in inquiry-oriented (IO) classes, a more specific branch of IBL 
(Kuster et al., 2017). Specifically, we investigate the following questions: 

1. What is the relationship between students’ ALG and their CA scores? 
2. Is this relationship the same for males and females? 
3. Is this relationship the same for students in IO and non-IO classes? 

Methods 
This quantitative study uses a relational design to investigate the relationship between 

students’ ALG and their corresponding CA scores, using data from related projects designed to 
support instructors interested in implementing IO instructional materials. The affective data used 
for this study stems from the Student Assessment of their Learning Gains (SALG) survey, 
developed by Laursen, Hassi, Kogan, Hunter, & Weston (2011) to help faculty gather insights 
about their instructional practices. The CA data comes from Hall, Keene, and Fortune’s (2016) 
work on creating a common written assessment to better understand student learning in 
differential equations (DE) courses. To explore the relationship between students’ reported 
SALG survey scores and their CA scores, we constructed a linear mixed model. Finally, we 
investigated whether the relationships identified for all students held when the groups were 
disaggregated by gender and IO instruction.  

Participants 
A total of 23 instructors were involved in this study. Of those 23 instructors, 16 were 

instructors who engaged in professional development focused on using IO materials. These 16 
instructors were then asked to identify another instructor who was not participating in the IO 
project; these non-IO instructors were then recruited to participate in this study. Six out of seven 
comparison instructors came from the same institution, while the last was from a different 
university of comparable size located in the same city. The comparison instructors taught DE 
either in the same semester or within one year that their mapped IO instructor did. The 
instructors involved in the IO project define our IO sample; the non-IO instructors define our 
non-IO sample.  

Students from these 23 instructors were then recruited to participate, resulting in 448 
undergraduate students enrolled in DE courses across the nation. Of those 448 students, 296 
(66.1%) of those students were taught by IO instructors, while 152 (33.9%) of those students 
were taught by non-IO instructors. In addition, from the students who reported gender, 225 
(66%) students identified as male and 101 (29.6%) identified as female. Out of those students, 
151 (33.7%) were males in IO classes, 68 (15.2%) were females in IO classes, 74 (16.5%) were 
males not in IO classes, and 33 (7.4%) were females not in IO classes.  

Instrument and Data Collection 
Affective data stems from the SALG-M survey developed by Laursen et al. (2011). The 

SALG-M survey is a modified version of the SALG survey, more specific to mathematics 
instruction. Laursen et al. (2011) modified the original survey to more effectively measure 
students’ learning gains in mathematics classrooms. The SALG-M survey is broken four sections 
that measuring students’ experiences during the course and two sections that measure their 

22nd Annual Conference on Research in Undergraduate Mathematics Education 460



learning gains. The term learning gains encompasses cognitive, affective, and social gains as one 
holistic measure. Therefore, after conducting a factor analysis, some instrument items did not 
load to those three factors, and were not included in the latest revision, resulting in the modified 
SALG survey (Laursen et al., 2011). For the purposes of this study, we will only be looking at 
the 13 learning gains questions from the modified SALG survey that focus on students’ 
cognitive, affective, and social gains. These items were rated on 6-point Likert scale indicated by 
1 no gain, 2 little gain, 3 moderate gain, 4 good gain, 5 great gain, and 6 not applicable. The CA 
scores derive from a DE common assessment developed by Hall et al. (2016) to help support IO 
instructors implement IODE curriculum1. This common assessment consisted of 15 multiple 
choice items designed to evaluate students’ conceptual understanding of DE. These questions 
focused on the following concepts: (1) solving first order differential equations analytically, 
graphically, and numerically (2) linear systems of differential equations, and (3) second order 
differential equations (Hall et al., 2016). This test was given to both IO and non-IO instructors to 
use at the end of semester.  

Data Analysis 
To begin, we compared students’ mean CA scores by gender and instructional treatment 

using t-tests. Then, we examined the relationship between students’ CA scores and their reported 
scores on the 13 ALG items from the modified SALG survey. Students’ scores on the ALG items 
were centered, and scores of 6 (not applicable) were removed from analysis. This was done using 
a mixed linear model, which accounts for the effect of classroom instruction factors, and allows 
for the prediction of students’ CA scores based on their Likert scores on the ALG items. Mixed 
linear models were also used to assess these relationships by gender and instructional treatment. 

Results 
Initial descriptive statistics indicate DE students’ mean CA score to be 53.59 (SD=16.66). 

The mean CA score for males is 52.67 (SD=16.83) and the mean for females is 53.51 
(SD=15.56). Despite the mean for females being slightly greater than that of males, there is no 
significant difference in the CA scores of males and females (t(324)=-.43, p=.67). In a 
comparison of IO (M=54.94, SD=17.11) and non-IO (M=50.97, SD=15.48) students, IO students 
were found to score significantly better than their non-IO peers (t(446)=2.40, p=.02).  

Results of mixed linear models indicate that ability items 1, 2, 3, 6, 7, 8, 9, and 13 are 
significantly related to students’ CA scores (Table 1). For example, ability item 1 asks students if 
they feel confident that they can do math. Students who strongly disagree with this statement 
(Likert score 1) are predicted to have a CA score of 47.07 (t(74.61)=17.24, p<.001). Also, for 
each one point increase in their Likert score on ability item 1, students are predicted to have a 
2.51 point increase in CA score (t(322.81)=3.18, p=0.002). Accordingly, students who strongly 
agree that they feel confident that they can do math, are predicted to have a CA score of 57.11. 
Similar interpretations hold for ability items 2, 3, 6, 7, 8, 9, and 13. Ability items 4, 5, 10, 11, 
and 12, however, were not found to be significantly related to CA scores, as indicated by the 
results of the mixed linear models (Table 2). Therefore, increasing Likert scores on these items 
are not related to changes in CA scores. 

                                                 
1 The CA asked students to report their gender identity as male, female, other, or prefer not to 
answer; accordingly, we use the language of male and female throughout this study to match 
their reported gender identity. 
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Table 1. Significant Results of Mixed Linear Models, by Ability Items 
 

t Slope 
Predicted Score if Student Reports 

1 (Intercept) 5 
Ability 1: I feel confident I can do math  3.18(322.81)** 2.51 47.07 57.11 
Ability 2: Comfort working with complex ideas  2.70(318.34)** 2.30 47.85 57.05 
Ability 3: Development of a positive attitude about 
learning math 

2.86(314.17)** 2.06 48.37 56.16 

Ability 6: Appreciation of mathematical thinking 2.88(319.88)** 2.35 47.50 58.90 
Ability 7: Comfort in communicating about math 3.42(311.50)** 2.75 46.54 57.54 
Ability 8: Confident you will remember what you 
learned in class 

2.94(305.66)** 2.34 48.29 57.65 

Ability 9: Persistence in solving problems 2.94(323.51)** 2.40 47.18 56.78 
Ability 13: Ability to stretch your own math capacity  2.06(317.58)* 1.77 48.86 55.94 
Note: Slopes indicate the predicted increase in CA score per one point increase in Likert score on the corresponding 
ability item. 
*p<.05, **p<.01 

Table 2. Non-significant Results of Mixed Models, by Ability Items 

 t Slope 
Predicted Score if Student Reports 
1 (Intercept) 5 

Ability 4: Ability to work on your own 1.94(324.00) 0 49.63 49.63 
Ability 5: Ability to organize your work and time  1.59(320.40) 0 50.97 50.97 
Ability 10: Willingness to seek help from others  .02(317.41) 0 53.96 53.96 
Ability 11: Ability to work well with others  -.10(321.55) 0 54.34 54.34 
Ability 12: Appreciation of different perspectives  .38(317.19) 0 53.11 53.11 
Note: As the relationships in this table between ability items and CA scores are not significant, students are predicted 
to have the same CA score regardless of changes in their Likert ability scores. 

When separated by gender, increases in female students’ Likert scores on all of the ability 
items with significant relationships for both genders continued to predict increases in CA score 
(Table 3). However, for males, the only significant differences in CA score based on ability 
items were for items 6 and 7. Thus, female students who strongly disagree with ability item 1 are 
predicted to have a CA score of 40.08, but for every one point increase in their Likert response to 
ability item 1, female students are predicted to have a 5.08 point increase in their CA score. This 
is not true for males, for whom a strong disagreement on ability item 1 corresponds to the 
prediction of a CA score of 49.67, but increasing Likert scores on ability item 1 are not predicted 
for male students. Thus, for males, increasing levels of confidence (ability 1), comfort with 
complex ideas (ability 2), positive attitudes toward math (ability 3), confidence in remembering 
ideas from class (ability 8), persistence (ability 9), and stretching one’s mathematical activity 
(ability 13) are not related to higher CA scores; for females, these increases are related to higher 
CA scores. 

Table 3. Results of Mixed Linear Models, by Ability Items and Gender 
 Male Female 
 t(df) Intercept Slope t(df) Intercept Slope 

Ability 1 1.60(219.91) 49.67 0 4.22(98.50)*** 40.08 5.08 
Ability 2 1.48(217.32) 49.84 0 3.47(98.42)** 41.67 4.59 
Ability 3 1.46(214.22) 50.36 0 3.91(96.94)*** 42.22 4.31 
Ability 6 2.05(217.41)* 48.50 2.07 2.56(98.88)* 44.66 3.31 
Ability 7 2.63(214.10)** 47.31 2.55 3.38(93.33)** 41.01 4.73 
Ability 8 1.60(213.47) 50.40 0 4.36(95.21)*** 39.43 5.98 
Ability 9 1.97(218.04) 48.38 0 3.09(96.87)** 41.88 4.24 
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Ability 13 .90(216.80) 51.38 0 3.66(95.56)*** 40.25 4.73 
*p<.05, **p<.01, ***p<.001 
Note: Intercepts indicate the predicted CA scores for students who report a 1 (strongly disagree) on the 
corresponding ability item. Slopes indicate the increase in CA score per one point increase in Likert score on the 
corresponding ability item. 

Another result is that for males, all of the predicted intercepts are higher than those for 
females (e.g., ability item 1, 49.67 > 40.08). However, as the scores for males students are not 
predicted to increase significantly based on increasing Likert scores for ability item 1, it is 
predicted that male students with a Likert score of 5 on ability item 1 will also be 49.67. In 
contrast, the CA scores for female students are predicted to increase by 5.08 points per one point 
increase in their Likert score on ability item 1, giving female students who strongly agree with 
ability item 1 a predicted CA score of 60.4. Thus, when comparing the predicted CA scores of 
students who strongly disagreed with ability item 1, males outscores females; however, when 
comparing the predicted CA scores of students who strongly agree with ability item 1, females 
outscores males by more than 10 points. Similar trends are predicted on all of the ability items in 
Table 3 (1, 2, 3, 6, 7, 8, 9, and 13).  

Disaggregating the data by instructional method results in similar trends (Table 4). Students 
in IO classes are predicted to have increased CA scores based on increasing Likert scores on all 
of the ability items with significant relationships for both types of instruction. Students in non-IO 
classes are only predicted to have increased CA scores related to increasing Likert scores for 
ability item 7. For example, students in IO classes who strongly disagree with ability item 1 are 
predicted to earn a CA score of 47.66, but for each point increase in their Likert score, they are 
predicted to have an increase in their CA score of 3.15 points. Students in non-IO classes are 
predicted to have a lower CA score regardless of their Likert score on ability item 1. Similar 
interpretations hold for ability items 3, 6, 7, 8, 9, and 13. Non-IO students who strongly disagree 
with ability item 2 are predicted to score higher than IO students who strongly disagree, but with 
a one point Likert increase, IO students are predicted to outscore non-IO students. Even on 
ability item 7, for which the relationship between Likert score and CA score was significant for 
non-IO students, non-IO students are predicted to have lower CA scores regardless of their 
Likert score, in comparison to their IO peers. 

Table 4. Results of Mixed Linear Models, by Ability Items and Instructional Treatment 
 IO Non-IO 
 t(df) Intercept Slope t(df) Intercept Slope 

Ability 1 3.23(190.49)** 47.66 3.15 1.41(103.31) 44.01 0 
Ability 2 3.29(167.65)** 47.20 3.38 .40(104.50) 48.18 0 
Ability 3 3.05(158.78)** 48.61 2.76 1.13(104.67) 46.10 0 
Ability 6 3.25(158.20)** 47.23 3.21 .85(102.61) 46.47 0 
Ability 7 3.11(143.80)** 47.73 3.02 2.23(103.03)* 41.85 2.84 
Ability 8 3.26(111.23)** 48.07 3.20 .94(103.10) 47.05 0 
Ability 9 2.83(201.15)** 47.70 2.90 1.23(103.78) 45.29 0 
Ability 13 2.47(178.69)* 48.77 2.54 .34(103.88) 48.18 0 
*p<.05, **p<.01, ***p<.001 

Discussion and Conclusions 
When all students’ CA scores and ability items were considered together, regardless of 

gender or instructional treatment, ability items 4, 5, 10, 11, and 12 were not significantly related 
to students’ CA scores. Interestingly, these items are not related specifically to mathematical 
learning, but rather, to other metacognitive skills such as studying, time management, and group 
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work. The other ability items each had a specific connection to mathematics, ideas learned in 
class or complex ideas, and problem solving, which are more directly tied to mathematics. Thus, 
while improving metacognitive skills is important, the improvement of such skills was not 
related to students’ CA scores while increases in affective items directly related to mathematics, 
mathematical ideas, and problem solving were positively related to students’ CA scores. 

Considering gender, females and males did not score significantly differently on the CA. 
However, when the data was disaggregated to show differences in the relationships between 
students’ affective items and their CA scores, it was demonstrated that affective increases for 
female students are predictive of higher CA scores, whereas they generally are not for male 
students. Thus, the inclusion of instructional practices that support affective gains such as those 
identified by the ability items support females in increasing their math achievement, as gauged 
by the CA. This supports previous research indicating that females tend to report lower affective 
levels, but have similar achievement to males (Eccles et al., 1985; Kloosterman, 1990; Seegers & 
Boekaerts, 1996; Stipek & Gralinski, 1991), and adds to previous literature by indicating that 
fostering female students’ affective gains may foster higher achievement. Interestingly, while 
previous literature indicates that males tend to claim success comes from ability and confidence 
(Hackett & Betz, 1992; Randhawa et al., 1993) and that females believe their success comes 
from being determined and working with others (Stipek & Galinski, 1991), the results of this 
study show reported increases in confidence and determination are related to higher achievement 
more so for females, and increasing the ability to work well with others was not related to higher 
achievement for students.  

Also, females have been previously shown to be more concerned with abilities, confidence, 
comfort, and persistence (Eccles et al., 1985; Fredricks & Eccles, 2002; Jacobs et al., 2002; Ma 
& Cartwright, 2003). The results of this study compliment these existing findings; perhaps 
female students’ concern with these affective outcomes stems from their understanding that they 
tend to perform better academically when their confidence and persistence are supported. 

Finally, we found that students in IO classes had statistically significantly higher CA scores 
than those in non-IO classes. Moreover, increases in IO students’ ability item scores (1, 2, 3, 6, 7, 
8, 9, and 13) were related to increases in their CA scores; for non-IO students, this was only true 
for ability item 7. Thus, as with females, increases in affective outcomes are related to increases 
in CA scores for IO students. This suggests that in an IO classroom, fostering students’ affective 
growth is linked to higher achievement. This supports Laursen et al.’s (2014) findings, which 
suggest that IBL, or in this case IO, is beneficial for increasing students’ affective and cognitive 
gains.  

Taken together, these findings suggest that in IO classrooms, increases in affective and 
cognitive levels are related, whereas in non-IO classrooms, they generally are not. The 
implication is that IO instruction simultaneously addresses both the affective and cognitive needs 
of students, thereby metaphorically killing two birds (affective and cognitive issues) with one 
instructional stone. Conversely, in non-IO classrooms, cognitive and affective gains were 
disconnected. This study did not seek to make claims of causality, but rather, to offer one insight 
into the relationships between the increases, both cognitive and affective, that students make in 
mathematics classrooms. More research should address students’ affective outcomes in relation 
to cognitive outcomes, particularly studying if a predictive relationship exists; this will provide a 
more holistic view of the field of student learning in mathematics. 
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Mathematicians’ Metaphors for Describing Mathematical Practice 
 

 Joe Olsen Kristen Lew Keith Weber 
 Rutgers University Texas State University Rutgers University 

In the literature on metaphor, researchers have pointed out the importance of metaphor as a tool 
for sense-making and have demonstrated the impact of metaphor use on cognition. In 
mathematics in particular, metaphor has been shown to be a valuable tool for making sense of 
and reasoning with mathematics. To our knowledge, there has been no research on the 
metaphors that professors use when communicating the nature of mathematical practice to 
students in advanced mathematics lectures. In this paper, we present a particular metaphor, 
Learning Mathematics is a Journey, that we found in a corpus of 11 advanced mathematics 
lectures. We describe this metaphor we found and offer some speculative analysis regarding the 
implications of this metaphor. 

Keywords: Metaphors, Mathematical Practice, Advanced Mathematics 

 A primary goal of contemporary mathematics instruction is to engage students in 
authentic mathematical activity. (e.g., Ball & Bass, 2000; Lampert, 1990; Rasmussen et al., 
2005; Schoenfeld, 1992; Sfard, 1998). To achieve this objective, mathematics educators must 
grapple with the fundamental question of what it is like to do mathematics. The broad purpose of 
this paper is to shed light on this issue by exploring how mathematicians describe mathematical 
activity in their own words. In particular, we analyze the metaphors that mathematicians use 
when teaching advanced courses for university mathematics students. 

We focus on the metaphors that mathematicians use in their lectures for two reasons. 
First, we know that mathematicians say an important goal of mathematics lectures is to help 
students understand what doing mathematics is like (e.g., Krantz, 2015; Pritchard, 2010; Rodd, 
2003) and previous studies have illustrated some of the ways that professors have described 
doing mathematics to their students (e.g., Artemeva & Fox, 2011; Fukawa-Connelly, 2012). If 
we want to study how mathematicians describe their craft in a naturalistic setting, mathematics 
lectures are a suitable place to look. As we will document in this paper, a particularly common 
way that mathematicians convey what it is like to do mathematics is by describing mathematical 
activity metaphorically. 

Second, students’ perceptions of what mathematics is like are shaped significantly by 
their experiences in their mathematics classes. Psychological research has demonstrated that the 
metaphors used to describe a topic exert a powerful influence on how individuals think about 
that topic (e.g., Thibodeau & Boroditsky, 2011, 2013). Consequently, if we want to study 
students’ perceptions of mathematics, it is important to analyze both the messages that 
mathematicians convey in their lectures and the ways that students interpret those messages. The 
analysis in this paper contributes to the first goal. By analyzing the metaphors that 
mathematicians use in their lectures, we will have a greater understanding of how 
mathematicians inform students about what it is like to do mathematics. 

 
Theoretical Perspective: Metaphors Structuring Thought 

 Numerous cognitive scientists and linguists have noted that conceptual metaphors are 
ubiquitous in the ways humans use natural language, with many scholars claiming that the 
metaphors that we use structures our thoughts. (e.g., Lakoff & Johnson, 2003; Nuñez, Edwards, 
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& Matos, 1999; Nuñez, 1998; Reddy, 1979; Thibodeau & Boroditsky, 2011, 2013).  In this 
paper, we follow Nuñez (1998) in defining conceptual metaphors (hereafter referred to simply as 
metaphors) as “cross domain ‘mappings’ that project the inferential structure of a source domain 
onto a target domain” (p. 87). As a well-known example, consider Lakoff and Johnson’s (2003) 
claim that we metaphorically view Argument as War. In this example, “war” is the source 
domain of the metaphor, whereas “argument” is the target domain. This can be seen by many 
examples that commonly occur in our speech, such as “Your claims are indefensible,” or “He 
attacked every weak point in my argument” (Lakoff & Johnson, 2003; p. 4). Similarly, Lakoff 
and Johnson contended that we also metaphorically view Argument as a Journey, such as when 
we say “We have set out to prove that bats are birds,” or  “We have arrived at a disturbing 
conclusion” (Lakoff & Johnson, 2003; p. 90). 
 Lakoff and Johnson use these illustrations to highlight three points that will be relevant to 
this paper. First, metaphor usage is common when we discuss an abstract concept such as 
argumentation. Second, we can use different metaphors to discuss the same concept and these 
different metaphors highlight different facets of this concept. For instance, the Argument as War 
metaphor highlights the combative nature of argumentation, in which arguing is an adversarial 
activity with an attacker, a defender, a victor, a loser, and so on. The Argument as Journey 
highlights the sequential and rhetorical aspect of argument in which the individual presenting an 
argument is trying to lead her audience to a desired conclusion. The third point is the metaphors 
that we use to describe an abstract concept like argumentation structure our thought about this 
concept and significantly influence our reasoning about this concept. This third point is the most 
contentious point (c.f., Glucksberg & McClone, 1999) and we elaborate on this point below. 
 A central claim advanced by George Lakoff and other linguists is that our use of 
metaphors is not merely a rhetorical flourish on the part of the speaker. When we use a 
metaphor, we use our knowledge of the source domain in question to make novel inferences 
about the target domain. We further give primacy to the aspects of the target domain that are 
highlighted by the metaphor and less attention to the aspects of the target domain that are ignored 
by the metaphor. 
 Empirical support for this position is provided by a series of psychological studies 
conducted by Thibodeau and Boroditsky (2011, 2013). Thibodeau and Boroditsky noted that we 
frequently use metaphors when we speak of crime; we sometimes speak of Crime as a Beast in 
which criminals prey on victims and police track criminals, hunt them down, and catch them. 
We also sometimes describe Crime as a Virus where crime is an epidemic that can plague a city 
or infect a community. In a series of randomized controlled experiments, Thibodeau and 
Boroditsky (2011, 2013) compared the responses of participants exposed to different metaphors 
for crime when the participants were asked to propose measures to reduce crime. Participants 
who saw the metaphor that crime was a beast uniformly proposed developing better measures to 
capture and punish criminals. Participants who saw the metaphor that crime was a virus focused 
more on understanding the social causes of crime and educating the community on how to 
prevent crime. Thibodeau and Boroditsky concluded that metaphorical usage has “real 
consequences for how people reason about complex social problems like crime” (p. 1).  
 The key point to draw from this for the purposes of this paper is that we should not 
suppose the metaphors that mathematics professors use in their lectures are inert. They are not 
merely fancy ways of talking, but can say a lot about how mathematicians view their discipline. 
Further, Thibodeau and Boroditsky’s (2011, 2013) studies suggest that these metaphors may 
influence how students subsequently engage in advanced mathematics. 
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Existing Literature on Mathematical Metaphors 
 Research on metaphor usage in mathematics can be divided into two broad areas of 
studies. First, some scholars have examined how mathematicians and students use metaphors to 
understand mathematical concepts. For instance, Lakoff and Nuñez have explored the use of 
metaphors in mathematical language in an attempt to understand mathematicians’ cognitive 
underpinnings behind advanced and abstract mathematical ideas (e.g., Lakoff & Nuñez, 2000; 
Nuñez, Edwards, & Matos, 1999). As an example, mathematicians commonly use the 
preposition “in” to denote set membership. Lakoff and Nuñez (2000) argued that this use of 
language suggests that mathematicians metaphorically view sets as containers that are filled with 
objects. Sfard (1994) and Sinclair and Tabaghi’s (2010) interview studies with mathematicians 
provide empirical support for Lakoff and Nuñez’s (2000) theoretical claims. Mathematicians use 
metaphors as a powerful tool for doing, understanding, and communicating mathematical ideas. 

Other researchers have examined how students understand various mathematical topics 
and concepts through metaphors (e.g. Oehrtman, 2009; Presmeg, 1992; Zandieh, Ellis, & 
Rasmussen, 2017). For example in interviews with ten undergraduate linear algebra students, 
Zandieh, Ellis, and Rasmussen (2017) found metaphors to be critical for understanding the 
varied ways students think about the function concept across high school and linear algebra 
courses. One student, for example, described one-to-one functions as functions in which, “for 
every output, there is one input to get there” (Zandieh et al., 2017; p. 35). Zandieh et al. 
identified the language to get there as being indicative of a travel metaphor for functions. 
Zandieh et al.’s (2017) work illustrates that metaphor usage can be used as a lens for studying 
students’ cognition (e.g., the metaphors they use highlight a conception that they possess or are 
applying) and reveals that metaphors can provide an explanatory account for how students can 
develop a rich understanding of a concept (e.g., Zandieh and colleagues illustrate how blending 
metaphors enabled students to unify different conceptions of linear algebra concepts).  
 A second group of studies has explored metaphors as a lens to understand individuals’ 
beliefs about mathematics (e.g. Latterell & Wilson, 2016; Noyes, 2006; Schinck, Neale, & 
Pugalee, 2008). To date, these studies have focused on students’ and primary and secondary 
teachers’ beliefs about mathematics. For instance, Latterell and Wilson (2016) asked prospective 
teachers to supply metaphors for mathematics. The authors then used these metaphors to 
understand preservice teachers’ attitudes about mathematics. In one example, a student provided 
the metaphor, “Mathematics is like a tornado in Kansas” (Latterell & Wilson, 2016; p. 287). 
Latterell and Wilson (2016) suggested this reveals a view of mathematics as something that 
could cause risk, injury, or harm. Our current paper complements these studies by using 
metaphor as a lens to investigate mathematicians’ beliefs about mathematical activity and how 
these beliefs may be communicated to their students. 
 

Methods 
Participants 
 In this study, we analyze the metaphors used by mathematicians when giving a lecture in 
an advanced mathematics course (i.e., a proof-oriented mathematics course for third or fourth 
year university mathematics students). We recruited participants by sending e-mails to every 
lecturer at three doctoral-granting institutions in the eastern United States who was teaching an 
advanced mathematics course. We asked to observe and audio record one of their lectures. 
Lecturers were not told the purpose of the study. Eleven lecturers agreed.  
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The Lectures 

Each lecture was approximately 80 minutes in length. All professors gave “chalk talk” 
lectures (Artemeva & Fox, 2011) in which they presented formal mathematics (specifically 
definitions, theorems, proofs, and examples) on the blackboard. Each class had between seven 
and 30 students enrolled, with a mean of approximately 18 students. A member of the research 
team attended and audiotaped each lecture while transcribing everything the lecturer wrote on 
the blackboard. Each audio recording was transcribed. This transcription was the primary corpus 
of data used in our analysis. 
Analysis. 
 We analyzed the data following Chi’s (1997) scheme for quantifying qualitative analysis 
of verbal data, which Chi described as a practical guide for making sense of “messy” verbal data. 
In our first stage of analyses, the first two authors independently read the transcripts flagging for 
each instance in which a lecturer used a metaphor1. Any disagreements were resolved by 
conversation with all three authors of the paper. 1077 metaphors were identified across the 11 
lectures. Of these 1077 metaphors, we found 216 pertained to the activity of doing mathematics. 

The second stage of the analysis was thematic; we used an open coding scheme to 
generate common metaphorical archetypes with a common source domain and a mathematical 
activity as a target domain. Six metaphorical archetypes having  a mathematical activity as a 
target domain were identified. In the third stage of analysis, we developed clear criteria for what 
types of utterances counted as an instance of each metaphorical archetype. In the fourth stage, 
the first two coders independently went through each metaphor that we had previously identified 
and evaluated if the metaphor belonged to any of the six metaphorical archetypes. Again, any 
disagreements were resolved through discussion with all three authors of this paper. 

The third stage of the analysis was similar to the first. For each of the six metaphorical 
archetypes, we used thematic analysis to identify particular mappings between a component the 
source domain and a component of the target domain. For instance, with learning mathematics as 
a journey, there was often a particular mapping between progress on a journey and formal 
mathematics covered in a particular class. (e.g., a mathematics professor may say she wants to 
reach a certain theorem by the end of class, but “we’ll see how far I get today”). We would 
identify criteria by which an utterance could be coded as an instance of this mapping. Then we 
would go through each metaphor in the metaphorical archetype and evaluate whether each 
individual metaphor was an instance of that mapping, going back to the original transcript for 
contextual details if necessary. Again, disagreements were resolved through discussion. The 
result of following Chi’s (1997) methodology is that we can provide an in-depth analysis of the 
most interesting metaphors that individual professors used but also identify trends across our 
data set and describe how common these trends were.  

As an important theoretical point, the coding scheme that we used is clearly highly 
interpretive. Following work of Reddy (1979), Lakoff and Johnson (2003), Lakoff and Nuñez 
(2000), and others, the meanings that we ascribed to the metaphorical utterances exist in the 
minds of the researchers; our research claim is that other mathematically knowledgeable 

                                                 
1 Coding for metaphor usage in general was theoretically difficult because metaphors pervade mathematical 
vocabulary (e.g., Lakoff & Nuñes, 2000). (For instance, is every instance of a professor using the word “in” to 
denote set membership a use of a metaphor?) However, in this paper, we only discuss metaphors for mathematical 
activities which did not introduce these theoretical nuances. Hence, for the For the sake of brevity, we do not discuss 
how we resolved disagreements that did not have mathematical activities as a target domain in this paper.  
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individuals would agree that our interpretations fit well with the data. We cannot be certain if the 
lecturers themselves intended to convey the meanings that we ascribed to their metaphorical 
utterances or if students would interpret the metaphorical utterances as we did. We elaborate on 
this point toward the end of the paper. 
 

 Results 
Our analysis of these 216 uses of metaphors identified four metaphors used by the eleven 

mathematicians in the study: Learning Mathematics is a Journey, Doing Mathematics is Work, 
Mathematics is Discovery, and Mathematics is a Story. Table 2 shows the number of instances of 
each metaphor in each lecture and the total numbers of instances of each metaphor in the corpus 
of lectures. As Table 1 reveals, each metaphor was used by at least seven of the 11 lectures we 
analyzed. For space reasons, we will only provide commentary on the Learning Mathematics is a 
Journey metaphor here. 
Table 1. Counts of Each Metaphor for Mathematical Practice by Lecture 

Metaphors Instances in Each Lecture Total 
Instances L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 

Journey 1 1 2 2 0 3 2 6 14 0 8 39 
Work 10 5 2 4 3 10 7 4 12 1 1 59 
Discovery 7 1 3 22 5 5 0 0 10 25 13 91 
Story 5 0 2 0 1 0 1 8 7 0 3 27 
 
Learning Mathematics is a Journey 
Table 2. Metaphor Map for the Learning Mathematics is a Journey 
Source Domain: 
Journey 

Target Domain: 
Mathematics 

Number of 
Instances** 

Example 

Progression along the 
journey 

Progression in one’s 
learning of 
mathematical content 

16 (6) L8 [abstract algebra]: “I'd like to do at 
least a little bit on group theory, we 
may or may not get to that.” 
 

Times/Locations along 
a Journey 

Particular mathematical 
content learned at a 
particular time in one’s 
mathematical career 
 

16 (3) L1 [set theory]: “I’d like to get to 
today, or very soon, is that this notion 
of cardinal arithmetic will allow you to 
get away from the very explicit 
arguments that we’ve been doing the 
last few weeks.” 
 

Journeys can have 
required landmarks or 
checkpoints to be 
crossed 

Important Mathematical 
Ideas and Concepts that 
should be learned in 
mathematics 

5 (5) L2 [real analysis]: “So I think that you 
can’t possibly have gotten very far in 
math here without having seen Euler’s 
number e, which is usually defined this 
way.”  
 

Other  6 (4) L3 [number theory]: “The proof of this 
will wait a little bit. Okay? We won’t 

**  Number of instances across the lectures (Number of lectures in which the instances occurred).  

 On a long journey, travelers depart from an initial location and set out with a particular 
destination in mind. The traveler’s journey may span multiple days in which they plan to traverse 
a certain distance and reach a certain point at the end of a day. In the lectures, mathematicians 
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spoke of particular mathematical topics or results in terms destinations that they hoped to reach. 
The mathematical topics that were covered were analogous to the ground that could be covered 
on a particular leg of a journey. 
 The metaphor of Learning Mathematics is a Journey was often invoked at the start of the 
lecture; six lecturers initiated their lectures by using this metaphor to describe the planned 
itinerary for the day and the metaphorical location that they hoped to reach by the end of the 
lecture. For example, L8 used three metaphors of this type in the first six minutes of her lecture: 
“I’d like to do at least a little bit on group theory, we may or may not get to that”, “at least if we 
get through this chapter 6, it’ll be a nice ending for you if we don’t get further”, and “so we’ll see 
how far I get today.” The common theme in these quotations is that L8 wanted to cover certain 
topics (a little bit of group theory, the end of chapter 6) that he metaphorically described as 
locations that he would like the class to reach by the end of the lecture. 

The discussion of L8 above used the journey metaphor in a local sense in describing what 
ground would be covered in a particular lecture. However, the lecturers sometimes used journey 
in terms of students’ mathematical development, either in terms of the entire semester or even 
beyond that (see L2’s quote in Table 2). In a journey, there may be particular landmarks that a 
traveler wishes to see or has seen in the past. The lecturers would describe important 
mathematical results as being these landmarks. For instance, in the last fifteen minutes of the 
lecture, L9 talked about the distance from and progress made toward a mathematical 
accomplishment in terms of distance from and progress toward a physical destination. After 
discussing how the real numbers are an extension field of the rational numbers, L9 said “here, we 
are on the verge of synthesizing or generalizing that approach” where the “verge” is “the edge or 
border of something” (Cambridge English Dictionary). The class was approaching an 
accomplishment of defining an extension field given an arbitrary field. In L9’s language 
indicating they were on the verge suggests to us that the class was approaching a desired 
mathematical destination.  

Meanwhile, we see that the class still had some ground to cover before arriving at this 
destination. L9 said, “now that’s promising in that this sets this up as a direct parallel to this, but 
it doesn’t yet, on its own, guarantee that we have gone far enough to find a root for P(x), okay? 
[…] Now, we won’t reach that pinnacle today unfortunately.” In this quote, L9 explained that 
the class has not yet gone far enough, or made sufficient progress, in their journey to reach the 
desired destination meaning that they have not covered the necessary content required to 
complete this generalization. As such, we see L9 describing the class’s current or local progress 
on the journey in relation to the broader journey of learning mathematics. In particular, L9 also 
described the destination as a pinnacle, suggesting that this destination is not simply the next 
stop on the journey, but rather a local maximum in the domain being covered and a critical 
landmark that the students want to reach. Next, L9 paused to allow students to ask questions and 
continued “the farther we go in this, the more focused I can be in my anticipations of it.” Here, 
L9’s language suggests that as the class continues to make progress toward their anticipated 
mathematical destination, he will be able to better anticipate questions and guide the class on 
their journey.  
 

Discussion  
 The main results of this study are that mathematics lecturers regularly invoke metaphors 
when they describe the activity of doing mathematics. Further, there was overlap in the 
metaphors that were used by different mathematicians. We first offer speculative thoughts about 
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the implications of the metaphors we found, Learning Mathematics is a Journey, Doing 
Mathematics is Work, Mathematics is Discovery, and Presenting Mathematics is a Story. We 
then conclude the paper by delineating the limitations of our study and suggest directions for 
future research. 
 In undergraduate mathematics education, mathematicians frequently express an 
obligation to cover a certain amount of mathematical content. In contrast, most mathematics 
educators believe that content coverage by itself is useless if students do not understand the 
material that is covered (e.g,. Fukawa-Connelly et al., 2017). In the Learning Mathematics as a 
Journey metaphor, the lecturers frequently spoke of the ground they needed to cover and the 
landmarks they intended to reach. However, there were only one instance in which a lecturer 
(L3) mentioned losing students on the journey. One possibility is that lecturers’ use of the 
Learning as a Journey metaphor provides a lens into their obligations as a teacher (covering 
ground and reaching destinations) and what are peripheral considerations (the number of students 
who are able to actually complete the journey). This also suggests how a change in the metaphor 
might lead some mathematicians to reconsider what they value. After all, a Sherpa who 
successfully scales Mount Everest would not be regarded as successful if the majority of his 
party perished along the way. Adding the notion of “survival rate” to the Learning Mathematics 
as a Journey metaphor could add the aspect of student learning to the metaphors that 
mathematicians used.  
 In terms of limitations, we emphasize that we only looked at mathematicians’ metaphor 
usage in the context of lectures in United States classrooms. In light of recent inquiries into how 
language and culture shape mathematical curricula (Shinno et al., 2018), it would be worthwhile 
to investigate whether mathematicians from other cultures than our own used different metaphors 
to describe mathematical practice. The theoretical work of Lakoff and Johnson (2003) and the 
empirical work of Thibodeau and Boroditsky (2011, 2013) demonstrate how the metaphors that 
are used to frame a concept influence how people reason about that concept. It would be 
interesting to investigate how, if at all, the particular metaphors that mathematicians use 
influence students’ mathematical reasoning and epistemologies. Questions regarding the impact 
of metaphors on student thinking and reasoning may have the potential to generate very 
interesting theoretical and empirical research.  
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Calculus TAs’ Reflections on Their Teaching of the Derivative Using Video Recall  
 

Jungeun Park 
University of Delaware 

This paper addresses the characteristics of first time Calculus I TAs’ teaching practice of the 
derivative and reflection on their teaching using video-stimulated recall. Our analysis using 
three views of function – correspondence, variation, and covariation – shows that regardless of 
representations that TAs adopted, their discussion mainly addressed correspondence, and most 
TAs used correspondence to justify the difference quotient (DQ) in the limit definition as a 
function, and transition from the derivative at a point and the derivative as a function. TAs also 
emphasized different uses of letters as an input of the derivative in such transition from students’ 
point of view although they as mathematicians did not see the difference. Some TAs addressed 
the variational or covariational view in class and/or during reflections but in a limited way by 
simply acknowledging that quantities “change” without describing how they change.  

Keywords: Video recall, Teaching, Reflections on Teaching, Teaching Assistants, Calculus  

Graduate teaching assistants (TAs) for Calculus courses play a crucial role in educating 
Science, Technology, Engineering and Mathematics (STEM) students through significant 
interactions with students during their classes and office hours (Ellis, 2014).  Unfortunately, the 
ongoing national effort to improve STEM education has found that many students leave STEM 
after their first year in college and report poor-quality teaching as their reason for leaving 
(Connolly et al., 2016) and many students still struggle with crucial ideas in Calculus necessary 
to understand various STEM phenomena (Park, 2013; Thompson & Carlson, 2017). Currently 
there are ongoing efforts to support TAs as novice teachers of STEM students (e.g., MAA, 
2017), but what we as a field know about TAs’ teaching practice is still limited. Based on this 
observation, this paper investigates TAs’ teaching of one of the crucial Calculus concepts, the 
derivative by analyzing their video-recorded lessons and their reflections on their teaching by 
analyzing the interviews with them, in which they watched the videos and explained their 
instructional choices in class. The following research questions guided our study: 

1. How did TAs discuss the derivative at a point and of a function in class? 
2. How did TAs reflect on their class discussions on the derivative? 

To answer these questions, we adopted three ways to conceptualize function – correspondence, 
variation, and covariation (Confrey & Smith, 1994; Thompson & Carlson, 2017) in our analysis 
of dominant approaches in TAs’ classes and consistency between their teaching and reflection.  

Theoretical Background 
This paper builds upon two bodies of literature: video recall as a tool for teacher learning, 

and quantitative reasoning addressing mathematical concepts related to functions. 

Teacher Learning Through Video Recall  
Videos have been widely used as an effective tool in teacher education and professional 

development to enhance teachers’ ability to notice or reflect on the recorded lessons or students’ 
work. Researchers have argued that videos foster ways teachers think about teaching and 
learning. For example, van Es and Sherin (2006) studied the impact of videos with two groups of 
teachers who learned to notice different mathematical aspects of students’ thinking depending on 
how the authors designed the use of videos during professional development. Rosaen et al. 
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(2008) showed that when videos were used for recall, pre-service teachers made more specific 
observation of their own teaching, focused more on teaching itself than classroom management, 
and commented more on students than themselves than when they were based on their memory.  

Some researchers used videos of teacher’s recorded lessons to help them reflect on and 
improve their teaching practice. Speer and Wagner (2009) used selected videotaped lessons 
where an instructor had trouble orchestrating class discussions to examine what occurred from 
the instructors’ view point, and with the videos the teacher revisited what occurred at certain 
moments of teaching and critiqued his methods. Meade and McMeniman (1992) adopted the 
stimulated recall with videos to make teachers implicit beliefs and assumptions explicit, and 
Muir (2010) argued that videoed taped lessons are a powerful medium for teacher’s deliberate 
reflection, and eventually led to change in teaching practice that was more effective for students.  

This study also uses video footage to stimulate TAs recall and reflection of their teaching 
practice. Video stimulated recall is often defined as a research method, where “the subject is 
shown video records of his or her work on a task…immediately after the recoding” (Busse & 
Ferri, 2003, p. 257). However, due to the research design of this study, we adopted this method 
without the immediacy. Since we were interested in particular mathematical aspects of the lesson 
– how the TAs addressed the quantitative reasoning behind the discussion about the derivative – 
we, researchers, watched videos and selected the clips for crucial moments, before watching 
them with the TAs instead of immediately showing the whole videotaped lesson to TAs.  

Quantitative Reasoning in Calculus   
Calculus mainly deals with how quantities vary or covary in terms of rates of change or 

accumulated rates of change. To understand the teaching and learning of concepts in calculus, 
researchers have proposed multiple ways to investigate quantitative reasoning for functions 
which is pervasive in calculus concepts. The first view is Correspondence which conceptualizes 
a function as a process of building “a rule that allows one to determine a unique y-value from any 
given x-value,” and thus “a correspondence between x and y” (Confrey & Smith, 1994, p.137), 
and another way of viewing function is through Variation and Covariation which focus on 
varying quantities involved in functions and their relations (Thompson & Carlson, 2017). 
Researchers who have advocated for variational/covariational reasoning emphasize the 
importance of understanding the context where functions were used, the quantities involved in 
functions, and how their coordination changes simultaneously (Confrey & Smith, 1994; 
Thompson, 1994). Thompson and Carlson (2017) further detailed levels for variational and 
covariational reasoning starting from no (co)variation towards smooth continuous (co)variation.  
We adopted and modified their levels by adding new categories to analyze our data specific to 
the derivative. Due to the limited space, we will only discuss the categories relevant to our data.  

Regarding the derivative, one could consider two functions. First, while defining the 
derivative a point lim

$→&
'()*$),'())

$ , one can consider the DQ, '()*$),'())$  as a function of h with: 
(a) correspondence where an h value corresponds to a specific value of the DQ,  
(b) variation where DQ is changing either smoothly and continuously (smooth continuous 
variation), or simply approaches (gross variation), or  
(c) covariational where DQ and h simultaneously covary smoothly and continuously 
(smooth continuous covariation), or simply approaching together (gross covariation).  

Second, once the derivative at a point is defined, one can apply the definition on an interval 
where the derivative exists. One can conceptualize this process with: 

(a) correspondence by considering each x value corresponding to the value of the 
derivative at that point,  
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(b) variation where the derivative changes over an interval either smoothly and 
continuously (smooth continuous variation), simply increases or decreases (gross 
variation), and  
(c) covariation where the derivative and the independent variable simultaneously covary 
either smoothly and continuously (smooth continuous covariation) or simply increases or 
decreases as the independent variable increases (gross covariation).  

Using these three approaches, we will investigate how the first year Calculus TAs addressed the 
quantitative reasoning in their teaching practice and their reflections on their teaching.  

Research Design 
This study is part of a larger study that includes a semester-long content-specific professional 

development (PD) for first time TAs for Calculus I. The PD consisted of five 75-min sessions 
during the semester starting from a week before the TAs started teaching the derivative focusing 
on varying and covarying quantities involved in the derivative. The current study focuses on 
TAs’ teaching of the derivative and reflections on it. Five TAs, who taught Calculus I recitations 
in Fall, 2016 and Spring, 2017, participated in this study. Three TAs – Amy, Kay, and Dan – had 
no previous classroom teaching experience, and two TAs – Lia and Edi – had taught as an 
instructor before they entered graduate school. At the institution where the study was conducted, 
Calculus was offered as a large section for 80-180 students and taught by faculty instructors 
three times a week, and small recitations consisting of 30-35 students were taught by TAs twice 
a week. The study design consisted of three phases: video-recording of class, the first and second 
interviews for their reflections on teaching. In Fall 2016, we video-recorded TAs’ recitation 
sections five times when they taught the derivative. The current study focuses on the first two 
lessons where they defined and used the derivative at a point and the derivative of a function in 
various contexts. Once the recording was done, we watched the videos and identified video clips 
for critical moments based on our framework. Then, we invited the TAs to individual one-hour 
interviews, where we showed each the selected video clips, and asked three questions: 

1. What was the main idea that you want to discuss with your students here? 
2. What do you think about your wording or representations? Do you have any thing 

that you want to modify? If so, why? 
3. In this episode, do you see anything varying? What is or are varying mathematically?  

The first interview occurred in the first week of Spring, 2017 before the PD started. The second 
interview occurred when they finished teaching the derivative towards the end of Spring, 2017 
and the PD ended. The interviews were video recorded and transcribed.   

Results 

TAs’ Approach to the Derivative at a Point with Symbols 
While discussing the derivative at a point through the limit process on the DQ with symbols, 

all TAs addressed only the correspondence view in class except Kay, who additionally 
mentioned gross covariation (Table 1). During reflections, two TAs consistently addressed 
correspondence whereas the other two addressed variation or covariation. One TA, Kay 
addressed correspondence and mentioned gross covariation in class and during reflections. 

All TAs started the derivative unit by defining and computing the derivative at a point with 
symbols and used the correspondence as the main approach in teaching and reflections. They 
conceptualized the DQ as a function, i.e., the corresponding value of the function DQ of the 
independent variable (e.g., h approaching 0). One of the TAs, Edi, explicitly used the word 
“function” for the DQ in class while emphasizing the correspondence by saying, “the limit as x 
goes to 1 of that function and just plug in 1 if the function exists there and negative 2 is the  
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answer” for lim
-→.

/
0,1
-,. = lim

-→.
,1
- = −2. Edi and another TA, Lia, whose reflection also addressed 

the correspondence, used the word “function” again for the DQ and emphasized its existence at 
the point where the limit is computed. Edi even chose the correspondence as his main view on 
the limit process over the variational view; to the interviewer’s question “what is or are 
varying?” in his algebraic computation of the derivative at a point, he responded, “it is a tangent 
line or a secant becoming a tangent line, but I guess I kind of see it more as evaluating the limit.” 
It should be noted that Lia also mentioned variational view in her reflection as a response to the 
same question, but it was a simple mention about the limit symbol (e.g., lim

$→&
) by saying “h is 

varying here” without any connection to the DQ.  
Another TA, Kay, used the function composition notation to compute the DQ for a given 

function, which also emphasized the correspondence view (Figure 2):  
 

 
Figure 2. Kay’s use of function composition for the DQ. 

 
A very difficult step, often when we're doing this limit definition of the derivative, 
is this plugging in step right here (gestures to 3(a+h)2-2(a+h)). It can be very 
difficult because you have to plug in a+h anywhere you see an x, and that can be 
confusing. But if you think of it as a composition, it might be a little easier. So I'm 
gonna let g(x) be a+h (writes g(x)=a+h) and f(x) is your function to begin with, 
then the first part here (puts a curly bracket around 3(a+h)2-2(a+h) and writes 
f(g(x)))…wherever I see an x in my function f, I'm gonna plug in all of the g(x). 

 
It should be noted that in Figure 2, the input g(x), which Kay emphasized, shed light on Kay’s 
discussion of the quantity that varies in the DQ. With the limit symbol, lim

$→&
 attached to the DQ 

in computing 5′(1), h is an independent varying quantity in (8 + ℎ). Therefore, a natural way to 
set up a function for (8 + ℎ) would be ;(ℎ) rather than ;(<). While watching this video, she did 
not comment on her use of x, but emphasized the substitution process to simplify computation.  

The reflections of three TAs – Amy, Kay, and Dan – addressed variation or covariation. Both 
Amy’s and Kay’s reflections included that h and the DQ are varying simultaneously, but 
described this as a simple gross behavior of “changing” or “getting closer to.”  Dan, took a 
different approach from the first reflection to the second. In the first reflection, he addressed the 
gross variation on the location by simply mentioning “h” as “a variable…go[ing] to 0” in 
lim
$→&

'()*$),'())
$ . In the second reflection, he identified both the DQ and the location as covarying 

at the gross level using graphical terms and connected it back to the algebraic expression:   
 

This (pointing to '(-),'())-,)  on the screen) is actually the slope of the secant line. So this 

one, corresponding, is changing. But, here (pointing to lim
-→)

'(-),'())
-,) ) we are interested in 

the limit…Because x is approaching a…I expressed that in terms of x. And finally, when 
we carry out this calculation, x goes to a. So we can give out an exact number.  We know 
where the limit is.  So that's how we get the slope of the tangent line. 
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TAs’ Approach to the Derivative at a Point with Graphs 
Two TAs, Amy and Lia addressed the limit process with two types of graphs: non-linear and 

piece-wise linear. On both graphs, they drew a few secant lines approaching the tangent line at a 
point. Amy drew secant lines without marking x values and only described their behavior 
approaching the tangent line with gross variation. In comparison, Lia plotted both the x values 
and the secant lines and described how they covary with gross covariation.  

TAs’ reflections were consistent; Lia’ reflection addressed the gross covariational view of the 
slopes of the secant lines and the corresponding location of x without explicitly mentioning how 
both quantities vary or covary. Amy’s first reflection was also consistent with her teaching 
addressing the gross variation of the slopes of secant lines without the location on the non-linear 
function graph, but the gross covariation of the piece-wise linear function (“I can get as close as I 
want [bring hands closer to each other horizontally, and it [the slope of secant line] will always 
be positive”]). However, a piece-wise linear function only provides a limited context to discuss 
variational or covariational reasoning since the slopes of the secant lines are constant. During the 
second reflection, Amy explicitly addressed the missing component – the location, and the 
covarying relationship between the location and the change at the gross level: “the values of x are 
changing and the slopes of the secant lines are therefore changing.”  

 
TAs’ Approach to the Derivative of a Function with Symbols 

All TAs’ discussions on the derivative as a function in class using symbols addressed 
correspondence. Their reflections on those discussions also addressed the correspondence. In the 
discussion of the correspondence between the input x value and the derivative value, TAs 
focused on the input, and some TAs also emphasized different uses of letters as an input.  

In the discussions of the derivative function, all TAs used most of their class period 
computing the derivative of a function given as an equation applying the limit on the simplified 
DQ. The derivative process became only explicit when TAs substituted a number in for x to 
compute the derivative at a number. Three TAs – Dan, Amy, and Lia – introduced the derivative 
as a function using the correspondence between an input and the output value of the derivative. 
For example, Dan used a feeding mechanism analogy:  
 

[DF-1] What we have done f prime a is equal 2a (writes 5′(8) = 28). So we can 
think of, like the function as a lazy dog…You feed the dog something and the dog 
will come up with something, so you feed in an a, and you get a result 2a. But if 
we changed the variable, here is a fixed number (points to a), x equals to a (writes 
x=a), but let's just say in general, cause x always equals to a, right? So if we feed 
in x, you will get f prime x (writes 5′(<) = 2<), right, so therefore f prime x is the 
function. So, we have done f prime negative 1 (writes 5′(-1)=) and we'll get a  
equals -1, (points to a in 2a), so it's negative 2 (writes -2). So any number we're 
feeding, any real number will get an actual number (points to “5>(<) = 2<”). 

 
Here his analogy of feeding a lazy dog highlights the corresponding relation between an input 
and the corresponding output. Specifically, he interpreted the function as the correspondence 
between an input changed from a as “a fixed number,” then “x” in general, and then a number a 
= -1, and its corresponding derivative 2a, 2x, and -2, respectively.  

Three TAs – Dan, Amy, and Kay – emphasized the role of the input of the derivative 
function again during their reflections using a correspondence perspective. They specifically 
explained why “a” or “x0” are different from “x” from the student point of view while 
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acknowledging that a and x are the same mathematically. For example, in his second reflection 
about the lesson above [DF-1], Dan said: 
 

[DF-2] Here, from our point of view, it's [sic] just change < into 8 or change 8 to 
<. You can get from one to another. But um, from the learner's point, they may 
not see that easy, oh right, you just change the letter < uh into 8, so you claim 
they're the same thing. Like, it's not that easy because again, usually a is a 
constant. x is a variable of a function that's not to be touched. 
[DF-3] I think here if I actually graph this, we can say okay, we can actually 
graph this, so this looks like it's a function, right? So, then I should probably say, 
okay, because 8 is, you can put in any number here. So why not just make it to be 
a variable? Instead of some fixed number.   

  
Here, Dan said that mathematically “a” and “x” are not different, but explicitly differentiated 
“a” as constant or fixed from “x” as “not to be touched,” ([DF-2]) and justified the transition 
from a fixed number “a” to the variable “x” by that any number can be substituted in “a” ([DF-
3]). His use of “x” as something “not to be touched” is consistent of his use of “a=-1” instead of 
“x=-1” in his class ([DF-1]). In reflection, he explained that a direct transition “a” in 5′(8) “x” in 
5′(<) would be hard for students because “they are not taught that we can substitute a constant 
by a variable.”  

It should be noted that two TAs identified varying/covarying quantities in the limit process 
on DQ rather than the change of letters or numbers as an input of the derivative function. 
Specifically, while reflecting on class discussions on the computation of the derivative at a point, 
Dan and Kay explicitly chose h in lim

$→&
, and then the corresponding DQ as changing whereas 

stating that they did not view changing the input for the derivative function from a letter x or a to 
a number as varying.  

 
TAs’ Approach to the Derivative of a Function with Graph 

All TAs used graphs to discuss the derivative of a function while graphing it or finding its 
range in class using a correspondence perspective, and their reflections also addressed the 
correspondence view. However, but three TAs simply mentioned gross covariation between x 
and the derivative (e.g., when x changes, the slope changes) in their second reflection when they 
reflected on their teaching involving graphs. TAs’ class discussions were limited from the 
variation or covariation point of view; graphing and describing the behavior of the derivative of a 
function was mainly based on the correspondence and the sign of the derivative of a function 
without addressing how the associated quantities vary or covary. For example, two TAs, Edi and 
Kay, drew the derivative of a function given as a graph but based on the correspondence rather 
than on variation or covariation. Specifically, Edi graphed the derivative of a piece-wise linear 
function, which provided only limited context for variational and covariational aspects of it. He 
mainly read the slope for each interval to graph the derivative function without discussing any 
variation. Kay drew the graph the derivative of a non-linear function, but only considered the 
sign of the slope of the function on the intervals partitioned by the critical values and graphed the 
derivative as if it were piece-wise linear (Figure 2):  
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Figure 2. Kay’s graph of the derivative of a function 

 
Kay: You're gonna find out…the value of the slope, the exact value, the magnitude, 

but sometimes it's actually really more important just to know the sign of the 
slope. So, over here (points to most left), what is the sign of my slope?  

Students: Positive 
Kay: It's positive, right? So I'm just gonna write a little positive here. (puts + next to 

curve) Where is my slope zero?  
Student: At the top 
Kay: At this little crest? Right? And right here right? (gestures to first and second 

critical points of curve, draws horizontal line, and writes 0 near). 
   
As Kay pointed out the point of discussion was to know the sign of the slope of the distance 
function on each interval instead of how the slope varied as a quantity. Moreover, how the 
original function behaved was not discussed in the class. Instead, the graph of the derivative was 
drawn completely by reading the sign of the slope of the original function from the graph without 
associating it with discussing how the original graph behaved.  

Discussion and Conclusion 
Our analysis of TAs teaching practice of the derivative showed that the correspondence was 

their main approach to discussing the derivative at a point through the limit process on the DQ, 
and the derivative as a function. Correspondence view was prominent in class, even when the 
TAs used graphs, which are often used to visualize the behavior of a function that is often 
overlooked with algebraic representations. Most TAs either chose limited contexts involving a 
linear original function whose rate of change is constant, and even when they chose non-linear 
functions as original functions, they graphed the derivative mainly focused on the sign of the 
slope on intervals partitioned by critical values without considering how the quantities involved 
in the function or the derivative vary or covary between those values. During the reflection, TAs 
often addressed a gross variational or covariational view in addition to correspondence. TAs, 
especially the ones who had not taught before, showed progress towards covariational reasoning 
by identifying missing quantities from their class discussions, and describing their relation in 
terms of how the quantities involved covary.  

The results of this study provide valuable information for content-specific PD for TAs. TAs’ 
adoption of correspondence was dominant even when they were using graphical representations 
which are often used to emphasize the behavior of changing quantities and their relationships. 
Their approach could be extended to include other approaches by letting them think about how 
different types of context, problems, and representations could promote discussion of varying 
and covarying quantities. Also, PD material should challenge TAs’ own content knowledge for 
them to revisit the missing components and relations that could be in their teaching of calculus, 
based on which TAs could build up the mathematical knowledge for teaching to promote 
quantitative reasoning in students that is crucial in STEM fields.  
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How Peer Mentors Support Students in Learning to Write Mathematical Proofs 
 

Cody L. Patterson Lino Guajardo Maria Tomasso 
Univ. Texas at San Antonio Texas State University Texas State University 

We study how the mathematical beliefs and knowledge of peer mentors in a summer mathematics 
program influenced their efforts to help high school students learn to write proofs in number 
theory. Using Schoenfeld’s framework for understanding decision making, we analyze interviews 
of three undergraduate student mentors for evidence of how their views of the role of proof, 
norms for proof writing, and mathematical knowledge for teaching informed their pedagogical 
decisions. We find that each mentor developed a distinctive approach to providing feedback on 
student work consistent with their own values, and present evidence that the success of each 
approach depended on the mentor’s resources for interpreting student work. 

Key words: Mathematical Proof, Mathematical Knowledge for Teaching, Number Theory  

Research in undergraduate mathematics education has documented some common challenges 
associated with teaching students to identify and produce correct mathematical proofs. These 
challenges are often rooted in issues of what students consider to be a valid proof: students are 
often found to possess ritualistic or empirical proof schemes and derive conviction from the form 
of an argument rather than its analytic content (Harel & Sowder, 1998). When reading an 
argument and deciding whether it is valid, students frequently focus on surface features such as 
whether the presentation of the argument engenders a feeling of “making sense,” or the extent to 
which the proof represents reasoning symbolically or verbally (Bleiler, Thompson, & Krajčevski, 
2014; Selden & Selden, 2003). The process of constructing proofs also presents challenges: for 
example, in addition to knowing relevant mathematical facts, students must also develop 
strategic knowledge of when proof techniques or theorems are likely to be useful (Weber, 2001). 

Recent research also reveals complications inherent in the notion of “correct” mathematical 
proof. A study of mathematicians’ validations of an elementary analysis proof has suggested that 
there is no single standard for validity shared by all members of this community (Inglis, Mejia-
Ramos, Weber, & Alcock, 2013). Moreover, mathematicians disagree on whether nonstandard 
uses of language in mathematical proofs constitute breaches of convention, and their judgments 
of potential breaches may be influenced by the context in which proofs appear (Lew & Mejia-
Ramos, 2017). Those tasked with teaching students how to write proofs thus face a doubly 
difficult task: they must help students develop the interpretive frameworks and strategic 
knowledge necessary to read and produce proofs, while also facilitating their enculturation into a 
community whose norms are not well-defined and may vary depending on context. 

In this study, we investigate the beliefs and knowledge that guide undergraduate student 
mentors’ efforts to teach high school students in a summer number theory course to write proofs 
that conform to these mentors’ perceptions of standard conventions for mathematical writing. 
We aim to contribute to the growing body of research on the mathematical and pedagogical 
resources entailed in teaching students to read and write proofs. 
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Background and Theoretical Framework 
 

We assume the theoretical stance, suggested by Schoenfeld (2010), that people’s teaching 
decisions can be understood on the basis of their goals, their beliefs and orientations, and their 
knowledge and resources. In the context of our study of peer mentors’ decision making about 
how to help students learn to write proofs, we construe “goals” to include not only the broadly 
shared goal of helping students become effective mathematical writers, but also subgoals 
associated with teaching students to write proofs that can achieve specific purposes envisioned 
by the mentors, such as convincing other students of the validity of a claim or helping others 
understand why the claim is true. Prior research on proof has enumerated different roles that 
proof can play in mathematical learning and practice; these include strengthening the audience’s 
certainty of the truth of a mathematical statement, explaining why a statement is true in terms of 
its connections to other known facts, developing a formal axiomatic system of concepts and 
theorems, and transmitting mathematical knowledge to other practitioners (De Villiers, 1990; 
Hanna, 2000). We hypothesize that mentors’ goals in helping students learn to write proofs may 
align with some of the purposes suggested by this framework. 

Within “orientations” we include mentors’ beliefs about attributes that “good” or “correct” 
proofs should have, along with beliefs about how they can most effectively develop in students 
an appreciation for these attributes and habits that will help them write proofs that meet these 
standards consistently. Lai, Weber, and Mejia-Ramos (2012) found that mathematicians believe 
that pedagogical proofs, which serve primarily to explain and communicate mathematical results 
to an audience of students, should contain introductory and concluding sentences, should format 
major ideas so as to emphasize their importance, and remove redundant or extraneous 
information in order to minimize confusion. We hypothesize that since proofs that students 
produce in a number theory course often have the same purposes, mentors’ beliefs about 
desirable attributes of proofs may align with these preferences. In addition, mentors may have 
linguistic norms for proof that align more or less with those of the mathematical discipline, such 
as those that forbid allowing a symbol to represent two different objects or that discourage 
stating entire definitions that are external to a proof (Selden & Selden, 2014). 

We conceptualize “resources” as knowledge that mentors deploy in the work of teaching. 
Numerous studies have illustrated distinctions between the mathematical knowledge used in 
teaching and the mathematical knowledge that people use in everyday life and in non-teaching 
careers (e.g., Shulman, 1986; Ball, Thames, & Phelps, 2008). Mathematical knowledge for 
teaching (MKT) includes both subject matter knowledge, including specialized knowledge that 
helps teachers interpret mathematical thinking, vet problem-solving strategies and select 
representations of concepts, and pedagogical content knowledge, which entails understanding 
students’ ways of thinking about mathematics and ways in which concepts can be presented in 
classroom settings (Hill, Ball, & Schilling, 2008). In the context of a proof-based number theory 
course, mentors’ MKT might include knowledge that helps them interpret student proofs with 
unexpected features and approaches, and strategies for helping students identify a productive 
problem-solving approach without directly advising them on how to approach a problem. 

Guided by this framework, we address the following research questions: 
1. How do peer mentors’ goals, orientations, and resources influence their pedagogical 

approaches in helping students learn to write number theory proofs? 
2. How are these pedagogical approaches reflected in their evaluation and marking of 

hypothetical and actual student proofs? 
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Method of Study 

 
Our study took place at a six-week summer mathematics program for high school students in 

the United States in 2018. The program included 63 students, of whom 35 were first-time 
participants taking a course in number theory. While the program is highly selective, admitting 
less than 20% of applicants, our initial interviews of study participants suggested that most 
students had not had extensive prior experience with mathematical proof beyond what some had 
encountered in U.S. regional and national mathematics contests. 

On a typical day of the program, first-year students attended a lecture in the morning, took 
other classes in the afternoon, and participated in a four-hour homework session during the 
evening. During these homework sessions, students worked in “study groups” of three or four to 
prove theorems that would be covered in subsequent lectures. At the start of the program, each 
study group was assigned a peer mentor who supervised the evening sessions; the small groups 
and their peer mentor assignments remained stable throughout the program. In addition to 
attending lecture in the mornings and working on developing proofs of theorems in the evenings, 
students attended afternoon problem sessions, led by peer mentors, in which they discussed 
solutions to homework problems they had completed and foreshadowed upcoming content. 

We chose to conduct a case study (Yin, 2013) of peer mentors’ approaches in helping 
students learn to write proofs because unlike the program faculty, who interacted with students 
primarily through lecture-based classes, the mentors had considerable opportunity to influence 
students’ views on proof and proof-writing through daily problem sessions, extended interactions 
during homework sessions, and their marking of each day’s completed homework. In addition, 
because peer mentors were typically undergraduate students in STEM disciplines, they were 
themselves in the process of learning to write and critique technical texts such as mathematical 
proofs; thus studying the work of mentors provided a unique opportunity to investigate the role 
of mathematical knowledge in teaching higher mathematics in a setting in which this knowledge 
was under active development. 

To investigate how peer mentors supported first-year students in learning to write number 
theory proofs, we conducted interviews of four mentors (Table 1) during the second week of 
camp and during the final week of camp. During the initial interview, we asked questions about 
mentors’ beliefs about the purposes of proof in the context of the number theory course, what it 
means for a proof to be correct or incorrect, and how participants supported their students in 
learning to identify correct proofs. 
 

Table 1: Participating Mentors and Demographic Information 
Mentor Age and Ethnicity 
Linda 17, Asian/Pacific Islander 
David 19, White 
Nina 18, Asian/Pacific Islander 

Nathan 18, African American 
 

Following are a few of the questions we asked in the initial interviews: 
1. In the number theory course, proofs are given for most of the facts discussed in class. 

Why do you think the class does this? 
2. What are some characteristics of good mathematical proofs? 
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3. When a student submits a proof, how do you decide whether the proof is correct? 
4. How do you support your students in learning to construct correct proofs, and distinguish 

correct proofs from incorrect ones? 
In the final interviews, we repeated some questions from the initial interview to track 

possible shifts in mentors’ beliefs about proof and about teaching students to write proofs. We 
also asked each participant to read and mark a hypothetical student’s proof of Euclid’s lemma 
(that if a, b, and c are integers such that a divides bc and a is relatively prime to b, then a divides 
c). We also asked participants to explain their actual markings of several of their own students’ 
proofs; this allowed us to gain insight about how participants’ beliefs and MKT informed their 
approaches to the everyday work of mentoring. In these final interviews, we used a tablet to 
display scans of the hypothetical student proof and actual student proofs so that we could record 
mentors’ markings on proofs as well as their spoken comments. 

We transcribed audio from the initial and final interviews for each of the four mentors in our 
study. We analyzed transcripts using thematic analysis (Braun & Clarke, 2006) to identify 
themes in participants’ beliefs about purposes of proof and reasons for learning to write proofs, 
beliefs about features that influence the quality or validity of a proof, and mathematical and 
pedagogical knowledge that was relevant to the work of helping students learn to write proofs. 

 
Results and Analysis 

 
In this section we discuss our analysis of our interviews of three of the four mentors; we 

selected these three cases because each revealed themes not readily visible in the other cases. For 
each case we include some extracts from our interviews with the peer mentor that shed light on 
their goals and orientations with respect to the teaching of mathematical proof; we also include 
some observations about their practices in marking proofs, as evidenced by their responses to the 
hypothetical student proof task and their discussion of their actual students’ marked proofs. 
 
Proof as Disciplinary Activity: The Case of Nina 

When asked in her initial interview why the number theory course focuses on developing 
proofs of mathematical theorems rather than simply presenting facts and computational 
strategies, Nina discussed the role of proof in explaining how and why mathematical ideas work: 

I think it does this because the class is really focused on not so much accumulating facts and 
information, which you are doing as you go through the problem sets, but also understanding 
why each one of them works the way they do. We start with intuitive - sort of, quote, 
“simple” statements such as n times zero equals zero, and they’re statements that we often 
take for granted. So when you dive into the axioms behind those and how they really work, 
you understand math from one different perspective, and then also a deeper perspective. You 
have a more solid understanding of it. 

This and other responses from Nina suggested that one of her goals was to help students learn 
how to write proofs that would shed insight on conceptual underpinnings of and connections 
among mathematical ideas. The theme of proof as an avenue for deepening mathematical 
knowledge recurred in many of Nina’s answers during the initial interview. 

When asked about characteristics of “good” proofs, Nina highlighted the importance of 
developing an argument that is rigorous; when asked to clarify what “rigorous” meant, she 
described a rigorous proof as one that “explain[s] every step thoroughly and carefully,” and that 
peers can understand without difficulty. She suggested that a proof should have “eloquence,” 
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observing that some of her students often used colloquial language or wrote in incomplete 
sentences. Finally, she noted the importance of validity, which she characterized as not assuming 
the conclusion, taking incorrect logical steps, or performing steps that could not be justified in 
terms of facts already proven. She also noted that a proof should minimize unnecessary steps. 
We view these norms for mathematical proofs as orientations that Nina might apply to the work 
of marking proofs; we note that some of these norms (such as omitting unneeded steps) are 
consistent with those described by Selden and Selden (2014) and Lew and Mejia-Ramos (2017). 

Nina’s initial interview also offered insight into her orientations regarding her role in helping 
students improve at proof-writing. She described a practice, shared by most mentors in the camp, 
of assigning “redos” and “rewrites” for proofs deemed to be inadequate. Nina characterized the 
distinction between a “redo” and a “rewrite” as based on the depth of errors in a proof; while a 
proof that contains a major error might warrant a “redo,” a proof that contains a valid argument 
but has some writing errors (such as failing to introduce variables) might only receive a 
“rewrite.” When asked about the pedagogical purpose of assigning redos and rewrites, Nina said: 

I think the point of a rewrite is to show them how to make their proof better, and show that 
you’re missing a few steps here, and that if you practice rewriting this, you’ll write better 
proofs in the future. I try to stress to my campers that it’s not a bad thing to get a rewrite or a 
redo, it’s not like you failed an assignment or you did poorly, got a bad grade. It’s just that 
here’s an opportunity for you to fix this proof, and then next time you’ll write an even better 
proof from there on. [emphasis ours] 

Thus for Nina, assigning redos and rewrites served as an opportunity to reinforce normative 
proof-writing practices for students. 

During the final interview, we asked Nina to review two of her students’ proofs that 
multiplying each element of a complete residue system modulo n by a unit produces another 
complete residue system. Both students had written proofs using similar approaches, but Nina 
had marked one proof correct while assigning the other a redo. When asked about this 
discrepancy, Nina explained that while the first student’s writing suggested a sound 
understanding of the approach, the second student’s writing did not: 

I think again, it’s little things - you missed a word here, that shows that perhaps you’re kind 
of writing things based off what you remember from presentation, but you’re not fully 
there.  It’s really hard to define.  It’s subtle distinctions here.  Two students can write almost 
the same amount of text, and one can just show that they understand better than the other did, 
just by the words they’ve selected and the way they have presented their proof. 

This excerpt suggests one type of knowledge that Nina used in marking proofs; while a reader 
not concerned with individual students’ understanding might have marked both proofs correct, 
Nina used her knowledge of content and students to discern the depth of a student’s 
understanding of an argument. When a student’s writing suggested a lack of understanding in 
tension with Nina’s goals for students’ proving activity, she asked the student to revisit it.  
 
Proof as Persuasion: The Case of David 

David’s responses to questions about the purpose of proof in the number theory course 
focused on the roles of proof in verifying and communicating mathematical results. In both of his 
interviews, he showed commitment to the notion of a proof as a persuasive essay, and suggested 
that skills students developed in the number theory course could prove valuable elsewhere: 

I think by starting from the bare minimum, like the axioms, and building up on that, you’re 
learning to justify everything you say, and that’s a skill you need everywhere in life. If you’re 
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writing an essay, a persuasive essay, everything you say has to follow from some basic 
assumption, and you have to justify everything; otherwise a reader’s not necessarily going to 
be persuaded. I think that’s true in basically any field. 

David’s answer suggested that one of his goals was to help students learn to write proofs that 
could persuade peers of the truth of a mathematical claim. 

In discussing norms for “good” mathematical proofs, David stated that a successful proof 
should be something that a layperson could understand, given a sufficient understanding of the 
problem under discussion. He noted the importance of using complete sentences and including 
explanation for each step of a proof. When asked how he approached the task of validating a 
proof, David suggested the notion of a skeptical reader who might identify holes in an argument: 

Everything could be technically correct, but if there isn’t explanation behind each step, then 
it doesn’t have value to somebody else. … If they aren’t able to convince someone of 
something entirely, then I don’t think it’s correct.  If I can, as a reader, think “oh, what about 
this case?” and they haven’t addressed that, then I don’t think it’s a correct proof, because 
they have to be able to irrefutably convince you of something. 

This suggests that some of David’s beliefs about proof quality may have oriented him toward 
focusing on the flow of students’ reasoning in proofs and their consistency in justifying steps and 
addressing all cases of a problem. However, we observed instances in which David’s curricular 
knowledge of the number theory course may have imposed some limitations on this. In their 
proofs of the theorem that if b is nonzero and a = bq + r, then gcd(a, b) = gcd(b, r), David’s 
students used the fact that if gcd(a, b) = d, then gcd(a/d, b/d) = 1; they also used the fact that if 
gcd(a, b) = d, then gcd(ak, bk) = dk. The first of these facts can be proven using a relatively 
straightforward argument; the other is typically proven using Bézout’s identity, for which this 
theorem is often a building block. Because David did not recognize that these facts would be 
systematized later in the curriculum (or was willing to accept these claims based on intuitive 
reasoning), he did not object to their use. When we asked David about these proofs, he initially 
judged the proofs to be correct, but revised this judgment when presented with the fact that the 
students’ subsidiary claims about greatest common divisors had not yet been formalized.  
 
Proof as Opportunity for Assessment: The Case of Nathan  

Nathan framed many of his observations about the power and importance of mathematical 
proof in contrast with his experiences with traditional schooling. When asked why the summer 
program provides students with such extensive experience with mathematical proof, Nathan 
discussed the development of students’ intellectual agency: 

I think having them write up their ideas and work on their own to prove theorems is very 
important, in the sense of not having a higher power or a teacher … do it for them. … If 
you’re working with others who are trying to understand the same way you are and you guys 
are bouncing ideas off of each other - even if it’s wrong at first, even if your proof is wrong, 
you work with each other to try to reach this conclusion of why this works, and how it’s true. 
I think that’s how people did it before there was anybody to really help them understand 
something - they’d bounce each other’s ideas off of one another and come to a conclusion 
that was right and made sense to them. 

In discussing his orientations regarding proof quality, Nathan consistently focused on two 
attributes of “good” proofs: rigor (which he characterized as attending to all of the details in a 
proof’s reasoning) and clarity. His discussion of his teaching approach during both the initial and 
final interviews suggested an iterative approach to vetting students’ proofs: when faced with a 
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claim in a student proof whose justification was unclear or lacked rigor, he would engage in a 
one-on-one conversation with the author and ask questions to assess their understanding of the 
reasoning. If the student demonstrated sufficient understanding of the reasoning in the proof, 
Nathan would make a minor suggestion as to how the student might better convey this reasoning 
rather than assigning a more extensive rewrite. Thus Nathan used his knowledge of content and 
teaching to identify ways to honor students’ agency in presenting and explaining their own 
reasoning – a goal he clearly valued – while maintaining standards for mathematical rigor.  

 
Discussion 

 
The cases of Nina, David, and Nathan illustrate ways in which peer mentors’ goals and 

orientations might guide their norms for the proofs that students create as well as their 
approaches in helping students learn to create proofs consistent with these norms. They also 
suggest ways in which various facets of mentors’ MKT might afford or constrain opportunities to 
make progress toward their self-defined teaching goals in ways consistent with their beliefs 
about mathematical proof and about teaching and learning. 

The study took place in a setting in which students and mentors have co-constructed a 
distinctive set of norms for proof validity and quality that may not be consistent with those of the 
professional mathematicians who direct the program (Patterson & Cui, 2017). In particular, we 
hypothesize based on results from this and our previous study that peer mentors in this setting 
may have higher standards than most of the mathematical community for the amount of detail 
students must provide when justifying claims; for example, demands that students cite axioms 
for the integers, such as the commutative and distributive properties, fall off much later than they 
do in most number theory courses. In this study, however, we see that demands on students’ 
justifications may originate from different pedagogical beliefs and intentions. While Nina’s 
standards and practices seemed focused on maintaining the integrity of disciplinary norms for 
proof writing, David’s emerged from a view of proof as argumentation, a practice that he viewed 
as transferable across disciplines. While Nathan had similarly stringent standards, he appeared to 
offer students greater flexibility in how they met these standards, and seemed interested in 
maintaining them in order to maximize students’ opportunities to develop and demonstrate 
understanding. All three mentors responded in similar ways to an interview task that asked them 
to mark a hypothetical student proof, suggesting that they had similar norms for proof quality 
and comparable consistency in enforcing these norms; however, their motivations for enforcing 
these norms appear to be more diverse than we had originally hypothesized. 
 
Limitations of Study and Next Steps 

In this study we analyzed peer mentors’ beliefs and practices for teaching students to write 
proofs in number theory. We do not yet understand how students interpret their mentors’ 
feedback about the proofs they write, how these interpretations inform the iterative development 
of students’ own beliefs about proof validity, or with how much fidelity students adopt the 
beliefs and norms of their mentors. We also hesitate to make broad inferences about mentors’ 
MKT based on their responses to interview prompts, since some questions involved proofs that 
they had marked three to four weeks prior to the final interviews. Furthermore, the peer mentors 
work in an environment in which time for marking papers is scarce; failures to identify errors in 
proofs may be due to time constraints rather than gaps in mathematical knowledge. 
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Distance Measurement and Reinventing the General Metric Function

Zackery Reed
Oklahoma State University

Real analysis is an important course for both undergraduate and graduate students. Researching
the ways students reason about challenging and abstract concepts can inform and improve
instruction in real analysis. In this report, I examine two undergraduate students’ reinvention of a
general metric function. To facilitate this reinvention, I conducted a 15-hour teaching experiment
with undergraduate mathematics students that had completed the introductory sequence in real
analysis. In this experiment, the students generalized their initial understandings of distance
measurements on R to construct increasingly abstract measures of distance in various metric
spaces, including sequence and function spaces. Their generalizing activity culminated in
construction of a general metric function through reflected abstraction of operations relevant to
distance measurement carried out in previous metric spaces. I explore the students’ generalizing
activity, as well as the abstractions that supported their generalizing1.

Key words: generalization, real analysis, metric spaces, formal mathematics

Introduction and Review of the Literature
Success in real analysis can have substantial implications for undergraduate mathematics

students, especially those pursuing graduate degrees. Along with abstract algebra, the majority of
mathematics majors must take real analysis in some form as part of a core curriculum. Further,
real analysis holds implications for mathematics graduate students as well, as it can be a major
component of qualifying exams.

Despite its importance, real analysis is anecdotally difficult for both undergraduate and
graduate students. In spite of this, we know very little of its teaching and learning, particularly in
advanced settings of real analysis. While real analysis is the setting for various research agendas
(e.g. proof, classroom instruction, student affect, understanding of definitions, etc.; c.f Alcock &
Weber, 2005; Lew, Fukawa-Connelly, Mejı́a-Ramos & Weber, 2016; Weber, 2009), we know
relatively little about how students understand real analysis topics outside of introductory
contexts. While there have been a number of studies exploring how students understand formal
limits (e.g., Adiredja, 2013; Cornu, 1991; Cottrill, Dubinsky, Nichols, Schwingendorf, Thomas,
& Vidakovic, 1996; Gass, 1992; Roh, 2008; Swinyard, 2011; Swinyard & Larsen, 2012; Tall,
1992; Tall & Vinner, 1981; Williams, 1991), students’ understandings of other key concepts in
real analysis has generally not been explicitly studied.

Three exceptions to this are works by Wasserman and Weber (2018), Strand (2017), and
Reed (2017). Strand used the Intermediate Value Theorem in the context of approximating an
irrational root to draw out students’ understanding of completeness on R. Reed (2017) detailed a
case study wherein a student reversed the roles of � and N in point-wise convergence of functions
as a result of a similar reversal in his understanding of real number convergence. Finally,
Wasserman and Weber (2018) explored ways to use issues of classroom pedagogy in motivating
underlying structure in introductory real analysis taught specifically to preservice teachers. While
each of these studies explore different facets of student thinking in various real analysis contexts,

1This project was funded by NSF grant # 1419973
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there is still much we don’t know about how students understand core and unifying concepts in
real analysis.

In this report, I extend the literature by exploring how students understand more abstract
concepts in real analysis, specifically in the context of metric spaces. A metric space, (X, �),
consists of a set, X , paired with a measure of distance (i.e. a metric function), �. A function � is a
metric if it satisfies the following four conditions for all x, y, z � X: 1) � : X ⇥ X � [0, �), 2)
�(x, y) = �(y, x), 3) �(x, y) = 0 iff x = y, and 4) �(x, y) � �(x, z) + �(z, y). A productive
understanding of metric spaces attends to the regularity of their topological structure across
spaces in which such a pairing exists. For instance, sequences obey the same convergence
structure, in that a sequence {xn} in a metric space converges to an element x � X if ��>0, there
exists N � N such that �n � N , we have �(xn, x)<�. Thus, a sequence of continuous functions
under the supremum metric converges in the same way that a sequence of real numbers does
under the absolute value metric.

I extend our knowledge of student thinking and learning in real analysis by exploring what
advanced understandings students can construct through generalization of their understandings
developed in introductory real analysis. Specifically, I report on the results of a 15-hour teaching
experiment (Steffe & Thompson, 2000) that involved students’ reinvention (Freudenthal, 1991) of
a general metric space in real analysis.

Theoretical Perspectives
To reinvent the general metric function, the students engaged in generalizing activity that

facilitated reflected abstraction (Piaget, 1975, 1980, 2001; Glasersfeld, 1995) of operations
(referring to mental actions) involved in measuring distance in physical space. To describe both
students’ generalizing activity and the cognitive processes that support their learning while
generalizing, I draw both from Ellis, Lockwood, Tillema, and Moore’s (2017)
Relating-Forming-Extending (R-F-E) generalizing framework and Piaget’s (1975, 1980, 2001)
notion of reflected abstraction. These two theoretical constructs have a synergistic relationship, in
that Ellis et al. (2017) offer a nuanced analysis of the ways that students engage in the activity of
generalizing, while Piaget’s (1975, 1980, 2001) notion of reflected abstraction provides a
language describing the underlying cognitive processes behind the students’ learning through
generalization.

Ellis et al. (2017) identify relating and extending as two broad categories of actions that
students can take while generalizing. Relating occurs when “ students [establish] relations of
similarity across problems or contexts” (Ellis, et al., 2017, p. 680). This is a form of
inter-contextual generalizing, in which students create relationships between two or more
mathematical situations that they initially perceive as distinct. Extending, perhaps the more
recognizable generalizing action, involves the application of established patterns, regularities, and
relationships to new cases (Ellis, et al., 2017, p. 680).

Piaget’s construct of reflective abstraction (specifically reflected abstraction; c.f. Piaget,
1975, 1980, 2001; Glasersfeld, 1995) complements the attention to the activities in which
students engage as they generalize. Through reflective abstraction, we can make inferences about
the cognitive mechanisms driving the students’ generalizations, as well as the ways in which their
knowledge is transformed through generalization. Situated as a mechanism of accommodation
that facilitates equilibration (Glasersfeld, 1995), reflective abstraction is primarily characterized
by two inseparable features: 1) a réfléchissement “. . . in the sense of the projection of something

22nd Annual Conference on Research in Undergraduate Mathematics Education 493



borrowed from a preceding level onto a higher one” (Piaget, 1975, p. 41), and 2) a réflexion “. . .
in the sense of a (more or less conscious) cognitive reconstruction or reorganization of what has
been transferred” (Paiget, 1975, p. 41). In this way, reflective abstraction captures the ways
thinkers regulate their activity by first borrowing operations (mental actions) from one level of
mental complexity (say, some N th level of projected activity) and then reorganizing the
operations on a new projected level (i.e. the N + 1st level). This reorganization produces new
mental constructions enriched by the projected operations. Piaget acknowledged when this
reconstruction occurs through explicit reflection on a thinker’s activity by calling such conscious
reflections reflected abstraction (Piaget, 2001; Glasersfeld, 1995).

These constructs frame the generalizing actions of the students in my study as they
constructed the general metric function by first relating across their previous metrics, and then
extending meaningful structures they identified through the process of relating. This involved
explicit reflection on prior operations they had enacted in specific metric contexts that related to
the properties of a metric, and so their extending activity occurred through reflected abstraction. I
will examine their specific abstractions in the Results Section.

Methods
The data presented here was taken from a dissertation project involving two separate

teaching experiments (Steffe & Thompson, 2000) with mathematics majors. Both teaching
experiments entailed 8, 90-minute sessions in which students reinvented (Freudenthal, 1991) the
general definition of a metric function. In this report, I focus on the final session of one teaching
experiment involving a pair of students, Christina and Jerry. Both Christina and Jerry were
mathematics majors (Jerry also studied physics while Christina was pursuing teaching
credentials) that had completed the introductory real analysis sequence at their university. This
two-term sequence covered topological results on the real line under the absolute value metric, as
well as a rigorous treatment of basic calculus results including differentiation, integration, and
point-wise and uniform convergence of function sequences. Importantly, the students had no
previous exposure to metric spaces, or any form of measuring distance other than with the
absolute value metric or the Euclidean measure of distance in real space. Thus, their activity with
distances in more abstract contexts (e.g. the taxicab and supremum metrics in real space,
sequence spaces, and function spaces) was truly novel for them. Figure 1 gives an overview of the
specific spaces the students discovered during the latter sessions in the teaching experiment, as
well as the major topics of discussion in each space.

Figure 1: Overall progression from sequence spaces to the general metric.

Throughout the teaching experiment, the students were given the goal-oriented prompt of
characterizing sequential convergence in each new space they explored. This activity necessarily
involved the construction of a distance measurement as well. The researcher then guided the
resulting student activity primarily by facilitating moments of perturbation, as is consistent with
teaching experiment methodology (Steffe & Thompson, 2000) and the RME heuristic of guided
reinvention (Freudenthal, 1991).
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The specific session that I am reporting on was the last session of the teaching experiment,
wherein the students engaged in relating (Ellis, et al., 2017) by reflecting on commonalities across
structures they perceived in the distances they had constructed throughout the previous sessions.
This reflection on prior activity culminated in the students formally writing out the properties of a
general distance function.

Video records were made of each session, and the video records were analyzed using the
data analysis software MAXQDA. Specifically, each record was reviewed for moments of
generalization, as well as moments of mathematical activity or discourse from which inferences
could be made about the students’ schemes and accommodations made to their schemes in the
process of equilibration. Such instances were then coded according to the R-F-E framework
(Ellis, et al., 2017), and also analyzed according to Piaget’s constructs. The episodes were then
further analyzed through Thompson’s (2008) method of conceptual analysis (specifically
Thompson’s second use of conceptual analysis), consistent with Steffe and Thompson’s (2000)
concept of model building.

Results
For the purposes of this report, I will give an overview of Christina and Jerry’s

generalizing activity, and provide a representative sample of episodes that demonstrate their
generalizing and abstraction. Recall that a function, �, is a metric if it satisfies the following four
conditions: 1) � : X ⇥ X � [0, �), 2) �(x, y) = �(y, x), 3) �(x, y) = 0 iff x = y, and
4) �(x, y) � �(x, z) + �(z, y). I will focus on Christina and Jerry’s construction of properties 1-3,
as property 4 (the triangle inequality) was generalized through a qualitatively different
goal-oriented activity than those from which they generalized properties 1-3. Because of space
restrictions, I will only demonstrate the progression of their abstraction of the third metric
property, however I will briefly offer a description of the abstracted operations that contributed to
the other properties as well.

The prompt and some initial generality
The session began with the students discussing their perspectives on a list of past distances

they had constructed. The list, which I provided for them on the board, included the �1, �2, and ��
distances (metrics) on Rn and sequences spaces, as well as the L1, L2, and L� distances (metrics)
on continuous functions defined on a closed interval. After some initial reflections, I reminded
them of an earlier time in the experiment where they had expressed the desire to characterize their
distances through a general distance function, A. Asking them to reflect on this activity, Jerry
commented that “ . . . each of these the process is the same, so let’s call this thing a general
distance A, and then write everything in terms of that.” In this case, Jerry’s use of the term
‘process’ conveyed that they each had the purpose of measuring distance on various mathematical
objects, as later evidenced by his reflection that “. . . we found that there are other quantities
[other distances] that satisfies the rules that we need [i.e. rules of distance measurement] but that
may not necessarily look the same.” These statements convey the relating that Jerry had engaged
in, making explicit perceived relationships between different measures of distance in that they all
behaved similarly, with the differences being the objects they acted on.

Jerry’s statements were supported by Christina, who posited the “square root Pythagorean
theorem [Euclidean distance] is like how we traditionally think of distance between two objects
. . . and then the other ones kind of just go into things that we don’t normally think about.” The
students’ comments reflect that each new distance they constructed adhered to some collection of
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“rules” that distances should follow. Their formal defining of the metric function then came about
through thematization at the general level (as it occurs in reflected abstraction2) of those rules that
they had brought out earlier in the experiment. In this way, the students’ formal statements of the
properties of A were generalizations that occurred through reflected abstraction of the operations
carried out in accordance with the “rules” of distance measurement as understood by the students.
I will now give a representative sample of such operations that contributed to the students’
defining of the third metric property, �(x, y) = 0 iff x = y.

The meaning of zero distance
Jerry and Christina’s understandings of 0 distance were largely motivated by their

explorations of sequential convergence in the various spaces they examined throughout the
teaching experiment. Integral to the characterization of convergence is the tendency of the
sequence approximations to the limit point to “tend towards 0”. Early on, Jerry and Christina
realized that convergence occurring in the way they intended necessitated a meaningful 0 distance
measurement. In particular, if the students constructed initial distance measurements that resulted
0 distance measurements for non-similar mathematical objects, they then altered the form of their
measurement to achieve a meaning consistent with what we know to be the general metric.

As an example of this activity, I reference the students’ initial construction of the taxicab
metric from an early session in the teaching experiment. The students initially used the formula
L = |vx � wx + vy � wy|. To facilitate perturbation, I asked the students to measure the
L-distance between the vectors �v = [2, 1] and �w = [1, 2]. Upon calculating a 0 distance, I had the
following conversation with the students:

Jerry: It seems weird. I don’t like that.
Interviewer: And why?
Jerry: Because if we drew a picture, right? [draws two different vectors, �v and �w, and a

difference vector connecting them] We’ve got a — this is [1, 2], so here’s this vector and
the other one is going [2, 1]. This vector, the distance seems like that should be a number
greater than 0, but here we show that it is 0.

Interviewer: And why do you feel like the number should be something greater than 0?
Christina: Because when we’re saying that the — in our lines — this is only looking at the

convergence [their statement of Ln � 0]. And we’re characterizing that by distance of 0.
However, if two vectors are converging upon each other, then they’re becoming the same
vector essentially, and those two things [the vectors Jerry drew] aren’t the same vector
but their distance is 0.
This discussion facilitated their altering of L to the standard �1 (taxicab) metric. This

refinement of L in this instance constitutes generalizing through extending3. Their generalizing
activity in this instance demonstrates the “rule” that they imposed on their new L distance,
primarily that distance measurements of nonsimilar objects should be nonzero. To this point,
Jerry later commented that “It seems like a good thing for our distance to be able to do, ’cause we
want to use it to differentiate between vectors. If we can’t, then sort of what’s the point, I guess?”
This conveys that Jerry was conceiving of using distance functions as a means of taking two

2Piaget took thematization to mean “to know [something] consciously and in an easily verbalized form” (Piaget,
2001, p.31)

3See operating in Ellis et al. (2017).
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vectors and obtaining information about the differences between them based on the information
given by the distance measurement. I next give another example from their sessions exploring
functions spaces, where this operation of differentiating non-similar vectors was projected to a
higher level of organization, and then conclude with the thematization of these operations at the
general level during the last session of the experiment.

When exploring measures of distance between continuous functions defined on a closed
interval, the first measure of distance the students initially constructed was similar to the L1

measure of distance in the form of d =

� b

a

f(x) � g(x) dx. Facilitating a similar perturbation to

that of the taxicab metric, I asked the students to measure the distance between the functions x
and x + sin(x) on the interval [��, �]. Responding to this, the students made the calculations in
Figure 2 and had a discussion, in which Jerry made the following comments:

Figure 2: Calculating the 0 distance of x and x + sin(x)

Jerry: . . . we know, visually, that our functions will look like this [draws the graph in Figure
2], and so those definitely aren’t the same. . . . Like if I had a sequence of functions that
converges to a function, I want to show that they end up becoming the same thing
eventually. So it doesn’t make sense for these [x and x + sin(x)] to have 0 distance but
look different. . . .
As before, the students imposed the meaning of 0 distance on their new d function to

adhere to some abstracted notion of distance measurement that gave specific meaning to
measurements of 0 distance. While sequential convergence was a motivator for this meaning
behind 0 distance, ultimately the students generalized by imposing meanings on these function
distances generated from an abstracted construct of distance and distance measurement.

This meaning in the general setting was first voiced by Christina. During the final session,
after revisiting the above L1 example above, Christina said that “. . . to say that a distance is 0
means — that like two dissimilar things has distance 0 means that they’re on each other
essentially, but that means that they are the same thing.” Formalizing their understandings, the
students then wrote the two conditions A(u, v)>0 if u �= v and A(u, v) = 0 if u = v, which
simplifies to the third condition of a metric. I infer that this formal statement was a written
thematization of the operations that they had projected throughout the teaching experiment related
to the activity of differentiating objects through interpreting the result of distance measurement.
In terms of their generalizing activity, they engaged first in relating and then in extending
(specifically through removing particulars4), as the specific contexts of the metric spaces were
abandoned to reflect the general structure of the distances they wished to convey. Further, as

4See the subcategories of extending in Ellis, et al.’s, R-F-E framework (2017)
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evidenced by their verbal and written thematization, this generalizing activity was reinforced by
reflected abstraction of the operations involved in extracting meaning from a measure of 0
distance between two objects.

The other metric properties
This progression of generalizing and abstracting similarly occurred with each of the

metric properties. Metric properties 1) and 2) emerged through attending to operations involved
in distance measurement. In particular, the symmetry of the metric function emerged through
abstracting operations involved in comparing measurements of reorderings of the objects being
measured. Jerry described this property through the analogy of “. . . the distance between me to
the wall is the same as the distance from the wall to me.” Further, the first property of a metric
emerged through Jerry and Christina both attending to distance as a measurement of “how far
apart things are,” and that conventional measures of distance primarily convey meaning through
nonnegative measurements. This highlights that, for Jerry and Christina, carrying out operations
involved in distance measurement (in the sense of conceiving distance measurements physically)
was a productive and integral aspect of their generalizing activity to the level of a metric function.
Consciously abstracting these operations (as occurs in reflected abstraction) then resulted in their
production of the first three general metric properties.

Discussion and Concluding Remarks
This report demonstrates a productive way that students might learn and understand the

metric function and its properties, and how the generalizing action of relating can facilitate
reflected abstraction. Specifically, as the metric function is a measure of distance, conceiving of
the activity of measuring distance, in this case physically measuring distance, can reveal certain
operations inherent to distance measurement that can be abstracted to reveal the structural
properties of the metric function. In the case of Jerry and Christina, they understood distance
measurement as adhering to a certain set of “rules” that they imposed on their various constructed
distances throughout the teaching experiment. These “rules” provided them with certain
operations (such as the comparing of the similarity between objects in reference to their
measurement value or comparing the measurements of the same object pair up to ordering) that
they abstracted into increasingly general mathematical settings.

Through engaging in relating of their list of specific distances, (i.e. reflecting on the
operations through which they constructed the collection of specific distance measurements) the
students were able to reflect on and regulate their prior abstractions. In this way, the students
engaged in reflected abstraction by “reflecting on reflection”(Glasersfeld, 1995, p. 105) and then
extended the resulting metric properties to the general level by removing particulars. Thus, their
generalizing activity was complemented by reflected abstraction of the specific operations that
comprised the first three metric properties. Further, the generality of the metric structure was
reinforced by the regularity of its occurrence across metric spaces (i.e. various spaces such as R2

and Lp).
Continuations of this research will investigate the impact of students attending to distance

measurement in various abstract spaces prior to introduction of the general metric in a classroom
environment. Future research will also explore the role that generalization plays in other
constructs vital to real analysis, such as the measure function. This work builds a foundation of
the ways that undergraduate students can reason about real analysis when transitioning to a
graduate setting.
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The aim of this research was to investigate the nature of difficulties with algebra in calculus 
problems from the perspective of students. We employed Skemp’s (1979) theory to analyze two 
calculus students’ difficulties with algebra in an interview setting. Our findings indicate that 
although these students were aware of their challenges with algebra, they struggled to resolve 
those issues in the context of calculus. Likewise, both seem to struggle in different ways with 
algebra outside the context of calculus. Implications for teaching based on our current research 
will be provided.   

 Keywords:  algebra, calculus, path, director system, schema  

Theoretical Background 
     Although, research on students’ difficulties with school algebra has been prolific (e.g. 
Ashlock, 2010; Booth, Barbieri, Eyer, & Pare-Blagoev, 2014; Kieran, 1992; Hoch & Dreyfus, 
2004; Stacey, Chick, & Kendal 2004), and students’ difficulties with Calculus (e.g. Bressoud, 
Mesa, & Rasmussen, 2015, Tallman, et. al, 2015) has been conducted, research on students’ 
school algebra shortcomings in calculus courses are scarce. Reeder (2017) addresses the fact that 
while students may be successful with algebra in high school, they often leave high school with a 
shallow, inflexible understandings. While understanding why and how this gap in student 
mathematical knowledge and skills exists is a complex endeavor, the fact that it does exist, is 
commonly known. Universities are keenly aware of the mathematical challenges of students 
entering the university. In light of this, many interventions have been developed to help students 
fill the necessary gaps in the mathematics knowledge and skills needed to be successful in 
university level mathematics courses. Unfortunately, according to McGowen (2017), one of the 
most common interventions, remedial mathematics courses, is not providing the needed support 
students need to be successful in university mathematics courses.  
     Recent research by the authors sought to understand the nature of student challenges with 
algebra in calculus settings. In a study by Stewart, Reeder, Raymond, & Troup (2018), 
participants in a Calculus I course were asked to solve a set of calculus questions and 
corresponding algebra questions that paralleled the algebra needed in the calculus questions. The 
findings of this study revealed, many students struggled with the algebra, inside and outside of 
the calculus context. Our research shows that many students, when confronted with algebra in a 
calculus context, tried to avoid the algebra required to solve the problem while others attempted 
the algebra and lost their way resulting in their inability to complete the problem correctly.  
     To examine the nature of the algebra difficulties in calculus context, for this study, we will 
employ Skemp’s (1979) model of intelligence presented in his book, Intelligence, Learning, and 
Action. In remembering his work, most readers will recall his relational understanding and 
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instrumental understanding (Skemp, 1976). Later, Skemp (1979) devoted an entire chapter on 
understanding (Chapter 10) as he developed his idea of a schema.    
     In conveying his theoretical ideas and connecting to his audience, Skemp (1979) made use of 
many everyday examples. In our theoretical stance we will draw on a coherent segment of his 
model and utilize some of his examples applicable to this study, in order to analyze calculus 
students’ mathematical thinking and actions. Skemp’s model claimed that most human activities 
are for survival and therefore goal orientated. In order to explain how humans organize their 
actions, he used the metaphor of a director system, which is central to his model. He defined a 
director system “that which directs the way in which the energy of the operator system is applied 
to the operand so as to take it to the required state and keep it there. .. for the rudder it is a valve 
mechanism” (p. 41-42). By an operand he meant, “that which is changed from one state to 
another and kept there…e.g. a ship’s rudder, which is brought to the desired position and kept 
there” (p. 41).  He defined “operators, as that which actually does the work of changing the state 
of the operand (..the position of the rudder) from its initial state to the state chosen by the 
…helmsman.)” (p. 41).  In Skemp’s view:  

 
Using swimming as an example, a non-swimmer is outside his prohabital if he is 
in deep water, not because of lack of muscular strength but because he cannot 
make the right movement. He is within the capacity of his operators but outside 
the domain of his (relevant) director system. A good swimmer caught in an off-
shore current is also outside his prohabitat but for a different reason. He can make 
the right movements, but cannot swim powerfully enough to reach the shore, or 
he cannot keep it up for long enough. So he is within the domain of his director 
system, but outside the capacity of his operators. Both are non-viable because 
they are outside their prohabitats; but for different reasons. (p. 62). 

 
Skemp defined the prohabitat as “… that region which is within both the domain of the director 
system and the capacity of the operators” (p. 62). Within Skemp’s model he defined the idea of 
knowing that, as possessing an appropriate schema. In his views a “schema is a highly abstract 
concept” (p. 167). He defined “a path as a sequence of states and a plan consists of (i) a path 
from a present state to a goal state; (ii) a way of applying the energies available to the operators 
in such a way as to take the operand along the path” (p. 168). He further described “the 
connection between knowing how and being able to is the connection between having arrived at 
a plan, and putting it into action” (p. 184). In his view, “prerequisite for the production of these 
plans is understanding: the realization of present state and goal state within an appropriate 
existing schema” (p. 170). Some researchers have employed Skemp’s model and drawn from his 
work. For example, Olive and Steff (2002, p. 106) used Skemp’s work to build “a theoretical 
model of children’s constructive activity in the context of learning about fractions.” Berger and 
Stewart (2018) employed his idea of schema, to describe students’ proofs in an introductory 
topology course.  
     The purpose of this study is to investigate student thinking as they encounter algebraic 
problems within a calculus context in order to shed light on the origin of these difficulties. More 
specifically, this study sought to answer the following questions: How did students react/respond 
to algebra processes in the context of calculus problems? What were their plans and what paths 
did they take to reach their goal state? 
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Method 
     The study employed a qualitative case study methodology for data collection and analysis 
using Skemp’s (1979) model as a framework for making sense of the data. Students enrolled in 
Calculus I at a large university in the South Midwest United States were invited to participate in 
an one-on-one interview wherein they would be asked to complete a few problems and discuss 
their strategies and challenges with those problems (see Figure 1). Students were recruited from 
multiple Calculus I classes early in the semester. If interested in participating, they were asked to 
provide their name and email address. A member of the research team contacted each student 
and arranged for a time for a two-hour interview. Ultimately, four students participated in these 
interviews. Each participant student was given three common Calculus I tasks and were asked to 
choose two to complete. Based on the participants choices of calculus tasks, they were then 
given an additional two algebra tasks which mimicked the algebra skills needed in the calculus 
tasks. As they solved each of these four tasks, they were asked to think-aloud and describe what 
they were doing or thinking about. After students completed the four tasks, a semi-structured 
interview was conducted to further investigate students’ thoughts, perceptions, confusions, and 
frustrations. The questions posed in the interview sought to elicit more of the participants’ 
perceptions and thinking. Probing questions were asked by the interviewers when warranted by 
participants’ responses. Once all data were collected, it was de-identified and think aloud 
interviews were transcribed verbatim. The data were analyzed using a variety of themes drawn 
from Skemp’s model as described in this paper.  

 

 
Figure 1. Tasks and questions for student interviews. 

Results 
     Based on our prior research (Stewart & Reeder, 2017; Stewart, et al, 2018), we have 
established two common types of calculus problems with corresponding algebra occurrences in 
those problems. These are presented as problems wherein the calculus proceeds the algebra 
(Type 1) (see figure 2 #1) and wherein the algebra proceeds the calculus (Type 2) (see figure 2 
#2). Analysis of both these common types of problems presented in Calculus I classes, reveals 
that in Type 1 calculus problems, many students can take the first derivative, but are not able to 
carry out the many steps of algebra to complete the problem (Stewart & Reeder, 2017). 
Likewise, analysis of Type 2 calculus problems, reveals that many students either try to avoid the 
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algebra in the first steps altogether, or have difficulty with the algebra that often involves 
rationalizing the denominator, factoring, which results in incorrect answers (Stewart, et al, 2018). 
 

 
Figure 2. Type 2 Calculus Problem (#1): Taking the first derivative (calculus) followed with many steps of algebra. 

Type 2 Calculus Problem (#2):  Many algebra steps followed by the final step of taking the limit (calculus). 

 
      While participants in this study were given both Type 1 and Type 2 problems, for the 
purpose of this paper, we will only focus on one Type 2 calculus problem that all    participants 
selected to solve. We will share findings resultant from the interview questions with two 
participants. The problem that all participants selected to solve was a limit problem requiring 
students to begin by rationalizing the denominator in order to get started (see Figure 2). The 
results will be presented as two cases. 

 
     Student 1 Case. Thinking aloud, Student 1 wrestled with solving this problem. He shared: 
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…  finding the limit as it pushes 3 but I can't put 3 in right now because that will 
put zero in the denominator and that doesn't work so I have to do something to 
this to make it work.  So, I'll multiply both the top and the bottom by the square 
root of x minus 3...  yeah...  that way I can get rid of the square root in the 
problem?  Yeah.  And then I'll be able to work with the x minus 3 in the bottom.  
So, then to just get rid of the bottom part of the fraction...  yeah...  I can...  yeah 
multiply the top and bottom by x minus 3 because that's the same as multiplying 
by 1...  I think...  yeah it is...  it is.  And then, I still have the square root of x 
minus 3 on the top, and there's nothing on the bottom, there's 1...  or...  no that 
doesn't work...  because then I just have a different factor on the bottom...  I'll just 
have that squared.   

 
When challenges with algebra were encountered, he began to re-think his process:    

“I'll just start over. I don't think that first stuff was right anyway. There's probably 
something I could do with the conjugate but I don't remember, I don't know if that 
applies here.  I don't think it does.  Maybe it does.  Um...  I can...  I can factor the 
top that's what I can do.  Actually no, I'll go back I'll do the same first step again...  
that works...  and so I'll do...  multiply both the top and bottom by the square root 
of x minus 3, so that gets rid of the square root on the bottom and it's just x minus 
3 and then I can factor...  yeah factor the x2 minus 9 into...  because it's the 
whatever the difference of squares or something...  it just works out...  and that 
way I can cancel out the x minus 3 on the bottom now and I can take the limit 
with what I just have...  that I can insert 3 into.  So now I just have the x plus 3 
times the square root of x minus 3.  And I just plug in 3 because this is...  this is 
real everywhere I'm pretty sure...yeah...  yeah... no I can't. Can I?  I don't think I 
can. Because I still have a problem with the square root on the top now. Maybe.  
Hmmm...  no I can, I can take the square root of 0 that's fine. That's just 0.  So...  
it's 3 plus 3, the square root of 3 minus 3 which is 0, so that's 6 times 0 which is 
just 0. So that's limit. Yeah.” 
 

     This student made a plan and took a path that was not helpful, in trying to solve the limit 
problem. He then revised his plan and took a different path and was able to find the correct 
answer. In analyzing his work, we noted the connection between Skemps’s knowing how and 
being able to. Although, he had a plan, due to the lack of algebra knowledge available, he was 
not able to reach the goal state on that chosen path in his first attempts at solving the problem.    
     When this student was asked about how they felt about the problems he had just solved, he 
immediately noted his challenges with algebra while working on calculus. “I don't know I think I 
just struggle with problems like this because it's hard for me to see what to do. Which I don't 
really know why because it's just... like... algebra. I don't know.” This again can be made sense 
of in terms of an inability to determine a path when confronted with algebra in the context of 
calculus. When asked about which problems he felt more confident with, the calculus or the 
algebra, he indicated the calculus. This is interesting given the fact that the algebra problems 
paralleled the algebra needed with in the calculus problems demonstrating again Skemp’s 
knowing how but not being able to. Clearly the student knows how to complete the algebra and 
has done so successfully many times but is not able to for these problems.  
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     Student 2 Case. Student 2 initially approached the limit problem by trying to evaluate the 
limit without completing any algebra.  After a few minutes, however, he began to try to simplify 
the problem. He shares his thoughts as he attempts to solve the problem and notes that he cannot 
recall how to complete this problem because it has been a few weeks since limit problems were 
the focus of study in class:  
 

…for evaluating the limit of x goes to 3, function being x squared minus 9 over root x 
minus 3. So, to solve this one... um... I am going to... let's see... I guess I could divide by 
the highest power of x which in the denominator is root x squared... yeah... hang on... do I 
need to do that? Well, … for the limit to exist the left-hand limit has to equal the right 
hand limit so... um... as x is approaching 3 from the negative side, from the left um... our 
denominator is getting closer and closer to 0. But that's going to be slightly less, so it's 
um... approaching 0 from the... the left-hand side though. But I don't think... that is only 
going to tell me if there's asymptotes in the graph, if I recall. Um... I mean it's been a 
while since I've done limits. And if we divided by the... I'm just going to go ahead and 
divide everything by the highest power of x but... yeah no... I don't want to do that. Um... 
Yeah, I would have to... honestly, I really don't remember... and I would have to... I 
would need to jog my memory... Which I think, I mean I've done them... if I were to jog 
my memory I think I would... I don't think I would have too much of an issue but... 
everything from the beginning of the semester I have really put on the backburner and I 
need to bring it back.   
 

      Avoiding algebra is one of the cases we see often in calculus questions (Type 2). This student 
made a plan to “divide by the highest power of x”. He then questions that plan and abandoned it. 
Then he recalled some limit laws, and at this stage he is not thinking about performing any 
algebra, rather thinking more formally. Failing that, he decides to go back to his original plan 
and “divide everything by the highest power of x”. However, his lack of algebra again lets him 
down. He does not say, how should I do that, instead he says: “I really don’t remember”, hence, 
he is not able to action his plan. Unfortunately, this student was not able to reach his goal state of 
solving this problem.  
      When this student was asked about how he general felt about the problems he indicated that 
he had some difficulty with the limit problem given it had been a few weeks since he had worked 
on them in class. “I think it’s just that I haven’t …done these honestly, not .. it hasn’t been that 
long … a couple of weeks?  And the thing is … I know how to do them, but I do not know it 
well enough…”  In this case, utilizing Skemp’s swimming example, we can see that the student 
knows how to swim but while swimming in new waters, or having not gone swimming for some 
time, he is unable to swim well.  

Discussion and Implications 
     Calculus courses are widely considered a gateway to disciplines in Science, Technology, 
Engineering, and Mathematics (STEM), and as such, have garnered particular attention. 
Negative experiences encountered in gatekeeper or introductory math and science courses are 
significant contributors to more than half the attrition of declared STEM majors (Crisp, Nora, & 
Taggart, 2009; Mervis, 2010). In this way, calculus course often act as a significant obstacle or 
one that discourages students from pursuing STEM majors (Bressoud, Mesa, & Rasmussen, 
2015).  
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     Prior research (Stewart, et al, 2018) revealed that students’ algebraic challenges included 
problems working across the balance point in equations, cancelling, operating with radicals, 
distributing, and incomplete algebra. That incomplete algebra was one of the most common 
errors was also both interesting and puzzling. Despite knowing what types of mistakes students 
were making it was difficult to ascertain why they made the mistakes. This study sought to better 
understand why calculus students make mistakes with algebra.  
     Utilizing Skemp’s (1979) model to make sense of students’ work helped to frame a better 
understanding of why calculus students are challenged with algebra. Skemp’s swimming 
example is particularly useful. Successful students are also those strong swimmers who are able 
to swim within their boundary. They can swim regardless of the water, whether it is deep and 
unfamiliar, or shallow and calm. These students can work successfully with algebra within or 
outside a calculus context. They know what to do and are able to do it. Likewise, successful 
students are able to recognize when they are not being successful and choose a different path. 
According to Skemp (1979), “the greatest adaptability of behavior is made possible by the 
position of an appropriate schema, from which a great variety of paths can be derived.” (p. 169). 
Unfortunately, the majority of students are not strong swimmers. Despite having completed 
several years of high school algebra and being placed in a university calculus course, many 
students seemingly know how to but are not able to successfully deal with the necessary algebra 
needed for most calculus problems. The students in this study would often begin a path but it 
would not lead them to their goal state. 
     In dealing with limit problems specifically, most instructors agree that first year calculus 
students struggle with conceptual and procedural aspects of limits. However, the nature of these 
struggles are not known. We believe that theorizing the situation will give insight in 
understanding the extent of students’ difficulties and interventions for instruction. We also 
believe that more research in understanding students’ difficulties with algebra in calculus is 
needed.  
     We agree with Tall (2017, p. 61) who suggests that mathematicians, curriculum designers, 
teachers, and learners need “to become explicitly aware of the underlying supportive and 
problematic aspects of long-term learning”. Reeder (2017) suggests college instructors face the 
challenge of working with students everyday who can seemingly make sense of complex 
mathematical concepts but are unable to solve problems related to those concepts due to their 
difficulties with algebraic procedures. While resolving the algebra deficiencies that students 
bring with them will be challenging, “it cannot be simply ignored and remain as an everyday 
accepted or out of our hands part of teaching university level mathematics courses” (Reeder, 
2017, p. 15). 
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Constraints for Changing Instructional Approach? WE CAN DO IT! 
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Although different instructional models for teaching mathematics have arisen over the past 
decades, lecturing continues to be the preferred approach of abstract algebra instructors. We 
identified facilitating and constraining factors of instructional change by analyzing thirteen 
instructor interviews. Factors were further classified as internal or external; as related to factors 
of community, sources, curriculum, procedures, empowerment and feelings; and as institutional, 
networking or change management. Additionally, different levels of resistance or support were 
identified for each factor. Some results of our analyses include finding that supportive faculty 
chairs and colleagues strongly facilitate attempts at instructional change while departments 
open to change serve as a moderately supportive external factor towards instructional change. 
Student resistance constitutes the most frequent constraining factor that instructors face.  

Keywords: Abstract Algebra, Instructional Approach, Change Strategy, Resistance, and Support. 

Despite active learning emerging as an alternative pedagogical model, lecturing remains the 
predominant instructional model in science, technology, engineering, and mathematics (STEM) 
education (Freeman et al., 2014). According to Terenzini and Pascarella (1994), such preference 
toward lecturing may be due to the myth in undergraduate education that traditional methods of 
instruction provide effective means to teach undergraduate students. Lecturing focuses 
professors’ actions and role towards covering content instead of student learning (Barr and Tagg, 
1995). Active learning by contrast “engages students to do meaningful learning activities and 
think about what they are doing” (Prince, 2004, p. 223). While there are a variety of 
interpretations of active learning, a core element is student engagement in learning (Prince, 
2004; Roehl, Reddy, & Shannon, 2013). Rasmussen and Wawro (2017) describe Inquiry-
oriented instruction (IOI), a particular form of active learning, as the kind of instruction in which 
students are engaged in doing mathematics and collaborating with peers. In inquiry-oriented 
instruction, instructors listen to students’ ideas and use student thinking to advance the 
mathematical agenda. Rasmussen and Wawro report that this kind of instruction is beneficial for 
learners because it improves student success and promotes deeper learning and drawing 
connections between mathematics and real-world contexts.  

Research outcomes have showed that active learning produces better student outcomes 
(Freeman et al., 2014; Rasmussen, & Wawro, 2017; Smith, Vinson, Smith, Lewin, & Stetzer, 
2014). Freeman et al. (2014) analyzed scores of equivalent examinations, other assessments, and 
failure rates and found higher student performance for those in active learning rather than lecture 
classes. Authors like Terenzini and Pascarella (1994) and Prince (2004) both hold that active 
learning produces important gains in students’ academic skills (such as thinking and writing)  
because non-lecture approaches provide more opportunities for students to explore and develop 
ideas for themselves.  

Johnson, Keller, and Fukawa-Connelly (2017) identified that most abstract algebra (AA) 
instructors self-identify as lecturers and exhibit strong differences in pedagogical practices from 
non-lecture instructors. Thus, despite the benefits associated with non-lecturing models for 
instruction, lecturing continues to be the preferred instructional model in the teaching of AA. 
Additionally, despite the existence of different ways of changing the practice such as Action 
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Research1 or professional development programs, change in undergraduate mathematics teaching 
has been minimal and strategies for change have been marginally incorporated (Henderson, 
Beach, & Finkelstein, 2011; Henderson & Dancy, 2007; Kezar, 2013). An important issue that 
arises then is identifying what factors may aid AA instructors in changing their teaching practice 
and what factors may constrain instructional change.  

Our research question is: What are the constraining or facilitating factors that AA instructors 
face in their attempts at implementing new instructional approaches? The purpose of this study 
was to identify facilitating and constraining factors AA instructors face when they change their 
instructional practice toward inquiry-oriented instruction. These elements will provide 
benchmarks that can be considered in instructional change initiatives by the RUME community. 
Doing so will also provide useful considerations for individual instructors and researchers 
interested in facilitating local changes to instructional approaches. 

Literature Review 
Past literature has highlighted the importance of identifying and considering institutional and 

structural barriers and rewards (Henderson et al., 2011). Johnson, Keller, and Fukawa-Connelly 
(2017) found instructors’ beliefs and institutional context were influential in understanding 
pedagogical decision-making and instructional change.  

Facilitating Factors  
By promoting change through developing reflective teachers, Henderson et al. (2011) found 

that change agents facilitate and encourage teachers towards change while defining change 
outcomes as well; “the change agent role is to use specialized knowledge to develop new 
environmental features that require or encourage new behaviors or attitudes that will lead to 
changes in instruction” (p. 962). Furthermore, reflection and peer support from their learning 
community helped faculty make improvements in their teaching. Henderson et al. (2011) found 
that successful change strategies consist of “coordinated and focused efforts lasting over an 
extended period of time” (p. 972), performance evaluations and feedback, and an intentional 
focus on changing faculty conceptions. Concerning the first aspect, holding workshops or short 
development programs are successful change strategies when the intention is focused on specific 
changes like the incorporation of new technology. With respect to the second aspect, Henderson 
et al. (2011) identified that one facilitator is providing feedback on teachers’ practices. One of 
the forms of such feedback is through Action Research, whereby faculty take an active part in 
the study of their own classes. With respect to the third aspect, an intentional focus on changing 
faculty conceptions aligns with the idea that “meaningful educational change requires changes in 
beliefs” (p. 973).  

Henderson et al. (2011) identified that developing reflective teachers as a strategy of change 
required certain support structures, such as dedicated faculty focused on instructional change to 
centers of teaching excellence. The most common facilitating factors were individual consultants 
and working groups. 

Obstacles 
Many reported obstacles come from K-12 education (Henderson et al., 2011; Johnson et al., 

2017). Henderson et al. (2011) found that disciplinary affiliation, loose coupling, and reward 

                                                 
1 Action Research (AR) is one strong tendency to change educational practice through research done by the same 
practitioner.  
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structures are features that affect the effectiveness of change strategies in undergraduate 
education. Johnson, Keller, and Fukawa-Connelly (2017) found that instructors report many 
constraints like time, content pressure, lack of curricular sources, knowledge, and departmental 
affordances. However, these authors report that instructors receive support from their 
departments for redesigning their course and for considering professional development 
opportunities. This highlights that departmental affordances seem to be a perceived resistant 
factor.   

Following Henderson and Dancy (2007), situational factors are obstacles that prevent the use 
of alternative ways of teaching. In the teaching of physics, Henderson and Dancy (2007) 
identified the following obstacles to introducing research-based instruction in physics 
classrooms:  

• Students’ attitudes toward school: This refers to a lack of students’ responsibility and 
their poor study skills.  

• Expectations of content coverage: Teachers will not invest in research-based instruction 
if they must cover a lot of material. This constraint is also identified by Johnson, Keller, 
and Fukawa-Connelly (2017) in AA instructors.  

• Lack of instructor time: Research responsibilities and teaching loads occupy instructors’ 
time and thus lead instructors to avoid learning new instructional techniques. 

• Departmental norms: It is difficult to implement a new instructional method if no other 
faculty are implementing it and there are no local role models who can help introduce this 
new instructional method.   

• Student resistance: Some students do not like to interact with each other, and sometimes 
they are not prepared to think by themselves. 

• Class size and room layout: It is hard to develop cooperative learning and formative 
assessments with large numbers of students. 

• Time structure: One semester courses are not as conducive as year-long courses for 
identifying individual differences in learning needs. 

In addition to these findings from undergraduate physics education, some constraints have 
been identified specifically with respect to implementing Action Research as an approach for 
changing instructional practice. In action research, the teacher is considered the best candidate 
for researching and changing his/her practice because he/she is the person who directly faces the 
problems studied. Gibbs et al. (2017) identified time management as one hindrance because 
research is regarded as a time-consuming activity, perhaps even more so when one is doing it 
oneself on top of teaching. Another barrier is resistance to change (Gibbs et al., 2017; Males, 
Otten, & Herbel-Eisenmann, 2010). In particular, Bianchini, Maxwell, and Dovey (2014) 
explicitly cite a variety of initiatives in Australia that proposed continuous reflection by 
academic staff. Such projects failed due to how ingrained the established system (which 
prioritizes commercial aims for higher education) was. According to these authors, universities 
had to sacrifice quality due to increasing political and economic pressures.   

Even without the research component of action research, Henderson, Beach, and Finkelstein 
(2011) identify barriers in developing reflective teachers as a way to instigate instructional 
change; challenges arose when reform efforts did not align with institutional structures and pre-
existing faculty beliefs. Other obstacles to individual change included the lack of recognition and 
rewards for improved instruction, lack of support, and lack of time. Lack of time was paralleled 
in Johnson, Keller, and Fukawa-Connelly’s (2017) study of AA instructors who argued that their 
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main reasons for lecturing was a lack of time to redesign the class in addition to covering 
content. 

As can be noted above, there is more literature on constraining elements than supportive 
ones. In our research, we attempted to identify supportive factors along with constraining factors 
to instructional change. 

Framework 
Following Henderson, et al. (2011), instructional change can be understood as “alterations in 

classroom practices” (p. 953) done by the instructor. Thus, we take supportive factors of 
instructional change to mean any factors that stimulate, provide for, promote or facilitate 
becoming different a classroom practice. Similarly, constraining factors are factors that limit or 
delay the process of doing a different practice. Additionally, Gibbs et al. (2017) argue that 
barriers for staff development can be constructed internally as well as externally. We assume that 
constraining and supportive factors can be classified as internal or external. Internal factors are 
within the control of the instructor who attempts instructional change. External factors are 
outside of the instructor’s control. 

We also consider the categorization that Hampton and Cruz (2017) propose regarding 
different factors that influence instructional change in undergraduate STEM education. We 
considered the following categories: Change management related to “the design and 
management of the change process itself” (Hampton & Cruz, 2017, para, 10); institutional 
support related to “the formal institutional support to the change initiative (Hampton & Cruz, 
2017, para, 11); and networking regarding the relations with other members from the community, 
specifically relations with mathematics education community members. These authors also 
describe the category of empowerment as part of another category labeled as faculty motivation, 
the latter of which is defined as “factors related to the faculty´s willingness to adopt RBIS 
[Research-based instructional strategies] in their classes.” (para, 13) We adopt the category of 
empowerment, which refers the evocation of autonomy or change in students’ participation in 
their learning process.  

Methods 
We analyzed 13 pre-existing interviews from AA instructors participating in the TIMES 

Project (Teaching Inquiry-oriented Mathematics: Establishing Supports). This study is focused 
on the following subset of interview questions:  
1. Is your department chair supportive of efforts to try new instructional approaches? In what 

ways is s/he (un) supportive? 
2. Are others in your department supportive of efforts to try new instructional approaches? In 

what ways are these colleagues supportive/unsupportive? 
o Have you had any experiences in which your colleagues were resistant to efforts you 

or others have made to teach in innovative ways? If so, can you give me an example 
of such an experience? 

3. Have you experienced any student resistance to attempts you’ve made to teach in innovative 
ways? Can you give me an example? 
We open coded transcripts for three interviews together, highlighting sections that we 

considered relevant without considering supportive or constraining categorizations. In the 
following step, each researcher coded five interviews individually, using the same criteria but 
with the addition of the same codes for expressions that paralleled those from the first coded 
interview when appropriate. With these 13 interviews coded, we reviewed the resulting codes 

22nd Annual Conference on Research in Undergraduate Mathematics Education 512



from each other’s analysis, arriving at a total of 276 codes. We organized all codes recording 
interviewees’ ID, the associated code and the portion highlighted from the transcripts 
corresponding to each code. In order to cut down on the number of codes, we then included all 
the codes in a sheet (S2) to identify which of them referred to the same principal idea. We 
organized codes referring to the same idea under new composite codes. This effort reduced the 
276 codes to 19 codes. Then we created a final sheet (S3) which had three columns: the 19 
codes, the different statements from the transcript that correspond to that code and the 
interviewer ID of the interviewee who expressed the statement.  

We categorized the 19 factors as internal or external and included the frequency in which 
each code appears in the interviews. We also categorized the factors as institutional, networking, 
or change management depending on the nature of the factor. Because all instructors aimed to 
introduce inquiry-oriented instruction into their classes, we did not consider the category of 
faculty motivation.  We also categorized the factors under the categories of community, sources, 
curriculum, procedures, empowerment, and feelings depending on the elements involved in the 
factor. For example, if the factor was associated with someone from the instructor’s institutional 
context, then the factor was categorized in the community category.  

Findings 
The codes and the transcripts from S2 and S3 ground our analysis of the constraining and 

supportive factors we identified in the implementation of the new instructional approach. 
Frequencies of 23, 14 and 23 (Table 1) show that the majority of instructors’ expressions refer to 
support from the chair, colleagues, and department respectively. In these cases, the chair and the 
department played an important role in affording instructors the opportunity to take a risk and try 
inquiry-oriented instruction in their classes. Additionally, the frequent constraining factor was 
student resistance, which appeared 25 times across the interviews (Table 1). In answering the 
third question, instructor J noted how some students “are like just very uh poignant about how 
I’m never taking an IBL course again” and instructor D mentioned student resistance because 
“my description for what I was going to do for the course, it didn’t align with the course 
description in the catalog”.  These examples reveal student resistance lies in their lack of 
approaching toward depth situations that they must face in IBL as well as a break between the 
instructor’s practice and students’ expectations.  

In table 1, we present 12 supportive factors and five constraining factors identified in S2. We 
also include the classification of each factor depending on their nature, the elements involved, 
and the corresponding classification according to the instructor’s control: 
 
Table 1. Supportive and constraining factors 

 Frequen
cy Factor Kind Elements Nature 

Su
pp

or
tiv

e 
fa

ct
or

s 

23 supportive faculty chair External Community Institutional 
14 Supportive colleagues External Community Institutional 

23 

Department applies and 
encourages a new instructional 
approach External Curriculum Institutional 

20 
Previous elements that lead to 
change 

Internal-
External 

Feelings-
Procedures Institutional 

9 Department open to change External Community Institutional 
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4 
Department focuses on 
teaching External Curriculum Institutional 

8 

Colleagues interested in 
instructor's new instructional 
approach External Community Institutional 

8 Funding support External Resources Institutional 

6 
Benefits introducing the new 
instructional approach External 

Empowerm
ent Institutional 

8 positive teachers' feelings Internal Feelings 
Change 
management 

6 
Connections with mathematics 
educators researchers External Community Networking 

5 
Relations with mathematics 
educators External Community Networking 

 

11 not resistant colleagues External Community Institutional 
2 No student's resistance External Community Institutional 

15 
Actions along the new 
instructional approach Internal Procedures 

Change 
management 

14 No interference External Community Institutional 

C
on

st
ra

in
in

g 
fa

ct
or

s 

4 Colleagues' resistance External Community Institutional 

7 Negative teachers' feelings Internal Feelings 
Change 
management 

12 Communication Problems External Procedures 
Change 
management 

18 
Situations introducing the new 
instructional approach External Curriculum 

Change 
management 

25 Students resistance External Community Institutional 
 

In the factor Previous elements that lead to change, some instructors mentioned their classes 
were previously lecture-oriented, and for various reasons, they realized a need for change. For 
instance, instructor I referred to the lack of student participation in the learning process:  

Instructor I: I spent hours and hours and hours making up these detailed handouts and I was 
only talking to myself. I was having a little math party of one up at the front of the room 
and, [sic.] and nobody else was invited to that party. They were just watching.  

Concerns over poor student learning outcomes and prior experiences with introducing some 
change (positive or negative), and existing relationships between department chairs and 
mathematics educators all positively impacted current attempts at instructional change.  

Communication problems appeared as a frequent constraining factor. Some instructors also 
expressed problems due to misunderstanding the educational intentions or miscommunicating the 
methods of an inquiry approach.  Due to instructors’ autonomy in their instructional approach as 
well as for making decisions about researching, some instructors do not attempt instructional 
change because they do not perceive such research as valuable. The following excerpts are 
evidence of this finding: 

Instructor E: We’re not a, pretty much research is not part of anything. You don’t have to do 
it if you don’t want to. 
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Instructor F: No, I mean, its, its um, and there’s not forced ‘you have to do it this way’. 
This is, this gentleman is not going to be, you know, doing a bunch of inquiry- 
in his classroom. It’s not gonna happen. But as long as we don’t make him, you know- 
As long as he gets to do things how he wants to do it, everybody’s happy. 

Conclusions 
We identified supportive and constraining factors AA instructors faced when they sought to 

change inquiry-oriented instruction. The 13 IOI implementing instructors in this study met more 
supportive than constraining factors (12 supportive factors vs. 5 constraining factors). This 
differs from past literature focusing predominantly on constraining factors. We found that 
supportive faculty chairs, colleagues, and a department that enact and encourage a new 
instructional approach were three frequent external-institutional supportive factors that support 
the implementation of instructional change. 

Henderson et al. (2011) establish that institutional support is not enough for instructional 
change; individual faculty must also be willing to engage in some kind of development. Our 
findings parallel those arguments. Specifically, we found two factors were pivotal towards 
achieving change: (1) a department that encourages instructors to introduce change and aids 
them in that process and (2) instructors’ willingness to moving outside their comfort zones. The 
latter may come about when instructors realize that their lecture-based instruction has not 
produced the desired effect, resulting in a change of beliefs as well as a search for more effective 
forms of instruction.  

Additionally, to implement a new instructional approach, instructors must recognize the need 
to clarify the intentions behind their instructional decisions and to change instructional methods 
in the first place. That will decrease students’ resistance, which was the most frequent constraint 
identified in this study.  

Our study found that the nature of most constraining factors is change management. It may 
be then that these constraints can be prevented if the instructor is aware of them from the 
beginning and can plan accordingly. Although colleague resistance is an external factor outside 
of an instructor’s control, it is not a strong constraining factor and thus may not influence 
instructors’ instructional change efforts substantially.  

As a parting note, this study provides hope to those instructors contemplating change by 
showing that change is possible and different constraints regarding time and expectations may 
not be as severe as prior research may make it out to be. For researchers interested in promoting 
ways for instructional change, this study provides different constraints factors that can be handle 
previously as well as supportive factors that can be used for strengthening such proposals. 

Acknowledgments 
We thank professor Katy Ulrich for her comments on this paper and professor Estrella 

Johnson for providing us with the data as well as providing guidance on this paper.  

References 
Barr, R., & Tagg, J. (1995). From teaching to learning : a new paradigm for undergraduate 

education. Change, 27(6), 12–25. Retrieved from http://www.jstor.org/stable/40165284 
Bianchini, S., T. Maxwell, and K. Dovey. 2014. Rethinking leadership in the academy: an 

Australian case. Innovations in Education and Teaching International 51 (5): 556–567 
Change. (n.d.). In Cambridge online dictionary. Retrieved from 

https://dictionary.cambridge.org/dictionary/english/change 

22nd Annual Conference on Research in Undergraduate Mathematics Education 515



Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & 
Wenderoth, M. P. (2014). Active learning increases student performance in science, 
engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 
8410–8415. https://doi.org/10.1073/pnas.1319030111 

Gibbs, P., Cartney, P., Wilkinson, K., Parkinson, J., Cunningham, S., James-Reynolds, C., … 
Pitt, A. (2017). Literature review on the use of action research in higher education. 
Educational Action Research, 25(1), 3–22. https://doi.org/10.1080/09650792.2015.1124046 

Hampton, C.., & Cruz, J. (2017, February). The undervalued pillars of engineering education: a 
systemic model of change in teaching and service. Poster presented at the Conference of 
Higher Education Pedagogy Blacksburg, VA. 

Henderson, C., Beach, A., & Finkelstein, N. (2011). Facilitating change in undergraduate STEM 
instructional practices: An analytic review of the literature. Journal of Research in Science 
Teaching, 48(8), 952–984. https://doi.org/10.1002/tea.20439 

Henderson, C., & Dancy, M. H. (2007). Barriers to the use of research-based instructional 
strategies: The influence of both individual and situational characteristics. Physical Review 
Special Topics - Physics Education Research, 3(2), 1–14. 
https://doi.org/10.1103/PhysRevSTPER.3.020102 

Johnson, E., Keller, R., & Fukawa-Connelly, T. (2017). Results from a Survey of Abstract 
Algebra Instructors across the United States: Understanding the Choice to (Not) Lecture. 
International Journal of Research in Undergraduate Mathematics Education. 
https://doi.org/10.1007/s40753-017-0058-1 

Kezar, A. (2013). How colleges change: understanding, leading, and enacting change. New 
York, NY: Taylor & Francis. 

Kezar, A., Gehrke, S., & Elrod, S. (2015). Implicit theories of change as a barrier to change on 
college campuses: an examination of STEM reform. The Review of Higher Education, 
38(4), 479–506. https://doi.org/10.1353/rhe.2015.0026 

Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering 
Education, 93(3), 223–231. 

Rasmussen, Chris, & Wawro, M. (2017). Post-Calculus Research in Undergraduate Mathematics 
Education. In Compendium for Research in Mathematics Education (pp. 551–579). 

Roehl, A., Reddy, S. L., & Shannon, G. J. (2013). The flipped classroom: An opportunity to 
engage millennial students through active learning strategies. Journal of Family & 
Consumer Sciences, 105(2), 44–49. https://doi.org/doi.org.proxy2.lib.umanitoba.ca/10.1 

Smith, M. K., Vinson, E. L., Smith, J. A., Lewin, J. D., & Stetzer, M. R. (2014). A campus-wide 
study of STEM courses: New perspectives on teaching practices and perceptions. CBE Life 
Sciences Education, 13(4), 624–635. https://doi.org/10.1187/cbe.14-06-0108 

Terenzini, Patrick., & Pascarella, E. (1994). Living myths: undergraduate education in America. 
Change, 26(1), 28–32. https://doi.org/10.1080/01425690902954588 

Here are some references, written in APA format. You can use the “RUME Reference” style, 
which has a ¼” hanging indent. 

Erlwanger, S. H. (1973). Benny’s conception of rules and answers in IPI mathematics. Journal of 
Children’s Mathematical Behavior, 1(2), 7-26. 

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, 
and sense-making in mathematics. In D. Grouws (Ed.), Handbook for Research on 
Mathematics Teaching and Learning (pp. 334-370). New York: MacMillan. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 516



Strauss, A., & Corbin, J. (1994). Grounded theory methodology: An overview. In N. K. Denzin 
& Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 273 – 285). Thousand Oaks: 
Sage Publications. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 517



Instructors’ and Students’ Images of Isomorphism and Homomorphism 
 

Rachel Rupnow 
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This study uses thematic analysis to examine the conceptual metaphors used by two abstract 
algebra teachers to describe the concepts of isomorphism and homomorphism, both in interviews 
outside instruction and during class. These metaphors are compared to the metaphors used by 
their students to describe these concepts. While the two instructors utilized similar metaphors for 
isomorphism, they did not share metaphors for homomorphism. Further, when looking from 
interviews to instruction, there was again more alignment with isomorphism than with 
homomorphism, with metaphors used to discuss homomorphism during the interviews being less 
present during instruction than those used to discuss isomorphism. The students in these two 
classes appeared to incorporate the instructors’ metaphors to varying degrees.   
 
Keywords: Isomorphism; Homomorphism; Abstract Algebra; Conceptual Metaphors 
 

Experts have identified isomorphism and homomorphism as two of the most central topics to 
abstract algebra (Melhuish, 2015). Although some research has been done on how students 
approach isomorphism (e.g. Larsen, Johnson, & Bartlo, 2013), research explicitly on students’ 
understanding of homomorphism, or on instructors’ understanding of and instruction on 
isomorphism or homomorphism, has been scarce. Thus, the purpose of this study is to examine 
teachers’ and students’ understanding of isomorphism and homomorphism through their use of 
conceptual metaphors and to examine how teachers’ and students’ metaphor usage is similar and 
different. Specifically I sought to answer the following research questions: (1) What conceptual 
metaphors do the teachers use to describe isomorphisms and homomorphisms and what 
relationship exists between these metaphors and the mathematical content in instruction? (2) 
What is the relationship between the mathematical content in instruction and conceptual 
metaphors the students use to describe isomorphisms and homomorphisms?  

 
Related Literature and Theoretical Perspective 

An isomorphism between groups is defined as follows: “The map ϕ: ! → ! is called an 
isomorphism and ! and ! are said to be isomorphic or of the same isomorphism type, written 
! ≅ !, if ϕ is a homomorphism, and ϕ is a bijection” (Dummit & Foote, 2004, p. 40). A 
homomorphism between groups is defined as follows: “Let (!,⋆) and (!,⊡) be groups. A map 
ϕ: ! → ! such that ϕ(! ⋆ !) = ϕ(!)⊡ ϕ(!) for all !,! ∈ ! is called a homomorphism” 
(Dummit & Foote, 2004, p. 39). An isomorphism can be thought of as a function that preserves 
the structure of a group in another group of the same cardinality; a homomorphism also 
preserves the structure, but can be formed between groups of different cardinalities. Two groups 
may or may not be isomorphic, but there is always at least one homomorphism between groups: 
the trivial homomorphism, by which every element of ! is mapped to the identity in !. Quotient 
groups link isomorphism and homomorphism through a theorem known by many names, 
including the Fundamental Homomorphism Theorem (FHT): “If ϕ: G  → H is a homomorphism 
of groups, then ker(ϕ) ⊴ G and G/ker(ϕ)≅ϕ(G)” (Dummit & Foote, 2004, p. 97). 

A theoretical lens for analyzing mappings in general is the conceptual metaphor construct 
(e.g. Lakoff & Núñez, 2000). “Conceptual metaphor is a cognitive mechanism for allowing us to 
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reason about one kind of thing as if it were another” (Lakoff & Núñez, 2000, p. 6). Conceptual 
metaphors have been used to examine students’ reasoning about many topics including linear 
transformations and functions more broadly (Zandieh, Ellis, & Rasmussen, 2016). Zandieh and 
colleagues examined the properties and metaphorical expressions students used within five 
metaphorical clusters: Input/Output, Traveling, Morphing, Mapping, and Machine. While these 
clusters informed background knowledge, every effort was made to ascertain whether or not 
these clusters were appropriate for the specific concepts of isomorphism and homomorphism,. 
As isomorphisms and homomorphisms are particular types of functions, these metaphors offer a 
starting place for this investigation. However, in addition to the functional aspect of these 
concepts, there are also structural properties (e.g., groups can be isomorphic). Thus, considering 
the literature on how students reason about function is necessary but not sufficient.  

Previous studies have examined isomorphism in problem-solving, proof, and teaching 
contexts. Early studies mostly provided students with two Cayley tables or stated two groups and 
asked if they were isomorphic or how they could tell they were isomorphic. Dubinsky, 
Dautermann, Leron, and Zazkis (1994) found that when students considered isomorphisms 
between groups, they considered the cardinality of each group, but not whether the 
homomorphism property was satisfied. Leron, Hazzan, and Zazkis (1995) noted students’ 
tendency to check the cardinality of a group as well as a general utilization of “sameness” as a 
stand-in for isomorphism, terming this “naïve isomorphism.” In related studies, Weber and 
Alcock (2004) and Weber (2002) asked undergraduate and doctoral students to prove theorems 
related to isomorphism and to prove or disprove specific groups were isomorphic. Later studies 
on isomorphism focused on developing local instructional theories to inform teaching 
isomorphism. In 2009, Larsen recorded a teaching experiment in which participants were 
expected to generate a definition of isomorphism. Later, Larsen et al. (2013) noted that the 
homomorphism property was more challenging for students to unpack than the bijection 
property. Additionally, Larsen (2013) noted, “students’ use of the homomorphism property is 
usually largely or completely implicit” (p. 722).  

Recently, Hausberger (2017) addressed students’ understanding of both isomorphism and 
homomorphism through a textbook analysis and teaching experiment in which he observed the 
failure of textbooks to define “structure” in the context of “structure-preserving” isomorphisms 
and homomorphisms. Thus although some work on students’ understanding of isomorphism has 
been addressed, such as the focus on sameness in naïve isomorphism, limited attention has been 
paid to students’ use of language or images while considering homomorphism and teachers’ 
conceptions of isomorphism and homomorphism have been ignored. 

 
Methods 

Participants included two faculty members and two students from each teacher’s junior-level 
abstract algebra class. Both teachers had taught the course at least once before. Instructor A was 
tenure-track faculty, and Instructor B was a full-time instructor. The students’ backgrounds 
varied; all had mathematics as at least one major and had previously taken an introduction to 
proof course, but some were double majors and other previous coursework varied. Teachers were 
recruited at the beginning of the semester from that semester’s abstract algebra teachers. Students 
were recruited based on their responses to a survey as part of a wider project.  

Data for this paper are drawn from classroom video and a round of interviews with students 
and teachers. The classroom video data was collected from days when isomorphism or 
homomorphism-related topics were discussed in class. Participants engaged in semi-structured 
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interviews (Fylan, 2005) lasting roughly one hour each. The relevant interview questions focused 
on definitions, descriptions, and explanations for a 10-year-old of the concepts of isomorphism 
and homomorphism. Interviews with teachers occurred as they began teaching isomorphism. 
(Both taught isomorphism before homomorphism.) Interviews with students occurred after their 
class learned about the FHT and took an exam on group isomorphisms and homomorphisms. All 
interviews were audio and video recorded and any written work was collected.  

The interviews were transcribed and coded using thematic analysis (Braun & Clarke, 2006). 
This included multiple iterations of coding (Anfara, Brown, & Mangione, 2002); first, transcripts 
were open-coded for vivid, active words that could indicate conceptual metaphors; next, 
statements were viewed holistically for mathematical approaches being conveyed by statements; 
finally, codes were generated and refined by repeating the previous stages. These codes were 
influenced by Hausberger’s (2017) ideas of structuralism and Zandieh et al.’s (2016) work with 
functions; specifically the Input/Output, Morphing, and Traveling codes are similar to the latter’s 
definitions. The codes generated from this process are given and defined in Table 1. The 
classroom video was selectively transcribed; segments when isomorphism and homomorphism 
were originally defined and when the FHT was introduced were completely transcribed. 
However, technical proofs or computations and difficult to hear segments were excluded. The 
classroom transcripts thus generated were coded like the interview data. 

 
Table 1. Codes, descriptions, and examples. 

Code Description Common Examples 
Embedded Structure inside a structure  “living inside” 
Input/Output  Function machine language where 

entry leads to new result  
“spit out,” “pop out” 

Matching Elements or structures aligned  “match,” “line up,” “correspond” 
Morphing Elements or structures altered 

from original format  
“collapse,” “condense,” “transform” 

Relabeling Names of elements rearranged  “relabeling,” “renaming” 
Sameness Structures equivalent in some way  “same exact thing,” “equivalent structures” 
Sight Visual imagery used  “reflected,” “image” 
Structuralism Structure-based language of the 

formal definition  
“operation-preserving,” “structure-
preserving” 

Traveling Element or structure moves from 
location to location  

“from G to H,” “go to,” “send to,” “hit” 

 
Results and Discussion 

Metaphors in Instructor Interviews 
Class A. Instructor A used a variety of language to address isomorphism, including 

structuralism (“preserves the operation”) and traveling metaphors (e.g. “a function from one 
group to another group”). However, most of her discussion of isomorphism centered on two 
metaphors: renaming and sameness. She seemed to view renaming as more indicative of 
isomorphism (the function) and sameness as indicative of groups being isomorphic: 

So if I was trying to explain isomorphic…I would say two things are the same, just with 
different names. If I was trying to find…[an] isomorphism, I'd say it was…how I decided 
to rename the things in one group as the things in another group. 
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Instructor A initially described homomorphism using structuralism, saying it was “a mapping 
that preserves operation.” Later descriptions used mostly sameness, traveling, and morphing 
language, often in conjunction with each other as she structured her thoughts around the FHT: 

So this is my domain and let’s say there's a bunch of elements in here….My 
homomorphism clumps them into like regions or sets. So this is kind of all working 
inside my domain, and then I have my function that goes over to my range, and now this 
set is sent to a single element over here.…The operation between these sets is the same as 
operation between those elements. 
Class B. Instructor B used a variety of metaphors to discuss isomorphism, including 

matching, relabeling, and sameness, in addition to structuralism. When discussing isomorphism 
as a function, he used language like a “relabeling of elements,” a “correspondence that matches 
like things with like things,” and a “mapping between two algebraic structures that preserves the 
structure.” Common language for isomorphic groups included talking about “equivalent 
structures” or “there’s really no difference between these structures,” where “structures” meant 
algebraic structures like groups or rings. His preferred view of isomorphism was as a relabeling:  

From an algebraic point of view, there’s really no difference between these structures, 
and so…if you just took these elements and attached these other labels instead of the 
labels you originally had, you get the same exact structure. So that’s the idea I try to get 
across more than… a bijective function that…preserves such and such operation. So I 
think it’s really the relabeling is the most natural way to think of it. 
When discussing homomorphism, he initially used structuralism and traveling language (a 

“map from one structure to another structure”). However, he later used more sight and sameness 
language to contrast with isomorphism: we “kind of don’t really initially see how the…structure 
within the…domain group is reflected in the…codomain whereas with isomorphism we…see 
that right away. Right we just see that it’s…equivalence of structures.” When pressed, he gave a 
more vivid picture of homomorphism that included morphing, sameness, and traveling language: 

I guess you could sort of view it as threads condensing into a single…element in the 
codomain and…then those would become equivalence classes modulo the kernel of…the 
map etc. etc. If we look at the…7 elements that get mapped to a particular element, then 
what we really have is this, this equivalence class modulo the kernel, and…if we mod out 
by the kernel then we can take any one of those things as a…representative. 

 
Metaphors in Instruction 

Class A. Instructor A used inquiry-oriented materials based on the local instructional theories 
developed by Larsen and colleagues (e.g. Larsen, 2013; Larsen et al., 2013) to have students 
reinvent the definition of isomorphism in class. This is significant because it meant her students 
talked about isomorphism before a definition was given.  Pre-definition, most public language 
describing attempts to map between a mystery table of six elements and D6 (dihedral group of six 
elements) was matching metaphors. For example, consider the following exchange: 

Student: I think it’s harder to find what each element corresponds with the letter because 
they’re self identities, but the ones that are not self-identities are D and G so it’s easier to 
see which ones…are the only two elements that are not self-identities. 

Instructor A: Right, so this is the game you’re playing, you’re trying to correspond these 
letters with D6 elements? 

However, when a definition was given, the language Instructor A used largely matched what she 
had said in her interview, while also incorporating the matching language the class had used: 
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These correspondences we have been working with are potential isomorphisms that allow 
us to “rename” elements in G with elements in H and then verify the operation to show 
that G and H are essentially the same. 
She introduced the homomorphism definition before teaching the FHT. Pre-theorem, most 

homomorphism-related discussion was based on the formal definition or traveling metaphors 
(e.g. “What’s something that definitely gets sent to the identity?”). However, to describe the 
FHT, Instructor A utilized the imagery from her interview: 

We can use the homomorphism to…construct bands where all of these little elements get 
sent to the same thing so they’re grouped together. And what they’re grouped together 
into are their elements in the quotient group.…So all the little dots that get sent to x will 
form a coset in our quotient group….And the partitioning we would have under the 
quotient group is the same that we’d have under the homomorphism. 

Although she used less vivid language to describe the theorem in class, her explanation did 
include elements of sameness (final sentence) and morphing (grouping) as in her interview. 

Class B. Instructor B used similar language in class to describe isomorphism as he had in his 
interview. He mainly utilized traveling (e.g. “identity kind of has to go to identity”) and 
matching (e.g. “what would have to go with what”) language when discussing how to approach 
specific mappings with students. He also referred to isomorphism as “the rule that’s doing the 
relabeling,” utilized structuralism in a manner similar to his interview, and extensively referred 
to isomorphism as “essentially the same” or when “two groups have exactly the same structure.”  

Instructor B’s metaphors for homomorphism in class differed from his interview metaphors 
to a large extent. In class, he frequently spoke of homomorphism as a function using traveling 
metaphors (e.g. “So homomorphism is essentially a map, and again this could be from structure 
to structure in general. In our case it’s from one group to another group…”). He also used 
structuralism on a number of occasions (e.g. “…and so it is a map that preserves whatever 
operation we have, in this case the group operation, but is not necessarily a bijection.”). 
Although he drew on morphing language to describe homomorphism in his interview, his 
description in class drew more on an embedding metaphor when first discussing the FHT:  

The way to think about this then is if you’ve got a surjective homomorphism, then the 
range H essentially is already living inside of G somehow. All the information about H is 
already here, and in fact we can recover H purely in terms of G by taking the factor group 
of G mod the kernel. So we get an isomorphic group where we don’t even have to refer to 
H at all. It’s just purely in terms of G. 

 
Student Metaphors 

Class A. The majority of the language used by both students from Class A focused 
exclusively on the formal definitions. For example, Student 1A described an isomorphism as: 

…basically a function that maps one group to another group such that the function is one-to-
one and onto and such that the function of the combination of two values in the first group is 
equal to the function of the first value combined with the function of the second value. 
However, he moved beyond the definition to sameness when asked how to describe an 

isomorphism to a 10-year-old: “If two groups of numbers or anything are the same.” However, 
the idea of “sameness” seemed to confuse him as well. When he was trying to describe a 
homomorphism for a 10-year-old, he noted, “…when you explain that it’s two groups don’t have 
to be the same then it gets really confusing on what is a homomorphism and what isn’t a 
homomorphism.” In trying to distinguish between isomorphism and homomorphism, he seemed 
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unsure how to take bijection away from isomorphism and still have a coherent mental picture.  
In addition to the formal definition, Student 2A used matching and sameness metaphors for 

isomorphism. For instance, he used two circles of ten colored marbles in a matching metaphor: 
…then you number them also 1 through 10 but instead you…rotate it so you don't have 
1’s matching up with the 1’s and… so the 1 in the red matches up with the 3 in the blue, 
and then…you figure out if you have 1 plus 3, that’ll get you to marble 4. Well marble 4 
matches to marble 6 or whatever, so something like that. 

His example about work being independent of path emphasized sameness: “The idea 
is…regardless of how you go, it’s the same ending spot, so what you’re doing is actually the 
same operation; this just looks different.”  

He expressed ideas like “isomorphism is a fancy case of homomorphism” multiple times and 
did not make much effort to distinguish between isomorphism and homomorphism. When 
pressed on homomorphism, he returned to the marble example, noting this time you could have 
less marbles “and…now you’re allowed to overlap.” He maintained the matching metaphor 
across isomorphism and homomorphism, but did not retain the sameness metaphor.  

Class B. Student 1B’s isomorphism language aligned with Instructor B’s to a large extent as 
he coordinated sameness, relabeling, and structuralism language: “I guess an isomorphism would 
be a function, which is bijective and it’s structure-preserving…I mean… basically, you can just 
relabel the Cayley table, but that’s formalized as f of ab equals f of a times f of b.”  

Student 1B’s language for homomorphism drew on metaphors and the FHT like Instructor B: 
A homomorphism is just a function that preserves the structure…not necessarily all of the 
structures; it might just preserve one structure. Like the integers map to Z mod 2 or 
something, that could preserve the structure of like the evens and the odds, but it destroys 
a lot of the other properties of the integers….[Preserving the structure] would be that 
definition: that f of a product b equals f of a product f of b, but…it’s intuitive for me to 
go back and think about the Cayley tables because they’re just saying that wherever the 
product of these two things gets mapped to gets mapped to wherever the product of 
wherever these two other things gets mapped to, so…that’s the structure right there that’s 
being preserved: things still will be nice and well-defined and play nicely….. 

Notice he used traveling language as he described the integers mapping to Z mod 2, much like 
Instructor B’s use of traveling language. He utilized structuralism through preserving the 
structure. However, he seemed to use the word “structure” in two senses: the homomorphism 
definition and an imposition of order. This latter sense is similar to Instructor B’s embedding 
description of the FHT given in class, in which the emphasis was on the structure of the domain. 

Student 2B defined isomorphism as, “an operation through which you would transform an 
element of one group to the corresponding element in an identical group,” which utilized 
morphing, matching and sameness metaphors. He also gave a vivid sight metaphor coordinated 
with sameness language when asked what he would say to a 10-year-old:  

…isomorphism is, is closer to the mirror….Like you get the same thing back….But you 
look in, just like a regular mirror straight on, it’s pretty much the exact same thing back, 
but it’s not you. It’s just an image of you that retains all the characteristics. 
Student 2B’s language for homomorphism was in many ways similar to his language for 

isomorphism. His initial description coordinated morphing and sameness metaphors: “an 
operation through which you would transform an element in one group to a group with similar 
characteristics that is of lesser or equal size.” When later prompted about how he would describe 
homomorphism to a 10-year-old, he again shared vivid metaphors. He expanded on the sight-
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based mirror imagery from isomorphism to compare and contrast with homomorphism: 
“…sometimes you have mirrors that make you look smaller like at the corners of hallways and 
hospitals. Sometimes it's a little bit smaller. That’s like a homomorphism.” He also gave a 
morphing metaphor: “Look at your dad and then look at yourself. Imagine…what part of your 
dad went to you sort of as a homomorphism….he took a part of himself and sort of condensed it 
to create you.…” Although he used a condensing image like Instructor B’s interview response, 
his condensing image did not possess the clear FHT structure of Instructor B’s response. 
 
Discussion 

Returning to research question 1, the teachers were largely consistent in their metaphor usage 
in the interview setting and in class. Both teachers focused on sameness (more for isomorphic 
structures) and renaming/relabeling (more for the isomorphism function). Both also relied on the 
FHT and morphing, sameness, and traveling metaphors to provide meaning for homomorphism 
beyond the formal definition. However, they structured their understanding around the FHT 
differently: Instructor A focused on morphing within the domain and then traveling to produce 
sameness between the groups whereas Instructor B morphed while traveling to produce sameness 
(interview) or viewed the relevant sameness as being embedded in the domain (in class). 

Addressing research question 2, there was some alignment between metaphors used in class 
and metaphors used by students. All four students utilized sameness language for isomorphism 
like had been used in class, though Student 2A also used a lot of matching language and Student 
2B incorporated morphing language for isomorphism. However, their images of homomorphism 
varied widely. Students 1A and 2A did not use sameness to describe homomorphism. Student 1A 
seemed to try separating isomorphism and homomorphism by removing sameness to reach 
homomorphism, but did not know where that left him. Student 2A used matching metaphors for 
both isomorphism and homomorphism but only applied sameness to isomorphism. Neither 
student from Class A used an FHT-based picture like their teacher had used, though it is possible 
that Student 2A’s matching language was based on pre-FHT discussion around homomorphism. 
Students 1B and 2B had more distinct images for homomorphism and were closer to aligning 
with their teacher. Student 2B used condensing language to describe homomorphism, though he 
did not give evidence of attention to structure within the group being condensed. Student 1B was 
more aligned with his instructor’s embedding view from class, based on his attention to some 
type of organization being highlighted and shared between the domain and codomain. 

Conclusion 
Isomorphism and homomorphism are concepts central to the study of mathematical 

structures, specifically within abstract algebra and in math more broadly. Thus deepening our 
understanding of how teachers and students think about these concepts and what conceptions are 
communicated from teachers to students is critical. In this study, the naïve isomorphism view of 
sameness (Leron et al., 1995) was broadly shared whereas the images of the FHT used by 
instructors were not broadly shared, and the images used by students varied widely. These varied 
metaphors revealed varied conceptions (e.g. elements traveling to elements, shared structure 
inside groups, transforming from group to group) that may be more or less useful when solving 
problems. Thus future work includes investigating what isomorphism and homomorphism 
problems students with these metaphors can solve, especially because most descriptions given by 
the students aligned (to some extent) with the definition. Furthermore, other teachers and 
algebraists may or may not share these teachers’ FHT-based images of homomorphism, so 
ascertaining other expert views of homomorphism is essential for future study. 
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Following Students in the Transition to Proof: Examining A Case Where Reasoning and 
Performance Conflict 

 
V. Rani Satyam 

Virginia Commonwealth University 
 

The transition to proof is difficult for students – what developments do students show while 
learning how to prove? I present a short-term longitudinal, qualitative analysis of 11 
undergraduates taking a transition to proof course, of the developments seen in their proving. 
Within this, I follow one student whose proof reasoning grew but whose performance on the 
proof construction tasks declined. Investigating this single-subject case serves as an example of 
the complicated interplay between development and performance. It serves as a reminder for 
how attending to performance does not account for students’ thinking and vice versa.  

 
Keywords: Proving, Longitudinal, Transition to Proof, Problem Solving, Case Study   

 
Learning how to prove can be notably difficult for undergraduate students (Moore, 1994). 

The transition to proof is a shift in the “game” of mathematics, from answering exercises that are 
largely procedural (Schoenfeld, 1992) to justifying and writing arguments. Through research, we 
know what students struggle with (Selden & Selden, 1987) and their strategies (Karunakaran, 
2014) with proving at a snapshot in time, but we know less about development, as in what the 
learning process of proving looks like over time. Understanding this learning process is 
important to help students directly but also for designing courses that support undergraduates’ 
transition to proof. The research question that guides this work is: How do undergraduate 
students’ proof reasoning develop over the duration of a transition to proof class? But to examine 
this further, I present a short-term longitudinal case of a student whose growth in proving in 
terms of problem solving is not captured by performance. First, I present findings across all the 
participants. Then, I explore in detail this one participant. 

 
Conceptual Framework 

There are different perspectives from which to approach research in proof (Stylianides, 
Stylianides, & Weber, 2017). One common perspective is to consider proof as a form of problem 
solving (e.g., Savic, 2012). But even within this, there are many cognitive skills that make up 
what we consider to be proving. Selden & Selden (2007) discussed two major sources of 
difficulty for students when writing proofs, namely the formal-rhetorical aspects of writing and 
producing a proof but also the problem-centered aspects of proving, of finding and noticing 
relationships among concepts that are crucial to proving the claim.  

In adopting the perspective of proving to be a form of problem solving, I take students’ 
proving to be problem solving but in the context of proof, i.e., the work of constructing a proof 
for a given statement. However, a true problem for an individual is one in which a person faces 
impasses, experiencing the feeling of being stuck (Savic, 2012; Schoenfeld, 1992). For this 
reason, I focus on students’ intentions when stuck. This conceptual framework is aligned with 
the notion of studying proving as a process rather focusing on its product (Karunakaran, 2014).   

 
Method 

22nd Annual Conference on Research in Undergraduate Mathematics Education 526



	

Participants were N=11 undergraduate students taking a transition to proof course at a large 
Midwestern university. This work is part of a larger study about the cognitive and emotional 
aspects involved in the transition to proof. This course was designed to ease the transition from 
calculus-based courses to upper-level math courses that involve proofs. The primary population 
was students majoring and minoring in mathematics.  

A series of four interviews were conducted with each of the participants across one semester. 
Within each interview, participants were asked to complete two proof construction tasks. 
Participants were given the statement to be proven and given 15 minutes to construct a proof. 
Each proof construction task was administered as a non-intervening think-aloud, in that students 
were asked to verbalize their thinking, but the researcher did not ask questions while they were 
working in order to minimize interrupting their problem solving process (Schoenfeld, 1985). 
Instead a debrief was conducted with the participant immediately after each task, during which 
they were asked questions about their thought process, places where they perceived they were 
stuck, and other points of interest. Interviews were audio- and video-recorded. 

All proof constructions tasks were about basic number theory content: properties of integers 
and real numbers, even and odd, and divisibility. In order to measure development, tasks were 
designed to hold content area constant and minimize any special domain knowledge, as much as 
is possible; care should be taken when making content-free claims about proving (Dawkins & 
Karunakaran, 2016).  

Participants were also asked to draw an “emotion graph” for each proof task, where the X 
axis represented time and the y-axis represented the intensity of emotion felt. Interviews were 
transcribed, and analysis was done using grounded theory (Glaser & Strauss, 1967) techniques to 
identify and group students’ intentions when stuck into developments across participants. A 
coding rubric was developed for assessing performance (correct, partially correct, or incorrect) 
on the proof construction tasks. 

 
Results 

Developments Across Participants 
Before diving into the single case, let us look across the participants to gain a broad view of 

the developments they showed. The developments most strongly grounded in evidence are 
shown in Table 1, defined as seen in at least three participants. I provide a brief description of 
each development, providing singular examples for illustrative purposes. 
 

Table 1. Select developments in proving, by participant 
 

 Change in how 
one chooses a 
proof technique 

Harness awareness 
of how solution 
attempt is going 

Check examples in 
conjunction with 
other strategies 

Explore and 
monitor 

Amy    X 
Charlie X  X  
Dustin X    
Granger  X X X 
Gabriella X X   
Joel  X   
Jordan X    
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Leonhard X    
Stephanie X    
Shelby X    
Timothy X X X X 

 
Harnessing awareness of how solution is going. Students showed a growing metacognitive 

awareness of how their attempt was going, usually when they felt they were on the wrong track. 
Being aware of how one’s solution is going is normal and expected; what is key is examining 
what they did in response to this awareness and how that guided them to better solutions. 

For example, Timothy became stuck multiple times over the course of proving: “If x, y are 
consecutive numbers, then xy is even.” In reaction, he reasoning out loud about the mathematical 
relationships: “If [x,y are] not consecutive, they wouldn’t have this relationship...what does this 
tell me?” He said he would continue to try it this way but did not know if it would work, saying 
he "can’t think of any other way" right now. He explained during the debrief: “I finished it out 
because I just wanted to get something down but I didn’t really like that one.” After getting stuck 
twice more, he completed his proof but was unconvinced; he did not feel good about it. In the 
debrief, he explained that “I didn’t really like that one [proof by contrapositive]. And then I went 
back because I really wanted to do something with this directly. I liked that better." This sense 
served him well, as indeed his first attempt was not correct and his next attempt was. 

Exploring and monitoring. Working without already knowing how a solution would go was 
another development seen across participants. Students were used to tasks in past courses that 
lent themselves to clear methods, but during the transition to proof course, students became 
stronger at careful, intentional “winging it” – working and exploring without knowing what 
would happen and noticing when a key piece of information for constructing the proof arose.  

As an example of this, Amy considered herself a planner from the start, always thinking 
ahead, as said in the second interview: “I plan everything super far in advance...I just feel like for 
everything, I just look ahead. Even when I'm doing math problems. I just like, in my brain, I 
think about what I'm gonna do before I start doing it.” Amy noted this was how she did math, 
planning out her mathematical actions in advance and thinking ahead in the problem.  

But Amy became comfortable with working on her feet as interviews progressed. In 
Interview 4 – Task 2, she became stuck and said out loud that she did not have a plan while 
working but that she would figure something out. During the debrief, she talked about what she 
had been thinking then: “I feel like this whole portion, I was kind of stuck, but I was just like, 
‘Just check through the algebra until you can get to something.’ I was like, ‘I don't see this going 
anywhere, but I'm sure it will. Just keep going.’” Indeed, this proved fruitful, as she noticed 
something contradictory in her exploration and argued why this was an impossible situation thus 
turning her work into a proof by contradiction. She worked without a specific goal in mind and 
when a potential avenue appeared, she pursued it. She became comfortable exploring when 
unsure what to do. The key however was that she noticed an insight when it arrived.  

Checking examples in conjunction with other strategies. Students would check examples, 
as a strategy located within a temporal string of strategies. On Interview 4-Task 2, Timothy 
became stuck because he was not sure how to negate the statement to be proven: “If x, y are 
positive real numbers and x ≠ y, then !" + "! > 2.” He was stuck because he was not sure how to 
negate the statement. He then reasoned out loud what his issue was and possible decisions he 
could take, trying to write the contrapositive and contradiction of the statement. This was akin to 
parallel processing in terms of assessing which of many solution paths was a good idea. He then 

22nd Annual Conference on Research in Undergraduate Mathematics Education 528



	

checked some examples: “I’m just thinking of examples in my head now so like going at it 
straight [direct proof], so let’s say we chose 1 and 2, so ½ + 2 is greater than 2.” He then stopped 
and switched to contradiction. He had done the following: reasoned out loud about his problem, 
imagined multiple paths, and then checked examples in order to determine which path to pursue. 
An example is not a proof, but it can provide an idea for a proof, and students used examples in 
this nuanced way. 

Changes in how students chose proof techniques. The most prevalent development that 
occurred across the participants were changes in how they chose which proof techniques to 
pursue when approaching constructing a proof. Proof technique refers to tools such as direct 
proof, proof by contradiction, proof by contrapositive, and cases. To see how this unfolded 
across a semester, we look at Leonhard, as an interesting case in that despite showing 
sophisticated growth in his rationales for his choices, his performance on the tasks in fact 
declined. For this reason, we examine Leonhard’s case in more detail.  
 
Case: Following Leonhard’s Process for Choosing Proof Techniques  

In the beginning, Leonhard’s baseline practice was to choose proof techniques based on what 
he knew and was familiar with. In Interview 1 - Task 1, Leonhard chose to use proof by 
contradiction, despite being a little stuck because he was not sure how to negate the conclusion 
(see Figure 1). 

 
Figure 1. The beginning of Leonhard’s work on Interview 1 – Task 1 

 
He reported that his rationale for that choice was that “A lot of time in class whenever we’re 
proving an implication, we use contradiction I guess so that’s why it’s my first thought.” He used 
contradiction because that is what they used in class and he was used to it.  

Then in Interview 2 - Task 1, he wanted to do direct proof but became stuck because he was 
unsure whether what he wanted to do would work. He applied the definitions to x and y and then 
was stuck again over what method to use, direct proof vs. proof by contradiction. He became 
stuck again in choosing whether to do direct or contradiction. Ultimately, he chose contradiction 
and his reason was: “I decided to do contradiction because I know how to do it.” Leonhard chose 
what method to use based off what he felt he could do at that point in time, his own sense of 
fluency with methods. 

As time progressed, there was clear growth in his reasoning for his choices. Interview 3 – 
Task 1 is an example where Leonhard cycled through a few options for proof techniques, as seen 
in his written work (see Figure 2). He used proof by contradiction but then became stuck when 
writing the negation, because his negation of the conclusion did not make sense to him. “One 
number is odd and all three numbers are odd” did not seem possible. He switched to proof by 
contrapositive but realized he had the same issue with how to negate the conclusion as before. 
He then switched again to direct proof.  
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Figure 2. Leonhard’s work on Interview 3 – Task 1 

 
His rationale for why contradiction in the first place was as follows: “My mind goes straight 

there [to contradiction]. I like it the most because...at some point you usually run into something 
that just comes out sounding weird. So then you have to be right I guess.” Contradiction was his 
favorite, so he tended to use it whenever he could. He liked it because of its unique nature in 
producing something nonsensical. He later added, “I don’t know what possessed me to write this 
[contrapositive],” because he ran into the same issue. So Leonhard knew he liked certain 
methods over others and had some rationale - in how proof by contradiction results in a 
nonsensical claim and that he should have known better than to use contrapositive in this 
situation. His rationale was still general, however, in that contradiction was a technique he liked 
and that his fondness for it drove his usage of it. 

Interestingly, he mused out loud about how his underlying idea may have been to check 
which proof techniques did not work well here and see what is leftover: “I guess this was a good 
way of crossing out the things that you can’t do so you can find the things that you can do.”  

By the fourth interview, Leonhard displayed more precision in terms of detail in his 
rationales for his choice of proof technique. In Interview 4 - Task 2, he was stuck in the 
beginning and his subsequent actions were to identify the assumption and conclusion, test a 
couple examples for x and y, and then try proof by contrapositive (see Figure 3). 

  

 
Figure 3. Beginning of Leonhard’s work on Interview 4 - Task 2 
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His rationale for contrapositive was, “You can’t really do much with x not equal to y. But you 
can do a whole lot with x = y,” and “The contradiction wouldn’t give me anything to work with.” 
He wanted to start with x = y because he saw how an equality was more useful than having 
objects not equal to each other in proving, and neither direct proof nor proof by contradiction 
provided an equality. He decided what proof technique to use based on specifics of the statement 
to be proven. In addition, his rationale also explicitly explained why another proof technique 
(contradiction) would be less useful here. He had a rationale for why his chosen proof technique 
was a helpful approach and why other techniques would be less helpful. In the end, his proof was 
incorrect, as reaching a true statement (2 ≤ 2) is not the same as showing the conclusion, but his 
rationale for why use contrapositive was coherent.  

Making sense of Leonhard’s growth. Over the course of these interviews, the rationales 
Leonhard gave for why he chose the proof techniques that he did became more nuanced. He 
moved from choosing certain methods for (1) little to no reason to (2) having some rationale, 
with a general sense of one technique being better than others to (3) based on the statement itself. 
Leonhard showed clear growth, but if we look at his performance, Leonhard’s work was 
oftentimes incorrect. Across the interviews, he got one task correct (Interview 2-Task 1) and two 
tasks partially correct (Interview 1-Task 1 and Interview 2-Task 2). Moreover, his work on the 
last two interviews (all four tasks) was all incorrect, due to making substantial errors and/or 
missing crucial pieces of the proof. Interestingly, Leonhard’s perception was that his work was 
correct on three of these four tasks; he showed great confidence, as can be seen in his emotion 
graphs for these tasks in Figure 4.  

 

Figure 4. Leonhard’s emotion graphs for Interview 3 – Task 1 (top left), Interview 3 – Task 2 (top right), Interview 4 
– Task 1 (bottom left), Interview 4 – Task 2 (bottom right). His graphs indicated high positive emotions about his 
work on Interview 3 and Interview 4 – Task 2 but his solutions were incorrect. 
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Conclusions 
Over the interviews, Leonhard’s rationales in deciding which proof techniques to pursue 

became more sophisticated, while his performance declined. Even though his success on tasks 
stagnated, Leonhard did show progress in terms of affect as well, in having confidence in his 
work. He had a positive orientation towards his work, but it is also worrisome when a student 
does not notice major flaws in their work. Leonhard is an example then of where a student’s 
confidence is high and their reasoning and rationale for their decisions is high, but these do not 
necessarily lead to correct work. There is a difference then between reasoning and execution: 
Leonhard reasoned well but his execution was flawed. Can we say Leonhard is a better prover 
than before? 

Another interpretation of this profile is that progress in terms of process does not always 
manifest itself in terms of performance, as measured by objective correctness. Judging a student 
based on solely their written work does not necessarily capture the thinking and reasoning behind 
their choices that was valid, which alone is valuable growth in proving.   

This work – both the developments across all 11 participants and the misalignment of 
reasoning vs. performance in the case of Leonhard – highlights the need for a robust proving 
process framework. Such a framework would support the characterization of and assessment of 
students’ proving as a process over short and potentially longer timescales.		
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A Gendered Comparison of Abstract Algebra Instructors’ Inquiry-Oriented Instruction  
 

Kaitlyn Stephens Serbin Sara Brooke Mullins 
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Inquiry-Oriented Instruction (IOI) holds promise for providing equitable learning opportunities 
for men and women. We consider two abstract algebra instructors whose women exhibited 
different learning outcomes. We explore how this disparity in the women’s achievement might be 
related to differences in these instructors’ implementation of IOI, specifically regarding how 
they elicited and evaluated student contributions. We used Reinholz and Shah’s (2018) EQUIP 
observation tool to investigate differences between students’ participation opportunities in each 
class. We found a significant difference in the instructors’ number of interactions with men and 
women during class discussion. We also found significant differences in the instructors’ methods 
for soliciting and responding to student contributions in class discussion. A discussion of these 
differences in instructional practices, as well as implications for future work, is provided. 

Keywords: equity analytics, gender, inquiry-oriented instruction, abstract algebra 

The mathematics classroom is a gendered space, as socially constructed differences in 
achievement and participation exist between genders (Leyva, 2017). These differences might 
contribute to the undisputed underrepresentation of women in STEM. Lubienski and Ganley 
(2017) called for researchers to examine how women’s choices to leave or persist in 
mathematics-intensive fields may be constrained by inequitable educational opportunities. Some 
researchers focus their efforts on identifying teaching practices that give women more access to 
learning opportunities and yield equitable learning outcomes. Laursen, Hassi, Kogan, and 
Weston (2014) advocated student-centered teaching approaches, such as inquiry-based learning, 
suggesting they “level the playing field” (p. 412) for men and women in mathematics. However, 
there is some dispute on the generalizability of equitable effects of student-centered instruction.  

To explore the relationship between Inquiry-Oriented Instruction (IOI) and equitable student 
learning outcomes, Johnson et al. (under review) compared men’s and women’s learning 
outcomes in abstract algebra measured by their performance on the Group Theory Content 
Assessment (GTCA; Melhuish, 2015). Their participants included students whose instructors had 
participated in an IOI professional development project and students in the national sample. They 
found men outperformed women in the IOI sample. However, there was no achievement gap 
between men and women in the national sample. In recent analysis, a discrepancy was found in 
gender performance of students of two of the participating instructors from that sample, hereafter 
referred to as Dr. C and Dr. K. Both men and women in Dr. C’s class outperformed the national 
sample, but men in Dr. K’s class outperformed and women underperformed the national sample. 
These differences in learning outcomes may be attributed to differences in these instructors’ 
practices. Our study seeks to highlight differences between these instructors’ implementation of 
IOI to hypothesize potential instructional practices that may lead to equitable learning outcomes. 

Literature Review and Theoretical Perspective 
IOI is a student-centered pedagogical approach, which provides opportunities for students to 

inquire into mathematics and for instructors to inquire into students’ mathematical thinking 
(Rasmusssen & Kwon, 2007). In IOI, students engage in meaningful tasks that allow them to 
develop informal intuitive understanding of concepts, from which they can develop more formal 
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mathematical reasoning (Wawro, Rasmussen, Zandieh, Sweeney, & Larson, 2012). The four 
principles of IOI are: “Generating student ways of reasoning, building on student contributions, 
developing a shared understanding, and connecting to standard mathematical language and 
notation” (Kuster, Johnson, Keene, & Andrews-Larson, 2017, p. 2). These instructional 
principles emphasize inquiry into student thinking and formalization of mathematical reasoning. 
In addition to inquiring into student thinking, facilitating meaningful discourse, and guiding 
students’ progress in the course, IO instructors need to sustain social norms in the classroom that 
are conducive to students’ reinvention of mathematics (Stephan, Underwood-Gregg, & Yackel, 
2014). These may include norms of students collaborating, explaining their reasoning, and 
participating in class discussion. Instructors also need to provide equitable opportunities for 
participation and position students as competent learners (Reinholz & Shah, 2018).  

Equity research focuses on accounting for effects of past marginalization and mitigating 
systematic differences in ways students experience educational opportunities (Adiredja & 
Andrews-Larson, 2017; Gutiérrez, 2002; Reinholz & Shah, 2018). In the context of mathematics 
education, equity has been blurred with equality, in that educators might intend to provide equal 
access to curricular materials or learning supports (Gutiérrez, 2002). However, to account for 
differences in student backgrounds, student identities, and social biases, certain students need 
different learning opportunities to achieve fairness in the classroom. Reinholz and Shah (2018) 
proposed focusing on equality of participation opportunities as a necessary stepping stone for 
achieving equity in the classroom. We follow Gutiérrez (2013) and Adiredja and Andrews-
Larson (2017) in taking a sociopolitical perspective, recognizing the interplay of knowledge, 
identity, and power in students’ experiences and interactions in social educational contexts. 
Students associate mathematical success with power (Leyva, 2017), and as they construct their 
mathematical identities, perceptions of their own mathematical competence might be constrained 
by opportunities to participate in the classroom. This study considers participatory equity 
(Reinholz & Shah, 2018), discerning whether there exists a fair distribution of opportunities for 
participation given in two abstract algebra classrooms. Therefore, we explore the following 
research questions: What differences exist between two inquiry-oriented abstract algebra 
instructors’ provision of opportunities for men and women to participate in class discussion? 
What differences exist in these instructors’ teaching practices? 

Methods 
This explanatory case study explores the differences in practices of two abstract algebra 

instructors whose women students exhibited different achievement outcomes. Both instructors 
participated in an IOI professional development project in which they received training in 
implementing IOI in abstract algebra, curriculum materials, and support via online working 
groups with other instructors. Dr. C is a white man, Dr. K is a white woman, and both instructors 
teach at large public universities in the western United States. They both had over thirty students 
in their classes; Dr. C had twice as many men as women in his class, and Dr. K had about the 
same number of men and women in her class. We explore differences in Dr. C’s and Dr. K’s use 
of student contributions to gain insight on gendered experiences in their classes. We investigate 
which students participated in class discussions and how their contributions were elicited and 
responded to. We focus on gender to see how men and women’s contributions were positioned 
during class discussion. Students’ genders were inferred by the observing researchers rather than 
self-identified by the students, as this data was unavailable.  

Instrument 
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The Equity QUantified In Participation (EQUIP) was developed by Reinholz and Shah 
(2018) as an observation tool to evaluate students’ participation and instructors’ practices of 
providing opportunities for students to participate in class discussion. The EQUIP rubric has 
seven dimensions, but we only used three of those dimensions, including solicitation method, 
teacher solicitation, and teacher evaluation (Figure 1), because they relate to the four principles 
of IOI (Kuster et al., 2017). Solicitation method refers to the type of strategy the instructor uses 
to initiate student participation. Teacher solicitation type refers to the type of question or 
statement the instructor uses to solicit student participation. Teacher evaluation describes how 
the instructor responds to students’ contributions. We adapted the EQUIP tool by adding more 
specific codes for solicitation method and teacher evaluation.  

Dimension Solicitation Method Teacher Solicitation Teacher Evaluation 
Levels 1. Not Called on 

2. Random Selection 
3. Called on Method  
4. Called on Group 
5. Called on Individual 
6. Called on Volunteer 

1. N/A 
2. Other 
3. What 
4. How 
5. Why 
 

1. N/A 
2. Revoice 
3. Evaluation  
4. Elaborate  
5. Follow-Up Question or 

Task  
Figure 1. Dimensions and levels from EQUIP (Reinholz & Shah, 2018) and coding assignments 

Data Collection and Analysis 
Instructor’s classes were video-recorded by project personnel. The first author watched 

videos of five classes for both Dr. C and Dr. K. She transcribed only the student-teacher talk 
sequences that occurred during full class discussion. She then used the EQUIP observation tool 
to record the frequencies of the participatory and instructional practices observed in each 
student-teacher talk sequence that occurred during class discussion. Student demographics (e.g., 
gender) were noted for analysis of which students participated in the discussion. The codes were 
then discussed with the second author to resolve any uncertainties and were transformed to 
categorical values (Figure 1). A code was assigned to each instructor and gender to allow for 
comparison within the statistical analysis. We used three omnibus chi-square tests to compare the 
instructors for each of the three EQUIP dimensions. We then used three omnibus chi-square tests 
to compare each instructor by gender for each of the three EQUIP dimensions. Post hoc tests 
were conducted to examine statistically significant differences between instructors and gender. 
We then calculated the equity ratio (Reinholz & Shah, 2018), the “ratio of actual participation to 
expected participation” (p. 161) for men and women in each EQUIP dimension. Expected 
participation is the percentage of participation one would expect based on the demographics of 
the class. For example, if men comprise 40% of the class, they would be expected to participate 
40% of the time. If men actually participated 50% of the time, the equity ratio would be 50/40 = 
1.25. An equity ratio above 1 demonstrates an over-representation, and an equity ratio below 1 
demonstrates an underrepresentation of participation from that group of students. Entrance 
interviews were also conducted with Dr. K and Dr. C by project personnel at the beginning of the 
semester they taught IO abstract algebra. We analyzed these interviews for data triangulation.  

Results 
Equity Analytics Results by Instructor 

Dr. C’s and Dr. K’s instructional practices regarding student participation were compared 
using the three EQUIP dimensions. There was a total of 175 student-teacher talk sequences for 
Dr. C’s class, and only 66 for Dr. K’s class. The frequencies and percentages of each teacher’s 
use of a certain solicitation method and type of evaluation are recorded in Table 1. The 
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difference in instructors’ teacher solicitations was not statistically significant. The difference in 
instructors’ solicitation method was statistically significant χ2(4, N = 241) = 21.300, p < .001, 
Cramer’s V = .297. When looking at specific solicitation methods, neither instructor used 
random selection (e.g., drawing names from a hat). Dr. C’s students were not called on more 
often than Dr. K’s students were not called on. Dr. C called on individuals more often than Dr. K 
did. Dr. K called on volunteers and groups to participate more often than Dr. C did. The 
difference in teacher evaluations was statistically significant χ2(4, N = 241) = 28.687, p < .01. 
Dr. C asked follow-up questions in response to student contributions more often than Dr. K did. 
They both primarily elaborated on student contributions, but Dr. K elaborated on student 
contributions much more often than Dr. C did. Both instructors responded by evaluating or 
revoicing student contributions about the same amount. Dr. C’s responses were coded as N/A 
more often than Dr. K’s were. This could be due to students responding to other students’ 
contributions before Dr. C could respond. 

 
Table 1. Code frequency and percentages for solicitation method and teacher evaluation by instructor. 

Dimension Instructor 
Not Called 

on 
Called on 
Method 

Called on 
Group 

Called on 
Individual 

Called on 
Volunteer Total 

Solicitation Dr. C 78 (44.6%) 0 (0%) 4 (2.3%) 41 (23.4%) 52 (29.7  %) 175 
Method Dr. K 24 (36.4%) 1 (1.5%) 9 (13.6%)* 6 (9.1%) 26 (39.4%) 66 

 Instructor Follow-Up Elaborate Evaluation Revoice N/A Total 
Teacher Dr. C 41 (23.4%) 54 (30.9%) 17 (9.7%) 14 (8%) 49 (28%) 175 

Evaluation Dr. K 10 (15.2%) 42 (63.6%)* 6 (9.1%) 6 (9.1%) 2 (3%)* 66 
*Represents significant differences in standardized residuals based on post hoc testing 

Equity Analytics Results by Instructor and Student Gender 
The difference between instructors’ number of interactions with men and women was 

statistically significant, χ2(1, N = 241) = 5.540, p = .019, Cramer’s V=.152. Men in Dr. C’s class 
participated in 104 of the 175 student-teacher talk sequences, while women participated 71 
times. Dr. C’s class had about twice as many men as women, but women participated 
proportionally more than men did, considering the equity ratios for the total amount of 
participation (see Table 2). Women in Dr. C’s class had an equity ratio over 1, and men had an 
equity ratio under 1, implying women were over-represented and men were under-represented in 
the total amount of participation. Men in Dr. K’s class participated in 50 of the 66 student-
teacher talk sequences, while women participated only 16 times. Dr. K’s class had an equal 
number of men and women, but women participated less than men did. Women in Dr. K’s class 
had an equity ratio under 1, and men had an equity ratio over 1 for total participation, implying 
women were under-represented and men were over-represented in their total participation. 

Gender differences in both Dr. C’s and Dr. K’s teacher solicitation and teacher evaluation 
were not statistically significant. The observed difference between Dr. C’s solicitation method 
for men and women was statistically significant, χ2(4, N = 175) = 14.023, p = .007, Cramer’s V 
= .241. However, the observed difference between Dr. K’s solicitation method for men and 
women was not statistically significant χ2 (4, N=66) = 3.662, p =.454. The frequencies and 
percentages of each instructor’s use of a certain method for soliciting participation from men and 
women are presented in Table 2. Slightly more men than women participated in Dr. C’s class 
without being called on. However, in Dr. K’s class, men participated without being called on 
much more often than women did. Dr. C rarely called on groups to participate, but when he did, 
only women shared their group’s contribution. In Dr. K’s class, men shared their group’s 
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contribution more often than women did. In both classes, however, men volunteered to answer 
more often than women did. Women in Dr. C’s class were over-represented in participating in all 
levels of solicitation method except when Dr. C called on a volunteer. Women in Dr. K’s class 
were under-represented in participating in all levels of solicitation method except when Dr. K 
called on individuals.  
 
 Table 2. Code frequency, percentages, and equity ratio for solicitation method by instructor and student gender 

Instructor Gender Not Called 
on 

Called on 
Method 

Called on 
Group 

Called on 
Individual 

Called on 
Volunteer Total 

Dr. C 
Men 43 (24.6%) 0 (0%) 0 (0%) 20 (11.4%) 41 (23.4%) 104 (59.4%) 

 0.82  0 0.73 1.18 .88 
Women 35 (20%) 0 (0%) 4 (2.3%) 21 (12%) 11 (6.3%)* 71 (40.6%) 

  1.36  3.03 1.55 0.64 1.23 

Dr. K 
Men 20 (30.3%) 1 (1.5%) 6 (9.1%) 3 (4.5%) 20 (30.3%) 50 (75.8%) 

 1.67 2 1.33 1 1.54 1.52 
Women 4 (6.1%) 0 (0%) 3 (4.5%) 3 (4.5%) 6 (9.1%) 16 (24.2%) 

  0.33 0 0.67 1 0.46 0.48 
*Represents significant differences in standardized residuals based on post hoc testing 

Descriptions of Dr. K’s and Dr. C’s Classes 
To contextualize these numbers, we now turn to narratives from both classes. This section 

describes and compares teaching episodes by Dr. K and Dr. C, in which students developed 
formal definitions of isomorphic and isomorphism. In the classes prior to these episodes, 
students determined whether a given mystery Cayley table represented a group that was the same 
as !" (the group of symmetries of a triangle). This task aimed to give students an intuitive 
understanding of isomorphic groups and isomorphisms (see Larsen, 2013). 

Dr. K’s class. Dr. K began class by writing an informal definition of isomorphic groups on 
the board. She gave examples of isomorphic and non-isomorphic groups, and asked students to 
define isomorphic and isomorphism. Students worked individually, shared their ideas with their 
groups, and decided upon one idea as a group to contribute in whole class discussion. When Dr. 
K called on each group (numbered 1 through 8), a student voluntarily shared their contribution. 
A woman in group 1 claimed an isomorphism maps an element of one group to an element of the 
same order, and Dr. K elaborated on this. A man in group 2 commented that the isomorphism 
needs to be one-to-one and onto. Since few students discussed those terms in their groups, Dr. K 
gave a short lecture to explain the definitions and draw pictures of surjective, injective, and 
bijective set maps. Then, when Dr. K asked for other traits of isomorphisms or isomorphic 
groups, she called on a woman to share group 4’s contribution. The woman claimed all mappings 
of corresponding elements had to be the same. Dr. K then asked for other traits, and a man from 
group 7 asserted the group tables (likely referring to Cayley tables) had to look the same. Dr. K 
wrote these contributions on the board and called on group 8 to share; a man from that group said 
isomorphic groups have the same order, but they wondered if they have the same operation. Dr. 
K elaborated on these contributions, and posed a new task to the class to decide whether 
isomorphic groups need to have the same operation. After working in groups, Dr. K gathered 
back the class. She asked if isomorphic groups can have different operations, and a student 
mumbled “yeah.” Dr. K remined students of the example of the rotations of a square and ℤ$ 
having different operations but still being isomorphic groups. She then wrote the beginning of 
the formal definitions of isomorphic and isomorphism on the board, and she referred to group 4 
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and 7’s informal ideas of homomorphisms. Students were asked to formalize those ideas using 
function notation, which they worked on for the rest of class. 

Dr. C’s class. Dr. C reminded the students of their previous task, in which they saw the 
group in the mystery table was isomorphic to !". He told students to write their own definition 
of isomorphic groups. Students (pseudonymed W# for women and M# for men) worked 
individually, and wrote definitions on whiteboards (see Figure 2), which were displayed at the 
front of the room. Dr. C had students talk with their groups about the different definitions. Dr. C 
initiated whole class discussion to address definition 2a; W1 said she had a similar definition. 
When Dr. C asked why, W1 explained her reasoning. W2 then stated a concern about the equal 
sign in the definition. Dr. C asked what was wrong with the equal sign, and W2 explained her 
reasoning. W3 said she did the same thing (definition 2d), but wrote “corresponds” instead of 
“equals.” W2 added, “which implies there's a map.” Dr. C discussed these ideas, and recalled the 
correspondence between elements of !" and the mystery table. Discussing definition 2e, students 
claimed % ∗ ' is not necessarily in G, and they need to “split up the phi.” Dr. C discussed these 
ideas, and acknowledged the idea of correspondence in the definition. Considering definition 2b, 
M1 said, “There exists a homomorphism G to H, and there also exists a homomorphism H to G.” 
Dr. C mentioned that if M1’s definition was true, then something about the definition 2b had to 
be wrong. Dr. C claimed definition 2c required a bijection, 2b required a homomorphism, and 2f 
required the existence of both. He then asked students to think of counterexamples to definitions 
2b and 2c. After students worked in their groups, Dr. C called on W4 to share her 
counterexample. W4 described the trivial homomorphism that maps every element of G to the 
identity of H. When Dr. C asked W4, “Why is it not isomorphic?” W4 said this homomorphism 
could exist between groups with different numbers of elements. Dr. C asked for other comments, 
and M3 elaborated on W4’s example. Dr. C then asked if groups with the same number of 
elements were always isomorphic; W5 explained her counterexample. Dr. C then led students to 
prove or give a counterexample to M1’s idea, and M4 clarified that the homomorphism from H 
to G in M1’s definition should be the “inverse that maps H to G.” When Dr. C asked why, M4 
explained his reasoning. Dr. C then explained this inverse homomorphism is a bijection, and he 
finalized the definitions of isomorphic groups and isomorphism. 

Figure 2. Student written definitions of isomorphic groups from Dr. C’s lesson 
 

Comparison of Dr. C’s and Dr. K’s practices. Here Dr. K and Dr. C exhibited differences 
in how they elicited student reasoning and contributions. Dr. K elicited characteristics students 
noticed about isomorphisms and isomorphic groups, but did not seem to elicit their reasoning. 
Dr. C, however, elicited students’ reasoning by asking follow-up questions. Dr. K and Dr. C also 

   
(a) (b) (c) 

   
(d) (e) (f) 
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exhibited differences in how they responded to student contributions and then used those to 
inform the lesson. Dr. K primarily elaborated on students’ contributions; she accepted one-to-one 
and onto as characteristics of an isomorphism and then lectured on those definitions, without 
asking the students why or how they developed those ideas. Dr. C also elaborated on students’ 
responses, but sometimes did not respond, allowing opportunities for other students to respond. 
Instead of accepting the definition of isomorphism in 2f, Dr. C led students to find 
counterexamples to see why it is necessary to have a bijective homomorphism between two 
isomorphic groups. Dr. K and Dr. C also exhibited differences in engaging students in each 
other’s reasoning. Both instructors engaged students in each other’s reasoning by assigning 
follow-up tasks in response to their contributions. However, during class discussion, Dr. K’s 
students primarily talked to her and not each other, whereas Dr. C’s students often spoke to each 
other about their reasoning without being called on. Although Dr. K seemed to do most of the 
talking in her lesson, she claimed in her entrance interview that she was trying to get better at not 
dominating class discussions. She said she wanted students to talk to each other instead of 
talking to her, but this did not seem to be enacted in her class discussion. In Dr. C’s entrance 
interview, he claimed his overarching goal is to get everybody involved somehow. He also 
explained his class rule that his students are not allowed to judge each other. This might 
contribute to students’ evident ease in participating in class discussion. 

Discussion 
Provision of equitable participation opportunities for students seems to be related to equitable 

learning outcomes. Since women in Dr. C’s and Dr. K’s classes had different achievement 
outcomes on the GTCA (Melhuish, 2015), we explored the differences in provision of 
opportunities for men and women to participate in class discussion. Women in Dr. C’s class 
participated proportionally more than men did, while women in Dr. K’s class participated less 
than men did, considering the equity ratios of participation. We found women in both classes 
were under-represented when Dr. C or Dr. K called on a volunteer. This finding aligns with 
Leyva’s (2017) claim that mathematics is a masculine space, and men are more confident in 
volunteering to participate. The cause for the disparity in women’s participation in Dr. K’s class 
and women’s limited volunteerism in Dr. C’s class is unknown, yet prior research makes it 
reasonable to believe that women’s lack of mathematical confidence may be a contributing factor 
(Ellis, Fosdick, & Rasmussen, 2016; Lubienski & Ganley, 2017). Future research can explore 
how equitable participation in class discussion relates to equitable achievement outcomes. 

We  also found differences in Dr. C’s and Dr. K’s instructional approaches during class 
discussion. We found significant differences in their methods for soliciting student participation 
and in their responses to student contributions. Our qualitative descriptions of Dr. K’s and Dr. 
C’s classes also highlighted some differences in their teaching practices, which we hypothesize 
might contribute to the differences in their students’ achievement. We found Dr. K primarily 
elaborated on student responses without asking follow-up questions, whereas Dr. C asked 
follow-up questions to students’ responses to inquire into their reasoning. Also, students in Dr. 
K’s class primarily talked to her during class discussion instead of to other students, while Dr. 
C’s students talked to each other, possibly because of his rule of no judgment. We hypothesize 
women might benefit from instructors inquiring into their reasoning, as this might position them 
as competent learners of mathematics. Women might also benefit from participating in class 
discussion in an atmosphere of no judgment, for this might enhance their mathematical 
confidence. Future research can explore which teaching practices give equitable learning 
opportunities for women. 
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Research on student understanding of eigentheory in linear algebra has expanded recently, yet 
few studies address student understanding of the Characteristic Equation (CE). In this study, we 
explore students’ conceptual and procedural knowledge of deriving and using the CE. 
Consulting Star’s (2005) characterization of deep and superficial conceptual and procedural 
knowledge, we developed the Conceptual and Procedural Knowledge framework for classifying 
the quality of students’ conceptual and procedural knowledge of both deriving and using the CE 
along a continuum. Most of our students exhibited deeper conceptual and procedural knowledge 
of using the CE than of deriving the CE. Furthermore, most students demonstrated deeper 
procedural knowledge than conceptual knowledge of deriving the CE. Examples of student work 
are provided, and implications for instruction and future research are discussed. 
 
Keywords: procedural knowledge, conceptual knowledge, linear algebra, eigentheory 
 

Considering recent demands for enhanced student understanding of concepts in science, 
technology, engineering, and mathematics fields, education researchers are tasked with exploring 
how students make sense of mathematical concepts in interdisciplinary settings. Our study 
focuses on quantum physics students’ understanding of eigentheory in linear algebra. 
Eigentheory encompasses topics related to eigenvalues, eigenvectors, and eigenspaces. Students 
encounter eigentheory in a variety of contexts and courses, such as linear algebra, differential 
equations, numerical analysis, and quantum physics. Thus, it is essential for researchers to 
examine student understanding of eigentheory due to its interdisciplinary nature. This situates 
our work that investigates how students reason about and symbolize eigentheory in linear algebra 
and in quantum physics (Project LinAl-P, NSF-DUE 1452889).   

A central tool often used to calculate the eigenvalues of an ! × ! matrix A is the 
characteristic equation (CE) of A, defined as #$%(' − )*) = 0, for an ! × ! identity matrix I 
and scalar λ. The determinant of ' − )*	gives the characteristic polynomial of A, and the roots of 
this polynomial are the eigenvalues of A. In addition to symbolically representing a procedure, 
the CE is conceptually related to the Invertible Matrix Theorem (IMT, Lay, 2003). The CE can 
be derived from the eigenequation '/ = )/, by subtracting )/ from both sides ('/ − )/ = 0), 
introducing the identity matrix to get the homogeneous equation (' − )*)/ = 0, and making 
connections to the IMT. For example, one can recognize that for the equation (' − )*)/ = 0 to 
yield more than just the trivial solution for / (as eigenvectors cannot be the zero vector), the 
matrix ' − )*	must not be invertible, which implies that the determinant of ' − )*	must be zero.  

Instructors want their students to conceptually understand these connections between the CE, 
the IMT, and related eigentheory concepts, yet some researchers posit that students struggle to do 
so (e.g., Bouhjar, Andrews-Larson, Haider, & Zandieh, 2018). Bouhjar et al. claimed: 

There is a disconnect between students' understanding of standard procedures for finding 
eigenvalues and the formal definition of an eigenvector and eigenvalue, and… students 
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are more able to execute the standard procedure than draw on conceptual understandings 
aligned with the formal definition. (p. 213) 

This disconnect seemed apparent in our own interview data with quantum physics students 
regarding their understanding of eigentheory. Although most of the students participating in our 
study successfully determined the eigenvalues of a given 2×2 matrix during an interview task, 
several students volunteered, sometimes unprompted, that they did not know why the CE is used 
or is true. When discussing why the determinant of ' − )*	must be zero to solve for the 
eigenvalues ) of A, some of the students explained, “That’s just what I was taught,” and the CE 
is true “because of something in linear algebra that says it needs to be this way.” Another student 
explicitly expressed this focus on the procedure: "I remember learning why [using the CE] is the 
thing that I do. But… if I ever encounter a problem where I need eigenvalues, like, this is the 
first thing that comes to mind and not like where that comes from." This emphasis on the 
procedural use of the CE in our interview data led us to explore students’ conceptual and 
procedural knowledge of the CE. We address the following research question: How do quantum 
physics students reason with and about the CE?  
 

Literature Review 
Various research studies (e.g., Boujar et al., 2018; Çağlayan, 2015; Gol Tabaghi & Sinclair, 

2013; Plaxco, Zandieh, & Wawro, 2018; Salgado & Trigueros, 2015; Thomas & Stewart, 2011) 
have explored student understanding of eigenvalues, eigenvectors, and related concepts, yet we 
have not found any that specifically focus on characterizing students’ understanding and use of 
the CE. Thomas and Stewart (2011) focused on how students interpreted '/ = )/, finding many 
students were comfortable with the procedural algebraic manipulations of matrices and vectors, 
as in Tall’s (2004) symbolic world, but the students did not hold embodied ideas regarding 
eigenvalues and eigenvectors. They asserted that students’ fluency in symbolic manipulations 
should be paired with understanding what the symbols represent. In particular, they pointed out 
the importance of understanding the resulting product on both sides of the equation '/ = )/ is 
the same vector and understanding why the identity matrix is used in transitioning from '/ = )/ 
to (' − )*)/ = 0, which many students in their study struggled to articulate.   

Other studies demonstrated students’ rich understanding of connections between concepts 
related to eigenvalues and eigenvectors (e.g., Larson, Rasmussen, & Zandieh, 2008; Salgado & 
Trigueros, 2015; Wawro, 2015). Wawro (2015) exemplified a student who made connections 
between statements in the IMT by reasoning about solutions to matrix equations, span, linear 
independence, null space, and the eigenvalue zero. Larson, Rasmussen, and Zandieh (2008) 
highlighted one student’s ability to make connections between linearly dependent column 
vectors and the zero determinant of a matrix by reasoning about determinant graphically as the 
area of a parallelogram formed by two column vectors. More directly related to student 
understanding of the CE, Salgado and Trigueros (2015) described the reasoning of a group of 
three students who derived the CE without prior instruction by making connections to statements 
in the IMT, demonstrating conceptual understanding needed to reinvent the CE on their own.  

Most relevant to our current study, Bouhjar et al. (2018) characterized students’ responses to 
an open-ended written question that asked if 2 was an eigenvalue of a given 2x2 matrix. The 
authors claimed students who reasoned about the determinant used a more procedural approach, 
and students who reasoned about the matrix ' − )* without computing the determinant used a 
more conceptual approach, as characterized by Hiebert and Lefevre’s (1986) definitions of 
conceptual and procedural knowledge. However, the authors described their difficulty in 
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classifying written work as demonstrating conceptual or procedural knowledge of the CE: 
It was often unclear from the responses of students who used the standard procedure 
[seeing if det(' − 2*) = 0] whether they understood links among the equation used in 
defining eigenvectors, the solution set of (' − )*)/ = 0, and the equivalencies in the 
invertible matrix theorem that lead to use of the determinant as a tool for determining 
when the solution is non-trivial. (p. 212) 

Furthermore, since many students simply used the CE to find the eigenvalues of A directly with 
no other explanation, the authors were unable to explore those students' conceptual 
understanding of derivation of the CE. Bouhjar et al. claimed more work is needed to distinguish 
whether a student using the CE to find eigenvalues just uses the procedure by rote or actually has 
deep conceptual understanding of why the CE works. Our analysis of students’ interview 
responses about the derivation and use of the CE contributes toward this need by characterizing, 
along a continuum, students’ conceptual and procedural knowledge in this context.  
 

Theoretical Background 
Conceptual Knowledge (CK) and Procedural Knowledge (PK) are qualitative constructs 

commonly used by mathematics education researchers to classify students’ mathematical 
knowledge. Hiebert and Lefevre (1986) defined CK as “knowledge that is rich in relationships… 
a connected web of knowledge, a network in which the linking relationships are as prominent as 
the discrete pieces of information” (p. 3-4). They defined PK as “familiarity with the individual 
symbols of the system and with the syntactic conventions for acceptable configurations of 
symbols” (p. 7), which consist of “rules or procedures for solving mathematical problems” (p. 7). 
Star (2005) argued that these definitions conflate students’ type of knowledge with quality of 
knowledge, as if PK could never be as rich in connections as CK. Star further argued that 
holding CK is not necessarily better than PK; rather, both types of knowledge are essential for 
consummate understanding of mathematics. Thus, Star (2005) proposed classifying knowledge 
according to both quality (either deep or superficial) and type (either procedural or conceptual). 
He defined deep PK as “knowledge of procedures that is associated with comprehension, 
flexibility, and critical judgment” (p. 408). A student demonstrates deep PK when (s)he can 
provide a “cogent explanation of how the steps are interrelated to achieve a goal" (Baroody, Feil, 
& Johnson, 2007, p. 119). Superficial PK is knowledge of procedures that is not richly connected 
(Star, 2005). Star characterized deep CK as richly connected knowledge of concepts, and 
superficial CK as knowledge of concepts that is not richly connected.  

Classifying students’ knowledge quality as deep or superficial can seem quite extreme, given 
that not all students exhibit strictly deep or superficial CK and PK. Therefore, we propose 
including a moderate knowledge quality as a classification for students who demonstrate deeper 
knowledge than students exhibiting superficial knowledge, yet less deep knowledge than those 
exhibiting deep CK or PK. We offer a framework for characterizing aspects of students’ 
Superficial, Moderate, and Deep CK and PK of the CE, as described in the Methods section. 
 

Methods 
The data for this study consist of video, transcript, and written work from individual, semi-

structured interviews (Bernard, 1988), drawn on a voluntary basis, with 17 students enrolled in a 
quantum mechanics course. The interviews occurred during the first week of the course. Nine of 
the students were from a junior-level course at a large public research university in the northwest 
United States (school A), and the other eight were in a senior-level course at a medium public 
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research university in the northeast United States (school C). All students are pseudonymed with 
“A#” or “C#.” Interview questions aimed to elicit student understanding of several linear algebra 
concepts which they would use in the quantum mechanics course. 

For this paper, we focus on students’ attempts to recall, derive, and/or use the CE within their 
response to one particular interview question. Students were first asked, “Consider a 2 × 2	matrix 
' and a vector 4/56. How do you think about ' 4/56 = 2 4/56?” After follow-ups inquiring if they had a 
geometric or graphical way to think about the equation and how they thought about the equal 
sign in this context, students were asked how they thought about the equation if ' = 44 2

1 36 and to 
determine values of / and 5 that would make the equation true. Finally, students were asked to 
find the eigenvalues and eigenvectors of ', if they had not already done so. Note the interview 
question was designed so the terms “eigenvector” and “eigenvalue” were not used until the end; 
however, many students immediately recognized the first matrix equation as an eigenequation 
and often brought up eigentheory ideas on their own. 

To begin our analysis, we wrote detailed descriptions for each student of their work on the 
aforementioned interview task, focusing on their reasoning about the CE. These descriptions 
contained evidence from the transcripts and images of students’ written work. Using these 
descriptions, and consulting Star’s (2005) definitions of deep and superficial CK and PK, we 
began to develop the Conceptual and Procedural Knowledge (CPK) framework for the CE (see 
Figure 1). The CPK framework describes characteristics of student work demonstrating both CK 
and PK across two dimensions: deriving the CE and using the CE. Through discussing the 
knowledge qualities demonstrated by the students in the context of the eigenvalue task, we 
developed lists of characteristics of student work demonstrating Superficial, Moderate, and Deep 
PK and CK for both deriving and using the CE. These lists were revised and organized into the 
CPK framework, which was used to code each student’s response to the eigenvalue task. 

 

Figure 1. Conceptual and Procedural Knowledge (CPK) framework for the CE 
 
We now briefly explain each of the four rows of the framework. PK of deriving the CE 

 N/A Superficial  Moderate Deep 

Procedural 
Knowledge 
of Deriving 

the CE 

Does not attempt to 
write the CE 

Incorrectly writes the CE (e.g., 
' − )* = 0) and does not 
attempt to explain the 
symbolic derivation of the CE 

Attempts to write the CE and 
make connections between '/ =
)/, (' − )*)/ = 0, and  
|' − )*| = 0, but uses symbols 
incorrectly �

Accurately manipulates symbols 
among '/ = )/, (' − )*)/ = 0, 
and |' − )*| = 0 to derive the CE, 
and writes the CE correctly 

Conceptual 
Knowledge 
of Deriving 

the CE 

Does not attempt to 
explain how the CE is 
derived  

States they do not know where 
the CE comes from or gives 
irrelevant explanation of how 
the CE is derived  

Gives explanation of how the CE 
is derived from (' − )*)/ =		0 
that is relevant to the IMT, yet 
incorrect 

Accurately explains how the CE 
is derived from (' − )*)/ =	0, 
while referencing connections to 
the IMT  

Procedural 
Knowledge 
of Using the 

CE 

Does not use the CE 
procedure to find 
eigenvalues 

Correctly uses the CE 
procedure to find eigenvalues, 
without exhibiting fluency in 
algebraic manipulations or 
rigor in the calculations  

Correctly uses the CE procedure 
to find eigenvalues, while 
exhibiting either fluency in 
algebraic manipulations or rigor 
in the calculations  

Correctly uses the CE procedure 
to find eigenvalues, while 
exhibiting both fluency in 
algebraic manipulations and rigor 
in the calculations 

Conceptual 
Knowledge 
of Using the 

CE 

Does not recognize 
eigenvalues are the 
results of using the CE 
and does not use or 
discuss the resulting 
eigenvalues in the 
context of other 
eigentheory concepts 

Recognizes eigenvalues are 
the results of using the CE but 
does not use or discuss the 
resulting eigenvalues in the 
context of other eigentheory 
concepts 

Recognizes eigenvalues are the 
results of using the CE and 
makes only one connection 
between the eigenvalues resulting 
from the CE and other 
eigentheory concepts; OR makes 
two or more connections with at 
least one being incorrect 

Recognizes eigenvalues are the 
results of using the CE and 
correctly makes two or more 
connections between the 
eigenvalues resulting from the CE 
and other eigentheory concepts. 
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entails symbolically moving from the eigenequation '/ = )/�to the homogeneous equation 
(' − )*)/ = 0, and introducing the determinant to get |' − )*| = 0. CK of deriving the CE 
involves making connections to the IMT to explain why the determinant of ' − )* must be zero. 
PK of using the CE involves knowing the CE is an appropriate procedure to use to find 
eigenvalues and demonstrating fluency (i.e., ease of carrying out calculations) and rigor (i.e., 
making sure to write “= 0” at each step) in employing the CE. CK of using the CE entails 
understanding that the solutions of the CE are eigenvalues and making connections to other 
aspects of eigentheory (e.g., recognizing that the found eigenvalue 2 is the same 2 as in the 
original equation, plugging the found eigenvalues into '/ = )/ or (' − )*)/ = 0 to attempt to 
find the eigenvectors, explaining what the found eigenvalues mean geometrically). For this last 
row, it is important to note that only the correctness of the connection was judged (e.g., plugging 
the eigenvalue into a correct equation like '/ = )/ or (' − )*)/ = 0), not their knowledge of 
finding eigenvectors, or even what the equations in eigentheory mean. In the Results section, we 
explain how this framework helped us gain further insight into students’ CK and PK of the CE.�
�

Results 
Responses of 3 of the 17 participating students were coded as “N/A” in all four categories, 

and one was coded as “N/A” in all but one category; thus, we focus our Results section on 
analyzing the remaining 13 students. Our four-part theoretical framework allowed us to unpack 
different aspects of students’ understanding of the CE. The number of students exhibiting N/A, 
Superficial, Moderate, and Deep knowledge in each of the four categories is provided in Table 1. 
We share three prominent results from our analyses in the remainder of this section. 

 
Table 1. Number of students exhibiting N/A, Superficial, Moderate, and Deep PK and CK of the CE  

 N/A Superficial Moderate Deep 
PK of Deriving the CE 0 3 8 2 
CK of Deriving the CE 0 10 2 1 
PK of Using the CE 1 2 5 5 
CK of Using the CE 1 1 3 8 

 
First, our CPK Framework for the CE illuminated that three students (A8, A11, and C5) showed 
relatively high sophistication in using and deriving the CE. In particular, two students 
demonstrated Deep knowledge in three of the four areas and moderate knowledge in a fourth, 
and another student showed deep knowledge in two areas and moderate knowledge in the other 
two categories. Taking A8 as a particular example, he first manipulated '/ = )/ cleanly into 
(' − )*)/ = 0 (see Figure 2a), demonstrating Deep PK of deriving the CE. He then correctly 
stated there is a nonzero solution for x when ' − )* is singular, connecting the CE to the IMT 
and exhibiting Deep CK of deriving the CE. When using the CE, A8 correctly calculated the 
eigenvalues with no apparent difficulty. However, his notation was somewhat improper, 
manipulating the polynomial in the CE by itself rather than as an equation (see Figure 2b). For 
this reason, we coded this as showing Moderate PK (partially due to this omission being 
associated with other common student errors in factoring). After finding the eigenvalues, A8 
showed Deep CK by making connections both to finding eigenvectors using (' − )*)/ = 0	and 
to the previous part of the problem, where the eigenvalue 2 was given in an eigenequation. 

Second, our data showed that the students in our study were better at using the CE than 
deriving the CE, both procedurally and conceptually. Students’ CK of using the CE seemed 
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(a) 
 

(b) 
Figure 2. (a) A8’s symbolic derivation of the CE; (b) A8’s use of the CE 

 
stronger than their CK of deriving the CE, seen as 10 out of 13 students exhibited Superficial CK 
of deriving the CE, but only 1 out of 13 students exhibited Superficial CK of using the CE. Also, 
only 1 of 13 students exhibited Deep CK of deriving the CE, but 8 out of 13 exhibited Deep CK 
of using the CE. C3 exemplified this trend of exhibiting deeper CK of using the CE than of 
deriving the CE, as he demonstrated Superficial CK of deriving the CE and Deep CK of using 
the CE. In particular, when asked to find the eigenvalues and eigenvectors of A, C3 first wrote an 
appropriate homogeneous equation (Figure 3a), crossed out the “equals zero,” and said it was the 
determinant of that which equaled zero (Figure 3b). He then explained he could cross out the 4/56 
“because you’re dividing it out,” claiming the vectors in the eigenequation '; = ); cancel (see 
Figure 3c). Once C3 found 2 and 5 as the eigenvalues of A, he mentioned “you could have given 
me 5,” in reference to the original	'/ = 2/ equation, and he used '/ = 5/ to find other 
eigenvectors. Even though C3 did not seem to figure out a conceptual derivation of the CE, he 
recognized the CE solutions as eigenvalues and made connections between those and the 
eigenequation to find eigenvectors. This exemplar illustrates our result that our students 
connected the CE with eigentheory concepts, but they did not seem to know why the CE is true. 

 

 
 

(a) 
 

(b) 
 

(c) 

Figure 3. C3's written work for his derivation of the CE 
 

Furthermore, students in our study seemed to have stronger PK of using than of deriving the 
CE (see Table 1). Most students wrote the CE correctly or made small mistakes writing it, but 
did not accurately make connections between equations like '/ = )/, (' − )*)/ = 0 and 
|' − )*| = 0. However, most students had little difficulty in using the CE to find eigenvalues. 
C3 exemplified this trend because he demonstrated Deep PK of using the CE and Moderate PK 
of deriving the CE. C3’s symbolic manipulations (see Figure 3) revealed he could not accurately 
derive the CE from the eigenequation. Nevertheless, he fluently and rigorously used the CE. 

Lastly, in comparing students’ PK to their CK within both dimensions, contrasting trends 
emerged. In deriving the CE, all students demonstrated PK that was as deep or deeper than their 
CK. In some ways, this is not surprising as many students (10 of the 13) did not make any 
connection to the IMT in their explanation of deriving the CE, but most (10 of the 13) wrote the 
CE correctly and/or made connections to '/ = )/ or (' − )*)/ = 0. By contrast, looking at 
using the CE, a majority of students (11 of the 13) demonstrated CK that was as deep or deeper 
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than their PK. Looking back at A8 as a particular example, recall that he fluently found 
eigenvalues and connected them back to both the homogeneous equation and the equation given 
in the initial problem statement (demonstrating Deep CK for using the CE), but did not 
rigorously write “= 0” after each step in the calculations (demonstrating moderate PK for using 
the CE). We recognize this trend between PK and CK in using the CE is largely a result of the 
choices we made on characterizing “deep knowledge” within each dimension. In particular, we 
note that categorizing students who do not rigorously write “= 0” as having Moderate PK in 
using the CE (such as A8), and categorizing students who correctly connected the found 
eigenvalues to other eigentheory elements as having Deep CK in using the CE, regardless of 
their abilities to find eigenvectors or explain what eigenvalues mean, are subjective decisions. 
However, we feel our analysis highlights that many students do know how to find the values of ) 
that make |' − )*| = 0 true, despite work that appears non-rigorous, and understand how this 
process produces the eigenvalues, which are essential to all other aspects of eigentheory. 
 

Conclusion 
Using the CPK framework to code students’ interview responses allowed us to distinguish 

students’ type and quality of knowledge of both using and deriving the CE. We captured student 
understanding of deriving the CE, which was not accessible in the written data in Bouhjar et al.’s 
(2018) study; hence, our work addresses their call to determine whether students employing the 
CE to find eigenvalues only know how to use the procedure or also understand how it works. We 
found the students in our study were better at using the CE than deriving it. Most students 
experienced little to no difficulty in using the CE to find eigenvalues and making connections to 
other eigentheory concepts, but they seemed to struggle with knowing how it is derived 
conceptually. To address this lack of Deep CK, instructors could intentionally enhance students’ 
understanding of the IMT and help them make connections to it while deriving the CE. 
Instructors could also emphasize precision in symbolically deriving the CE to help students learn 
how to accurately manipulate symbols associated with eigentheory concepts.  

This study offers a theoretical contribution regarding the addition of the classifications N/A 
and Moderate to delineating the quality of PK and CK; these allow for finer nuance in classifying 
the quality of students’ CK and PK. In the CPK framework, we also offer the distinction of 
student understanding of deriving and using the CE to provide more insight into how students 
think about these different aspects. The CPK framework can be generalized for investigating 
student understanding of topics in linear algebra and other areas of mathematics, but the 
characteristics of student work listed in each cell of the framework may change, depending on 
the mathematical content and the nature of the tasks students perform. This framework seems 
most useful for analyzing student interview data, since interviewers can prompt students to both 
perform procedures and explain their thinking about concepts. To use the CPK framework with 
written data, the written tasks should elicit evidence of students’ reasoning about both the 
derivation and use of the mathematical topic. Further research can explore how bidirectional 
relations form between CK and PK, as proposed by Rittle-Johnson and Schneider (2015), 
focusing on the how students’ CK of the CE supports their PK of the CE, and vice versa.  
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Examining Prospective Secondary Teachers’ Curriculum Use and Implications for Professional 
Preparation 

 
 Ariel Setniker Lorraine M. Males 
 University of Nebraska-Lincoln University of Nebraska-Lincoln 

 
In this paper, we share findings around four prospective secondary mathematics teachers’ 
attention to varying curricula while planning an algebra lesson. We specifically address how 
their attention interacted with their interpretations of and responses to the curriculum materials 
via idea sequences, and further we study how the format of the curriculum materials plays a role 
in influencing these interactions. We discuss the result that sequences of interpretations and 
responses are always initiated by attention for PSTs, which itself is influenced by curriculum 
elements and format. We end with a discussion of implications around the need for curriculum 
use practices in teacher education and professional development. 

Keywords: Curriculum, Graduate Teaching Assistant, Professional Development, Prospective 
Secondary Teachers, Teacher Training 

Research shows that historically, written curriculum materials play a large part in a teacher’s 
lesson planning. However, the literature suggests that teachers are not prepared to learn to use 
curriculum materials in adaptive and flexible ways (Drake, Land, & Tyminski, 2014). Since 80% 
of practicing teachers use some form of curriculum materials in their instruction (Banilower, et 
al., 2013), teacher educators need to support prospective teachers in learning to use materials. 
While research indicates that curriculum materials have the most direct influence on what 
teachers actually plan for and enact in their classroom (Brown & Edelson, 2003) and influence 
what students have opportunities to learn (Matsumura et al., 2006), we still know little about how 
curriculum materials exert this influence (Stein, Remillard, & Smith, 2007). This paper focuses 
on how prospective secondary teachers (PSTs) interact with curriculum materials by examining 
their curricular noticing, or what they attend to in curriculum materials, how they interpret what 
they attend to, and how they respond to the curriculum materials. Specifically, we describe how 
curricular interpretations and responses relate to curricular attention. 

Theoretical Background 
Throughout the past few decades, efforts have been made to develop research-based 

descriptions or models for how teachers use curriculum materials (Lloyd, Cai, & Tarr, 2017). 
And despite varying descriptions of this use (e.g. Brown & Edelson, 2003; Brown, 2009; 
Choppin, 2009, Geuedet & Trouche, 2009; Pepin, Geuedet, & Trouche, 2013; Remillard & 
Bryans, 2004; Sherin & Drake, 2009), each of these descriptions share the perspective that 
curriculum use involves some kind of interaction between teachers and materials. For instance, 
this interaction is described as participatory by Remillard (2005), where influence is bi-
directional, meaning that the teacher influences the material and the material influences the 
teacher. Similarly, Geuedet and Trouche (2009) suggest that teachers engage with materials in 
“documentational genesis.” They establish that documentational genesis involves two processes: 
instrumentation, the process by which curriculum materials influence what and how teachers use 
resources in the design and enactment of instruction, and instrumentalization, the process by 
which curriculum materials are influenced by the teacher. 
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Examining Curriculum Use via Curricular Noticing 
We draw on the theory that teachers’ interactions with resources are participatory (Remillard, 

2005) and use the Curricular Noticing Framework (Dietiker, Males, Amador, & Ernest, 2018) to 
describe this interaction. This framework was informed by the work in the professional noticing 
of children’s mathematical thinking (Jacobs, Lamb, & Philipp, 2010). Curricular noticing refers 
to “the set of skills that constitutes the curricular work of mathematics teaching” (Dietiker et al., 
2018, p. 524) and is comprised of three interrelated skills: Curricular Attending, Curricular 
Interpreting, and Curricular Responding. Curricular attending involves looking at information in 
curriculum materials to draw upon for the teaching and learning of mathematics, curricular 
interpreting involves making sense of what is attended to, and curricular responding involves 
making curricular decisions based on interpretations made. We visualize curricular noticing with 
Figure 1. 

 
Figure 1. The curricular noticing framework (Dietiker et al., 2018). 

While these definitions seem to imply a sequence, Dietiker et al. (2018) propose that this 
process may not unfold in a strictly linear fashion. For example, while a response relies on a 
curricular interpretation of something attended to, an interpretation may trigger a teachers’ 
attention, or a particular response may result in attention.  

Purpose and Research Questions 
The main purpose of this paper is to describe how PSTs interact with curriculum materials, 

with a focus on the relationship between interpretations and responses and what teachers attend 
to, and how the curriculum materials influence attention. Specifically, we address the following 
research questions: 

1. How do PSTs’ curricular interpretations and curricular responses interact with their 
attention to the curriculum materials? 

2. How do curriculum elements and format of each set of curriculum materials influence 
PSTs’ attention? 

By curriculum elements, we mean distinguishable parts of the curriculum materials such as 
sentences, phrases, representations, and images. We intentionally selected ‘element’ rather than 
‘feature’ since features often include multiple sentences or paragraphs in curriculum materials. 
This allows us to describe the skills of curricular noticing piece-by-piece rather than by broad 
sections. The format that we refer to means the way elements are organized and how the 
curriculum appears. This includes not only color and location of student and teacher materials, 
but also ‘embeddedness’ of teacher supports (Beyer, Delgado, Davis, & Krajcik, 2009). A 
resource with embedded supports integrates teacher support within the directions and content for 
enacting activities found in the student version of the resource. Curriculum materials of this 
category often present teacher materials and student materials on separate pages. On the other 
hand, we see non-embedded supports in resources that have teacher support close to, but 
separate, from portions intended for students. Often this occurs on the same page. 
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Methodology 

Participants and Data Collection 
Our participants were four secondary mathematics PSTs who had not yet taken any 

mathematics teaching methods courses, but had completed much of the mathematics required for 
their degree. We engaged each participant in two semi-structured think-aloud Staged Planning 
Interviews, a popular style of interview to gain insight into teachers’ use of curriculum materials 
(Males, et al., 2016; McDuffie, 2015; Reinke & Hoe, 2011). In one interview, teachers were 
asked to plan a hypothetical lesson using as a resource College Preparatory Mathematics (CPM) 
Algebra Core Connections (Dietiker, et al., 2014), and in another interview teachers were asked 
to plan using as a resource Pearson Education, Inc. (PEI) Algebra I Common Core (Charles, et 
al., 2015). We alternated which resource a teacher planned with first, meaning two PSTs planned 
a hypothetical lesson using CPM as a resource first, while the other two PSTs planned using PEI 
as a resource first. The two interviews for each participant were conducted at least a week apart. 
 
Data Analysis 

Documents and videos from the staged planning interviews were uploaded to a shared drive, 
and the glasses recordings and images of the curriculum pages were imported into Tobii Pro 
Labs (Tobii Technology, Inc., n.d.). Lastly, the glasses recordings and transcripts were imported 
into a qualitative analysis software program. In order to address attention, we used Tobii Pro 
Labs to map the gaze data recorded by the glasses to each of the curriculum pages. This data was 
in turn used to create timelines which illustrate when PSTs were attending to student and teacher 
materials (i.e., looking anywhere on the student or teacher portions of pages) and when they were 
not attending to the curriculum materials at all (i.e., looking at their written lesson plan, the 
interviewer, or other places in the room). 

To address the interactions of interpretations and responses with attention, we coded the 
PSTs’ transcripts. We assigned an Interpret code when a PST engaged in sense-making and a 
Respond code when PSTs made a curricular decision related to what to include (or not include) 
in their lesson plans. Once coding was complete, we studied PSTs’ thought processes via idea 
units. We define an idea unit as a period of time within the transcript during which a PST 
focused on one big idea. Within these idea units, we identified idea sequences by recording the 
sequence of curricular attention, interpretations, and responses. For example, when Fay discusses 
her thoughts around the problems following the introductory problem in the PEI lesson, we 
generated the idea sequence in Figure 2. 

 
Figure 2. An example of an idea sequence. 

Results & Discussion 
Figure 3 illustrates each PST’s attention to the curriculum materials for CPM and PEI across 

the planning sessions. The black portions indicate times when the PST was not attending to the 
curriculum materials (e.g., looking at their lesson plan or other things in the room) whereas blue 
and yellow indicate attention to the student and teacher materials, respectively. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 551



 
Figure 3. Attention across the planning session by curriculum and PST. 

The timelines show that PSTs were shifting frequently between attending to student and 
teacher materials, with 40-85% of their attention time for both sets of materials devoted to 
student materials. When planning with both sets of materials, three PSTs spent more time 
attending to student rather than teacher materials. Cody was the opposite, spending more time 
attending to the teacher materials in both planning sessions. Looking across the curriculum 
materials, the timelines illustrate that PSTs shifted between teacher and student more frequently 
for PEI and that they attended for shorter amounts of time before switching compared to CPM. 

While attending (blue and yellow in the figure), PSTs were simultaneously interpreting and 
responding to the curriculum materials. For instance, for three of the four PSTs, we see heavy 
concentrations of attention in the beginning of the CPM planning periods. Our idea sequences 
indicate PSTs were attempting to make sense of the unfamiliar format and content of the 
materials, often looking back at preceding portions of the text and spending considerable 
amounts of time interpreting. For example, during this time, PSTs were interpreting the reason 
for what seems to be provided answers in the student portion of the materials, such as Grant who 
states “I’m assuming that this…they ask me to write an equation at the top that represents the 
table below. But then they give me the equation?” Over the course of two and a half minutes, he 
comes to the realization that the bolded answers are not included in the materials given to the 
student. The unfamiliar content also seemed to necessitate more attention and interpretation. For 
example, Cody, who spent 22 more minutes planning his CPM lesson than his PEI lesson, 
struggled to make sense of the lesson content, specifically what was meant by a tile pattern. At 
the beginning of his planning sessions, he spent more time searching for information from the 
teacher materials (yellow in his timeline) and working out his ideas on his scratch paper (black in 
his timeline) as seen in Figure 4. 
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Figure 4. An excerpt from Cody’s scratch paper. 

Cody first thought that tiles meant a grid of some sort. Then he drew what appears to the left 
in the figure followed by what appears to the right as he said “So they want to look at tiles… 
something like that…I see they’re trying to bring in some physical type of thing… but to me a 
normal grid just kind of makes more sense so I’d probably just keep going with the x-y axis.”  

Towards the end of the CPM planning periods, PSTs went back to portions they had initially 
attended to, attending again and then interpreting the intended trajectory or concept before 
responding based on the alignment of the perceived structure with their own beliefs on how a 
lesson on slope should be carried out.  

In contrast, during PEI planning, we see heavy concentrations of attention throughout the 
entire planning period for each PST. Examining the idea sequences, we see that many more 
responses are made, along with interpretations, in the beginning half of these periods as 
compared to PSTs planning with CPM where responses were made towards the end of the 
planning periods. The most common interpretations involved PSTs making sense of the 
introductory slope problem and deciding quickly to adapt or supplement this because it was not 
“real-world” enough or approached in the way they would like, such as Stanley who says  

…But that’s not how I would actually solve that problem in the real world. Because 
really you just want to take 1 over 0.25, equals 4. 4 over 1 equals 4. 7 over 1.75 equals 4. 
Use those comparisons. I know these are mathematically equivalent, but this is just a little 
more roundabout and confusing. 
Our idea sequences indicated that PSTs began to work with new ideas by attending, meaning 

each of our idea sequences began with an Attend code. We also saw that, particularly for CPM, 
that attending to one curriculum element often led to attention (or repeated attention) to other 
elements. For example, after reading briefly through the CPM teacher materials around problem 
2-12, when attending to the student materials Cody interprets problem 2-12 saying it “seems kind 
of obvious.” He then initially responds by deciding not to use the problem in his plan. However, 
he goes back to the teacher materials and attends to the suggestions for problem 2-13 and notices 
that the problems are linked, with 2-12 providing valuable experience, so he decides to use both 
problems.  

Our analysis indicated that idea sequences were different across materials. The average 
duration of the sequences was longer when PSTs were planning with CPM. In addition, when 
planning with CPM, in the first half of their planning period, PSTs had many more idea 
sequences that only involved Attend and Interpret codes (21 out of 53 idea sequences across all 
PSTs), while with PEI there were many more Respond codes in the beginning of the planning 
periods (32 out of 49 idea sequences across all PSTs). This means that PSTs made planning 
decisions much more quickly in their planning period for PEI than they did for CPM. 
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Implications for Teacher Education and Curriculum 

This study provides insight into how different PSTs approach the same curriculum materials 
and produce a plan to enact in the classroom. Understanding the process of how PSTs plan using 
curriculum materials has implications for teacher education programs and curriculum 
development. First, this study suggests that format largely influences attention. All four PSTs in 
this study tended to switch back and forth more quickly between student and teacher materials in 
PEI, the non-embedded curriculum materials, and further made quicker decisions when planning 
with a resource of this format. These occurrences may result in many teacher suggestions being 
missed, or at the very least misunderstood. When attention is so short in duration to particular 
curriculum elements, it may be difficult for teachers, particularly early career teachers who have 
less experience with curriculum materials, to interpret and respond while planning for 
instruction. This points to the need for attention optimization in curriculum development. 

Further, we see from this study that PSTs require opportunities to learn to use curriculum 
materials. Since this study showed that PSTs interacted differently with varying curricula, we 
advocate in the same way as Drake, Land, and Tyminski (2014): PSTs need opportunities to 
learn to use curriculum materials by interacting with different types. Teacher education also 
needs to guide PSTs in learning how to read curriculum materials. As this study exemplified, it is 
a skill to recognize and know what elements of curriculum materials are intended for teachers, 
and which are intended for students. 

Extending study to undergraduate mathematics. Like PSTs, graduate teaching assistants 
(GTAs) who are teaching undergraduate mathematics courses are also early users of curriculum 
materials as teachers. More importantly though, GTAs may have even less opportunities to 
interact with materials before using them with students. Broadly speaking, GTAs have very little 
teacher education, and yet interact with curriculum while planning lessons on a weekly basis. 
Optimizing college curriculum materials for attention and engaging GTAs in learning how to 
enact curriculum is crucial for the success of the program. 

Teaching preparation of GTAs first became a point of interest as a result of Speer, Gutman, 
and Murphy (2005). Speer and her colleagues pointed to K-12 professional development as a 
source from which to draw upon for GTA professional development, and also listed many 
directions of research to pursue from there. However, what little research we currently have on 
the topic largely focuses on case studies or development of GTA training programs. Even fewer 
studies point out the (often unmet) needs of the GTA population. We see interactions with 
curriculum materials as one such unmet need. 

What little professional development GTAs are provided in graduate school is often the first 
training they will receive (Deshler et al., 2015), and more often than not, this training is provided 
simultaneously with the required teaching of courses (Ellis, 2016). For example, mathematics 
GTAs at the author’s home university receive a three-day orientation the week before classes 
start. Examining curriculum interaction specifically, GTAs receive the opportunity of guided 
interaction with their department-provided curriculum for just an hour and a half duration out of 
their three-day orientation. This results in the majority of curriculum interaction occurring during 
the planning and enacting periods of teaching, a time when familiarity and teaching practices 
surrounding curriculum should already be developed. Further, this length of orientation time is 
only provided for first-time instructors of precalculus courses, with a curriculum that is set by the 
department and expected to be followed. GTAs which go on to teach other courses in subsequent 
years, then, have little to no training on what to look for in differing curriculum materials or how 
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to interact with them in beneficial ways. We acknowledge that this curriculum interaction 
component is not necessarily representative of GTA orientations across the U.S., and so this 
further emphasizes the need for its integration into GTA training overall as teacher educators 
work to improve the number and quality of opportunities provided to GTAs in learning to use 
curricula. 

Not only does this study point to the benefits of engaging GTAs in curriculum interaction in 
professional development, but also to the need to optimize college curriculum materials for 
attention. Since we saw that PSTs’ noticing was driven by attention via the idea sequences, we 
understand that teachers, especially those with little to no teacher training, will more likely 
engage with curriculum materials that are designed to capture attention. Without this, PSTs, 
GTAs, and practicing teachers alike are not supported in their teaching practices and are likely to 
miss important components of curriculum materials, resulting in unintended effects on student 
learning. 
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The Choice to Use Inquiry-Oriented Instruction: The INQUIRE instrument and differences 
across upper and lower division undergraduate courses  

 
 Mollee Shultz Patricio Herbst 
 University of Michigan University of Michigan 

In this study of mathematics teaching, we explore how to measure inquiry-oriented 
practices of college mathematics instructors. We offer a conceptualization of inquiry-oriented 
instruction organized by the instructional triangle (Cohen, Raudenbush, & Ball, 2003) and 
introduce an instrument developed to explore the extent to which elements of inquiry-oriented 
instruction are present in the teaching of university mathematics courses. This scale has been 
developed to explore what practices instructors currently use and eventually investigate the 
relationship between beliefs and practice. We show how we have operationalized inquiry-based 
instruction as self-report items and report preliminary findings that indicate our scales are 
performing well. We show that some inquiry-oriented practices are significantly more present in 
upper-division courses than lower-division courses. This suggests that at least some components 
of inquiry-oriented instruction are not reducible to individual differences (whether the instructor 
is an inquiry-based instructor), but also dependent in the context of instruction. 

Keywords: Inquiry-oriented instruction, obligations, beliefs 

College mathematics departments are faced with a growing need to develop innovative 
instructional practices to address the needs of increasingly diverse student bodies and declining 
numbers of mathematics majors (Holton, 2001; U.S. Department of Education, 2006). Even 
when instructors give a high-quality lecture, students often do not grasp the main ideas the 
instructor intends to convey (Goodstein & Neugbauer, 1995; Leron & Dubinsky, 1995; Lew, 
Fukawa-Connelly, Mejía-Ramos, & Weber, 2016). Researchers have found that students learn 
better from active, student-centered instruction in college mathematics (Kwon, Rasmussen, & 
Allen, 2005; Rasmussen, Kwon, Allen, Marrongelle, & Burtch, 2006) and that meaningful 
participation in inquiry-based instruction has been linked to higher achievement and persistence 
for women and students of color (e.g., Boaler, 1997; Laursen, Hassi, Kogan & Weston, 2014).  

Many varied interpretations of inquiry exist. For researchers seeking to understand 
inquiry-oriented instruction or instructors trying to implement it, we need a shared understanding 
of its components and to what extent those components exist among instructors that presently are 
trying to make their classes more active. This study seeks to investigate what inquiry-oriented 
practices instructors implement, as part of a project that seeks to understand also why they do it.  

Literature and Framing 

Studying Inquiry-Oriented Practices 
Inquiry-oriented learning involves following the methods and practices of 

mathematicians (Yoshinobu & Jones, 2012) or getting students to engage in “authentic 
mathematical activity” (Johnson, Caughman, Fredericks, & Gibson, 2013). Many studies have 
focused on the design and implementation of inquiry-based curriculum, such as with the linear 
algebra magic carpet ride task (Wawro, Rasmussen, Zandieh, Sweeney, & Larson, 2012). In that 
study, Wawro et al. (2012) designed a task that allowed students to discover the concepts of 
span, linear independence, and linear independence and invent their own definitions of those 
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concepts. Other studies have documented a handful of challenges that instructors face during 
implementation and how those challenges can be overcome. For example, Yoshinobu & Jones 
(2012) wrote about the coverage issue: that many instructors resist using inquiry-oriented 
practices because they fear they will not have time to cover the content their institution expects. 
No studies known to the authors of this paper attempt to document what various inquiry-oriented 
practices are being taken up by college instructors on a large scale. Some challenges of such a 
study are to identify the components of inquiry-based instruction that might be documented and 
to design a feasible method to study the practices of a large enough sample. Before subscribing 
effort to rate instructors using observational methods, it would be useful to do descriptive work 
in which one can study the feasibility of any such rating. A survey using self-reports is an 
economical way to discover and identify those components. 

The Instructional Triangle 
The instructional triangle (Cohen, Raudenbush, & Ball, 2003; Ball & Forzani, 2007) is a 

useful frame to organize the study of instruction and, in particular, to organize our identification 
of possible indicators of inquiry-based instruction. The instructional triangle is composed of the 
interactions between the teacher, students, the content, and the environment surrounding all 
three. The triangle suggests the situatedness of these interactions in environments in four 
possible dimensions of instructional actions (see Table 1).  

The first dimension addresses how the students are given opportunities to engage with the 
mathematical content, for example, the extent to which they engage in authentic mathematical 
work. Education researchers have stressed the importance of students’ school experiences 
aligning with the disciplinary practices of scholars across any subject (Bruner, 1960; Dewey, 
1902; Schwab, 1978).  The work of mathematicians involves contributing ideas, struggling with 
definitions, experimenting with examples, proposing conjectures, propositions, and theorems, 
and providing proofs and arguments for those claims. Lakatos (1976) wrote in Proofs and 
Refutations about an imaginary classroom dialogue surrounding the problem of finding a relation 
between the number of vertices, edges, and faces of polyhedra. As the class progresses, they 
consider examples and counterexamples, and construct various conjectures and proofs. The 
process is anything but linear and conjectures are continually revised as students encounter new 
evidence and arguments posed by each other. This exploratory discovery has been cited by 
mathematics educators to explain what it means to think mathematically (e.g., Schoenfeld, 
1992). That text shows by example that doing mathematics not only involves solving problems, 
but also formulating hypotheses from observations and problem-posing (Silver, 1994, 1997).  

The second dimension deals with how the instructor relates to the students vis-a-vis the 
knowledge to be learned, including, for example, how much they involve students in the 
development of new knowledge. Gonzalez (2013), a practitioner of inquiry-based learning, 
described his role as becoming more of a “‘guide on the side’ than a ‘sage on the stage’” (p. 35). 
When a student is stuck, the instructor does not give the solution away, but helps by posing a 
question, getting other students to help, or finding a smaller problem or special case that can help 
them make progress on the larger problem (Yoshinobu & Jones, 2012). While strict lecture with 
the instructor dictating the lesson in the front of the classroom may be thought of as providing 
the least opportunities for inquiry, there are ways to make lecture more responsive. Burn, Mesa, 
and White (2015) used the term interactive lecture to refer to presenting material in an engaging 
way that included questions and answers. 

The third dimension considers whether and how students have interactions with their 
peers as they engage in mathematical work. In inquiry-oriented classrooms, students are often 
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asked to present their solutions to classmates and receive feedback on their reasoning (Gonzalez, 
2013; Hayward, Kogan, & Laursen, 2016; Laursen & Hassi, 2010; Yoshinobu et al., 2011) either 
at the front of the classroom or in small groups (Yoshinobu & Jones, 2012). In small group 
discussions, students often work on problems together, while during presentations, one student 
leads the class in finding a proof or solution and other students can comment or ask questions. 
Practitioners like Renz (1999) report that when students interact, they theoretically gain 
motivation from their peers to check their own work carefully and present their ideas clearly. 

 
Table 1. Conceptualization of inquiry-oriented instructional practices 

 
And finally, the fourth dimension addresses how the instructor engages with the content, 

for example, through exploring the content on their own or designing resources meant to engage 
students in discovery.  Instructors engage with the mathematical content to design and choose the 
inquiry-oriented problems or activities for their students (Gonzalez, 2013). An instructor’s 
mathematical content knowledge is a prerequisite to this work (Wagner, Speer, & Rossa, 2007). 
An icon of the inquiry-based instruction movement has been the mathematician R. L. Moore, 
famous and infamous for his method of teaching students by engaging them in problems (Parker, 
2005). Moore engaged with the content by understanding the mathematics and his students well 

Triangle 
Relationship 

Constructs Description 

Student-Content Open problems Posing problems that either have multiple 
solutions or multiple nontrivial ways of 
arriving at a solution 

Constructing  Posing tasks that ask students to make 
conjectures and construct arguments 

Critiquing  Asking students to critique the reasoning of 
themselves and others 

Definition-
formulating 

Inventing or reinventing mathematical 
definitions 

Teacher-Student  Interactive lecture Incorporating interaction to whole class 
lecture: Requesting feedback from 
students, asking questions of students, and 
having students engage with the 
mathematics during lecture 

 Hinting without 
telling 

Guiding a student to work productively 
without directly telling the student a 
correct way to proceed 

Student-Student Group work Creating an environment where students 
work together on mathematical tasks or 
problems 

Student Presentations Having a student or students present 
completed or in-progress work to the class  

Teacher-Content Class preparation Planning lessons to intentionally contain 
opportunities to engage in inquiry-
oriented learning around the content being 
taught 
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enough to assign problems that were challenging enough to instill perseverance and pride, but 
not so challenging that students would grow discouraged and give up (Mahavier, 1999). We have 
attempted to review the literature to include inquiry-oriented practices within each of these 
categories, though we do not include a comprehensive literature review due to space limitations. 

Instead of taking the simplistic view that some instructors implement inquiry-based 
learning and some do not, our multidimensional conceptualization of inquiry-oriented instruction 
allows researchers to anticipate various elements that might be present in some classes and not in 
other classes. We avoid rushing to a synthetic statement that inquiry-oriented instruction is one 
single thing and instead seek to examine whether we can identify some of its components and 
use them to characterize variability in the practices that present themselves as inquiry-oriented. 
Organizing the numerous components of practice around the instructional triangle allows us to 
measure the extent to which various characteristics of inquiry-oriented instruction are present. 

With this framing in mind, we ask the following research question: How can we measure 
the inquiry-oriented practices of college mathematics instructors? In this paper, we begin 
exploring preliminary trends in the data collected in response to a survey that operationalized 
those four dimensions. 

Methods 

Instrument Design 
The inquiry-oriented instruction review (hereafter, INQUIRE) instrument contains 62 

items split into the constructs described in the framing. Each item reflects a literature-based 
inquiry-oriented practice which the participant can respond to on a Likert-type scale from 1-
Never to 6-Multiple times per class. See Table 2 for an example item from each construct and 
Appendix A for additional examples. Cognitive interviews for the INQUIRE items were 
conducted with five mathematics doctoral students, four mathematics education doctoral 
students, and one mathematics department faculty member, all from two midwestern Research I 
universities. All had at least three years of teaching experience at the college level.  

Sample 
For recruitment, we used a comprehensive list of Research I mathematics departments in 

the U.S. We emailed the call for participants to each mathematics department and requested that 
they forward it to their instructors that had a minimum one-year teaching experience. Though 
many participants have completed the INQUIRE instrument (N=247) here we report the 
characteristics of participants that have completed both lower-division and upper division 
sections of the survey (N=69). This narrows the sample because many instructors, especially 
graduate students, have not taught upper-division courses. 

Our sub-sample1 consisted mostly of graduate student instructors (N=20, 29.9%) and 
non-tenure-track faculty (N=14, 20.9%). The remaining instructors were postdoctoral fellows 
(N=12, 17.9%), tenure-track faculty (N=11, 16.4%), or tenured faculty (N=9, 13.4%). The mean 
experience teaching was 9.14 years (SD=7.14). There were 34 males (50.8%), 31 females 
(46.3%), and 2 chose not to specify. There were 21 (31.3%) instructors who claimed to use 
inquiry-oriented or inquiry-based instruction, 19 (28.4%) who claimed to not use it, and 27 
(40.3%) that either had not heard of it or were unsure. 
 

                                                
1 Based on N=67 of the N=69 participants, due to two participants not completing the background survey. 
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Table 2. Examples of items in the INQUIRE instrument for each construct 
Triangle 
Relationship 

Constructs Example Item 

Student-Content Open problems How often do you task students with 
problems where there are multiple 
solutions? 

Constructing  How often do you ask students to 
generalize a claim? 

Critiquing  How often do you provide students with 
arguments for them to critique? 

Definition-
formulating 

How often do you ask students to revise a 
definition? 

Teacher-Student  Interactive lecture While teaching the whole class, how often, 
after demonstrating how to solve a 
problem, do you ask students to try a 
similar problem? 

 Hinting without 
telling 

If a student asks you to look at his or her 
work, how often do you respond without 
evaluating whether or not it was correct? 

Student-Student Group work How often do you have students work 
together in groups? 

Student 
Presentations 

How often do you have students present 
work to the class? 

Teacher-Content Class preparation How often do you design a sequence of 
problems so that students will discover 
something? 

Results 
The reliability fit statistics for item grouping in the INQUIRE instrument are satisfactory.  

A common cutoff for Cronbach’s alpha is to consider values over 0.7 as acceptable and those 
below 0.5 as unacceptable (Kline, 2005), and inter-item correlations (IICs) should range between 
.15 and .50 (Clark & Watson, 1995). All item groupings had at least acceptable alpha scores, 
showing good internal consistency as shown in Table 3. Four IICs were too high (lower-division 
presentations and upper-division presentations, critiquing and group work), indicating that the 
items associated with those questions may be too similar. We can remedy this issue for creating 
scores later by removing some extra items. 

The descriptive statistics from the INQUIRE instrument are shown in Table 4. We 
conducted a paired sample two-tailed t-test for each construct, results also shown in Table 4. For 
many of the categories, instructors report engaging students in significantly more inquiry-
oriented practices in upper-division courses than lower-division courses. The only practices that 
were not practiced more in upper-division courses were interactive lecture, group work, and class 
preparation. For instructors newly attempting to implement inquiry-oriented instruction, these 
areas might seem more feasible or accessible.  

Directions for Future Research 
This study offers a method to study the inquiry-oriented practices on a broad scale. As 

more instructors attempt to implement more innovative practices, it could be useful for informing 
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mathematics departments, inquiry-based-learning centers, or other stakeholders to understand 
what practices are currently used nationally and what factors predict their use. For our study, our 
first steps with the INQUIRE instrument will be to conduct a factor analysis to refine the items in 
our scale. The INQUIRE instrument is one of five instruments completed by all participants. We 
then will use methods from classical test theory and structural equation modeling to understand 
the relationships between beliefs, professional obligations (Herbst & Chazan, 2012), and the 
inquiry-oriented practices of college mathematics instructors. Early analysis has shown 
indications that beliefs do predict practices, but for some practices, professional obligations 
improve the model. We intend to continue investigating what inquiry-oriented practices can be 
better explained with a social lens in addition to an individual lens. 
 
Table 3. Reliability Statistics 
Relationship Constructs Lower-Division  Upper-Division 
  IIC α  IIC α 
Student-
Content 

Solving open problems .44 .79  .33 .71 
Constructing  .45 .85  .31 .76 
Critiquing .39 .81  .56 .90 
Definition-formulating .43 .79  .33 .71 

Teacher-
Student  

Interactive Lecture .25 .73  .36 .82 
Hinting without telling .45 .77  .48 .82 

Student-
Student 

Group work .41 .87  .70 .95 
Presentations .54 .89  .59 .93 

Teacher-
Content 

Class Preparation .29 .79  .35 .83 

 
Table 4. Mean, standard errors, and comparison test results for the INQUIRE instrument (N=69) 
Relationship Constructs Lower-

Division 
Courses  

Upper-division 
Courses 

Difference 

Student-
Content 

Solving open 
problems 

3.21(0.13) 4.56(.14) -1.36(.15)*** 

Constructing  2.52(.13) 4.04(.16) -1.52(.11)*** 
Critiquing 2.42(.12) 3.93(.16) -1.51(.13)*** 
Definition-

formulating 
2.43(0.13) 3.78(.16) -1.34(.12)*** 

Teacher-
Student  

Interactive Lecture 4.44(.09) 4.28(0.10) .16(.75) 

 Hinting without 
telling 

3.39(0.08) 4.16(.98) -0.76(.10)*** 

Student-Student Group work 3.32(.16) 3.47(.17) -.14(.13) 
Presentations 1.83(.12) 2.22(1.17) -.39(.12)** 

Teacher-
Content 

Class Preparation 3.83(.10) 3.90(.12) -.07(.12) 

*p<.05, **p<0.01, ***p<0.001 
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Appendix A: Sample INQUIRE items 
  

Student-Content Interaction 
1. How often do you ask students to propose a definition? 
2. How often do you ask students to construct mathematical arguments (e.g., justifying a 

solution or claim)? 
3. How often do you give students problems that can be solved more than one way? 
4. How often do you give students a sequence of tasks to solve that will lead them to discover 

something? 
5. How often do you ask a student to find an error in a finished proof or solution? 
  
Teacher-Student Interaction 
6. While teaching the whole class, how often do you make an effort to elicit questions from 

students (e.g., by having them fill out exit slips, use clickers, giving them time to think of 
questions they might have, etc.)? 

7. While teaching the whole class, how often do you pause your presentation to ask students to 
work on a problem or problems? 

8. While you are solving a problem or constructing a proof with the whole class, how often do 
you ask students for suggestions of what to do next? 

9. If a student is stuck on a problem and asks for help during class, how often do you give them 
a hint on how to proceed? 

10. If a student is stuck on a problem and asks for help during class, how often do you help them 
by reminding them of an approach or strategy they’ve already learned? 

 
Student-Student Interaction 
11. How often do you have students give feedback to student-presenters? 
12. How often do you ask a student to study and present a new topic to the class? 
13. How often do you have students discuss a problem with each other? 
14. If a student asks a question, how often do you redirect the question to other students? 
15. How often do you encourage students to question each other’s reasoning? 
 
Teacher-Content Interaction 
16. How often do you prepare worksheets for students to work on during class? 
17. How often do you search in textbooks (including the one you’re teaching from, if you are) or 

other resources to find material that will help students learn the course content? 
18. How often do you design or search for problems or activities that aim to guide students to 

discover something you want them to learn? 
19. How often do you design your lesson to include experiences you have had learning 

mathematics? 
20. How often do you design your lesson to include experiences you have had doing 

mathematics? 
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Erratum 
 
We found a survey implementation error that caused a nonrandom portion of our sample to skip 
the remainder of the survey. If participants selected the responses “1-Never” to the question, 
“How often do you ask students to revise a definition?” they were skipped past the remainder of 
the survey, including the lower-division student-student, teacher-content questions, and the 
upper-division questions. Thus the statistical significance we reported in Table 4 of increased 
inquiry in upper-division courses may be due to the systematic missingness from the participants 
that took those items. 
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Abstract: Mathematics faculty spend considerable time scoring and providing feedback on 
student-generated proofs. Yet there is very little research on the feedback professors provide on 
proofs during the grading process. In this paper, we discuss a coding scheme developed for 
categorizing the feedback professors write on student-generated proofs in abstract algebra and 
real analysis. We then explore the types of annotations that professors make on student proof 
attempts. The results show that professors generously use annotations (like checkmarks) as 
informal grading tools or to signify things they have read when grading, most feedback focuses 
on a particular part of the proof that is no more than a few lines, and the majority of feedback 
does not convey why the feedback was given. 
 
Keywords: Proof Evaluation, Feedback On Proofs, Proof Instruction, Abstract Algebra, Real 
Analysis. 
 

Introduction and Literature Review 
Proof writing is difficult for undergraduate students (cf., Stylianides, Stylianides, & 

Weber, 2018) and one of the primary proficiencies mathematicians want students to learn in 
advanced mathematics classes (cf., Weber, 2004, Lew, et al, 2018). Mathematics faculty report 
spending considerable time marking and commenting on student proof-attempts (Moore, 2016), 
believing that the significant amounts of time spent augmenting grades with detailed comments 
and corrections will improve student proof-writing. Although prior studies have focused on how 
professors grade their proofs (cf., Moore, 2016; Miller, et al, 2018), the content and efficacy of 
written feedback remains largely unexplored. This study explores the types of annotations 
professors make on student proof attempts, and, offers implications for student learning. 
 Three studies have explored how undergraduate mathematics faculty evaluate student 
proof-productions. Moore (2016) identified features that professors value in well-written proofs, 
including logical correctness, clarity, fluency, and demonstration of understanding. Two studies 
have found that there are disagreements among mathematics professors about how to assign 
points to incorrect proofs (Moore, 2016; Miller, Infante & Weber, 2018). For example, Moore 
(2016) found that disagreements about how severely individual errors should be penalized led to 
wide score variations among graders who identified the same errors. Miller, Infante & Weber 
(2018) found that faculty might agree that a vital portion of the proof was missing, but showed 
little consistency regarding how many points should be deducted. Both studies suggested that the 
scoring inconsistency – among graders who essentially agree on which portions of proof are in 
error – can be connected back to a professor’s perception of student cognition. Moore (2016) 
explained that professors “sometimes differ in their evaluation of a student’s proof because they 
differ in their perceptions of what the student was thinking, and consequently they arrive at 
different judgments on the seriousness of errors” (p. 269). Miller, et al. claimed that “a sizeable 
minority of the participants would give the benefit of the doubt to a student who they perceived 
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to be strong while the majority of participants would be suspicious of a high quality proof written 
by a student of low perceived ability” (p. 8). These findings suggest that proof scoring relies on 
both a professor’s perceptions about what constitutes a correct proof, as well as assumptions 
about the abilities of the student. 

There is virtually no research on proof grading as an instructional practice. However, in 
moving from an analysis of scoring to an analysis of the annotations that professors make on 
proofs there are a number of concerns that arise. For example, some annotations might be “ticks” 
to indicate that a particular section has been read (e.g., mainly for the professor’s organization) 
while others might be meant to communicate ideas to the student. We might explore the form 
and content of these annotations to better understand how and why professors annotate proofs, 
what they intend to convey to students, and, as a means to investigate what students might learn 
by reading the annotations professors leave on their proofs. The goal of this study is relatively 
modest, namely, to explore the form and content of the annotations professors make on student 
proof attempts. We then draw some inferences about what students might learn from the 
feedback, but these inferences are meant to be hypotheses that form the basis for further study. 
 
Framing--The Nature of Feedback 

Evans (2013) proposed a constructivist model in which an exchange between a professor 
and a student exists on a Feedback Landscape. When the professor comments on a proof, these 
comments are created in a buffer zone of mediating social and cognitive factors. The professor’s 
perception of the student’s understanding is one such factor. The student receiving the feedback 
parses the information through a similar buffer zone. It is within these buffer zones that the 
meaning and utility of feedback can be misconstrued or lost entirely. Glover and Brown (2006) 
argued the students often cannot derive actable meaning from feedback. In proof-based 
mathematics, Byrne, Hanusch, Moore, and Fukawa-Connelly (2018) found that students reading 
professor comments on proofs in a transitions-to-proof course could not reliably describe 
normatively correct logic for the professor’s requested changes, suggesting that even when they 
could make the changes, that they would not derive transferable learning.  

The present study developed and used a coding scheme for professors’ annotations as a 
means to make claims, independent of professor intent or student interpretation, about the form 
and content of these annotations.  We used the coding scheme to address the following questions: 
● What types of annotations do professors commonly write on student work? 
● What meaning might be conveyed to students by common annotations? 
● How do the annotation patterns change over a semester-long course? 

 
Participants & Coding Methods 

The study was conducted at a medium-sized, rural, 4-year, public university in the 
Northeast. The participants consisted of four professors who were identified as teaching a single 
semester, proof-intensive abstract algebra (n=2) or real analysis (n=2) course.  Both courses have 
an introduction to proof course as a prerequisite, and different semesters of the course should 
cover the same material.  

 Each professor volunteered to participate in the collection of students’ homework, quiz, 
and test papers throughout the fall semester of 2017 and the spring semester of 2018. The 
number of homework assignments collected for fall algebra (n=4) and fall analysis (n=11) was 
smaller than the number of homework assignments collected for spring algebra (n=24) and 
spring analysis (n=26). This discrepancy has implications for using raw counts to draw 
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inferences. To protect the students’ identities, each student was assigned a numerical identifier 
that was kept consistent across a semester. The scores of each homework, quiz, and test item, as 
well as the overall scores on the students’ papers, were redacted prior to coding. Each piece of 
written feedback was numbered so that the coders would be able to uniformly identify what 
constituted a separate piece of feedback. For each student paper, all the professor’s annotations 
were analyzed by two coders working independently. The separate codes would then undergo a 
tie-breaking process wherein a third coder would reconcile any discrepancies.  
 We began the creation of our coding system using Vardi’s (2009) coding system that 
analyzes three aspects of each item of instructor feedback, namely, characteristic, manner and 
scope. The characteristic category is our evaluation of the content of the professor’s annotation; 
for example, it might be about proof structure, mathematical notation, or validity. While our 
focus is on the annotation, we also review the student’s work in the evaluation. Vardi’s 
characteristic codes proved inadequate for proof writing, so we used a thematic analysis through 
several iterations to develop new codes.  In our system, each characteristic code is hierarchical, 
with a general group code and a detail subcode. We present a summary table of our characteristic 
codes in Table 1, and Table 2 shows an excerpt of our coding manual for three detail subcodes. 
 
Table 1. General Characteristic Codes with Definition and Detail Characteristic List

 
  
Table 2. Excerpt of coding manual  

General 
Characteristic  Detail Characteristic  Detail Definition 

General Academic 
Feedback (GAF) 

Fundamental Math Skills 
(FMS) 

Feedback which addresses skills and symbols from 
prerequisite, non-proof, mathematics courses, including 
algebraic manipulation and trigonometric facts. 

General Proof 
Feedback (GPF) 

Mathematical Language 
Notation (MLN) 

Feedback on math language and notation, including 
idioms and phrases, set theory notation, functions and 
notation of non-specific symbolic logic. 

Content Specific 
Feedback (CSF) 

Subject Matter Notation 
(SMN) 

Feedback on notation specific to the subject or course, or 
that repurposes previous notation in a subject specific 
way. 
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The manner codes describe the methods by which the professor expresses feedback, and 
the scope codes describe the breadth of application of an item of feedback within the proof. 
Many of Vardi’s manner and scope codes were transferrable to the context of proof writing 
despite originally being designed for traditional academic writing. We show our manner codes in 
Table 3 below. 

 
Table 3. Manner Characteristic Codes with Definition 

Manner Codes Description 

Direct Edit (DE) Feedback where the instructor directly edits the student’s work. Something must 
be crossed out or inserted. 

Explanation (Exp) Feedback that explains why a change is required, that explains a mathematical 
concept, or explains the marker’s reasoning or thinking 

Prescription (Pre) Feedback that prescribes a change to be made by the student. The change needs to 
be described, but not done for the student. 

Question (Q) Feedback in the form of a question. 

Question Mark (?) A question mark without other text, possibly accompanied by an underline, circle 
or other indication. 

Comment (Com) Feedback that makes an observation about the proof production, but does not 
indicate a specific correction. 

Indication (Ind) Feedback that indicates an aspect of the proof, but provides little other 
information, such as underlining or circling.  

Evaluation (Eval) Feedback that provides an evaluation of the student’s work, such as “good” or 
“weak.” X’s over student work will fall into this category. 

Personal comment (PC) Feedback that addresses issues outside of the work, e.g., “I hope you’re feeling 
better.” 

Checkmarks (Chk) Feedback in the form of indicative marks. Often used for scoring purposes. 

Other/Unclear Any feedback that does not fit into the above categories 

 
For this report, the scope codes we report on are local and global. Global feedback was 

directed to the proof as a whole, whereas local feedback appeared to be directed at a piece of text 
that was part of a sentence, an entire sentence, or a few lines. The critical distinguishing feature 
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of local feedback was that the text could not be considered a proof of any proposition on its own 
(e.g., could not show that an operation was closed on a particular set), even if that proposition 
might be a subproof in context of the proof task. We note that our coding system includes an 
intermediate, regional, code, which we do not analyze here.  

We made the decision to allow multiple codes within the characteristic and manner 
dimensions for a particular piece of feedback. We found this critical because in the context of 
abstract algebra or real analysis, there are both content-specific and “generic” proof proficiencies 
required to produce a proof. 

At the end of the coding process, we analyzed the collected codes in several different 
ways. Initially, we computed the frequencies and relative frequencies of the four main code types 
(general characteristic, detail characteristic, manner, and scope) on each assignment (homework, 
quiz, test). We used these frequencies for a longitudinal analysis. We also explored coding 
patterns on different types of assignments such as homework, quizzes, and tests.  

 
Data and Results 

Examples of Coding 
 We first illustrate our coding scheme with 2 annotations that the professor made, then 
explain some patterns in coding we observed. For example, consider the professor’s note shown 
in Figure 1 which makes an observation about the student’s proof.  
 

 
Figure 1. Professor’s note about induction 

 
We code this as general proof feedback (GPF) with a detail code of proof framework (PF) 
because the focus of the professor’s comment is on the difference between strong and weak 
induction. We assigned the manner code of explanation because it cites a specific fact that 
distinguishes strong from weak induction, “you’ve just used that P(n-1) is TRUE” to justify the 
need for a change. Finally, we label it global, because the comment applies to the entire proof.  
 As a second example, consider the annotation shown in Figure 2, which edited the 
student’s proof by inserting a symbol for union between S and T. 
 

 
Figure 2. The professor inserted ‘∪’ between S and T 

 
The characteristic is general proof feedback (GPF) with a detail code of mathematical 

language and notation (MLN). We coded this as GPF because set theory is part of an 
introduction-to-proof course, and MLN because it focused on the symbolic language of 
mathematics. While we acknowledge that one could read this as a logical issue in that without 
the annotation, the sentence is not grammatical and therefore could not be interpreted, we argue 
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that the professor appears to treat it as a “typo” where the student’s meaning was clear, but 
missing a “word.” We coded this as a direct edit (DE) because the professor edited the student’s 
work by inserting the needed symbol, and as local (L) because it addressed a piece of content 
within a mathematical sentence.  
            Since the focus of the coding system is instructor feedback–as opposed to student errors–
the coders attempted to divorce their choices of codes from the content of student proofs 
whenever possible. However, student content was considered in cases where the meaning of the 
feedback would be altered by the context of the proof. For instance, when an instructor added a 
symbol, such as in the above example, it would be impossible to identify the content without 
making an interpretation of the student’s work. As a final example, we note that there are a 
number of annotations that professors commonly made that we did not feel we could assign 
content meanings to, such as a single question mark, a checkmark, or even the question “What?” 
and, as a result, we would code such annotations as other or unclear. 
 
Checkmarks  
 One pattern shared by all professors across this study was the usage of annotations such 
as checkmarks which tended to make up 50% or more of the recorded comments for each coded 
assignment. These annotations are often informal grading tools which instructors use to tabulate 
scores rather than attempts at purposeful feedback to students, or they might simply be 
indications by the professor that she has read a particular exercise. For these reasons, this form of 
acknowledgement was specifically rejected as meaningful feedback for the purposes of this 
coding system.  
 
Manner and Scope Types Make it Difficult for Annotations to Convey Information 
 The vast majority of all feedback made by the instructors from this study was local. No 
professor gave less than 78% local feedback, while global comments ranged from 3% to 17%. 
This may be indicative of the fact that most students had correct “big picture” ideas and 
structures, which might be because most items were on homework, allowing students to spend 
significant time and even ask for help from the professor and classmates. We further note that 
most local feedback did not convey information about why the professor made the annotation. 
The procedural was often emphasized over the conceptual, meaning that the content of 
annotations was, for example, focused on correct use of notation or the presentation of the proof, 
while explanations for why were generally absent. Even written comments focused on individual 
steps being taken or errors being made rather than broad feedback about how concepts were 
being understood. For each instructor direct edit was the most popular choice of manner, as 
exemplified in Figure 2. When direct edits, prescriptions, and evaluations were combined, they 
ranged from 43% to 71% of feedback manners, none of which explained why a change was 
needed. Additionally, nearly all feedback was made about incorrect work to convey a needed 
change. The most common positive responses were nonspecific comments such as “OK” or 
“Good,” again without explanation of what caused the professor to evaluate it that way.  
 The most common characteristics were proof presentation, validity, and 
operationalization. We interpret the prevalence of these characteristics to be connected to the 
local, task-oriented nature of most of the coded comments. It is possible to make global, 
conceptual comments about the structure of how a proof should be written, or about the types of 
logical arguments that are valid. However, most often these characteristics were used for line-to-
line error correction or identification. 
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Variations Over Time 

 In analyzing the occurrence of general characteristics over the course of a semester, we 
identified two patterns which we interpreted to indicate substantive differences between how 
feedback is given in algebra and analysis. The relation between content specific feedback and 
general proof feedback seemed to follow two subject specific patterns. All four courses began 
with a relatively small percentage of content specific feedback (less than 25%). We interpret this 
to be connected to early lessons designed to reintroduce students to format, structure, and logic 
of proofs rather than specific subject-based notation, theorems, and definitions. In both algebra 
classes the rate of content specific feedback rose to about 50% with a corresponding decrease in 
general proof feedback. In contrast, both analysis courses developed “bubbles” of content 
specific feedback which began in small percentages early in the semester, peaked around the 
middle of the semester, and shrank toward the end. Without making any specific causal links, 
these patterns could be interpreted as showing that future assertions about the quality of proof 
feedback for a given subject may not be immediately transferable to another proof-related class 
with different feedback needs. Further research is needed to better understand these patterns and 
whether faculty are purposeful about them. We note, for example, that the professor, Dr. T., in 
Weber’s (2004) study wanted students to quasi-mechanically write proofs in the beginning of the 
semester in real analysis and only later develop the ability to write proofs with meaning. A 
professor like this might, at the beginning of a semester, purposefully make “behavioral” 
comments on proofs, editing or prescribing changes without explanation and as the semester 
progresses focus more on content and use explanatory concepts.  
 

Discussion 
The primary work here, of developing and implementing a coding scheme for professor 

proof annotations, has allowed us to note trends in annotating among four professors who teach 
abstract algebra and real analysis. In particular, we noted high rates of annotations that cannot 
meaningfully convey worthwhile information to students (e.g, checkmarks, question marks, ...). 
There were also a large percentage of annotations that indicated an error, and sometimes a 
correction (e.g, a direct edit), but without an explanation either of what the mistake was or why 
the correction was needed. Prior research by Byrne et al. (2018) suggests that students can 
correctly use these types of annotations to revise the given proof, but cannot explain why the 
corrections are needed. As a result, it seems unlikely that the annotations will lead to students 
changing their practice on future proofs, although this certainly warrants further study. 
Moreover, the trends identified were among faculty at a single university, so we should further 
explore how common they are. Similarly, we call for significant research exploring why faculty 
annotation students’ papers, what they intend to convey to students, and what, if anything, they 
hope students will do in response. 
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Using a Dynamic Geometric Context to Support Students’ Constructions of Variables 
 

Irma E. Stevens 
University of Georgia 

Using Thompson and Carlson’s (2017) definition of a variable and the results of teaching 
sessions with two preservice secondary mathematics students, I describe the role of quantitative 
and covariational reasoning in constructing a formula with variables to describe a relationship 
between covarying quantities in a dynamic geometric context—the Parallelogram Problem. I 
report that although each student reasoned with a dynamic situation, their symbolic 
representations of that situation did not necessarily entail variables. I conclude that providing 
students with dynamic situations with which to construct formulas provides them opportunities to 
construct formulas with variables representing covariational relationships between quantities.  

Keywords: Cognition, Precalculus, Preservice Secondary Teachers 

Dreyfus (as cited in Izsák, 2000) claimed, “There must be some meaning association with a 
notion before a symbol for that notion can possibly be of any use” (1991, p. 31). At the time 
Küchemann (1981) had identified some different ways in which children interpreted “letters” (p. 
110), but the pervasive difficulty of meaningful symbolization meant that he and other 
researchers continued to focus on students’ understanding and construction of meaningful 
symbols (e.g., Izsák, 2000, 2003; Kaput, 1992; Kieran, 1992; Leinhardt, Zaslavsky, & Stein, 
1990; Stephens, Ellis, Blanton, & Brizuela, 2017; Thompson, 1990, 1994b; Trigueros & Ursini, 
2008). In this paper, I focus specifically on students’ conceptions of symbols as variables within 
formulas. Thus, rather than students interpreting symbols as static unknowns (Dubinsky, 1991) 
or fixed, given referents (Gravemeijer, Cobb, Bowers, & Whitenack, 2000), my goal for my 
teaching sessions (Steffe & Thompson, 2000) with preservice teachers was for them to 
conceptualize a symbol in a formula as representing a quantity whose value changes within a 
dynamic situation (Thompson & Carlson, 2017). I provide insights on how covariational 
reasoning—in which students conceive of situations as composed of quantities that vary in 
tandem (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002)—influenced students’ construction of 
variables in formulas. I note that Thompson and Carlson (2017) argued that students’ images of 
covarying quantities can differ dramatically, and moreover, that reasoning with a dynamic 
situation does not necessarily imply that a student conceives of smooth variation (see Castillo-
Garsow, Johnson, & Moore, 2013). Both of these ideas meant that although a dynamic situation 
supported students’ reasoning about variables, it alone was not sufficient for a student to 
construct a variable. Thus, I highlight the importance of having students attend to the roles of 
variables in representing covariational relationships, an important topic in calculus ideas 
(Oehrtman, Carlson, & Thompson, 2008; Thompson & Carlson, 2017).  

Background 

Images and Theoretical Perspective 
I adopt the radical constructivist perspective (von Glasersfeld, 1995) that individuals actively 

construct quantities and that an individual’s image of a situation is projected from their mental 
organization of sensory data. The notion of image I am referring to stems from Piaget’s (1967) 
descriptions of images as shaped by mental operations individuals perform. Thompson described 
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the implications of this perspective on individual’s viable images by noting while “the image is 
shaped by the operations, the operations are constrained by the image, for the image contains 
vestiges of having operated, and hence results of operating must be consistent with the 
transformations of the image” (Thompson, 1996). Moore and Carlson (2012) explored this 
relationship between images and operations when researching the role of images in the 
construction of a formula for the volume and height of a box. Travis’s image of the situation 
differed from the image the researcher intended, but his resulting formula accurately represented 
his image of the situation. From this study, Thompson and Carlson (2017, p. 448) reemphasized 
the idea that students’ constructions of symbolic expressions are constrained by the quantitative 
structures they construct about a situation. This idea is important to the notion of variables I use 
here because I argue students’ images of a situation should be compatible with their formula.  

Distinguishing Between Quantitative and Numerical Operations  
Researchers have advocated for students’ thinking of symbols as variables by involving a 

conception of varying values (e.g., Janvier, 1996; Kaput, 1994; Küchemann, 1978; Trigueros & 
Ursini, 1999). In an effort to support students’ conceptions of a variable, I emphasize the role 
that differentiating between quantitative and numerical operations played in distinguishing 
between students’ conceptions of variables/formulas and their images of a situation. Thompson 
(1994) summarizes this difference: “A quantitative operation is non-numerical; it has to do with 
the comprehension of a situation. Numerical operations are used to evaluate a quantity” (1994a, 
pp. 187-188, emphasis in original); a quantity is a measurable attribute (Thompson & Carlson, 
2017). Thus, when I am referring to students reasoning quantitatively with a formula, I am 
referring to one of two cases. First, I refer to a student connecting the quantitative operations 
they have in a situation with the symbols in their formulas that represent numerical operations 
such that the symbols are conceptually tied to those quantitative operations. Second, I refer to a 
student constructing a formula from a given situation by considering the quantitative operations 
involved in relating the quantities with the anticipation that the formula also represents 
corresponding numerical operations.  

Variables and Formulas 
Symbols can serve different purposes to students depending on the meanings they attribute to 

them. Because of the focus on quantitative reasoning in regards to formulas, I rely on Thompson 
and Carlson’s (2017, p. 425) three different meanings for symbols: constant, parameter, and 
variable. A person constructs a constant if the person envisions a quantity as having a value that 
does not vary. The symbol can take on different values, but these values do not change as the 
result of an image of variation. A person constructs a parameter if the person envisions the 
quantity as having a value that can change from setting to setting but does not vary within a 
setting. A person constructs a variable if the person envisions that a quantity’s value varies 
within a setting. Unlike other researchers’ approaches to variable conceptions, this study does 
not examine the construction of variables within a graphical setting (cf. Chazan, 2000), nor is it a 
more general description of a letter taking on different values (cf. Blanton, Levi, Crites, & 
Dougherty, 2011; Blanton et al., 2015; Izsák, 2003) or an attempt to identify non-quantitative 
meanings for “letters” (cf. Küchemann, 1981). This study does build on the work of others who 
are using contextual situations as a means to construct formulas at the elementary (Panorkou, 
2017) and middle school levels (Matthews & Ellis, in press). The former reported successful 
covariational reasoning with a dynamic rectangular area context and the latter identified 
students’ difficulties with reasoning about rates of change with the dynamic situation.  
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Methods 
In an effort to understand the mental operations involved with constructing formulas through 

covariational reasoning, I conducted a study with four preservice teachers (two of which I report 
on here) from a large public university in the southeastern U.S. These participants were 
successful mathematics students (passed at least two upper level mathematics courses and 
Calculus sequence) who had experience with thinking critically about secondary and post-
secondary mathematical ideas through their coursework at the university. Thus, they afford 
insights into how students with vast mathematical experiences conceptualize variables given 
dynamic situations. These students had just completed their first or second semester in a four-
semester secondary mathematics education program during which they completed a secondary 
mathematics topics course designed from the Pathways Curriculum (Carlson, O'Bryan, 
Oehrtman, Moore, & Tallman, 2015). The study consisted of 3-5 exploratory teaching interviews 
(Steffe & Thompson, 2000) lasting 1.5-2 hours each over the course of four weeks. Each student 
answered the same sequence of pre-designed tasks. However, I encouraged the students to think 
aloud (Goldin, 2000) and I asked questions based on my understanding of their activity. The goal 
of my questioning was to build viable models of the students’ mathematics (Steffe & Thompson, 
2000). I conducted open (generative) and axial (convergent) analyses (Strauss & Corbin, 1998) 
to inform these second order models of the students’ construction of formulas.  

Task Description: The Parallelogram Problem 
In this section, I describe some of the mental operations I hypothesize are involved in 

constructing a formula to represent the relevant covariational relationship. This description will 
provide insights into how to conceive of variables through covariational reasoning to construct 
formulas in the context of a novel situation. It is important to note that this description also 
involves constructing constants and a parameter as symbols for a formula, but my focus here is 
on how this dynamic situation supports the construction of variables.  

The following is a description of the Parallelogram Problem, in which I presented students 
with the manipulative in Figure 1a and the following prompt: “Describe the relationship between 
the area inside the shape (shape formed by two pairs of parallel lines) and one of the interior 
angles of the parallelogram (up to a straight angle).” In a traditional construction of the formula 
to describe this relationship, a student need only work with a single static figure of a 
parallelogram, constructing constants in the situation and relating these constants to produce a 
formula; no images of variation are necessary to accomplish this goal beyond understanding that 
different states of the figure might correspond to different values. Although there is an 
underlying assumption that these symbols can take on different values, this construction of 
symbols in a formula do not fit with the notion of variable defined earlier. The goal of giving the 
students a shape they could manipulate was to support their construction of a variable by having 
them consider the covariational relationship of the area of the parallelogram ABCD and the 
openness of ∠!"#.  

In order to motivate the construction of a variable for a formula via covariational reasoning, 
one needs to quantify two quantities in a situation and then determine the covariational 
relationship between them. One potential first step for the Parallelogram Problem is for a student 
to construct the relationship between the area of a parallelogram and a corresponding rectangle. 
A student can conceive a parallelogram’s area as equivalent to the area of the rectangle 
constructed by translating a triangular region (⊿!"#) alongside base !"  (Figure 1d/e). Then, a 
student can anticipate that as ∠!"#’s openness increases, a rectangle with equivalent area can 
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be produced for each instantiation of ∠!"#’s openness. At this point the student has determined 
the two quantities to covary: the angle of the parallelogram and the area of the rectangle 
constructed from translating the triangle shape in the parallelogram (Figure 1f). Reasoning about 
amounts of change, a student can then consider equal changes in ∠!"#’s openness and attend to 
the corresponding areas and changes in areas of the rectangle (and, equivalently, the area of the 
parallelogram) to make, for example, the following conclusion: For equal changes in !∡!"# 
from 0 to π/2 radians, the measure of the area of the parallelogram is increasing by decreasing 
amounts with respect to angle measure (see shaded areas in Figure 1f).  

To construct a formula with variables from this situation, a student can use a meaning for the 
sine relationship that involves understanding it as the height above the center of a circle 
measured in radii (Moore & LaForest, 2014). That is, the length of !" rotated around leaves the 
traces of a circle centered at point A with radius !" (Figure 1i), a non-trivial connection 
(Hardison, Stevens, Lee, & Moore, 2017). This connection between the covariational 
relationship identified in the situation and the sine relationship is what enables the construction 
of variables within a formula. That is, a student can represent the covariational relationship 
between the height of a parallelogram in the situation and !∡!"# with the sine relationship 
(Figure 1g/h). Moreover, the student can use of symbols for the sine relationship (which entail 
numerical operations) to represent the covariational relationships identified in the situation. This 
reasoning is the second way of quantitative reasoning with formulas described previously. 

From there, a student can construct a relationship between quantities to produce !" =
sin(!), where sin(!), in this formula, represents the height’s changing value in the situation. 
This magnitude is multiplied by the value of the length of the base of the parallelogram, AD. 
Thus, the final formula for the area of the parallelogram is !"#$ = !" sin (!). Here, based on 
the student’s image of the situation, the variables are Area and !. I will not include a discussion 
of the role of units in this formula here, and assume that the student is constructing an area 
measured in radii2. However, see Alexandria’s example in the results section to see how this 
image can be extended to consider other units, thus resulting in a normative formula.  

 

 
(a)               (b)               (c)               (d)               (e) 

 
(f)       (g)                (h)           (i) 

Figure 1. Image from Stevens (in press) (a) manipulative with changeable angles (b) labeled parallelogram (c) 
labeled height DE (d) triangular region in parallelogram translated to form rectangle (e) rectangular region with 

equivalent area to parallelogram (f) various colored areas indicate amounts of change in area for equal changes in 
angle measure  (g) dark purple segments indicate various heights for equal changes in angle measure (h) light blue 
segments indicate amounts of change in height for equal changes in angle measure (i) height of the segment above 

!" as the fractional amount of the radius AB of a circle centered at A (i.e., the sine relationship). 

Results 
I now describe students’ different types of formula construction as it relates to variables for 

the area of the parallelogram based on my analysis of Charlotte and Alexandria’s interviews. To 
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offer an indication of the difficulties the students initially had with the Parallelogram problem, I 
note that three of the four students (including Charlotte and Alexandria) initially attempted to 
justify that the area remained constant as they manipulated the object. When pushed on their 
justifications, they began to doubt their initial claims and were motivated to attend to the 
quantities to form new justifications. The remainder of the section focuses on the results of this 
reasoning as it relates to their formulas.  

Constructing Multiple Systems of Measurement with Constants to Describe One Situation 
Before attempting to reason covariationally about the quantities, Charlotte had constructed a 

sequence of calculations (Figure 2c) to carry out in order to determine the measurement for the 
area of a specific parallelogram. This sequence was the result of reasoning with the static 
parallelogram in Figure 2b. This process was similar to the description for a traditional 
construction of the formula in that each of her symbols represented a constant from a static figure 
she drew. The process differed in that she did not combine all her sequences of actions to 
calculate the measurement into one formula. 

 Her goal for constructing this sequence of calculations was to compare its resulting value to 
the value for the area when the shape was a rectangle. She knew that to calculate a value for the 
area of a rectangle she should multiply the length of its base with the length of its height. She 
wanted to calculate these two measurements “because then I could compare-like I wouldn’t be-I 
wouldn’t be assuming based on like my eye, like changing- like trying to figure out how the area 
changed. I would know like-I would have concrete numbers.” That is, she wanted to make gross 
comparisons between the numerical values to determine if the two areas’ values were different.  

Charlotte wanted to calculate the measure of the area for the shape when it was a rectangle 
by multiplying X and C together (Figure 2a). She then wanted to determine the measure of the 
area of a parallelogram with a given angle measure (Figure 2b) using her sequence of 
calculations (which would have resulted in the correct area measurement) (Figure 2c) and 
compare the resulting values. It is important to note that although this latter sequence of 
calculations could actually be used to find the area of every parallelogram in the situation, she 
viewed each of the symbols in her formula as unknown constants for that specific instance of the 
parallelogram. For instance, she referred to the angle as “the angle that I picked” and that she 
“would know the value of the angle” when she went to calculate the measure of the 
parallelogram’s area with that angle.  

 The constructions of her formula and sequence of calculations themselves were 
insufficient for her to make a conclusion about whether or not the area of the parallelogram 
changes because she did not know what values to use. She realized this issue only after 
constructing her two systems of measurement, stating, “Okay. So, I don’t know. If I-If I do 
algebra then I could see-I could tell you maybe.” However, she did not continue trying to relate 
the two systems. In fact, by the end of her attempt with this strategy of comparing the two 
instances, she still anticipated that the areas for each would probably have the same value. 

 This conception of formulas differs from the one described in the first order model 
because she constructed two different systems of measurement to describe one situation. Thus, 
even though she identified changing angle measures and wanted to make conclusions about the 
directional covariational relationship between angle measure and area in the situation, neither her 
formula nor her sequence of calculations were the result of covariational reasoning. Rather, they 
were the result of analyzing static figures. Thus, all of her symbols represented constants.  
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(a)        (b)    (c) 

Figure 2. (a,b) The two instances of the situation Charlotte whose areas she wanted to measure and (c) her 
sequence of calculations in order to measure the area of the parallelogram in Figure 2b. 

Constructing a Formula Disconnected from the Students’ Image of the Situation 
Later in the interview, Charlotte shifted to a different approach and went through steps 

similar to those described in Figure 1b-e. She used the manipulative in Figure 1a to describe how 
she wanted to calculate the area of the parallelogram. She wanted to multiply the “distance 
between yellow [side length] to yellow [side length]” in the manipulative by the “length of the 
yellow [side length]”. Even with this new insight, Charlotte remained unsure whether the area 
changed. She concluded, “I reckon. It’s really hard to tell because like in the back of my mind, I 
think, ‘Oh, just because it’s getting narrower-more narrow, I’ll say it like that, it doesn’t mean 
necessarily that the area is decreasing.” At this point, Charlotte had a new way to calculate the 
area of the parallelogram by reasoning quantitatively about the situation. However, her image of 
the situation made it difficult to reconcile whether or not this new method was an appropriate 
way for her to reason about the directional covariational relationship between the quantities. Her 
uncertainty demonstrates that although she had constructed a way to measure area that involved 
her being able to make comparisons between different states using the same formula, the 
numerical operations she noticed that resulted from her new formula were not entirely connected 
to how she conceived of the quantities in the situation. One hypothesis for this uncertainty is that 
she had constructed this new calculation for the measurement by focusing on instances of the 
parallelogram to rectangle translation instead of imagining a smooth image of a growing 
rectangle she conceived. Regardless, the disconnect between her conclusions about the situation 
and her meaning for the symbols in her formula (i.e., the two distances between the side lengths) 
make it so that the latter do not fit with the aforementioned definition of a variable.  
Constructing a Formula that Entails Students’ Identified Covariational Relationships 

Alexandria, similar to Charlotte, had gone through the process outlined in Figure 1b-e. At 
this point, Alexandria thought there was a linear relationship between the angle measure and the 
height of the parallelogram (which to her also implied a linear relationship between the angle 
measure and area of the parallelogram). To check, Alexandria constructed four equal changes in 
angle measure. She constructed the pink side lengths of the parallelogram (Figure 3a) and then, 
in yellow (Figure 3a), marked the corresponding heights for each marked angle measure. She 
then highlighted in green (Figure 3b) the segments that represented the change in height for each 
successive equal change in angle measure from a “full” right angle downwards. She claimed, 
“The change in height increases,” and then concluded, “It’s not linear.” At this point, Alexandria 
had reasoned covariationally about the quantities in the situation, but she did not have a formula. 
Alexandria stared at her work for about 25 additional seconds, and then muttered, “Don’t tell me 
this is sine?” She drew in a quarter circle in blue (Figure 3c). She then began to describe how she 
drew in her blue curve based on the pink lines, and then suddenly exclaimed, “Oh, it’s a radius! 
No, duh. Ding ding ding ding ding! The pink line’s a radius.” Thus, Alexandria’s meaning for 
the sine relationship entailed a covariational relationship between an angle measure and a height 
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quantity that she was also able to identify in this situation (as outlined in Figure 1g-i). After this 
point, Alexandria quickly constructed a final formula to represent the relationship between the 
angle measure and area of the dynamic parallelogram. She wrote the following formula: 
“Lsin(!)=Area” and “L=AD”, calling L her “length” and pointing to sin(!) saying that it “gives 
me my height.” When I asked her what units she was using, she almost immediately wrote, 
“Lrsin(!)” saying that sin(!) “alone [circles sin(!)] gives us how much of a radius it is, so how-
how much of this whole [pointing along the edge of her paper corresponding to the height of the 
parallelogram with right angles]...so I put the r [pointing to the r in her formula] in there to give 
me a typical measurement that we’re used to.” Thus, in this situation, she conceived of both 
angle measure and height changing in the situation, and she constructed the variables ! and Area 
to describe her image of how quantities are varying within a dynamic situation.  

 

 
(a)   (b)   (c) 

Figure 3. Alexandria’s (a) construction of heights (yellow) (b) construction of amounts of change in height (green) 
and (c) construction of a quarter circle (blue). 

Discussion and Conclusions 
I proposed two ways in which a student could reason quantitatively about a formula. The first 

involves connecting quantitative operations with numerical operations. Charlotte’s activity 
demonstrated the difficulty of this reasoning. Her formulas were the result of quantitative 
operations using static images of the situation, which she then wanted to use to reason about the 
covariational relationship between quantities. However, in the first case, she was unable to use 
her two systems of measurement to draw a conclusion, and in the second case, she struggled to 
reconcile her image of the situation with the numerical operations resulting from her quantitative 
reasoning with the situation. These disconnects illustrate how important it is for a student to be 
able connect quantitative operations within a situation with the symbols that represent not only 
quantitative relationships but also numerical operations for measurement. Alternatively, 
Alexandria demonstrated the second way of reasoning quantitatively with formulas because she 
was able to identify a covariational relationship within the situation and construct variables, and 
ultimately a formula, that represented both the quantitative and numerical operations she 
conceived. Her reasoning illustrated a powerful conception of a variable in that it enabled her to 
construct a formula, which, unlike Charlotte’s formulas, represented a covariational relationship 
between quantities. As a result of this study, I conclude that students should be provided with 
more opportunities to construct variables via reasoning covariationally with dynamic situations.   
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An Analysis of a Mathematician’s Reflections on Teaching Eigenvalues and Eigenvectors: 
Moving Between Embodied, Symbolic and Formal Worlds of Mathematical Thinking  

 
 Sepideh Stewart Jonathan Epstein 
 University of Oklahoma University of Oklahoma 
 
 Jonathan Troup David McKnight 
 University of Oklahoma University of Oklahoma 

In this paper, we analyzed a mathematician’s daily teaching journals of a 5-day series of 
teaching episodes on eigenvalues and eigenvectors in a first-year linear algebra course. We 
employed Tall’s (2013) three world model, in conjunction with Tall and Vinner’s (1981) concept 
images and concept definitions, to follow the mathematician and instructor’s movements between 
Tall’s worlds. The study showed that the instructor strived to build concept images that, while 
perhaps mirroring his own concept images, did not resonate with the students.  

Keywords: Tall’s Worlds, Concept images, IOLA, Reflections, Eigenvalues and Eigenvectors 

Theoretical Background 
How do mathematicians motivate mathematics concepts in teaching? As learners of 

mathematics, our past experiences bring to mind a variety of teaching styles. There were lectures 
where the professor only wrote definitions, theorems, and proofs on the board, followed by a 
number of examples, and in some rare occasions, professors motivated the idea with pictures. 
Building on Tall and Vinner’s (1981) notions of concept images and concept definitions, Vinner 
(1991) claimed, “We assume that to acquire a concept means to form a concept image for it. To 
know by heart a concept definition does not guarantee understanding of the concept. To 
understand, so we believe, means to have a concept image” (p. 69). Vinner also examined the 
role of the definition; in his view, definitions help us to form a concept image. However, he 
noted that “the moment the image is formed, the definition becomes dispensable. It will remain 
inactive or even be forgotten when handling statements about the concept in consideration” (p. 
69). Using the scaffolding metaphor, he compared this idea with building, saying “the moment a 
construction of a building is finished, the scaffolding is taken away” (p. 69).  

Developing these two notions further, Tall’s (2010; 2013) three worlds framework for 
mathematical thinking (embodied, symbolic, and formal) endeavors to lay out the individual 
mathematics learning journey from childhood to a research mathematician. According to Tall 
(2010), the embodied world is based on “our operation as biological creatures, with gestures that 
convey meaning, perception of objects that recognize properties and patterns… and other forms 
of figures and diagrams” (p. 22). In other words, the various ways of thinking in the embodied 
world can also be characterized as giving body to an abstract idea.  In Tall’s (2010, p. 22) words, 
“The world of operational symbolism involves practicing sequences of actions until we can 
perform them accurately with little conscious effort. It develops beyond the learning of 
procedures to carry out a given process (such as counting) to the concept created by that process 
(such as number)”.  Finally, Tall defines thinking in the formal world as that which “builds from 
lists of axioms expressed formally through sequences of theorems proved deductively with the 
intention of building a coherent formal knowledge structure” (p. 22). 

 Using Tall’s model, Stewart, Thompson, and Brady (2017) investigated a mathematician’s 
(and co-author) movements between Tall’s worlds while teaching algebraic topology. In this 
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study, the instructor reported that students experienced the most difficulty in moving from the 
embodied world into the formal world. Believing the struggle would stimulate mathematical 
growth in his students, this instructor “refused to give students proofs that were pre-packaged. 
More specifically, he wanted to provide students with intuitions and pictures that would help 
them understand the conceptual nature of the proof and ultimately lead them to it” (p. 2262). 
Stewart (2018) created a set of linear algebra tasks designed to help students move between 
Tall’s worlds. Stewart, Troup, and Plaxco (2018) examined a mathematics educator’s (and co-
author’s) movements as well as decision-making moments while teaching linear algebra. All 
these studies indicate that movements between Tall’s worlds are a rich research topic worthy of 
ongoing investigation.  

As part of the first author’s research program, the overarching goal of this study was to 
examine a mathematician’s (the instructor and co-author) movements between Tall’s worlds. 
Throughout this investigation, the instructor often emphasized that his goal was to reach the 
eigenvalues and eigenvectors section of the course, which motivated the focus of this paper. 
Furthermore, although research on students’ difficulties and understanding of eigenvalues and 
eigenvectors has increased (e.g., Caglayan, 2015; Gol Tabaghi & Sinclair, 2013; Salgado & 
Trigueros, 2015; Thomas & Stewart, 2011), research on mathematician’s voices and what goes 
on in the mind of the working mathematician while teaching the eigentheory is still scarce. The 
data analyzed in this study is from the instructor’s reflections on teaching eigenvalues and 
eigenvectors. Most researchers maintain that reflection is an essential part of teaching 
mathematics (e.g., Davis, 2006; Fund, 2010; Moore-Russo & Wilsey, 2014;). According to 
Dewey (1933), reflection is “active, persistent, and careful consideration of any belief or form of 
knowledge in the light of the grounds that support it and the further conclusions to which it 
tends” (p. 9). Fund (2010) adds that “teachers need to develop particular skills, such as 
observation and reasoning, in order to reflect effectively and should have qualities such as open-
mindedness and responsibility” (p. 680). 

The research questions guiding this study were: (a) How did a working mathematician 
convey to students a concept image of eigenvalues and eigenvectors? (b) What were some of the 
factors causing the instructor to move between Tall’s worlds?  

Methods 
This qualitative narrative study (Creswell, 2013) is the second in a series of studies intended 

to examine the linear algebra instructor’s mathematical thought processes while teaching a first 
course in linear algebra, as well as how they leverage Tall’s (2013) three worlds. This study took 
place over the course of a semester at a Southwestern research university in the US. The analysis 
focuses on an instructor’s observations, as recorded through journal entries, over a five-day 
period, while implementing tasks from the Inquiry-Oriented Linear Algebra (IOLA) curriculum 
(Wawro et al., 2013). The research team consisted of a mathematician specializing in differential 
geometry (the instructor, postdoctoral fellow, and co-author), two mathematics educators, and an 
undergraduate research assistant student. 

Throughout the semester, the instructor recorded his observations on how his class reacted to 
a variety of teaching styles and ideas. He additionally met with the research team once a week 
throughout the semester and the following summer to discuss these experiences and reflections. 
This allowed the researchers to triangulate data via member checking with the instructor directly 
and additionally afforded him ample time to share a wide variety of teaching experiences, as well 
as his reasoning and thought processes while making these decisions. To collect additional data 
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on the instructor’s teaching from the student’s perspective, the research team administered a 
survey, given as a worksheet, and conducted a student interview. 

The research team converted the instructor’s journal and the worksheet results into Excel 
spreadsheets to expedite coding and sorting the data to search for themes after coding. In keeping 
with a narrative study, the research team performed a retrospective analysis of the journal 
(Creswell, 2013) by iteratively coding the data. The team started with a combination of 
categories developed from the previous study (Stewart, Troup, & Plaxco, 2018) and an open 
coding (Strauss & Corbin, 1998) scheme to allow for the possibility of discovering new 
categories unique to this study. The main themes for this study were: Teaching, Students, Class 
Activities, Math (instructor’s math, students’ math), Reflection, and Tall’s worlds. By 
instructor’s math, we mean the math he was doing and talking about, and by students’ math, we 
mean his reflections on students’ mathematical abilities and conversations on math in class. For 
the purpose of this paper, we will only present the analysis from the instructor’s journals.  

Results  
In this section, we will analyze the instructor’s journals on five class periods of an 

introductory linear algebra course, during which the fundamentals of eigentheory were 
presented. The class met three times each week for a period of 50 minutes. The classes were 
structured around a sequence of four tasks designed by the Inquiry-Oriented Linear Algebra 
(IOLA) project (Wawro et al., 2013). The tasks use the ideas of “stretch direction” and “stretch 
factor” of a linear transformation to develop the formal notions of eigenvector and eigenvalue. 
Several of the requisite concepts, such as bases, coordinates and matrix representations of linear 
transformations, were covered earlier in the term so that the IOLA sequence could be used. In 
analyzing his 5-day teaching segments, we will examine the instructor’s (a) movements between 
Tall’s (2013) worlds, (b) pedagogical decision-making moments, and (c) reflections on self and 
students.  

An Analysis of the Teaching Episode: Day 1 (March 30) - IOLA Task 1 
The first IOLA task (see figure 1) describes a linear transformation geometrically, in terms of 

“stretch directions” and “stretch 
factors,” and presents three questions 
related to it. First, the students are 
asked to sketch the image of a figure 
“Z” centered at the origin. In the 
second part, they are asked to sketch 
the image of two particular vectors 
and then compute the precise images. 
Lastly, they are asked to produce a 
matrix representation of the linear 
transformation. 
   

This task is primarily situated in Tall’s (2013) embodied and symbolic worlds. By 
withholding any matrix representation of the transformation, the task was meant to force students 
to interpret the action of the transformation on vectors via the embodied world. Ideally, this 
would build intuition and facility. The instructor very quickly noted that students were having 
difficulty with embodied thinking and decided to take a more active role in guiding them through 

Figure 1. IOLA Task 1 
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the task on the board. His next intention was to move students to a more symbolic representation 
of an idea of stretching, which he wrote as a “mathematical one.” The instructor mentioned in his 
journals that the students struggled again. 
 

We needed to iron out the common misunderstandings: for every linear 
transformation the zero vectors get sent to the zero vector, points are identified 
with vectors, etc. Then we needed to understand what stretching means. After one 
or two attempts and a geometric description, I asked for a mathematical one. 
Although no one could articulate it precisely, at least one student had the right 
idea: scalar multiplication. 

 
In question 2, the instructor computed (symbolically) the images of vectors under the 

transformation, and had a feeling that students were able to follow. However, their understanding 
faltered when the instructor changed the vectors slightly. “So, in question 2, we converted the 
two vectors into linear combinations of vectors in the stretching direction, then used the linearity 
of the transformation to find their images. I’m not sure if this made sense to them.” In question 3, 
students did not give much feedback. The instructor gave a handout—the preview of the next 
task— and hoped that “…perhaps the motivated student [would] see the connection of how to 
use it and then be more prepared for the next task.”  

An Analysis of the Teaching Episode: Day 2 (April 2) - IOLA Task 2 
 

The second IOLA task continued to build the concept 
image in much the same way as the first, but instead of a 
figure “Z”, there is a collection of discrete points (see figure 
2). Moreover, both the standard coordinate grid (referred to 
as the “black” coordinates) and the one determined by the 
eigenvectors (referred to as “blue” coordinates) are overlaid 
on the collection of points.  

At the start of the task, the instructor perceived that the 
students were not engaging with the tasks in a meaningful 
way. He remarked on having “difficulty getting the students 
to be active participants.” As a result, he “decided to do the 
worksheet together,” meaning that he would guide the class 
by doing the various parts at the board. He conjectured that 
“part of the reason that the worksheet took so long was 
because most students don’t have a facility with coordinate 
vectors.” 

The instructor made the pedagogical decision before the class started to present the definition 
of eigenvalue and eigenvector after the first two tasks. Two class periods exploring the 
connection between coordinates and linear transformations would be sufficient as “a segue to 
define eigenvalues and eigenvectors.” Introducing them halfway through gives some resolution 
to the first two tasks, while also providing a framework within which the last two tasks can be 
situated.  

Despite recognizing the importance of everyday thought modes for developing concept 
images, the instructor still views the definition as the most important element in the concept 
image. Not only does he choose to present it after only two class periods, but he also expresses 

Figure 2. IOLA Task 2. 
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frustration at not arriving at the definition sooner. “Finally, I was able to define eigenvalue and 
eigenvector.” In fact, he makes the decision to cut short the discussion of Task 2, Part 3 in order 
to present the definition. He remarked, “Problem 3 was useful, and I wish I had more time to go 
through it.” 

An Analysis of the Teaching Episode: Day 3 (April 4) Lecture 
The instructor made the pedagogical decision to use Day 3 not for the next IOLA task, but 

instead to synthesize the various embodied, symbolic and formal aspects of eigentheory that the 
students have so far encountered. To do so, he used exclusively a lecture teaching style. First, he 
showed how the black and blue coordinate matrix representations of the transformation from 
those tasks are related by conjugation by the change of coordinate matrix. Next, starting with the 
standard coordinate representation of the linear transformation, he used GeoGebra to 
demonstrate visually the effect of the linear transformation on vectors in the unit circle, and in 
particular how it exactly stretches some, but not all, directions. At this point, he reiterated the 
eigenvalue and eigenvector definitions and derived the standard way of computing them from the 
characteristic polynomial and finding the nullspace of A - λI. From here, he presented a series of 
examples including the transformation from the IOLA tasks, an eigenspace with more than one 
dimension, and the differentiation operator acting on function spaces. 

The instructor did not make any remarks on how the students responded to the lecture. 
Instead, his journal entry was a rather clinical report of the content from the lecture, mainly 
including the instructor’s math and no mention of students’ math. From this, one could infer that 
the instructor was engrossed in conveying his own concept image and how he experiences the 
mathematical concepts of eigenvalues and eigenvectors. 
 
An Analysis of the Teaching Episode: Day 4 (April 6) - IOLA Task 3 

On Day 4, the instructor returned to the IOLA sequence with task 3. This task is the most 
similar to standard textbook exercises for eigentheory. For three distinct two-by-two matrices, 
the students are asked to 1) find the stretch factors given the stretch directions, 2) find the stretch 
directions given the stretch factors, and 3) find both the stretch factors and directions. After 
observing their work for the first part, the instructor noted that, even though “they had a 
WebWork assignment due the same day that was mostly about computing eigenvalues and 
eigenvectors,” he “was surprised to see how many were unsure where to start.” The WebWork 
assignment he mentioned contained only column vectors and matrices, while the IOLA task 
describes stretch directions. Hence, the instructor interpreted this as a lack of synthesis between 
the ideas of “direction” and “column vector.” This motivated the instructor’s pedagogical 
decision to use the blackboard to guide the class through the task, reinforcing certain connections 
in the image concept. 

First, he “decided to go slowly through some fundamental concepts that might be getting in 
the way of using the eigentheory.” Among the fundamental concepts that the instructor covered 
were the embodied-symbolic connection between nonzero vectors and “directions” in the plane. 
Next, he reiterated how shapes in the plane could be thought of as collections of vectors. “I think 
it’s always worth repeating that a vector ‘lies in a shape or object’ if the tail sits at the origin and 
tip sits at a point in the shape.” Also, he showed the class how finding the stretch factor (given 
the stretch direction) is equivalent to solving a linear system with one unknown and usually more 
than one equation. The fact that the system is consistent is remarkable. With these fundamental 
notions in place, he proceeded with the work of completing the task. As on Day 3, there was no 
mention of students’ math in his journals. 
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 An Analysis of the Teaching Episode: Day 5 (April 11) - IOLA Task 4 
 The fourth IOLA task aimed to introduce students to a subtlety, thus far hidden, of 

eigentheory: multiplicity. The entire task involved a single linear transformation of R3, presented 
as a matrix. As in the previous task, the first two parts involved finding either a stretch direction 
or a stretch factor, given the other. In particular, it is found that a certain stretch factor has two 
stretch directions; i.e., the corresponding eigenspace is two-dimensional. The third and final part 
poses a rather provocative question: given that 2 and 3 are stretch factors and the former has two 
distinct stretch directions, could there be additional stretch factors? At the heart of this question 
is the observation that eigenvectors for distinct eigenvalues must be linearly independent. A 
counting argument then shows that we already have a basis of eigenvectors and hence there can 
be no other eigenvalues. 

The instructor appeared eager for the class to spend time with this last part. He made the 
pedagogical decision to go through [the first two parts] together on the board. “My hope was that 
this would put everyone on the same page to try the third part.” Once the students had an 
opportunity to think about the third part, he observed: 

 
Every student’s work that I saw was the same. To decide if there was another 
eigenvalue or stretch direction they all computed the characteristic polynomial to 
see if there was another root. I anticipated this, so I then presented a solution that 
crucially uses the fact that all three eigenvectors form a basis for R3. I did not get 
very much feedback from the class on whether they were internalizing this. 
 

Although there were multiple ways to approach the third part, the students all reached for the 
most symbolic, computable solution. They found the characteristic polynomial in order to find 
all the eigenvalues; anticipating this, he presented a contrasting formal solution. In this way, the 
students would hopefully see alternatives to the symbolic world, and perhaps build a connection 
between the two concepts of basis and eigentheory. The final piece of eigentheory was 
diagonalization. After presenting an example with insufficiently many stretch directions, the 
instructor was in a position to explain diagonalization and when it can be done.  

Discussion and Concluding Remarks 
Throughout the course, the instructor tried to follow IOLA’s objectives designed for each 

task. His intention was to have the students work in small groups to complete each task first, and 
then come together as a class to discuss solutions. However, on many occasions when he noticed 
that progress among the students was much slower than anticipated, he often reverted to a more 
standard lecture format. While encouraging participation from the class, he would go through the 
tasks at the blackboard. 

While the instructor’s decision to use the IOLA tasks shows that he values the embodied and 
symbolic worlds as part of the concept image, the instructor’s goal of reaching the formal world 
became apparent in many of his journal writings. For example, on Day 5, the instructor tries to 
speed through what he considers “rote” so that the class can get to something more formal that 
generates connections between concepts. In fact, his decision to present the definitions of 
eigenvalue and eigenvector at precisely the midpoint of the unit reflects the significance they 
hold for him. They represent, for the instructor, a single idea which unites the various notions 
from all three world that the students have been exposed to. A mathematical understanding of 
eigentheory (to him) involved primarily the definitions, but also how those definitions 
manifested themselves in the embodied and symbolic worlds. The instructor’s objective was a 
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mathematical treatment of eigentheory, so he used IOLA to present a web of connections 
surrounding the formal definitions. 

The instructor seemed to believe the more connections between eigentheory and other linear 
algebraic concepts that he could convey to the students, the more robust the concept image. He 
laments not showing how the linear system that must be solved to obtain the stretch factor would 
be inconsistent if it was set up with a non-stretch direction. “What I should have done, in 
addition, is to point out that when you choose a vector, not in one of the eigenspaces, then 
solving for a stretch factor will lead to an inconsistent system.” Later, he regrets not connecting 
the formalism of solving linear systems to finding eigenvectors. “But perhaps I should have gone 
through the derivation of the nullspace of a matrix, rather than appealing to their experience with 
WebWork calculations.” It was interesting to notice that even a mathematician that values all 
three worlds of mathematical thinking would still gravitate more toward the formal world as the 
most important part of a mathematical concept. Although he recognizes the necessity of 
embodied and symbolic concepts in the acquisition and understanding of mathematical concepts, 
they are merely the scaffold on which the formal notions are built. 

In Tall’s view, “formal mathematics is more powerful than the mathematics of embodiment 
and symbolism, which are constrained by the context in which the mathematics is used” (2013, 
p. 18). Due to this added power, Tall believes that the formal world can interact with and inform 
the embodied and symbolic worlds. In particular, in his view, “formal mathematics can reveal 
new embodied and symbolic ways of interpreting mathematics” (p. 18). 

Lastly, one may speculate that the instructor underestimated the time necessary for 
establishing new connections between mathematical ideas. What appears “rote” and part of his 
“everyday” mode of thinking is completely foreign to the typical undergraduate linear algebra 
student. Hence, the connections between the formal definitions and surrounding concepts that 
appeared so strong to the instructor were quite tenuous with the students. Perhaps this accounts 
for the frustration that appears in his tone and the decision in multiple instances to explicitly 
guide the students to the connections. 

The research team is in the process of analyzing the data from students’ surveys as well as 
analyzing the instructor’s journals on more linear algebra concepts. It will be interesting to know 
which connections, if any, were effective in developing the students’ concept image. Do the 
connections between and within Tall’s worlds benefit the teaching of eigentheory? 
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In this study, we describe how a funded professional development program for collegiate 
mathematics faculty impacted their teaching philosophy. As a result of this program, participants 
felt an obligation to attend to students’ needs as part of student-centered learning, found rich 
tasks useful to connect students’ prior knowledge with new content, recognized the value of 
creating a sense of community in the classroom, and established a community among themselves. 
This newfound community was especially valuable for adjunct faculty. The participants 
expressed how they shifted and aligned their teaching beliefs with teaching practices, 
appreciated evidence-based teaching techniques, taught with intention, and realized how both 
they and their students had more fun in the classroom. Furthermore, the participants came to 
comprehend how these practical and philosophical transformations fostered equitable teaching 
practices in the mathematics classroom. The structure of this program may serve as a model for 
future professional development programs.  

Keywords: Collegiate mathematics, Equity, Professional development, Transformation 

Introduction 
Professional training of collegiate mathematics instructors continues to gain momentum and 

research related to this realm of mathematics education has grown over the past decade. Some of 
the research stems from funded grants that support the training of collegiate mathematics 
instructors, particularly graduate teaching assistants (Deshler, Hauk, & Speer, 2015; Harris, 
Froman, & Surles, 2009; Speer, Gutmann, & Murphy, 2005). Our research is of the same nature; 
we explore collegiate instructors’ experiences with engaging in The STEM Service Courses 
Initiative of Project Pathways with Regional Outreach and Mathematics Excellence for Student 
Achievement in Science, Technology, Engineering, and Mathematics (STEM), which we refer to 
as PROMESAS SSC. This project is a regional STEM initiative where mathematics faculty from 
a 4-year Hispanic-Serving Institution (HSI) and three HSI community colleges collaboratively 
address systemic change in teaching collegiate mathematics. The aim of PROMESAS SSC 
focuses on transforming mathematics pathways into STEM and to strengthen the STEM student 
success pipeline. The project emphasizes faculty development on cultural competency, inclusive 
pedagogy, and renewing the collegiate mathematics curriculum. In an effort to address these 
topics, the lead researcher, in conjunction with five faculty from the various institutions, co-
developed and co-facilitated a year-long professional development (PD) program for the 
participating collegiate instructors, who we refer to as fellows. The PD focuses on three themes: 
(a) building classroom community, (b) teaching with a student-centered lens, and (c) creating 
and implementing rich mathematical tasks, all aimed at promoting equity in the mathematics 
classroom. In this research, we address the research questions: (1) what is the nature of the 
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fellows’ experiences with PROMESAS SSC and (2) what is the nature of the fellows’ 
transformation regarding their philosophical teaching practices as a result of PROMESAS SSC?  
 

Literature Review 
PD programs for collegiate mathematics instructors and graduate teaching assistants have 

slowly emerged around the globe, but a review of the literature related to collegiate PD for 
instructors resulted in only one study exclusive to mathematics (Barton, Oates, Paterson, & 
Thomas, 2015). Facilitators of PD workshops documented their specific institutions’ unique, 
novel PD programs through case studies. There were several underlying similarities that 
contributed to successful PD programs, i.e., those that inspired a shift from teacher-centered 
instruction to student-centered instruction. Such characteristics included: promoting a 
community of educators, providing continued support for the instructors, and modeling 
evidenced-based teaching methods (Ash et al., 2009; Barton, et al.; Czajka & McConnel, 2016; 
Denecker, 2014; Ebert-May et al., 2011; Hadar & Brody, 2010; McCrickerd, 2012), which we 
incorporated into the PD. Although these common themes exist, there also remain conflicting 
views regarding PD content and participants such as discipline based versus interdisciplinary and 
novice teachers versus teachers with varying degrees of experience (Barton et al.; Denecker; 
Ebert-May et al.). 

Although the aforementioned studies did not allude to the role of equity in PD, some 
programs promoted equitable teaching in mathematics. We adopt Gutiérrez's (2009) ideas on 
equity to guide our definition of equitable mathematics teaching as a student-centered classroom 
accessible to all students including various and diverse classroom environments, classroom 
discussions, and group work. Mathematics PD programs often contained these teaching 
practices, but it is unclear if and how equity fit into these teaching strategies because PD 
facilitators do not make this connection clear (Battey, Kafai, Nixon, & Kao, 2007). As such, 
collegiate instructors did not attend to equity issues in the mathematics classroom unless the PD 
addressed awareness of equity, subject-matter training, best practices, and inquiry as a whole 
package rather than as disjoint topics (Battey et al., 2007). Therefore, to encourage 
implementation of equitable teaching practices, PD facilitators are encouraged to explicitly 
connect content-specific training, such as student-centered learning, with equity issues (Battey et 
al.; Lee, 2004).  

While it remains important to introduce collegiate instructors to research highlighting the 
benefits of equitable teaching practices, PD programs also need to expose instructors to practices 
that could promote inequity in the mathematics classroom. In general, equitable teaching 
practices nurture underrepresented students’ mathematical self-confidence and mathematical 
agency (Deshler & Burroughs, 2013; Sax, Kenny, Riggers-Piehl, Wang, & Paulson, 2015). 
Similarly, phenomenon such as stereotype threat, teacher’s subconscious bias, and classroom 
norms can create an important, but often unnoticed, negative impact on underrepresented 
students’ confidence and independence as mathematics learners (Sax et al.; Steele, 1997). In the 
PROMESAS SSC PD, the facilitators routinely attempted to introduce the fellows to research 
connecting teaching practices to equity.  

 
Theoretical Lens 

Given our interest in exploring the fellows’ experiences with PROMESAS SSC, we 
conducted a study with a phenomenological focus. Patton (2015) contends that such a lens is 
appropriate when researchers inquire into “how human beings make sense of experience and 
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transform experience into consciousness, both individually and as shared meaning” (p. 115). The 
phenomenon of interest can include emotions, physical experiences, relationships, cultures, 
organizations, or participation in programs. Such descriptions and interpretations can prove 
difficult to differentiate because “interpretation is essential to an understanding of experience, 
and the experience includes the interpretation” (Patton, p. 116). Thus, in order to make sense of 
one’s lived experience, researchers must place their focus on how research participants arrange 
the phenomenon that they experience, rather than whether it actually happened, how often it 
happened, or how the experience might be related to other conditions or events to define the 
shared human experience.  

 
Methods 

 
PROMESAS SSC Description  

In creating the PROMESAS SSC PD, we took the aforementioned literature into account, as 
well as the Instructional Practices Guide (MAA, 2018). We created a year-long PD program for 
collegiate instructors scheduled to teach the first semester calculus course during the 2017-2018 
academic year. The PD began with a one-week summer institute in 2017; a schedule of the 
summer institute appears in Appendix A. The first cohort consisted of 14 fellows, four were 
women, three were adjunct, six were of diverse backgrounds, and the fellows’ teaching 
experience at the collegiate level as non-graduate students ranged from 0-42 years. Given that 
the themes of the PD were: (a) building classroom community, (b) teaching with a student-
centered lens, and (c) creating and implementing rich mathematical tasks, all with an eye towards 
equity in the mathematics classroom, we asked the fellows to read six related journal articles 
prior to the summer institute.  

Following the summer institute, the fellows participated in six monthly, day-long, follow-up 
meetings during the academic year. The monthly meetings provided an opportunity for the 
fellows to continue learning about the PROMESAS SSC themes and equity in the classroom, to 
share newly created teaching materials, and to discuss any successes and challenges that they 
encountered in attempting to transform their teaching of calculus. In both the summer institute 
and the follow-up meetings, the fellows worked on rich calculus tasks in a student-centered 
environment that promoted a sense of community. The first year of the project culminated with a 
2-day workshop where the fellows began to develop an action plan for better transforming the 
teaching of their Calculus I course during year two of the project. 
 
Data Collection and Analysis 

This study examined two sources of data from the fellows: responses to journal prompts and 
audio-taped interviews. Within the journals, the fellows reflected on new readings, ways in 
which they could adopt and adapt what they learned during the PD, challenges with integrating 
new teaching strategies into their classroom, their goals for transforming their teaching, and 
offered suggestions for future PD meetings. The second set of data was audio-recorded clinical 
interviews that lasted 60-90 minutes. The questions gave the fellows an opportunity to reflect on 
their teaching prior to participating in the PROMESAS SSC PD along with their experience with 
the PROMESAS SSC PD. We used narrative analysis to explore the shared human experiences 
that the fellows had with PROMESAS SSC. The authors wrote stories from each transcribed 
interview which they compared to find common themes. These themes were further supported by 
fellows’ journals. The comparison of stories allowed us to establish how each of the PROMESAS 
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SSC themes contributed to the essence of the fellows’ shared human experience with the PD and 
how if at all this PD transformed their teaching philosophy.  

 
Results 

In terms of the PROMESAS SSC themes, our narrative analysis suggests that the fellows felt 
an obligation to attend to students’ needs and interests as part of student-centered learning, found 
rich tasks useful to connect students’ prior knowledge with new content, recognized that creating 
a sense of community in the classroom resulted in more classroom engagement, and established 
a community among themselves. In terms of transforming their teaching, the fellows believed 
that as a result of PROMESAS SSC they were able to shift and align their teaching belief systems 
with teaching practices, to better appreciate evidence-based techniques, to teach with intention, 
and to realize how both they and their students had more fun in the classroom. Furthermore, the 
fellows came to comprehend how these practical and philosophical transformations fostered 
equitable teaching practices in the mathematics classroom.  

 
Student-Centered Learning 

The fellows expressed three shared experiences related to student-centered learning. They 
felt an increased sense of responsibility and attentiveness to students’ success, need to make 
mathematics relatable to each student, and desire for students to “do the mathematics.” In terms 
of student success, Dillon wrote “my new experience [from PROMESAS SSC] has given me a 
wonderful sense of freedom and sometimes an overwhelming sense of responsibility.” Filled 
with a sense of duty for their students’ success, the fellows consciously attempted to promote a 
student-centered atmosphere in their mathematics classrooms. A typical way in which the 
fellows attempted to create a student-centered classroom entailed making the content relatable to 
each student. In his interview, Kyle said “I am bringing [examples from] . . . different fields just 
so there are things that kind of pique the interest of different students.” Many of the fellows 
reported that as a way to maintain a student-centered classroom, they required that the students 
do the mathematics. Miguel explained, “the best practice is for [the students] to do it on their 
own . . . they’re not going to understand it until they discover it themselves.” Doing mathematics 
also often entailed conversing about mathematics. The fellows believed that requiring their 
students to discover, explore, and do mathematics on their own resulted in deeper understanding 
of the material.  
 
Rich Tasks 

The majority of the fellows perceived rich tasks as a novel concept. They routinely 
commented in both the interviews and the journals that they felt unsure about integrating rich 
tasks into their classroom. Yet, the fellows believed that through the rich tasks, they were able to 
activate their students’ prior mathematical knowledge in order to fuel future learning. Megan 
wanted to implement rich tasks but found herself concerned about the quality of the rich task. 
Through the support of PROMESAS SSC, these worries faded. In reflecting about the richness of 
a task, Megan confidently asked herself, “is it getting [the students] engaged? Is it getting them 
thinking about [math]? Then it’s fine, we’re [going to] do it.” Viewing rich tasks in this manner 
felt less overwhelming to Megan and she saw that the students were always very excited to work 
on such tasks. The fellows found it particularly beneficial to draw out the connections between 
mathematical topics through the rich tasks. Miguel explained how rich tasks allowed students to 
evoke prior knowledge and set the stage for him to foreshadow upcoming material. He said, 
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“[The rich tasks use] something that [the students] know how to do, but it’s going to be related to 
what I’m going to teach [them next].” He realized that with rich tasks, his students were better 
prepared for the mathematics that came next because the rich tasks promoted deeper 
understanding by connecting mathematical ideas.  
 
Sense of Community 

Throughout the fellows’ interviews and journals, many reported witnessing the growth of a 
community. This sense of community manifested itself with two different populations, the 
fellows’ classrooms and between the fellows themselves.  

Many of the fellows discussed the importance of creating a sense of community in their 
classrooms early in the semester. Dillon wrote, “the first opportunity to build a community is the 
best opportunity to build a community . . . my first order of business in the semester is to help the 
students identify as a group, to make a we.” The fellows also utilized sharing personal 
experiences in an effort to create a sense of community in their classrooms. Miguel decided to 
adopt this advice and he found that the students responded positively. He shared his journey as a 
first-generation college student and reported that “now [the students] just see me as a human and 
not their professor.” It seems that fellows’ purposeful intentions of creating a sense of 
community in their classrooms allowed them to witness their students feeling more comfortable 
in the classroom. For example, Max exclaimed, “[the students] started showing up to class early 
and talking with each other . . . about problems, and that doesn’t happen if you don’t create that 
kind of sense of community.”  

 Besides experiencing a community in their classrooms, the fellows also experienced their 
own sense of community within PROMESAS SSC. Before entering PROMESAS SSC some of the 
fellows described feeling isolated as educators and unheard by others. In his interview, Adam 
shyly admitted feeling overwhelmed, underappreciated, and invisible. He said, “if you’re just an 
adjunct . . . driving between schools, you are like a ghost going into different schools, teaching 
and leaving.” With PROMESAS SSC all the fellows agreed, they felt as though they had a 
community where they belonged. In his interview, Matthias talked about immediately feeling 
welcomed into the community of fellows. He said, “[The PROMESAS team] created this 
environment that made it safe for all of us . . . I was able to talk to [the other fellows] as if I knew 
them for a long time.” The fellows appreciated and relied on the support from their PROMESAS 
SSC community as motivation to try newly learned teaching techniques, thus, there existed a 
sense of fidelity to actually try the teaching techniques. Un-denounced to the facilitators, the 
community of fellows had become a way to hold the fellows accountable for their own teaching 
transformations.  
 
Transformation 

As a result of PROMESAS SSC, the fellows summarized how their teaching transformed in 
four different ways. This included: (a) shifting and aligning teaching belief systems with 
teaching practices, (b) increasing appreciation for evidence-based techniques, (c) teaching with 
intention, and (d) realizing how both they and their students had more fun in the classroom.  

With varying degrees of magnitude, each fellow transformed their teaching by participating 
in the PROMESAS SSC PD. As a result of PROMESAS SSC, Max was able to align his teaching 
beliefs with his teaching practices. Miguel described this shift as “eye opening,” realizing that 
PROMESAS SSC’s greatest impact originated from the little, seemingly simple, things he had 
never even thought of doing in his own classroom before hearing them from the PD leaders or 

22nd Annual Conference on Research in Undergraduate Mathematics Education 598



other fellows. Even Matthias, who had been teaching for 15 years before joining PROMESAS 
SSC, professed a dramatic transformation in his teaching style due to the PD. Matthias reported 
that he went from lecturing every day to believing that students learn best through proactive and 
“[high quality teaching that] can be done in the classroom and we [as teachers] can change the 
students’ mentality” through active learning such as group work and group quizzes.  

The fact that the PD was grounded in research especially encouraged this emerging 
mentality. Adam appreciated that, with PROMESAS SSC, “you know you’re on the cutting edge 
of math education research … and we can share [this knowledge].” Megan exemplified how this 
evidence-based PD boosted fellows’ confidence as educators. Even as a mathematics education 
PhD graduate, she felt more assured of the new tasks she presented in class, changing her 
mindset from “it has to be perfect,” to “it’s okay for [the students] to make mistakes, it’s okay for 
me to make mistakes too.” She expressed that just knowing that an idea had a name and “this is 
actually a thing that other people do,” solidified her beliefs about her own teaching practices. 
While the PD centered around Calculus I, by the end of the program the fellows felt comfortable 
“adopting and adapting” these newly learned evidenced-based teaching techniques to better fit 
their teaching environment in any other mathematics course.  

As a result of partaking in PROMESAS SSC, the fellows also felt more aware of their 
teaching and more intentional about their teaching choices. Adam synthesized many of the 
fellows’ sentiments with his statement, “[I’m] really thinking about teaching, what [my students] 
are actually learning, and what they’re going to leave the class with . . . [PROMESAS SSC is] 
making me just more conscious and intentional, on purpose and with a purpose.” Beyond 
purposefully creating student-centered classroom activities, the fellows informed their students 
as to “why” they were implementing these activities. Miguel described a first day activity 
designed to promote community in the classroom, in which he explicitly told his students, “one 
of the reasons why I did this [activity] is because I want you guys to get comfortable . . . in this 
class.” The fellows also found that providing such rationale to their students eased meeting 
teaching goals because the students understood the purpose of each task. 

In addition to all of the above, the fellows discovered teaching to be “fun” again. Adam 
described it as “falling back in love with teaching,” and with surprise Kyle asserted, “[I am 
astonished] how much more fun the lessons [from PROMESAS SSC] really are or how much 
more fun teaching is [now].” Max also noticed a more positive mindset displayed by his 
students, remarking that his students had developed a mindset of “just because you haven’t 
succeeded at math before, doesn’t mean that you can’t at least do better.” Integrating novel 
teaching techniques and activities appeared to liven up the fellows’ classrooms and they not only 
felt themselves become better teachers, but also remembered why they loved teaching so much. 
 
Equity 

Every fellow noticed how the overarching theme of equity weaved into a majority of the PD 
components. As Megan put it, “I think [equity] is what PROMESAS is about” as she articulated 
how all the PD activities were supported by research as equitable practices. This theme of equity 
often presented itself in the form of providing access to every student in the mathematics 
classroom. After the summer institute, Kayla expressed that not only should every student feel 
like they can learn math, but “every student [should have] an opportunity for success with 
mathematics regardless of background. Every student should feel included, safe, and capable.” 
Developing the philosophy that everyone can learn mathematics stemmed from the newly-found 
knowledge regarding student-centered learning in which how one presents the content often 
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matters more than the content itself. As Adam described it, “[In PROMESAS SSC], you’re 
addressing . . . different student populations and how to engage them. And then day to day, 
bring[ing] that into your work and try[ing] to create a better experience for all students.” Adam 
believed that daily he could structure his classroom to be more equitable. For some fellows, the 
PD’s focus on equity proved eye-opening. For example, David, realized that “even if a student 
doesn’t understand the concept I’m currently teaching . . . there [are] things I can do in class to 
make it more accessible. Do some kind of activity or something that brings them into the 
conversation.” Overall, the fellows came to value equitable teaching practices in the mathematics 
classroom. Max concisely conveyed how “equity basically brings everybody up, so I can’t see 
how anybody could complain.”  
 

Discussion 
The PROMESAS SSC project is a humble yet ambitious start into developing successful and 

sustainable PD for mathematics faculty. Yet, we believe the structure of the PROMESAS SSC PD 
could serve as a model for other PD designed for mathematics faculty. Offering ongoing support, 
focusing on a particular content strand, admitting faculty with diverse teaching experience, 
reading mathematics education research, and linking equity to content appeared to contribute to 
the fellows’ teaching transformations. We found that the fellows expressed feelings beyond just 
learning new teaching techniques; they also expressed a sense of becoming a better and informed 
educator. The structure of the PD offered a safe space for the fellows to create their own sense of 
community, where they felt inspired to try new teaching techniques, which invigorated their 
teaching, and in turn engaged their students. Participating in this project resulted in a community 
where the fellows felt supported and accountable.  

Outside of the classroom, this study also raised important issues related to equitable practices 
in collegiate mathematics departments. Many of the adjunct fellows painted a picture of isolation 
and aired a feeling of frustration because they did not have a voice. Furthermore, they believed 
that they did not have a right to complain about issues within the department. After PROMESAS 
SSC, the fellows reported feeling that they could speak up more in their departments with support 
from the other fellows. Similar to the students, these fellows became more comfortable and 
confident in their place of work and as a result gained mathematical voice and mathematical 
agency (Deshler & Burrough, 2013). This suggests that PD programs similar to PROMESAS SSC 
may not only create a more equitable environment for participants’ students, but also for the 
participants themselves.  

Future directions for this research includes exploring the impact that this program has on 
students’ learning, retention, and continuation in their STEM field. In the future, we hope to 
collect video-tape data of the fellows’ classrooms as they implement PROMESAS SSC teaching 
strategies. We also hope to continue investigating how PROMESAS SSC can further support and 
empower adjunct faculty. These research projects are currently underway.  
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Generalizing Actions of Forming: Identifying Patterns and Relationships Between Quantities 
 

 Halil Ibrahim Tasova Biyao Liang Kevin C. Moore 
 University of Georgia University of Georgia University of Georgia 

In this paper, we illustrate and discuss two undergraduate students’ reasoning about quantities’ 
magnitudes. One student identified regularities regarding the relationship between two 
quantities by focusing on successive amounts of change of one quantity (i.e., a pattern) while the 
other attended to relative amounts of changes in both quantities (i.e., a relationship). We 
illustrate that although reasoning about amounts of change is useful for making sense of the rate 
of change in quantities, reasoning about relative changes in identifying a relationship between 
quantities’ magnitudes is likely more productive in developing the concept of rate of change.  

Keywords: Quantitative and covariational reasoning, Generalization, Rate of change. 

Quantitative and covariational reasoning is critical to supporting students in understanding 
major pre-calculus and calculus ideas (Ellis, 2007b; Confrey & Smith, 1995; Thompson, 1994, 
2011; Thompson & Carlson, 2017). Moreover, Ellis (2007b) reported that quantitative reasoning 
plays a significant role in students’ constructing productive generalizations. In this paper, we 
characterize two undergraduate students’ generalizing actions during a teaching experiment 
focused on modeling covariational relationships. We give specific attention to how the students’ 
engagement in covariational/quantitative reasoning differed and, in turn, how this difference led 
them to generalize different regularities regarding a covariational relationship between two 
quantities’ magnitudes. We report the generalizing actions of two students, with one student 
operating with additive comparisons of amounts of change in one quantity, and the other student 
operating with additive and multiplicative comparisons of amounts of change of two quantities 
(i.e., relative changes and ratios). We also report the resulting identified regularities of these 
ways of operating. 

Background and Theoretical Framework 

Quantitative and Covariational Reasoning 
This study focuses on students’ generalizing actions involved in reasoning with relationships 

between quantities in dynamic situations. We use quantity to refer to a conceptual entity an 
individual construct as a measurable attribute of an object (Thompson, 2011). We also describe 
students’ construction of quantitative structures by characterizing their quantitative operations 
when determining a quantitative relationship. By quantitative operation, we mean the 
conception of producing a new quantity from two others, and by a quantitative structure, we 
mean a network of quantitative relationships (i.e., the conception of these three quantities; 
Thompson, 1990, 2011). For example, someone can create a quantity as a result of additive 
comparison of two quantities by answering the question, “How much more (less) of this is there 
than that?”, whereas someone can create a quantity as a result of multiplicative comparison of 
two quantities by answering the questions “‘How many times bigger is this than that?’ and ‘This 
is (multiplicatively) what part of that?’” (Thompson, 1990, p. 11). 

Furthermore, when students engage in a dynamic context that involve two quantities varying 
simultaneously, they need to coordinate quantitative operations with covariational reasoning 
(i.e., attending to how one quantity varies in relation to the other in tandem; Saldanha & 
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Thompson, 1998; Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). For example, in order to 
determine a pattern of differences in a quantity’s variation in relation to the other, a student can 
coordinate the variation of two quantities values or magnitudes and the variation of the resultant 
difference quantity’s values or magnitudes (e.g., as two quantities increase, the difference of 
these quantities decrease; see Mental Action 3 in Carlson et al., 2002).  

Non-Ratio and Ratio-Based Reasoning 
Many researchers have provided different ways of making sense of rate of change of one 

quantity with respect to another. For example, some researchers (e.g., Carlson et al., 2002; 
Confrey and Smith, 1994, 1995; Ellis, 2007b, 2011; Johnson, 2012, 2015b; Liang & Moore, 
2017, 2018; Monk & Nemirovsky, 1994; Tasova & Moore, 2018) argued the importance of non-
ratio based reasoning, which is reasoning about amounts of change in one quantity in relation to 
uniform changes in another quantity. For example, a constant rate of change in the perimeter of a 
square with respect to changes in side length can be conceived by determining that amounts of 
increase in the perimeter is “two centimeters” each time “if you increase both sides by point five 
[centimeters]” (Johnson, 2012, p. 322). 

There are also researchers (e.g., Confrey and Smith, 1994, 1995; Ellis, 2007b, 2007c, 2011; 
Ellis, Özgür, Kulow, Williams, & Amidon, 2013, 2015; Johnson, 2015a) who have argued for 
the importance of ratio-based reasoning (i.e., forming ratios of one quantity’s change to the other 
quantity’s change) in making sense of the rate of change. For example, a constant speed of a 
Clown can be conceived as a ratio of distance to time (i.e., “5cm:4s”; Ellis, 2007b, p. 472). We 
note that these conceptualizations (mostly) included students’ reasoning with numbers. In this 
paper, we expanded this body of literature by demonstrating ways in which students make sense 
of rate of change in dynamic events and in graphs by reasoning with quantities’ magnitudes 
independent of numerical values (see Liang, Stevens, Tasova, and Moore [2018] and Thompson, 
Carlson, Byerley, and Hatfield [2014] for a detailed discussion on magnitude reasoning). 
Because reasoning with quantities’ magnitudes does not necessitate reasoning with specified 
values of the quantities, we conceptualize “ratio-based reasoning” as reasoning with a “quotient 
[that] entails a multiplicative comparison of two quantities with the intention of determining their 
relative size” (Byerley and Thompson, 2017, p. 173). We aim at demonstrating students’ 
generalizing actions by characterizing how they operate with magnitudes within a complex 
quantitative structure.  

Generalizing Framework 
Building on Ellis’ (2007a) taxonomy of generalizations, Ellis, Tillema, Lockwood, and 

Moore (submitted) introduced a generalization framework involving three major forms of 
students’ generalizing—relating, forming, and extending. Students’ generalizing actions of 
forming occur within one context, task, or situation. This type of generalizing action includes 
students searching for similarity and regularity across cases, isolating constancy across varying 
features by establishing a way of operating that has the potential to be repeated, and identifying a 
regularity across cases, numbers, or figures. In this paper, we are using this framework to 
illustrate two students’ generalizing actions of forming by focusing on their establishing ways of 
operating and identifying regularities as they relate to covarying quantities.  

Method 
The data we present in this paper is from two semester-long teaching experiments (Steffe & 

Thompson, 2000) conducted at a large public university in the southeastern U.S. A common goal 
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of both teaching experiments was to investigate undergraduate students’ mental actions involved 
in reasoning with dynamic situations, magnitudes, and graphs from a quantitative and 
covariational reasoning perspective. In this paper, we focus on a student, Lydia, who at the time 
of the study, was a pre-service secondary mathematics teacher in her first year in the program, 
and another student, Caleb, who was a sophomore majoring in music education. Lydia 
participated in 11 videotaped teaching experiment sessions and Caleb participated in 14, each of 
which was approximately 1–2 hours long. We transcribed the video and digitized these students’ 
written work for both on-going and retrospective conceptual analyses (Thompson, 2008) to 
analyze their observable and audible behaviors (e.g., talk, gestures, and task responses) and to 
develop working models of their thinking. We choose to present these two cases here because the 
students’ generalizing actions including their established ways of operating and identified 
regularities are cognitively distinct, and thus are worth documenting and contrasting.  

Analysis and Findings 
In this paper, we illustrated two students’ generalizing actions—by focusing on their ways of 

operating and identified regularity as they determined the covariational relationship between two 
quantities.  

Lydia’s Generalizing Actions 
First, we characterize Lydia’s activities in Taking a Ride to discuss her generalizing actions 

of establishing a way of operating (see Tasova & Moore [2018] for detailed account of her 
generalizing activity). To start with, we presented Lydia an animation of a Ferris Wheel rider 
that was indicated by a green bucket rotating counterclockwise from the 3:00 position (Desmos, 
2014). Then, we asked her to describe how the height of the rider above the horizontal diameter 
changes in relation to arc length it has traveled. After reasoning about directional change in 
height in relation to arc length (i.e., height is increasing as the arc length increases in the first 
quarter of rotation), she engaged in partitioning activity (Liang & Moore, 2017, 2018) in order to 
investigate how height changes in relation to arc length. Namely, she used the spokes of the 
Ferris wheel (i.e., each of the black bars [see Figure 1a] connecting the center of the wheel to its 
edge) to partition the Ferris wheel into equal arc lengths, and then she drew corresponding 
heights (see the green segments in Figure 1a and Figure 1b). 

  
(a)      (b)   (c)                 (d) 

Figure 1. Lydia engaging the Taking a Ride task. Figure 1b and 1d were designed for the reader. 

With support from the teacher-researcher’s (TR) questioning, Lydia constructed successive 
amounts of change in height (i.e., circled in blue seen in Figure 1c and blue segments in Figure 
1d) that corresponded to successive uniform incremental changes in arc length. That is, Lydia 
established a way of operating that involved the construction of a new quantity (i.e., amounts of 
change in height) and associated partitioning activity. We inferred from her activity that Lydia 
was constructing the difference of every two consecutive height magnitudes (i.e., D||H1||, D||H2||, 
and D||H3||, see blue segments in Figure 1d) corresponding to the magnitude of arc length that 
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accumulates in equal increments; Smith III & Thompson, 2008; Thompson, 1990). This served 
as evidence that she was operating with additive comparisons among the accumulated height 
magnitudes at successive states (i.e., ||H1||, ||H2||, and ||H3||, see green segments in Figure 1b)). 
What’s more, she additively compared the amounts of change magnitudes in height. Namely, she 
concluded D||H1|| > D||H2 > D||H3||. 

We note that in her additive comparison, Lydia was not interested in measuring how much 
one quantity’s magnitude exceeded (or fell short) of another quantity’s magnitude. Instead, her 
quantitative operation included a gross additive comparison (Steffe, 1991) between the amounts 
of change within a quantity (e.g., D||H3|| being “smaller” than D||H2||). From this activity, 
therefore, we inferred that Lydia made a gross comparison of the differences, which is a more 
complex quantitative reasoning because this requires relating results of quantitative operations 
(i.e., an additive comparison of the results of two additive comparisons). After engaging in 
repeated additive comparisons, Lydia was able to search for pattern in those quantities’ 
variation. With the recognition in the pattern of differences (i.e., decreasing change in height 
along with those equal partitioning in arc length as shown in Figure 1c and 1d), Lydia had 
identified the regularity in how height’s magnitude changes in relation to arc length in the first 
quadrant, stating “as the arc length is increasing... [the] vertical distance from the center is 
increasing ... but the value that we’re increasing by is decreasing.” 

Caleb’s Generalizing Actions 
We demonstrate Caleb’s generalizing actions when engaging in the Changing Bars Task, 

which involved a simplified version of Ferris wheel situation (i.e., a circle) and six pairs of 
orthogonally oriented bars (see Figure 2). On the circle, the red segment represents the 
magnitude of the riders’ height above the horizontal diameter and the blue segment represents 
the magnitude of the rider’s arc length traveled from the 3 o’clock position. Caleb was able to 
move the end-point (i.e., the rider) along the circle between the 3:00 position to the 12:00 
position. We asked Caleb to choose which, if any, of the orthogonal pairs accurately represents 
the relationship between the height and the arc length of the rider as it travels.  

 
Figure 2. Changing Bars Task (numbering and locations of the six pairs was edited for readers). 

In this section, we report Caleb’s generalizing actions that involved him establishing ways of 
operating that entailed additive and multiplicative comparisons. We note that identifying these 
different operations does not imply that Caleb engaged in them in order. We believe that Caleb’s 
reasoning involving additive and multiplicative comparisons was internally coherent and he 
could make claims about either one depending on the TR’s questioning. Our goal of making such 
distinction was to characterize his different ways of operating and contrast his ways of operating 
with those of Lydia. 

Additive comparison of amounts of change. Caleb started with comparing the amounts of 
change in arc and amounts of change in height as the dynamic point traveled a small distance 
from the 3:00 position. He stated that, “...at the very beginning, ... the height above the center 
and the distance traveled from 3:00 position should be similar.” This way of operating was 
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repeated several times during his generalizing actions with use of slightly different verbal 
statements. For example, in a later conversation, he stated “at the beginning of the path [referring 
to 3:00, see Figure 3a], ...the rate at which the height increases should be almost equal to the rate 
at which the distance it's traveled.” We note that although he used the word of “rate,” we infer 
that he meant amount of change in height and arc length. By repeating the same way of operating 
in 12:00 position (i.e., new case in the first quarter of rotation), Caleb further stated that:  

...from this point [pointing to the point denoted in orange in Figure 3b] ... to this point 
[pointing to 12:00 position in Figure 3b], the height barely changes [green segment in Figure 
3b and Figure 3c (i.e., D||H3||)], but you’re still traveling a fair distance around the circle 
[blue annotation in Figure 3b and blue segment (i.e., D||A3||) in Figure 3c]. 

               
(a)             (b)     (c) 

Figure 3. Recreation of Caleb’s activity in the Changing Bars task. 

From his activity, we infer that Caleb’s established way of operating included an additive 
comparison of D||H1|| with D||A1|| near the 3:00 position (i.e., D||H1|| is almost equal to D||A1||) and 
of D||H3|| with D||A3|| near the 12:00 positon (i.e., D||H3|| is smaller than D||A3||). Similar to the 
case of Lydia, we did not have evidence that Caleb constructed the difference between amounts 
of change in two quantities (e.g., how much D||H3|| exceeded of D||A3||) beyond a gross additive 
comparison between the amounts of change in each quantity (Steffe, 1991). 

As the teaching experiment proceeded, he isolated a constant feature of the relationship 
between the amounts of change in height’s magnitude and the amounts of change in arc length’s 
magnitude across the first quarter of rotation. He stated that “from any point to any other point 
along this stretch [referring to the first quarter of rotation], the amount that the red line [i.e., 
height’s magnitude] changes should always be smaller than the amount that the blue line [i.e., arc 
length’s magnitude] changes.” Therefore, we infer that Caleb isolated a constant feature across 
varying features of the relationship between D||H|| with D||A|| without reaching the final stage of 
fully describing an identified regularity across the first quarter of rotation (e.g., D||H|| becomes 
smaller relative to D||A|| as the rider travels from 3:00 positon to 12:00 position). It is important 
to note that, however, Caleb knew that “when we’re looking down here [refers to 3:00 position]” 
the relationship between D||H1|| and D||A1|| “should be vastly different from” the relationship 
between D||H3|| and D||A3|| (see Figure 3c). 

Eventually, Caleb identified a regularity regarding the relationship between D||H|| and D||A|| 
across the all cases in the first quarter of rotation. He stated that “the further you move away 
from the 3:00 position, the more variance there would be between the red (i.e., D||H||) and the 
blue lines (i.e., D||A||)” and by “variance” he meant that D||A|| became much bigger than D||H|| as 
the dynamic point approached the 12:00 position.  

Multiplicative comparison of amounts of change. Caleb also established a way of 
operating that involved multiplicative comparisons between D||H|| and D||A||. He stated that “As 
we approach this point right here [refers to 12:00 position], the ratio of the rate at which the 
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height increases to the rate or to the distance we’ve traveled around...the circle, um, is at its 
smallest...” This way of operating was also repeated several times during his generalizing 
activity—both in the circle situation and in six pairs of bars. For example, near 12:00 position, he 
established that there is a “...1 to 2.5 or 1 to 3 ratio in the amount that you change the red line’s 
length [i.e., height’s magnitude] decreases to the blue line length [i.e., arc length’s magnitude] 
decreasing.” We infer that Caleb constructed a quantity as ratios of D||H|| to D||A|| across the first 
quarter rotation, and anticipated that the ratio gets smaller as the rider travels from 3:00 position 
to 12:00 position. His way of operating that entailed multiplicative comparisons of quantities and 
his identified regularity regarding the relationship between height and arc length became evident 
in his graphing activity, which we report next. 

 
(a)       (b)       (c) 

Figure 4. (a) Caleb’s initial graph, (b) a resulting drawing of Caleb’s partitioning activity, and (c) a recreation of 
Figure 4b for readers 

Caleb’s graphing activity. The researchers then asked Caleb to produce a graph that 
represents the relationship between height and arc length. He constructed the concave down 
graph shown in Figure 4a. To interpret his displayed graph in terms of amounts of change in 
height and arc length, Caleb engaged in partitioning activity (Liang & Moore, 2017, 2018) to 
construct incremental changes that represented amounts of change in height (i.e., D||H1||, D||H2||, 
and D||H3|| in Figure 4c; also see yellow vertical segments in Figure 4b) in relation to uniform 
changes in arc length (i.e., D||A1||, D||A2||, and D||A3|| in Figure 4c; also see yellow horizontal 
segments in Figure 4b). He then assigned estimated values for each segment to indicate its 
magnitude (i.e., D||A1|| = D||A2|| = D||A3|| = 1; D||H1|| = .85 > D||H2|| = .5 > D||H3|| = .197 and 
constructed ratios of each corresponding pairs, writing “.85/1”, “.5/1”, and “.197/1” (see Figure 
4b). Caleb also operated on these ratios by additively comparing them, anticipating that these 
ratios should decrease—“.85/1>.5/1>.197/1”. This suggested that Caleb continued and 
generalized his ways of operating in the circle and bar situation to the graphical contexts and 
identified a regularity that the ratios of successive pairs of amounts of change in height and arc 
length should decrease as the rider travels in the first quarter of rotation. Caleb was also able to 
extend his ways of operating to non-uniform intervals. Namely, he anticipated that when 
increments of arc length are not equal (see his partitions in light blue in Figure 4b and his 
estimated values for each increment), the same regularity should hold, writing “.8/1.9<.75/.82” 
(see Figure 4b) without calculating the resulting value of the ratios. 

Discussion 
We focus on two students’ generalizing actions by giving attention to their ways of operating 

and identified regularity. In establishing ways of operating, both Lydia and Caleb first 
constructed differences (i.e., amounts of change) in magnitudes of height (i.e., D||H1||, D||H2||, and 
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D||H3||) in relation to change of arc length’s magnitude (i.e., D||A1||, D||A2||, and D||A3||). However, 
the way they operated on those differences differed. For example, they both engaged in 
quantitative operation of additive comparisons; however, the operands that they considered in 
their quantitative operations were different. That is, Lydia additively compared the successive 
amounts of change in height’s magnitude, whereas Caleb additively compared amounts of 
change in height’s magnitude with the corresponding amounts of change in arc length’s 
magnitude. Therefore, the operands for Caleb were differences in height and differences in arc 
length (i.e., D||Hn|| and D||An||, where n=1, 2, and 3), as opposed to Lydia whose operands were 
differences of height in successive states (i.e., D||Hn|| and D||Hn+1||, where n=1 and 2). We 
conjecture that the way of additive comparison in Caleb’s case might be more productive for 
generalizing the rate of change in height with respect to arc length since such comparison 
afforded him to anticipate a resultant ratio of differences in height and differences in arc length 
(i.e., D||Hn||/D||An||). 

We also find that these two students’ different ways of operating led them to identify 
different regularities regarding the similar situations. Lydia searched for the pattern (Ellis, 
2007b) by making within-measure additive comparisons among heights in different states. Thus, 
she identified a pattern of how amounts of change in the height decrease as the arc length 
increases. Caleb searched for the relationship (Ellis, 2007b) by making between-measure 
multiplicative comparisons between height’s magnitudes and arc length’s magnitudes. Thus, he 
identified a regularity of relative change of the height with respect to the arc length decreases as 
the rider travels. We conjecture that this way of operating (i.e., multiplicative comparison 
between changing quantities’ magnitudes) and the resultant identified regularity may afford 
students to develop productive understandings of rate of change. 

We want to point out that, when additively comparing the ratios in justifying his identified 
regularity, Caleb’s engagement with numbers does not imply that he performed arithmetic 
operations in a sense that he wanted to evaluate the quantities’ values. We infer that the reason 
he assigned numbers to quantities’ magnitudes is that he needed to “propagate information” 
(Thompson, 2011, p. 43) in order to deal with the complex quantitative situations. Thompson 
(2011) claimed that propagation can be made under the conditions of being aware of (i) 
quantitative structure and (ii) “numerical operations to perform to evaluate a quantity in that 
structure” (p. 43). Even though Caleb did not perform numerical operations to evaluate 
quantities, he satisfied the conditions of propagation. That is, he used numbers as intuitive 
measurements of quantities’ magnitudes and he was aware of the quantitative structure. 
Moreover, Caleb’s uses of numbers were necessary for him in order to compare the relative size 
of two quantities’ magnitudes. Part of this necessity comes from the fact that there was no way 
for him to visually represent the magnitude of a quantitative ratio. That is, Caleb used estimated 
numbers to reason about the relationship between magnitudes of hard-to-visualize quantities, and 
then re-interpreted this relationship between values in the context of quantitative structure in 
order to propagate information about the relationship between quantities’ magnitudes. To 
confirm if this is the case or to characterize the nature of this reasoning, we believe that future 
research is necessary. 
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Intuition and Mathematical Thinking in a Mathematically Experienced Adult on the Autism 
Spectrum 

 
Jeffrey Truman 
Virginia Tech 

In this report, I examine the use of intuition by a mathematically experienced adult on the autism 
spectrum given a paradoxical mathematical problem involving infinity. I compare both his level 
of use of intuition and the importance he places on it against results from students in the general 
population. Interview results combined with previous data suggest that students on the autism 
spectrum are less likely to use approaches based in intuition, place less importance on intuitive 
ideas compared to other explanations, and may also have different views of the nature of 
intuition. Analysis of possible reasons for showing these differences and implications for 
teaching and further autism-related research are presented. 

Keywords: intuition, mathematical paradoxes, autism 

My research attends to mathematical problem solving by adults on the autism spectrum (with 
a formal diagnosis), particularly those with a relatively strong background in mathematics. In 
this report, I focus particularly on the case of one student‟s work on the Ping-Pong Ball 
Conundrum, a problem of infinity (Mamolo and Zazkis, 2008). I use this problem to highlight 
characteristics of intuition used in problem solving and how the use of intuition can differ for 
people on the autism spectrum in both nature and frequency. This can help to both examine the 
use of intuition in mathematics generally and to examine characteristics related to autism. 

Brief Overview of Autism-Related Research in Mathematics Education 
There is a wide range of conceptions of what being on the autism spectrum means, including 

various academic and clinical definitions. The Autistic Self Advocacy Network (2014), the 
leading autism advocacy group run by people who are themselves autistic (and identify as such) 
states that autism is a neurological difference with certain characteristics, each of which is not 
necessarily present in any given individual on the autism spectrum. These include differences in 
sensory sensitivity and experience, atypical movement, a need for particular routines, and 
difficulties in typical language use and social interaction.  They also list “different ways of 
learning” and particular focused interests (often referred to as 'special interests'), which are 
especially relevant for research in education. Of those characteristics, it is primarily the existence 
of special interests and the differences in language use and social interaction that are used as 
diagnostic criteria by the fifth edition of the Diagnostic and Statistical Manual of Mental 
Disorders (DSM-5). 

Much of the research currently done on mathematics learning in people on the autism 
spectrum is focused on young children (e.g., Iuculano et al., 2014; Klin, Danovitch, Mers & 
Volkmar, 2010; Simpson, Gaus, Biggs & Williams, 2010) or looks at mostly arithmetic. There is 
also a notable strain of work done on the population of research mathematicians (e.g., Baron-
Cohen, Wheelwright, Burtenshaw & Hobson, 2007; James, 2003), but very little attention is paid 
to groups in the middle (mainly high school and college students, or adults other than career 
mathematicians). This is a gap which I have sought to help fill with my own research, including 
the particular selection which I present here.  
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Theoretical Framework 
My theoretical framework is based partially in Vygotskian theory, particularly Vygotsky's 

(1929/1993) conception of overcompensation. Vygotsky explained this initially in a framework 
of physical overcompensation, such as a kidney or lung necessarily strengthening when the other 
one is missing or by analogy to vaccination. He argued that overcompensation also occurred in 
psychological development, both in its general course and in particular in the presence of various 
disabilities. While my views are informed by the Vygotskian framework, there are some issues 
with using it directly.  Some parts that are particularly relevant in autistic people, such as the 
ideas about atypical development and concept formation, particularly concern things that have 
already must have occurred far before starting university coursework, and thus cannot be 
observed in my interview subjects.  The examination of inner speech also has difficulties; 
Vygotsky himself used children whose inner speech had not yet fully developed in his clinical 
experimentation on the subject. Thus, while those ideas from Vygotsky inform my views, 
additional constructs were required for the data analysis; in this case, the main one is thinking 
regarding intuition. 

In many contexts, the erroneous conclusions produced by students and the resistance to the 
mathematically valid solution are identified with forms of intuition. In Fischbein‟s (1979) use of 
the idea, intuition is separated into different categories, particularly “primary intuition” 
(developed outside of a systematic instructional setting) as opposed to “secondary intuition” 
(developed in a systematic instructional setting). The division of categories here has similarities 
to Vygotsky‟s distinction between everyday and scientific concepts, and I find it reasonable to 
consider the primary and secondary intuition used by Fischbein as identifying intuitive reasoning 
related to everyday or scientific concepts, respectively. Further exploration of intuition by 
Fischbein (1982) uses a similar division between “affirmatory intuitions” and “anticipatory 
intuitions”, focusing primarily on the former. In this division, affirmatory intuitions are those that 
are “self-evident [and] intrinsically meaningful”, which again stands outside the systematic 
instructional context. 

In the context of other works, it is the primary and affirmatory definitions that are closest to 
what is typically meant when „intuition‟ is named but not explicitly defined, which is useful for 
situating other work which mentions intuition but does not focus on it. Fischbein also argues for 
the importance of using intuitive ideas, which includes but is not limited to correcting those 
intuitive ideas which would otherwise lead to error. Here, his main focus is on developing 
intuitive ideas so that they are in accord with the analytic reasoning rather than in conflict. While 
there are still possible parallels between these theoretical constructs and Vygotskian concepts, 
the approach suggested by Fischbein, focused on development and adjustment of intuitive ideas, 
is more constructivist. Since these differences are reflected in neurological differences associated 
with autism, they would lead to contrasting predictions for the mathematical reasoning of people 
on the autism spectrum. 

Ping-Pong Ball Problem 
While I conducted interviews using a variety of problems, in the excerpt here I focus on 

results from a single problem described in Figure 1. 
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The Ping-Pong Ball Conundrum 
Consider an infinite set of ping-pong balls (numbered 1, 2, 3, …) being inserted into 

and removed from a barrel over one minute. In the first 30 seconds, the first 10 balls are 
inserted, and the '1' ball is removed. In the next 15 seconds, 11 through 20 are inserted 
and the '2' ball is removed, and so on. How many ping-pong balls remain in the barrel at 
the end of the minute? 
Figure 1. Statement of the Ping-Pong problem used in the interview. 

The accepted mathematical solution here is that there are no balls in the barrel, because for 
every possible ball, we can find a time after which it has been removed (this is because of the 
order the balls are removed in, and different orders can lead to different outcomes).  

This problem was used by Mamolo and Zazkis (2008) with two groups of students, one 
undergraduate and one graduate. Both were in courses about fundamentals of mathematics at 
different levels which involved infinity. They were introduced to this problem after having seen 
the Hilbert Hotel problem, a simpler problem also involving infinity. In each case, after students‟ 
first responses to the problem, they were given the standard solution. Both groups initially gave 
responses that rejected things in the problem setup that seemed impossible, relating them to real-
world facts such as the finite population of Earth. The undergraduate students, who were a more 
general population of liberal arts and social science students, continued to show resistance to the 
given mathematical solution in the Hilbert Hotel problem, while the graduate students (who were 
in a mathematics education program) did not. However, both groups continued to show disbelief 
in the mathematical solution for the Ping-Pong problem after instruction.  One of the more 
common responses found in both student groups was that there were nine more balls at each step, 
often giving a „nine times infinity‟ response. This highlights the importance of the numerical 
ordering in the problem, since if the balls were not ordered this way (if they were all simply 
generic and interchangeable balls, for instance), it would be correct to use the fact that at any 
step n, there were 9n balls in the barrel and to take the limit of that expression as n goes to 
infinity.  In the numbered case, we can view it as essentially an arrangement of processes where 
a second process „cleans up after‟ the first, but calculating the total at each step as 10𝑛 − 𝑛 = 9𝑛 
erases that ordering property. Without a numbering to provide order, that arrangement cannot be 
made; in that case, there is no information lost with the „9n balls in the barrel‟ view. 

Ely (2011) gave this problem (as the Tennis Ball Problem) to a range of participants from 
undergraduates who had finished college algebra to mathematics doctoral students and one 
mathematics professor. He used two versions, comparing the effect of asking “how many balls 
are left” to asking “which balls are left” (Ely, 2011, p. 8). He found that participants given the 
„which‟ version were more likely to attend to the labeling (ordinal) rather than the total number 
(cardinal). The „which‟ participants also showed more conflict from being presented the accepted 
mathematical solution of having no balls remaining, although they were still unlikely to accept it. 
No participants given the „how many‟ version accepted the zero-ball solution, while the only 
participant given the „which‟ version to accept it was the mathematics professor. 

Disputes about the proper result of this problem have also been shown in publications where 
researchers discuss their own perceptions of and disagreements about the problem, rather than 
discussing the perceptions of students. Allis and Koetsier (1991) describe this paradox in terms 
of super-tasks, defined as “the execution of […] an infinite sequence of acts” (Allis & Koetsier, 
1991, p. 189). They argue that this is possible not only in an abstract way, but also in a kinematic 
one. However, a later discussion by van Bendegem (1994) raises objections to both of these 
arguments. The objection to the abstract solution is an algebraic argument, while the objection to 
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the kinematic one involves relativistic physical assumptions. The response from Allis and 
Koetsier (1995) points out that the algebraic argument from van Bendegem does make an 
assumption of continuity (although van Bendegem asserted that it did not), and raises multiple 
objections to the kinematic argument. Looking at what is disputed between the authors, it is 
notable that the two main strands closely parallel the „nine times infinity‟ solution and the 
objection to the real-world possibility of the problem found with the students in the study from 
Mamolo and Zazkis. 

Ultimately, from the range of mathematical experience in responses to this task, we can see 
that this is a paradox that can incite argument and confusion even at high levels of academic 
discourse, and that few people at any level are inclined to accept the standard mathematical 
solution. Also, at multiple levels the nature of disputes and confusion fits into two main 
categories, one directly related to infinity and continuity and another related to physical 
properties. 

Methodology and Task Details 
Given my interest in focusing in-depth on interviews with a small number of people, a 

method of case studies was a natural fit for my work. Case study focuses on in-depth 
understanding of the case in question, and only secondarily on generalizations from that 
understanding. Additionally, while generalization is possible, it is not of the same nature as 
generalization in other types of research (Stake, 1995). These are sometimes divided between 
embedded and holistic case studies, where an embedded case study is interpreted as examining a 
particular feature or subset of the case in question, while a holistic case study does not use such 
subdivisions (Yin, 2009). In this case, my decision for a holistic case study naturally follows 
from my neurodiversity-informed view that the nature of being autistic is not a discrete part of 
the person that can be separated, and thus an embedded design does not apply. 

My participant here (who chose the pseudonym Cyrus) was recruited from the community 
and was in his thirties at the time of interview, holding a bachelor‟s degree in mathematics and 
working in computer programming. He received an ASD diagnosis at age 13. I conducted several 
interviews with him as part of my broader work; the one I focus on here involves the ping-pong 
ball problem, as described above. 

Interview with Cyrus 
In the beginning, the interviewer reads the problem to Cyrus and then shows him a printed 

version of the problem. There are multiple rounds of explanation as the problem is presented to 
Cyrus before he understands the problem correctly and addresses it. Once he does, this is his 
response. 

C: Okay, but if that keeps going on, then, but we‟re eventually going to have an infinite 
number of balls in there, but it just depends on how many, if we go through n successions 
of this, we‟re just not going to have the first n in the basket. [I: Alright.] So, but it‟s still 
an infinite number of balls, we‟re just not going to have, 1 through n in there. 

I: If n goes to infinity, what does not having the first n mean? 
C: I don‟t know. That means we‟ve got no balls in there whatsoever. That sounds like the 

intuitive answer, but I‟m just not certain about that. 
I: Hm. Ah, that‟s the intuitive answer for what reason? 
C: Um, that still doesn‟t sound right, but you‟d still, even if n went to infinity, you‟d still 

have an infinite number in there. Yeah, that‟s what I would say. I don‟t know what my 
reasoning is for it, I think just like you could, just like in [the Hilbert] hotel problem you 
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could keep placing more and more in there. Well, okay, something similar to that. In this 
case you could just keep adding more and more balls in there, even after, going through 
an infinite number of times. But except, oh my god it doesn‟t, yet it still seems to kind of 
contradict itself. Because if n now encompasses all the numbers, and you‟re taking them 
all away, then how can you have an infinite number of balls still in the basket? So, I don‟t 
know, I‟m going to say there‟s zero balls in there, at that point, if you take the limit as n 
goes to infinity, I‟m going to say there‟s zero balls. [I: Okay.] I know I sort of changed 
around on that one. 

I: Alright. Mm, but at this point would you say that that is what you‟re sticking with? 
C: Yeah, I‟m going to stick with that, if n goes to infinity, then you have zero balls left. 
I: Okay, and does that seem like, a reasonable sort of thing, or does it seem kind of weird, or, 

ah, is it something that you would accept? 
C: I think it seems weird, but I would accept it. 
 
At first, Cyrus looks at the time intervals, finding the length of the first four and suggesting 

that they diverge as a series. The interviewer clarifies that the focus of the problem is on the 
number of balls, and describes what is in the bin during the first two time intervals. Cyrus 
extrapolates from this that as each time interval progresses, more and more balls will be in the 
barrel, but the first n will be missing. The interviewer asks what this means as n approaches 
infinity (which may be considered either the number of steps performed or the number of balls 
removed: since these are always equal, it is not clear from the statements which conception 
Cyrus is focusing on), and Cyrus says that means there will be no balls in the barrel. At first he 
calls this an intuitive answer; thinking further, he switches to there being an infinite number and 
then back to zero (without any intervention). He describes it as weird, but is willing to accept it. 

The brief characterization of the zero answer as intuitive is unusual and may suggest multiple 
layers of reasoning that Cyrus considers “intuitive”. However, while this does not last, the 
intuitive conclusions are still not held by Cyrus to be particularly important for a final 
conclusion. 

Next, the interviewer presents Cyrus with some alternative arguments made by other 
students: 

I: Okay. And, there are, I think we have them here, ah, couple of arguments that, ah, different 
students had, ah, trying to work out this particular problem, and I‟d like to tell you about 
a couple of those, and see what you think about them. 

C: Okay. 
I: Okay, so, one argument about this was that, for each chunk, you‟re essentially adding nine 

balls. [C: Mm-hm.] So the total amount at any time should be nine times, the amount of 
chunks you‟ve gone through. [C: Mm-hm.] And, but that goes to infinity. 

C: Right, okay, so, you add nine but, right, you add nine balls, okay. 
I: So does that seem correct or incorrect, and, why? How does that argument sound to you? 
C: So, it‟s like, nine times n, okay. And if n goes to infinity, from that one, the answer would 

clearly be it just blows up, if n goes to infinity, it would be infinite. You‟d have infinite 
number of balls left in there. So, but it still doesn‟t seem to make sense to me when I try 
to actually predict in my head what‟s going on there, it doesn‟t really seem to make sense 
with that. I would say that answer doesn‟t make as much sense. To me it makes sense as 
long as you have a finite number of time intervals. 

I: Okay. And why doesn‟t this work in the infinite case? 
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C: My only reasoning is somehow it doesn‟t make sense to me, once you‟ve already taken 
away, essentially, once you‟ve taken away every single natural number, then you can‟t 
have anything left. 

I: Mm. Okay, well, 
C: Yeah, now I‟m really confused, I‟m just not sure if there‟s a correct answer to this or not. 
I: That‟s sort of, ah, the second argument, where we ask, okay, if there are balls remaining, 

ah, all our balls are numbered by natural numbers, [C: Mm-hm.] so, if there‟s some balls 
remaining, what are they? Name one. 

C: Okay. So, if there are some balls remaining, then what are they. Name one. Okay. Um, so 
then, I don‟t know, my- my reasoning followed the case where you‟d have nothing left at 
the end. 

I: Right. Mm, which- yeah, that‟s- that‟s correct. And that‟s why that works, is it- there aren‟t 
any. [C: Mm-hm.] You can‟t name one. 

C: Right. 
I: This- this is sort of, the, ah, contradiction proof version of proving this. [C: Okay.] Where 

you go, okay, suppose by way of contradiction, that there are some balls left. [C: Mm-
hm.] Then- since this is a set of natural numbers, it must have a least element. Call it n. 

C: Right, okay. 
I: But then, in the nth step, we‟ve removed that. [C: Mm-hm.] So we don‟t have that. 
C: Right, okay. 
I: Contradiction. 
C: That‟s a proof by contradiction, I see. 
I: Yeah. Therefore, there are no balls. 
C: Mm. Ah, okay. And, okay, but I wouldn‟t have really thought of that- not in that way, at 

least, but it makes sense, once you‟ve- go to the next step, you‟ve just removed the one 
that‟s remaining. 

  
In this segment, Cyrus is first presented with the argument that, since nine balls are added 

each time, there should be infinitely many at the end, and asked what he thinks of it. He finds it 
to make less sense, but after being presented with it, is uncertain if there is a correct answer. He 
is then presented with the proof by contradiction argument for there being zero balls, and agrees 
that one cannot name a single ball remaining, though he says he would not have considered it in 
that way. 

While Cyrus‟ conclusion agrees with the proof by contradiction conclusion, he says that he 
would not have viewed it that way. This may be related to the first intuitive answer he gave 
earlier, not having the „infinity‟ conclusion as something to start off with as reasonable to 
contradict, which suggests that Cyrus may view the problem in an unusual way which is more 
conducive to the ultimately correct solution. In fact, not only does Cyrus not reach that as a 
conclusion, he unusually characterizes it as making less sense, while most typical students have 
the opposite view. However, he does agree that such a solution is valid for any finite case.  

Analysis 
In this particular interview, it appears that Cyrus may not have the unexamined continuity 

assumption that many students use to extrapolate to the infinite case in this problem as part of his 
intuition. Alternatively, he may have learned to ignore it. If it is ignored, this is also noteworthy; 
although Cyrus does have formal mathematical training, others at the same or higher level of 
formal mathematical training still did not have this response, as found by Ely (2011). 
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Here and in other interviews, Cyrus tends to have a high level of trust in the truth and 
consistency of mathematics, not displaying many of the typical objections to paradoxical tasks 
outlined in prior research. When faced with apparent contradictions, he is more likely to question 
an intuitive response rather than a formal mathematical result.  Additionally, contextual 
considerations of problems phrased in a „real-world‟ physical setting appear to be given less 
relevance. This also appears to be a logical result of an orientation toward structure, or in 
Vygotskian terms, systematic over intuitive reasoning. 

One overall trend apparent from Cyrus‟ interviews is his inclination toward algebraic and 
formal methods of solution, and a distrust of or disinclination toward informal or intuitive 
methods. This can fit as another form of compensation, where stronger algebraic skills are used 
in place of weaker geometric or informal ones. However, this combined with interviews with my 
other participants (Truman, 2017) suggests that any effect of compensation related to autism is 
more complex and individual rather than people on the autism spectrum all fitting a certain type. 
Cyrus‟ forms of compensation here contain points of similarity to other participants, such as the 
mistrust of intuitive reasoning and inclination toward more systematic justifications. However, 
there were also differences fitting a broader pattern; in particular, Cyrus skews more heavily 
toward using algebraic methods and avoiding geometric methods or methods based in physical 
analogies. For Cyrus‟ reasoning in this problem specifically, the physical system of balls being 
removed was never a focus, and physical impossibility was not considered as a notable issue. 
This is in particular contrast to my first interview participant, who had the opposite pattern 
(Truman, 2018), although all of my participants showed a strong inclination toward a particular 
mode of problem-solving. 

Conclusions 
For many students, it is often difficult for them to trust in systematic over intuitive reasoning 

when they are in conflict, particularly in the sorts of problems typically called mathematical 
paradoxes. Thus, this tendency for students on the autism spectrum to rely more on systematic 
reasoning can be a particular advantage in such situations that most students find difficult, as we 
see in this particular case. However, instructional approaches that are designed to rely on 
students‟ intuitive reasoning or real-world concepts may be less successful for students on the 
autism spectrum for the same reason, or they may result in unusual responses that would require 
more instructional attention. 

My research findings here are also consistent with the theory that people on the autism 
spectrum learn in a manner that relies less on prototypes (Klinger & Dawson, 2001) in favor of 
constructing concepts more systematically. I believe that the examples of problem-solving in the 
interviews show that this can produce positive results and does not need to be viewed as a 
deficiency. They also shed more light on cognitive differences of people on the autism spectrum 
in adulthood, which is particularly important because much of the research done related to 
autism is done with younger children. They are also consistent with the systemizing theory (e.g., 
Baron-Cohen, Wheelwright, Burtenshaw, & Hobson, 2007), where systemizing is viewed as an 
inclination to create or analyze a system based on the formulation of rules. However, this could 
also come from the mathematical inclinations already known about and sought in the 
participants. This should not be taken as support for the suggestion by many proponents of the 
systemizing theory of its opposition with empathizing (viewed here as the recognition of what 
someone else is feeling), since the nature of the interviews shows very little about any skills in 
that category, either positively or negatively. 
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An Exploration of the Factors that Influence the Enactment of Teachers’ Knowledge of 
Exponential Functions 

 
 Rosaura Uscanga Courtney Simmons 
 Oklahoma State University Oklahoma State University 
 
 Michael Tallman Michael Oehrtman 
 Oklahoma State University Oklahoma State University 

The undergraduate preparation of pre-service teachers requires attention to the factors that 
enable and constrain their application of mathematical knowledge to positive effect in the 
classroom. In this paper, we examine how the instructional decisions of three in-service 
secondary mathematics teachers were influenced by individually consistent patterns of such 
mediating factors. Acknowledging that such factors might be content-dependent, we focus on 
teachers’ instruction of exponential functions, a topic foundational to both secondary and 
collegiate mathematics. We developed models of each teacher’s implicit learning theory, 
professional identity, values and goals for students’ learning, and beliefs about the nature of 
mathematics and about what constitutes genuine mathematical engagement. We illustrate these 
results by summarizing our analyses of a selection of mediating factors for each teacher. We 
conclude with a discussion of the implications of our findings for the preparation of pre-service 
mathematics teachers at the undergraduate level. 

Keywords: teacher knowledge, mediating factors, mathematical knowledge for teaching, 
exponential functions.  

Introduction 
The content preparation of pre-service mathematics teachers is often based on the assumption 

that if they can construct powerful ways of understanding the content they will teach, then they 
will necessarily be positioned to leverage their mathematical and pedagogical knowledge to 
support students’ construction of similarly sophisticated understandings. This assumption is itself 
based on implicit epistemological premises, namely the notion that knowledge resides in one’s 
mind in the way books dwell on a shelf: readily accessible, waiting to be utilized whenever the 
individual possessing it wishes to do so. The lack of converging empirical evidence 
demonstrating a positive relationship between teachers’ mathematical knowledge, or even 
mathematical knowledge for teaching (Thompson & Thompson, 1996), and their instructional 
quality calls these assumptions into question (Mewborn, 2003). 

In the field of undergraduate mathematical preparation of future teachers, we often must 
make program design decisions without a detailed understanding of the contexts in which 
teachers will be required to apply their mathematical knowledge. This challenge stimulated our 
interest in the research question: What are the factors that mediate the enactment of in-service 
secondary teachers’ knowledge of exponential functions? Our exploration of this question has 
provided insight into the complex processes that govern the enactment of teachers’ content 
knowledge, and has begun to shed light on inconclusive findings about the relationship between 
teachers’ mathematical knowledge for teaching and the quality of their instruction. Moreover, 
and of particular relevance to the RUME community, such insights have implications for the 
mathematical preparation of pre-service secondary teachers at the undergraduate level, which we 
discuss at the conclusion of this paper. 
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Research in the area of mathematical knowledge for teaching has prioritized the 
identification of knowledge categories that enable effective mathematics teaching (e.g., Ball, 
Thames, & Phelps, 2008; Fennema & Franke, 1992; Rowland, Huckstep, & Thwaites, 2005). 
Few studies have documented the environmental, cognitive, and affective influences that mediate 
the enactment of mathematics teachers’ content knowledge. Fewer still have done so for the 
purpose of informing the content preparation of pre-service teachers at the undergraduate level. 
For current scholarship on mathematics teacher knowledge to realize its intended effect of 
ensuring instructors are equipped to engage students in experiences that support their 
construction of productive mathematical meanings, it is crucial to determine the effect of those 
factors that condition the enactment of the knowledge teachers do possess in addition to 
characterizing the knowledge teachers should possess. Identifying the influences that mediate the 
knowledge that resides in teachers’ minds and the knowledge they leverage to support students’ 
mathematical learning is indispensable for designing well-informed teacher preparation 
programs and professional development initiatives that take seriously the effect of teacher 
knowledge and those influences that compromise it. 

Theoretical Background 
We do not intend our statement that enacted knowledge is afforded/constrained by situational 

influences to be interpreted as strictly deterministic. These influences are simultaneously 
reflective of characteristics of one’s knowledge while also affording/constraining its enactment. 
Since knowledge is not invariantly accessible across time and space, and instead depends for its 
enactment on an individual assimilating stimuli to activate particular cognitive schemes, 
environmental circumstances per se do not constrain or support teachers’ enacted knowledge 
(von Glasersfeld, 1995). Rather, teachers’ assimilation of environmental circumstances affects 
the nature and quality of the knowledge they leverage in the context of practice. For this reason, 
particular circumstances do not maintain an objective designation as mediating factors, however 
consensual are teachers’ construction and appraisal of them. Therefore, one category of influence 
that mediates the enactment of a teacher’s knowledge is her subjective construction and appraisal 
of the external circumstances that impede or enhance her capacity to achieve her instructional 
goals and objectives. Another type of mediating factor includes the internal (psychological or 
affective) characteristics a teacher recognizes as affording or constraining her practice. These 
characteristics might include a teacher’s image of his or her mathematical self-efficacy, social 
endowments, creativity, tolerance, attitude, perseverance, temperament, empathy, confidence, 
and professional identity. Finally, the influences that an observer notices as affecting the nature 
and quality of the teacher’s enacted knowledge, but of which the teacher might not be 
consciously aware, constitutes a third category of mediating factor. These influences could 
include subconscious processes of emotional regulation, identity preservation/reformation, or the 
structure/organization of the teacher’s mathematical knowledge itself. 

Methods 

Data Collection 
In this paper we discuss three experienced teachers—an Algebra I, an Algebra II, and a Pre-

Calculus teacher—recruited as part of a larger study. We collected data on multiple aspects of 
each teacher’s practice related to their instruction of exponential functions. We selected this 
mathematical context because of its significance in both the secondary and post-secondary 
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curriculum, and because its complexity affords teachers the opportunity to emphasize various 
meanings and to establish connections between them. 

Our data corpus for each teacher consisted of ten to fourteen hours of video-recorded 
classroom observations and four types of interviews—initial, pre-observation, post-observation, 
and final—for each teacher. We conducted the initial interview prior to each teacher’s instruction 
of exponential functions, pre- and post-observation interviews occurred prior to and following 
each lesson respectively, and the participants took part in the final interview after they had 
concluded their instruction of exponential functions. 

We designed our experimental methods to reveal the motivations for teachers’ instructional 
actions and decisions. These motivations include but are not limited to teachers’ goal structures, 
beliefs, commitments, identities as teachers of mathematics, and theories of learning. We 
accomplished this in the initial interview by providing opportunities for the teachers to articulate 
their beliefs about the nature of mathematics and mathematics teaching, as well as their 
overarching, non-content specific instructional goals. The pre-observation interviews and 
classroom observations allowed us to identify the actions in which the teachers engaged during 
lesson planning and instruction so we could make inferences about the motivations that 
influenced them. Because individuals are often ineffective at articulating the motives for their 
actions, which might be implicit, the data we obtained through classroom observations were 
important for triangulating the interview data. The post-observation interview gave us the 
opportunity to elicit teachers’ retroactive justifications for particular instructional actions. Lastly, 
through ongoing analysis of the interview data and classroom observations, we developed 
provisional hypotheses of each teacher’s implicit learning theory, professional identity, beliefs 
about of the nature of mathematics and mathematical engagement, and their values and goals for 
students’ learning, and we assessed the viability of these hypotheses by asking purposeful 
questions during the final interview. 

Data Analysis 
Our data analysis consisted of ongoing analysis and post analysis. We recorded memos 

during classroom observations that focused on documenting each teacher’s instructional actions 
and articulating motives that might have informed them. We also documented the extent to 
which each teacher’s classroom activity was consistent with the beliefs and instructional goals 
they reported in the pre-observation interview and the initial interview. We identified for 
discussion in the post-observation interview instructional actions that did not seem to align with 
the teacher’s professed beliefs or assist the teacher in achieving his or her professed goals. After 
each lesson cycle—which consisted of a pre-observation interview, classroom observation, and 
post-observation interview—we articulated hypotheses about the motives for each teacher’s 
activity. We focused on documenting each teacher’s comments about what they prioritized, what 
considerations appeared to influence their instructional actions, and commonalities in their 
behavior during lessons. The essence of these commonalities and the design of the interview 
questions led to the hypotheses we generated regarding the teachers’ instructional goals, 
professional identity, belief structures, and mathematical epistemology, which we refined after 
each lesson cycle. 

In the post analysis, we focused on finding evidence that either supported or rejected the 
hypotheses we generated and refined during ongoing analysis. We also looked for any comments 
the teacher made that would suggest influences that mediated the enactment of his or her content 
knowledge that we did not identify in our ongoing analysis. For each teacher, we watched each 
interview multiple times and noted evidence that supported or refuted our hypotheses (we found 
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no evidence that rejected our hypotheses) as well as any repeated instances that could lead to the 
generation of new mediating factors. 

Results 
To illustrate our results, we present statements of our validated and refined hypotheses for 

each teacher, Frankie, Mandy, and Molly. We also provide an abbreviated summary of evidence 
for these hypotheses. The evidence we provide as illustrative examples are meant to give detail 
to our characterizations of the personal and affective influences that mediated the enactment of 
the teachers’ content knowledge. We also discuss the prevalence of such mediating factors and 
the range of influence they prominently manifest in the teachers’ decision making. 

Frankie 
Frankie has an image of effective teaching methods that includes eliciting student thinking, 

leading whole class discussions, engaging students in group work, asking students to explain 
their thinking, encouraging them to defend their ideas, and having them critique other students’ 
reasoning. Her image is grounded in the educational research that claims that students’ recall of 
mathematical facts and procedures is enhanced, and that they are more likely to correct their 
misconceptions if other students are the ones identifying them. In practice, her commitments do 
not take into consideration a model of students’ thinking or mathematical meanings. This lack of 
focus on student’s conceptions impacts her enactment of these practices and consequently the 
development of her instructional goals. One of Frankie’s primary goals is to promote her 
students’ mathematical independence, which she views as their ability to attempt or to solve new 
problems without giving up. She focuses on avoiding repetition of problems in her assignments 
and presenting students with different representations of the same ideas (e.g., a sequence as a list 
of numbers versus in a table) stating, “I try to have something that’s a little different, from what 
they’re looking at.” 

Frankie also likes to have students voice multiple solution strategies, both in assignments and 
discussions, believing if only one method is presented a student who thinks differently will shut 
down. By eliciting multiple strategies, she also feels students will be more likely to recall a 
method when solving problems. Frankie started her first lesson by showing students a pattern of 
squares growing in a geometric progression and asked them to describe what they saw 
happening. As students responded Frankie recorded their thoughts on the board. While some of 
the students’ descriptions focused on the quantitative pattern of tripling, others characterized the 
growth pattern in additive terms, by adding two more copies of the previous state. Several 
students focused on spatial descriptions such as, “The figure grows sideways, then up, then 
sideways” and another student confessed to only seeing squares and not understanding the other 
students’ descriptions. Frankie masterfully elicited a rich variety of students’ ideas, and the class 
was enthusiastically participating. Several of the students remained confused about the lack of 
resolution throughout this lesson and several subsequent lessons, however. 

Frankie’s commitment to eliciting students’ contributions and to fostering their independence 
did not appear to be balanced by an attention to the meanings that the students were expressing, 
or how to support them from that foundation. As a result, she was often backed into a corner 
where she had to act counter to her commitments and declare a particular way forward, or move 
on from the discussion entirely despite students expressing confusion. Similar patterns of 
interaction repeated in Frankie’s class discussions about (1) the difference between arithmetic 
and geometric sequences and between explicit and recursive formulas, (2) the multiplication in 
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the formula an = a1+(n–1)d for arithmetic sequences despite supposedly being “additive,” and (3) 
the role of the multiplicative factor in geometric sequences. 

Mandy 
Mandy is highly attuned to the amount of cognitive effort students are willing to expend at 

any particular moment, and she demonstrates mathematical skills and procedures in accessible 
chunks so as not to overburden students’ cognitive resources. For example, in a pre-lesson 
interview while discussing why she teaches a method for simplifying radical expressions in a 
way that differs from her textbook, Mandy explained that she prefers algebraic procedures with 
the fewest number of steps. Even after acknowledging that the additional steps in the textbook 
more clearly convey the algebraic rationale for the simplification technique, Mandy thought it 
unnecessary and potentially confusing for her students. Although her instructional style is rather 
direct, Mandy often demonstrated her sensitivity to how her students interpret her instruction. 
For instance, in her third lesson on exponential functions, Mandy demonstrated how to solve 
exponential equations by expressing both sides of the equation with a common base. The way 
Mandy conveyed the steps for solving such a problem was heavily informed by her image of 
what students understood (or didn’t understand) in the moment. Specifically, Mandy anticipated 
students’ tendency to incorrectly interpret the equating of exponents with the same base as 
dividing both sides of the equation by the common base. She was aware that this algebraic 
overgeneralization certainly occurred to some students, and she addressed it in the process of 
demonstrating how to solve a particular kind of exponential equation. This is one of many 
occasions in which Mandy demonstrated her effectiveness at communicating steps for solving 
routine problems. Her explanations were accessible to students because she anticipated their in-
the-moment interpretations. 

Mandy is also committed to fostering students’ mathematical self-efficacy by making the 
mathematics as easy for them as possible, even if this means knowingly compromising the 
conceptual rigor of the content. Indeed, Mandy feels it is her responsibility to shield students 
from unnecessary formalism, rigor, or conceptual depth. While planning her lessons, Mandy 
identifies the different kinds of problems, or variations of the same kind of problem, students 
will be expected to solve. She then thinks about how to present the material in a way that 
minimizes the mental effort students need to expend to become proficient at solving these 
problems. 

Mandy believes that students learn best, at least initially, through rote practice of simple 
procedures. This view is integrally connected to her commitment to keep task difficulty to a 
minimum, as she anticipates the consequences of demanding too much mathematical reasoning 
or conceptual understanding from her students. For example, in the third pre-lesson interview, 
Mandy explained, 

They really need the rote. I know there’s two trains of thought and some are that if 
they’re doing rote are they really thinking? Or if I give them all, you know, twenty 
different problems then they’re having to think on each one. Well, my students will shut 
down. They still do better with the rote. Let me get them used to the method and what 
we’re doing here and maybe the understanding of why we’re doing it, then we can go 
into different things if we have time. That’s just how they learn better … I just still 
believe that there’s a place for some rote learning—just some practice over and over and 
over. 
Reflected in this quote is Mandy’s belief that mathematics learning is a process of repeated 

exposure to mathematical facts, skills, and procedures. Often, when promoted by an interviewer 
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to propose an instructional intervention for students who demonstrate a particular non-normative 
conception of exponential functions, Mandy proposed increased and more frequent exposure to 
the procedure required to solve specific kinds of problems. This repeated exposure has both a 
cognitive and affective rationale for Mandy: it has the obvious virtue of supporting students in 
remembering these facts, skills, and procedures while also reducing students’ anxiety by 
enabling them to recognize something familiar in new content. She unapologetically eschews 
progressive pedagogies and is steadfast in her perspective that often the only way to learn 
mathematics is by rote. Mandy thinks this is especially true when introducing new topics, 
although she expects that students might be able to construct more sophisticated conceptions in 
more advanced courses. She defends her pragmatic, traditional, outcome-oriented view of 
teaching by appealing to the results she achieves. 

Molly 
Molly views mathematics as an enterprise of exploring new ideas and solving challenging 

problems. From her perspective, learning mathematics must have the same character. This belief 
about the nature of mathematics and mathematical engagement has the practical effect of 
compelling Molly to model for her students mathematical exploration and problem solving, as 
well as providing opportunities for them to leverage their creativity and intuition to solve novel 
problems. She articulates a strong growth mindset, readily identifies mathematical phenomena 
that she does not understand, and is open to sharing her own struggles and growth with her 
students, expecting them to be open to similar experiences, in turn. To Molly, course content is 
interpreted in terms of productive tools to apply to this larger enterprise. She selects/designs 
instructional materials to introduce, model, and reinforce these key conceptual tools. Allowing 
for genuine student engagement, Molly is willing to sacrifice significant class time—a 
commodity she finds scarce and precious—to allow productive student engagement about a 
problem. 

Molly emphasizes specific content from both the topic of exponential functions and from the 
broader topic of function types throughout every class. Examples of the general strategies she 
models and emphasizes are drawing a graph with key points relevant to the function type, 
making a table of values, and applying function transformations. Specific to the topic of 
exponential functions, she emphasized strategies such as interpreting exponents as repeated 
multiplication to test and recall algebraic rules, attending to the horizontal asymptote, and using 
multiplication or division by the base to generate function values at nearby integer distances. 
While Molly often expressed the view that regularly and explicitly addressing these strategies 
helped reinforce those mathematical ideas, she placed greater and more frequent emphasis on 
framing and using them in terms of solving a larger problem. These strategies surfaced and were 
explicitly modeled by Molly in extemporaneous response to issues raised by the students in class 
and in planned activities. 

Molly exhibited a consistent, strong commitment to promoting student exploration in her 
class. For example, during her third lesson on exponential functions, she announced that she was 
“going to demonstrate for you how to do this problem then I’ll have you practice one that's 
similar to it,” providing one of the more procedural framings she gave to any class activity we 
observed. She then displayed the equation 4x + 2x – 20 = 0. As part of her “demonstration” she 
solicited ideas and debate from the students about how to rewrite the equation, justifications for 
their equivalence, discussions of what made the problem difficult, their questioning of her 
introduction of the variable w = 2x in terms of its value in the problem-solving process, and using 
their standard strategies (connecting graphs, tables, repeated multiplication, and asymptotes) to 
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rule out solutions such as 2x = –5. Moreover, as students continued to explore different ways of 
solving 2x = c, they repeatedly raised tangential questions, such as how to demonstrate solutions 
using function transformations, what happens if the base of an exponent is negative, differences 
in notation between –2x and (–2)x, how to solve for x in cases such as 2x = 6 when the solution 
isn’t an obvious integer. Throughout she encouraged student questions and new lines of 
investigation, allowing over 20 minutes for the activity. She did summarize the solution strategy 
to the original problem before asking students to work on a similar example of their own. 

Discussion 
Each of the participating teachers discussed in this paper maintained particular beliefs that, 

together with how they conceptualized themselves as mathematics teachers, informed the 
instructional goals they defined, which subsequently influenced the knowledge they leveraged to 
achieve them. Through our analysis across multiple teachers we have articulated hypotheses that 
explain our interpretation of the motives that underlie the teachers’ planning, instruction, and 
assessment activity. We have found teachers’ professional identities, instructional goals, learning 
theories, and beliefs regarding the nature of mathematics to be highly consequential influences 
that affect the enactment of their content knowledge. Elaborating these overarching 
characteristics of a teacher allows one to anticipate the mathematical content and pedagogical 
practices he or she will leverage when posed with an instructional situation. For example, each of 
the three teachers discussed in this paper made different decisions to foster students’ engagement 
and to elicit their reasoning. Believing students are more receptive to critiques when posed by 
other students, Frankie elicited student contributions to foster discord between ideas. Similarly, 
Molly believes learning mathematics requires students to individually engage in exploration and 
problem-solving, but must also be challenged to communicate and test their ideas with others. 
Thus, she cultivated a communal expectation to question each other directly and to spend as 
much time as needed clarifying each other’s understandings. Mandy, on the other hand, engaged 
her students by prompting them to state the step that comes next in a routine problem solving 
procedure. 

The three cases discussed in this paper have implications for the preparation of pre-service 
teachers at the undergraduate level. Although teachers cannot leverage mathematical knowledge 
they do not possess, the enactment of their content knowledge is constrained/afforded by their 
implicit learning theories, beliefs about the nature of mathematics, instructional goals, and 
identities as mathematics teachers. Undergraduate teacher education programs should therefore 
devote greater attention to engaging students in mathematical learning experiences that (1) 
clarify the cognitive processes involved in mathematics learning, (2) enable their construction of 
particular beliefs about mathematics and mathematical engagement, and (3) form the foundation 
for their identities as future teachers of mathematics. Those of us tasked with the content 
preparation of mathematics teachers at the undergraduate level are not simply responsible for 
supporting pre-service teachers in developing productive conceptions of the content they will 
teach, but also for engaging them in mathematical experiences that establish the psychological 
and affective conditions necessary for them to leverage the sophisticated content knowledge that 
we are obligated to ensure they possess. 
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Critical Features and Representations of Vectors in Student-Generated Mindmaps 
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The purpose of this study is to investigate multivariable calculus students’ communication of 
vectors by examining how their responses on a mindmap assignment change over time. A 
mindmap is a visual network of connected and related concepts often with one image or topic 
centrally located. Through this open-ended instrument, we conduct a qualitative analysis to 
explore the connections students make between different aspects and multiple representations of 
vectors. 

Keywords: mindmaps, vectors, variation theory, multiple external representations 

While basic vector concepts, representations, and operations are presented in both high 
school and college mathematics, students continue to have significant conceptual difficulties 
with them. Much research on student understanding of vectors explores students’ misconceptions 
of physical concepts such as force and motion, but students’ misconceptions regarding vector 
concepts, properties, and fluency in vector operations are not explored directly (Aguirre & 
Rankin, 1989; Barniol, Zavala, & Hinojosa, 2013; Flores, Kanim, & Kautz, 2003; Govender & 
Gashe, 2016; Hestenes & Wells 1992; Hestenes, Wells, & Swackhamer, 1992; Miller-Young, 
2013). While some researchers provide more explicit consideration of students’ understanding of 
vector concepts, representations, and operations outside of a kinematic context, the focus has not 
been on how students make connections between vector operations and between different 
representations of vectors (Barniol & Zavala, 2014; Knight, 1995; Kustusch, 2016; Nguyen & 
Metzler, 2003; Van Deventer & Wittmann, 2007; Wang & Sayre, 2010; Zavala & Barniol, 
2010). The overarching research goal for this paper is to investigate multivariable calculus 
students’ communication of vectors by examining how their responses on a mindmap assignment 
change over time. More specifically, the three research questions we consider are: what changes 
are noted with respect to the  

1. critical features students address in the mindmaps? 
2. connections that are made between these features in the mindmaps? 
3. representations (e.g., graphical, verbal, symbolic, or numeric) used in the mindmaps? 

Mindmaps and Concept Maps 
In recent years, educators have begun using software mapping tools for a variety of 

pedagogical and research purposes (Govender & Gashe, 2016; Ayal, Kusuma, Sabandar, & 
Dahlan, 2016; Davies, 2011; Edmondson, 2005). These diagrammatic representations of ideas 
and their relationships “may not be the panacea … , but they do represent an approach that more 
effectively taps the dimensions of student thinking that many traditional assessment formats 
miss” (Edmondson, 2005, p. 36). Here, we identify what critical features and representations of 
vectors students present in a series of mindmap assignments.   

The terms concept map and mindmap are used interchangeably by software developers 
and educators, but in the research literature there are distinctions. Mindmaps are networks of 
connected, related concepts often with one topic centrally located; they typically use line 
thickness, colors, and pictures to communicate ideas and connections (Davies, 2011). Mindmaps 
are used to study student understanding of a concept by providing a deliberately ambiguous 
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central topic without suggesting relationships (Bandera, Eminet, Passerini, & Pon, 2018). A 
concept map can be thought of as a specific type of mindmap. Concept maps are more tightly 
structured, hierarchical networks with descriptive phrases such as “leads to,” “results from,” “is a 
part of,” etc. characterizing the connections linking two ideas (Davies, 2011; Edmondson, 2005).  

Because of the more formal structure of concept maps, automated and quantitative 
scoring rubrics are typically used to count the number and complexity of linkages, placing less 
emphasis on the content. Few guidelines and protocols exist for qualitative assessment, and most 
focus on the structure of the concept map independent of content (Keppens & Hay, 2008; 
Kinchin, 2000). While time consuming, a qualitative content analysis of concept maps can 
document change over time among a group of participants with varied backgrounds (Hough, 
O’Rode, Terman, & Weissglass, 2007).  

 
Multiple Representations 

Multiple External Representations (MERs) of mathematical and scientific concepts are 
commonly used to support learning by integrating and/or coordinating more than one source of 
information. However, this integration requires the ability to translate between different 
representations, which students often find difficult to do (Ainsworth, 2006; Kozma, 2003). How 
well an individual is able to move between different representations depends on several 
individual characteristics including domain knowledge and representational fluency (Ainsworth, 
2006). In this study we not only consider the vector knowledge that students communicate in 
their mindmaps and how it is organized, but also which MERs they chose to include in their 
mindmaps. For the purposes of this study we use a modification of Shield and Galbraith’s (1998) 
taxonomy of modes of representations of written mathematics: symbolic (i.e., algebraic), 
numeric, verbal, and graphical (Neira & Amit, 2004). 
 

Theoretical Framework 
Our work combines Simon’s (2017) theoretical construct of “mathematical concept” with 

Marton and Booth’s variation theory (Rundgren & Tibell, 2009). We begin with the assumption 
that effective mathematics instruction and assessment of student understanding requires clear 
articulation about the mathematical learning goal which is often too broadly described as 
“understanding a topic” (Simon, 2017, p. 128). Simon’s construct of “mathematical concept” and 
the notion of “critical feature” from variation theory taken together have the potential to provide 
a way to more precisely define what it means to “understand vectors.”   

Simon defines a mathematical concept to be “a researcher’s articulation of intended or 
inferred student knowledge of the logical necessity involved in a particular mathematical 
relationship” (Simon, 2017, p. 123). Like Simon’s definition of mathematical concept, variation 
theory also focuses on intended and inferred student knowledge. In variation theory, the term 
critical feature refers to an aspect of or condition of a topic that is necessary for learning. 
According to variation theory, learning takes place when students perceive critical features, and 
students can only discern a critical feature if they experience variation of it (Runesson, 2006). 

To specify a mathematical concept, Simon (2017) recommends observing contrasts in 
individuals’ mathematical functioning, whether it be between: a student and an expert, two 
students, or observations at different times of a single student. The mathematical concept then 
arises as a specific explanation of differences observed.  Simon (2017) cautions that further 
research or pedagogical activity will reveal modifications to the mathematical concept. As a first 
step towards developing a mathematical concept of vectors in multivariable calculus, critical 
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features of the vector cross product have been identified: magnitude, direction, angle between 
two vectors, location of the vectors, and orientation of the cross product to the two vectors that 
form it (VanDieren, Moore-Russo, Wilsey, & Seeburger, 2017). Our study tests the validity of 
these critical features with different data and on a broader range of vector concepts. We begin the 
process of developing mathematical concepts for the nebulous goal of “understanding vectors” 
by contrasting work of students in a multivariable calculus class over time attending to 
differences in their communication of critical features.   
 

Methodology 
 

Context of the Study 
The participants were 30 students in a multivariable calculus course at a private, regional 

university. On the first day of the semester, the first author introduced the mindmap activity to 
the students and explained its purposes to: (a) provide students the opportunity to organize their 
thoughts on vectors, (b) identify connections between different features, applications, and 
operations of vectors, and (c) serve as resource during the first exam. Students were allowed to 
include any items including images from textbooks, links to online tutorials, or photos of 
handwritten notes in their work. The first author suggested to students to use Inspiration and 
Lucid Charts software to create the mindmaps, but ultimately students could choose their 
preferred software. A sample mindmap on geometry content and a tutorial for creating a 
mindmap in Inspiration were offered to the students. Students were assigned to create a mindmap 
of what they knew about vectors at three points of time during the first three weeks of the 
semester during which the topics of vectors, vector operations, lines, and planes were covered in 
class. After each submission students were given feedback on their work including suggestions 
for adding graphical depictions, applications, or missing concepts in future submissions.  
 
Data Analysis 

Of the 30 students in the study, 24 students submitted at least one mindmap. One student 
was removed from the sample because his work was not in the form of a mindmap. Of the 23 
students who submitted first and final drafts of the mindmaps, only 15 submitted an intermediate 
draft during the second week. Therefore, we report results from only the first and final mindmaps 
of the 23 students. An iterated coding analysis was conducted on the mindmaps.   

Development of coding. Two days of discussions between the authors led to a first round 
of analysis, which was based on eight a priori content or topic categories (vectors, scalar 
multiplication, addition, subtraction, dot product, cross product, projection, and other). These 
categories were used to sort the content in each mindmap. These content categories were further 
refined according to critical features of vectors (direction, magnitude, angle between vectors, and 
location). Each category that was marked as present was then coded according to its 
representation on the mindmap (graphical, verbal, symbolic and/or numerical). These were 
coded for presence and not for accuracy. For each of these categories, whether the mindmap 
included an application (e.g., force, work, etc.) was also coded. Finally, the researchers coded 
whether each concept was presented with two- and/or three-dimensional representations. A 
second set of codes was used to characterize the relationship between pairs of concepts and how 
they were depicted (by lines or words) and whether these connections represented declarative, 
procedural, and/or conceptual knowledge (Sarwar & Trumpower, 2015). We will not discuss the 
declarative, procedural, and conceptual knowledge coding further in this paper. 
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A sample of four student mindmaps was coded by the first author. Issues with this coding 
scheme were then discussed with the second author. A new coding scheme was proposed that 
added generic content categories. Based on emergent themes from this sample, three new codes 
were added to the scheme: “unit vectors” and “basis vectors” were added as subcategories of 
vectors and “orthogonal component of projection” was also added as a subcategory of projection. 
The words category for connections between content areas was split into three categories: 
“words,” “multimedia static,” and “multimedia dynamic” to distinguish verbal descriptions from 
graphs or images and video links. The category of 2D or 3D was only assessed over the entire 
mindmap and not on individual concepts because the previous level of refinement was deemed 
unnecessary. Similarly the applications code was evaluated at the level of topic and not critical 
feature. The original sample of four students plus two additional mindmaps were coded by the 
second author according to this new scheme. The authors then discussed some discrepancies in 
coding from these rounds. Clarifications were made in the codebook and the first author then 
coded the initial four and the additional two mindmaps with the new scheme. The codings of the 
two authors on the sample of six mindmaps were compared, discrepancies discussed, and 
clarifications to the codebook added. The dot product subcategories were eliminated from the 
codebook because these critical features did not apply to a scalar value.   

Interrater reliability measures. Since the codes were not mutually exclusive categories, 
the measure Mezzich’s kappa of interrater agreement for multivariate nominal data was used 
(Mezzich, Kraemer, Worthington, & Coffman, 1980; Eccleston, Weneke, Armon, Stephenson, & 
MacFaul, 2001). Mezzich’s kappa statistic for this sample indicated 63% agreement. Most of the 
disagreement stemmed from the interpretation of the categories “verbal” and “declarative” in the 
fifth mindmap in the sample. The authors discussed these disagreements and came to a 
consensus that was then addressed in the codebook. Making adjustments to these codings based 
on the new consensus, brought Mezzich’s kappa to 73%. Because this sample of six mindmaps 
did not exhibit every code in the codebook, two additional mindmaps were selected and coded by 
both authors independently. Results were compared resulting in Mezzich’s kappa equal to 75%. 
At this stage, the codebook was finalized and the first author coded the remaining mindmaps.   

The codebook. The codebook can be separated into two parts: content and connections. 
The content coding included the topic categories: vector (V), scalar multiplication (S), addition 
(A), subtraction (B), cross product (X), dot product (D), and projection (P). There was also an 
other (O) category to capture ideas (e.g., lines and planes) not directly fitting into these topics. 
Each topic category was marked for presence and whether the mindmap included an example of 
an application of each topic (V-app, S-app, A-app, B-app, X-app, D-app, P-app, and O-app 
respectively). In addition, any relevant critical features of these categories present on the 
mindmap were also coded. Table 1 below describes some of the subtopic codes that were 
observed along with examples. In addition to the subtopic codes listed in Table 1 and the 
application codes, the full list of subtopic codes included: Ag (general addition), Bg (general 
subtraction), Xg (general cross product), Xd (cross product direction or orientation in relation to 
the two vectors that form it), Xm (cross product magnitude), Xa (cross product as orthogonal to 
the two vectors that form it), Dg (general dot product), Pg (general projection), Pd (projection 
direction), Pm (magnitude of the projection), Po (orthogonal component of projection), and O 
(other). Finally, for all codes, except the application codes, it was noted whether or not the topic 
and/or critical feature was described verbally, numerically, graphically, or symbolically.  

We used connection codes between topics and how those connections were represented. 
For example, the codes VS-W, VA-W, VB-W indicated the topic of vector was connected, 
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respectively, to scalar multiplication, addition, and subtraction through words. An example was a 
bubble with the words “Vector operations” that connects to three bubbles with “scalar 
multiplication,” “addition,” and “subtraction.” If these three are also connected through lines on 
the mindmap, then VS-L, VA-L, and VB-L were also coded. Other connections could be in the 
form of a static image (MS) or a dynamic multimedia clip (MD). For example, a video clip of an 
instructor working through a problem demonstrating u + (-v) = u - v was coded as AB-MD. The 
complete list of connecting codes included all pairs of topics (V, S, A, B, X, D, P) and all four 
types of connections (L, W, MS, MD).  

Table 1. A sample of the commonly used codes, their descriptions, and representative examples. 

Subtopic Codes Description Examples 

Vg General Vectors - any mention of 
vectors at all.  

Different notations of vectors; graph of a vector; conversion between different 
representations of vectors; any of the examples under the “V” codes below; if there is very 
little information on the mindmap, this may be the only category coded. 

Vd Vector Direction 
 

Picture of a vector with the direction marked; mention of change in x and change in y; image 
that marks the angle the vector makes with the x-axis; explanation of the process of how to 
find the angle that the vector makes with the x-axis 

Vm Vector Magnitude Image of a vector with the length marked; formula or computation of the length of the 
vector; use of the Pythagorean Theorem for computing length 

Va Angle between Two Vectors Image with angle between two vectors marked in a graph; image with angle between two 
vectors defined in a formula for dot or cross product (the presence of “theta” in a formula 
without a geometric or verbal definition would not be coded) 

Vl Vector Location Statement that vectors can be moved or that location doesn’t matter 

Vu Unit Vectors Definition, formula or explanation for finding a unit vector in a given direction 

Vb Basis Vectors Definition or graph of the i, j, k vectors 

Sg General Statement about Scalar 
Multiplication 

Mention that scalar multiplication combines a scalar with a vector, Including the notation cv, 
any of the examples in the “S” codes below 

Sd Scalar Multiplication Direction Indication that cv is parallel to v; mentioning the impact of -1 on the direction 

Sm Scalar Multiplication Magnitude Demonstration the effect of the magnitude of c on the length of cv 

 
Results 

 The vast majority of students included both two- and three-dimensional representations 
of vectors in their initial (87%) and final mindmaps (96%). On the other hand, very few students 
included applications of vectors in their initial mindmaps. Among the initial mindmaps, only 
seven students (30%) provided any application, but twenty students (87%) included an 
application of vectors in their final mindmaps. The distribution of the kinds of applications the 
students mentioned in their mindmaps appears in Table 2. Almost no students provided 
applications of scalar multiplication, addition, subtraction, and projection. Table 3 and Table 4 
report the frequency counts of the other codes. 
Table 2. Frequency comparison (counts) of application codes in the initial and final mindmaps (n=23). 

Mindmap 
Initial 
Final 

V-app 
7 

10 

S-app 
0 
1 

A-app 
1 
1 

B-app 
0 
0 

X-app 
0 

16 

D-app 
0 

14 

P-app 
0 
1 

O-app 
0 
1 
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Table 3. Frequency comparison (counts) of topics and representations in the initial and final mindmaps (n=23). 

Types of 
Representations 

Vg Vd Vm Va Vl Vu Vb Sg Sd Sm Ag Bg Xg Xd Xm Xa Dg Pg Pd Pm Po O 

Initial Mindmap  
Geometric  
Numerical 
Symbolic 
Verbal 

 
7 

17 
20 
22 

 
1 
5 
4 

17 

 
4 
5 

12 
19 

 
2 
3 
4 
6 

 
1 
0 
0 
5 

 
2 
4 
6 

15 

 
2 

12 
13 
6 

 
2 
9 

12 
16 

 
2 
0 
1 
4 

 
2 
0 
2 
6 

 
4 
8 

12 
13 

 
3 

10 
12 
11 

 
1 
0 
1 
2 

 
1 
0 
0 
1 

 
1 
0 
0 
1 

 
1 
0 
0 
1 

 
3 
3 
6 
5 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

Final Mindmap  
Geometric 
Numerical 
Symbolic 
Verbal 

  
13 
17 
21 
21 

 
6 
5 
4 
17 

 
7 
6 

13 
20 

 
5 
3 
7 

12 

 
1 
0 
0 
7 

 
4 
4 
9 

16 

 
4 

13 
14 
6 

 
5 

10 
16 
17 

 
4 
0 
1 
4 

 
4 
0 
2 
6 

 
11 
8 

14 
12 

 
9 

10 
15 
10 

 
7 
6 

19 
17 

 
9 
0 
2 
8 

 
4 
1 
8 
4 

 
6 
0 
1 
6 

 
8 
9 

23 
19 

 
6 
1 
7 
6 

 
1 
0 
2 
1 

 
2 
0 
1 
1 

 
3 
0 
1 
4 

 
2 
3 
8 
8 

 
Table 4. Frequency count of connections in the initial and final mindmaps (n=23). 

Types of Connections VS VA VB VX VD VP SA SB SX SD SP AB AP BP XD DP 

Initial Mindmap  
Lines 
Words 
Multi-media Static 
Multi-media Dynamic 

 
20 
9 
3 
0 

 
19 
8 
1 
1 

 
19 
7 
3 
1 

 
1 
0 
1 
1 

 
6 
1 
0 
2 

 
0 
0 
0 
0 

 
0 
1 
1 
0 

 
0 
0 
1 
1 

 
0 
0 
0 
1 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

 
1 
6 
0 
0 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

 
0 
0 
0 
1 

 
0 
0 
0 
0 

Final Mindmap  
Lines 
Words 
Multi-media Static 
Multi-media Dynamic 

 
22 
11 
6 
0 

 
20 
9 

10 
1 

 
21 
8 

10 
1 

 
21 
6 

14 
1 

 
22 
6 

11 
2 

 
7 
2 
4 
0 

 
0 
1 
1 
0 

 
0 
1 
5 
1 

 
0 
0 
1 
1 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

 
1 
7 
3 
0 

 
0 
1 
1 
0 

 
1 
0 
1 
0 

 
0 
7 
4 
1 

 
2 
4 
0 
1 

 
Discussion  

 We first consider the topics and critical features in the mindmaps. Since the initial and 
final mindmaps were created three weeks apart and more material on vectors was presented in 
class during this time frame, it is not surprising to see more topics on the final mindmaps. Once 
students addressed a concept in the initial mindmap, they rarely made any changes or additions 
to that concept in their final mindmap. Therefore, the statistics reported below represent whether 
a category was coded on at least one of the initial or final mindmaps for each student.  

Almost all students included the vector operations (scalar multiplication, addition, 
subtraction, cross product, dot product), but only nine (39%) of the students mentioned 
projection. Nearly all students described the direction and magnitude of the vector, but only 14 
(61%) of the students mentioned the angle between two vectors. This echoes a study of pre-
service teachers’ concept maps of vector kinematics in which the most common code was 
“vectors have magnitude and direction,” and only one concept map mentioned angle (Govender 
& Gashe, 2016, p. 331). Furthermore, in our study when discussing the cross product, less than 
half mentioned the direction or magnitude. Therefore, while students identified relevant vector 
operations, they did not communicate all critical features related to the operation.  

Considering the connections between the topics, it is notable that students tended to treat 
the vector operations in isolation, especially scalar multiplication. Additionally, only eight 
students (35%) made a connection between addition and subtraction. Even straightforward 
connections between topics were not reported.  For example, only five of the nine students who 
mentioned projection included the formula and/or connected it with the dot product. When 
students did demonstrate a connection between two of the operations, they did not explicitly 
draw a connecting line, but implicitly connected the ideas through a formula or a static image.  
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Students’ representation of vectors changed over time. More students provided geometric 
representations of vectors and applications in their final mindmap than in their initial mindmap. 
This could be attributed to re-reading the assignment instructions and receiving instructor 
feedback after submitting the initial mindmap. However, geometric and numeric representations 
were sparsely used for every topic on both the initial and final mindmaps. Despite being given 
encouragement to graphically display information, students tended to rely on verbal and 
symbolic representations of vectors, and few initially reported applications of vector concepts. 
These observations are consistent with a think-aloud study of engineering students working 
through three-dimensional force problems (Miller-Young, 2013). Furthermore, the nature of the 
connections that students made and their use of representations supports research that shows that 
novices organize their groupings by surface-level features and use only one or two 
representations, while experts tend to cluster apparently different situations together into 
meaningful groups using a greater variety of representations (Kozma, 2003).    
 

Limitations 
Because the students were allowed to access class notes, the textbook, and online 

resources, the mindmaps created may not reflect the students’ understanding of vectors. 
However, since students were allowed to use these mindmaps on their in-class exam, the 
mindmaps may reflect what students viewed as important or critical information about vectors. 
Also, since students were allowed to copy material from other sources, the representations that 
they added to their mindmaps may indicate what they found readily available versus the 
representation that they would have chosen to create on their own. Because the assignment was 
carried out on the computer, technological constraints may have influenced the representations 
that the students chose to include in their mindmaps. For instance, a student may have found it 
more convenient to type a verbal description rather than a symbolic description involving 
subscripts. Furthermore, the assignment instructions and instructor feedback to include multiple 
representations may have influenced students to include representations of vectors beyond what 
they would have chosen on their own. Finally, this study was limited to a sample of students 
from one section of multivariable calculus. A broader sample of students from different schools 
may provide varied results based on instructor emphasis and student background. 
 

Conclusion 
By examining how students communicate vector topics on mindmaps over time, this 

study contributes to the body of research on student understanding of vectors. Knowledge about 
which connections and which representations the students communicate can inform pedagogical 
practices and the development of technological environments to help students coordinate the 
ideas and representations (Kozma, 2003). Our study triangulates research on critical features of 
vectors (VanDieren et al., 2017). Additionally, our research serves as a testing ground for 
Simon’s theoretical construct (2017) at the undergraduate level, since it was originally developed 
for K-12 content. Finally, critical features, and as Simon (2017) suggests, identifying student 
differences between one another and over time can both be used to articulate mathematical 
concepts that may later be used for assessment of student understanding.  
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Calculus Variations as Figured Worlds for Mathematical Identity Development 
 

 Matthew Voigt Chris Rasmussen Antonio Martinez 
 San Diego State University San Diego State University San Diego State University 

 
Calculus is often an essential milestone during a students’ time in college and can be especially 
impactful for students wishing to major in in a math or science field. Given its relative 
importance, the ways in which calculus courses are delivered can have a lasting impact on a 
student’s trajectory and relationship with mathematics. In this study we document the ways in 
which three calculus course variations at the same University operate to promote different 
mathematics identities for students. Drawing on the Holland et. al.’s (1998) framework of 
figured worlds we showcase the ways in which these course variations act as if they are different 
calculus worlds that constitute socially organized and produced realms of being. We highlight 
the ways in which these figured worlds position or fail to position students with the opportunity 
to refigure themselves and others as learners and doers of mathematics.  
 
Keywords: Calculus, Math Identity, Figured Worlds, Course Variations 

In the United States there is a national movement to increase the number of awarded STEM 
degrees in order to address the nearly 1 million additional STEM degrees needed to support the 
nation’s growing research and technology economy (PCAST, 2012). Among the 
recommendations to address this need, the PCAST report recommended the adoption of 
empirically validated teaching practices, replacing standard lab courses with discovery-based 
research courses, addressing the mathematics-preparation gap, and diversify pathways to STEM 
degrees. Additionally, any efforts to improve the quality of undergraduate STEM education must 
also attend to fostering an environment that promotes diversity and inclusion in STEM 
classrooms (National Academies of Sciences Engineering and Medicine, 2017).  

The vision and enactment of creating an equitable robust STEM education is a complex and 
multifaceted endeavor that will require continued research; however, one such promising 
approach in undergraduate mathematics that has been identified with successful calculus 
programs is the tailoring of calculus courses to meet the needs of individual students, which we 
refer to as course variations. Course variations have the potential for addressing the 
recommendations from the PCAST report since they can specifically address the preparation gap 
for students by incorporating prerequisite material in courses or stretching out the course content, 
can infuse labs and standard based teaching in courses tailored for science majors, and even 
provide diverse pathways into STEM for those that have taken a non-traditional math 
background through transition courses. Author (2016) documented how these variations to the 
standard course across the US have been associated with greater rates of passing calculus and put 
forth a call to future research to examine the ways that these courses may help promote a sense 
of community and identity development among students in the different variations. We take up 
this call for future research in this report, by examining how the structures and activities of three 
different calculus courses at the same undergraduate institution impact the types of possible 
mathematical identities that emerge from those contexts? 

Framework and Literature Review 
Mathematical identity has become a central and powerful concept in the analysis of 

mathematical learning, in part due to the recent social and political turn in education (Gutiérrez, 
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2010). Identity frameworks in math education have drawn largely from sociocultural 
perspectives that link identity and learning to one another and arise from social practices. 
Additionally, this research often utilizes positioning theory to account for identity as constructed 
through social interactions to construct storylines about who a person is in relation to others in a 
social context (Langer-Osuna & Esmonde, 2016). Holland, Lachicotte Jr., Skinner, and Cain 
(1998) sociocultural theory of identity and self, known as figured worlds, is useful as a tool for 
studying identity production in education, and how the context of education allows or does not 
allow the emergence of certain identities. Figured worlds are “socially and culturally constructed 
realms of interpretation in which particular characters and actors are recognized, significance is 
assigned to certain acts, and particular outcomes are valued over others” (Holland et al.,1998, p. 
52). Figured worlds are dynamic. They are constantly formed and re-formed in in relation to the 
everyday activities and events that occur within the realm of possible “as if” worlds. Figured 
worlds are thus situated in a social context and time period, and represent a reflexive relationship 
and negotiation of the possible identities that can be constructed and affirmed in the figured 
world. As cited by Urrieta (2007), Holland claims that figured worlds have four characteristics: 

(1) Figured worlds are cultural phenomenon to which people are recruited, or into which 
people enter, and that develop through the work of their participants. 

(2) Figured worlds function as contexts of meaning within which social encounters have 
significance and people’s positions matter. Activities relevant to these worlds take 
meaning from them and are situated in particular times and places. 

(3) Figured worlds are socially organized and reproduced, which means that in them people 
are sorted and learn to relate to each other in different ways. 

(4) Figured worlds distribute people by relating them to landscapes of action (personae); thus 
activities related to the worlds are populated by familiar social types and host to individual 
senses of self. 

Boaler and Greeno (2000) draw on the concepts of figured worlds to illustrate how two 
different types of high school classrooms afforded students different identities and storylines of 
mathematical learners. One such figured world of mathematics classroom, drew on the concept 
of “received knowing” and promoted a concept of doing mathematics as memorization and being 
able to quickly recall information. In contrast, the other figured world of mathematics classroom 
drew on the concept of “connected knowing” and promoted a concept of doing mathematics as 
making sense of mathematical concepts and procedures. The “connected knowing” world 
promoted as sense of agency among the mathematical learners since they were encouraged to 
draw on their own interpretations of mathematics to make sense of the concepts. Boaler and 
Greeno’s study highlights how the context of education setting and approach to teaching impact 
students’ identity production as learners and doers of mathematics, which impacts their choices 
for continuing or dropping out of further engagement with mathematics. This is especially 
problematic since there is some indication that educational contexts which promote 
decontextualized and abstract knowledge are more alienating for women and non-western 
students and therefore hindering the goals of educational equity in STEM. 

Solomon, Croft and Lawson (2010) examined how mathematics support centers, which were 
intended to support skill development for engineering students, were dynamically co-opted by 
the students to support the development of group learning strategies which promoted a strong 
community identity among the participants. This study highlights the way the undergraduate 
STEM community of practice, which can often be highly competitive and individualistic, can 
refigure itself by reflecting on the positional identities that can be challenged in that space by 
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drawing on the physical resources and artifacts to disrupt the available storylines. For instance, 
the physical space of the tutoring center, allowed students to refigure their relational identity to 
mathematics as a social endeavor of helping each other succeed.   

Methods 
The analysis presented draws on student focus group data from one University, which we 

refer to as Tree Line University (TLU). TLU offers three different calculus courses. In addition 
to the standard offering, TLU has a coordinated calculus-physics course for advanced students 
and a life science course, which includes a focus on biology. For each of these three calculus 
offerings, we conducted a focus group with three to five students currently enrolled in the target 
course. We use focus groups for this research since they help highlight the nature of figured 
worlds which are socially constructed among the members. Students for the focus group were 
sent an email invitation as well as recruiting efforts done in-person during the course. As such 
the students who participated represent a self-selected sample of student willing to participate in 
the focus group, and while this may not be representative of the entire course they highlight the 
realm of possible mathematical identities afforded in each of the courses. The focus group 
conversations centered on topics such as who they are, their experiences in the course, how and 
why they chose this particular course, what happens during a typical class period, how they 
relate to others in this course as well as to students in different calculus courses. All focus group 
interviews were audio recorded and transcribed for subsequent, thematic analysis (Braun & 
Clarke, 2006). Guided by our theoretical framing of figured worlds, we developed narrative 
accounts in a collaborative endeavor among the researchers by first producing a descriptive 
account of the focus group and then using within and cross-case comparison to develop themes 
related to the research focus. These narrative accounts centered around the themes of students’ 
emerging mathematical identities, sense of community or belonging, and positional relationship 
to calculus as (ir)relevant to their major and career goals. We present how these themes are 
enacted as figured worlds in each of the three calculus courses along with illustrative quotations 
from the narrative accounts.  

Results 
Calculus for Life Sciences: A refiguring of productive mathematical identities 

Calculus for Life Sciences at TLU functions as a combined differential and integral calculus 
course without topics in trigonometry. The course was originally designed at the request of the 
college of life sciences and agriculture for students majoring in the life sciences. The content 
remains fairly similar to the standard calculus course but has what faculty described as a “lighter 
approach” that emphasizes concepts and some application of topics. Our focus group in this 
course included five students enrolled with the same instructor (Dr. B) for the lecture session but 
who had different teaching assistants for the twice weekly recitation sections.  

Many of the students in the focus group conveyed that prior to enrolling in this course they 
had identities as poor performers in mathematics, which made them anxious to take a university 
calculus course. One student shared that they had taken precalculus and had gotten a C- in the 
course, and stated that it, “was the lowest grade I had ever gotten for a college class,” and as a 
result was worried about how well they would do in this class. Several of the other students in 
the focus group concurred with this sentiment, with one student stating, “I did so poorly in that 
class, and I just thought like I am not meant to pass calculus." Other students discussed how the 
gap between their last math course in secondary school and taking this calculus course made 
them less prepared, and that they were “nervous going into calculus.” Students in the focus group 

22nd Annual Conference on Research in Undergraduate Mathematics Education 640



had a personal social history (history-in-person) that positioned them outside of the world of 
learners and doers of mathematics. For example, one student stated that they were, “someone 
who is not naturally inclined to math,” while another stated, “I am not meant to pass 
calculus.” However, as we will show, the students conveyed that through their experiences in 
this course, they were able to refigure their identities as productive mathematical learners and 
doers largely as a result from positive interactions with their instructor. 

Students in the focus group conveyed that as a result of this course they now viewed 
themselves as someone who was capable of learning and doing mathematics. One student said 
that “I feel like I'm not completely hopeless at all in math anymore.” This sentiment was 
supported by several of the students who recognized a shift from their prior conceptions and 
experience in mathematics. For example, one student said, “I can actually do this, rather than 
like, in many past courses where I really have no idea what's going on." Students discussed how 
they were really “understanding” what they were doing rather than memorizing formulas, which 
aligned with the goal and vision of the course from the faculty perspective. As a result, students 
were able to refigure their positionality towards learning mathematics, as exemplified in the 
following quotes: “I’ll be able to succeed in other math heavy courses” and it “boosts my 
confidence in that regard.”  

One of the contributing factors that helped students refigure their mathematical identities was 
their relationship with the instructor. “I can't say enough about our professor, this is probably the 
only math class that's really felt like it made sense in my life.” Students described instructional 
practice that contributed to their positive experience such as the teacher breaking down concepts 
in a way that made sense, using anonymous polling to see how they were feeling about course 
concepts, and providing prerequisite information such as the quadratic formula without assuming 
the students had memorized this information. These practices seemed to convey to the students 
that the instructor cared about them and their learning, allowing for them to acknowledge their 
past mathematical identity while being supported in the negotiation of productive mathematical 
identities. The impact of the individual instructor versus other features can’t be isolated in this 
study; however, the instructor through instructional techniques allowed for the enactment of a 
figured world that aligned with the goals of the course to have students focus on understanding 
and connected knowing. 

There were also ways in which the enactment of the course variation positioned the students 
outside the world of mathematics learners. For instance, while some of the students mentioned 
that they were unware of the difference between calculus for life sciences and the standard 
calculus course, some of them mentioned the ways in which it was “low base calculus” or “more 
basic algebra” compared to “real calculus.” One student even described how their friend who 
was studying physics teased them saying, “you're not taking calculus, calc for life sciences is just 
like classical math.” Additionally, many of the students felt that the stated goal of the course to 
serve life sciences students was too broad. This resulted in students feeling that the course was 
not tailored to their specific discipline identities, “I'm either getting pushed aside or pushed 
under the rug with everybody else by just saying, “Oh well, you're in the life sciences major, you 
got to do this.” In this figured world of calculus for life sciences, students were maintaining a 
strong discipline identity (equine science, zoology) which they viewed as not needing calculus. 

Honors Calculus: A collaborative community of academically-minded students 
Honors calculus at TLU is a unique course that it is designed to integrate topics in physics 

and calculus and takes a theoretical approach to the material. Our focus group consisted of three 
students majoring in mathematics. Students emphasized the difficulty of this course by the fact 
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that they often have to rely on one another to finish the homework and study for exams. For 
example, an agreed upon sentiment is that “Collaboration is actually one of the strengths of the 
class…you know everyone in the class, you feel like you can trust that they're going to put in the 
effort, and you're going to put in the effort, and you're going to come together if you need to.” 
The word “trust” was often used by the students in this focus group interview. They felt that 
there was a need to trust each other in order to do well. It is important to note that the objective 
for these students was clear; it was not to just pass the class, but to do well in the course together. 

All of the students in this focus group had AP calculus credit. They entered into a world 
where they viewed their peers as equals who enjoyed learning and doing mathematics as much as 
they did. From the start they described a course that positioned them in the figured world of 
calculus where they felt accepted and academically challenged. This is reflected by the students’ 
frequent reference to being surrounded by people who are the “same.” One student in the focus 
group reinforced this idea as follows: “In my calculus class, we have students who are all STEM. 
They are students who have the same mindset”. These students are in a space where they are 
comfortable to acknowledge that they are joined by, “intelligent people who have the same 
common objective”. This highlights how mathematical identity can be formed when students are 
surrounded by people who they perceive to be cut from the same cloth. 

Students were able to relate to each other and work together based on the fact that they are all 
coming in with similar interests, similar class objectives and career goals. During lecture, they 
were required to work in groups, which was a point of contingency at the beginning of the 
semester. There was reluctance from some students to work with one another because they 
wanted to “motor through” the activities. However, once they created a world where they were 
able to share their ideas they came to view group work positively. As one focus group member 
put it, “I get to share my perspective, I get to hear their perspective,” which they felt created a 
class that was more enjoyable. The figured world of honors calculus that the students created for 
themselves allowed them to grow and form a mathematical identity that centers around 
succeeding, understanding the material, and supporting others. 

In this figured world, full of high achieving STEM majors, the students in the focus group 
reported having an extremely strong sense of community. One student explained how close knit 
they are as follows: “If I have a concern about anything really, I feel like I can go and find 
someone from the class and talk to them about it and ask them what they think. And, you know, 
that’s something that I think might be more exclusive to the [Honors Calculus].” An important 
aspect to highlight regarding their community is that the students in the focus group felt a closer 
sense of community in the honors calculus class than they did in any of their other honors 
classes. One contributing factor as the students described it was the focus of the class being all 
STEM majors, who had a similar interest, didn’t “wince” at the word math, and had high 
academic engagement.  

Standard Calculus: A realm of disconnected knowing and isolation 
The standard calculus sequence at TLU is primarily a service course for engineering majors. 

The focus group consisted of three men, with majors in ocean engineering, mechanical 
engineering, and chemical engineering. The students in the focus group had varied secondary 
school mathematics experiences where one student took a non-AP calculus course, one took an 
AP calculus course, and the third student did not take calculus in secondary school.  
The one student who had not taken calculus in secondary school described Calculus 1 as “fast-
paced” and not well-organized. He also expressed some personal disconnect with the material 
when he said, “I didn't know what a derivative, like what is the definition of a derivative, till like 
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two weeks after we had started them.” The other two students who had taken calculus in 
secondary school also felt that the course was fast paced but were less concerned with the 
material. In general, the three students positioned themselves as external to calculus, where 
calculus was something they had to do, as opposed to something that they were excited about 
learning. For example, one student said, “it's a class and I have to do work for it. That's just 
normal college stuff” and another student said calculus was a course “they had to take.” Thus, 
upon entering calculus as first year students, none of the three positioned themselves as 
particularly excited about mathematics or very interested in mathematics. As they progressed 
from Calculus 1 to Calculus 2, this feeling of being disconnected from mathematics was not 
refigured, but rather seemed to become entrenched and reified.  

In both Calculus 1 and 2, the three students had similar experiences in lecture. One student 
explained that he felt so disconnected that he stopped going to his assigned lecture and attended 
a different lecture instead. He recounted that in class he felt, “nobody knows what's going on 
because you're just up there writing, and you won't answer the questions. So, this is very 
frustrating.” Another student chimed in that “Everything that he just said that happens this 
semester, happened for me last semester.” The feeling of being personally disconnected from 
their instructors and the course content was amplified in Calculus 2. In contrast to Calculus 1 
where they felt the material was more applicable and useful, their experiences in Calculus 2 was 
on memorization. For example, one student contrasted his experience in Calculus 1 and 2 as 
follows: “The expectation [in Calculus 1] was that there would be understanding. The latter 
[Calculus 2] is memorization without any expectation of understanding.” This was a common 
sentiment for all three students. In fact, one student explained that he was told that Calculus 2 is 
“really advanced math” and so there they are not expected to “understand what we are doing.” 
Even his teaching assistant (TA) positioned the content as something that was not within their 
reach for understanding. “And like my TA has dropped a line similar to just saying like, ‘You 
don't need to know further, this is what you need in order to do this. So, this is what you're 
given.’” Thus, their experience in calculus at TLU resonates with the figured world of “received 
knowing” described by Boaler and Greeno (2000).  

TLU’s no calculator policy seemed to further figure calculus as something that is 
disconnected from their interests and previous experiences. For example, one student explained 
that the no calculator policy in calculus stood in contrast to how he imagined his future self in 
the workplace as an engineer. “You're not going to be working in a laboratory somewhere and 
they're just having you do calculations derivatives and integrals like, in your head. Like you're 
going to have a calculator. Especially if you want to do real-world problems.” They also 
contrasted their calculator experience in calculus with that in physics and chemistry, where 
calculators are used all the time. This positioned mathematics for them as outside the realm of 
connection with other disciplines. 

When asked about the extent to which they felt they had formed bonds or connections with 
their classmates, the three students agreed that any relationships they formed were not the result 
of how class was structured or due to any effort on the part of their instructors. Instead, those that 
they do homework with are either friends or live in the same residence hall. Their ability to work 
with a wide range of students from different lectures was made possible because TLU has tightly 
coordinated curriculum, homework, and assessments. As these three students explained, “there's 
a lot of behind the scenes learning from kids explaining, or students explaining stuff to one 
another” and “there's a lot of, frankly, bonding over freaking out.” Thus, at a system level, the 
course coordination allowed for considerable peer to peer bonding that otherwise might not have 
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happened and allowed these three students to refigure their relational identities as helping 
residence hallmates survive calculus. 

Discussion 
Given the exploratory nature of this work we did not posit any hypothesis regarding how the 

different course variations would impact student mathematical identities, and instead our aim 
was to capture the salient features described by the students and how those related to their beliefs 
about knowing and doing mathematics. The enactment of these figured worlds considers the 
totality of the lived experience such as the role of the instructor, calculator policies, discipline-
based problems, and the structures surrounding entry and pathways into the courses. These 
elements cannot be separated since they are fundamentally tied together. For instance, instructors 
for the calculus for life sciences are selected knowing the course should emphasize mathematical 
understanding and are aware that most of the students have had negative experiences with 
mathematics prior to starting the course. This results in assigning instructors who often are more 
student-centered in their teaching approach.   

Comparing across the three variations in the study, we can see the ways in which the four 
characteristics of the figured world, as previously defined in the theoretical background section, 
contributed to the productive mathematical identity, mostly for students in the calculus for life 
sciences and the honors calculus. For instance regarding the first characteristic, the ways in 
which students were recruited or enter into the figured world, this helped promote a sense of 
academic-excellence and equivalency among the students in the honors sections because they 
had been invited to enroll in the course as part of the honors program as compared to students in 
the standard course which were “forced” to take the course as part of a degree requirement. 
Looking at the second characteristic, one can see how the social interactions and positionality of 
the instructor, Dr. B, for the life science students gave meaning to their sense of being cared for 
as a calculus student, allowing them to align and refigure themselves with positive mathematical 
interactions. Over the course of the semester, students in each of the three variations were 
socially organized, in some cases as peers actively supporting one another, and others as students 
living in the same residence working to survive in the figured world. Additionally, the fourth 
characteristic arose during students’ understanding of familiar social types and having a strong 
individual sense of self that was related to a discipline identity such as an engineer in the 
standard course or a zoologist in the life science that positioned the use of calculus as ancillary to 
their pursuits.  

The course variations at TLU served as figured worlds for the students that seemed to impact 
their mathematical identity. The role of the instructor to either express care for their learning, to 
encourage peer collaboration, or to lecture the material at a quick pace was a paramount factor in 
how the students described their beliefs about being able to learn and do mathematics. The way 
the instructors approached teaching we speculate is tied with the programmatic features of the 
course variation. Whereby the standard course is content heavy and puts pressure on instructors 
to cover the material through lecture, the honors course has more contact hours and was designed 
with collaborative labs, and the life science course focus on understanding and less on 
computation which promotes instructor inquiry into students thinking.  
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Previous research has illuminated and defined meanings and understandings that students 
demonstrate when reasoning about graphical images. This study used verbal and physical cues 
to classify students’ reasoning as either static or emergent thinking. Eye-tracking software 
provided further insight into precisely what students were attending to when reasoning about 
these graphical images. Eye-tracking results, such as eye movements, switches between 
depictions of relevant quantities, and total time spent on attending to attributes of the graph 
depicting quantities, were used to uncover patterns that emerged within groups of students that 
exhibited similar in-the-moment meanings and understandings. Results indicate that eye-tracking 
data supports previously defined verbal and physical indicators of students’ ways of reasoning, 
and can document a change in attention for participants whose ways of reasoning over the 
course of a task change.  
 
Key Words: Static Shape and Emergent Shape Thinking, Quantity, Covariation, Eye-Tracking 
 

Many students entering calculus have been indoctrinated into a rule-based mathematics 
that uses rote memorization, but this can lead to struggles when students face problems that 
contain dynamic phenomena. To move students away from merely using memorized methods, 
they must be provided with tasks which require them to reason about individual quantities and 
how two quantities’ magnitudes vary over time (Moore & Thompson, 2015; Stevens & Moore, 
2017; Thompson, 2011).  

In the past, researchers have been restricted to categorizing students’ meanings and 
understanding of concepts based on verbal and physical cues. Recently, researchers have started 
using eye-tracking technology, which allows the addition of visual cues by tracking student 
fixations while they reason about tasks (i.e. Alcock, Hodds, Roy, & Inglis, 2015). Although eye-
tracking studies have been conducted in undergraduate mathematics education, those studies 
have focused on the use of static images, such as describing how experts and novices read proofs 
(i.e. Alcock et al., 2015). 

There has been much research on how students reason quantitatively and covariationally 
(Carlson, 1998; Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Monk, 1992; Moore & Carlson, 
2012; Moore & Thompson, 2015). This research aimed to delve deeper into past results by re-
creating quantitative and covariational graphical interview tasks synced with eye-tracking. The 
research questions addressed in our study are:  

1. How do students fixate on various graphical attributes depicting quantities relevant to 
the corresponding task? 

2. Is there a relationship between students’ fixation patterns and observed meanings 
evidencing static or emergent shape thinking? 

 
Background 

Thompson, Hatfield, Yoon, Joshua, & Byerley (2017) presented statistical data about 
U.S. high school performance when asked to create a trace of a graph while watching an 
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animation depicting covarying magnitudes (see Figure 1c). Only 23% of U.S. high school 
teachers were able to at least create a semi-accurate trace of the graph. They reported a high 
correlation (p < .0001) between the creation of the correct initial point and providing an accurate 
graph. Thompson (2017) noted that a potential limitation was that teachers could not 
simultaneously look at the animation and their paper on which they were sketching their graph.  
 Thompson et al. (2017) revealed problems, but insight into student reasoning about 
graphing was minimal. Moore and Thompson (2015) leveraged Piaget’s notions of figurative and 
operative thought together with quantitative and covariational reasoning to better describe how 
students reason about graphs. Static shape thinking, according to Moore and Thompson (2015), 
is defined as seeing a graph “as an object in and of itself, essentially treating a graph as a piece of 
wire (graph-as-wire)” (p. 784). If a student interprets a graphical representation as “graph-as-
wire,” they see the wire as an entire unit with no individual components (multiplicative objects) 
making up the wire. Equations, function names and rules are “facts of shape” (p. 785). It is 
important to note that static shape thinking often suffices to evaluate procedural type problems. 
For example, memorizing shapes and rules, such as the first few terms of a Taylor series, can be 
a productive way to avoid re-inventing the wheel each time a new problem is presented (Martin 
& Thomas, 2017). However, static shape thinking becomes a problem when it inhibits a 
student’s ability to reason about and conceive of the various aspects involved in dynamic 
graphical images. 

In contrast to static shape thinking, emergent shape thinking “involves understanding a 
graph simultaneously as what is made (a trace) and how it is made (covariation)” (Moore and 
Thompson, 2015, p. 785). This mode of thinking is rooted in students’ abilities to reason in terms 
of quantities (quantitative reasoning) and how those quantities vary in tandem (covariational 
reasoning). By quantity, we are referring to a cognitive construct of a measurable attribute of an 
object or phenomenon (Thompson, 1994; Thompson, 2011). It is important to note that this type 
of reasoning is not an inherent feature of a situation; just because a student is immersed in a 
dynamic task that may seem to beg for covariational reasoning does not mean that the student 
will conceive of the situation in terms of covarying quantities.  

 
Methods 

Overall Study Design 
Eleven student volunteers were asked to participate in two task-based, semi-structured, 

clinical interviews (Goldin, 2000) lasting no longer than two total hours. Since the prior 
mathematical knowledge of participants varied, the total amount of time to complete all tasks 
varied. Anticipated course grades were no lower than a C average for any participant, and 
students not recommended by their instructors based on inability to communicate were also not 
contacted. In total, eleven students completed twelve tasks presented on a computer monitor. For 
the purpose of this report we focus on three tasks presented in Figures 1a, 1b and 1c.  

An over-the-shoulder camera captured students’ note-taking and gestures. Tobii eye-
tracking software (Tobii, 2018), collected eye fixation data. Audio from these sources was used 
to sync the camera and eye-tracking videos. Key moments were transcribed, including verbal 
utterances and relevant gestures. Raw data from the eye-tracking software consisted of 
coordinate points indicating participants’ visual attention to specific locations on the monitor 
associated with a timestamp.  
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Areas of Interest (AOIs) 
Areas of Interest (AOIs) were constructed prior to the interviews (see individual task 

protocol below for tasks and their corresponding AOIs). AOIs were not visible to the 
participants. Many AOIs were created to include single attributes depicted on the graph that 
students could conceive as relevant quantities. Task 1, for example, prompted students to identify 
x segment associated with a point, so the AOIs covered x attributes, y attributes, the point itself, 
and so on (see Figure 1d). Defining AOIs allowed researchers to collect information regarding 
eye movement, such as switches. A switch between AOIs is counted each time a student’s 
fixation moves from one AOI to another provided that the student fixated within the second AOI 
within 0.5 seconds of their fixation leaving the first AOI. If the student fixated within one AOI, 
fixated within a second AOI in less than 0.5 seconds after leaving the first AOI, and then fixated 
within a third AOI in less than 0.5 seconds after leaving the second AOI, then that was counted 
as two switches, one switch from the first to second AOIs and another from the second to third 
AOIs. 
 

  

  
Figure 1. Screenshots of Tasks 1, 2, 6, and AOIs defined for Task 6. 
 
Analysis and Coding 
 In Tasks 1 and 2 (Figure 1a and 1b, respectively), students were marked as correct if they 
indicated the bottom segment as corresponding to the x-value of point P, and indicated point C as 
representative of the two segments, respectively. Results for Task 6 were only coded as correct 
(see Figure 1c) if the students created a graph that closely resembled the correct trace (correct 
number of maximums, minimums, correct placement of initial point). 

a. b. 

c. d. 
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Potential indicators for quantitative reasoning included verbal and physical cues. Verbal 
cues for quantitative reasoning included words such as “length” or “distance.” Gesturing with 
hands, such as spreading out thumb and index finger over a depicted segment, was also coded as 
a potential indicator of quantitative reasoning. Although it was technically possible that such a 
gesture might merely indicate visually transferring a line segment without explicit reference to 
measurement, such gestures were frequently paired with the participant acknowledging the 
“length” of the segment. 

Indicators for quantitative reasoning coincide with emergent shape thinking. The lack of 
these indicators can be indicative of static shape thinking. In addition, the data was also coded 
for students’ use of named shapes, such as “quadratic” as meaning graphs that increase and 
decrease. Finally, these potential indicators for static and emergent shape thinking were 
compared to eye-tracking fixation data (pulled from AOIs shown in Figure 1d) to determine if 
potential patterns emerged within different ways of thinking.  
 

Results 
 Table 1 shows general results for each participant. Of the six participants who correctly 
responded to both Tasks 1 and 2, only P08 was unable to create an accurate trace in Task 6. This 
data supports Thompson’s (2017) conclusions that a participant who correctly plots the initial 
point for Task 6, indicated by a participant’s ability to correctly interpret and create a point in 
Tasks 1 and 2, respectively, is more likely to create an accurate graph.  
 
Table 1 
Overall Results for Correctness and Indicators of Potential Quantitative Reasoning (QR) 

Participant Task 1 Correct QR Task 2 Correct QR Task 6 Correct 
P01 ✓     
P02 ✓  ✓ ✓ ✓ 
P03   ✓ ✓ ✓ 
P04 ✓ ✓  ✓ ✓ 
P05 ✓   ✓  
P06 ✓ ✓  ✓  
P07 ✓  ✓ ✓ ✓ 
P08 ✓ ✓ ✓ ✓  
P09 ✓ ✓ ✓ ✓ ✓ 
P10 ✓ ✓ ✓ ✓ ✓ 
P11 ✓ ✓ ✓ ✓ ✓ 
 

Neglecting Depictions of Quantities 
 P03 was the only participant 
who answered incorrectly on Task 1 
but answered correctly on both 
Tasks 2 and 6. Eye-tracking data 
(Figure 2) offers a possible 
explanation. P03 incorrectly 
interpreted the task, which led to the 
choice of the top segment and the y 

Figure 2. Total participant time on selected AOIs in 
seconds for Task 1. 
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attribute of the graph. As expected, Figure 2 indicates a lack of attention by P03 to attributes of 
the graph corresponding to the x-component of the point when compared to attributes of the y-
component of the point. It is also apparent that almost all the remaining participants, similar to 
P02 shown, attended to the x attributes for a larger amount of time. 

Figure 3 gives the number of switches between AOIs. It is evident that few switches from 
one x attribute of the graph to 
another occurred for P03. Figure 
3 shows exactly this - very few 
switches other than from the top 
left segment to the point. In 
comparison, P02 indicates a 
satisfactory number of switches 
between relevant x quantities. 

 
Changing Fixation Patterns 

Eye-Tracking data also shows variance in participant’s attention to graphical in real-time 
as their ways of reasoning about an image changed. For Task 2, we present an example of a 
fixation timeline produced by P07.  

 
Figure 4. Fixation timeline for P07 during Task 2. 

For Task 2, P07 had a large gap in his fixation timeline, with drastic difference in the 
color schemes before and after. The gap for P07 indicates that he was not fixated within any 
defined AOI. Video data indicated that he was attending to the interviewer while she added the 
word relationship to the task (“Which segment on the graph represents the relationship between 
the length of segment x and the length of segment y”). The color scheme on the left side shows 
P07 looking back and forth between segments x and y, then back and forth between x attributes 
(horizontal aspects of the graph) and y attributes (vertical aspects of the graph). The change in 
color scheme for the latter half of the fixation timeline shows attention to relevant aspects of the 
graph in a more meaningful order (segment x to x attributes and segment y to y attributes). His 
initial lack of awareness of coordination of quantities was resolved by the insertion of the word 
relationship in the task instructions. A look at P07’s dialogue during the gap confirms this 
change in reasoning: 

 
I: Which point on the graph represents the relationship between the length of 
segment x and the length of segment y. 
P07: I’d say C because if you take the y segment and you match it up right here 
[right index at C, right thumb on x axis below C] it would be about that length 
and since the x is shorter it would probably be about at C [right index finger at C, 
right thumb on the projection of C onto the y axis]. 
 

Figure 3. Task 1 switch count. 
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When considering Task 6, 
P01 was incorrect, as shown by the 
red border in Figure 5. P02 was 
correct (green border in Figure 5). 
P03’s total time spent on AOIs 
(yellow border in Figure 5) look 
very similar to P01’s total time 
spent on AOIs. Yet, P03 was 
correct in his response to Task 6.  

Unlike the total participant 
time, the switch count for Task 6 
(Figure 6) provides two very 
different results for P01 and P03. 
Although the two participants 
spent a similar total amount of time 
on the x and y representations, we 
see from the switch count that P03 
was actively switching between the 
AOIs (12 times) while P01 only 
made one switch between 
representations. 
 
Transition from Static Shape Thinking to Emergent Shape Thinking 

During Task 6, P02’s verbal and physical cues combined with his eye-tracking data 
yielded results evident of a possible transition from static to more emergent ways of reasoning.  
 

   Figure 7. Screenshots of P02’s fixation patterns, a. and b., and attempted Graphs in c. 
  

P02’s eye-tracking indicated that he was at moments following the moving point location 
resulting from the coordination of at least the endpoints of u and v line segments (see Figure 7a). 
Yet P02’s dialogue indicated that the reasoning upon which he based his initial graph was more 
static in nature. “I think what it is is they… It’s about like this [drawing parabola in Figure 7c] if 
we were to continue on as it would go on. I think it’s just an upside down parabola, so y equals 
negative x squared is what I think…” He then drew the concave down parabola in Figure 5c. 

A few moments later, however, P02 begin to follow the moving point location on the 
screen with his pencil. While P02 was still trying to attend to the perceived point created by u 
and v, he attended more so to the vertical attribute of u than before (Figure 7b). After making 

a. b. 

Figure 5. Total time spent on relevant AOIs for Task 6. 

Figure 6. Switch count between relevant AOIs for Task 6. 

c. 
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multiple up and down movements with the pencil on screen, the participant decide that his 
parabola was insufficient, and draw the more accurate image in Figure 7c over it.  

 
Discussion  

Conclusions 
Participants’ fixation counts alone were not necessarily indicative of whether they 

correctly interpreted an image, nor were they indicative of the ways of reasoning in which they 
were engaged. When paired with switch counts, as was the case when comparing P02 and P03, 
an ability to switch fixations between graphical attributes depicting quantities relevant to Task 1 
appears to be related to the participants’ ability to reason correctly about the task. Participants 
who correctly answered a given task generally had a higher volume of switch recordings, 
indicating a greater attention to the relationship between quantities represented in the task.  

P07’s timeline for Task 2 demonstrates an instance where the individual entered a state of 
disequilibrium through verbal cues that caused a change in fixation to relevant quantities and the 
relationships between them. Over the course of Task 6’s animation, P02 engaged in static shape 
thinking to initially conceive of the shape of the graph. Even though he had attended to some 
variation, as demonstrated by the eye-tracking, he proceeded to assign a specific function to the 
graph, a parabola in this case. We anticipated that students who indicated emergent shape 
thinking might fixate on a moving point location resulting from the coordination of varying the 
values of the lengths of u and v. Yet, P02’s shift to emergent shape thinking during Task 6, 
resulted after his fixations had transitioned primarily the value of u. When attending to the 
variation in u he was able to hold in mind the variation of v and eventually produce a more 
accurate trace of the graph. This demonstrates that students need not continually switch back and 
forth between varying depictions of quantities to successfully engage in emergent shape 
thinking.  

However, the low switch count for P03 in Task 6 (Figure 6) shows that although the 
participant was attending to relevant quantities for an extended period of time (Figure 5), he was 
not actively moving his attention between the quantities. P02 did indeed switch (see Figure 6) 
and apparently engaged in enough relevant switching for him to produce an accurate graph with 
reduced switching while graphing. But, a lack of switch counts for students may be indicative of 
a lack of attention to the coordination of quantities.  
 
Future Work 

Eye-tracking software is a new tool that is emerging in mathematics education literature, 
which leaves a wide range of possibilities for further research on the aspects discussed in this 
study. One limitation of this study is that results need not generalize to other students, and 
therefore, a larger sample size is needed.  

Eye-tracking results can also be used to develop instructional videos or tasks that better 
equip students to reason in terms of quantities and dynamic situations. Currently, a research team 
is working on an NSF funded project that is using eye-tracking to investigate how students are 
attending to the videos (see acknowledgment; calcvids.org). 

 
Acknowledgements 

This material is based upon work supported by the National Science Foundation under 
Grant Nos. DUE-1712312, DUE-1711837 and DUE-1710377. Special acknowledgement to 
Matthew Thomas for help with scripting for analysis of eye-tracking data. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 652



References 
Alcock, L., Hodds, M., Roy, S., & Inglis, M. (2015). Investigating and improving  undergraduate 

proof comprehension. Notices of the AMS, 62, p. 742-752. 
Carlson, M. (1998). A cross-sectional investigation of the development of the function concept. 

In A. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), CBMS issues in mathematics 
education: Research in collegiate mathematics education III (Vol. 7, pp. 114-162). 

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning 
while modeling dynamic vents: A framework and a study. Journal for Research in 
Mathematics Education, 33, 352-378. 

Goldin, G. (2000). A scientific perspective on structured, task-based interviews in mathematics 
education research. In A. Kelly & R. Lesh (Eds.), Handbook of research design in 
mathematics and science education (pp. 517-545). Mahwah, NJ: Lawrence Erlbaum 
Associates, Inc. 

Martin, J. & Thomas, M. (2017). Effects of interactive virtual number lines in Taylor series 
graphs to support pointwise convergence for calculus students. Manuscript submitted for 
application. 

Monk, S. (1992). Students’ understanding of a function given by a physical model. In G.  Harel 
& E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy, 
MAA Notes (Vol. 25, pp. 175-193). Washington DC: Mathematical Association of 
America. 

Moore, K., & Carlson, M. (2012). Students' images of problem contexts when solving applied 
problems. The Journal of Mathematical Behavior, 31, 48-59. 

Moore, K., & Thompson, P. (2015). Shape thinking and students' graphing activity. In T. 
Fukawa-Connelly, N. Infante, K. Keene & M. Zandieh (Eds.), Proceedings of the 18th 
Meeting of the MAA Special Interest Group on Research in Undergraduate Mathematics 
Education. Pittsburgh, PA: RUME. 

Stevens, I., & Moore, K. (2017). A case study: When graphs contain everything. Abstracts of 
Papers Presented to American Mathematical Society. 

Thompson, P. (1994). Images of rate and operational understanding of the Fundamental Theorem 
of Calculus. Educational Studies in Mathematics, 26, 229-274. 

Thompson, P. (2011). Quantitative reasoning and mathematical modeling. In L.Hatfield, S. 
Chamberlain & S. Belbase (Eds.), New perspectives and directions for collaborative 
research in mathematics education, WISDOMe Monographs (Vol. 1, pp. 33-57). 
Laramie, WY: University of Wyoming. 

Thompson, P., Carlson, M., Byerley, C., & Hatfield, N. (2014). Schemes for thinking with 
magnitudes: A hypothesis about foundational reasoning abilities in algebra. In L. Steffe, 
K. Moore, L. Hatfield & S. Belbase (Eds.), Epistemic algebraic students: Emerging 
models of students' algebraic knowing (pp. 1-24). Laramie, WY: University of Wyoming. 

Thompson, P., Hatfield, N., Yoon, H., Joshua, S., & Byerley, C. (2017). Covariational reasoning 
among U.S. and South Korean secondary mathematics teachers. The Journal of 
Mathematical Behavior, 48, 95-111. 

Tobii Pro. (2018, August 1). Retrieved from http://www.tobii.com/. 
Vinner, S. (1997). The pseudo-conceptual and the pseudo-analytical thought processes in 

mathematics learning. Educational Studies in Mathematics, 34, 97- 129. 
 

22nd Annual Conference on Research in Undergraduate Mathematics Education 653



 

Student Reasoning about Eigenvectors and Eigenvalues from a Resources Perspective 
 

Megan Wawro Kevin Watson Warren Christensen 
Virginia Tech Virginia Tech North Dakota State University 

Eigentheory is an important concept for modeling quantum mechanical systems. The focus of the 
research presented is physics students’ reasoning about eigenvectors and eigenvalues as they 
transition from linear algebra into quantum mechanics. Interviews were conducted at the 
beginning of the semester with 17 students at two different universities’ during the first week of a 
quantum mechanics course. Interview responses were analyzed using a Resources (Hammer, 
2000) framework, which allowed us to characterize nuances in how students understand various 
aspects of an eigentheory problem. We share three subthemes of results to illustrate this: 
interpreting the equations graphically, interpreting the equals sign, and determining solutions. 

Key words: Linear algebra, Eigentheory, Resources, Physics, Student Understanding 

In 2012, the National Research Council’s DBER report stated, “The United States faces a 
great imperative to improve undergraduate science and engineering education” and advocated for 
more interdisciplinary studies to explore “crosscutting concepts ... and structural or conceptual 
similarities that underlie discipline-specific problems” (p. 202). In Project LinAl-P (NSF-DUE 
1452889) we pursue research in this vein by investigating how students reason about and 
symbolize eigentheory in linear algebra and in quantum physics. For this paper, we explore the 
following research question: What ways of reasoning about eigenvectors and eigenvalues of real 
2x2 matrices exist for physics students at the beginning of a quantum mechanics course? 

Literature Review 
Research on students’ understanding of eigentheory has grown over the past decade, and it 

provides several insights into the complexity of the topic, students’ sophisticated ways of 
reasoning, and pedagogical suggestions for overcoming the challenges students face. Thomas 
and Stewart (2011) noted students’ difficulty with and need to understand both how matrix 
multiplication and scalar multiplication on the two sides of the equation !! = !! yield the same 
result and how inserting the identity matrix is necessary when symbolically transforming 
!! = !! into the homogeneous equation (! − !")! = !. They also advocate for instructors to 
help their students develop a graphical conception of eigenvectors and eigenvalues, something 
they noted was weak in their study participants. Gol Tabaghi and Sinclair (2013) investigated 
students’ visual and kinesthetic understanding of eigenvector and eigenvalue. The authors 
analyzed the results in terms of Sierpinska’s (2000) modes of reasoning, finding that students’ 
work with the sketch and their interaction with the interviewer promoted the students’ flexibility 
between the synthetic-geometric and the analytic-arithmetic modes of reasoning.  

Henderson, Rasmussen, Sweeney, Wawro, and Zandieh (2010) illustrated, prior to any 
instruction on eigentheory, various ways that students interpreted ! !

! = 2 !
!  (see Figure 1 part 

(a)). The authors parsed students’ activity through their symbol sense, noting if they conducted 
superficial algebraic cancellation to conclude that A = 2 or if they interpreted the equals sign as a 
signifier of balanced results. The authors also found that of the students that were about to find 
the solution given a specific A, only some were able to interpret their results. This may relate to 
Harel’s (2000) suggestion that the interpretation of “solution” in a matrix equation, the set of all 
vectors ! that make the matrix equation !! = ! true, entails a new level of complexity than does 
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solving equations such as !" = ! (where ! and ! are real numbers). Finally, in physics education 
research, Dreyfus, Elby, Gupta, and Sohr (2017) examined students’ attempt to reconstruct the 
time-independent Schrödinger equation. The researchers focused on the relationship between the 
symbolic forms for eigentheory and the various meanings they could imbue for students, noting 
“parsing the conceptual meaning of mathematical expressions and equations can play a key role 
in mathematical sense-making” (p. 11). These particular aspects – the meaning of symbols and 
the objects they represent, graphical interpretations, and interpreting solutions – are all 
particularly relevant for our present study and help inform our analysis. 

Theoretical Framework 
To operationalize the research question, we assume a theoretical stance consistent with what 

Elby (2000) calls “fine-grained constructivism” in which “much of students’ intuitive knowledge 
consists of loosely connected, often inarticulate minigeneralizations and other knowledge 
elements, the activation of which depends heavily on context” (p. 481). This is consistent with 
the Knowledge in Pieces theoretical framework (diSessa, 1993), which utilizes an assumption 
that students’ intuitively held knowledge pieces are productive in some context. To conduct 
research on student understanding consistent with this theory, we characterize students’ cognitive 
resources (Hammer, 2000) that are utilized when they engage in activity related to eigentheory in 
quantum physics. Sabella and Redish (2007) defined a resource as “a basic cognitive network 
that represents an element of student knowledge or a set of knowledge elements that the student 
tends to consistently activate together” (p. 1018). Resources are activated depending on how 
individuals frame a given situation, that is, how an individual unconsciously interprets what is 
happening around them (Hammer, Elby, Scherr, & Redish, 2005). Individuals may sometimes 
have the resources needed to solve a given problem but fail to activate them, activating instead 
other less-productive resources. However, all “resources are useful in some contexts, or they 
would not exist as resources” (Redish & Vicentini, 2004). Resources can be linked to other 
resources, in which activation of one resource can promote or demote activation of others. 
Furthermore, resources may internally consist of finer-grained resources linked in a particular 
structure (Hammer et al., 2005; Sayre & Wittmann, 2008). In our research, we seek to identify 
resources that characterize the knowledge elements quantum physics students activated when 
reasoning about eigenvectors and eigenvalues of a real 2x2 matrix.  

Methods 
The data consist of video, transcript, and written work from individual, semi-structured 

interviews (Bernard, 1988), drawn on a voluntary basis, with 17 students enrolled in a quantum 
mechanics course. Nine were from a junior-level course at a large public research university in 
the northwest US (school A), and eight were in a senior-level course at a medium public research 
university in the northeast US (school C). Student pseudonyms are “A#” or “C#.” Interviews 
occurred during the first week of the course, and questions aimed to elicit student understanding 
of several linear algebra concepts which they would use in the quantum mechanics course. 

For this paper, we focus on students’ reasoning on one particular interview question. There 
were additional follow-ups to check that the interviewer understood the students’ points, but 
below the five main prompts to the question are in Figure 1. Parts (a)-(c) were introduced in 
Henderson et al. (2010) in their research on student thinking prior to any formal instruction on 
eigentheory. Because linear algebra was a prerequisite for the quantum mechanics courses in 
which our participants were enrolled, we knew they would have been exposed to eigentheory 
prior to the interview. By design, the terms “eigenvector” and “eigenvalue” did not appear until 
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part (e); many students, however, immediately recognized the equation in (a) and brought up 
eigentheory ideas on their own in their responses to (a)-(e). 

 
(a) Consider a 2×2 matrix ! and a vector 

!
! . How do you think about ! !

! = 2 !
! ? 

(b) Do you have a geometric or graphical way to think about this equation? 
(c) How do you think about what the equals sign means when you see it written in the context of this equation? 
(d) Now suppose that ! = 4 2

1 3 . Now how do you think about 4 2
1 3

!
! = 2 !

! ? What values of ! and ! would 
make the equation true? 

(e) [If they hadn’t already] Again consider the matrix A = 4 2
1 3 .  Determine the eigenvalues and eigenvectors of !. 

Figure 1. The main interview question prompts for the analyzed data. 

Analysis was done through an iterative process of individual coding, group discussion, and 
codebook development. First, three members of the research team individually coded (Miles, 
Huberman, & Saldaña, 2014) transcripts of the student interviews, specifically assigning codes 
for what each researcher felt represented evidence of a student’s resources that were activated as 
they answered the eigentheory questions. Next, researchers discussed their individual codes 
noting the specific evidence within the transcript used to mark that code. These codes and the 
evidence that identify them were extensively discussed, refined and solidified. Based on these 
discussions, a coding book was developed with labels and descriptions of the agreed-upon 
resources; this three-step process was repeated until the coding book was sufficient to 
characterize the thinking of all seventeen students. Finally, we individually coded each transcript 
one more time, achieving a high level of interrater reliability using the final codebook. 

Results 
In total, our analysis of student reasoning about eigentheory in this interview led to the 

identification of over 50 resources. When considered in small subsets or in total, these resources 
allow us to characterize nuances in how students understand various aspects of the concepts 
involved in an eigentheory problem. We share three subthemes of results to illustrate this: 
interpreting the equations graphically, interpreting the equals sign, and determining solutions. 

Interpreting the Equations Graphically 
Student responses to part (b) demonstrated a wide variety of ideas that are shown in Figure 2. 

Common among them were ideas about a matrix acting on one of its associated eigenvectors and 
scaling the eigenvector, while others stated that the matrix acts on one of its associated 
eigenvectors and stretches the eigenvector. Some students made comments about eigenvectors 
being “Anything on this line” referring to the line of the eigenspace defined by the eigenvector. 
Some students described that an eigenvector when acted on by its associated matrix provides a 
resultant vector on the same line.  

Intriguingly, when students were first asked about geometric and graphical interpretations in 
part (b), nine students drew vectors on a plane and discussed the meaning of the eigenvector, the 
associated matrix, and eigenvalue; however, after giving students an explicit 2x2 matrix in part 
(d), five additional students engaged in this activity; we coded this as activating the Vector 
Graphing resource. Ultimately, 14 of 16 students that were asked this question activated a 
resource that connects the idea of an eigenvector, eigenvalue, and associated matrix with a 2-D 
plot of vectors. Having a specific example of a two-by-two matrix, and determining that a 
solution to the system of equations is also a solution to the eigenequations (which 14 students 
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were able to do) seems to trigger this graphical drawing resource for an additional five students. 
Although most students activate geometric/graphical ways of thinking about the eigenequation, 
different students require different support and feedback to activate this idea.  

As an example, responding to part (b), C3 said, “Not really because...I know. No. I wouldn't 
really say so. [after another prompt from the interviewer] Well I think about an eigenvector as 
this being a vector that when multiplied by something stays along the same path.” The student 
states that they don’t have any graphical or geometric way of thinking about this problem but 
eventually states an idea that we would code as Evec-Line.  

After completing part (e) the interviewer asks: “Ok. Umm. Now that you have like actual 
numbers for A or numbers for that the vectors do you have any additional graphical or geometric 
ways you think about it?” 

C3: “Umm... No. Not really. I would just say [draws two coordinate axes] that u 1 would 
look -- I really wouldn't, I wouldn't really think about it like this but I would say that u 1 looks 
something like this [draws vector into fourth quadrant] and u 2 looks something like this [draw 
another vector into second quadrant collinear with first vector]. 

Despite the insistence that the student “wouldn’t really think about it like this,” the student 
provides a clear vector graph consistent with the eigenvectors for the matrix.  

Resource  Resource Description # activating resource 

Vector 
Graphing 

Student talks about vectors as arrows on a Cartesian plane, or actually draws a graph 
with vectors or an “eigenline” on it. 14 

Val-Stretch Mentions that in an equation of the form A[x;y]=k[x;y], [x;y] is stretched by k. This 
captures any of the more geometric ideas like dilation, longer, etc. 8 

Val-Scale Mentions that in an equation of the form A[x;y]=k[x;y], [x;y] becomes k times that 
vector or is scaled by k. This captures any of the more algebraic ideas. 10 

Evec-Line Student explains some version of that an eigenvector of A lies along the same line or 
goes in the same direction after being acted on by A 6 

Evec-
Eigenspace 

Student explains that vectors "in the same direction as" or "on the same plane as" or 
"the same line" as other eigenvectors of A would also be eigenvectors. 5 
Figure 2. List of resources most related to graphical interpretations of the eigenequation. 

Interpreting the Equals Sign 
The seven main resources that were activated in response to part (c) are listed and defined in 

Figure 3. Although these resources were grounded in and grew from our data, our familiarity 
with the literature allowed us to notice when our students’ reasoning was consistent with a way 
of reasoning already documented in the literature. For instance, RU= and OU= are used to 
characterize student responses that seem to stem from either a relational or operational 
understanding of the equal sign. The terms “operational” and “relational” were used by Knuth, 
Stephens, McNeil, and Alibali (2006) to categorize students’ explanations of what the equal sign 
means (see also Behr, Erlwanger, & Nichols, 1980; Carpenter, Franke, & Levi, 1999; Kieren, 
1981); those with an operational understanding view the equal sign as a signal to “compute” or 
“give the answer,” while those with a relational understanding view the equal sign as indicating a 
relation between the two sides of the equation, with one side being “the same as” the other. An 
example of OU= from our data is C5’s statement: “I think about it in terms of eigenvalue, I'm 
saying that with this matrix there is some eigenvalue that solves, that there is some unique value 
that corresponds to matrix A that solves this equation.” An example of RU= is below with C7. 

The resources Algebraic Cancellation and SOSE are closely related. The former was 
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introduced in Henderson et al. (2010), who used this term to describe overgeneralizing the notion 
of algebraic simplification to “cancel” the vector !!  from both sides of the equation in part (a) 
and then trying to make sense of how the matrix A could equal the number 2. The resource SOSE 
characterizes student efforts to find a way to turn the matrix A into the number 2. Finally, the 
resources PV-mult and OV-mult are used to characterize student thinking that centrally considers 
the operations on either side of the equal sign and/or the resulting objects. The resource PV-mult 
indicates a student response fixated on matrix and scalar multiplication being different processes, 
whereas OV-mult indicates a student response highlighting that the result of matrix and scalar 
multiplication is the same object. We chose these resource names as a reference to the work by 
Thomas and Stewart (2011) who used the term “process-object obstacle” to describe “how the 
two sides of the equation !! = !! represent different mathematical processes that have to be 
encapsulated to give equivalent mathematical objects” (p. 280). 
 
Resource  Resource Description 

RU =  Relational Understanding of Equal Sign means that entities on both sides of the equation must be "the same" 

OU =  Operational Understanding of Equal Sign is a call to "do something" such as solve an equation or "compute."  

SOSE [Things have to be the Same Object to have the Same Effect] For the equation to make sense, there has to be a 
way to turn the matrix A into the number 2. 

Structural 
Features 

Student discusses the structure that the objects in the equations have. This often entails discussing or comparing 
one or more of the entities in the equation. 

Algebraic 
Cancellation 

If the same thing is on both sides of an equation in a structurally similar way, it is permissible "cancel" those 
things out of the equation. 

PV - mult [Process view of matrix and scalar multiplication] Student focuses on matrix multiplication being different from 
scalar multiplication (the student focus is on the operation). 

OV - mult [Object view" of matrix and scalar multiplication] Result of matrix multiplication and scalar multiplication is the 
same object (the student focus is on the objects created by the operation). 

Figure 3. List of resources most related to interpreting the equals sign in !! = 2!. 

Figure 4a illustrates how the various resource codes loaded across the 17 student responses in 
part (c) (only one student, A6, activated PV-mult, so it is not in Figure 2a). We note that this 
question is often difficult for students; some find it hard to describe their understanding without 
using the word “equals” (which they were prompted to do if needed), and many seem to be 
figuring it out as they respond. This latter aspect can be seen in students’ responses such as C7, 
whose explanation was coded with 5 of the 7 resources in Table 2.   

C7: Well it's weird cause it almost seems like A equals 2. You know what I mean? Like A has 
to equal to 2 for this to be equivalent, but A is not equal to 2. A is a matrix. So, that's 
what- I never thought of that but A does not equal 2. A is equal to a 2 by 2 matrix [draws 
brackets for a matrix]…which is not equal to 2 but it's like...The A on its, on its own does 
not equal 2 but the A operating on xy does equal 2 times xy. So, this group together 
[circles LHS in equation of problem statement] is equal to this group together [circles 
RHS]…But when you say, 'oh lets, let's divide both sides by xy vector' [makes air 
quotes]. That doesn't make sense linearly, I don't think. But, you- intuitively a lot of the 
time I guess in algebra- from algebra experience, you'd think A matrix is equal to 2. 

The first four lines of C7’s response, when he grappled with how to reconcile that A can’t equal 
2 even though it seems like it does, was coded with SOSE and Structural Features. He moved 
towards resolving this with the statement “the A on its, on its own does not equal 2 but the A 
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operating on xy does equal 2 times xy,” which was coded with OV-mult, and by stating the two 
groups on either side of the equation were equal, which was coded with RU=. His conclusion, 
which brings up dividing both sides by a vector and how that is sensible in algebra, was coded as 
Algebraic Cancellation. We note that it is most likely the case, based on his activation of OV-
mult and RU=, that C7 was confident that A ≠ 2; however, we still also code his response with 
Algebraic Cancellation because this resource was activated for C7 during his thought process. 

 
(a)       (b) 

Figure 4. Venn Diagram of main resources activated by students in Part (c) and in Part (d), respectively. 

Determining Solutions to the Matrix Equation  
In response to part (d), students activated six main resources to make sense of the solutions to 

the matrix equation, with some resources being more productive than others. We share these in 
Figure 5 and summarize the resource activation by the 17 students in Figure 4b. 
 
Resource  Resource Description 
Solution-Finds # In a system of equations, the solution should be a single number for each variable. 

ESS Algebraically equivalent equations or systems of equations share the same solution set. 

Relation-Solution A relationship can define what values for the unknowns are solutions to the given equation(s). 

Relation-Solution 
Single Rep 

A single representative of a relationship can be used as a prototype or to check the solution. 

Relation-Solution 
Single Value 

A relationship that is a solution to a system of equations defines a single solution. 

Relation-Solution 
Family 

A relationship that is a solution to a system of equations defines an infinite number of possible solutions. 

Figure 5. List of main resources for finding solutions to 4 2
1 3

!
! = 2 !

! . 

The resource Solution-Find # was activated by 6 students, implying they thought that the 
solution to the equation should result in single, specific numbers for both ! and !. This was most 
often coupled with the students attempting to use the elimination or substitution methods for 
solving systems of equations. For example, consider C4’s work and thoughts in Figure 6. C4 
attempted to use the elimination method on the system of equations he had produced from the 
matrix equation but became stuck as the equations “cancelled” each other. In fact, C4, as well as 
A32, could not think of any other ways to approach the problem, and both were not able to find 
any solutions at all to the matrix equation. 
 

22nd Annual Conference on Research in Undergraduate Mathematics Education 659



 

 

“Could multiply that side by 2…no that doesn't work … I was 
thinking multiply that side, ya know, so that you'd get, so you 
could subtract one side from the other…But the fact that it's 2x 
+ 2y = 0 for one equation 1x + 1y = 0 doesn't really. Ya know if 
I multiplied by 2 to cancel one of the variables and then subtract 
both variables are cancelled [crosses out system]. So obviously 
so that doesn’t work in that in that sense.” 

Figure 6: C4’s attempt to find solutions to 4 2
1 3

!
! = 2 !

! . 

In contrast, consider C3 who eventually realized that the equations define a relationship 
between ! and !, which we coded as an activation of Relation-Solution: “Hmmm -- wait I think 
from here I can say that ... no ... What if I said -- So I could 2y equals minus 2x [writes 2y = -2x]. 
So now we're getting somewhere.” While C3 did eventually realize the importance of this 
relationship, C3 was also one of the four students who activated the Relation - Solution - Single 
Value resource, thinking there should still only be one solution to the matrix equation, 
determined by the relationship. Another student who activated the Relation - Solution - Single 
Value resource, C2, recognized that he was trying to find an eigenvector, explained that 
eigenvectors must be normalized, and attempted to find this normalized vector. When the 
interviewer asked, “Is that the only one for ! = 2?” C2 replied, “Yes.” We note this might be 
evidence that the Relation - Solution - Single Value resource could stem from students’ nascent 
knowledge that quantum mechanical states (including eigenstates) are represented by normalized 
vectors due to the probabilistic nature of quantum mechanics. 

 

 

C11: “Yeah. And since it's only y and x, I can just plug 
in any value of y and x that satisfies this equation 
[draws box around y= -x] and it will satisfy that same 
one [points to 4 2

1 3
!
! = 2 !

! .] 

Figure 7: C11’s explanation of solutions to 4 2
1 3

!
! = 2 !

! . 

Impressively, 11 of the 17 students eventually concluded that the relationship ! = −! or 
! = −! actually defines an infinite number of solutions, as any values of ! and ! which satisfy 
that relationship will be a solution to the matrix equation. For instance, consider C11’s response 
in Figure 7. C11 also exemplifies an important resource that a large majority of the students (14 
of the 17) activated as they worked through this problem, namely ESS. As students algebraically 
manipulated the matrix equation into other forms, it was notable most recognized that solutions 
to these new equations would also be solutions to the original matrix equation. 

Conclusion 
In this study, we identified a variety of resources that characterize students’ thinking as they 

reasoned about eigenequations for 2x2 matrices during an interview at the start a course on 
quantum mechanics. The three themes presented here – reasoning about the equals sign, 
reasoning geometrically, and reasoning about solutions – represent a subset of the results that 
were obtained through our analysis. Our aim was to not identify incorrect reasoning but rather 
understand the various resources that students found useful at some point in the context of the 
interview question. Our analysis sheds light on both productive and occasionally unproductive 
resources for understanding eigentheory. These are helpful for instructors and curriculum 
developers to know so that they can help students build upon the common resources or seek to 
refine why certain resources aren’t appropriate to activate in particular contexts.  
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Abstract 
This study investigates instructor perceptions of their teaching, as well as their students’ 
learning, obstacles encountered, and methods of implementation from the use of Primary Source 
Projects (PSPs). PSPs are curricular modules designed to teach core mathematical topics from 
primary historical sources rather than from standard textbooks. In essence, they are a form of 
inquiry-based-learning that incorporates the history of mathematics through original sources.  
We provide an overview of results from two semesters of implementation reports and surveys 
administered at the beginning and end of the semester by instructors who implemented PSPs in 
their undergraduate mathematics class.   
 
Keywords: Primary Source Projects, Inquiry-Based Learning, History of Mathematics 
 

Background Introduction and Literature 
Mathematics faculty and educational researchers are increasingly recognizing the value 

of the history of mathematics as an important means to support student learning. Primary sources 
have long been commonly used in teaching undergraduates in the humanities and social sciences 
(de Guzman, 2007; Klyve et al., 2011). Yet, while there has been some momentum for the use of 
primary sources to teach undergraduate mathematics, their use remains limited compared to 
other disciplines. Reading texts in which individuals first communicated their thinking offers an 
effective means of becoming mathematically educated in the broad sense of understanding both 
traditional and modern disciplinary methods (Fried, 2001; Laubenbacher et al., 2015). The use of 
original sources in the classroom promotes an enriched understanding of the subject, its creation, 
and its ongoing development for instructors as well as students (Jahnke, 2002; Jankvist, 2013). 

Despite the benefits of primary source materials detailed above, and granting the wide 
availability of such materials via published collections and web resources (Calinger, 1995; Euler, 
2015), there are significant challenges to incorporating primary sources directly into the 
classroom. Using secondary historical sources, such as (Katz, 1998), may suffice to reap some of 
the benefits of the original works. Yet the use of such sources carries its own difficulties, 
including the risk of placing too much emphasis on learning the history of mathematics per se, as 
opposed to using history to support the learning of undergraduate mathematics content. 

One approach to addressing these issues is through Primary Source Projects (PSPs), 
which are curricular modules designed to teach core mathematical topics from primary historical 
sources rather than from standard textbooks. Each PSP is designed to cover its topic in about the 
same number of course days as classes would otherwise. With PSPs, rather than learning a set of 
ideas, definitions, and theorems from a modern textbook, students learn directly from 
mathematicians such as Leonhard Euler, Emmy Noether, or Georg Cantor. This distinction is 
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crucial to PSPs: they are not designed to teach history; rather, they use history as a tool to better 
teach mathematics. 

PSPs employ a selection of excerpts from primary historical sources that follows the 
discovery and evolution of the topic in question. Each PSP contains commentary about the 
historical author, the problem the author wished to solve, and information about how the subject 
has evolved over time. Exercises are woven throughout the project, requiring that students 
actively engage with the mathematics as they read and work through each excerpt. At 
appropriate junctures, students are also introduced to present-day notations and terminology and 
are asked to reflect on how modern definitions have evolved to capture key properties of 
solutions to problems posed in the past. Learning from the PSP via in-class activities and 
discussions replaces standard lectures and template blackboard calculations. PSP implementation 
helps promote more active learning via primary-source lessons, thereby making it an important 
form of inquiry-based learning. 
 

Research Questions and Methods 
To understand and evaluate the use of PSPs in the classroom, it is important to 

understand how teachers might implement them in their own classrooms, and how the 
implementation of PSPs may benefit teachers and students. This information is useful for 
educators who want to incorporate this new perspective in their teaching, and serves as an 
important contribution to the broader literature on inquiry-based learning.  

To further explore these broader questions related to PSPs in the classroom, we recruited 
instructors of undergraduate mathematics to serve as “site-testers” through training and 
implementation of PSPs in their own classrooms.  Teachers served as site-testers in either a fall 
or spring semester taking place over the course of an academic year. We surveyed teachers 
before and after the implementation period to further understand the efficacy of implementing 
these materials in real classroom contexts. We also gathered demographic information on 
teachers and asked them more broadly about their experiences implementing PSPs (the 
challenges they faced, the reaction of students, etc.). We aim to address several key questions 
designed to deepen our understanding of various aspects of faculty implementation of PSPs 

1. Changes in Instructor Teaching Tendencies. How might the implementation of 
PSPs change instructors’ perceptions about their own teaching behaviors and tendencies?  How 
do instructors perceive/describe their implementation of PSPs as compared to their typical 
classroom teaching? 

2. Instructors’ Perception of the Impact of PSPs. Describe instructor’s reported 
impacts of the implementation of PSPs on (1) perceptions of instructors concerning their 
students’ knowledge of mathematics and its history, and perspectives and attitudes towards the 
subject; and (2) perceptions of instructors concerning the genre of their teaching and specific 
instructional practices.  

3. Implementation of PSPs. Describe how PSPs are implemented, including 
modifications made to the PSP to meet the individual needs of their classrooms. What obstacles, 
if any, do instructors perceive to the successful implementation of PSPs? 
 
Recruitment of Site-Testers 

Site testers were recruited in a variety of ways. Seventeen of the site testers had attended 
a prior site-tester workshop, and we advertised using email listservs of groups likely to include 
people interested, such as the History of Mathematics Special Interest Group of the Mathematical 
Association of America (MAA), some geographic sections of the MAA, the MAA’s Project New 
Experiences in Teaching (NExT), and the Americas Section of the International Study Group on 
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the Relations between History and Pedagogy of Mathematics.  Further recruiting was conducted 
through regional workshops, talks, and informal networks. 
 
Data Collection and Analysis 

We collected a variety of data from instructors before and after they implemented PSPs in 
their classrooms. Each of these data sources serves to address the specific research questions 
summarized above. Our data comes from four primary sources: the initial site-tester application, 
a pre-course survey, a post-course survey, and an implementation report from each PSP tested.  

Pre-course survey. By the end of their first week of class, site testers completed a pre-
course survey (through a series of Likert scale questions) that focused on instructors’ perceptions 
of their own mathematics instruction (e.g. typical classroom structure, typical instructional goals, 
etc.), instructors’ perception of their students (e.g. typical instructional assumptions made about 
their prospective students while lesson planning), and general descriptive information (e.g. 
professional rank, courses taught, etc.).  

Post-course survey. During the last two weeks of their term, site testers completed a 
post-survey designed to gather information about instructors’ perception of the effects on 
themselves of utilizing PSPs in the classroom (through a series of Likert scale questions), 
instructors’ perception of the effects of utilizing PSPs in the classroom on the students and 
general information (e.g., which PSP was implemented, general classroom structure, etc.). The 
post-survey also contained a series of identical questions found in the pre-survey that targeted 
instructors’ perceptions of their own mathematics instruction in order to assess any changes. 

Implementation report. After the implementation of PSPs, instructors also completed 
implementation reports with a variety of open-ended questions that focused on the their 
experiences implementing PSPs in their classrooms.  

To address Question 1 we first compared the identical items on pre- and post-surveys 
pertaining to teaching tendencies and behaviors by conducting a series of paired t-tests on each 
individual question. These comparisons will help reveal whether the implementation of PSPs had 
any influence on the types of teaching strategies that site testers use in their classrooms. 
Subsequently, addressing Question 2, we will examine the questions from the post-surveys that 
asked site-testers directly whether or not they believed the implementation of PSPs had any 
positive impacts on their own understanding/teaching of mathematics, as well as their students’ 
learning. Finally, to address Question 3, we will provide a summary of the type of open-ended 
feedback instructors provided, along with some representative examples.  

Results and Discussion 
Results from the pre-course surveys show that 35 participants responded to the Fall 2017 

surveys and 25 participants responded to the Spring 2018 surveys; 9 people site-tested in both 
semesters. These responses to the pre-course surveys indicated participants with a wide range of 
professorial ranks, teaching experience, current institutional incumbency, and PSP authorship 
status. We combined data from the two semester surveys for a total of 60 participants who 
completed both pre- and post-surveys.  

Site tester applicants came from 39 different institutions, including public and private 
four-year universities, primarily research institutions, and community colleges. Site testers 
generally had between 0 and 35 years of mathematics teaching experience, with a noticeable 
grouping with 11-15 years of experience.  

When asked about their experience with primary historical sources in mathematics, more 
than half of respondents (26 of 50 = 52%) indicated that they already possessed experience in 
using primary sources in their research. Significant fractions of respondents had prior experience 
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using primary source materials in their teaching (18 of 50 = 36% in history of mathematics 
courses, and 13 of 50 = 26% in other mathematics courses) while about a quarter reported no 
such experience (12 of 50 = 24%). 

Changes in Instructor Teaching Tendencies (Question 1). 
To assess whether or not the implementation of PSPs changed instructors’ teaching 

behaviors, we compared identical items on the pre- and post- instructor surveys. The respondents 
were asked to indicate on a 5-point Likert scale if each item corresponding to a specific teaching 
strategy was ‘very descriptive of my teaching’ (5), ‘mostly descriptive of my teaching’ (4), 
‘somewhat descriptive of my teaching’ (3), ‘minimally descriptive of my teaching’ (2), or ‘not at 
all descriptive of my teaching’ (1). By comparing these identical items on pre- and post-surveys, 
our goal is to identify any of these tendencies that may have changed as a result of the 
implementation of PSPs. 

Paired t-tests were conducted to identify any significant changes in perceived teaching 
behaviors before and after PSP implementation. One variable changed significantly before and 
after PSP implementation; specifically, instructors reported that the use of student questions and 
comments to determine the focus and direction of classroom discussions reflected their teaching 
tendencies more so after the implementation of PSPs than before, t(59) = -3.37, p = .001. 

Although statistically insignificant, there were three other changes worth noting from the 
pre- and post-surveys. A noteworthy portion of instructors reported incorporating more time 
during class dedicated to student discussion of course concepts after PSP implementation (p= 
0.070). A marginally significant portion of the instructors also reported that they allowed for 
more time dedicated to student reflection of their problem solving strategies (p= 0.062) and inter-
student constructive criticism of ideas (p= 0.057). 

 
Instructors’ Perception of the Impact of PSP (Question 2). 

 A portion of the post-survey questions were 7-point, Likert-style questions designed to 
gather information regarding how PSP implementation impacted the instructors and their 
students’ knowledge of mathematics, learning/teaching approaches, and beliefs about math. For 
example, instructors responded to items such as “To what extent do you feel that using PSPs in 
your class made you more/less open to using different teaching strategies?” Responses greater 
than 4 indicated favorable responses (in this example’s case, 1 = extremely less, 4 = neutral, 7 = 
extremely more) while responses below 4 indicated non-favorable responses.  

PSPs and Instructor Teaching Approaches. Implementers’ perceptions of how their 
use of PSPs affected their own knowledge and beliefs about mathematics tended to be generally 
positive (M = 5.12). Although not all items are shown, Table 2 shows average responses to 
several questions focused around instructor’s teaching abilities and tendencies.  
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Table 2 
Instructor perception of how implementing PSPs affected their teaching. All 60 instructors 
responded to each question. 

 
 

PSPs and Student Knowledge and Learning Approaches. Instructor perceptions of 
how PSP implementation affected their students tended to relay positive (M = 5.29) trends in 
terms of their students’ increase in knowledge, capacity and appreciation of the history of 
mathematics and mathematics in general. Table 3 shows average responses to questions focused 
around the impacts of PSPs on student knowledge and learning (all items are reported on). 
 
Table 3 
Instructor perception of how implementing PSPs affected their students. All 60 instructors 
responded to each question. 

 
Implementation of PSPs (Question 3). 

Describe in general terms how the PSP was implemented. Themes emerged pertaining 
to how PSPs were implemented in terms of student work both in and out of the classroom and 
also the role of the instructor during class time. Emergent themes revealed that instructors gave 
brief introductions to the material (28%), included instructor-led discussions (24%) and 
reconvened at the end of class with a debrief (29%) following student group work (40%). 
Although responses generally did not include these themes in succession, the most frequently 
reported codes from all responses communicated a general class structure where instructors 
introduced the material, led the class in discussion, allowed for group work throughout class time 
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to work through tasks and ended by debriefing their students. PSP implementation generally 
constituted of one or some combination of the following classroom structural components:  

1. Students were assigned preparatory work before PSP lessons were introduced. This work 
usually came in the form of assigned readings or initial attempts at introductory tasks in 
the PSP. 

2. Some instructors opted to provide a brief introduction to the topics within the PSP as a 
mechanism to prevent confusion and promote efficiency of PSP completion. 

3. Instructors also led class-wide discussions and other activities pertaining to PSP material. 
4. Implementation reports also relayed that PSP implementation led to substantial group 

work on the material. 
5. After a class period’s work on PSP material, instructors reconvened the class for a short 

debrief on the material covered that day. 
6. Unfinished PSP tasks were generally assigned as homework problems. 

 
This classroom structure substantially echoes the intent of inquiry-based learning approaches that 
focus on group work, student discussion and less instructor lecturing without losing instructor 
guidance of their students through the material. 

Comparison between PSP implementation and General Instructional Approach. 
Approximately two-thirds (64%) of instructors reported that their PSP implementation involved 
some deviation from their general instructional approach in the course. Increased use of group 
work (32%) and fewer instructor-driven activities (28%) were the most commonly reported 
differences. In addition, 19% reported “letting go” of their classes more. See the following 
quotes: 

Implementing PSP in class was very different than my general teaching approach in class. 
Definitely, more active learning was involved with the implementation and students 
seemed more interested in math which is not usually the case. It was more student centric 
and they seemed to join the class more and it was also enjoyable for me. 

I have never done something like this before...I have never used a lengthy project like this. 

Implementation of PSP showed me the importance of group work. 

While 36% of the responses indicated that the PSP implementation did not deviate significantly 
from their general instructional approach in the class, some commented that they already lead a 
student-centered classroom. As two instructors noted, 

I would say that this PSP fit in very well with my teaching style, or at least the teaching 
style that I prefer to use (there are still lessons that are primarily lecture; I try to minimize 
lecturing, so I really liked having this PSP). 

This is not abnormal: I assign reading and exercises for each class. The students answer 
reading questions and reflect on their reading and questions they have, and they prepare 
the exercises for presentation..., and we spend class time with them doing presentations, 
discussing questions they had on the reading, and working in small groups on more 
problems. They also have an individual homework problem or two assigned after every 
class. 
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Overall, instructors reported less instructor-focused activity (e.g. lecturing), more group work 
and more instructional practices that would align with various active-learning strategies.  

Modifications and Obstacles Experienced During Implementation. Instructors tended 
not to modify the PSP (32%) but still offered suggestions for future implementations (36%). 
When instructors did modify the PSP during implementation, they either omitted (15%) and 
condensed (14%) sections to fit into a smaller time frame.  These findings suggest that the PSPs 
selected by instructors were sufficiently well-developed for a variety of classroom settings. 
When PSPs were modified, it was primarily due to time constraints and not due to material 
within the PSP. Both findings suggest that current PSP materials are useful.  

Approximately 29% of instructors reported that they did not face significant obstacles 
during PSP implementation. When instructors did face obstacles, they were generally due to 
instructor inexperience with inquiry-based learning approaches (17%), students’ inability or 
unfamiliarity with reading primary source material (12%) or general timing issues with regard to 
implementing the PSP (12%). The following quote(s) exemplify these findings: 
 

I also had to adapt to not lecturing. At times it felt like I wasn’t helping them that much.  
 
The only obstacle is that I need to find a way to integrate it into the course more smoothly. 
I’ve had a standard syllabus for some years that doesn’t really leave room for more 
student work. This semester (and last year) I simply imposed the PSP on top of the rest 
of the homework, which is unfair to the students, but I wasn’t willing to make major 
changes until I was sure I would be continuing to use PSPs in this course. I will make 
those adjustments next year. 

 
Conclusion 

Overall, faculty seem to be reporting positive experiences with the implementation of 
PSPs in their classroom. Instructors reported perceived benefits for both themselves and their 
students as a result of PSP implementation. Notably, instructors consistently reported that the 
implementation of PSPs had numerous positive impacts on their teaching abilities and strategies, 
while they also consistently reported that implementation of PSPs increased their student’s 
knowledge and understanding of mathematics. Instructors have reported that PSPs changed their 
perspectives on teaching, and opened their eyes to new approaches and techniques. Historical 
context also emphasized mathematics as a human endeavor, one full of struggle, perseverance 
and beauty.  

Instructors also perceived that their students enjoyed the introduction of inquiry-based 
learning approaches as opposed to more traditional lecture-based formats. Many of the 
challenges that faculty face seem to be commonly reported challenges that faculty face when 
struggling to use active learning for the first time. Results suggest that we could improve upon 
providing ongoing support to faculty using PSPs. Future research should look into examining 
what types of ongoing support systems will most benefit instructors who choose to implement 
PSPs in their classrooms.  
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Juxtaposing a Collective Mathematical Activity Framework with Sociomathematical Norms 
 

 Derek Williams Jonathan Lopez-Torres Karen Keene 
 Montana State University North Carolina State University North Carolina State University 

We utilize two analyses to confirm a multidimensional framework for analyzing contributions to 
classroom discourse, previous analysis using the framework and analysis of instances of 
sociomathematical norm negotiation juxtaposed with it (Cobb & Yackel, 1996). The framework 
considers social, epistemic, and argumentative activities exhibited in talk-turns during whole 
class discussion. In this study we show that collective and individual development occurred in an 
inquiry-oriented differential equations course and discuss patterns in ways learning partners 
participated in whole class discussions during sociomathematical norm negotiation.  

Keywords: Discourse, Collective Mathematical Activity, Sociomathematical Norms 

Investigating and understanding student learning as it takes place in mathematics classrooms 
is a challenging yet significant endeavor. This work has been advanced by researchers studying 
classroom discourse (e.g., Forman & Ansell, 2002; Lee et al., 2009; Stephan & Rasmussen, 
2002), teacher questioning (e.g., Mesa, 2010; Roach, Noblet, Roberson, Tsay, & Hauk, 2010), 
and other pedagogical moves (e.g., Moyer & Milewicz, 2002; Nicol, 1998), which has yielded 
important results for researchers and practitioners to meaningfully reflect on teaching and 
associated classroom activity. Much of this work focuses on the language used by students and 
teachers, questioning, and discourse patterns (e.g., Mehan, 1979; Rasmussen & Kwon, 2007). 
However, there is still a need for research to understand how student contributions to discourse 
are related to how and what students learn in mathematics classrooms. 

We (Keene, Williams, & McNeil, 2016; Williams, Keene, McMillian, & Lopez-Torres, in 
progress) adapted a framework from science education (Weinberger & Fischer, 2006) to analyze 
student participation in mathematics classrooms, the classroom argumentative knowledge 
construction (CAKC) framework, through three dimensions: epistemic, social, and 
argumentative. Individually, these dimensions allow contributions to classroom discourse to be 
understood in terms of how mathematical ideas are developed by multiple contributors (i.e. 
students and professor); whether contributions relate to specific problem(s), broader concepts 
and theories, or both; and how arguments are developed and advanced. Together, the framework 
allows for collective mathematical activity to be investigated through contributions to classroom 
discourse. The framework allowed us to characterize the nature of contributions to classroom 
discourse, identify socially constructed student- and teacher roles, and identify contributions to 
discourse which may demonstrate learning. The purpose of this investigation is to confirm the 
usefulness of the framework by juxtaposing an analysis of sociomathematical norm negotiation 
(Cobb & Yackel, 1996) evident in the same classroom data used in our original study with our 
original analysis. In doing so, we can identify patterns of participation during sociomathematical 
norm negotiation to further understand these important interactions. 

Theoretical Framework 
The emergent perspective (Cobb & Yackel, 1996) underpins the work in this paper. From 

this lens, social and psychological perspectives are used to analyze individual and collective 
activity at the classroom level and are understood to be reflexively related. That is, development 
in the social perspective is inextricably linked to individual development; one cannot occur 
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without the other. Social and sociomathematical norms are fundamental notions of the emergent 
perspective from the collective lens. Social norms are content-irrelevant, normative aspects of 
classrooms. Sociomathematical norms are normative aspects of classrooms specifically 
associated with mathematics as the content. For example, that students explain their thinking is a 
social norm, while what constitutes sufficient mathematical explanations would be a 
sociomathematical norm (Cobb & Yackel, 1996). Sociomathematical norms are reflexively 
related to individual development of mathematical beliefs and values. In addition to what 
constitutes sufficient mathematical explanations, other norms are what constitutes: 
mathematically different solutions,  sufficient mathematical justification, sophisticated 
mathematical reasoning, effective mathematical representations, and appropriate mathematical 
precision (Hershkowitz & Schwarz, 1999; Yackel & Cobb, 1996; Yackel, Rasmussen, & King, 
2000). This notion is particularly important for our purpose, as we aim to extend the utility of the 
CAKC framework to better understand contributions to whole class discussions as a means for 
understanding collective mathematical activity and individual development.  

Table 1 presents the CAKC framework, which consists of three dimensions each with various 
activities. Unfortunately, lack of space prohibits more detailed examples of the activities.  

 
Table 1. The CAKC framework adapted from Weinberber & Fischer (2006) 
Epistemic Dimension 

Activity Brief Description 
Construction of problem space (CPS) Relating case information within the problem space 

with the aim to understand the problem 
 

Construction of conceptual space 
(CCS) 

Relating concepts with each other and explain 
theoretical principles to understand theory 
 

Construction of adequate relations 
between conceptual and problem 
spaces (CAR+) 

Applying relevant theoretical concepts adequately to 
solve a given problem. Relating theoretical concepts to 
case information 
 

Construction of inadequate relations 
between conceptual and problem 
spaces (CAR-) 

Applying concepts inadequately to a given problem by 
either selecting inappropriate concepts or not applying 
appropriate concepts according to principles dictated 
by theory 
 

Construction of adequate relations 
between prior knowledge and problem 
space (CRP+) 
 

Applying concepts adequately that stem from prior 
knowledge 
 

Construction of inadequate relations 
between prior knowledge and 
problem space (CRP-) 

Applying concepts inadequately that stem from prior 
knowledge rather than new theoretical concepts that 
are to be learned 

Social Dimension  
Activity Brief Description 

Externalization (EXT) Articulating thoughts to the group 
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Elicitation (ELI) Questioning or provoking a reaction from learning 
partners 
 

Integration-oriented consensus 
building (IOC) 

Taking over, integrating, and applying perspectives of 
a learning partner 
 

Conflict-oriented consensus building 
(COC) 

Disagreeing, modifying, or replacing perspectives of a 
learning partner 
 

Argumentative Dimension  
Activity Brief Description 

Argument (ARG) Statement put forward in favor of a specific 
proposition 
 

Counterargument (COU) An argument opposing a preceding argument, favoring 
an opposing proposition 
 

Reply/Integration (RPY) Statement that aims to balance and advance a 
preceding (counter) argument 
 

Non-argumentative moves (NAR) Questions, coordinating moves, and meta-statements 

Methods 
The purpose of this project is to confirm the usefulness and power of the CAKC framework 

for analyzing students’ participation in mathematics classrooms by juxtaposing analyses from the 
CAKC framework and instances of sociomathematical norm negotiation (Cobb & Yackel, 1996). 
Specifically, we address the question: What connections are present between the patterns of 
participation identified by the CAKC framework and patterns present for sociomathematical 
norm negotiation? 

Setting and Participants 
This study took place during a summer inquiry-oriented differential equations (IODE) course 

for teachers working to earn master’s degrees in Mathematics Education. Twenty-one students 
participated in the course and study; most had experience as secondary mathematics teachers. 
Although the students had strong mathematics backgrounds, only some had previously taken 
undergraduate differential equations. Prior experience with differential equations was not 
prerequisite for the course. Most students indicated that they were starting with minimal or no 
knowledge of differential equations. The course was taught by an experienced professor. 

The course met for three hours, three times each week for five weeks. The classroom was 
organized for students to work collaboratively in small groups, which were assigned and changed 
weekly. The class was taught using tenets of inquiry-oriented instruction (Rasmussen & Kwon, 
2007). Course materials were informed by research on students’ understanding of DE and give 
students opportunities to reinvent the mathematics through tasks. The research-based tasks 
involved using differential equations to model real world situations through analytical, 
qualitative, and numerical methods. Students cycled through small- and whole group discourse 
spaces while inquiring into the mathematics. The professor inquired into students’ thinking, 
building on their thinking while keeping an eye on the mathematical horizon (Treffers, 1987). 
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Data Collection 
For this report, we used the same transcripts from video recordings of whole class discussion 

from five class sessions used in our previous work (Keene et al., 2016; Williams et al., in 
progress). The dataset consists of transcripts from one hour of whole class discussion occurring 
in five different class sessions. Also serving as data for this study are the analysis and results 
from our original work. Note each contribution to classroom discourse received a code from each 
dimension in the CAKC framework. 

Data Analysis 
Data analysis for this study consisted of two phases: first, instances of sociomathematical 

norm negotiation evident from transcripts were identified; and second, results from the first 
phase were juxtaposed with results from the analysis conducted with the CAKC Framework. 
During the first phase, the first and second authors worked independently from each other and 
without referencing analysis with the CAKC framework to locate cases of sociomathematical 
norm negotiation within the transcripts. Then these instances were coded to document the 
specific sociomathematical norms being (re)established using a priori norms identified in the 
literature (e.g., Cobb & Yackel, 1996) as well as a posteriori norms that emerged from the data. 
The two coders discussed where instances of sociomathematical norm negotiation took place 
within the transcripts, and coding of these instances as examples of specific sociomathematical 
norms being established. Cases were discussed until consensus was reached when the two coders 
were not in agreement. Results presented reflect agreed upon codes. 

After coding the same data independently using the CAKC framework and for 
sociomathematical norms, the two sets of codes were juxtaposed to look for patterns or 
relationships between them. In particular, we looked for patterns in social, epistemic, and 
argumentative activity identified by CAKC framework across all instances of sociomathematical 
norm negotiation and across examples of the same sociomathematical norm being (re)negotiated 
at different times. 

Results and Discussion 
Results are presented in two sections, reflecting the two phases of analysis conducted. First, 

we outline various sociomathematical norms negotiated during the five hours of whole class 
discussion. Then we share results from juxtaposing this analysis with our original work. 

Sociomathematical Norm Negotiation 
We first briefly discuss the sociomathematical norm analysis. Of note, we identified six 

different sociomathematical norms across 28 instances where norm negotiation took place. These 
norms include, what constitutes: (a) mathematically different – 7 instances, (b) sufficient 
mathematical justification – 11, (c) sophisticated mathematical reasoning – 4, (d) effective 
mathematical representations – 3, (e) appropriate mathematical precision – 1, and (f) valid 
mathematical assumptions – 2. The number of times it was negotiated does not necessarily mean 
that a sociomathematical norm was more important than others. For example, the fact that what 
constitutes valid mathematical assumptions was negotiated in only two occasions may reflect 
that the negotiations were effective and consensus about valid mathematical assumptions was 
reached. On the other hand, what constitutes sufficient mathematical justification was negotiated 
11 times in five hours of discussion. This does not necessarily mean that negotiations were 
ineffective. Instead, recurrent negotiation may have been due to the fact that students were 
regularly engaging with new concepts and skills, while the teacher was prompting them for 
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justification to support collective learning during whole class discourse. In fact, tenets of IODE 
include that students recreate the mathematics through real world problems (Rasmussen & 
Kwon, 2007), so it is desirable that learners would be establishing what constitutes effective use 
of recently developed concepts through justifications consistently throughout the course.  

We offer the following example to demonstrate one instance of this class negotiating what 
constitutes valid mathematical assumptions. We chose this example as what constitutes a valid 
mathematical assumption emerged in this work. For context, the class was discussing a problem 
prompting students to create a rate of change equation from data of a cooling cup of coffee so 
that predictions could be made about other cups, and whether the equation would depend on 
temperature only, time only, or both.  

Student 1: The one thing we talked about is that, we said, if you have this cup of coffee that 
is 160o or a huge mug that’s 160o, they’re probably not going to cool at the same rate 
because of volume. So, if you assume that you have the same volume then you don’t 
need to depend on C [temperature]. We figured that this problem was assuming that 
you did, so- 

Instructor: … So, here’s the issue, how do you figure out a way to graph dC/dt against C? So 
most of you were just kind of trying it, and I enjoyed watching you because 
everybody had a different way of thinking about it. Student 2, could you come show 
us your graph? 

Student 2: This will be the rate of change, so when the temperature is high- I kind of plotted a 
little bit, approximately- so if the temperature is low, the rate of change is small. And 
then if the temperature is high, the rate of change is large. So it’s kind of, I mean if 
you look at it, 0.3 is a little bit- it gets a little bit bigger faster when the temperature is 
higher. So- 

Student 3: What if it is really small and the room temperature is higher? Like in real life… 
 
In this example, Student 1 is questioning whether a rate of change equation would be able to 

make meaningful predictions for other situations unless the future cup of coffee contains the 
same amount of coffee as that which generated the dataset. The instructor then interjects, 
refocusing students to think about variables in the problem – temperature and time. In doing so, 
the instructor communicated to Student 1, perhaps inadvertently, that assuming same volumes 
may not be necessary. However, citing “real life” as evidence to argue that the rate of change 
equation may not depend only on the coffee temperature, as explained by Student 2, suggests 
that consensus about mathematical assumptions from the problem may not have been reached. 
Using rate of change equations to model real-world situations is a key feature of IODE, so 
considering what constitutes valid mathematical assumptions is paramount to understanding 
course content. From the emergent perspective, participating in the collective process of 
sociomathematical norm negotiation simultaneously involves individuals learning how and when 
adhering to established norms is appropriate (Cobb & Yackel, 1996). In this way, 
sociomathematical norm negotiation occurs simultaneously with students’ developing 
mathematical beliefs and values; thus, collective and individual development took place. 

Juxtaposing Analyses 
Relationships and patterns between the CAKC framework and sociomathematical norms 

emerged when these analyses were juxtaposed. We present the relationships found between each 
of the three dimensions: social, epistemic, and argumentative. 
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  Results showed that an activity coded for the social dimension was not inherently 
necessary for sociomathematical norm negotiation to occur. That is, there was no code in the 
social dimension that appeared in every case of sociomathematical norm negotiation. However, 
although integration-oriented consensus building (IOC) and conflict-oriented consensus building 
(COC) constituted the least common social activities (combining for 21% of talk-turns), only 
three instances of sociomathematical norm negotiations did not involve these types of 
contributions. On the other hand, there were many instances where these types of social activities 
occurred where there was no negotiation taking place. Thus, the presence of sociomathematical 
norm negotiations points to some kind of consensus building, but consensus building does not 
imply sociomathematical norm negotiation. 

A similar relationship between epistemic dimension activities and sociomathematical norm 
negotiation emerged. Again, there was no code from the epistemic dimension that appeared in 
each case of norm negotiation, so specific epistemic activities were not indicative of 
sociomathematical norms being (re)established. In fact, epistemic activities appeared equally 
often in sociomathematical norm negotiations as they did outside of these instances (table 2). 
Additionally, activities in the argumentative dimension occurred with equal frequency during 
instances of sociomathematical norm negotiation as they did outside of negotiations, except for 
contributions presenting arguments (ARG), which took place slightly more often when norms 
were not being (re)established (table 2).  

 
Table 2. Counts of activities [not] during instances of sociomathematical norm negotiation. 
Epistemic dimension       
In an instance of norm negotiation? CPS CCS CAR+ CAR- CRP+ CRP- 
No 75 37 32 3 4 1 
Yes 78 27 32 8 9 3 
Argumentative dimension       
In an instance of norm negotiation? ARG COU RPY NAR   
No 66 36 162 61   
Yes 48 47 145 63   

 
The previous paragraphs suggest that activities within each dimension alone may not be 

particularly lively during instances when sociomathematical norms are being negotiated. 
However, a strength of the CAKC framework is that it offers a multidimensional approach to 
understanding talk-turns during whole class discussion. In our previous study, each contribution 
to classroom discourse received a code from all three dimensions. We used the term code-string 
to discuss the collection of these three codes ascribed to a single contribution. When examining 
this multidimensionality, a pattern emerged with talk-turns in which students constructed 
adequate relations between a given problem and mathematical concepts (CAR+) while 
participating in various social and argumentative activities (Figure 1). For example, contributions 
exhibiting CAR+ involving externalizations (EXT) used to establish an argument (ARG) or 
counterargument (COU) almost always took place during instances of sociomathematical norm 
negotiation. This pattern is intriguing considering that contributions presenting arguments tended 
to occur more often in cases not indicative of sociomathematical norm negotiation. In other 
words, when students were constructing adequate relations between mathematical concepts while 
presenting the first offered solution to a problem they were also almost always (re)establishing 
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sociomathematical norms. On the other hand, talk-turns indicative of CAR+ involving consensus 
building (which were rare) occurred less frequently during sociomathematical norm negotiations.  

 
Figure 1. Proportions of contributions involving CAR+ during sociomathematical norm negotiation. 

Conclusion 
Confirming the utility of the CAKC framework involves demonstrating that meaningful 

understanding of contributions to discourse can be uncovered through its use. In this study, we 
showed that collective and individual mathematical activity took place in this IODE course 
through our analysis of sociomathematical norms (Cobb & Yackel, 1996). Then, we examined 
patterns in epistemic, social, and argumentative codes exhibited while sociomathematical norm 
negotiation occurred. The patterns we presented suggest that the multidimensionality of the 
CAKC framework can be used to better understand relationships between participation in 
classroom discourse and both collective and individual mathematical activity.  

Specifically, cases in which students were making connections between mathematical 
concepts and a given problem while articulating an argument or counterargument may be 
essential for collective and individual development as these types of contributions rarely 
occurred outside of sociomathematical norm negotiation, even though talk-turns presenting 
arguments took place more frequently during instances outside of sociomathematical norm 
negotiation. This result demonstrates the utility of the multidimensionality of the CAKC 
framework. Mathematics education researchers can utilize the CAKC framework to understand 
how individual talk-turns contribute to collective mathematical activity. Additionally, consensus 
building was shown to be an integral component of collective mathematical activity. Many have 
demonstrated the significance of sociomathematical norms and the importance of active-learning 
in undergraduate mathematics classrooms (e.g., Rasmussen, Apkarian, Dreyfus, & Voigt, 2016; 
Rasmussen, Wawro, & Zandieh, 2015; Yackel et al., 2000). This study furthers that body of 
work by delineating significant ways to analyze participation in mathematical activity. 
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Leadership and Commitment to Educational Innovation: Comparing Two Cases of Active 

Learning Reforms 
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Several studies have shown that student-centered instruction can help improve student success 
and persistence in STEM-related fields (e.g., Freeman et al., 2014). Despite this, institutional 
change can be difficult to enact. Accordingly, it is important to understand how departments 
both initiate and sustain meaningful change. For this paper we use interview data collected in 
Spring 2017 to examine how institutional and departmental factors affected reform efforts at two 
different institutions. In particular, we compare how two universities’ leadership and 
commitment to educational innovation contribute to the initiation, implementation, and 
sustainability of active learning in the undergraduate calculus sequence (Precalculus through 
Calculus 2). 

Keywords: Active Learning, Institutional Change, Calculus Reform, Undergraduate 
Mathematics, Case Study 

Introduction 
Universities are increasingly concerned with student retention, graduation rates, and overall 

student success. While much more is known now about effective instructional practices and 
campus structures to support student success, institutes of higher education are slow to change 
(Kezar, 2014) and faculty have not widely adopted such research-based practices (Stains et al., 
2018). Student-centered instructional practices that address not just student learning but also 
attitudes, beliefs, motivation and goals, are connected with increased student success and 
persistence in mathematics and related fields (e.g., Freeman et al., 2014). However, some faculty 
and some universities are changing, exhibiting culture shifts that value instructional 
improvement efforts. 

We present two cases of large land-grant universities that have transformed instruction in 
lower-level mathematics courses via a comprehensive approach to cultural and instructional 
change. In both cases, these reforms started with a focus on Calculus 1, and then grew to 
encompass Calculus 2, Precalculus-level courses, and other multi-section courses. The changes 
included attention to instruction and instructors; this case study focuses specifically on the 
department and institution level changes. These cases are drawn from a larger set being 
developed by a collaborative National Science Foundation project: Student Engagement in 
Mathematics through an Institutional Network for Active Learning (SEMINAL). SEMINAL is 
studying how mathematics departments successfully incorporate active learning into their 
calculus sequence courses and how to guide other departments looking to institute similar 
reforms. 
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Literature and Theoretical Framework 
Change efforts to improve student outcomes necessarily include a classroom instruction 

focus. However, to achieve cultural change, instructional improvement efforts also need to have 
components at the department, campus, and community levels (Elrod & Kezar, 2016). When 
faculty seek to improve instructional practices, they rightly tend to focus on instructional 
materials, activities and tasks, assessments, mathematical coherence and structures that allow 
students to communicate their reasoning (e.g., MAA, 2017). They may also focus on developing 
norms for mathematical discussions (e.g., MAA, 2017; Smith & Stein, 2018). Departments 
focused on instructional improvement and equitable student outcomes may initiate or refine 
course coordination efforts (Bressoud, Mesa, & Rasmussen, 2015) and provide instructional 
training and mentoring. All of these changes require significant investment of time and other 
resources, along with a commitment to improvement; lack of widespread support for such efforts 
will undermine them (Kezar, 2014). 

The foundation of effective change efforts is the development of a common vision among 
stakeholders (Elrod & Kezar, 2016). Stains et al. (2018) summarize effective instructional 
practices as ones that focus on actively engaging students. The heart of the transformation efforts 
enacted by these two departments of mathematics is the effective use of active learning 
strategies, defined as: (1) students learn mathematics by engaging in challenging, cognitively 
demanding tasks; (2) students routinely communicate (orally and in writing) their own reasoning 
and engage with the reasoning of others; (3) instructors attend to and make use of student 
thinking to advance the mathematical agenda; and (4) instructors are explicitly attending to 
issues of diversity, equity, and inclusion (Laursen & Rasmussen, 2018). While not explicitly 
labeled “active learning,” these principles are also embodied in the recommendations of the 
MAA’s recent Instructional Practices Guide (2017). 

At both the department and campus levels, when the culture supports instructional 
innovation, the environment is more favorable for faculty and departments to invest in course 
improvements (Kezar, 2014). Bergquist and Pollack (2008) suggest culture is a lens through 
which faculty members understand their universities: “A culture provides a framework and 
guidelines that help to define the nature of reality - the lens through which its members interpret 
and assign value to the various events and products of this world” (Bergquist & Pawlak, 2008, p. 
7). Culture as lens can be a useful framework, but to capture the dynamic aspects of culture, 
additional dimensions are necessary. 

Apkarian and Reinholz (2018) provide a higher education adaptation of four frames through 
which to understand institutional culture: people, power, symbols, and structures. The symbolic 
frame of culture includes the values, beliefs, and attitudes of the various stakeholders in the 
system. By also considering the power dynamics, the people involved, and the structures of the 
institution, this framework can support understanding of educational cultures and cultural shifts. 

In this paper, we focus specifically on two cross-cutting dimensions of institutional culture: 
leadership and commitment to educational innovation. Both of these dimensions span the four 
frames (Apkarian & Reinholz, 2018). Leadership includes the people in formal and informal 
positions (structures), their beliefs and values (symbols), and the interrelated power dynamics of 
leadership relationships. The value placed on instructional improvements by a campus includes 
the values and beliefs related to the importance of improving teaching and learning (people and 
symbols) and resources to support instructional improvements (power and structures). 
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Purpose and Research Questions 
The SEMINAL project’s overall research question is: What conditions, strategies, 

interventions and actions at the departmental and classroom levels contribute to the initiation, 
implementation, and institutional sustainability of active learning in the undergraduate calculus 
sequence (Precalculus through Calculus 2—P2C2) across varied institutions? The purpose of this 
research is to compare the commitment to reform efforts focused on active learning strategies, 
and the particular leadership roles of departmental and campus administrators in the initiation, 
implementation and sustainability in improvements in P2C2 courses. Thus, the research question 
guiding this study is: 

How do leadership and commitment to educational innovation contribute to the 
initiation, implementation, and sustainability of active learning in the 
undergraduate calculus sequence (Precalculus through Calculus 2) compare 
between Big State University 1 and Big State University 2? 

Methods 
SEMINAL is a 5-year NSF-funded mixed-methods research project studying the initiation 

and sustainability of active learning in mathematics in two phases. Phase 1 focused on 
retrospective case studies of institutions that have sustained active learning reforms for at least 
three years. Phase 2 focuses on incentivized case studies of institutions in the midst of reforms. 
Data for this paper draw on two of the Phase 1 institutions: Big State University 1 (BSU1) and 
Big State University 2 (BSU2).  

Data was collected at site visits in Spring 2017. During these visits four researchers collected 
qualitative data including audio-recorded interviews with campus administrators, tenure track 
and non-tenure track faculty within the math department, postdocs, graduate students, course 
coordinators, faculty from client disciplines, and undergraduate students. Each interview was 
transcribed and coded in MAXQDA 12. The initial framework for code categories (e.g., 
coordination, department leadership, professional development, etc.) was drawn from the grant 
proposal, which in turn was informed by Bressoud, Mesa and Rasmussen (2015) and institutional 
change literature. This same framework was used to design the project’s data collection plan, 
including interview protocols. Researchers used an iterative process to generate sub-codes for 
each category. Each transcript was individually coded by at least 3 people, followed by 
reconciliation (Creswell & Poth, 2018). 

After coding, individual researchers were assigned categories of codes (e.g., coordination) 
and constructed reports of facts and emerging themes (Creswell & Poth, 2018). Researchers then 
exchanged reports and codes for additional reconciliation. Using these reconciled reports, and 
other documents provided by each site, researchers drafted thick descriptions for both institutions 
to make a side-by-side comparison for this comparative case study (Stake, 1995). 

Findings 
In this section we describe the initiation, implementation and sustainability of reforms 

through the lens of leadership and commitment to educational innovation. 

Initiation of Change and Implementation of Reforms 
Stimulus for Change. In order to incorporate active learning into their P2C2 programs, both 

math departments began with Calculus 1. BSU1’s motivation for change came internally: two 
department leaders wanted to change the structure of the Calculus 1 recitations after observing 
graduate students solving problems in front of disengaged students. Therefore, these two leaders 
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initiated reform efforts focused on increasing coordination of recitations; making recitations 
more meaningful by transforming them into sessions with active learning where students would 
work cooperatively on common projects; many of these projects focus on building conceptual 
understanding by incorporating high cognitive demand tasks (Stein et al., 2000).  

Unlike BSU1, the BSU2 department received top-down pressure to “fix” Calculus 1 due to 
student complaints and low pass rates. While motivation was, in part, external, the reforms were 
initiated in large part because the department was willing to change; one campus administrator 
noted other departments had been similarly pressured without comparable positive results. The 
department chair and a faculty member who was interested in technology planned the changes 
they wanted to make, and purposefully sought external resources to support their plans. The 
latter worked with two other faculty to apply for an NSF grant, which they received in the early 
1990s. The grant was used to pilot Hughes-Hallett et al.’s (1994) Calculus and introduce new 
technology into the classroom.  

Leadership and Commitment Following the Initiation. Since BSU2’s initial reform 
efforts, the math department has benefited from “departmental support [which] has been 
unwavering.” At the time of initial reforms, other departments on campus were not trying to 
“fix” their courses in the same ways as BSU2’s math department. After early pilots, leaders in 
the reform became “vigilant” in attending workshops on effective implementation with 
technology and active learning. These leaders were described as “evangelists,” people who were 
able to articulate and defend positive outcomes of this type of model for teaching. When state 
appropriations for higher education declined, these “evangelists” were able to help “sway” the 
department and college to keep reform changes in place. Thus, while the college and department 
were supportive, early leaders had to make a strong effort for this support.  

 Prior to BSU1’s changes to Calculus 1, science departments on campus had successfully 
implemented similar educational reforms. As a result, campus administrators were already on 
board with supporting change. As described above, this context was different from BSU2’s 
neighboring departments and colleges. Leaders in the math department at BSU1 had a 
particularly positive relationship with one campus administrator, who was formerly an academic 
dean within the college. In their role as a dean, the administrator supported reform efforts by 
approving and allocating resources for the math department to hire a full-time coordinator to 
oversee the calculus sequence and protecting resources to maintain small class sizes. One 
mathematics faculty member stated that this administrator “in essence made the resources 
available to us for everything we’ve done in the last 4 years.” This administrator supported 
leaders’ reform efforts not only because Calculus 1 was designated a gateway course, but also 
because the leaders had a well-developed proposal and were “truly dedicated to improvement.” 
Thus, while leaders from BSU1 and BSU2 received support from their departments and colleges, 
the difference in institution innovation at the time of changes may have impacted how leaders 
were able to obtain that support. 

Sustainability  
For this study, we operationalize the concept of sustainability as evidence of maintaining and 

extending reforms, institutionalizing change, and addressing ongoing issues related to these 
reforms. Table 1 is a brief summary of findings related to sustainability. 
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Table 1. Comparing two universities’ reforms 
 
 Extending Reforms 

 
Institutionalizing Reforms Facing Challenges 

BSU1 Calculus for Life Science refining coordination system mixed value of 
teaching 

both Calculus 1-3, Precalculus hiring more coordinators, 
instructor meetings 

initial buy-in, 
leadership turnover 

BSU2 other multi-section courses 
(e.g., Differential Equations) 

adding pedagogical focus to 
instructor meetings 

efforts ahead of 
campus shift to 
value teaching 

 
Extending Reforms. Reforms at both universities began in Calculus 1 then extended to other 

courses. Both universities followed a similar trajectory of reforming Calculus 2 next. For BSU1, 
leaders received an external grant which allowed them to extend active learning in Calculus 1 
from one day a week to all class periods, which motivated them to change Calculus 2 in similar 
ways. One interviewee mentioned that some students who experienced active learning in 
Calculus 1 and 2 expressed a desire for similar experiences in Calculus 3, and at the time of data 
collection leaders were in the process of extending active learning to Precalculus and Calculus 3. 
BSU2 followed a similar trajectory as BSU1; at BSU2 some upper level courses were already 
taught with the Moore method, which perhaps allowed active learning strategies to infuse other 
multi-section courses more quickly than at BSU1.  

Institutionalizing Reform. Leaders at both universities have helped implement lasting 
structural changes to ensure the uptake of active learning reforms. At BSU1, coordinating classes 
was essential to sustaining reform efforts because coordination makes it much harder for any one 
individual to undo reforms. The first full-time coordinator became a key leader in structuring and 
implementing the coordination system, and was given free rein to do so. Multiple interviewees 
cited them as a leader in implementing the reforms, going above and beyond what was originally 
envisioned for the position. This coordinator took charge of the professional development for 
GTAs, making it “pedagogically sound”, and helped educate faculty members about active 
learning through an inquiry-based learning (IBL) workshop. Eventually the department hired 
multiple coordinators to help support the P2C2 courses. 

BSU2 has also hired additional coordinators since beginning the reforms. At first, there was 
only one director, and regular faculty members served as coordinators on a rotating basis. “There 
was no official team,” and “it wasn’t a dedicated job, so those courses that had rotating 
coordinators were more variable.” Eventually, more permanent coordinators were hired, which 
helped with the continuity and consistency of the courses. These coordinators were given 
significant autonomy, and one coordinator described the coordination in P2C2 courses as a “self-
sustaining system.” 

Facing Challenges 
Both departments have faced challenges to sustaining active learning reforms. Both 

departments experienced pushback from GTAs and other instructors when reforms were 
initiated. At this point, BSU2 experiences very little pushback compared to BSU1, perhaps due 
to the longer duration of reforms. In addition to buy-in, nearly all leaders at both universities 
have changed since reforms began. Throughout the leadership turnover, critical aspects of the 
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reforms have been sustained and expanded. The core reformers and outgoing leaders actively 
worked to ensure the sustainability of efforts with the new leaders.  

Another challenge in sustaining reform is creating a culture that supports and rewards leaders 
in educational innovation. At BSU1, the promotion process for instructors, including the 
coordinators, is based on years of experience rather than merit. Unlike BSU1, BSU2 does have a 
path to promotion for full-time coordinators and instructors based on teaching excellence. 
Consequently, the coordinators at BSU2 have stayed in their roles longer, providing continuity 
and institutional memory. Coordinators at BSU1 mentioned feeling like “second-class citizens” 
at times, yet overall have maintained enthusiasm for the departmental mission.   

 

Discussion 

 Application of the Four Frames 
The institutional changes at both universities can be viewed through Apkarian and Reinholz’s 

(2018) four frames: people, power, symbols and structures. When the math departments initiated 
changes, they did not just make one or two changes, but sought to understand the larger system 
and improve it. Such a view of the change process is aligned with what is known about effective 
and sustainable changes (e.g., Kezar, 2014). Both universities have exhibited strong 
commitments to educational innovation; such commitment is embodied in the symbolic 
dimensions of culture: the beliefs and values of those involved. This commitment translates into 
support of people and structures that perpetuate and refine the reform strategies. 

Reforms at BSU1 and BSU2 started for different reasons, but it was the leadership (people) 
at both universities who utilized their power to create structures incorporating active learning in 
P2C2 courses. These structures embody leaders’ personal values and commitment to educational 
innovation (symbols), and perhaps challenge other people’s values (symbols) related to teaching 
and learning. As mentioned in the findings, the contexts for the initial implementation of reforms 
were different at the two universities. BSU2’s math department was one of the first departments 
on campus to incorporate active learning. Therefore, their commitment to educational innovation 
(symbols) was not yet widely shared with other departments. In contrast, BSU1’s math 
department benefitted from other departments’ prior efforts to improve education (structures) 
and shared values (symbols). Thus, it is possible that the people at BSU2 had to utilize their 
power and structures differently than at BSU1 in order to implement reforms.   

We contend that sustainability is a careful balance between people, power, structures, and 
symbols. In particular, a reciprocal relationship between symbols and structures is apparent in the 
process of extending reforms. Extending reforms to multiple courses (structures) could influence 
common values (symbols) of students and department members. Yet, the influence of initial 
reforms on common values (symbols) could, in turn, prompt the extension of structures 
supporting reform. For example, students at BSU1 expressed interest in Calculus 3 having the 
same structures as those present in Calculus 1 and Calculus 2, perhaps because they developed a 
shared value (symbol) of those structures.  

When institutionalizing reforms, leaders (people) must focus on creating lasting structures 
which embody their values and commitment to educational innovation (symbols), and empower 
others to support those structures. For example, at BSU2, leaders (people) gave coordinators the 
power to support and maintain coordination structures, which makes lasting change possible. 
Challenges to sustainability may arise and create conflicts between the four frames. When 
making changes to structures, those in power must carefully consider the needs of the people 

22nd Annual Conference on Research in Undergraduate Mathematics Education 685



supporting and participating in reform efforts to avoid conflicts in values (symbols). For instance, 
when instructors at BSU1 feel like “second-class citizens,” despite the department’s belief that 
they are valuable, there is a conflict in values (symbols), which has the potential to derail reform 
efforts.  

Limitations 
One limitation to our study is that BSU1 and BSU2 are not representative of all institutes of 

higher education. However, the experiences of these two departments who have sought to 
improve student outcomes via implementing active learning strategies can still be informative to 
other departments considering similar changes. Another limitation is that reforms at BSU2 
happened in a different decade than BSU1, so it is important consider the differences in external 
contexts when making direct comparisons between the two departments. 

Implications 
In our analysis we focused on how leadership and commitment to educational innovation 

influenced reform efforts at both universities. From this discussion, it is clear that their effects 
cannot be fully understood by focusing on just one of the four frames. Leadership is not just 
about people. Commitment does not relate only to symbols. Departments seeking to make similar 
reforms need to broadly consider the complex systems that created the current state of affairs, as 
well as the interplay among people, structures, symbols, and power inherent in these systems. 
Effective change strategies address all of these dimensions, particularly at the initiation of reform 
efforts, and careful consideration of sustainability from the start can help ensure the long-term 
success of reform efforts.  
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In this study we use latent class analysis, distractor analysis, and qualitative analysis of 
cognitive interviews of student responses to questions on an algebra concept inventory, in order 
to generate theories about how students’ selections of specific answer choices may reflect 
different stages or types of algebraic conceptual understanding.  Our analysis reveals three 
groups of students in elementary algebra courses, which we label as “mostly random guessing”, 
“some procedural fluency with key misconceptions”, and “procedural fluency with emergent 
conceptual understanding”.  Student responses also revealed high rates of misconceptions that 
stem from misuse or misunderstanding of procedures, and whose prevalence often correlates 
with higher levels of procedural fluency.     

Keywords: elementary algebra, conceptual understanding, concept inventory 

Elementary algebra and other developmental courses have consistently been identified as 
barriers to student degree progress and completion. Only as few as one fifth of students who are 
placed into developmental mathematics ever successfully complete a credit-bearing math course 
in college (see e.g., Bailey, Jeong, & Cho, 2010). At the same time, elementary algebra has 
higher enrollments than any other mathematics course at US community colleges (Blair, 
Kirkman, & Maxwell, 2010).  

There is evidence that students struggle in these courses because they do not understand 
fundamental algebraic concepts (see e.g., Givvin, Stigler, & Thompson, 2011; Stigler, Givvin, & 
Thompson, 2010). Conceptual understanding has been identified as one of the critical 
components of mathematical proficiency (see e.g., National Council of Teachers of Mathematics 
(NCTM), 2000; National Research Council, 2001), and many research studies have documented 
the negative consequences of learning algebraic procedures without any connection to the 
underlying concepts (see e.g., J. C. Hiebert & Grouws, 2007). However, developmental 
mathematics classes currently focus heavily on recall and procedural skills without integrating 
reasoning and sense-making (Goldrick-Rab, 2007; Hammerman & Goldberg, 2003). This focus 
on procedural skills in isolation may actually be counter-productive, in that students may often 
attempt to use procedures inappropriately because they lack understanding of when and why the 
procedures work (e.g., Givvin et al., 2011; Stigler et al., 2010). 

In this paper we explore student response to conceptual questions at the end of an elementary 
algebra course in college.  We combine quantitative analysis of responses (using latent class 
analysis and distractor analysis) with qualitative analysis of cognitive interviews in order to 
better understand different typologies of student reasoning around some basic conceptual 
questions in algebra, and to explore the relationship between conceptual understanding and 
procedural fluency in this context.   
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Conceptual understanding 
The definition of conceptual understanding (and its relationship with other dimensions of 

mathematical knowledge, particularly procedural fluency) has been much debated and discussed 
(e.g., Baroody, Feil, & Johnson, 2007; Star, 2005), with as yet no clear consensus. This study 
recognizes the interrelatedness of conceptual understanding with other mathematical skills (e.g., 
Hiebert & Lefevre, 1986; National Research Council, 2001), and defines it this way: An item 
tests conceptual understanding if a student must use logical reasoning grounded in mathematical 
definitions to answer correctly, and it is not possible to arrive at a correct response solely by 
carrying out a procedure or restating memorized facts. We define a procedure as a sequence of 
algebraic actions and/or criteria for implementing those actions that could be memorized and 
correctly applied with or without a deeper understanding of the mathematical justification. Using 
this definition, no question is wholly conceptual or procedural, but rather falls on a spectrum, 
with more conceptual questions at one end, and more procedural questions at the other.  For 
more details about how conceptual understanding was operationalized during the creation of the 
questions analyzed here see (Wladis, Offenholley, Licwinko, Dawes, & Lee, 2018).   

Methods 
This study focuses on student responses to the multiple choice questions on the Elementary 

Algebra Concept Inventory (EACI).  For details on the development and validation of the EACI, 
see Wladis et al., (2018). In this paper we focus on 698 students who took the inventory at the 
end of the semester of their elementary algebra class in 2016-2017.  Ninety-one percent were 
students of color (half black and a third Hispanic), and roughly two-thirds were women.  
Roughly half were first-semester freshmen, and one-third were repeating the course because they 
failed or dropped it previously.  The mean GPA for returning students was 2.47. Participants 
earned a mean score on the (entirely procedural) university final exam of 58%, and roughly one-
third passed the course.  In order to supplement quantitative data, 10 cognitive interviews 
conducted towards the end of the semester with students who were enrolled in an elementary 
algebra class were also analyzed using grounded theory (Glaser & Strauss, 1967), although a full 
qualitative analysis is not presented here due to space constraints.   

In this paper we pursued latent class analysis (LCA) of the binary scored (right/wrong) 
multiple-choice items on the inventory. LCA is a latent variable model that is based on the 
principle of local independence but presumes that the items to be locally independent conditional 
on a discrete nominal latent variable (e.g., Collins & Lanza, 2010). As such, it does not assume 
an underlying continuous latent trait. We used Stata 15.1 (StataCorp, 2017) to fit the analysis via 
the EM algorithm using random starts to protect against local optima. No convergence problems 
were observed during the process of fitting. Both a two-class and a three-class analysis were 
explored. The three-class analysis fit the data better (AIC 7122 and 7114, respectively). For the 
three class versus the saturated model, ܩଶሺ482ሻ ൌ 8.79, with  ൏ 0.001, suggesting that it fit 
the data well. We did not use covariates or the nominal item responses in LCA models to ensure 
that we could use the classes to examine the relationship with external variables (e.g., end-of-
class standardized test scores, course outcome) and distractor responses.  

Description of the classes 
The latent class analysis revealed three groups that we characterize in the following way: 

x C1 (27%):  Students whose answers to most items are indistinguishable from random 
guessing, likely due to low procedural/conceptual knowledge and/or low motivation.   
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x C2 (28%): Students who likely have some good procedural skills but limited 
conceptual understanding.   

x C3 (45%): Students who likely have good procedural skills and emergent conceptual 
understanding.   

These class descriptions emerged from looking at the data in a number of different ways.  
Firstly, we consider the response patterns of students from each of the three classes, and we see 
some clear trends (see Figure 1).     

 
Figure 1.  LCA profiles of student responses in each class1 

Student responses in class 1 do not vary much from what would be expected for random 
guessing on four-option multiple choice items. These students only answer correctly at rates that 
are higher than chance on questions 1, 2, 4, and 7, with 1 and 4 being the two easiest questions of 
these nine for all classes. Their performance is never better than 50% on even their best item. 
While all of the items on the test were designed to test conceptual understanding, some of them 
are closer to traditional procedural questions or ways of thinking than others. Questions 1, 4, 7, 8 
and 9 are more similar to standard problems and procedures than questions 2, 3, 5, and 6, which 
use more abstract or non-standard formulations of algebraic ideas. Responses on these more 
procedural questions are precisely what primarily distinguish class 2 from class 1. Class 2 
answers significantly worse than chance on questions 2 and 6 because of the presence of 
attractive distractors that likely tap into misconceptions related to the misuse of procedures. 
Classes 2 and 3 are distinguished by improved performance on the items overall as well as 
different proportions of key misconceptions. We see also that students who passed the class were 
most likely to be in class 3, then class 2, and least likely to be in class 1 (see Figure 2). An end-
of-course standardized assessment that measures procedural fluency showed a similar outcome.  

 
Figure 2.  Posterior probabilities of class membership by course outcome (passing the class)    

In order to illustrate how different response patterns might distinguish these three classes, we 
performed a distractor analysis and analyzed cognitive interviews for three exemplars: items 2, 4, 
                                                 

1 For reference, in the plot above a somewhat conservative approximate 95% margin of error for a given point is .15. That is to say, points 
that differ by .15 are outside the 95% confidence interval.  
 

22nd Annual Conference on Research in Undergraduate Mathematics Education 690



and 6. We used the Bayes modal assignment to determine class membership. The median of the 
modal membership probabilities was 0.73. Examining the normalized entropy within each class 
suggested that class 2 was the best distinguished although no class was so poorly distinguished 
as to make classification useless.  

Three example questions: illustrating different class response patterns 
Item 4: First we consider Item 4: 
Which of the following is a result of correctly substituting ݔ െ 4 for y in the equation 3ݕ െ 2 ൌ ଶݕ  1?  

a. 3ݔ െ 4 െ 2 ൌ ݔ െ 4ଶ  1 
b. 3ݔ െ 4 െ 2 ൌ ଶݔ െ 4ଶ  1 
c. 3ሺݔ െ 4ሻ െ 2 ൌ ሺݔ െ 4ሻଶ  1 
d. 3ݔ െ 3 ⋅ 4 െ 2 ൌ ଶሺെ4ሻଶݔ  1 

The correct answer is c.  We would expect students who understand that substitution means 
to substitute ݔ െ 4 in for ݕ, but who do not completely understand how the underlying structure 
of substitution works would select options a and b with high frequency.   

 
Figure 3.  Item 4 Distractor Analysis 

C1’s option selection is clearly scattered in a pattern consistent with random guessing (see 
Figure 3). By contrast, classes 2 and 3 have a high probability of choosing the correct response, 
with C3’s probability being significantly higher than that of C2. Selecting option c is highly 
correlated with student scores on the procedural exam, corresponding to a score that is higher by 
10.8 percentage points ( ൌ 0.000). 

Looking at student interview responses reinforces our interpretation of the three classes.   
C1 (chose B):  It says ݔ െ 4 for ݕ, this is what I think like because ݕଶ .  It could be like 

changed to a 4ଶ. I put together like 3ݔ െ 4 െ 2 ൌ ଶݔ െ 4ଶ  1. [I didn’t pick c or d 
because] they [pointing to the ݔ െ 4 in the item stem] didn't have no bracket around 
them. [I picked B with the ݔଶ in it instead of A, which doesn’t have the ݔଶ] because ݔ 
equals ݕଶ so it has to have an ݔଶ in it because the ݕ is squared there. 

C2 (chose C):  So usually like when a math question says, “substituting” that’s like basically 
putting the numbers that they give you into ݔ or ݕ that they 
say to put it. And then I automatically substituted it in, and 
my correct answer was 3ሺݔ െ 4ሻ െ 2… I didn’t pick any 
other answer, because I didn’t see the parentheses.  

C3 (chose C):  I didn't choose A because when trying to multiply the ݕ, which is ݔ െ 4, you 
have to put the parenthesis behind 3, unless you already multiplied 3 times ݔ െ 4… it 
[answer choice D] does have the parenthesis on െ4, but then, it will be missing the 
complete equation for ݕ because െ4 is not the only equation that equals to ݕ is ݔ െ 4. 

In these examples, the C1 student shows a conception of substitution that involves putting 
ݔ െ 4 in where the ݕ is in the equation, but does not show an awareness of the equation structure 
(e.g. that the ݔ െ 4 needs to be treated as a single unit when substituting).  The C2 student shows 
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an awareness of the procedure of putting in a set of parentheses around whatever is being 
substituted, but doesn’t execute this procedure completely correctly on both sides, and doesn’t 
demonstrate any awareness of why the parentheses are necessary.  In contrast, the C3 student 
shows both an awareness of the need for the parentheses and an understanding of why the 
parentheses are necessary—because without them, the structure of the equation will be altered.   
Item 6: Now we consider item 6, which shows a different pattern of responses: 
A student is trying to simplify two different expressions: 

i.    ሺݔଶݕଷሻଶ   
ii.    ሺݔଶ     ଷሻଶݕ

Which one of the following steps could the student perform to correctly simplify each expression?   
a. For both expressions, the student can distribute the exponent. 
b. The student can distribute the exponent in the first expression, but not in the second expression. 
c. The student can distribute the exponent in the second expression, but not in the first expression. 
d. The student cannot distribute the exponent in either expression. 

The correct answer to this question is b. Classes 2 and 3 were strongly attracted to option a 
(see Figure 4), likely because they are familiar with procedures associated with the distributive 
properties but do not recognize the critical difference between distributing multiplication versus 
exponents—likely because they lack a deeper conceptual understanding of why these properties 
work. We note that all three classes were strongly attracted to this distractor, likely for similar 
reasons. Examinees in class 1 do best on this item. Unlike item 4, selecting the correct answer for 
this item was negatively correlated (and selecting the distractor a was positively correlated) with 
scores on the procedural exam, with students who selected this distractor on average scoring 7.1 
percentage points higher ( ൏ 0.000).  This suggests that in this context (where procedures are 
typically taught in isolation from concepts) procedural fluency in standard problem contexts is 
inversely related to conceptual understanding of the distributive properties.   

 
Figure 4.  Item 6 distractor analysis 

Looking at student interview responses reinforces our interpretation of the three classes.   
C1 (chose B):  [The difference between the first and second equation] is that there's a plus 

right there [pointing to the second equation].  I think for this one [pointing to the second 
equation], you have to add and for this one [pointing to the first equation] you don't…. 
Actually, I think like over here [pointing to the second equation] you add a 3. 3 plus 2.  
[For the first one] you do ݔଶ times ݔଶ and ݕଷ times ݕଷ.   

C2 (chose A): I feel like that’s correct because in order to 
solve ²ݔ and ݕ, you have to distribute…. Because I’ve 
seen problems like this before and it’s like you have to 
solve it, there is no not solving it because there is no … there is no solution. 

C3, but close to C2 (chose A): Since [both equations] are in parenthesis and they have 
exponents, the first thing that came into my head was PEMDAS…so after parenthesis 
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will be exponents. So with the exponent, I know you would have to distribute and then 
you'll be able to solve the rest. 

C3 (chose A):  Both expressions the student can distribute the exponents because for the 
parenthesis you do multiply.   

C3 (chose A): That’s how you kind of get rid of the parenthesis and get rid of the outer 
exponents by distributing it in the inside. Whether it’s with another exponent or with a 
number… You want to add or multiply that exponent [outside the parentheses] to the 
ones inside the parentheses but I can’t remember whether you add or multiply… 

In these examples, the C1 student notices that there is a difference between the two equations 
and suggests that it is important, but doesn’t actually know how to perform the distribution 
correctly.  For the C2 and C3 students, we see a number of ways in which students are 
incorrectly employing procedures or experience with procedures—we have only listed a few of 
them here, but every interviewee cited a different, procedural explanation for why the exponent 
could be distributed, including: reciting a procedure for distributing; citing standard problem 
contexts based on surface structure; stating that parentheses always mean that one should 
multiply; citing the order of operations.  None of the students we interviewed in any class 
showed a deeper understanding of what distributing means or when it is possible.  While C2 and 
C3 students may have shown evidence of understanding what exponents mean, they did not 
provide any evidence that they understood what distributing means in this case, beyond a basic 
citing of procedures (often inaccurately) that they had learned in class.    
Item 2: Next we consider item 2, which reveals another interesting pattern of responses: 
Consider the equation x + y = 10. Which of the following statements must be true? 

a. There is only one possible solution to this equation, a single point on the line ݔ  ݕ ൌ 10. 
b. There are an infinite number of possible solutions, all points on the line x + y =10 
c. This equation has no solution. 
d. There are exactly two possible solutions to this equation: one for ݔ and one for ݕ. 

For this question, the correct answer is b, which was the most popular answer chosen by 
students in classes 1 and 3, but no examinee in class 2 chose it (see Figure 5). They were 
strongly attracted to option d, which was also the second most popular choice of students in both 
other classes, although at a much lower rate.  Answer option d is a common response from 
students who are used to finding a solution to two linear equations in two variables; thus many 
students may select this answer because of an inappropriate application of procedural knowledge 
based on surface features of the equation.  Interestingly, both the correct answer b (+4.0 
percentage points,  ൌ 0.039) and the popular distractor d (+5.5 percentage points,  ൌ 0.017) 
are correlated with higher scores on the standardized procedural exam, although choosing the 
distractor is more strongly correlated with higher procedural skills as measured by the exam.       

 
Figure 5.  Item 2 distractor analysis 

Looking at student interview responses reinforces our interpretation of the three classes.   
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C1 (originally chose C, but drifted towards B in the interview):  ݔ   equals nothing so ݕ
it can't be 10. Right?... [Maybe infinite means] what could be like possible?  I don't know. 
Like equal number maybe?  ݔ  ݕ ൌ 10.  It could be possible like it equals 10. [Option D 
isn’t correct] maybe because x and y could be equal to anything? 

C2 (chose D):  What I assumed was the x term and the y term, you would have to substitute. 
And I know there are certain numbers that will add up to ten, so there could be two 
solutions, since there's only a x term and a y term…  Like x could equal 5, y could equal 
5… since it is two terms, so you could say two different solutions. 

C3 (chose B):  Ten could equal to many things. Like five plus five could equal ten. Nine plus 
one could equal ten. Seven plus three. That's why I chose that, because it could be any 
number that will equal to ten. It's not just one certain number. 

In these examples, the C1 student chose “no solution” because they didn’t know what x and y 
could be, but as they explained more, they started to relate this to the idea that x and y could be 
“anything”.  While their reasoning is not strictly correct, they are beginning to explore the idea 
that x and y may have many possible values.  The C2 student seems to understand enough about 
what the equation means to find a single solution, but once they find one solution they stop there, 
not exploring whether there might be others.  Further, they confuse the number of solutions with 
the number of variables in the solution set, showing that they do not understand that a solution 
set is a collection of all possible combinations of variables that make the statement true.  The 
student from C3 describes how this equation could have multiple solutions, demonstrating some 
conceptual understanding of how solution sets for equations work.  They also demonstrate 
understanding that the values for both variables are related and that the solution set describes 
this.  Other students in C3 cited the graphical representation of a line to describe similar ideas.   

Discussion and Limitations 
The patterns of student responses and explanations in cognitive interviews suggest that many 

students, including those who pass the course, are consistently using procedures inappropriately 
and without understanding; thus, these results suggest that instruction which stresses procedures 
divorced from conceptual understanding likely worsens a number of misconceptions.  As we saw 
on two of the more conceptual questions, higher procedural fluency on standard problems 
actually corresponded to lower conceptual understanding of certain concepts.  This suggests that 
the widespread use of instruction through repeated procedural practice, when isolated from any 
systematic attempts to practice interpreting and understanding these procedures, may actually be 
worsening fundamental algebraic conceptual understanding.   

We note that this study did not attempt to directly link student responses to specific types of 
instruction—there is a pressing need for future research to examine the relationship between 
instructional characteristics and pre-post response patterns on validated concept inventories, in 
order to determine which kinds of instruction have the most positive or negative impact on 
student growth in conceptual understanding.   In the meantime, this research reinforces existing 
research that suggests that teaching procedures in isolation, without concomitant conceptual 
understanding, may have negative consequences (Givvin et al., 2011; Stigler et al., 2010).   

One limitation of this analysis is that we have only examined traditional four-option multiple 
choice items. Other items were administered that use a “choose all the apply” format, but are not 
analyzed here. This format may be very helpful in providing more information about student 
thinking than can be obtained from single option multiple choice; however, scoring these items 
and managing the local dependence is complex and is thus left for further research.  
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Mathematicians’ Perceptions of their Teaching 
 

 Christian Woods Keith Weber 
 Rutgers University Rutgers University 

 Recent research in mathematics education has uncovered a host of teaching behaviors that are 
commonly enacted by instructors of advanced mathematics courses. While these descriptive 
accounts of math teaching are useful, little investigation has been conducted into the reasons for 
why these practices are so prevalent. In this study, we interviewed seven mathematicians about 
regularities that have been observed in the literature on the teaching of advanced mathematics. 
In this report we discuss whether mathematicians view these findings as accurate (they often 
did), whether they thought these regularities were productive or problematic teaching practices, 
and why mathematicians engaged in these teaching practices. We discuss how these themes may 
elucidate the practices of instructors, and later propose implications of the methods of the 
present study for changing how advanced math courses are taught.  

Keywords: proof-based courses, teaching practices, formal content, informal content 

In the last decade, numerous researchers in undergraduate mathematics education have 
sought to understand the pedagogical practice of mathematicians by observing how advanced 
mathematics courses are taught (e.g., Artemeva & Fox, 2011; Gabel & Dreyfus, 2016; Fukawa-
Connelly et al., 2017; Mills, 2014; Pinto & Karsenty, 2018). The results of these studies give 
researchers insights into what practices are typical in the teaching of proof-based courses. 
Despite our advances in knowledge about what kind of moves and habits are used by instructors 
of these classes, little investigation has been carried out into mathematicians’ motives and 
reasons for adopting the practices that are identified specifically with respect to these findings. 
(Other scholars have investigated mathematicians’ motives and rationality for teaching advanced 
mathematics in general—e.g., Alcock, 2009; Hemmi, 2010; Nardi, 2008; Weber, 2012). 

The aim of this study is to shed light on this largely unexplored area of pedagogy by 
entering into a conversation with mathematicians explicitly about these findings. If we believe 
that mathematicians are reflective about their own teaching and the teaching that goes on around 
them, then they have important knowledge to help explain the classroom behaviors that 
education researchers have documented. We shared the results of some research on teaching in 
proof-based math courses with mathematicians who have been instructors of these kinds of 
courses and asked them to reflect on whether these results were an accurate depiction of their 
experiences, how they felt about the practices described in the results, and what reasons they saw 
for engaging in or avoiding these practices. 

We believe that the contribution of this research is threefold. First, it is a continuation of 
the dialogue between mathematicians and math educators whose significance several members 
of our community have extolled (e.g., Iannone & Nardi, 2005; Alcock, 2009). More importantly, 
it develops this conversation in a direction that has been neglected by recognizing the value that 
mathematicians bring to interpreting research in which mathematics instructors are themselves 
the subject of study. Finally, from a practical standpoint, if the education community wishes for 
its research to effect change in the way that proof-based math courses are taught then how 
mathematicians feel about the research will suggest different ways of working with instructors to 
bring about that change. For instance, if mathematicians were surprised and unsettled by the 
research findings of our field, this suggests a pivotal way toward changing instruction is to 
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disseminate our results to make mathematicians more aware of their teaching practices. 
However, if mathematicians are aware these teaching practices are common and feel that they 
are productive or necessary, then understanding mathematicians’ rationality for engaging in the 
teaching practices is pivotal if mathematics educators hope to change them. 

Literature Review 
Speer et al. (2010) noted the lack of what they referred to as “descriptive empirical 

research on teaching practice” (p. 100) in collegiate mathematics and called for more work that 
elaborated the decisions and actions that instructors make when they teach college-level math 
classes. This sparked an increase in the amount of research that focused on the facets of 
instruction that are witnessed in advanced math classes (e.g., Fukawa-Connelly, 2012; Pinto, 
2013; Gabel & Dreyfus, 2016; Mills 2014). While many researchers focused on case studies 
(Fukawa-Connelly, 2012; Fukawa-Connelly & Newton, 2014; Lew et al., 2016; Pinto, 2013), 
other studies analyzed and compared a relatively larger amount of instructors simultaneously. 
One general finding from this work is that mathematicians’ instruction is nuanced and deviates 
from the “definition-theorem-proof” formalist caricature that is found in the literature (cf. Weber, 
2004), but there are nonetheless some commonalities in how mathematicians teach advanced 
mathematics. Our present research involved presenting the findings of five of these studies 
(Artemeva & Fox, 2011; Fukawa-Connelly et al., 2017; Paoletti et al., 2018; Moore, 2016; Miller 
et al., 2018) to mathematicians and asking them to speak about them. We briefly describe these 
studies here, with a focus on the work by Fukawa-Connelly and his colleagues in 2017 as this is 
the study that the mathematicians considered in the results we have chosen to include in this 
report.  

Artemeva and Fox (2011) observed 33 college-level math lectures across seven countries 
with the goal of noticing which elements of instruction were shared by their participants and 
which elements differed. Prominent among their findings was a pedagogical genre they called 
“chalk talk,” in which an instructor (a) wrote mathematics on the board, (b) narrated aloud what 
was being written along with her thought processes, and (c) occasionally took a break to present 
a metanarrative that discussed broader themes with the class. Paoletti and his colleagues (2018) 
used data obtained from 11 upper-level math instructors’ teaching to draw conclusions about the 
types of questions instructors asked to their classes and how they used these questions to invite 
participation from the students. Their results showed that instructors often used a large amount of 
questions per lecture, most of which asked students to provide the next line in a proof, recall a 
fact, or perform a calculation, but that very often less than three seconds were provided for 
students to respond to these questions. Moore carried out a task-based study in 2016 to see what 
considerations went into how four math instructors graded student-written proofs. He found that 
there was a sizeable variation in the scores that his participants gave to the same proofs and that 
all of his participants assigned scores to a proof based on what they believed the student was 
thinking when he or she wrote it. Similarly, Miller, Infante, and Weber (2018) asked nine 
mathematicians to assign grades to proofs, half of which were designed to contain logical gaps. 
In addition to confirming Moore’s findings, they noticed that several participants assigned less 
than perfect scores to proofs that they still deemed “correct.” 

A study performed by Fukawa-Connelly et al. in 2017 sought to clarify the extent to 
which informal content plays a role in advanced math classes and how instructors present it to 
their students. Their definition of informal content included any information that could not be 
conveyed in formal symbolic language, such as heuristics for thinking about a mathematical 
concept or for producing a proof. In their analysis of the lectures they observed, the researchers 
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identified when informal content was displayed to the class, whether or not the instructor wrote it 
on the board, and when the content made it into each of the students’ notes. They discovered that 
while informal content is used frequently in advanced math classes, this information is usually 
only delivered orally and is not written on the blackboard. Moreover, they found that informal 
content that was only presented orally and not written on the board only appeared in students’ 
notes in less than 3.2% of possible instances. This was contrasted with both formal and informal 
content that was written on the blackboard, which was almost always found to be recorded in the 
students’ notebooks.  

Despite the progress made in detailing widespread regularities in collegiate teaching 
practice, little has been done to share these results with mathematics instructors and to 
understand how they make sense of them. As Fukawa-Connelly, Johnson, and Keller (2016) 
lamented, “there has been little research attempting to explore [the extent of the adoption of 
reform practices] from the perspective of the instructors who are the ones being asked to change 
practice” (p. 276). Consequently, this has impeded mathematics education reform efforts as 
mathematics educators seek solutions to teaching practices that mathematicians do not find 
problematic. We share their belief that mathematics instructors possess a unique corpus of 
knowledge that can bring more light to the findings on collegiate teaching than the findings alone 
are able to convey themselves. The work presented in this report is our attempt to begin a 
conversation with mathematicians that utilizes this special knowledge and positions the results of 
mathematics education research according to their viewpoints. 

Theoretical Perspective 
In the current study, we largely wanted to understand the issue from the perspective of 

mathematicians. Consequently, we sought to provide accounts of mathematicians’ rationality that 
was grounded in the data that we collected and avoided applying a theoretical perspective on the 
data at an early stage (Glaser, 1998). Nonetheless, our study was inspired by Herbst and 
Chazan’s (2003) notion of practical rationality and their dictum that teachers do not engage in 
traditional teaching practices “from a lack of knowledge or a paucity of vision” (p. 3). Rather 
teachers are reflective and rational; their pedagogical actions are reasoned attempts to fulfill their 
goals, obligations, and desires, which can involve a complex constellation of disciplinary, 
institutional, and ethical considerations (Chazan, Herbst, & Clark, 2016). In analyzing our data, 
we sought to understand what goals mathematicians had and how they thought their goals could 
best be achieved. 

Methods 

Participants 
The participants for this study were seven mathematicians (one female and six male) 

from a large, public research university in the northeastern United States. Each participant had 
taught at least one proof-based mathematics course within the last five years. 

Data Collection 
Each participant took part in an approximately hour-long semi-structured interview with 

the first author. These interviews were audio recorded and subsequently transcribed. Questions 
for the interviews were pre-written in a protocol that focused on each of the five sets of findings 
described in the literature review of this report. The questions were designed to investigate each 
mathematician’s general impressions of the results, if they believed the results were typical of 
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teaching in advanced math courses, reasons for why they or others engaged in the teaching 
practices discussed in those results, and strengths and weaknesses of the practices. Follow-up 
questions were posed by the interviewer to clarify participants’ responses or to encourage the 
participants to expand upon an idea they had shared. 

Data Analysis 
Data analysis consisted of a separate round of coding for each of the five sets of findings 

that were the focus of the interviews. Coding of these sections of the interview transcripts was 
carried out using thematic analysis (Braun & Clarke, 2006). The authors made an initial pass 
through the data, highlighting excerpts of the participants’ responses that exemplified interesting 
ideas they had shared about the findings that were guiding the discussions. A descriptor for each 
idea was entered into a Word file along with a more detailed explanation of this idea. After these 
ideas had all been generated, the authors sought for commonalities among the ideas and arranged 
them into larger themes that preserved the general spirit of the ideas while capturing the notable 
similarities between them, along with specific criteria for when an utterance would be coded as a 
member of that category. For each theme, we sought to understand if mathematicians were 
expressing that they perceived that they had a goal or obligation to meet in their instruction (cf., 
Herbst & Chazan, 2003) and if they had a belief about whether a specific teaching practice 
would be productive or counterproductive for achieving that goal. When these larger themes 
were created, a second pass through the data was made to code the corresponding sections of the 
transcripts with them. After, a Word document was created for each of the larger themes and 
interview excerpts that were coded with that theme were copied and pasted into the 
corresponding document. 

Results 
For the sake of brevity, we report only the results pertaining to the portion of our 

interviews with mathematicians that concerned the portrayal of formal and informal content in 
upper-level math classes (Fukawa-Connelly et al., 2017). Of the seven mathematicians 
interviewed, all agreed that the finding that formal content is written down on the blackboard and 
informal content is usually only spoken orally is an accurate portrayal of advanced math classes. 
All seven also agreed that these are generally good teaching practices, although five expressed 
reservations according to a sentiment that good teaching would display a better balance of formal 
and informal content being written on the blackboard. Five of the mathematicians stated that 
these findings were generally representative of their own teaching while two denied so, stating 
that they also often made informal ideas and processes explicit in writing. 

During coding, eight broader themes emerged from the interviewees’ commentary on 
these findings. Five of these themes dealt largely with the practice of writing formal content on 
the blackboard whereas the other three spoke more to the practice of presenting informal content 
exclusively verbally. In what follows of this results section we describe the ideas that were 
expressed in these themes, giving examples from interview transcripts to illustrate when 
appropriate. Each theme is also shown in Table 1, next to the list of mathematicians who had at 
least one utterance coded with that theme. 
 
 
 
Table 1. A table that lists each of the eight themes that emerged from the data, and which mathematicians' 
utterances comprised those themes. 
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Mathematicians’ rationales for their use or disuse of the blackboard 
Theme Interviewees that Contributed to this Theme 

Blackboard allows for deeper processing and 
comprehension 

M1, M3, M5, M6, M7 

Written content is given permanence and 
importance 

M2, M3, M4, M5 

Blackboard enables and requires precision M3, M5, M6, M7 
Writing on the board slows the instructor down M5, M6, M7 
Writing formal content emphasizes the 
language, notation, and nature of mathematics 

M4, M7 

Oral presentation is needed to hold students’ 
attention 

M1, M2, M3, M5, M6 

Informal content is conversational in nature M1, M2, M6 
Content should be repeated to be noticed M2, M3 

Writing Formal Content on the Blackboard 
Blackboard Allows for Deeper Processing and Comprehension Five of the 

mathematicians interviewed expressed that writing content on the blackboard allows for it to be 
carefully processed and aids students in understanding it. As M6 said, “your visual cortex is 
extremely powerful and somehow seeing words written down on - somewhere, anywhere, a 
blackboard being a good place, really clarifies a lot of things. So I think writing things down on a 
blackboard is extremely important.” 

Within this theme, the mathematicians pointed out that formal content is likely to be less 
relatable or more unfamiliar to students. M2 said “the technical nitty-gritty is what’s least gonna 
be in the students’ minds and so it’s most important to have…that written down.” On the other 
hand, informal content is unlikely to need such a high level of processing, and so it is more 
acceptable to forgo writing it on the board. M5 illustrated this notion when he said “when I’m 
conveying intuition, the oral words convey that intuition, I don’t need to analyze that intuition, 
intuition is sort of part of the analysis in a way.” These mathematicians had the goal that students 
understand (or at least “process”) the technical mathematics; to do so required students having a 
specific object for this reflection. 

Written Content is Given Permanence and Importance Four of the participants spoke 
to this theme, which deals with two related properties of information that is conveyed on the 
board. One of these properties is permanence. Writing things such as formal content down on the 
board preserves them so that they may be checked and referred to later, and so that students can 
make their own records of them. To this latter end M4 said “what’s written on the board students 
would take notes of, and what’s not they might remember, they might not remember. So if you 
really want to present something you want to write it on the board.” The other property that 
participants mentioned about written content is a higher level of perceived importance of content 
that is written down compared to content that is not. M5 said “when you write something on the 
blackboard you are emphasizing that it’s important,” and M2 remarked that students think “what 
I have to pay attention to is what’s been written down.” Implicit in this commentary is that the 
informal mathematics that is not written down might be less important. 

Blackboard Enables and Requires Precision Four of the participants mentioned the 
significance that the level of precision has on which content is written down during class. Within 
this theme, the mathematicians noted that formal content is often very precise, and the 
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blackboard is a crucial tool for displaying this precision properly. M3 shared that when 
discussing a definition, theorem or proof, “it does have to be written on the blackboard because it 
has to be precise, notation has to be set up, things have to be checked.” Informal content usually 
lacks this degree of detail, and indeed can sometimes be difficult to portray accurately via a 
written medium. M3 explained this with her comment that “if you write something informal 
[students] can often misinterpret what you’ve said and write something entirely different in their 
notes, so it’s a bit problematic, it’s a bit tricky to convey this extra information.” In addition to 
the board being useful for expressing precise content, some interviewees noted that some 
instructors may view the blackboard as being reserved for precise content. When discussing why 
informal content is usually only delivered orally, M6 related that “I know of people who want to 
be extremely precise…and that’s why they will only write the things that are absolute 
certainties.”  

Writing on the Board Slows the Instructor Down Three of the interviewees remarked 
that a virtue of writing things down on the blackboard is that it slows the pace of instruction and 
gives the students a chance to comprehend what is being taught to them. Especially when it 
comes to formal content, the time it takes to utter a definition, theorem, or proof may not be 
enough for a student to properly analyze it. Writing these things down in addition to speaking 
them allows students extra time to process them. M7 exemplified this notion with his comment 
that “the proofs also should be written down…otherwise it would just be too fast to follow.” 

Writing Formal Content Emphasizes the Language, Notation, and Nature of 
Mathematics Two mathematicians gave responses that illustrated this theme. M4 mentioned that 
writing formal content down on the board helps students understand a key fact about the nature 
of the subject matter, “the idea that mathematics consists of definitions, theorems, and proofs.” 
M7 also noted that mathematics requires a commonly established language and notation, and that 
writing formal content down helps to achieve this classroom goal.  The goal here for these two 
participants is that students understand the general nature of how formal mathematics is 
expressed which (naturally) requires seeing the expression of formal mathematics. 

Not Writing Informal Content on the Blackboard 
Oral Presentation is Needed to Hold Students’ Attention Five participants contributed 

to this theme, which contrasts the level of engagement students have with written versus oral 
content. The mathematicians noted that sharing informal content is often a matter of telling 
students how you would like them to be thinking and reasoning. This is best achieved orally, and 
not through writing. Along these lines M1 stated 

When you’re facing the students and you’re talking to the students they’re more 
engaged. So when you’re trying to explain something that’s not formal but you’re 
trying to give an idea of what’s going on and how they should be thinking about 
it, then you want to have them engaged. 
M3 expressed a similar opinion that oral, non-written content has the ability to awaken 

students from a seeming daze.  
Well, in my experience when the instructor maybe puts down the chalk and turns 
to the front of the class and addresses the class with some anecdote or some 
informal way of thinking about a concept…that’s when students start paying 
attention. 
Written content, on the other hand, can lead to students mindlessly copying down what 

they see without giving it thorough consideration. Speaking about written content, M5 worried 
that “they’re just transferring it onto each of their notebooks, and whether they actually are 
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getting anything out of it it’s not clear.” One goal expressed here is that students should be 
engaged during their advanced mathematical lectures; the stilted process of writing points down 
can diminish this engagement. This point is interesting as we imagine many mathematics 
educators would question the assumption that speaking to students more informally would be 
sufficient to obtain meaningful engagement. 

Informal Content is Conversational in Nature Three interviewees gave responses that 
suggested informal content is itself conversational, and therefore is more naturally conveyed to 
students in an oral and non-written fashion. M1 described informal content as a “flow of ideas” 
and said that “if I’m trying to have a discussion with somebody about how you think about this 
informally, then writing it down on the board converts a discussion into a stilted process.” M6 
further characterized informal content as a conversation when he stated that “the very nature of 
informal discussion is that it’s not precise.” M2 noted the full power of informal content must be 
exchanged orally, saying “I don’t think you’re going to inspire people as to the importance of the 
big ideas without giving a verbal…description of those big ideas.” Here the participants are 
expressing the importance of informal content, but felt that oral presentation is the best way to 
present this content, which often lacks the precision of formal mathematics. 

Content Should Be Repeated to Be Noticed Two participants contributed to this final 
theme. M3 noted that “research shows that in any room for any presentation, regardless of the 
topic, at one moment in time, at any given moment in time, one third of the people are not 
actually listening. And so…to get across an important point, you have to repeat it three times.” 
M2 hypothesized that the big ideas that are usually contained within informal content are 
repeated enough for students to take notice of them, whereas formal content that is not often 
repeated can use the blackboard to garner students’ awareness. He shared that “I feel like I have 
to write those technical ones down far more often and the broader ideas get repeated just 
continually so that I don’t.” 

Discussion 
The results we have presented support our claim that instructors of advanced mathematics 

have valuable observations to make regarding the regularities that mathematics education 
researchers find in their research. While education researchers can be said to have given a 
descriptive account of the teaching of mathematicians, discussion with mathematicians can 
reveal the beliefs and goals that account for the prevalence of the practices we see. 

The perspectives that mathematicians bring to math education research have a 
considerable practical implication. If we wish to change how advanced math classes are taught, it 
is imperative that we understand how instructors view the practices that comprise their 
instructional activity. For example, if mathematicians view a particular practice as undesirable 
and are unaware that it is common among instructors, then to change it may simply require 
bringing it to the attention of the larger teaching community. If mathematicians see a practice as 
undesirable but are aware of its widespread use, then this suggests that they may need assistance 
in the development of teaching practices that can take its place. However, if mathematicians 
express reasons for viewing a practice as desirable despite math education researchers’ aversion 
to it, then to change such a practice it may be most fruitful to explore alternative practices that 
possess the qualities that mathematicians find useful and favorable about the current one. 
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In this study, two universities created and implemented a student-centered graduate student 
instructor observation protocol (GSIOP) and a post-observational Red-Yellow-Green feedback 
structure (RYG feedback). The GSIOP and RYG feedback was used with novice graduate student 
instructors (GSIs) by experienced GSIs through a peer-mentorship program. Ten trained mentor 
GSIs completed 50 sets of three observations of novice GSIs. Analyzing 151 GSIOPs and 151 
RYG feedback meetings longitudinally provided insight to identify what types of feedback 
informed and influenced GSIOP scores. After qualitatively coding feedback along multiple 
dimensions, we found certain forms of feedback were more influential for GSI development than 
others with respect to change in GSIOP score. Our results indicate contextually-specific 
feedback leads to more observed changes and improvement across multiple observations than 
decontextualized feedback.   

Keywords: Graduate Student Instructors, Feedback, Observation, Mentoring 

Introduction 
Mathematics graduate student instruction significantly impacts undergraduate courses and 

students (Belnap & Allred, 2009). Graduate student instructors (GSIs)1 have been identified as a 
key component of success for collegiate mathematics departments for teaching undergraduate 
mathematics (Bressoud, Mesa, & Rassmussen, 2015, p. 117). As a result, mathematics 
departments and research in undergraduate mathematics education continue to focus on 
supporting and improving GSIs’ student-centered instruction (Rogers & Yee, 2018; Speer & 
Murphy, 2009; Yee & Rogers, 2017). There are multiple methods of student-centered 
pedagogical support for GSIs (e.g. professional development, mentoring, pedagogically-focused 
courses; Speer, Gutmann, & Murphy, 2005; Yee & Rogers, 2017), but there is currently limited 
research on GSI teaching observation protocols and even less research on post-observation 
feedback (Reinholz, 2017). Multiple observation protocols exist to assess undergraduate 
mathematics instructors’ classrooms (e.g. MCOP2, RTOP, C-LASS, etc.), often with scalar 
metrics such as 1-4, but many do not discuss how to make that assessment actionable so that it 
can be beneficial for the teacher.  

To this end, we created a GSI observation protocol (GSIOP, Rogers, Petrulis, Yee & Deshler, 
under review) and a post-observation feedback structure at two universities to provide ongoing 
support for novice GSIs. Together, the GSIOP and feedback were implemented for two years as 
part of a peer-mentorship model2 where novice GSIs were mentored by experienced (two or 
more years of experience) GSIs who had completed a mentor professional development (PD) 
seminar. This mentor PD included training with the GSIOP and post-observation feedback (See 
Rogers & Yee, 2018 and Yee & Rogers, 2017 for more information on peer-mentorship). The 
                                                
1 GSI was used instead of TA (Teaching Assistant) because GSI references graduate students who are full 
instructors of record. 
2 Supported by a Collaborative National Grant 
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purpose of this paper is to help bridge the research gap between observations and post-
observation feedback by identifying how feedback within this peer-mentoring model informed 
and influenced future observations. Our research questions for this study are: 

• RQ1: In what ways (if any) did the feedback structure lead to changes in teaching 
observations throughout a semester? 

• RQ2: How do those changes inform (if at all) methods for providing actionable feedback 
to influence observed teaching? 

It is important to note that our study focused on GSIs but the observation protocol, feedback, and 
results are applicable to undergraduate mathematics instructors, not just GSIs. 

Related Literature 
Feedback 

For over a century, psychology has long researched the importance of feedback as a means to 
change performance, cognition, and understanding in many professions (Kluger & DeNisi, 
1996). Hattie and Timperley’s (2007) meta-analysis looked at 500 articles of teachers providing 
feedback to students and found assessment-based feedback was one of the most dangerous forms 
because “rarely does such enhance the processes and metacognitive attributes of the task” (p. 
101). White’s (2007) research on 16 pre-service teachers showed that clear, concise, specific, 
and encouraging feedback were the most valuable forms of feedback. White’s research also 
emphasized what Hattie and Timperley (2007) identified, that feedback (and thus observations) 
needs to be done regularly, not intermittently.  

Although K-12 mathematics education research has extensively studied feedback within 
practicum courses (e.g. student teachers are observed regularly by their master teacher and 
university supervisor as a critical means of ongoing teacher development) our review of the 
literature has found few studies focusing on mathematics GSI peer feedback (Reinholz, 2017; 
Rogers & Steele, 2016; Yee & Rogers, 2017; Rogers & Yee, 2018). One exception is a recent 
study by Reinholz (2017) that explores peer feedback with mathematics graduate students as 
equal peers. Reinholz had six GSIs provide peer-feedback to one another and found that 
feedback not only helped the novice, but enhanced teacher noticing (Sherin, Jacobs & Philipp, 
2011) and reflection in the observer, aligning with Reinholz’s previous work (2016) where peer 
assessment led to improved self-assessment. Rogers and Steele (2016) concluded that novice 
instructors struggle to discuss teaching methods, which Reinholz (2017) argues could be aided 
by peer feedback. Thus, Reinholz’s and Rogers and Steele’s (2016) research supports post-
observation feedback as a means of improving GSIs’ teaching through discourse and reflection.  

Complexities of Observations and Feedback 
Reinholz (2017) reminds us that "how instructors engage with peer feedback is complicated" 

(p. 7) due to GSIs’ beliefs about mathematics and its often-assumed relationship to innate 
intelligence. Kluger and DeNisi’s (1998) meta-analysis of 607 studies on feedback interventions 
(i.e. providing people with some information regarding their task performance) showed that 
while overall feedback improves performance, it can also sometimes reduce performance, 
depending on the type of feedback and means by which it is delivered. Certain feedback was 
helpful for improving performance as long as attention was directed towards task-motivation and 
task-learning rather than praise, negative criticism, or focus on the person because deviating 
from the focus on the task requires effort that was found to decrease performance. 

In light of the complexity that links observations and feedback, we questioned what type of 
feedback is most effective for GSIs. Cannon and Witherspoon (2005) provide a framework to 
navigate this complexity effectively using actionable feedback “that produces both learning and 
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tangible, appropriate results” (p. 120). Actionable feedback provides a framework for examining 
undergraduate mathematics classrooms and providing feedback to help novices make changes to 
improve their teaching. We use this frame in our data analysis to determine how feedback 
affected the tangible result of novices’ GSIOP scores over a semester. 

Framework of Study  
Our peer-mentorship research (Yee & Rogers, 2017; Rogers & Yee, 2018) and current 

literature (Reinholz, 2017) has found observational protocols need to have complementary 
feedback structure where novices are able to reflect more openly about how they can modify 
their teaching to achieve their goals. Hence, our design emphasizes post-observation feedback as 
reflective to complement the more evaluative observation protocol. 

GSIOP 
The initial goal of our peer-mentorship model was to provide feedback and facilitate 

discussions among novice GSIs around student-centered teaching strategies to improve 
undergraduate mathematics instruction (Rogers et. al., 2018, under review). The Mathematics 
Classroom Observation Protocol for Practices (MCOP2, Gleason, Livers & Zelkowski, 2017) is 
an observation protocol designed for K-12 that originates from the STEM-based Reformed 
Teaching Observation Protocol (RTOP, Sawada et al., 2002), but unlike the RTOP, includes a 
means to observe student-centered investigations and collaborative learning environments 
focusing on mathematics. Thus, we modified the MCOP2 to be applicable for use when 
observing GSIs and developed the GSIOP which focuses on both student and instructor actions. 
Similar to the MCOP2, the GSIOP contains questions on an ordinal scale from 0 to 3 for four 
sections: classroom management, student engagement, teacher facilitation, and lesson design. A 
more thorough explanation of the GSIOP design can be found in Rogers et al’s validation study 
(under review). 

RYG Feedback 
Mentors were educated through the mentor PD to use the GSIOP during their PD program 

(see Yee & Rogers, 2017) and to facilitate post-observation conversations using a Red-Yellow-
Green feedback structure. Using this structure, mentors identify key points from the GSIOP that 
they could summarize for the novice in three categories: methods the novice is doing well 
(green), methods the novice could work on (yellow), and methods the novice needs to address 
(red). The mentor would summarize points of discussion from the GSIOP and keep the feedback 
manageable by discussing at most two concerns within the yellow and red categories. Scenarios, 
role playing, and live observations helped prepare mentors to provide feedback in each category 
during post-observation meetings that occurred within a week of the observation. We refer to this 
post-observation feedback as the RYG feedback. 

Methods 
In this mixed-methods study, we quantitatively analyzed changes to GSIOP scores to answer 

our first research question. We then qualitatively coded the RYG feedback for types of 
actionable feedback and compared the types of feedback with the changes in GSIOP scores to 
answer our second research question. 

Participants & Observations 
This study included 10 mentor GSIs and 32 novice GSIs from two universities in the United 

States over two semesters. New novices were added between semesters while other novices 
completed their training after one semester. For this reason, we focused on sets of semester-long 
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observations, which consisted of three observations with feedback for each novice on average 
(two novices were observed only twice while three novices were observed four times). This 
generated 50 sets of semester-long observations with feedback, totaling 151 observations with 
feedback. Mentors submitted novice teaching notes, videos of the novice’s class, observation 
summaries, completed GSIOPs, and RYG feedback for analysis. 

Data Analysis 
As our research study emphasized student-centered instruction and RYG feedback, we 

focused only on the two sections of the GSIOP that emphasized student-centered instruction, the 
student-focused (student engagement) and teacher-focused (teacher facilitation) sections. One 
research assistant at each university longitudinally analyzed the GSIOP scores from both the 
student- and teacher-focused sections for each novice over an entire semester. Similarly, each 
research assistant analyzed the RYG feedback and observation summaries for student-focused 
feedback and teacher-focused feedback that aligned with the questions from appropriate sections 
of the GSIOP. This created 100 longitudinal data sets of semester-long observations and 100 data 
sets of semester-long feedback (50 student-focused and 50 teacher-focused). 

To answer our first research question, we summed the questions on the GSIOP student-
focused section (4 questions) and the GSIOP teacher-focused section (5 questions) separately. 
Thus, for each observation of each novice each semester, there was a teacher-focused GSIOP 
score and a student-focused GSIOP score. We looked at change in GSIOP scores over a single 
semester by looking for trends and subtracting novices’ final GSIOP score from their initial 
GSIOP score for both the student- and teacher-focused sections.  

To answer the second research question, we looked at the data collected by the mentor during 
each observation and the feedback each novice received from the mentor. We analyzed feedback 
through an advice and improvement framework. We looked at RYG feedback, GSIOP 
comments, and mentor observation summaries for suggestions that provided the novice with 
advice on teaching that focused on student learning or teacher facilitation. We then looked 
through the data sets at each novice to see if the mentor noted any observed improvements 
related to advice given previously in the semester.  

Next, we coded each piece of advice and each noted improvement as broad or specific. To 
frame broad versus specific objectively, we used Nilsson and Ryve’s (2010) definition of 
contextualization where the context of an event must be given to make a situation specific and 
not referencing a context or event (often referred to as decontextualized) would be considered 
broad. Looking at feedback as advice or improvement concomitantly as broad or specific 
provides a categorization demonstrated on Table 1 with prototypical examples.  

The last two categories, Advice Without Improvement (AWI) and No Advice Nor 
Improvement (NANI) took into account if advice and improvement were not given. AWI implied 
advice (broad or specific) was given, but improvement was not noted in subsequent observations. 
NANI lacked advice and therefore no improvement could be noted in subsequent observations. 

To triangulate the qualitative coding of advice and improvement as broad or specific, after 
each research assistant qualitatively coded the results according to Table 1, two additional 
researchers went back and verified their work by comparing 75 of the 151 observations and post-
observation feedback artifacts for both teacher-focused feedback and student-focused feedback. 
Interrater agreement was initially 94% and after discussion of the coding discrepancies, 
researchers agreed on the appropriate coding for the remaining 6%.  

 
Table 1. Qualitative Coding Scheme for Feedback across an Entire Semester 

Code Description Example 
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SASI Specific Advice Specific Improvement: 
Feedback included at least one contextualized 
suggestion the novice could take to improve their 
teaching. In subsequent observations, the mentor 
noted that the novice had addressed the issues 
through particular contexts, actions, and/or 
strategies. 

“Elaborate with the material and explain the importance of 
the concept. For example, one instance in which you could 
give a little more insight and explanation was when the 
student used P(A U B) = P(A)+P(B) - P(A cap B)”...(later 
observation) “You elaborated more than last time.. I felt 
that this was the perfect amount of elaboration. Also, you 
asked well thought out questions, and you rarely missed 
good opportunities to ask further questions.” 

BASI Broad Advice Specific Improvement: Feedback 
included suggestions without context on when or 
how to improve the novice’s teaching. In 
subsequent observations, the mentor noted that the 
novice had addressed the issues through particular 
contexts, actions, and/or strategies. 

“Have tiny bits of student involvement through to keep 
students engaged” … (later observation) “Student 
questioning chosen was very effective in engaging 
students [with 2^x and log_2(x)]” 

SABI Specific Advice Broad Improvement: Feedback 
included at least one contextualized suggestion the 
novice could take to improve their teaching. In 
subsequent observations, the mentor noted that the 
novice had improved upon previous issues, but 
without referencing specific contexts. 

“I encourage you to give more wait time before answering 
the questions yourself, this can have them participate 
more” … (later observation) “I saw great improvement 
since last time with student engagement….(later 
observation) “Great student interaction”. 
 

BABI Broad Advice Broad Improvement: Feedback 
included suggestions without context on when or 
how to improve the novice’s teaching. In 
subsequent observations, the mentor noted that the 
novice had improved upon previous issues, but 
without referencing specific contexts. 

"Student engagement should be addressed" … (later 
observation) ”Even though she ask[ed] many questions, 
students are not really active in this particular 
class"…(later observation). "She did not just answer but 
encourage[d] students to respond". 

AWI Advice Without Improvement: Feedback 
included suggestions, but the suggestions did not 
appear to be noted throughout the subsequent 
observations. 

"For the next time, I hope that he can get more active 
participation during his lecture portions" No follow up. 

NANI Neither Advice Nor Improvement: Feedback 
was either statements extolling the novice’s 
instruction or platitudes on teaching. Mentor did 
not provide advice nor improvements. 

"He did a great job in his lesson of engaging the students, 
explaining material adequately and also giving his 
students problems to work on at the end of class". No 
advice. 

Results 
Longitudinally, each novice’s three GSIOP scores from both the student-focused and teacher-

focused sections determined how each set of three scores varied. We categorized the changes as 
decrease (each observation was at least two points less than the previous one), steady (each 
observation was within one point of the previous one), moderate increase (each observation was 
at least two points higher than the previous), substantial increase (each observation was at least 
three points higher than the previous), hill (middle score is at least two points higher than the 
other scores), and valley (middle score is at least two points lower than the other scores). Table 2 
shows how many student-focused and teacher-focused sections (changes across a semester) fell 
into each category.  
 
Table 2. Longitudinal Semester-Long Changes in GSIOP Scores by Student- and Teacher-Focused Sections 

GSIOP Change Categories Substantial 
Increase 

Moderate 
Increase Steady Decrease Hill Valley Grand 

Total 
Number of Student-Focused Sections 9 12 15 10 2 2 50 
Average GSIOP Change Per Student-
Focused Section 

5.00 2.50 0.20 -3.90 -1.00 -0.50 0.72 

Number of Teacher-Focused Sections 9 14 18 5 3 1 50 
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Average GSIOP Change Per Teacher-
Focused Section 

5.11 2.21 0.28 -3.60 0.67 -1.00 1.30 

Number of Student- and Teacher-Focused 
Sections 

18 26 33 15 5 3 100 

Average Change Per Student- and Teacher-
Focused Sections 

5.06 2.35 0.24 -3.80 0.00 -0.67 1.01 

 
Results show that for both the student- and teacher-focused sections, on a 0-3 point scale, 

there was an average positive change of 1.01 points per section. We see that the number within 
each category had a fairly equal distribution between student- and teacher-focused sections, with 
the student-focused sections showing more decreases and the teacher-focused sections showing 
more steady or moderate increases. Although a majority of the GSIOP scores remained steady 
(33 out of 100), there were significantly more novices whose score increased moderately or 
substantially (44) than those that decreased (15) over a semester. Thus, our results indicated there 
was an observed change in teaching throughout a semester via the GSIOP score showing an 
overall increase in point value. 

 To answer our second research question, we wanted to understand the feedback at a more 
contextual (Nilsson & Ryve, 2010) level to determine how the feedback was actionable. We 
tallied the total change in score for all novices during a semester by taking the final GSIOP score 
for each section and subtracting it from the initial GSIOP score for that section. We then divided 
the total change by the number of novices to get the average change per novice. 

 
Table 3. Inductive Analysis of Feedback Types Cross-Referenced with Change in GSIOP score 

Feedback Types SASI BASI SABI BABI NANI AWI Grand 
Total 

Student-Focused Feedback 4 2 7 12 11 14 50 
Average GSIOP Change Per Student-
Focused Section 

4.50 3.50 3.57 0.58 -0.73 -0.93 0.72 

Teacher-Focused Feedback 10 4 4 8 5 19 50 
Average GSIOP Change Per Teacher-
Focused Section 

3.40 3.00 -0.25 2.38 0.80 -0.16 1.3 

Student and Teacher Feedback 14 6 11 20 16 33 100 
Average GSIOP Change Per Student- and 
Teacher-Focused Feedback 

3.71 3.17 2.18 1.30 -0.25 -0.48 1.01 

 
Table 3 shows that of all 100 data sets of semester-long feedback, the one with the highest 

average change in GSIOP score was when mentors provided and noticed Specific Advice and 
Specific Improvement (SASI, M=3.71). SASI feedback also resulted in the highest change in 
GSIOP scores for both student and teacher sections. BASI feedback provided high changes as 
well, but with fewer student-focused feedback (N=2) and teacher-focused feedback (N=4) 
sections. SABI feedback influenced the student-focused section more (M=3.57) than the teacher-
focused section (M=-0.25) while BABI feedback influenced the teacher section (M=2.38) more 
than the student section (M=0.58). Both Advice Without Improvement (AWI, M=-0.48) 
feedback and No Advice and No Improvement feedback (NANI, M=-0.25) had the least change 
in GSIOP scores. 

Discussion 
In answering our first research question, we see from Table 2 that RYG feedback in our 

study led to both increases and decreases in GSIOP scores associated with student engagement 
and teacher facilitation, but that there were more increases than decreases in GSIOP scores over 
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semester-long observation-feedback iterations. In answering our second research question, our 
coding of feedback (advice/improvement and broad/specific) illustrated how GSIOP scores on 
the teacher and student sections would change relative to the type of feedback. Moreover, 
feedback that included specific advice and specific improvements had the largest positive change 
in GSIOP observation score indicating that contextualizing feedback leads to more actionable 
feedback.  

Limitations 
The structure of the post-observation feedback and the overall design of the peer-mentorship 

model could have influenced the results of this study. Specifically, the training of mentors and 
the use of the peer-mentorship model may be critical factors in the results of this study. This in 
no way voids the results but is a limitation of implementing RYG feedback with another 
observation protocol or using the GSIOP with a non-RYG feedback structure. 

Implications for Research and Practice 
Tables 2 and 3 support Kluger and DeNisi’s (1998) theory of feedback being “a double-

edged sword” because Table 2 demonstrates overall growth to both the student and teacher 
sections, but it varies according to the type of feedback. Table 3 verifies Kluger and DeNisi’s 
argument that change depends on the type of feedback. When mentors provided specific advice 
and noted specific improvement, or provided broad advice and noted specific improvement, 
novice GSIOP scores improved on observation questions focusing on student engagement and 
teacher facilitation of student-centered learning. However, if the mentor’s feedback provided no 
advice nor improvements, or advice without improvements, there was a minor positive or 
negative change in GSIOP score for both student engagement and teacher facilitation of student-
centered learning. 

Our research provides undergraduate mathematics education with a framework for looking at 
post-observation feedback using a tested observation protocol (Rogers et al., under review) and a 
post-observation feedback structure. Our results (Table 3) indicate providing specific 
improvements had the most actionable (Cannon & Witherspoon, 2005) results with respect to the 
observation protocol. Consider Roberto’s yellow feedback and following green feedback which 
had a substantial increase in his novice’s student- and teacher-focused GSIOP scores. 

(Yellow Feedback) Engage more with the students. Particularly, ask more questions. I see 
that you are using the PowerPoints…I will do a demonstration for you in the one-on-one 
for a slide that was in your lecture. The main thing is to actively think if this is a moment 
I can ask a constructive question to engage with the learning… (Following Green 
Feedback) You are asking more questions to your students and you are getting more 
participation! This is great. Keep it up but remember that you can also… 

The specific advice to engage through questioning, followed by specific improvement that 
promoted continued development demonstrates actionable feedback that can positively frame 
post-observation feedback. 
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A Calculus Teacher’s Image of Student Thinking 
 

Hyunkyoung Yoon 
Arizona State University 

This paper focuses on how a teacher’s image of student thinking influences the meanings she 
conveyed to students. I observed a calculus teacher’s lessons and interviewed the teacher and her 
students. By exploring the data, I see the extent to which the teacher attention to student thinking 
has an impact on (1) the ways she expressed her meanings during instruction, (2) the ways she 
interpreted students’ understandings that they expressed, (3) the ways she decided to adjust 
instructional actions. My analyses suggest that teachers need to think about how students might 
understand their instructional actions so that they can better convey what they intend to their 
students.  

Keywords: Derivative, Conveyance of meaning, Key Pedagogical Understanding  

There has been substantial interest in teachers’ mathematical understanding needed for 
the practice of teaching. Shulman (1986) has distinguished between pedagogical content 
knowledge (PCK) and content knowledge (CK). According to Shulman (1986, 1987), PCK is the 
knowledge of how to make the subject comprehensible to others whereas CK refers to 
understanding of the subject per se.  

On the basis of Shulman’s distinction between CK and PCK, researchers have 
investigated teachers’ knowledge for teaching mathematics. For example, Ball and her 
colleagues developed a theoretical framework “mathematical knowledge for teaching (MKT)” 
including knowledge dimensions such as specialized content knowledge and knowledge of 
content and students (Ball, Thames, & Phelps, 2008). Researchers have focused on identifying 
the particular understanding in teaching mathematics such as how to explain why a problem-
solving procedure is valid. I acknowledge that identifying teachers’ understandings is important 
in the context of teaching, but my stance accords with Silverman and Thompson (2008). They 
asked the question “What mathematical understandings allow a teacher to act in these ways 
spontaneously? How might these understandings develop?” (Silverman & Thompson, 2008, p. 
500).  

This study focuses on a calculus teacher’s image of student thinking and how it 
influenced the meanings she conveyed to students. I used the constructs of meaning, conveyance 
of meaning and Key Pedagogical Understanding (KPU) to guide observations and analyses of 
classroom observations and interviews with the teacher and her students. I present a subset of 
data by focusing on student understandings of the difference quotient in the definition of 
derivative, and describe the consequences of the teacher’s image of student thinking in her 
teaching of the definition of derivative. I seek to answer the following research question: How 
does a teacher’s image of student thinking influence the meanings she conveyed to students?  

Literature Review 
Researchers have attempted to identify types of mathematical knowledge needed in the 

practice of teaching. In an attempt to measure teachers’ CK and PCK separately, some studies 
reported difficulties of distinguishing between CK and PCK. Krauss, Baumert, and Blum (2008) 
described that constructing PCK items that are not affected by CK is hard because PCK and CK 
are closely related. Kahan, Cooper, and Bethea (2003) also pointed out that CK and PCK seem to 
inseparable.  
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Ball (1989, 2002) claimed that knowledge for teaching is more than knowing 
mathematical ideas. Her claim suggests that focusing only on teachers’ knowledge is limited 
because teachers’ knowledge is meaningful only when it helps students build powerful 
understanding. Her research team, which investigates MKT, has been interested in relationships 
between teacher knowledge and student learning.  

“As a result, although many assume, on the basis of the educational production function 
literature, that teachers’ knowledge as redefined in the teacher knowledge literature does 
matter in producing student achievement, exactly what this knowledge is, and whether 
and how it affects student learning, has not yet been empirically established”(Hill, 
Rowan, & Ball, 2005, p. 377). 

Hill et al. (2005) pointed out that what teachers’ knowledge for teaching is and relationships 
between teacher knowledge and student learning have not been empirically demonstrated. In an 
attempt to show relationships between teacher knowledge and student learning MKT group tried 
to validate the assumption that their measures of teachers’ mathematical knowledge for teaching 
are related to teachers’ instruction and student learning (Hill, Ball, Blunk, Goffney, & Rowan, 
2007; Hill et al., 2005).  

Ball’s research group tried to find statistical relationships between what teachers know 
and what students performed as well as between what teachers know and what teachers teach. 
However, the group focused on whether or not students solved mathematical problems correctly 
rather than focusing on the concepts students formed from teachers’ instruction. Moreover, the 
group did not try to explain what they mean by “knowledge” nor how teachers’ knowledge 
(whatever that means) influences student performance through their instruction because they did 
not ask what a student understands of what his or her teacher said. Thus, Ball’s research group 
did not explain why what teachers know led them to do what they did in their instruction, nor 
how their instruction led students to learn what they learned. In the following, I present a new 
lens to investigate how a teacher’s pedagogical understanding influences her instructional actions 
and meanings she conveyed to students.  

Theoretical Framework 
Consider a teacher who teaches mathematical ideas to his students. A teacher has his 

meanings for the mathematical ideas. The teacher intends to convey the mathematical ideas to 
his students. In doing so, the teacher and his students are interacting and making an attempt to 
interpret others in class. Thompson (2013) proposed a theory to explain how two people (person 
A and person B) attempt to have a conversation that leads to mutual understanding.  

 
Figure 1. Person A and B attempting to have a conversation 

According to Thompson (2013), person A in Figure 1 holds something in mind that he intends 
Person B to understand. Person A considers not only how to express what he intends to convey 
but also how person B might hear person A. In doing so, person A constructs his model of how 
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he thinks person B might interpret him. Person B does the same thing in the conversation. Person 
B constructs her understanding of what person A said by thinking of what she might have meant 
were she were to say it. Thus, person B’s understanding of what person A said comes from what 
she knows about person A’s meanings, thereby person B’s understanding of person A’s utterance 
need not be the same, and likely is not the same, as what person A meant.  

Silverman and Thompson (2008)’s framework explains for a teacher to develop 
knowledge that supports conceptual teaching of a particular mathematical idea when she has an 
image of how her students might hear her statements. Silverman and Thompson referred to Key 
Pedagogical Understanding (KPU) to discuss teachers’ image of students’ thinking. Thompson 
(2008) described a six-phase model of teachers’ development of a KPU.  
 

Table 1. KPU phases (Thompson, 2008)   

Phase Description 

1 Teacher develops an understanding of an idea that the curriculum addresses. Student thinking is not an issue. 

2 Oriented to student thinking, but tacitly assumes that information is all that students need, Projecting oneself 
by default. That is, person A presumes unthinkingly all students are A’ (on the road to being A) 

3 Teacher becomes aware that students think differently than teacher anticipates they do, but teacher is 
overwhelmed by seeming cacophony of student thinking (students in her head are B1, B2, B3, …) 

4 In dealing with students’ (B1, B2, B3, …) contributions:  
1. Teacher begins to imagine different “ways of thinking” (epistemic students)  
2. These ways of thinking are still grounded largely in teacher’s ways of thinking. 

5 Teacher begins to imagine how different ways of thinking among students will lead to different 
interpretations of what she says and does. Begins to develop a mini-theory of actions that might help  
students think the way teacher intends 

6 Teacher adjusts: 
1. Her understanding of the mathematical idea as she adjusts her image of ways students think about it.  
2. Her understanding of how students might think about the idea as she adjusts her understanding of it 

 
Thompson (2013) theory of conveyance of meaning and the KPU phases are useful to 

explain what occurs in class. A teacher will express his meanings to his students by saying or 
doing something. Then, his students try to understand what the teacher says and does. Whatever 
meanings his students construct by attempting to understand what the teacher intends is the 
meaning that the teacher conveyed to the students. The conveyed meaning might or might not be 
the same as the teacher’s meaning, and most likely is not. Moreover, the extent to which a 
teacher envisions how his students might understand what he says and does affects both 
meanings conveyed to students as well as his interpretations of students’ actions and utterances.  

Methodology 
I observed 15 calculus lessons taught by Terri (pseudonym). I asked her to select two 

middle-performing students who, in her judgment, pay close attention during lessons. Terri 
selected Amy and Alex for interviews. Terri told me her lesson goals in each Pre-Lesson 
Interviews. She also expressed her meanings and her image of student thinking in the Pre- and 
Post-Lesson Interviews and her lessons. For example, one pre-lesson interview question was, 
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“Do you think your students might understand slope differently than what you intend?” I asked 
this question to discern how a teacher thinks about student thinking before the lesson. Pre-Lesson 
Interviews with Terri took 10-15 minutes. Post-Lesson Interviews with Terri were two types: 5 
minutes Post-Lesson Interviews right after the lesson and one hour Post-Lesson Interviews every 
three lessons.  

Amy and Alex also expressed their meanings in Pre- and Post-Lesson Interviews. I 
conducted a Pre-Lesson Interview prior to every lesson, so the next Pre-Lesson Interview 
sometimes served as a Post-Lesson Interview for the previous lesson. For example, I was able to 
see what they understood in lesson 1 during Pre-Lesson Interview 2. Every Pre-Lesson Interview 
with students took approximately 5 minutes and each Post-Lesson Interview with students took 
about 30 minutes. The schedule for interviews with Terri, Amy and Alex is shown in Table 2. 
 
Table 2. The schedule for the first four lessons (repeated for 11 more lessons) 

Lesson 1 Lesson 2 Lesson 3 Lesson 4 

Pre-Lesson 1 with Terri Pre-Lesson 2 with Terri Pre-Lesson 3 with Terri Pre-Lesson 4 with Terri 
Pre-Lesson 1 with Amy & 

Alex 
Pre-Lesson 2 with Amy & 

Alex 
Pre-Lesson 3 with Amy & 

Alex 
Pre-Lesson 4 with Amy & 

Alex 
Lesson observation Lesson observation Lesson observation Lesson observation 

5min Post-Lesson with Terri 5min Post-Lesson with Terri 5min Post-Lesson with Terri 5min Post-Lesson with Terri 

  
Post-Lesson 3 with Amy & 

Alex  

   Post-Lesson 4 with Terri 

 
I audio recorded pre-lesson interviews with the teacher and the two students and post-

lesson interviews with the teacher. However, I video recorded the lessons and post-lesson 
interviews with students because I showed video clips of students’ post-lesson interviews to the 
teacher. The purpose of sharing students’ video clips with the teacher was to provide 
opportunities to think about students’ understandings and to reflect on her teaching and meanings 
by showing excerpts from the two student interviews that revealed how they understood central 
ideas of the lesson. 

I met the two students selected for interviews after the pre-lesson interviews with the 
teacher. The purpose of the pre-lesson interviews for students was to see their understanding of 
the topic to be covered in the upcoming lesson. I compared students’ meanings demonstrated in 
pre-lesson interviews to their meanings demonstrated in post-lesson interviews to infer what they 
understood from the lesson. After the lesson, I asked each student to describe what he or she 
learned from the lesson. 

Results 
On the first day of observation Terri introduced the definition of derivative. The 

definition of derivative includes the difference quotient, so students’ meanings for rate of change 
or slope influenced how they made sense of Terri’s lesson. The Pre-Lesson Interviews with Amy 
and Alex suggest that they had different schemes for slope and rate of change. Amy’s meaning 
for slope was “going up and over” and did not involve any changes whereas Alex’s meaning for 
slope was the relationship between the change in x and the change in y. When Terri taught the 
definition of derivative, her lessons (Lessons 1-4) had generally focused on how to find formulas 
using the definition of the derivative with algebraic procedures. Amy and Alex tried to make 
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sense of what Terri said in the lessons, but their different schemes allowed them to understand 
Terri’s lessons differently. After watching the students’ video clips Terri decided to adjust her 
instructional actions in order to help their understandings. Terri’s adjustments happened in 
Lesson 6. I will first describe Terri’s lessons and the two students’ understandings, and then 
discuss Terri’s thinking about students’ understandings and her adjustments.  

Terri’s Interviews and Lessons 
In the Pre-Lesson 1 Interview, Terri said she would introduce the definition of derivative 

in lesson 1. She explained that her goal for lesson 1 was for students to be able to “find a 
derivative”, by which she meant to use the definition 

		
f '(x)= lim

h→0

f (x +h)− f (x)
h

 and rules for limits to 

derive a closed form definition for f ' . Terri mentioned the idea of slope to explain the difference 
quotient in the definition of derivative by saying, without elaborating, that the definition of 
derivative without the limit was just a slope between two points, but her main focus was how to 
find formulas with algebraic skills.   

Amy’s Story 
After Amy experienced Terri’s Lesson 1, I conducted Pre-Lesson 2 Interview with Amy. 

When I asked Amy to find the derivative of f (x) = 1/ x  she first said “Terri told us plugging it in 

yesterday [referring to Lesson 1]”. Then, Amy wrote f '(x) = lim
h→0

1 / x( ) +1/ x
h

, which provides strong 

suggestion that “1 x ” was the “it” in “plug it in”. Amy then said, “I kind of forgot how to”. 

When I asked her meaning of f '(x) = lim
h→0

1 / x( ) +1/ x
h

 (see Error! Reference source not found., 

note that there is the sum of 1/ x( ) +1/ x  in the numerator and h only appears once in the 
denominator), she said “use the original function and plug it in into the new formula to find the 
limit of it and once you factor it like take out the elements of it”. This suggests Amy’s 
understanding of Terri’s Lesson 1 was “use the original function and plug it into the new 

formula”, which expanded to substitute 
		
1
x

 into the blanks in 
 
lim
h→0

!( ) +!
h

. Amy first got the idea of 

“plugging in” which seemed to mean “writing something in place of”. This tells us that her 

meaning of the original function was just the inscription 
		
1
x

 that consists of 1, “—”, and x. Amy 

said 
 
lim
h→0

!( ) +!
h

 was the new formula, which means she already had a formula that was what she 

called the original function: the inscription “1 fraction bar x”. Amy understood the definition of 
derivative as a new formula that gave her a new inscription.  

 
Figure 2. Amy’s derivative formula in Pre-Lesson 2 Interview 

Alex’s Story 
In Pre-Lesson 2 Interview I asked him how to find the derivative of f (x) = 1/ x . Alex said 

“ I am trying to remember” and wrote lim
∆ x→0

f (x +∆ x)+ f (x)
∆ x

 saying “I think it’s the limit as delta x 
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approaches zero of f of x plus delta x then f of x over change in x”. He tried to remember what 
Terri wrote in Lesson 1 and wrote what he remembered (see Figure 3).  

 
Figure 3. Alex’s work in Pre-Lesson 2 Interview (Note that he used “+” in the numerator) 

When I asked him about the meaning of 		 f (x +Δx)+ f (x)  he said “It’s the change in something”. 
He continued to say the difference quotient was finding the slope. He seemed to connect the 
difference quotient with the concept of slope. Unlike Amy who only wanted to know the correct 
actions to take, Alex realized that he was missing something about his meanings for derivative 
and wanted clarification. Finally, during Post-Lesson 3 Interview Alex said  

I was saying um that it’s plus. And then that led me into some difficulty during 
the Pre-Lesson Interview (referring to the Pre-Lesson 2 Interview where he wrote 
“+”) because you asked me to explain the top part (circling 		 f (x +∆x)+ f (x) ). 
And then I realized now that once it’s a minus um… it’s just the difference 
between the values on the points. (Alex, Post-Lesson 3 Interview) 

His statements show that he realized that he had not represented what he intended and he wanted 
to represent changes, as in the Pre-Lesson Interview. The nature of his realization was that he 
could not represent changes with sum of functions’ values in		 f (x +∆x)+ f (x) .  

Terri’s Thinking about Amy and Alex’s Understandings 
After Terri saw Amy and Alex using a plus in the denominator of the difference quotient 

of the definition of derivative Terri said that made no sense because the numerator stands for 
change in y. Terri was surprised because she remembered Amy said the slope formula correctly 
in the previous lesson. Terri only focused on Amy’s action (speaking of the slope formula and 
using a plus) and put her own meaning for the difference quotient into her model for Amy’s 
understanding, which led Terri away from a productive understanding of Amy’s thinking. Then, 
Terri said she would adjust her lesson so that she could teach the numerator has a minus by 
writing Figure 4.  

 
Figure 4. Terri’s adjustment for the next lesson to put more emphasis on “—” operation in the difference quotient 

Terri said using ∆x instead of h and eliminating x in the denominator would help her students 
remember that that there was a minus in the numerator by making a connection to the slope 
formula. She thought emphasizing a minus in the denominator would address Amy’s problem.  
Although Terri said she would adjust her instruction, it seemed she thought to adjust it based on 
Amy’s writing “+” instead of “-” and not on a broader understanding of Amy’s orientation to 
write expressions without thinking of their meanings. Her future plan still focused on actions 
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such as eliminating x in the denominator and lacked a plan to convey what the numerator and the 
denominator of the difference quotient mean.  

Terri’s Adjustments and Amy’s Understanding of the Adjustments 
Terri’s goal of the adjustments was to help students remember how to use the formula 

correctly. Terri’s behavior in Lesson 6 for adjustments confirms that she never identified the 
difference between a student’s ability to use a formula, and the student’s meaning for that 
formula.  

After Amy experienced Terri’s adjustments in Lesson 6 she was still using a plus in the 
numerator of difference quotient and said 		 f (x +∆x)+ f (x)was a change. Amy ended up with the 
conclusion that the notation f(x) represents y, so the numerator is about y. Her meaning for slope 
allowed her to think 

		
f (x +∆x)+ f (x)

∆x
 as rise over run because she thought rise over run was y 

values over x values.  
After watching Amy’s Post-Lesson 6 Interview where Amy expressed her understanding  

Terri said she wanted to call the usage of a plus “habit” that is hard to undo, but she believed 
Amy would write the difference quotient correctly. It seems that Terri thought Amy meant the 
numerator is a change although Amy wrote 		 f (x +∆x)+ f (x)  because Terri called it “habit”. This 
interview indicates that Terri put her own meaning into her model of Amy’s statement, so she 
thought Amy knew the numerator represents change in y, but Amy accidentally used a plus. 

Conclusion 
The analysis show that Terri’s lack of orientation to her students’ mathematics played a 

significant role in her instructional actions, adjustments, and the meanings she conveyed to the 
students. Terri taught the ideas in ways that were obvious or clear to her, which led to 
miscommunication between Terri and the two students. When Terri detected miscommunication 
she focused on what Amy and Alex did not understand instead of what they understood. 
Moreover, Terri did not see Amy’s meaning for slope as “going up and over” as an inadequate 
foundation for thinking of the difference quotient of the definition of derivative. Terri did not 
think of Amy’s way of thinking as the cause of her difficulty. In addition, Terri’s decisions to 
adjust her lessons were unrelated to what Amy understood, thus her adjustment did not address 
the sources of Amy’s difficulties. 

Terri slowly moved from KPU Phase 1 to 2 and then 3 as she watched students’ 
understandings in the video clips with me over the observations. After watching two students’ 
video clips she began to say “Students all think differently”, but she did not talk about how the 
two students think differently. As Terri found that her students’ understandings were not 
consistent with her intention, her anticipation about students’ difficulties seemed to become 
concrete. However, Terri still did not imagine different ways of thinking that Amy and Alex 
construct. A teacher in KPU Phase 4 tries to imagine students’ different ways of thinking. Terri 
did not enter KPU Phase 4 during my time with her. It seems that Terri arrived at phase 3 for the 
idea of derivative at the end of the observation.  

In this study, I presented a subset of my data as an illustration of my method for 
exploring how a teacher’s image of student thinking influences her conveyance of meaning. The 
results point to a breakdown in the conveyance of meaning from Terri to students because Terri 
had no image of how students might understand her statements and actions. This study indicates 
that teachers need to think about different ways of thinking that his or her students might have in 
order to convey what they intend.  
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Understanding Students’ Achievement and Perceptions of Inquiry-oriented Instruction 
 

Karen Zwanch Brooke Mullins Nicholas Fortune 
Virginia Tech Virginia Tech Western Kentucky University 

 
Inquiry-oriented instruction (IOI) has been shown to increase students’ cognitive outcomes, but 
the relationship between students’ cognitive and affective outcomes in IOI remains unclear. 
Furthermore, students’ perceptions of the usefulness of and their success in an academic setting 
are related to their engagement and achievement. The present mixed methods study seeks to 
understand students’ perceptions of IOI and whether those perceptions are related to their 
achievement. Results of qualitative analysis reveal four themes related to developing conceptual 
understanding, connecting ideas, feelings of helplessness, and a preference for traditional 
instruction. Results of a mixed linear model show positive or neutral perceptions of IOI are 
related to higher achievement. The relationship between these results is discussed, and is framed 
in motivational theory. 
 
Keywords: Inquiry-oriented instruction; Student engagement; Mixed Methods 
 

Inquiry-oriented instruction (IOI) is a narrower focus on instruction taken from inquiry-based 
learning (IBL; Kuster, Johnson, Andrews-Larson, & Keene, 2017). There are four guiding 
principles at the heart of IOI: (1) generating student reasoning, (2) building on student reasoning, 
(3) developing a shared understanding, and (4) formalizing the mathematics. Typically, an 
inquiry-oriented classroom is a collaborative setting in which students communicate with one 
another by providing explanations and justifications for their methods and solutions. Tasks are 
designed to help students develop more effective problem solving skills with the goal of 
developing conceptual understanding of mathematical topics. By using such methods, instructors 
can better engage students in mathematics classroom and offer them mathematical authority to 
construct their own understanding (Kuster et al., 2017). This definition of IOI makes a 
purposeful and clear break from traditional instruction, which focuses on the teacher’s 
mathematical authority, delivery of instruction through lectures, and the student’s passive 
acceptance of the teacher’s knowledge (Lampert, 1990). Thus, it stands to reason that such a 
distinctive change in instructional philosophy and practice will both affectively and cognitively 
affect students. The present study explores the relationship between these effects. 

 
Literature Review 

Most often research is focused on students’ cognitive outcomes as a way to gain insight to 
performance or achievement. With this focus, researchers investigate students’ mental actions 
and application of those actions, including “remembering, understanding, applying, analyzing, 
evaluating, and creating” (Burn & Mesa, 2015, p. 47). This would include such outcomes as 
student performance, achievement, grades, knowledge, and even skills (Dochy, Segers, Van den  
Bossche & Gijbels, 2003; Freeman et al., 2014; Johnson et al., under review; Laursen Hassi, 
Kogan & Weston, 2014; Lazonder & Harmsen, 2016). However, by only focusing on student 
performance, researchers lose insight to students’ full abilities and participation. For example, 
some students may participate in class and have high level thinking not reflected on assessments. 
Others may not participate in class but have high performance on assessments. Only considering 
performance limits researchers to paint half of the complete picture of student learning. 
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Students’ cognitive outcomes in lecture and non-lecture courses have been well documented. 
To synthesize these results, Freeman et al. (2014) investigated the effect of active learning on 
student performance through meta-analysis of lecture and non-lecture classes. Student 
performance increased with active learning environments versus lecture, and students were one 
and a half times more likely to fail in lecture classes than active classes. These results held for 
STEM, non-STEM, introductory, and advanced courses. Results also show that active learning is 
most effective in classes of about 50 or fewer students, but can be beneficial to students’ learning 
in larger classes as well. These findings demonstrate different levels of cognitive achievement 
for students in active learning and lecture classes, regardless of course or class size.  

In a comparison of cognitive outcomes in IBL courses, Laursen et al. (2014) measured 
students’ cognitive, affective, and collaborative gains in IBL and non-IBL classes. Students in 
IBL classes in this study had higher cognitive gains, as indicated by their grades and self-report 
of learning gains. This suggests that the inherently different experiences of students in IBL 
classes promote higher cognitive achievement than do non-IBL courses. In combination, this 
research demonstrates that active and inquiry learning environments are likely to positively 
influence students’ cognitive outcomes. However, these studies do not take into account 
students’ affective outcomes. Affective outcomes provide insight into students’ “beliefs, 
attitudes, and perceptions” (Burn & Mesa, 2015, p. 97), as well as confidence, enjoyment, 
persistence, and interest (Laursen et al., 2014; Sonnert & Sadler, 2015). Affective outcomes can 
also include factors such as self-efficacy (Bandura, 1997, 2006) and motivation (Jones, 2009, 
2018). Although the study of affective gains can be difficult, as these factors are internal and 
difficult to observe, investigating affective gains allows researchers to better understand student 
learning. 

 
Theoretical Framework 

As one of the strategies of IOI is to increase students’ engagement with mathematical activity 
through active inquiry (Henningsen & Stein, 1997), it is relevant to consider how students’ 
motivation to engage with mathematics is affected by IOI. The MUSIC model of motivation 
(Jones, 2009, 2018) is a macro-theory of motivation, that describes how instruction can be 
designed to increase students’ motivation by fostering students’ empowerment (M), increasing 
students’ perceptions of usefulness (U), success (S), and interest (I), and ensuring the students 
feel cared about (C) by their instructor. In particular, Jones reports that students’ perceptions of 
their ability to be successful with course content, or their self-efficacy (Bandura, 1997, 2006), 
and their perceptions of the usefulness of learning activities to their success, which is part of 
expectancy-value theory (Wigfield & Eccles, 2000), are influencing factors in their motivation to 
engage in the learning process.  

Students’ self-efficacy is one affective construct that is useful in understanding students’ 
“motivation, achievement, and self-regulation” (Schunk & Pajares, 2009, p. 26), as well as 
students’ choices, interest, effort, and persistence (Bandura, 2006; Schunk & Pajares, 2009). 
Self-efficacy also has a higher correlation to achievement than do other affective constructs 
(Jones, 2018). A related affective construct, expectancy-value theory, indicates that students’ 
engagement in academics is related to their expected outcomes (e.g., success or failure) and the 
value they place on the activity; moreover, the value students assign to math has been used to 
predict the likeliness that they will persist in math classes (Wigfield & Eccles, 2000). Thus, as 
IOI seeks to engage students in authentic mathematical activity through the process of inquiry, 
students’ perceptions of the IO classroom may be related to their engagement and subsequent 
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learning. Therefore, the purpose of this study is to employ a mixed methods approach to 
investigate how students’ perceptions of IOI are related to their academic achievement in an 
undergraduate inquiry-oriented differential equations (IODE) course. These perceptions will be 
framed within the MUSIC model of motivation (Jones, 2009, 2018). Specifically, the study will 
examine what students’ perceptions of IOI are, whether those perceptions are positive or 
negative, and whether students’ perceptions of IOI are related to their achievement.  

 
Methods 

The mixed methods research design is concurrent (Creamer, 2018) and utilizes mixing for the 
purpose of achieving complementarity (Greene, Caracelli & Graham, 1989). This work was 
supported by Teaching Inquiry-oriented Mathematics: Establishing Supports (TIMES).  

 
Research Context and Participants 

Data from this study comes from a survey administered to 16 IODE classes. The instructors 
were TIMES Fellows, which means that they were involved in continuing professional 
development focused around the implementation of IOI (Keene, Fortune, & Hall, under review). 
In a typical IODE class students work in small groups on tasks as well as participate in whole 
class discussions. IODE is not a theorem driven course, thus tasks focus on building conceptual 
understanding of various topics (e.g., Euler’s method, eigentheory, modeling with autonomous 
differential equations)1. For example, in an IODE class instructors may generate student ways of 
reasoning about varying step sizes of Euler’s method compare and contrast, build on those 
various contributions to develop a shared understanding, and ultimately formalize the student’s 
conceptual understanding and connect it to the standard Euler’s formula. In total, 226 students 
from IODE classes completed the survey. Of the 226, 36 did not complete the short answer 
question on the survey and were removed. Additionally, 9 students’ responses were removed 
because they were not related to the course, leaving 181 participants in total. 

 
Instrument and Data Collection 

Qualitative data were collected from one short answer question on the Student Assessment of 
their Learning Gains (SALG) survey, originally developed by Laursen, Hassi, Kogan, Hunger, 
and Weston (2011), but modified by TIMES to fit the context of our project. The short answer 
item used for qualitative analysis asked students to “please comment on how the way this class 
was taught affects your ability to remember key ideas.” In response to this item, students were 
able to respond with as much or as little detail as they deemed fit. The students were not asked to 
comment specifically on IOI, but because only students who were in IO classes were included in 
the study, any responses related to their instructor’s teaching style or the activities of the course 
were considered indicators of the students’ perceptions of IOI. Students’ responses were 
quantitized (Sandelowski, Voils, & Knafl, 2009) by coding them as indicating a positive (3), 
neutral (2), or negative (1) perception of IOI; this coding facilitated quantitative analysis, the 
purpose of which was to understand the relationship between students’ perceptions of IOI and 
their content assessment (CA) scores. The CA is from the work of Hall, Keene, and Fortune 
(2016), who created a common multiple-choice assessment of undergraduate students’ 
understanding of differential equations. This multiple-choice assessment consisted of 15 
questions spanning topics from first to second order linear differential equations and systems of 
differential equations. Students’ CA scores are reported in percentages. 
                                                           
1 For more information on IODE visit: https://iode.wordpress.ncsu.edu.  
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Data Analysis 

Students’ written responses were first analyzed by two researchers, who developed open 
codes (Charmaz, 2014). Codes were generated for any detail that indicated students’ sentiment 
toward IOI, or their learning in the IO course. Some written responses generated only one code, 
but others generated as many as four open codes, depending on the length and detail of the 
response. The researchers then grouped the open codes into categories. Finally, themes were 
created by axial coding, which defines the relationships between categories, and relates them to 
one another around the theme’s “axis” (Charmaz, 2014, p. 147). The resulting themes are 
representative of the qualitative data set as a whole.  

After themes were defined, each student’s written response was coded by the researchers as 
indicating a negative (1), neutral or mixed sentiment (2), or positive (3) sentiment toward IOI. 
Examples of how students’ responses were binned into each category are described in the results. 
Finally, after quantitizing students’ written responses, the results of a mixed linear model were 
used to understand the relationship between students’ perceptions of IOI and their CA scores. A 
mixed linear model accounts for the nesting of students within instructors, thereby controlling for 
the effect of particular instructor or classroom characteristics.  

 
Results 

Results of the qualitative analysis indicate four themes: (1) Engaging with Math and Each 
Other, (2) Less to “Know,” (3) Feelings of Helplessness, and (4) Resistance to Change (Table 1). 
The first and second themes that emerged were generally positive, with students noting more 
conceptual understanding and the simplicity of the concepts when they are connected to other 
concepts. The third and fourth themes were more negative, with students reporting frustration 
with IOI and preference for direct instruction.  
Table 1. Emergent Themes from Qualitative Analysis 
Definition Categories 
Theme 1: Engaging with Math and Each Other Learning is a Process; Teaching is 

Learning; Learning from Peers; 
Engaging with Material 

Students report learning more or having deeper understanding 
due to engaging with the mathematics, or with their peers. 
Theme 2: Less to “Know”  

Real-world Applications; Learning by 
Connecting; Key Ideas; Less Content 

Students describe learning “less material” than in other 
courses as a result of viewing concepts as interconnected. 
Some students described this as a focus on key ideas. 
Theme 3: Feelings of Helplessness Unhelpful groups; No study 

materials; Lack of consolidation 
during class; Pacing issues; Not sure 
of right answers 

Students report that they did not feel they could learn because 
of components of IOI.  

Theme 4: Resistance to Change  
Prefer lecture; Need examples Students explicitly state the desire to have more traditional 

class structure. 
Students whose responses were included in the first theme, engaging with math and each 

other, indicated that IOI helped them to have a deeper understanding of the key ideas of the 
course because they were engaged in group work, discussions, sharing responses and justifying 
their work. In particular, some students noted that explaining their ideas to their peers, and 
listening to their peers explain different ideas was beneficial to their learning and helped them 
understand how and why the ideas work. One student said that “it’s like we are training our 
minds [to] work on its [sic] own rather than following some steps.” Another reported that, “I 
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remember because it took me a lot of time to figure it out on my own but when I did figure it out 
it was like a light came on and it all made sense.” These quotations are characteristic of the first 
theme, and responses that fit within this theme described generally positive experiences with IOI 
in which they learned through the processes of teaching, engaging, and working with others. 
 The second theme was that there was less to “know” than in other courses. Of course, 
this is unlikely to be true, but to the students whose responses formed this theme, that was the 
perception. One student stated that “This class helped us remember key ideas by connecting 
them to other ideas.” This idea resonated with many students, all of whom reported an ability to 
remember and focus on key ideas more because the mathematics at hand was being connected to 
other ideas. Some responses within this theme were paradoxical, however. For example, one 
student said “I feel like I remember more than I would in a lecture based course. However, not 
sure if this is because it was less material to learn.” Another stated, “The intuitive discussion and 
openness of the class is incredibly helpful” but went on to say that there was less to learn. For the 
students whose responses fit within the second theme, the connectedness of ideas facilitated their 
learning by allowing them to feel as though there was less to know. 

The third theme was feelings of helplessness, and includes students’ responses related to 
struggling to learn due to qualities of IOI that were beyond their control. These responses 
attended to group members that could not or would not help others, lack of organized notes or 
study materials to reference outside of class, or lack of consolidation of learning during class. 
Although one student noted that discussions about “wrong” methods improved their 
understanding, many more students noted that discussion of the “wrong” methods hindered their 
ability to remember the “right” ideas. For other students, group members made learning difficult 
either because the “spread of math abilities was a little too wide for this [IOI] to have worked 
exceptionally well”, because group work was too time consuming, or because their group 
members simply weren’t helpful. These students’ perception of the course was that their learning 
was not supported due to failures within their group or from the instructor’s organization of class 
time and course materials. 

Finally, a pervasive theme in students’ written responses was a resistance to change. Many 
students simply stated that they prefer lecture over IOI. One student’s response in particular was, 
to the researchers, contradictory; the student indicated that he preferred lecture and that group 
work was not helpful to his learning, but concluded that “In terms of learning how to solve, it 
worked though.” The implication seems to be that although the student was successful in his 
coursework, he would prefer the instructor return to a traditional style of instruction. Others 
indicated that they wished the instructor would have gone over more examples with the class, 
given more organized notes or learning materials, or that the instructor would just directly 
indicate whether their answers were correct. Often these students did not give a reason, or even 
indicated that IOI was helpful, but they were insistent that traditional instruction was better. 

In general, the responses of students that fit within the first two themes were coded as 
indicating a positive sentiment toward IOI and the responses that fit within the third and fourth 
themes were coded as negative. Some responses were coded as neutral or as indicating a mixed 
sentiment if they made both positive and negative statements about IOI or their learning. Any 
indication of not liking, hating, not learning, or being confused by methods of IOI were coded as 
a negative sentiment toward IOI. Mentions of enjoying, liking, or the methods of IOI enhancing 
students’ learning or enjoyment of the course were coded as positive. If students made mention 
of both positive and negative emotions, they were coded as neutral. For example, one student 
stated that the group work was good but that they moved too slowly. Another type of response 
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that was coded as neutral were those that didn’t indicate a positive or negative sentiment. One 
student stated that the course was “fine” for helping them remember key ideas, for example. 

In total, 56 students (30.8%) indicated a negative sentiment, 26 were neutral (14.4%), and 99 
(54.7%) were positive with regard to IOI and learning in an IOI classroom. Furthermore, results 
of a mixed linear model indicate that students’ sentiment toward IOI were significantly related to 
their CA scores (F(165.63)=5.95, p=.003). Also, there is a statistically significant difference in 
CA scores between students who had a negative sentiment compared to a positive sentiment 
toward IOI (t(130.66)=2.97, p=.004). Students with a positive sentiment toward IOI are predicted 
to have a CA score of 58.29, and students with a negative sentiment are predicted to score 8.06 
points lower, all other things held constant. Students with a neutral sentiment toward IOI did not 
score significantly different than students with a positive sentiment (t(176.82)=.811, p=.42). The 
predicted CA score of 58.29 for students with a neutral or positive sentiment is in comparison to 
the mean CA score for all students, 56.04 (SD=16.34). This indicates more than half of students 
in these IO classes were positive about the instruction and their learning, and these students are 
predicted to score slightly better than average on the CA. In comparison, roughly 30% of 
students had a negative sentiment, and are predicted to score approximately 8 points lower than 
their peers with a positive sentiment. 

 
Discussion and Conclusions 

Students’ perceptions of IOI in this study indicated deep understanding of course content 
(theme 1), simplified learning due to connections (theme 2), feeling helpless due to components 
of IOI that were outside their control (theme 3), or a preference for traditional instruction (theme 
4). Responses within theme 1, engaging with math and each other, indicated deeper conceptual 
understanding, and learning by acting as a teacher to their peers or as a pupil to their peers’ 
teaching. Students’ responses within this category were generally positive. Similarly, responses 
within theme 2, less to “know,” noted that making connections between concepts simplified the 
amount of material that they needed to learn. Framed within the MUSIC model of motivation 
(Jones, 2009, 2018), the first two themes relate to students’ feelings of the usefulness of learning 
activities and their success in learning course content. In other words, students’ perceptions that 
they are developing deeper understanding through group work can be interpreted as the student 
placing value on group work (Usefulness) because it leads to their academic success (Success).  

Conversely, characteristic responses within theme 3, feelings of helplessness, indicated that 
students felt as though they were not successful in group work for a variety of reasons. For 
example, group members could not or would not help them, homework was difficult without 
well-organized notes from class, and understanding correct ideas was muddied by discussion of 
incorrect ideas, to name a few. Interpreted within the MUSIC model of motivation (Jones, 2009, 
2018), these feelings of helplessness will affect students’ motivation to engage in IOI because 
they do not perceive group work or discussion to be useful if they do not lead to correct insights. 
As a result, students disengage from IOI. It is impossible to tell whether the students’ perception 
of IOI as not useful to their learning causes them to feel that they cannot be successful, or 
whether feelings of not being successful led them to view IOI as not useful. Regardless, self-
efficacy (Bandura, 1997, 2006) and expectancy-value (Wigfield & Eccles, 2000) theories of 
motivation indicate students with these perceptions are less likely to engage or be successful in 
the course (Jones, 2009, 2018). Similarly, the fourth theme that emerged in this research was a 
resistance to change; responses in this theme indicated students preferred traditional instruction. 
Many of these responses did not provide justification for preferring lecture, but the cycle of not 
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assigning value to IOI and not perceiving one’s success in IOI is similar to that of theme 3. The 
MUSIC model of motivation predicts that if students do not value IOI or believe that they can be 
successful as a result of IOI, then they will be less motivated to engage in the class activities. 

In addition to analyzing the themes that emerged from this research in light of motivational 
theory, students’ responses can also be related to the main purposes of IOI put forth by Kuster 
and his colleagues (2017). They assert that the guiding principles of IOI are (1) generating 
student reasoning, (2) building on student contributions, (3) developing a shared understanding, 
and (4) formalizing mathematics. While the fourth principle is teacher-driven, the output is 
students connecting their informal ways of reasoning to formal mathematics (Kuster et al., 2017). 
This is often done by “linking student-generated solution methods to disciplinary methods and 
important mathematical ideas” (Jackson, Garrison, Wilson, Gibbons & Shahan, 2013). This is a 
guiding principle for IO because without formalizing the mathematics, students could miss the 
connection between their informal ideas and formal mathematics. However, many students’ 
negative perceptions of IOI can be related to the possibility that this formalization did not happen 
for them. Examples of students’ responses in this research study that demonstrate students’ 
negative perceptions of IOI as they relate to not formalizing mathematical ideas include how 
discussing both incorrect and correct solutions left them confused, or that course content was 
disconnected. In other words, many students’ negative perceptions of IOI hinged on having an 
unclear vision of the formal mathematics; this is a point of consideration for IO instructors who 
wish to help their students construct more positive perceptions of IOI. Future research should 
consider whether the improvement of students’ perceptions of formalizing mathematics is related 
to more positive perceptions of and achievement in IOI. 

Thus, it can be concluded that students perceptions of IOI are polarized, and relate to 
students’ perceptions of the usefulness of IOI to their learning, and their perceptions of success 
in an IO course. Additionally, the MUSIC model of motivation (Jones, 2009, 2018) indicates that 
students are likely to experience increased motivation when instructors incorporate elements of 
empowerment (M), elements that interest students (I), and demonstrate caring for their students 
(C). The students’ written responses in this research study were not indicative of elements 
relating to empowerment, interest, or caring. That is not to say that these elements were not 
present within the IOI classrooms, but they were not the focus of the students’ reflections. The 
manner by which students’ perceptions of IOI are influenced by these three components of 
motivation requires future research. 

Motivational theory also indicates that students’ perception of their ability to be successful, 
or their self-efficacy, is highly predictive of academic success (Jones, 2018). This finding is 
supported by the present results, which indicate that students with positive perceptions of IOI are 
related to higher achievement as measured by their CA scores. Future research should consider 
how positive and negative perceptions of IOI can be more clearly refined, facilitating a better 
understanding of whether students’ positive perceptions in general are related to higher 
achievement, or whether aspects of positive perceptions related to usefulness or success are more 
closely related to achievement. In conclusion, while it appears that the IO instructors included in 
this study were generally successful in helping their students develop a positive disposition 
toward IOI and mathematics, it is worthwhile to ensure that as many students as possible 
perceive the course content to be attainable and the IO activities to be useful to their learning, so 
as to support students’ achievement.  

22nd Annual Conference on Research in Undergraduate Mathematics Education 728



References 
 

Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: Freeman. 
Bandura, A. (2006). Guide for constructing self-efficacy scales. Self-efficacy beliefs of 

adolescents, 5(307-337). 
Burn, H., & Mesa, V. (2015). Chapter 4: The Calculus I Curriculum. In D. Bressoud, V. Mesa & 

C. Rasmussen (Eds.), Insights and Recommendations from the MAA National Study of 
College Calculus. (pp. 45-57). MAA Press. 

Charmaz, K. (2014). Constructing grounded theory (2nd ed.). Los Angeles, CA: Sage. 
Creamer, E. G. (2018). An introduction to fully integrated mixed methods. Thousand Oaks, CA: 

Sage. 
Dochy, F., Segers, M., Van den Bossche, P., & Gijbels, D. (2003). Effects of problem-based 

learning: A meta-analysis. Learning and instruction, 13(5), 533-568. 
Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & 

Wenderoth, M. P. (2014). Active learning increases student performance in science, 
engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 
8410–8415. 

Greene, J. C., Caracelli, V. J., & Graham, W. F. (1989). Toward a conceptual framework for 
mixed-method evaluation designs. Educational Evaluation and Policy Analysis, 11(3), 255–
274. 

Hall, W., Keene, K., & Fortune, N. (2016). Measuring student conceptual understanding: The 
case of Euler’s method. In T. Fukawa-Connelly, N. Infante, M. Wawro, and S. Brown (Eds.), 
Proceedings of the 19th Annual Conference on Research in Undergraduate Mathematics 
Education. Pittsburgh, Pennsylvania. 

Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-
based factors that support and inhibit high-level mathematical thinking and reasoning. 
Journal for Research in Mathematics Education, 28(5), 524–549. 

Jackson, K., Garrison, A., Wilson, J., Gibbons, L., & Shahan, E. (2013). Exploring relationships 
between setting up complex tasks and opportunities to learn in concluding whole-class 
discussions in middle-grades mathematics instruction. Journal for Research in Mathematics 
Education, 44(4), 646–682. 

Johnson, E., Andrews-Larson, C., Keene, K., Keller, R., Fortune, N., & Melhuish, K. (under 
review). Inquiry and inequity in the undergraduate mathematics classroom. Submitted to 
Journal for Research in Mathematics Education. 

Jones, B. D. (2009). Motivating students to engage in learning: The MUSIC model of academic 
motivation. International Journal of Teaching and Learning in Higher Education, 21(2), 
272–285. 

Jones, B. D. (2018) Motivating students by design: Practical strategies for professors (2nd ed.). 
CreateSpace.  

Keene, K. A., Fortune, N., & Hall, W. (under review). Supporting instructional change of 
mathematics faculty: Using class videos in an online working group. Under review at the 
International Journal of Research in Undergraduate Mathematics Education. 

Kuster, G., Johnson, E., Keene, K., & Andrews-Larson, C. (2017). Inquiry-oriented instruction: 
A conceptualization of the instructional principles. PRIMUS, 28(1), 13–30. 

Lampert, M. (1990). When the problem is not the question and the solution is not the answer: 
Mathematical knowing and teaching. American Educational Research Journal, 27(1), 29-63. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 729



Laursen, S., Hassi, M. L., Kogan, M., Hunter, A. B., & Weston, T. (2011). Evaluation of the IBL 
Mathematics Project: Student and Instructor Outcomes of Inquiry-Based Learning in College 
Mathematics. (Report to the Educational Advancement Foundation and the IBL Mathematics 
Centers) Boulder, CO: University of Colorado Boulder, Ethnography & Evaluation Research, 
Assessment & Evaluation Center for Inquiry-Based Learning in Mathematics. 

Laursen, S. L., Hassi, M. L., Kogan, M., & Weston, T. J. (2014). Benefits for women and men of 
inquiry-based learning in college mathematics: A multi-institution study. Journal for 
Research in Mathematics Education, 45(4), 406-418.  

Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of 
guidance. Review of Educational Research, 86(3), 681-718. 

Sandelowski, M., Voils, C. I. & Knafl, G. (2009). On quantitizing. Journal of Mixed Methods 
Research, 3(3), 208–222. 

Schunk, D. H., & Pajares, F. (2009). Self-efficacy theory. In K. Wentzel and A. Wigfield (Eds.), 
Handbook of motivation at school (pp. 35-53). Mahwah, NJ: LEA. 

Sonnert, G., & Sadler, P. (2015). The impact of instructor and institutional factors on students’ 
attitudes. Insights and recommendations from the MAA national study of college calculus. 
Washington, DC: Mathematical Association of America. 

Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. 
Contemporary Educational Psychology, 25, 68–81. 

 
 
 
 

 

22nd Annual Conference on Research in Undergraduate Mathematics Education 730



 

Mathematical Knowledge for Tutoring Undergraduate Mathematics 
 

 Linda Burks Carolyn James 
 Santa Clara University University of Portland 

Undergraduate math tutoring is an important venue for student learning, yet little empirical 
work has been done to study tutoring interactions and few theories specifically address tutoring 
interactions. Drawing upon literature from problem solving, peer learning, and mathematics 
teaching, this report proposes a schema for Mathematical Knowledge for Tutors (MKTu).  The 
proposed framework expands Ball’s (2008) Mathematical Knowledge for Teaching by adding 
dimensions of affect and self-regulation.  This additional depth reflects the individualism, 
immediacy, and interactivity which are unique to the tutoring setting where problem solving and 
mentoring take place between an advanced undergraduate tutor and an undergraduate student.   

Keywords: Undergraduate Mathematics Tutoring, Affect, Self-Regulation, Problem Solving 

Tutoring has long been recognized as an excellent form of education. The results of 
Mathematics Association of America’s national study of college calculus indicate that 97% of 
the 105 American institutions surveyed had a tutoring center for students to receive help for 
Calculus, and 89% of the institutions offered tutoring by undergraduate students (Bressoud, 
Mesa, Rasmussen, 2015). While undergraduate mathematics peer tutoring is common, the 
research community is just beginning to focus on this critical out-of-classroom learning context. 
Several quantitative analyses indicate tutoring is associated with higher final grades (Byerly & 
Rickard, 2018; Rickard & Mills, 2018; Xu, Hartman, Uribe & Menke, 2014). To understand why 
tutoring is effective must include a better understanding of the mathematical knowledge 
necessary for effective tutoring. In this paper, we consider how Ball’s (2008) Mathematical 
Knowledge for Teaching (MKT) framework might be adapted to apply to undergraduate 
mathematics tutors. Like Ball we question, “What do [undergraduate tutors] need to know and be 
able to do in order to [tutor] effectively.  Or, what does effective [undergraduate tutoring] require 
in terms of content understanding?” (Ball et. al., 2008, p.394) In our contribution, we describe 
how the components of Ball’s MKT construct translate to tutor knowledge, and we add 
dimensions to reflect the knowledge specific to an undergraduate tutoring context.  

We focus on the knowledge of undergraduate tutors because it is ubiquitous, but also unique. 
Undergraduate math tutoring in this paper refers to peer tutoring in which a more experienced 
(typically upper-class) undergraduate student provides tutoring to another undergraduate math 
student. Peer tutors’ knowledge differs from both mathematics instructors and fellow classmates; 
their experience bridges the gap between those with substantial subject matter knowledge and 
those of peer learners. 

 
Tutoring is not Teaching 

 
Mathematical Knowledge for Teaching (Ball et. al. 2008) is well established for elementary 

students and has been extended to secondary and undergraduate teaching (Speer, 2015; Hauk, 
2014). Still, a different type of mathematical knowledge is needed for tutoring undergraduate 
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mathematics. As Mills, director of NSF funded mathematics resource center workshops, 
regularly reminds the tutor research community, “The application of teaching theories to tutoring 
likely results in a deficit model” (2018, unpublished manuscript). Unlike teaching, tutoring is not 
a profession; undergraduate tutors typically work for 1-3 years. Teachers typically have 
extensive pedagogical training; tutors may have experience teaching, but enter the job with no 
formal teacher training. Undergraduate math tutors have different math backgrounds from each 
other as well as different math backgrounds from trained teachers. Lastly, tutors’ understanding 
of mathematics curriculum commonly differs from instructors. While undergraduate math 
instructors have a good sense for the math content which they teach, undergraduate math tutors 
have a unique sense of how their math courses connect to courses in their particular major.  

In addition, the tutoring context is substantially different from the classroom context: the 
instructional goals of each context may differ, and the knowledge required to meet those goals 
also differs. In the classroom, an instructor is responsible for teaching new material to many 
learners at once. In the tutoring context, the learner has some previous familiarity with the 
content, and the tutoring interaction typically takes place in an individualized setting with a focus 
on solving problems. The individualized tutoring context also allows for immediate, 
individualized feedback, while a classroom context typically cannot allow immediate feedback to 
all learners. A key role of the tutor is to help the student become an independent learner; thus 
prioritizing the development of self-learning skills over the mastery of content (Marx, Wolf, 
Howard, 2016). Although self-learning is valued in the classroom, most formative assessments in 
mathematics prioritize proficiency with content (Burn & Mesa, 2015). The power dynamic 
between a tutor and student is also likely different than that between a student and instructor. 
While undergraduate peer tutors are not peers in the strictest sense: they typically have slightly 
more math background than the students they are tutoring, and they relate more closely than an 
instructor does to a student. 

Given these differences between tutor and teacher, an extended model for the Mathematical 
Knowledge for Tutoring Undergraduate Mathematics (MKTu) is needed and is relevant to the 
RUME community. To advance a research agenda aimed at describing and improving tutoring 
practices and tutor training, a theoretical model is needed to describe the mathematical 
knowledge necessary for undergraduate tutoring. The schema for MKTu proposed here builds on 
Ball’s MKT and is based on tutoring observations (McDonald and Mills, 2018; James and Burks, 
2018), tutoring literature, problem solving theory, and peer learning methodology. The proposed 
framework is a theoretical contribution grounded in existing literature. This framework will 
require ongoing refinement based on empirical studies, and will help guide the focus of 
qualitative analysis of tutor actions and interactions. 

 
Mathematical Knowledge for Teaching 

 
Ball describes and illustrates this theory of Mathematical Knowledge for Teachers (MKT) 

using the well-known “egg” diagram seen in Figure 1. Following Shuman’s (1986) analysis, Ball 
divides MKT into Subject Matter Knowledge (SMK) and Pedagogical Content Knowledge 
(PCK). SMK is then further divided into Common Content Knowledge (CCK), Horizon Content 
Knowledge (HCK), and Specialized Content Knowledge (SCK). Common Content Knowledge is 
math knowledge which teachers use in ways similar to the way it is used in other occupations. 
Horizon Content Knowledge is cognizance of how mathematical concepts are related across the 
curriculum. Specialized Content Knowledge (SCK) is content knowledge specifically used by 
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teachers. Similarly, PCK is subdivided into Knowledge of Content and Students (KCS), 
Knowledge of Content and Teaching (KCT) and Knowledge of Content and Curriculum (KCC). 
Knowledge of Content and Students (KCS) includes recognition of student misconceptions and 
reasoning how to build new understanding on student’s current thinking. Knowledge of Content 
and Teaching (KCT) is knowledge of teaching moves. Knowledge of Content and Curriculum 
(KCC) indicates awareness of when a particular topic is first covered and then revisited within 
the elementary curriculum. While Ball’s focus has been on elementary math teaching, others 
have applied it to secondary and tertiary math teaching (Speer, 2015; Hauk, 2014).  

  

 
Figure 1. MKT from Ball, Thames, Phelps (2008, p.403) 

Mathematical Knowledge for Tutoring 
 

Based on supporting literature, Ball’s original MKT model is modified to reflect the 
mathematical knowledge uniquely representative of tutors. Our theoretical proposal extends 
Ball’s egg to include affective and self-regulatory components. Ball’s planar egg becomes a 
cross section of a 3-dimensional ellipsoid that forms the MKTu framework as seen in Figure 2. 
The 2D cross section looks very similar to the Ball framework; however, a lower supporting 
affective arc is laid underneath and a guiding overarching edge of self-regulation is added above. 
The planar cross section is discussed first, followed by the lower and upper arcs of affect and 
self-regulation. The three divisions of SMK for teaching remain in the planar cross section of 
SMK for tutoring: Common Content Knowledge (CCK), Horizon Content Knowledge (HCK), 
and Specialized Content Knowledge (SCK). 

 
  

 
Figure 2. Mathematical Knowledge for Tutors (MKTu) 
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Subject Matter Knowledge for Tutoring 
Within SMK, a tutor’s Common Content Knowledge tends to focus primarily on knowing 

how (Mason, 1999), which includes identifying the approach needed to solve the problem and 
subsequently carrying out the appropriate computations correctly. In contrast, a classroom 
instructor must draw many knowledge types -- knowing how, why, and that (Mason, 1999)-- 
while explaining concepts, carrying out procedures, and solving problems in the course of 
classroom instruction. 

In addition, a tutor’s CCK may differ significantly in scope compared to a teacher. 
Undergraduate tutors cannot be expected to have the depth and breadth of understanding of an 
undergraduate curriculum common to instructors; however, Common Content Knowledge may 
not be as critical to the tutoring experience. Tutors do not introduce new material; instead their 
primary role should be to encourage students to make use of their own resources (such as the 
textbook and class-notes), and guide students through the process of articulating their own self-
explanations (Chi, 2008). Since the role of the tutor is different from a teacher, the type of 
content knowledge required for effective tutoring differs as well. 

Common Content Knowledge and Specialized Content Knowledge for tutors is commonly 
characterized by the dominate role of problem-solving within the undergraduate tutor context. 
Students may be aware of concepts taught in class and may also have mastered topics from 
previous courses, but it is the tutor who helps students refine problem solving skills and build 
connections between prior knowledge and current knowledge. Whereas HCK for teachers 
considers how a current math topic fits in context with math curricula from prior and future 
years, HCK for tutors connects current math work with aspects of a specific major curriculum. 
For example, a tutor engineering major has knowledge of how integration theory is used in 
junior-level engineering courses in a way that a math instructor might not. 

 
Pedagogical Content Knowledge for Tutoring 

Within Pedagogical Content Knowledge for tutors (PCKtu), Knowledge of Content and 
Students (KCS) for tutoring includes identifying and understanding student mathematical 
contributions to progress the mathematical agenda. This type of knowledge is very similar to the 
KCS for teaching described by Johnson (2012), which focused on the listening needed for 
instructors who enact inquiry-oriented mathematics. Like inquiry-oriented instructors, tutors also 
draw on SCK to make mathematical sense of students’ contributions. However, unlike 
instructors who leverage student contributions toward a specific mathematical goal for the whole 
class, the tutor is interested in redirecting the student’s ideas in a way that allows the student to 
engage in self-reflection to solve a specific mathematical task.  

Additional components of KCS for tutors include cognitive conflict, scaffolding, and error 
management (Topping, 1999). In drop-in tutoring sessions, tutors must know how to effectively 
balance cognitive conflict; it is beneficial for a student to be productively confused, but harmful 
for a student to be hopelessly confused (Graesser, 2011). In addition, tutors must use error 
management to identify student conceptions and tailoring questions to lead a student to reflect 
upon and reform those conceptions when needed (Topping, 1999). Knowledge of effective 
scaffolding is also an important component of a tutor’s KCS (Chi, 1996); it differs from 
classroom scaffolding primarily because of the individualization required to adapt to a specific 
student’s problem-solving approach, rather than a whole-class scaffold. 

 Communication, organization, and engagement are all critical components within a 
tutor’s Knowledge of Content and Teaching. Topping (1999) identifies communication as critical 
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to effective tutoring, which includes listening, explaining, and questioning. This type of 
communication differs significantly from the communication found in a classroom: while an 
instructor must facilitate dialogue among many voices (Gay, 2002), the tutor must manage one-
on-one interaction. Organization and engagement (Topping, 1999) captures the importance of 
active learning in the tutoring session. Topping includes goal setting, planning, time on task, the 
opportunity for individualization of learning, and immediacy of feedback within organization 
and engagement. In the mathematics tutoring setting, tutor and student goals for the tutoring 
session and selection of appropriate problems are included in the process of organization and 
engagement. In the context of problem solving, organization and engagement also includes the 
tutor-student dialogue taking place at each phase of problem solving: orienting, planning, 
executing, checking, monitoring. 

Since tutors are more of a mentor than a peer, KCC comes from the tutors’ extended 
experiences of courses and university culture. Tutor knowledge will arise from personal 
experience with the curriculum. Tutors have first-hand experience with the curriculum in their 
major and department; whereas math instructors have a knowledge of the content in context of 
the mathematics curricula.  

 
Affective Knowledge for Tutoring 

In this theoretical framework, we utilize Philipp’s (2017) definition for affect: affect is “a 
disposition of tendency of an emotion or feeling attached to an idea or object. Affect is 
comprised of emotions, attitudes, and belief” (p. 259). Understanding how affect relates to 
mathematical learning is indeed an important component of mathematical knowledge for 
teaching as well as tutoring. However, affect plays a different, more prominent and more 
fundamental role, in MKTu. In particular, motivating students and helping them to cope with 
frustration are two key components of tutoring (Topping, 1999). This role of managing student 
affect, unique to tutors, is seen in motivation and emotions. Affect is so critical to the tutoring 
context that it is displayed as an arc underlying both Subject Matter Knowledge and Pedagogical 
Content Knowledge for Tutors in Figure 2.  

Experienced problem solvers effectively work through an intense emotional cycle as they 
simultaneously work through a cognitive problem-solving cycle (McLeod, 1989). Awareness 
that affective elements are part of the mathematical problem-solving process is part of CCK for 
tutors. Confident students begin to work on a problem with enthusiasm. If they get stuck carrying 
out a plan, they may get tense and grow more frustrated with each attempt that leads nowhere. If 
they reach a solution, they experience the satisfaction, and possibly even delight, of an ‘Aha’ 
experience (Schoenfeld, 1992; Carlson, 2005). In the less ideal situation where students do not 
reach a solution, their frustration may turn to anger. If simmering, this anger may interfere with 
the effectiveness of a tutoring session. Knowing how to support students in their emotional 
responses is part of both KCS and KCT.  

Motivation is another meaningful part of the affect arc supporting MKTu. Tutors need to 
have knowledge of what elements of the mathematics are motivating for students, which is 
another type of KCS. Whereas a teacher provides motivation in the enacted problem-solving 
process found in classroom, the individualized context of tutoring means tutors have the 
opportunity to uniquely motivate a particular student (Lepper and Woolverton, 2002). 

Since understanding and practicing mathematics can raise heightened emotions (Beilock & 
Maloney, 2015), a math tutor may need to handle intense feelings from a student. To do so 
adequately, a trusting relationship between tutor and student is essential. A competent tutor 
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models enthusiasm and confidence, which the student notices, either directly or indirectly. Tutors 
help students move from anxiety and fear to perseverance, persistence, and resilience; this is part 
of PCK for tutors.  

Math anxiety is a different than other anxieties; it is uniquely related to the discipline of 
mathematics (Dowker, Sarkar, Looi, 2016). Math anxiety bridges both the cognitive and 
affective domains. Tutors need to manage the relationship between what the student needs to 
motivate them and what the student needs to develop mathematical understanding (Lepper & 
Woolverton, 2002). In doing so, the tutor coordinates mathematical subject knowledge with 
pedagogical content knowledge. 

In MKTu, the affect arc undergirds SMK as well as PCK. Evidence of affect is seen in 
almost every tutoring session (James and Burks, 2018; Graesser, 2011). In fact, tutors with no 
training can be effective (Leary et. al., 2013). This observation suggests that the focus, 
persistence, and affirmation, each of which a tutor naturally gives a student, are key elements of 
student success. And so, affect is represented as a supporting foundation of Mathematical 
Knowledge for Tutors. 

 
Self-Regulatory Knowledge for Tutoring 

Self-regulation, which includes metacognition and skills for self-control and decision-
making, overlays both Subject Matter Knowledge and Pedagogical Content Knowledge for 
Tutors. Metacognition, which is the ability to think about one’s thinking, is a particularly 
important while problem-solving (Schoenfeld, 1992). Effective problem solvers spend time 
understanding the problem, designing a plan to solve the problem, carrying out the plan, and 
reflecting back. As they progress through each problem-solving phase, efficient problem solvers 
are aware of their position in the problem-solving process and cycle back to a previous phase 
when needed. Once a solution is reached, the problem solver looks back at the solution, checks 
the work, reflects on its validity and makes connections to other work. 

This knowledge is not unique to tutoring; however, because problem solving forms the basis 
of most tutoring interactions metacognition is particularly important for tutoring. Tutors not only 
need to have metacognition about their own problem solving (a type of Common Content 
Knowledge), they need to understand which components of the metacognitive process are 
challenging when problem solving (SCK). In addition, they must evaluate where a student is in 
their metacognitive process (KCS) and know ways to move the student to the next step (KCT). 
The individual and immediate nature of tutoring (Lepper & Woolverton, 2002) makes this type 
of knowledge of metacognition for tutors distinct from the knowledge typically found in 
teaching. 

Because problem solving permeates SMK for tutors, the rich discussions of the importance of 
metacognition in problem solving, peer learning, and tutoring seem relevant; however, little 
evidence of metacognitive moves are observed in tutoring sessions (Graesser, 2011). Topping 
(1996) specifies metacognition as key component of peer learning. Graesser (2011) describes the 
metacognition of the tutor with respect to teaching the student; however, more work is needed to 
help tutors share the metacognitive aspects of problem solving with their students.  

Metacognition is one component of self-regulation. Other components such as teaching 
students to be more self-regulated with respect to study skills indicate that self-regulation is also 
a critical covering of PCK. Self-regulatory study skills help students acquire knowledge, connect 
knowledge, and apply knowledge. Within the context of mathematics, self-regulation may 
include general study skills such as setting goals, planning to reach those goals, and assessing 
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whether those goals have been obtained. The elements of individualization, immediacy, and 
interactivity, distinctive characteristics of tutoring, suggest that there exist techniques of self-
regulation which are unique to tutoring (Lepper and Woolverton, 2002). In addition, peer tutors 
have a different power dynamic with the students they tutor compared to a teacher, and they may 
have unique, less evaluative ways to relate to students regarding self-regulation and study skills.  

The relevance of individualization, immediacy, and interactivity in the tutoring session leads 
to a greater distinction between teaching and tutoring. An effective tutor makes a crucial 
connection between a student’s cognitive model and motivational model. This connection may 
be congruent, independent, or conflicting (Lepper and Woolverton, 2002). If cognitive and 
motivational diagnoses are congruent and lead to the same approach, the situation is ideal. If 
cognitive and motivational diagnoses are independent, an approach used to address either 
cognitive or motivational needs will not affect the other. When cognitive and motivational 
diagnoses lead to conflicting approaches, the tutor needs to discern which approach is most 
appropriate at a given time. This astute decision-making process, which follows the complex 
assessment of cognitive and motivation needs of the students, is unique to tutors and validates 
the placement of self-regulation as an awning overlaying Mathematical Knowledge for Tutors. 

Conclusions  
 

This report proposes an initial schema for Mathematical Knowledge for Tutoring of 
undergraduate mathematics; the schema is based on literature in problem solving, peer learning, 
and mathematics teaching and tutoring. Ball’s (2008) model of Mathematical Knowledge for 
Teachers is deepened to include the important role of affect in MKTu and raised to highlight the 
particular role of self-regulation in MKTu. It is important to note that many of the types of 
knowledge proposed in this framework are already a part of the responsive, personalized 
teaching that takes place during one-on-one discussions during classroom interactions. However, 
the tutoring context is necessarily unique due to the context, goals of the interaction, and the 
breadth of tutor experience. Imposing a model of teaching knowledge onto tutors results in a 
deficit evaluation: in contrast, this model highlights the critical types of knowledge necessary for 
tutors while expanding the framework to capture types of knowledge outside of the typical role 
of a teacher.  

 The adapted egg raises research questions and lays the basis for formal observations of 
undergraduate mathematics tutoring. As findings from research studies of tutoring interactions 
emerge, the MKTu egg will evolve into a more complex theoretical framework integrating 
subject matter knowledge, pedagogical content knowledge, self-regulation, and affect. The 
modified framework will serve as an incubator of new research questions and further studies.  

Ultimately, our goal is to leverage future research built on this framework toward the 
development of training materials for undergraduate tutors. These materials will be implemented, 
assessed, and tested. Updates to the MKTu theory will in turn generate new sets of observations 
and research studies. The momentum of this continuing cycle will propel our work in identifying, 
understanding, and implementing effective practices as well as developing and testing training 
materials for undergraduate math tutoring. 
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Leveraging Cognitive Theory to Create Large-Scale Learning Tools
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At the 21st Annual Conference on Research in Undergraduate Mathematics Education, Ed Dubin-
sky highlighted the disparity between what the research community knows and what is actually
used by practicing instructors. One of the heaviest burdens on instructors is the continual as-
sessment of student understanding as it develops. This theoretical paper proposes to address this
practical issue by describing how to dynamically construct multiple-choice items that assess stu-
dent knowledge as it progresses throughout a course. By utilizing Automated Item Generation
in conjunction with already-published results or any theoretical foundation that describes how
students may develop understanding of a concept, the research community can develop and dis-
seminate theoretically grounded and easy-to-use assessments that can track student understanding
over the course of a semester.

Keywords: Assessment, Automated Item Generation, Technology in Mathematics Education

At the 21st Annual Conference on Research in Undergraduate Mathematics Education, Ed Du-
binsky highlighted the disparity between what the research community knows and what knowledge
is actually applied by practicing instructors. This disparity is not unique to mathematics education
and exists even in education research in general (Van Velzen, 2013). One method to bridge this
disparity is to involve mathematics instructors in research projects (Vidakovic, Chen, & Miller,
2016). Even outside of funded efforts, the RUME community in general has been encouraging
practicing instructors to participate. However, there are a plethora of instructors that this approach
cannot be applied to as they have limited time and resources. For these instructors, administering
and providing feedback for open-response classroom activities is not feasible, especially for those
who coordinate large-scale courses such as Calculus. This burden renders the knowledge of the
research community moot, as it is too resource-expensive to collect and implement the knowledge
practically. We propose an alternative method to engage these instructors: utilize the mathematics
education literature and programming languages to dynamically generate multiple-choice ques-
tions that can form easy-to-use assessments throughout a course. To set the stage for this method,
we briefly summarize how research has been presented to the community at large.

Disseminating Research Results
Let us consider how mathematics education research is disseminated from the perspective of

a mathematics instructor. First, we need access to journal articles on the results from research -
articles that may or may not be available through our school’s library. Assuming we get access, we
read through the results and notice the majority of assessments used are free-response assessments.
This is not unexpected as qualitative research primarily use free-response assessments to gain
as much insight into student thinking as possible. However, these results and assessments are
difficult for instructors to utilize. The result is an isolating effect where instructors rely on their own
experience and knowledge to develop instruments that may or may not be based in how students
develop their mathematical conceptions.

One avenue for potential instructor use of research results is concept inventories - multiple-
choice assessments designed to explore students’ conceptual knowledge of a specific topic. One
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of the earliest such assessments is the Force Concept Inventory (Hestenes, Wells, & Swackhamer,
1992), which outlines the conceptions necessary to understand Newtonian force. More recently
in mathematics education, Carlson, Oehrtman, and Engelke (2010) introduced the Precalculus
Concept Assessment (PCA). We quickly summarize how they developed this assessment below.

Through numerous studies, Carlson et al. (2010) developed a taxonomy of the necessary con-
ceptions students should develop before taking calculus. Each assessment item is linked to one or
more of these conceptions and went through multiple phases of refinement and validation:

• Phases I & II: Series of studies to identify and analyze how students understand the central
ideas of precalculus and calculus. Open-ended questions were refined and common student
responses were identified.

• Phase III: Validated multiple-choice items based on the open-ended questions from Phases
I & II. This phase went through eight cycles of administering the assessment, conducting
follow-up interviews, analyzing student work, and revising the taxonomy and assessment
based on the results.

• Phase IV: Widespread administration of the revised 25-item multiple-choice assessment.

Based on this short explanation of their generation and validation process, it is no wonder
few concept inventories have been developed to date – these assessments are time-consuming and
costly to develop and validate properly. It is likely the primary reason qualitative research does
not present more easily-accessible materials for instructors to implement in their classroom. Yet,
these assessments are crucial as they provide an avenue to efficiently assess students’ conceptual
understanding of a mathematical topic. These research-based multiple-choice assessments provide
the practical application of the RUME community to mathematics instructors. We feel that tech-
nology can aid researchers in transforming more open-ended questions and qualitative results into
multiple-choice assessments that can be used by instructors. The next section will describe how
we can dynamically generate quality multiple-choice items.

Automated Item Generation
We use a typical College Algebra item (Figure 1) to introduce multiple-choice item terminol-

ogy. A multiple-choice item consists of a stem and options. The stem includes the context, content,
and problem for the student to answer. In the example in Figure 1, this includes the instructions
(context) and the problem. By problem, we refer to the content issue that must be solved. In the
example in Figure 1, this would be solving the linear equation. Solving this problem leads to the
solution. Plausible, but incorrect, answers to the problem are referred to as distractors. The solu-
tion and distractors are used to create the options, or choices presented that the student must choose
from. Of these, the correct option corresponds to the option that correctly solves the problem in
the stem (solution) while the distractor options correspond to the incorrect, distractor solutions.

There are currently two general strategies to generate distractors. The first strategy focuses on
similarities between the solution and distractors. For example, a numeric solution could be manip-
ulated in some form: being negated, divided by a factor, or shifted a small amount. Manipulating
the solution in some way to make similar responses does not require a great deal of time and re-
sources, and thus is commonly utilized (Gierl, Bulut, Guo, & Zhang, 2017). The disadvantage to
this method is that distractors may not reflect actual student thinking. Students with incomplete
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Figure 1: Example of a typical multiple-choice item.

knowledge may be able to eliminate these types of distractors and thus arrive at the solution (or, at
least, more easily guess at the solution), thereby rendering the goal of assessing student knowledge
moot. In short, multiple-choice items developed with these types of distractors would not provide
feedback on students’ potential cognitive processes.

The second method focuses on common misconceptions in student thinking while they reason
about the problem. These misconceptions can be recalled and utilized by experienced content spe-
cialists reflecting on the common errors they have seen in the past or identified through evidence-
based research on students’ work during open-ended items (Gierl et al., 2017). This approach
creates high-quality distractors that mirror responses students may make during an open-ended
assessment.

In addition to the two methods above, we could consider how a student’s conception of a
mathematical topic would influence their response to the question. This strategy would enable the
instructor to link certain multiple-choice responses to the student’s conception at the time of the
test. Carlson et al. (2010) utilize this method in the PCA to great success. By creating distractors
based on a student’s conception as it develops over time, instructors can more accurately assess
and improve student understanding.

One avenue for creating quality distractors based on all three methods above is Automatic Item
Generation (AIG). AIG utilizes computer technologies and content specialists (or evidence-based
research) to automatically generate problems, solutions, and quality distractors. Few examples
of AIG currently exist, even in the context of mathematics (Gierl et al., 2017; Gierl, Lai, Hogan,
& Matovinovic, 2015). We will now illustrate how to leverage the knowledge of the research
community to automatically generate distractors, and in doing so, generate ways to assess student
knowledge as it develops.
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Methodology
Dubinsky and Wilson (2013) investigated low-achieving high school students and their under-

standing of the concept of function. In their research assessment, they asked the following typical
questions about composition of functions:

1. Suppose f and g are two functions. Find the compositions f �g and g� f .

2. Suppose h = f �g is the composition of two functions f and g. Given h and g, find f .

3. Suppose h = f � g is the composition of two functions f and g. Given h and f , find g
(Dubinsky & Wilson, 2013, p. 97).

Correct answers to these questions can provide some knowledge about students’ understanding of
functions in general. In fact, the authors state:

In both the written instrument and the interviews, we asked students questions, some of
which we considered to be difficult, about composition of functions. Our intention was
to investigate the depth of their understanding of the function. We also felt that success
in solving these problems was an indication of a process conception of function and
in some cases, an indication of a process conception that was strong enough so that it
could be reversed in the mind of a participant in order to solve a difficult composition
problem (Dubinsky & Wilson, 2013, pgs. 96-97).

While open-response items would provide more information about students’ understanding, this
illustrates how correct answers to multiple-choice items could suggest students’ conceptions of a
particular concept. It is this belief that allows even multiple-choice questions to be used as learning
tools in the classroom, as they can shed light on what students understand and allow instructors
to challenge misconceptions. In order to be successful, multiple-choice items should include the
common conceptions students may have. We illustrate how to develop quality distractors in the
context of composition of functions below.

Consider the typical College Algebra exam item in Figure 2. The question requires students
to compose two functions and evaluate the composition at a given point x = a. A student with
adequate procedural understanding of function composition will compose the new function and
evaluate it at the point to obtain f (g(5)) =

�1
3(5)

2 +1
�2

= 784
9 which is answer choice A. in Fig.

2. Two other common responses Dubinsky and Wilson (2013) observed students made when solv-
ing function composition problems of this type were (a) composing the functions in an opposite
order (answer choice C.) and (b) conflating the composition notation with multiplication notation
(answer choice B.). These responses would correspond to (a) a student recognizing composition
as a new operation yet not performing the action correctly and (b) a student not recognizing com-
position as a new operation, similar to multiplication having multiple representations: ⇥, ·, and the
absence of an explicit operator such as with 4x.

To be clear - this question does not assess a student’s conceptual understanding of composition
of functions. It is however necessary students can illustrate adequate procedural knowledge of
composition before moving on to develop a conceptual understanding of the operation. We now
illustrate an automated question meant to assess a student’s conceptual understanding of function
composition.
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Specific: Suppose f (x) = (x+1)2 and g(x) = 1
3x2 are two functions. Find the

composition ( f �g)(x) at the point x = 5.

A. 784
9

B. 300

C. 1296
3

Generalized: Suppose f (x) = (x+ c)2 and g(x) = b1
b2

x2 are two functions. Find
the composition ( f �g)(x) at the point x = a.

A. f (g(a)) =
⇣

b1
b2

a+ c
⌘2

B. ( f ·g)(a) = b1
b2

a2 (a+ c)2

C. g( f (a)) = b1
b2
(a+ c)4

Figure 2: Typical College Algebra function composition exam item and generalized template.

The second and third types of function composition questions used by Dubinsky and Wilson
(2013) required students to take a composed function h(x) = ( f � g)(x) and isolate the functions
composing it. For example, given h(x) and g(x), a student would then be asked to find the expres-
sion for f (x), or find the value of the expression at a given point a. While Dubinsky and Wilson
(2013) did not provide alternative student responses, we constructed a question and two “poten-
tial” student responses in Figure 3. In this example, the student is given a table representation of
the functions and asked to consider reversing the function composition to evaluate f at. Rather
than reversing the composition, a student could evaluate h(g(2)) and “solve” the problem using
similar steps to question 1. This would suggest the student has memorized a procedure to evaluate
composition of functions, but does not recognize the need to reverse the process. Alternatively,
a student could evaluate h at 2, then find the corresponding x value to when g is 1. This would
suggest the student recognizes the need to reverse the composition process but the order of the
function composition f (g(x)) was inverted. Finally, a student could state that without knowledge
of the function f , they cannot evaluate any point. This would suggest the student views a function
as a single algebraic formula.

The ability to reverse the composition and isolate the functions composed, as well as describe
this process in general, would be growth of a conceptual understanding of composition. Now, a
single multiple-choice question cannot provide an instructor with strong evidence of a student’s
procedural and/or conceptual understanding. However, by combining a series of questions linked
to common conceptions on composition, instructors can identify where a student is in their concep-
tion and provide targeted feedback. With the added technological component, this identification
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Specific: Given only the information in the following table, find f (2)
(if possible).

x h(x) g(x)
2 1 -3
-3 4 1
-2 0 2

A. f (2) = 4

B. f (2) = 0

C. f (2) = 1

D. It is not possible to find f (2) based only on the information in the table.

General: Given only the information in the following table, find f (a1)
(if possible).

x h(x) g(x)
a1 c1 b2
b2 b3 c1
a2 a3 a1

A. f (a1) = b3

B. f (a1) = a3

C. f (a1) = c1

D. It is not possible to find f (a1) based only on the information in the table.

Figure 3: Example and template for function composition problems type 2 and 3.

can be automated and provided to the student without the instructor combing over the student’s
work. It is this fine-grained assessment and feedback that can improve how students develop their
understanding throughout a course. In short, quality multiple-choice assessments can remove the
time-burden of free-response assessments while (theoretically) providing similar results on student
thinking.

Discussion
Generating multiple-choice assessments that can potentially indicate a student’s level of un-

derstanding is attractive for a variety of reasons. From a practicality standpoint, these assessments
would be cost-effective (both in time and resources to develop) and quick to grade. Providing the
linked distractors for each item choice can also draw students’ attention to their conception, allow-
ing them to modify their thinking. It is in this way - explicitly challenging student conceptions in
a cost and time effective manner - that these assessments can be used as practical learning tools.
The mathematics education research community has the knowledge needed to create these quality
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multiple-choice assessments. By combining this knowledge with automatic item generation, the
mathematics education research community can provide instructors with practical results based on
empirical data.

In addition, theoretical frameworks such as APOS Theory posit learning trajectories students
may take to learn a concept. By creating multiple-choice questions aligned to the various levels as
students’ knowledge develops, instructors can track a student’s progress to provide individual feed-
back. With the ease that multiple-choice assignments can be graded, this individualized feedback
can be scaled to large courses such as College Algebra and Calculus.

Automatically generated multiple-choice assessments can also serve as a research tool. We
noted a paper by Dubinsky and Wilson (2013) in which they asked students to answer common
college algebra questions. By converting these types of questions to multiple-choice items, re-
searchers can widen their sample size to provide greater certainty of the results. Some authors in
the RUME community have begun to tap the potential of multiple-choice assessments in research,
such as Carlson et al. (2010) with their use of multiple-choice assessments in a precalculus con-
cept inventory. A wide-spread use of multiple-choice assessments based on empirical evidence can
provide the sample size needed to produce robust results.
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A Comparison of Frameworks for Conceptualizing Graphs in the Cartesian Coordinate System 
 

Erika J. David 
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The use of the Cartesian Coordinate system (CCS) pervades secondary and tertiary mathematics 
curriculum, as the dominant convention for displaying graphs of functions. The CCS in two 
dimensions may be framed as a conceptual blend of two number lines and a Euclidean plane 
(Lakoff & Núñez, 2000). Within the concept of a number line is a conceptual metaphor uniting 
numerical values with points on a line. While such a description of the CCS may describe a 
shared understanding of the convention among the mathematics community, it may not account 
for the ways in which individual students interpret graphs presented in the CCS. Other theories, 
such as David et al.’s (2017) constructs of value-thinking and location-thinking, have been 
proposed to account for students’ graphical interpretations. In this paper, I outline these two 
ways of framing conceptions of graphs, the uses of each framework, and their relation to each 
other.  

Keywords: Cartesian Coordinate System, Graphing, Conceptual Blend, Conceptual Metaphor, 
Value-Thinking and Location-Thinking 

Across numerous mathematics courses at the secondary and undergraduate level, students are 
asked to interpret and reason with graphs that are represented in the two-dimensional Cartesian 
coordinate system (CCS). In the U.S., the CCS is typically the first coordinate system in which 
students are expected to graph points (5.G.A.1-A.2) and the standard coordinate system used in 
curriculum from Algebra through Calculus (e.g., Stewart, 2012). The CCS, like other coordinate 
systems, follows certain conventions. In two dimensions, the Cartesian plane consists of two 
axes with specified units that meet at a right angle. Pairs of values are represented given 
distances from the intersection of these axes, referred to as the origin. Due to its fundamental role 
in the teaching and learning of mathematics at the secondary and undergraduate level, 
researchers have examined ways in which both individuals and the mathematics community use, 
reason with and interpret graphs in this coordinate system. Through various modes of research 
from different perspectives, several theoretical frameworks have been proposed to explain some 
ways in which graphs are understood in the CCS.  

In this paper, I will describe two theoretical frameworks from different theoretical traditions, 
explain how they may be used, and offer some examples of how researchers have used these to 
frame their data analysis. I will also compare the purposes and benefits of adopting and utilizing 
each of these frameworks. One framework comes from the work of Lakoff and Núñez (2000), 
whose perspective offers insight into the underlying cognitive structure of the CCS as developed 
and used by the mathematics community. In their description, the CCS relies on a conceptual 
metaphor of numbers as points to understand. While Lakoff and Núñez’s (2000) framework 
offers one view of the CCS as a conventional system, rooted in an embodied cognition 
perspective, their theory may not readily apply when describing the ways in which individuals 
may interpret graphs represented by such a system. For instance, instructors teaching students 
content that includes graphs in the CCS may use different understandings than those proposed by 
Lakoff and Núñez (2000). Furthermore, the way in which students interpret graphs presented to 
them in their courses may differ from the mathematics community as well as their instructors. 
Thus, I will also describe David, Roh, and Sellers (2017) framework to characterize students’ 
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graphical interpretations. Their framework also recognizes the role of both values and locations 
of points in interpreting graphs, namely that students may attend to one aspect of points rather 
than the other in their interpretations. Both David et al.’s (2017) framework, as well as Lakoff 
and Núñez’s (2000) theory offer valuable insight into cognition related to graphs. The adoption 
of one theoretical frame for conceptualizing graphs rather than another ought to be guided by a 
researcher’s purposes.  
 

Conceptual and Ideational Mathematics 
To frame my discussion of the content and purpose of these frameworks for studying 

conceptions of graphs, I adopt two considerations offered by Schiralli and Sinclair (2003) in their 
commentary on the work of Lakoff and Núñez (2000). The first is the distinction they make 
between conceptual mathematics and ideational mathematics. In their explanation, Lakoff and 
Núñez (2000) offer a description of conceptual mathematics, which refers to the discipline of 
mathematics as a collective subject matter, negotiated by participants in the mathematics 
community who hold a shared meaning. In contrast, they use the term ideational mathematics to 
refer to the ways in which individuals interpret or reason about conceptual mathematics. 
Ideational mathematics includes the ways that mathematicians may use and conceptualize 
mathematical ideas and the ways students may interpret and understand ideas. In defining these 
terms, Schiralli and Sinclair seek to clarify whether the mathematical concept to be studied is 
shared knowledge in the field of mathematics or lies in the mind of an individual engaged in 
mathematical thinking. Schiralli and Sinclair (ibid) also emphasize that the way in which a 
particular group or individual is engaged with the mathematics, “whether one is learning, doing, 
or using mathematics” may influence their cognitive processes and should be considered (p. 81). 
For the purposes of discussing the theoretical frameworks in this paper, I follow these two 
considerations posited by Schiralli and Sinclair (ibid): I situate each framework and its use based 
on (1) “which mathematics” aims to be studied and (2) the nature of the goals of the individual or 
group conceptualizing the mathematics. These considerations of Schiralli and Sinclair (ibid) help 
to make explicit certain underlying assumptions within each theoretical framework as well as 
offer insight into how these frameworks may serve researchers in their purposes of investigating 
various conceptions of mathematical ideas. 

Cartesian Plane as a Conceptual Blend 
Lakoff and Núñez (2000), who operate from a perspective of embodied cognition, view 

mathematical thinking as fundamentally rooted in humans’ sensorimotor experiences, influenced 
by their neural biology. In their work to describe “where mathematics comes from,” Lakoff and 
Núñez (ibid) seek to reveal and untangle the underlying cognitive structures that serve as the 
foundation of mathematics as a discipline. Their framework derives from a method of 
“mathematical idea analysis,” a linguistic approach in which they uncovered underlying 
metaphors from the language used in central concepts in mathematics (Schiralli & Sinclair, 
2003). Thus, the frameworks they propose for making sense of the cognitive structure of 
mathematical ideas describe conceptual mathematics used by mathematicians in doing 
mathematics. 

Relative to graphs in the Cartesian Coordinate System, Lakoff and Núñez (2000) describe the 
Cartesian Plane as a conceptual blend, a combination of conceptual domains. In their description, 
number-lines make up the axes of the Cartesian Plane, which rely on the conceptual metaphor 
“Numbers are Points on a Line.” Lakoff and Núñez (ibid) describe conceptual metaphors as a 
cognitive tool to make concrete concepts which are inherently abstract, such as those in 
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mathematics. In a conceptual metaphor, an object is mapped from a source domain to another 
object in a target domain in such a way that preserves inferences. In the Numbers are Points on a 
Line” metaphor, numbers are the target, abstract domain described by points on a line, a more 
concrete concept. Table 1 contains Lakoff and Núñez’s (ibid) description of the key 
correspondences in the “Numbers are Points on a Line” metaphor. 

 
Table 1. Numbers are Points on a Line (for Naturally Continuous Space) (Lakoff & Núñez, 2000, p. 279) 

Source Domain 
Points on a Line 

 Target Domain 
A Collection of Numbers 

A Point P on a line 
A Point O 
A point I to the right of O 
Point P is to the right of point Q 
Point Q is to the left of point P 
Point P is in the same location as 
point Q 
Points to the left of O 
The distance between O and P 

® 
® 
® 
® 
® 
® 
 
® 
® 
 

A Number P’ 
Zero 
One 
Number P’ is greater than Number Q’ 
Number Q’ is less than Number P’ 
Number P’ equals number Q’ 
 
Negative numbers 
The absolute value of number P’ 

 
In this metaphor, points on a line are the source domain, the concrete object, to which a 

collection of numbers is mapped. Ordering is one of the inferences preserved in this mapping, 
with points to the left defined as numbers with smaller values. Through what they refer to as the 
“Number-Line Blend,” new objects are created which they refer to as number-points, at once 
numbers and points on a line.  

Moving from one to two dimensions, the Cartesian Plane is described by Lakoff and Núñez 
(2000) as comprised of a conceptual blend. A conceptual blend, distinct from a conceptual 
metaphor, refers to a blending of “two distinct cognitive structures with fixed correspondences 
between them” (Lakoff & Núñez, ibid, p. 48). Table 2 shows the correspondences that comprise 
the Cartesian Plane Blend. 

 
Table 2. The Cartesian Plane Blend (Lakoff & Núñez, 2000, p. 385) 

Conceptual Domain 1 
Number Lines 

 Conceptual Domain 2 
The Euclidean Plane with Line X Perpendicular to Line Y 

Number line x 
Number line y 
Number m on number line x 
Number n on number line y 
The ordered pair of numbers (m, n) 
The ordered pair of numbers (0, 0)  
A function y=f(x); that is, a set of 
ordered pairs (x, y) 
An equation linking x and y; that 
is, a set of ordered pairs (x, y)  

« 
« 
« 
« 
« 
« 
« 

 
« 

 
« 

Line X 
Line Y 
Line M parallel to line Y 
Line N parallel to line X 
The point where M intersects N 
The point where X intersects Y 
A curve with each point being the intersection of two 
lines, one parallel to X and one parallel to Y 
A figure with each point being the intersection of two 
lines, one parallel to X and one parallel to Y 
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The solutions to two simultaneous 
equations in variables x and y 

 The intersection point of two figures in the plane 

 
In this conceptual blend, the cognitive structures of number lines and the Euclidean plane are 

combined. Each element of one domain combines with an element from the other domain. For 
instance, the x-axis in the CCS is a blend of both a number line ‘x’ as well as a Line ‘X’ in the 
Euclidean plane. Similarly, points in the CCS are at once ordered pairs (m, n) and locations of 
intersections of two lines related to m and n, parallel to the y-axis and x-axis respectively.  

Use of Cartesian Plane as Conceptual Blend Framework 
Describing the mathematical use of number lines as relying on a conceptual metaphor and the 

Cartesian Plane as a conceptual blend may offer insight into the emergence of these conventions 
in the development of the field of mathematics. Namely, the mental act of ascribing geometric 
notions of locations and distances offers a powerful conceptual tool to conceptualize abstract 
ideas of number, ordered pairs, and functions. However, this framework characterizes ideas that 
have developed into shared meanings within the mathematical community, rather than individual 
differences in working with such ideas.  

Although the nature of Lakoff and Núñez’s (2000) framework is designed to characterize 
conceptual mathematics, the construct of a conceptual metaphor offers a lens to consider the 
ideational mathematics of individuals. For instance, Font, Bolite, and Acevedo (2010) 
investigated the metaphors that Spanish high school instructors used in their classrooms while 
teaching graphs of function. In their study, Font et al. (2010) were interested in investigating 
instructors’ ideational mathematics while engaged in the act of teaching. They found that 
instructors used various metaphors to communicate properties of graphs. These metaphors 
included the graph as a path, orientational metaphors, and object metaphors, in addition to the 
ones identified by Lakoff and Núñez’s (2000) description of conceptual mathematics related to 
graphs. Furthermore, instructors were found to be unaware of their use of language related to 
these metaphors in their instruction. When asked to consider their own metaphorical language, 
instructors commented that their purpose in using it was to support their students in 
understanding a certain principle. While this study examined how instructors interpret and use 
ideas related to graphing while teaching, other studies have focused on characterizing students’ 
ideational mathematics. 

Interpreting Graphs via Value-Thinking or Location-Thinking 
 
In contrast with a perspective of embodied cognition, David et al.’s (2017) framework to 

characterize conceptions of graphs is situated in a constructivist perspective. This framework, 
shown in Table 1, details two ways students may interpret aspects of graphs, referred to as value-
thinking and location-thinking. This framework was developed to describe phenomena that were 
observed in undergraduate students’ interpretations of graphs in the CCS in the context of the 
Intermediate Value Theorem (IVT) (David et al., ibid). To be clear, their framework was not a 
priori theory; rather, this framework emerged from their data analysis (David et al., ibid). In this 
framework, if a student attends to the pairs of values that points represent, this way of thinking is 
referred to as value-thinking. On the other hand, if a student focuses on the location of points in 
the Cartesian plane, this way of thinking is referred to as location-thinking.  
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Table 3. Comparison of Characteristics of Value-Thinking and Location-Thinking (David, Roh, & Sellers, 2017, p. 
96)  

 Value-Thinking Location-Thinking 
Interpretations Evidence Interpretations Evidence 

A
sp

ec
ts

 o
f a

 G
ra

ph
 

Output of 
Function 

The resulting value 
from inputting a 
value in the function 

▪ Labels 
output values 
on output axis 
▪ Speaks 
about output 
values 

The resulting 
location in the 
Cartesian plane 
from inputting a 
value in the 
function 

▪ Labels 
outputs on 
the graph  
▪ Labels 
points as 
outputs 
▪ Speaks 
about points 
as a result of 
an input into 
the function 
(e.g., “an 
input maps to 
a point on the 
graph”) 

Point on 
Graph 

The coordinated 
values of the input 
and output 
represented together 

▪ Labels 
points as 
ordered pairs 
▪ Speaks 
about points 
as the result 
of 
coordinating 
an input and 
output value 

A specified spatial 
location in the 
Cartesian plane 

Graph as 
a Whole 

A collection of 
coordinated values 
of the input and 
output 

A collection of 
spatial locations in 
the Cartesian plane 
associated with 
input values 

 
These two ways of thinking characterize students’ interpretation of graphs. The framework 

explains each way of thinking by detailing how a student engaged in that way of thinking thinks 
about three aspects of a given graph: outputs of the function, points on the graph, and the graph 
as a whole. Each of these aspects of graphs is described from the perspective of a researcher 
using conventional interpretations of the Cartesian coordinate system. The output of a function is 
conventionally represented as a magnitude of length in the direction of the y-axis. A point 
conventionally represents a pair of both input and output values, located a distance of the input 
value to the right of the origin, and a distance of the output value above the origin. 
Conventionally, a graph as a whole represents the set of all ordered pairs that satisfy the equation 
of the function. The framework also describes observable evidence indicative of thinking about 
aspects of the graph in a particular way. Using these descriptions of observable evidence in the 
framework, students’ words, gestures, and markings on the graph can be used to characterize 
their way of thinking about graphs as either value-thinking or location-thinking. 

 
Value-Thinking 

In this framework, value-thinking refers to an attention to the values represented by a point in 
Cartesian space. Students whom David et al. (2017) classified as engaged in value-thinking 
treated outputs as values associated with corresponding input values. These students may have 
indicated their thinking by labeling output values on the output axis, or speaking about output 
values. In their description, students engaged in value-thinking think of points as coordinated 
pairs of input and output values. These students may indicate this way of thinking by labeling 
points as ordered pairs, and speaking of simultaneous pairs of values when referring to points on 
a graph. Thus, students engaged in value-thinking treat graphs as a collection of points, each of 
which represents a pair of input and output values.  
 
Location-Thinking 
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In contrast, location-thinking refers to an attention to the locations of the points in space. 
Students whom David et al. (2017) classified as engaged in location-thinking treated points on 
the graph as outputs, confounding outputs of the function with points on the graph. These 
students may have indicated that they were thinking in this way by referring to points solely as 
outputs or describing the output of a function as the location of the graph itself (e.g., “each input 
is mapped to a point on the graph”). Additionally, students engaged in location-thinking may 
label a point with an output value only, thus placing the output label at a point, rather than on the 
output axis. Thus, students engaged in location-thinking treat graphs as a collection of points that 
represent locations in the plane that correspond with input values.  

Use of Value-Thinking and Location-Thinking Framework 
To highlight the distinction between value-thinking and location-thinking, consider the two 

examples of sample student labeling on the same graph indicative of each of these ways of 
thinking, shown in Figure 1.  
 

 
Figure 1: Example labels indicative of value-thinking, left, or location-thinking, right. (David et al., 2017 p. 97) 

 
The labels on the graph in Figure 2, left, may indicate value-thinking. In this graph, output 

values are labeled on the output axis, and points are labeled as ordered pairs. In contrast, the 
labels on the graph in Figure 2, right, may indicate location-thinking. Output labels are not 
placed on the output axis but rather at the locations of points. Consequently, points are not 
labeled as ordered pairs but solely as outputs. While a student’s gestures and words should be 
examined in addition to the labels on a graph, these examples highlight distinctive characteristics 
of value-thinking and location-thinking.  

David et al.’s (2017) framework emerged from analysis of a data set from interviews of nine 
undergraduate math students who were asked to evaluate and interpret statements related to the 
Intermediate Value Theorem using graphs. Their final coding scheme involved classifying 
students as engaged in value-thinking or location-thinking throughout episodes of their 
interviews. In their later work, David et al. (2018) report details of a student, Zack, whose 
thinking was characterized as location-thinking. See his graph labels in Figure 2.  
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Figure 2. Zack’s labels of points as outputs, a common characteristic of location-thinking (David et al., 2018) 

 
David et al. (2018) point to several pieces of evidence support the claim that Zack was 

engaged in location-thinking when reasoning with these graphs and statements related to the 
IVT. First, Zack placed output labels at locations on the graph, rather than on the y-axis and 
referred to the endpoints of the graph as “f(a)” and “f(b).” Additionally, Zack labeled N’s 
between f(a) and f(b) along the graph of the function, rather than along the y-axis. In addition to 
the context used in David et al.’s (2017) study, this framework may also be applied by 
researchers to characterize student thinking in other contexts. Instructors may even find such a 
framework useful in attending to their students’ reasoning when teaching graphs of functions. In 
my view, this framework best supports the goal of characterizing the thinking of students 
engaged in the learning of mathematics. 

Conclusion  
 
The study of the conceptions and uses of graphs in the Cartesian Coordinate System is a 

valuable line of research in mathematics education. In this paper, I have compared two such 
theoretical frameworks related to the study of graphing in mathematics in terms of its relation to 
conceptual or ideational mathematics and the activity of those engaged with the mathematics at 
hand. By framing the Cartesian plane as a conceptual blend built on metaphors, Lakoff and 
Núñez’s (2000) framework supports researchers in uncovering the cognitive processes involved 
in considering graphs in the CCS within the domain of conceptual mathematics. By extension, 
researchers have begun to use their metaphorical framing to capture ways in which instructors 
conceptualize graphs while teaching (Font et al., 2003). Characterizing students’ ways of 
interpreting graphs (their ideational mathematics), David et al.’s (2017) framework of value-
thinking and location-thinking highlights previously undocumented phenomena in students’ 
graphical interpretations. Both of the theoretical frameworks illustrated in this paper 
acknowledge two aspects of points on graphs in Cartesian coordinates: the values represented by 
points and the locations of these points spatially. The way in which these frameworks view this 
duality differs due to the perspective adopted. For Lakoff and Núñez (2000), a practitioner of 
mathematics uses this duality, even if subconsciously. From the perspective of David et al. 
(2017), the extent to which students conceptualize this duality varies; in fact, students may be 
more likely to focus on one aspect of a point rather than both simultaneously.  Going forward, 
researchers should take careful theoretical consideration in deciding how to frame investigations 
of graphing. Such attention may yield extensions of the current frameworks, further delineations 
of these ways of thinking, or other characteristics that have yet to be identified. In this way, 
theory on graphing as part of mathematical activity will continue to be built and refined. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 754



References 
David, E. J., Roh, K.H., & Sellers, M. E. (2017). The role of visual reasoning in evaluating 

complex mathematical statements. In T. Fukawa-Connelly, K. Keene, & M. Zandieh (Eds.), 
Proceedings of the 20th Annual Conference on Research in Undergraduate Mathematics 
Education. (pp. 93-107). San Diego, CA: RUME. 

David, E. J., Roh, K.H., & Sellers, M. E. (2018). How do undergraduate students make sense of 
points on graphs in Calculus contexts? In Proceedings of the 40th Annual Conference of the 
North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: PMENA. 

Font, V., Bolite, J., & Acevedo, J. (2010). Metaphors in mathematics classrooms: analyzing the 
dynamic process of teaching and learning of graph functions. Educational Studies in 
Mathematics, 75, 131-152. 

Lakoff, G. & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind 
brings mathematics into being. New York, NY: Basic Books. 

National Governors Association Center for Best Practices, Council of Chief State School 
Officers. (2010). Common Core State Standards for mathematics. Washington, D.C.: 
National Governors Association Center for Best Practices, Council of Chief State School 
Officers. Retrieved from: www.corestandards.org/Math/Content/ 

Schiralli, M. & Sinclair, N. (2003). A constructive response to ‘where mathematics comes from.’ 
Educational Studies in Mathematics, 52(1), 79-91.  

Stewart, J. (2012). Calculus: Early transcendentals (7th ed.). Stamford, CT: Brooks/Cole 
Cengage Learning. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 755



Why Don’t Students Check their Solutions to Mathematical Problems?  
A Field-based Hypothesis 

 
Igor’ Kontorovich 

Department of Mathematics, the University of Auckland 

This theoretical paper introduces a field-base hypothesis, according to which the intensity and 
type of an intellectual need that students can experience for checking their solution to a problem 
might be related to the epistemological status of methods that they employed for solving the 
problem. The hypothesis emerged from the analysis of a final exam in a first-year course where 
421 students worked on four problems in linear algebra. In one of them, 33 students provided 
evidence of checking their solutions, all of which appeared as educated guesses. No written 
evidence of checks was indicated in the deductive solutions, in which the students utilized 
algorithms, procedures, and theorems that were introduced to them in the course. Thus, it might 
be proposed that problem-solving methods with a low epistemological status (e.g., educated 
guesses) may instigate the need for checking a solution as a means to compensate for their 
status.   

Keywords: checking solutions, DNR-framework, epistemological status, intellectual needs, 
problem solving. 

Introduction and Literature Review 
Let us assume that in her final exam in linear algebra, Rina was assigned with the 

problem in Figure 1. The solution is far from easy in this case, as it requires fitting together a 
considerable number of topics that the course covered: systems of linear equations, bases of 
vectors spaces, column spaces, and that just for the first part! Now, let us assume that Rina has 
put her course studies to use, which created an opportunity for her to check her own work. Hence 
come the questions whether she will do the checks, and if yes, how. 

Let 𝐴 = [
2 2
4 1
0 1

], 𝑐 = [
4
1
1
], and let S be the set of all vectors �⃗⃗�∊ℝ3 such that 𝐴�⃗� = �⃗⃗� has a 

solution. 
(a) Find a basis for S (no need to show that S is a subspace of ℝ3). 
(b) Find the least square solution to 𝐴�̅� = 𝑐. 
(c) Find the corresponding least square error.  
(d) Give a non-zero vector that is orthogonal to every vector in S.    

Figure 1. An assigned problem. 

Research has been approaching such questions through the lens of metacognition and 
problem solving, when the lion’s share of studies have been conducted in the context of school 
mathematics (e.g., Cai, 1994; Lucangeli & Cornoldi, 1997; Pugalee, 2004; Schoenfeld, 1992). 
One line of this research might propose that it would be rather atypical if Rina attempted to 
check her solutions. For example, in his study with twenty ninth-graders, Pugalee (2004) found 
that verification – evaluating decisions and checking calculations – was the rarest behaviour 
compared to the ones that the students exhibited at the orientation, organization, and execution 
phases in their problem solving. Another line of research might advise Rina to undertake the 
checks due to the recurrent findings on the relation between verification of solutions and 
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successful problem solving (e.g., Cai, 1994; Lucangeli & Cornoldi, 1997). Malloy and Jones 
(1998), for instance, found a moderate correlation between problem success of twenty-four 
students of ages 12-14 and their verification behaviors. The verification in their study was 
associated with rereading the problem, checking calculations, checking the plan for solution, 
using another method, and redoing the problem. However, the findings of Mashiach Eizenberg 
and Zaslavsky (2004) may confuse Rina’s decision-making. The participants in this study were 
fourteen undergraduate students, who initiated a verification of their solutions in nearly two 
thirds of the cases. Despite students’ attempts, however, every second solution remained 
incorrect. 

From the metacognitive point of view, the question of “to check or not to check” a 
devised solution pertains to how one allocates cognitive and affective resources during problem 
solving (Schoenfeld, 1992). Verschaffel (1999) maintains that such checks are especially 
important at the final stages of problem-solving cycles, where solvers need to interpret the 
outcomes of their work. In Schoenfeld’s (1992) terms, checking can be viewed as an instance of 
monitoring since it is part of one’s reflecting on the effectiveness of her problem-solving 
processes and products. Overall, the acknowledgement of the importance of checking can be 
traced back to the classical work of Pólya (1945), specifically to the “carrying out the plan” step 
for solving a problem and “looking back” at the devised solution. When carrying out the plan, 
Pólya recommends the solver to check and prove the correctness of each move that she 
undertakes. The “looking back” step, in turn, is instigated by such questions as “can you check 
the result?”, “can you derive the result differently?”, and “can you use the result, or the method, 
for some other problem?” In this way, despite its title, this step is targeted at preparing the solver 
for the next problem, the solution of which might be easier if she would take the time to critically 
reflect on the problem that has been solved already. 

In this theoretical paper, I present a field-based hypothesis on possible relations between 
contextual affordances that can emerge when one solves a problem and consequent moves that 
she might undertake for checking her solution. Harel (2017) posits that a field-based hypothesis 
is  

“suggested by observations of learners’ mathematical behaviors in an authentic 
learning environment, and is explained by cognitive and instructional analyses 
oriented within a particular theory of learning, but has not, yet, been proved or 
disapproved by rigorous empirical methodologies in large scale settings” (p. 70).  

The DNR-framework is used as a theory of learning in this paper, when its selected constructs 
are reviewed in the next section. This is followed by a description of an authentic learning 
environment, in which observations of a large cohort of students were made. An analysis of these 
observations gives rise to the hypothesis in the last section. 

Intellectual Need and Epistemological Justification 
In Harel (2008a, b), Guershon Harel introduced a comprehensive conceptual framework 

“which seeks to understand fundamental problems of mathematics teaching and learning” (Harel, 
2013a, p. 3). This epistemologically solid framework has already exhibited its analytical power 
and usefulness for designing teaching environments (e.g., Harel, 2013a, b, 2017). The framework 
has been termed with the acronym DNR, which stands for three pillar principles: duality, 
necessity, and repeated reasoning. The full brunt of DNR goes beyond the scope of this paper, 
hence, I provide a brief overview of its central constructs that are utilized later on.  

The necessity principle grows from the work of Piaget (1985), in which learning is 
viewed as occurring in situations where one attempts to resolve a mental disequilibrium. Harel 
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(2017) encapsulates the principle as follows: “For students to learn what we intend to teach them, 
they must have a need for it, where ‘need’ refers to intellectual need” (p. 75). Intellectual need is 
conceived as a contextualized construct that comes into being in a situation which one 
experiences as problematic in the sense that her current state of knowledge is insufficient or 
incompatible and additional piece of knowledge should be acquired in order to reach an 
equilibrium. Specifically, Harel (2013a) distinguishes between five categories of intellectual 
needs: the need for certainty can emerge when a learner has doubts about the trueness of a 
particular assertion; the need for causality is the need to determine a cause of a phenomenon (i.e. 
to explain); the need for computation pertains to quantifying numeric values that are missing; the 
need for communication is manifested through formulating and formalizing for the sake of 
conveying and exchanging ideas; finally the need for structure is the need to reorganizing one’s 
knowledge into a logical structure. Kontorovich and Zazkis (2016) offered to enrich this 
categorization with Koichu’s (2008) principle of intellectual parsimony, which states that when 
solving a problem, a person can avoid investing more intellectual effort than the needed 
minimum for obtaining a solution. This principle may be positioned as an intellectual need for 
parsimony, the need which might explain why a particular piece of knowledge has not been 
constructed. 

Harel (2013a) maintains that the notion of intellectual need is tightly connected to 
epistemological justification, which “refers to the learner’s discernment of how and why a 
particular piece of knowledge came to be. It involves the learner’s perceived cause for the birth 
of knowledge” (p. 8). In his later work, Harel (2018) offers a typology of epistemological 
justifications, where one of the types is apodictic. This justification pertains to one’s viewing the 
proving process of the logical implication α→β either in causality or explanatory terms. An 
apodictic justification manifests itself when one is interested either in the consequences of α, or 
in the possible causes of β. Accordingly, α and the whole apodictic chain that leads to β endow a 
high epistemological status in relation to β.  

Harel (2013a) emphasizes that intellectual needs are ingrained in all aspects of 
mathematical practice, which allows the application of his framework to the purposes of this 
paper. Indeed, α can be associated with an assigned problem, where the solution process 
constitutes an apodictic epistemological justification that causes and explains the emergence of 
the final answer β. Thus, the checking of β turns into an act of knowledge construction, through 
which one might fulfil her intellectual needs. 

Observational Environment 
The data illustrated comes from written solutions that 421 students submitted as part of 

their final exam in a first-year mathematics course. The course was delivered at a large New 
Zealand university and it was intended for undergraduates majoring in computer science, 
economics, statistics, and finance. For students enrolled in the course, it was their second 
encounter with university mathematics with a focus on two-variable calculus, differential 
equations, and topics in linear algebra where the necessary methods for solving Figure 1 were 
introduced. The course instruction can be described as mostly traditional and lecturer-centred, 
with some emphasis put on students’ reasoning. For instance, the guidelines for the exam in 
which Figure 1 was assigned stated, “You must give full working and reasons for your answers 
to obtain full marks” (bold in the origin). 

The analysis of the solutions that the students submitted consisted of an iterative process 
with deductive and inductive components (Denzin & Lincoln, 2011), that corresponded with two 
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questions: (i) What types of mistakes do students make in their solutions? (ii) What characterizes 
the solutions, in which the students provided written evidence of checking their final answers? 
The analysis started with a review of the correctness of students’ submissions, where the ones 
with mistakes were classified according to the steps that distorted the problem-solving chain. 
This classification was informed by Movshovitz-Hadar, Zaslavsky and Inbar (1987), who 
explored common errors that students make in their matriculation exams. After analyzing 860 
scripts, the researchers came up with six categories: distorted theorem or definition, technical 
error, misused data, misinterpreted language, unverified solution, and logically invalid inference. 
Due to the similarity of the analyses and types of data, these categories were used as a baseline 
for analyzing students’ solutions in this study. At the next stage, a constant comparison technique 
(Glaser & Strauss, 1967) was employed for characterizing those solutions with written checks. 
The comparisons were targeted at delineating similarities between the solutions submitted by 
different students. The emergent similarities were applied for all data corpus to validate that they 
are characteristic indeed.     

Overview of Students’ Solutions and Their Checks 
Table 1 provides an overview of students’ submissions, and it shows that obtaining a 

final answer cannot be taken for granted in the cohort under scrutiny. Clearly, the written 
solutions that the students submitted captured only a part of the problem-solving journey that the 
students undertook. Hence, a lack of a check of a solution provided no evidence of whether and 
how a student monitored her work (some of the checks could have been carried out mentally, for 
instance). However, students’ submissions of mistaken solutions point at the struggle to check 
the work, or a missed opportunity to do so. In turn, instances where students provided written 
checks deserve a special attention. 

Table 1. Overview of students’ solutions.  

 Part (a) Part (b) Part (c) Part (d) 

Final Answers Submitted 
Correct 
Incorrect 

263 (62.5%) 
131 (49.8%) 
132 (50.2%) 

309 (73.4%) 
145 (46.9%) 
164 (53.1%) 

217 (51.5%) 
151 (69.6%) 
66 (30.4%) 

171 (40.6%) 
40 (23.4%) 
131 (76.6%) 

Sources of Incorrect Answers 
Mismatch between  
a problem and employed method 
Methods with distorted steps 
Computation mistakes 
No solution process 

 
44 (33.3%) 

 
63 (47.73%) 

- 
25 (18.94%) 

 
5 (3.05%) 

 
6 (3.66%) 

149 (90.85%) 
- 

 
13 (19.7%) 

- 
20 (30.3%) 

- 
- 

 
56 (42.75%) 

 
13 (9.92%) 
19 (14.5%) 
19 (14.5%) 

Written Checks - - - 33 (19.3%) 
 Table 1 shows that all written checks that the participating students submitted as part of 

their solutions to Figure 1, appeared as a response to Part (d). These checks encompassed 
computations of the dot products of the vectors from the basis in Part (a) with the vector which 
was a candidate for an answer. While every four out of ten computations contained a mistake 
(see Figure 2 for example), all the checks maintained that the dot product is zero. Accordingly, 
these checks can be viewed as enactments of an appropriate strategy, in which vectors’ 
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orthogonality has been attempted to be verified with a critical attribute that was used in the 
course for defining the concept. 

 
Figure 2. Example of an educated guess in Part (d). 

One notable characteristic that was identified among all the solutions with written checks 
is that the candidates for orthogonal vectors were not devised with structured problem-solving 
methods that were studied in the course. Figure 2 exemplifies one third of such solutions, where 
the students started with a system of linear equations that the coordinates of the orthogonal 
vector were expected to satisfy. Yet, the equations were not solved fully and an orthogonal 
vector was introduced at some point. In the remaining solutions, the students started by declaring 
which vector is orthogonal (see Figure 3 for an example).  

 
Figure 3. Example of an educated guess in Part (d). 

To an external analyst who reviews students’ submissions, the described introductions of 
orthogonal vectors appear as an act of guessing. My informal conversations with seven students 
who submitted a written check corroborated this impression. For instance, when reflecting on her 
solution in Figure 2, Rina (pseudonym) said, 
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This vector [in Part (d)] must be perpendicular to my vectors from the first 
question. So I made a system of equations first, but then I kind of guessed what 
vector will work. It turned out to be correct. 
Rina’s words resonate with Mahajan (2010), who views guessing as a valuable problem-

solving approach that releases one from “the fear of making an unjustified leap” and allows her 
to “shoot first and ask questions later” (p. xiii). Since the checks led none of the students to the 
conclusion that their introduced vectors were invalid, it seems justifiable to refer to their guesses 
as educated. 

In terms of Harel (2013), capturing the act of checking educated guesses in writing can be 
viewed as fulfilling students’ intellectual needs: to ascertain the correctness of the guessed 
vector, to use computation as a means to show orthogonality, and for communication with the 
assessor, whose corresponding needs in regard to the vector should also be fulfilled. One need 
that this act is incapable of fulfilling is the need for causality. Indeed, guessing can be 
contraposed to deductive reasoning, which NCTM (1989) defines as “a careful sequences of 
steps with each step following logically from an assumed or previously proved statement and 
from previous steps” (p. 144). Many students demonstrated deductive reasoning when row-
reducing matrices in Part (a), applying the standard method 𝐴𝑇𝐴�̅� = 𝐴𝑇𝑐 for devising the least 
square solution in Part (b), using the formula ‖𝐴�̅� − 𝑐‖ in Part (c), and stating that the vector 
from the second part will solve Part (d) as well. 

Field-based Hypothesis 
It has been repeatedly reported that students rarely bother to verify the outcomes of their 

mathematical doings (e.g., see Kirsten, 2018 for proving; Kontorovich, Koichu, Leikin & 
Berman, 2012 for problem posing; Pugalee, 2004 for problem solving). Therefore, it is notable 
that without being engaged in any special course of instruction, nearly a fifth of the students 
submitted written checks of their final answers to Part (d) in Figure 1. Some may argue that there 
is nothing really to notice about this as the check in this part was easier than in the other three. 
This argument is incommensurable with the theoretical standpoint of this paper, which operates 
with students’ mental acts (Harel, 2008a, b) and does not ascribe cognitive properties to 
inanimate artefacts. Indeed, the data analysis associated students’ decisions to capture their 
checks in writing with situations where educated guesses were involved; no checks were 
documented in the cases of deductive problem solving, i.e. where students operated with 
structured procedures, algorithms, and theorems that were taught in the course. 

Within Harel’s (2008a, b, 2013a, b, 2017) theory of learning, an application of a 
conventional procedure, algorithm, or theorem provides an apodictic epistemological 
justification for the emergence of a solution to a problem (see α→β in the second section). 
Furthermore, in a typical learning environment, such deductive methods are purposefully 
promoted among students through teachers’ epistemological efforts that vary in their degree of 
explicitness. Explicit efforts can be associated with devoting time and space to these 
mathematical instances during the lesson, explaining and proving them, requesting students to 
use them for solving problems, et cetera. More covert efforts can also be indicated. For instance, 
the conventional name “Gram-Schmidt orthonormalization process” promises that the process 
indeed orthonormalizes. At the end of the course, Rina’s usage of these mathematical instances 
in problem solving seems inseparable from her solid belief in their high epistemological status, 
the one that vouches for the instances’ capabilities to produce the outcomes that they were 
positioned as producing.  
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With the principle of an intellectual parsimony in mind (Koichu, 2008), it seems 
reasonable to propose that when Rina is convinced by a match between the assigned problem and 
a mathematical instance with a high epistemological status, she is unlikely to experience an 
intellectual need to check her solution. Indeed, the usage of the mathematical instance for 
devising a solution, an instance that has been actively promoted by the same authoritative figures 
who assigned the problem, seems “to tick many boxes” of needs, especially for certainty, 
causality, communication, structure, and in many cases, also for computation. If there are still 
doubts about the obtained solution, it seems more reasonable for Rina to review how she applied 
the promoted mathematics rather than to verify her final answer as a stand-alone candidate for a 
solution. In turn, if Rina’s recollection of the mathematical instance is distorted or mismatched to 
the problem in hand (something that happened frequently among the participating students), it is 
unlikely that she will benefit from such a review.     

On the other hand, as educated as guessing can be, it creates a disruption in a deductive 
sequence of problem-solving steps and gives birth to an outcome that comes almost “out of 
nothing”. This disruption can not only perturb the intellectual needs of the solver but it also 
clashes with the usual indoctrination in a “good” mathematics classroom where no claim is 
accepted without being shown to be a necessary entailment. As a result, the act and the outcome 
of guessing can be ascribed with a low epistemological status that summons a compensation. It 
has been demonstrated in the previous section that this compensation can appear in the form of a 
special type of an epistemological justification, where a solver shows that the candidate for an 
answer fulfills the requirements of the assigned problem (i.e. α,β↛∅). 

The presented interpretation of the checking tendency that the participating students 
demonstrated can be framed by a chain of hypotheses as follows:  

When solving a problem, Rina can apply pieces of knowledge that she endows 
with different epistemological statuses. For instance, guessing and applying 
mathematical instances that were promoted in a classroom can be positioned at 
opposite ends of an epistemological scale. As a result, Rina may experience 
intellectual needs to check her solution that differ in terms of intensity and type. 
These different needs entail different checking behaviors, which predetermines to 
some extent Rina’s chances of indicating mistakes in her own work.   
Hopefully, the mathematics education community will experience these hypotheses as 

educated guesses that provoke a need for rigorous explorations. The potential value of this 
hypotheses is in linking the act of checking to the contextual affordances that emerge when a 
solver puts particular mathematical knowledge to use. On the theoretical level, this positioning 
might be viewed as an extension of previous approaches, according to which the act is driven by 
a solver’s familiarity with verification strategies (e.g., Mashiach Eizenberg & Zaslavsky, 2004) 
or a matter of habits of mind (e.g., Goldenberg, 1996) that she developed. On the practical level, 
the hypothesis summons a search for pedagogies that are capable of provoking students’ 
intellectual needs for checking their own solutions; the ones that are often obtained with 
epistemologically solid mathematics. Accordingly, I believe that explorations of the hypothesis 
will lead to interesting conclusions that will find their way into Rina’s classroom. 
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Mathematical Knowledge for Teaching in Mathematics Courses 

 
 Yvonne Lai Jeremy Strayer Alyson Lischka 
 Univ. of Nebraska-Lincoln Middle Tennessee State Univ. Middle Tennessee State Univ. 
 
 Cynthia Anhalt Candice Quinn Samuel Reed 
 University of Arizona Middle Tennessee State Univ. Middle Tennessee State Univ. 
 

This theoretical report addresses the challenge and promise of improving prospective secondary 
mathematics teachers’ experiences in undergraduate mathematics courses through tasks 
embedded in pedagogical contexts. The objective of this approach, used by multiple nationally-
funded projects, is to enhance the development of teachers’ MKT. We report on the construction 
of a framework for observing and analyzing the development of teachers’ MKT. This framework 
is the result of integrating several existing frameworks and analyzing a sample of prospective 
secondary teachers’ responses to tasks embedded in pedagogical contexts. We discuss the 
methods used to build this framework, the strengths and weaknesses of the framework, and the 
potential of the framework for informing future work in curriculum design and implementation. 

Keywords: Mathematical knowledge for teaching, Secondary teacher preparation, Educative 
curriculum 

Recent years have seen multiple nationally-funded efforts to improve the mathematical 
preparation of teachers by developing materials for undergraduate mathematics courses.1 
Underlying these projects is recognition that mathematics courses are an opportunity to develop 
mathematical knowledge for teaching (MKT) in ways that are connected to undergraduate 
mathematics. This opportunity is all too often missed (e.g., Goulding, Hatch, & Rodd, 2003; 
Ticknor, 2012; Wasserman, Weber, Villanueva, & Mejia-Ramos, 2018; Zazkis & Leikin, 2010).  

Scholars have proposed that an important strategy for bridging the gap between 
mathematical preparation and teaching practice is the use of tasks embedded in pedagogical 
contexts (Lai & Howell, 2016; Stylianides & Stylianides, 2010; Wasserman et al., 2018). 
Pedagogical contexts can support teachers’ learning of mathematics in ways that are more 
meaningful and accessible than pure mathematics tasks when it comes to developing MKT 
(Stylianides & Stylianides, 2010).  We conceive of such tasks as approximations of mathematical 
teaching practice (cf. Grossman, Compton, Igra, Ronfeldt, Shahan, & Williamson, 2009), which 
show promise for helping teachers transfer notions of upper level undergraduate mathematics to 
secondary mathematics teaching (Wasserman et al., 2018).  Wielded skillfully by mathematics 
faculty teaching university courses, approximations of mathematics teaching practice provide 
opportunities “absent in fieldwork, [that allow] novices greater freedom to experiment, falter, 
regroup, and reflect” (p. 2076) when applying mathematical knowledge to the work of teaching. 

Problem Addressed  
This theoretical report addresses a potential obstacle to enacting approximations of 

mathematical teaching practice with prospective secondary teachers. Enacting approximations of 

                                                 
1 These include NSF DRL #1050595, and DUE #1504551, #1726624, #1726707, and #1524739. 
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practice has shown promise in small-scale studies involving mathematics education researchers 
(e.g., Lischka et al., 2017; Wasserman et al., 2016); however, we must take into account 
contextual differences among preparation programs when scaling up their use. Mathematics 
education researchers can draw on their field-specific expertise when analyzing teachers’ 
knowledge and providing feedback on teachers’ responses to approximations of practice. In 
contrast, mathematics faculty teach mathematics content courses for teachers in many 
preparation programs, particularly at the secondary level (e.g., Murray & Star, 2013). Although 
their experiences may include years of teaching at the undergraduate level, mathematicians’ 
backgrounds are more likely focused on doing mathematics and providing purely mathematical 
feedback to students. Indeed, even when mathematicians want to use tasks with pedagogical 
context because they value developing teachers’ MKT, they may feel stymied by not knowing 
how to evaluate prospective teachers’ work on such tasks, let alone provide constructive 
feedback to the teachers (Lai, 2018). The background of mathematics faculty positions them to 
analyze and observe mathematics, but not necessarily MKT.  

In sum, instructional improvement efforts face the problem of simultaneously supporting 
learners (the prospective secondary teachers) and instructors (the mathematicians) in developing 
MKT at the secondary level. This kind of simultaneous support is the signature characteristic of 
educative curriculum materials, which have in the past been used as a resource to shift 
mathematics instruction in sustained, meaningful ways (Davis & Krajcik, 2005).  

In this report, we propose a novel integration of existing observational frameworks for 
examining MKT and its development for the purpose of examining prospective teachers’ use of 
MKT in mathematics courses. We discuss why existing frameworks alone do not suffice for this 
purpose. Finally, we argue that our proposed integration supports the process of developing 
educative curriculum materials for undergraduate mathematics courses that feature 
approximations of mathematical teaching practice. Indeed, we hold that mathematicians and 
mathematics educators alike can utilize the integrated framework as useful tool when considering 
how they might provide opportunities for teachers in their courses to develop MKT.   

Conceptual Foundations and Proposed Framework 
We interlace theory and practice in the improvement work of creating and enacting 

educative curriculum materials for developing prospective secondary mathematics teachers’ 
MKT in mathematics content courses. This work includes constructing a framework for 
observing the development of prospective teachers’ MKT in their responses to approximations of 
mathematical teaching practice tasks. 

Method  
To do this improvement work, we follow a Networked Improvement Community model, 

with multiple plan-do-study-act cycles (Gomez, Russell, Bryk, LeMahieu, & Merjia, 2016). In 
this model, the following processes are mutually informing: developing materials, enacting 
materials, and constructing a framework for observing and analyzing development of MKT. 
Upon completing three plan-do-study-act cycles focused on observing the development of MKT 
based on prospective secondary teachers’ responses to pedagogically embedded mathematics 
tasks—specifically approximations of mathematical teaching practice—three principles have 
emerged to guide our development of a framework. Namely, the framework must: (1) be 
grounded in theory for how MKT develops; (2) apply to a range of actions that good teaching 
entails; and (3) be consistent with what is known about observing ways in which MKT is 
activated in good teaching practice. 
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Theory for characterizing the development of MKT   
Following Ball and Bass (2003), we construe mathematical knowledge for teaching in 

broad terms—as the knowledge used in recognizing, understanding, and responding to 
mathematical situations, considerations, and challenges that arise in the course of teaching 
mathematics. Moreover, we take MKT to include coherent and generative understandings of key 
ideas that make up the curriculum (Thompson, Carlson, & Silverman, 2007). In alignment with 
this principle, Silverman and Thompson (2008) used Simon’s (2006) idea of key developmental 
understandings (KDUs) in combination with Piaget’s notions of decentering and reflective 
abstraction to propose a framework for examining how MKT develops. We take Silverman and 
Thompson’s work as a working theory for characterizing the development of MKT. 

One principal characteristic of KDUs is that they are “conceptual advances.” That is, 
when a learner (e.g., a prospective teacher or a K-12 student) has a KDU of a mathematical idea, 
the learner can perceive of and use mathematical relationships to build new understandings in a 
way that a learner without the KDU cannot. Simon contended that learners acquire KDUs from 
multiple experiences and reflection. An important implication is that teachers’ possession of a 
KDU, does not ensure that they will create opportunities for students to acquire KDUs (e.g., 
Silverman, 2004). Indeed, for a teacher do to so, they must not only use or explain personal 
KDUs, but also envision instructional activities that promote students’ learning of KDUs.  

Hence, Silverman and Thompson argued developing MKT involves two abstractions, 
where abstraction aligns with Piaget’s notion of reflective abstraction (1977/2001). The first 
abstraction results in a teacher’s personal KDU for a mathematical idea. The second abstraction 
is on learners’ thinking and results in multiple models of how learners may understand the idea 
and how one may come to such an understanding. Silverman and Thompson conceptualize this 
second abstraction as Piaget’s notion of decentering, resulting in: (1) an image of instructional 
activities and conversations that would produce these understandings and (2) whether these 
understandings empower students to learn subsequent related ideas, as Table 1 summarizes.  
 

Table 1. Silverman and Thompson’s (2008) Characterization of the Development of MKT 
Component Description 

1 Personal KDU: Teachers have developed a personal KDU for a particular mathematical idea 
2 Decentering: Teachers have constructed multiple models of student understandings of the idea 

3 
Understanding 
Student 
Thinking: 

Teachers have an image of how a student may come to these understandings 

4 Activities: Teachers can envision instructional activities and conversations that would result 
in these understandings 

5 Potential for 
Student KDU: 

Teachers can analyze how and whether students who have come to think about 
the mathematical idea in these ways are empowered to learn other, related 
mathematical ideas 

Applying types of knowledge to teaching actions 
It follows from Simon’s (2006) and Silverman and Thompson’s (2008) theory that 

teachers need to grapple with experiences that promote the abstractions needed to develop MKT. 
Moreover, instructors of prospective secondary teachers need opportunities to comprehend how 
teachers understand MKT. For instance, in an example provided by Grossman et al. (2009), 
prospective teachers responded to two second grade students, coming up with questions to ask 
the students, reflecting upon the kinds of responses these questions might elicit, and determining 
extent to which these responses were productive. Through approximations of practice, teachers 
have the opportunity to engage with student thinking and mathematics to develop MKT.  
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Although Silverman and Thompson’s work describes components of MKT development, 
it does not elaborate on where to observe these components in teaching practice or in an 
approximation of practice. To understand where MKT is activated during teaching, we turn to 
the Knowledge Quartet, which identifies dimensions of teaching in which knowledge is revealed 
(Rowland, Thwaites, & Jared, 2016). The Knowledge Quartet’s purpose resonates with that of 
Silverman and Thompson’s characterization of MKT development, while its focus is 
complementary. Both acknowledge that instruction should be informed by coherent 
mathematical knowledge and predictions about learners. Silverman and Thompson focus on 
mental actions where the Knowledge Quartet identifies visible actions due to teachers’ MKT. 
The four dimensions in the Knowledge Quartet each pair with contributory codes—descriptions 
of actions that manifest the dimension. The first dimension, (1) Foundation, includes knowledge 
of mathematics and its nature. The remaining three are contexts in which Foundation knowledge 
is brought to bear. They are (2) Transformation, the presentation of ideas to learners in the form 
of illustrations, examples, and explanations; (3) Connection, the sequencing of material for 
instruction, and an awareness of the relative cognitive demands of different topics and tasks; and 
(4) Contingency, the ability to respond to unanticipated events in the work of teaching.  

Silverman and Thompson describe the development of MKT, and the Knowledge Quartet 
describes actions possible due to MKT. When teachers have a personal KDU and engage in the 
decentering needed to develop MKT, they can design instructional activities to be more 
responsive to student thinking as well as analyze students’ knowledge more acutely. We interpret 
Foundation to include a teacher’s personal KDUs and Transformation, Connection, and 
Contingency to be actions informed by decentering, understanding students’ thinking, and 
analyzing students’ potential KDUs. We summarize the Knowledge Quartet and its relationship 
to Silverman and Thompson’s work in Table 2. 
 

Table 2. Knowledge Quartet in Correspondence with the Development of MKT 
Dimension Example Contributory Codes Correspondence to MKT 

Development Components 
Foundation Awareness of purpose; overt display of subject 

knowledge; use of mathematical terminology 
Personal KDU 

Transformation Choice of examples; choice of representation; use of 
instructional materials; teacher demonstration (to explain 
a procedure) 

Decentering, Potential for Student 
KDU 

Connection Anticipation of complexity; decisions about sequencing; 
making connections between procedures; making 
connections between concepts; recognition of conceptual 
appropriateness 

Decentering, Activities, Potential 
for Student KDU 

Contingency Responding to students’ ideas; use of opportunities; 
deviation from agenda 

Decentering, Potential for Student 
KDU 

Activation of MKT in teaching practice  
Although Silverman and Thompson provide a theory for how MKT develops and the 

Knowledge Quartet provides a description of how different types of knowledge are applied to 
aspects of teaching, neither elaborate how one instance of an application of MKT to teaching 
practice may be more sophisticated than another instance. For this, Ader and Carlson’s (2018) 
work provides a mechanism for distinguishing levels of the sophistication of activation of MKT 
by describing patterns in observable behaviors during teaching practice that indicate the extent to 
which the teacher has decentered. We describe our view of the correspondence of these levels 
and observable behaviors to Silverman and Thompson’s characterization of MKT in Table 3.  
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Table 3. Ader and Carlson’s Framework in Correspondence with MKT Development 
Level Observable behaviors Correspondence to MKT Development Components 
Level 1: Interested in 
getting students to 
say correct answers 
but not in students’ 
thinking 

Asks questions to elicit students’ 
answers; listens to students’ 
answers; does not pose questions 
aimed at understanding students’ 
thinking 

Decentering: lack of decentering, uses only a first order 
model; Understanding Student Thinking: only elicits 
student answers, not thinking; Activities: constrained 
by thinking only with first order model  

Level 2: Interested in 
students’ thinking, 
but only in order to 
get students to think 
like the teacher  

Poses questions to reveal student 
thinking but does not attempt to 
understand students’ thinking; 
guides students toward his/her 
own way of thinking. 

Decentering: lack of decentering, uses only a first order 
model; Understanding Student Thinking: only elicits 
student thinking, does not utilize that thinking in a 
response; Activities: constrained by only thinking with 
a first order model 

Level 3: Makes sense 
of students’ thinking 
and makes general 
teaching moves based 
on that thinking 

Asks questions to reveal and 
understand students’ thinking; 
follows up on students’ 
responses in order to perturb 
students in a way that extends 
their current ways of thinking; 
attempts to move students to 
his/her thinking or perspective 

Decentering: evidence of first and second order 
models; Understanding Student Thinking: utilizes 
student thinking when formulating responses; 
Activities: uses second order model to make decisions 
about activities and conversations; Personal KDU: 
draws on personal KDU when responding to students 

Level 4: Seeks to 
understand students’ 
thinking, and builds 
on that thinking 
during instruction 

Poses questions to gain insights 
into students’ thinking; draws on 
students’ ways of thinking to 
advance students’ understanding 
of key ideas in the lesson 

Decentering: evidence of first and second order 
models; Understanding Student Thinking: utilizes 
student thinking when formulating responses; 
Activities: uses second order model to make decisions 
about activities and conversations; Personal KDU: 
draws on personal KDU when responding to students; 
Potential for Student KDU: seeks to provide 
opportunities for students to develop KDUs 

Working Framework for Observing and Analyzing the Development of MKT in 
Approximations of Mathematics Teaching Practice Used in Content Courses 

In Networked Improvement Community work involving multiple rounds of coding 
prospective secondary teachers’ responses to approximations of mathematical teaching practice, 
we began by using the dimensions and components in Tables 1 and 2. We found it difficult to 
determine the development of prospective secondary teachers’ MKT over time. To remedy this 
issue, we incorporated and generated hypothesized extensions of the correspondence of levels 
(Table 3) for each dimension (Table 2).  

Method for extending levels. To construct extensions of levels, the six authors analyzed 
the responses of 15 prospective secondary teachers to approximations of mathematical teaching 
practice that were has been used in mathematics courses at 3 different institutions in different 
states in multiple years; the responses analyzed were representative of the responses across these 
sites. We adapted a two-stage coding process (Miles, Huberman, & Saldana, 2013), using the 
dimensions of the Knowledge Quartet as descriptive codes and Ader and Carlson’s levels as 
initial process codes in a first cycle of coding, and then used a second cycle of coding to 
consolidate codes for structure and unity. To do so, we drew on critiques of episodes of teaching 
found on the Knowledge Quartet’s website (Rowland, 2017) and observation protocols that have 
been validated as measuring quality of teaching (Junker et al., 2004; Learning Mathematics for 
Teaching, 2011).  

Results. We interpret our work has contributing several results. Our first result is 
theoretical: the framework to which our analysis led. This framework is presented in Table 4. 
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Second, as a practical result, we report which aspects of the framework led to the most and least 
reliably coded approximations of mathematical teaching practice.  

We describe this second result in brief here, for the sake of space limitations, and provide 
more elaboration in our presentation. The first-cycle descriptive codes for the dimensions of the 
Knowledge Quartet, as well as the process codes for the levels for Transformation, were most 
reliably coded among the research team. The least reliable codes were Levels 2 and 3 within 
Connection, as well as the Level 4 codes for Transformation and Connection. We see reliability 
of codes as an important result to report because it bears on interpreting the framework as well as 
pointing to future work in validating this framework for observing the development of MKT. 

 
Table 4. Framework for Observing and Analyzing the Development of MKT in Approximations of Practice 
Developmental 
component  

Knowledge 
dimension 

Mental 
actions  

Level (L), in terms of observable behaviors 

Personal KDU Foundation  Reflective 
abstraction on 
personal 
mathematical 
knowledge 

Note: Levels here depend on the KDU of the topic. This is 
just one possible example of how levels may appear. 
L0: Specific reference to mathematics is not present OR 
Performs procedures incorrectly and describes underlying 
concepts incorrectly (lacking in CCK) 
L1: Performs relevant procedures correctly  
L2: Describes relevant procedures accurately, with 
mathematically precise and appropriate language 
L3: Connects isolated features of procedures to underlying 
concepts 
L4: Connects structure of procedure to underlying concepts 

Decentering 
applied to 
Activities and 
Analyzing 
Potential for 
Student KDU 

Transformation  Reflective 
abstraction on 
student 
thinking 

Gives explanations, representations, and examples to 
students that: 
L0: Does not provide any explanations, representations, or 
examples to students 
L1: Describe only procedures or echo key phrases 
L2: Describe own way of thinking of the mathematics 
L3: Attempt to change students’ current thinking 
L4: Build on and respect students’ understanding toward 
the intended KDU 

Connection Prompts students to say or do things in ways that: 
L0: Does not ask students to say or do anything 
L1: Focus on procedures or echoing key phrases 
L2: May reveal student thinking, but then teacher gives 
explanations while not asking students to provide reasoning 
L3: Attempts to change students’ current thinking 
L4: Build on and respect students’ understanding toward 
the intended KDU 

Contingency Uses student thinking in ways that: 
L0: Do not act in any visible way upon the thinking 
L1: Evaluate the mathematical validity of the thinking but 
do not use the thinking in teaching 
L2: Reference the thinking to guide students toward 
teacher’s way of thinking 
L3: Follow up on students’ responses to perturb students to 
change their thinking 
L4: Frame questions or explanations in terms of students’ 
thinking to help move students’ understanding toward the 
intended KDU. Students are positioned as decision-makers. 
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Discussion 
Our work is built from conceptual foundations to elaborate how and where teachers’ 

development of MKT can be observed and analyzed, both by all those who teach teachers as well 
as by mathematics education researchers. Silverman and Thompson’s framework provides a 
characterization of how MKT develops, in terms of mental actions of teachers, leaving open 
where in teaching to observe these mental actions and what observable behaviors those mental 
actions might produce. The Knowledge Quartet describes where the results of teachers’ mental 
actions show up in teaching practice, and Ader and Carlson’s framework characterizes the 
relative sophistication of those mental actions in terms of observable behaviors. Approximations 
of mathematical teaching practice engage prospective teachers in teaching actions and provide 
opportunities for teachers to engage in the mental actions needed to develop MKT.  

The framework we present supports mathematics faculty and teacher education 
researchers in discerning knowledge use in approximations of practice. The dimensions of 
Foundation, Connection, and Transformation emphasize places where prospective teacher might 
display personal knowledge, provide explanations to students, and pose questions that elicit 
student reasoning. Although faculty may not traditionally provide feedback on these distinctions 
in a mathematics course, these distinctions are ones that may be familiar to faculty and may well 
be educative for their own teaching practice (e.g., Bass, 2015; Pascoe & Stockero, 2017).  Our 
data suggest that the dimensions of knowledge were independent, providing evidence that 
pathways through development of MKT may well proceed along these dimensions in different 
ways. For instance, one prospective teacher in our dataset explained the connection between a 
definition and procedure as a rationale for a task they would assign to their students (Foundation, 
L4), but only posed questions that focused on echoing key phrases (Connection, L1), proposed 
only explanations of procedures to the students (Transformation, L1), and did not acknowledge 
any of the sample student thinking provided by approximation of practice (Contingency, L1). 
Another teacher began with using the provided sample student work to make a specific 
mathematical point about a definition (Contingency, L4) then did not provide any subsequent 
examples or explanations to connection of procedure and definition (Transformation, L1). 

Upon receiving initial feedback from mathematics faculty regarding how observables 
may correspond to knowledge dimensions, our work writing approximations of mathematics 
teaching practice for use in content courses shifted to address more clearly the specific 
opportunities for learning that those approximations provide. For instance, in an early draft of an 
approximation of practice, we asked teachers to respond to student thinking, but we did not give 
a clear mathematical goal for the teaching situation. This left unspecified the Foundation 
knowledge we were aiming to elicit, which impacted the Transformation and Connection 
knowledge visible in teachers’ responses.  

Finally, the framework supports validating and refining the articulation of the 
development of MKT. We view this framework as a set of testable hypotheses grounded in 
known results. Given the relative nascence of research on developing MKT (Hoover, Mosvold, 
Ball, & Lai, 2016), such hypotheses can contribute to advancing understanding of MKT. 
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Multiple Representation Systems in Binomial Identities: 
An Exploration of Proofs that Explain and Proofs that Only Convince  
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Abstract: In the mathematics education literature on proof, there is a longstanding conversation 
about proofs that only convince versus proofs that explain. In this theoretical report, we aim to 
extend both of those ideas by exploring proofs in the domain of combinatorics. As an example of 
an affordance of the combinatorial setting, we explore proofs of binomial identities, which offer 
novel insights into current distinctions and ideas in the literature about the nature of proof. We 
demonstrate examples of proofs that can be explanatory or convincing (or both), depending on 
how a person understands the claim being made (which we refer to as their preferred semantic 
representation system). We conclude with points of discussion and potential implications. 
 
Keywords: Proof, Proofs that explain and convince, Combinatorics, Binomial identities 

 
Introduction and Motivation 

An interesting algebraic question to ponder is why the sum of the binomial coefficients 
equals 2" (that is, why  ∑ $%&' = 2""

)*+ ). For us (and perhaps for others), if we consider actually 
expanding and summing the left-hand side of the equation, the fact that it simplifies so nicely to 
the expression 2" feels a bit like an algebraic miracle. If we ask for a justification of this 
equation, someone may give a straightforward counting argument, noting that both sides count 
the same set – namely all possible subsets of all sizes from a set of n distinct elements. We may 
find that counting argument to be convincing and also explanatory in terms of why each 
expression represents a process that counts the same set of outcomes. Following such a 
combinatorial argument, we could be convinced of the truth of the algebraic relationship without 
gaining the desired insight into the algebraic mystery that we originally observed.  

The proof literature has long articulated such a distinction between proofs that only convince 
and proofs that explain (e.g., Hanna, 1990; Hersh, 1993; Steiner, 1978; Weber, 2010), and it has 
been pointed out that this distinction is not a simple dichotomy (e.g., Hanna, 2000; Raman, 2003; 
Stylianides, Sandefur, & Watson, 2016;). Generally, proofs that only convince are characterized 
as proofs that demonstrate that a proposition is true but without necessarily providing particular 
insight into why it might be true. Proofs that explain are characterized as proofs that do give 
some indication as to why a particular proposition is true. In this theoretical report, we aim to 
extend both of those ideas by exploring proofs in the domain of combinatorics. We believe that, 
generally, the combinatorics can provide an insightful context in which to study questions related 
to the practice of proof. To demonstrate an affordance of the combinatorial setting, we explore 
proofs of binomial identities, which offer unique insights that extend useful ideas about the 
nature of proof. By exploring mathematical examples in a combinatorial setting, we offer 
examples of proofs that can be explanatory or convincing (or both) depending on how a person 
understands the claim (which we refer to as a preferred semantic representation system).  

 
Background Literature and Relevant Theoretical Perspectives 

How are we taking proof?  
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Weber and Alcock (2004) say, “When asked to prove a statement, professional 
mathematicians and logically capable mathematics students all share the same goal – to produce 
a logically valid argument that concludes with the statement to be proven” (p. 210). We draw on 
this statement and use a definition of proving as the process of producing a logically valid 
argument that concludes with the statement to be proven. We follow Stylianides, et al. (2016) in 
distinguishing between proof and proving in the following way: “we consider proving to be the 
activity in search for a proof, whereby proof is the final product of this activity that meets certain 
criteria” (p. 20). In this paper, we are interested broadly in both proving and proof, and we will 
clarify if we are exclusively referring to one or the other. In the examples we explore in this 
paper, the statements to be proven are statements that relate expressions involving binomial 
coefficients. These expressions are known as binomial identities. 
 
Multiple purposes of proof 

The mathematics education literature reports a number of purposes that proof and proving 
play in the domain of mathematics. One primary reason for proof in mathematics is to convince a 
reader that a theorem is true. This is typically proposed as a main purpose for proof, especially 
for research mathematicians. For example, Hersh (1993) notes that “in mathematical research, 
[proof’s] primary role is convincing” (p. 398), and he points out that for the mathematics 
community, “proof is convincing argument, as judged by qualified judges” (p. 389, emphasis in 
original). Here we interpret that convincing means that one understands the necessity of the 
conclusion following from the premises, but without the additional constraint that the tools and 
relationships one wants to see employed are necessarily the only tools and relationships used.   

Even though convincing is an important purpose of proof, researchers (e.g., Hanna, 2000; 
Hersh, 1993; Weber, 2010) are quick to note that simple formal deduction, which may 
technically prove a theorem, is not why mathematicians value proof and is not what they view as 
the sole purpose of proof. For instance, Weber (2010) argues that mathematicians value proofs 
not just because they show that a statement is true, but because they provide additional insight 
into mathematical content or into the practice of proving. As another example, Hersh (1993) 
says, “More than whether a conjecture is correct, mathematicians want to know why it is correct. 
We want to understand the proof, not just be told it exists” (p. 390). These sentiments suggest 
that proof may be useful for additional reasons than demonstrating the veracity of a theorem.  

These multiple purposes of proof highlight a distinction in the literature between proofs as 
explanatory and proofs as convincing. Hanna (1990) reports that a proof is valued for bringing 
out essential mathematical relationships rather than for merely demonstrating the correctness of a 
result. She distinguishes between proofs that prove and proofs that explain. She points out that a 
proof that proves “shows only that a theorem is true; it provides evidential reasons alone” (p. 9), 
while a proof that explains “also shows why a theorem is true; it provides a set of reasons that 
derive from the phenomenon itself” (p. 9). A similar dichotomy is also articulated in Hersh 
(1993), and he distinguishes between proof in a research setting and proof in a classroom setting.  
 
Defining proofs that explain 

We now discuss the literature on what it might mean for a proof to explain. There are several 
ways in which researchers characterize proofs that explain. Hanna (1990) clarifies that she 
prefers “to use the term explain only when the proof reveals and makes use of the mathematical 
ideas which motivate it,” (p. 10). She follows Steiner (1978) by saying that “a proof explains 
when it shows what “characteristic property” entails the theorem it purports to prove” (Hanna, 
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1990, p. 10). According to Weber and Alcock, a proof that convinces is “an argument that 
establishes the mathematical veracity of a statement. Such proofs are typically highly formal, and 
their function is to remove all doubt that a statement is true” (p. 231). A proof that explains, on 
the other hand, is “an argument that explains, often at an intuitive level, why a result is true” (p. 
231). In another approach, Weber (2010) conceptualizes a proof that explains as one that “allows 
the reader to translate the formal argument that he or she is reading to a less formal argument in a 
separate semantic representation system” (p. 34). Common to all of these characterizations is the 
idea that a proof that explains offers some insight into why a statement is true (or false). In 
addition, Stylianides, et al. (2016) refer to literature that defined what it meant for a proof to be 
explanatory for a prover, “namely, whether the proof illuminated or provided insight to a prover 
into why a mathematical statement is true (Bell, 1976; de Villiers, 1999; Hanna, 1990; Steiner, 
1978) or false (Stylianides, 2009)” (p. 21). Stylianides, et al. (2016) consider proving activity to 
be “explanatory for the prover (or provers) if the method used in a proof provided a way for the 
prover to formalize the thinking that preceded and that illuminated or provided insight to the 
prover into why a statement is true or false” (p. 21).  

Stylianides, et al. (2016) is particularly relevant to our work, as they challenged and extended 
the typical distinction between proofs that convince and explain, especially questioning the 
assertion that proofs by mathematical induction are necessarily not explanatory. They explore 
ways in which proofs by mathematical induction may be explanatory for students, and they 
frame what conditions might best facilitate this phenomenon. We hope similarly to further the 
conversation about proofs that convince and explain by using proofs of binomial identities.  
 
Our characterization of proofs that explain 

We follow Weber (2010) in using Weber and Alcock’s (2004) distinction between semantic 
and syntactic proof production as a way of conceptualizing proofs that explain. Weber and 
Alcock (2004) identify two qualitatively different ways in which someone might produce a 
correct proof. They define a syntactic proof production as “one which is written solely by 
manipulating correctly stated definitions and other relevant facts in a logically permissible way. 
In a syntactic proof production, the prover does not make use of diagrams or other intuitive and 
non-formal representations of mathematical concepts” (p. 210). In contrast, they define a 
semantic proof production to be “a proof of a statement in which the prover uses instantiation(s) 
of the mathematical object(s) to which the statement applies to suggest and guide the formal 
inferences that he or she draws” (p. 210).  The authors clarify that an instantiation refers “to a 
systematically repeatable way that an individual thinks about a mathematical object, which is 
internally meaningful to that individual […] What is crucial is that the prover use these 
instantiations in a meaningful way to make sense of the statement to be proven and to suggest 
formal inferences that could be drawn” (p. 211). We interpret that in semantic proof productions, 
students meaningfully draw on some instantiation of a mathematical object or idea that may be 
external from the situation at hand.  

Even more specifically, Weber (2010) draws on these ideas of intuition and instantiations to 
provide a definition of an explanatory proof. He notes that, “often, students and mathematicians 
will use [semantic] reasoning as a basis for constructing a formal proof” (p. 34). In this way, the 
informal, meaningful semantic reasoning might guide the development of a formal proof. Weber 
says, “I conceptualize a proof that explains as a proof that enables the reader of the proof to 
reverse the connection – that is, this proof allows the reader to translate the formal argument that 
he or she is reading to a less formal argument in a separate semantic representation system” (p. 
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34). We interpret, then, that a proof that explains allows for a prover to make meaning of 
whatever formal representation system he or she may be working with in order to connect ideas 
to some semantic system.1 We thus follow Weber in using instantiations and the notions of 
semantic proof production (and comprehension) as we define proof that explains. 

Finally, as Weber’s (2010) definition suggests, he takes a reader-centered perspective on 
explanatory proof. Indeed, this approach resonates with us, as what constitutes a meaningful 
semantic system could vary from person to person, according to the content or robustness of their 
particular concept image (Tall & Vinner, 1981). We thus follow Weber (2010) who emphasizes 
that proofs that explain are from the perspective of the reader (or the prover). 

  
Mathematical examples  

Semantic representation systems 
Weber (2010) discussed the semantic representation systems (SRS), which he attributes to 

Weber and Alcock (2009). An SRS is the system in which a reader’s (or a prover’s) semantic 
reasoning may take place, and we interpret an SRS as a mathematical perspective in which a 
person is interpreting a claim being made. Ultimately, we argue that to ask whether or not a 
proof is convincing or explanatory, we ought to consider in which SRS(s) a proof is being 
produced or comprehended. Broadly, these semantic contexts represent the particular perspective 
in which a prover is proving (or a reader is comprehending) a proof. Often, the statement that is 
meant to be proven is expressed in a particular symbol system, which may be interpreted in a 
number of ways. The main idea we are proposing is that proofs (and proving activity) exist 
within a particular SRS, each of which represents different ways of interpreting and making 
meaning of the same (symbolically identical) statement to be proven.  

We are using Weber’s (2010) notion of SRSs as a way to make sense of a variety of proofs of 
the binomial theorem, and we use the notion of SRSs to understand two important phenomena 
related to proofs that only convince and proofs that explain. First, in terms of proofs that explain, 
we use SRSs as a way to articulate what is being explained in a proof that explains. By 
specifying in which SRS we are working, we can gain clarity about what is being mathematically 
explained. Second, we use SRSs as a way to consider a mechanism by which a proof may be 
convincing but not explanatory. Specifically, there may be some translation that occurs between 
SRSs in order to complete a proof. And if a person is trying to prove a claim in one SRS (SRS1), 
but then translates to another SRS (SRS2) to prove the statement, the proof may be convincing to 
the prover in SRS1 while it is explanatory in SRS2. Thus, a proof may be convincing (but not 
explanatory) depending on the SRS in which it is proved and the SRS in which the prover is 
considering the proof. We explore these ideas further in the following sections. 

We envision that different proof-related activities occur within a given SRS. Proofs may be 
direct or indirect, and it may be the case that multiple different proofs could exist within each 
SRS. Further, proofs within a given SRS may be formal or informal, and the given SRS 
determines what rules, tools, approaches, and conventions apply to the given SRS. As noted, we 
also view that there is potential movement between SRSs.   
 
Insights from proofs of binomial identities 
                                                        
1 Also, while Weber (2010) defined an explanatory proof from the perspective of proof comprehension (talking 
about a reader of a proof), we could similarly consider an explanatory proof from the perspective of proof 
production. That is, the proof that has been produced may be explanatory if it enables the prover of the proof to 
translate the argument that he or she is formulating to an argument in a separate semantic representation system. 
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In order to elaborate these ideas, we provide examples from combinatorics, specifically 
proving binomial identities. There is nothing in the notion of SRS that specific to combinatorics 
(which we address in the Discussion Section). But, we contend that proofs of binomial identities 
are particularly enlightening because combinatorics naturally lends itself to moving between 
semantic domains. Indeed, as we will describe below, it is commonplace to use another SRS 
(perhaps an algebraic system) to prove a relationship in a given SRS (perhaps an enumerative 
system). In the following section we will provide an algebraic and an enumerative proof of the 
statement $%&' = 	 $

%
% − &', acknowledging that we could also explore additional SRSs of this 

same expression (such as induction or block-walking). We will present these each of these proofs 
through the lens of a different SRS. 
 
An explanatory proof in the algebraic SRS 

In the algebraic SRS, $%&' = 	 $
%

% − &'	can be interpreted as a statement about (nonnegative) 
integers, and valid tools include properties of integers and algebraic rules. Substituting the 
definition of binomial coefficients ($%&' =

"!
("0))!)! ) into the identity and applying rules of 

algebra yields the following proof:  

$%&' = 	
%!

(% − &)! &! =
%!

&! (% − &)! =
%!

2% − (% − &)3! (% − &)! = $ %
% − &' 

Since we can use rules of algebra to manipulate one expression into the other, both sides of the 
equation are equivalent, and so the statement is true. We call this an explanatory proof in the 
algebraic SRS (or an algebraic proof of the identity) because it follows algebraic rules to 
demonstrate why the identity is true.  

An explanatory proof in the enumerative SRS 
There are also enumerative, or combinatorial, proofs to this identity. In an enumerative proof, 

we argue that the two sides of the identity each represent two different counting processes (in the 
sense of Lockwood, 2013) that either a) count the same set of outcomes (a direct combinatorial 
proof) or b) count two different sets of outcomes between which there is a bijection (a bijective 
combinatorial proof). For the sake of simplicity, we give one example of a direct combinatorial 
proof, noting that there are many other enumerative proofs we could introduce. Note that these 
enumerative proofs look quite different than the algebraic proof presented above, and sentence 
descriptions of counting processes and sets (rather than manipulation of algebraic symbols) 
comprise the proof. 

We show that both sides of the identity count the number of k-element subsets of an n-
element set. That is, we interpret $%&' = 	 $

%
% − &'	as being a statement that relates different kind 

of subsets of n-element sets. The left-hand side counts this set by selecting k elements from n 
distinct elements that should be included in the subset, and this process reflects the left-hand 
expression of $%&'.	The right-hand side counts this set by using the notion of a complement of the 
set – by selecting the n-k elements from n distinct elements that should not be included in the 
subset. Therefore, because both sides of the identity count the same set, they represent 
expressions that are numerically equal, and thus the equality holds. 
Explaining and convincing in algebraic and enumerative proofs – what is being explained, 
and what is convincing? 
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We take these two proofs to further our discussion about proofs that explain versus only 
convince. The perhaps “easy” way to interpret these two proofs in terms of proofs that explain 
and proofs that only convince is to say that the algebraic proof convinces but does not explain, 
while the enumerative proof is somehow more explanatory. However, we argue that there is a 
deeper story to tell, and each of the above proofs could be considered to be explanatory and/or 
convincing depending on which SRS we are considering. 

In particular, we contend that the question What is the proof explaining? is not a simple 
inquiry. We argue that the enumerative proof is explanatory in the SRS of enumeration because 
it demonstrates why both sides of the identity counts the same set of outcomes. Further, 
following our definition of proofs that explain (which we borrow from Weber, 2010), there is a 
particular instantiation to properties that we know about sets and choosing elements of sets that 
makes a meaningful connection between the expressions, the counting processes described in the 
proof (Lockwood, 2013), and what we know about what it means for sets to be equal. Thus, this 
proof satisfies our need for understanding what is happening enumeratively. However, the 
enumerative proof is not explanatory in the SRS of algebra. That is, the enumerative proof does 
nothing to explain why the identity holds algebraically.  

Conversely, it is true that the algebraic proof does not provide any explanation for why the 
identity is true in the enumerative domain. However, we claim that the algebraic proof is 
explanatory in the SRS of algebra. Specifically, using the definition of binomial coefficients and 
the rules of algebra we can see the logical, algebraic steps that justify why that relationship is 
true. Thus, we could say that that proof explained why, algebraically, the relationship holds.  

We claim that if a proof is explanatory in a given SRS it is necessarily convincing, but a 
proof may be convincing but not explanatory for a different SRS. Returning to our examples of 
algebraic and enumerative proofs of $%&' = 	 $

%
% − &', we would say that the algebraic proof may 

be convincing in the enumerative system, even if it not explanatory in that enumerative system. 
Similarly, the enumerative proof may convince someone that the algebra must be true, even if 
the enumerative proof offers no insight into why the algebraic steps are true.  

We commonly use this relationship between SRSs in proving theorems and identities in 
combinatorics. To emphasize this point, consider the relationship ∑ $%&' = 2""

)*+ , which we 
mentioned in the introduction. This is an identity that is quite natural to prove enumeratively.2 
However, it is not immediately apparent why the algebra should hold. Summing all of the terms, 
finding common denominators, canceling, and simplifying for the general value of n require 
considerable work, particularly by hand. Here, then, the enumerative proof may convince us of 
the algebra, even if we cannot actually describe and list out all of the steps that would satisfy the 
identity algebraically. If all we needed was to be convinced that this identity holds, it would 
make sense to use a combinatorial argument to prove the result, rather than an algebraic one. 

More commonly in combinatorics research, we go in the other direction – we use algebra to 
convince us of identities that are difficult to prove combinatorially. For example, generating 
functions (e.g., Wilf, 2005) offer a well-established technique of translating difficult 
combinatorial questions into more manageable algebraic settings. In this technique, we encode 
combinatorial objects as coefficients of polynomials, and we use rules of polynomials and 
algebra to derive results that are then translated back to the combinatorial context. A proof of an 
                                                        
2 Both sides count the total number of subsets of any size from a set of n elements. The left-hand side counts this by 
summing up all possible numbers of k-element subsets for values of k from 0 to n. The right-hand side counts this 
by considering, for each of the n elements in the set, whether or not it is an element of a subset. 
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identity involving generating functions is explanatory in an algebraic domain, as it demonstrates 
clearly why the algebra holds to establish the relationship, but it does not explain why the 
relationship holds from an enumerative perspective. The fact that we have different SRSs in 
which to have proofs convince or explain is a wonderful aspect of mathematics, as it opens up 
many opportunities for us to develop convincing proofs even if one SRS is particularly difficult.  

Our point, then, is that it sells proof short to simply characterize a proof as being convincing 
or explanatory without further specifying what precisely is being explained. Further, it is 
misleading to dismiss algebraic or inductive proofs as being necessarily not explanatory. 
Certainly, progress is being made in this regard (e.g., Stylianides, et al. (2016)), and we want to 
contribute to these conversations about what it can mean for a proof to be explanatory. 

Further, returning to an important distinction in the proof literature, SRSs also allow us to 
address another dimension of this conversation – the importance of who the prover (or the 
reader) is. As noted above, we particularly appreciate Weber’s (2010) viewpoint in clarifying 
that these ideas must be considered from the prover’s/reader’s perspective, and we also adopt 
this framing. That is, different proofs may be explanatory or convincing in different SRSs 
depending on the perspective of the prover. Weber’s (2010) notion of SRSs is in line with this 
perspective, and we note that for an individual prover (or reader), he or she may naturally tend 
toward a particular SRS. Based on a person’s background or familiarity with ideas (their concept 
image), they may be more or less inclined to be able to deem a certain proof as explanatory or 
convincing, depending on which system they are examining.  
 

Discussion and Conclusion 
In this paper, we have argued that combinatorics (and proofs of binomial identities) offers a 

novel mechanism by which to investigate proofs that explain versus proofs that only convince. In 
this section, we highlight points of discussion and implications related to this conversation.  
Combinatorics as a rich domain in which to study proof 

Combinatorics is a fertile domain in which to study proof. In particular, binomial identities 
(and combinatorics more generally) are characterized by translation between SRSs, and this has 
repercussions for elaborating the ideas of proofs that only convince and proofs that explain. We 
hope that more proof researchers will explore this domain, as it may potentially shed light on 
other interesting aspects of proof.  
The discussion in this paper extends to other mathematical domains 

And yet, even though we want to make a case for the value of combinatorics in studying 
proof, our findings and discussion are not unique to combinatorics. Although we have primarily 
focused on combinatorial examples of proving binomial identities to discuss SRSs and proofs 
that convince and explain, these ideas also extend to non-combinatorial contexts. For instance, 
we could consider different proofs of the Pythagorean theorem. A proof without words (Nelsen, 
1993) of the Pythagorean theorem may be explanatory in a geometric SRS, but it may not be 
explanatory in the algebraic SRS. Similarly, in an algebraic proof, if the numbers are viewed 
only as integers and not as side lengths with some dimension, then the algebraic manipulation is 
explanatory in the algebraic system but not in the geometric system.  
Pedagogical suggestions 

We have demonstrated the value of translating between SRSs, and we have shown that in 
some fields like combinatorics this is a natural thing to do. However, we want to emphasize that 
we should be careful when translating between SRSs. For example, when translating between an 
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algebraic and an enumerative SRS when proving a binomial identity, one must consider what 
assumptions can be made within a given SRS.  

The notion of SRSs in proof also allows us to reframe how we think about students’ proving 
activity. The idea that students might be working from different SRSs gives a useful lens through 
which to consider student activity in discrete math classes, perhaps giving students more credit 
than simply interpreting their activity as meaningless and purely syntactic. When a student tends 
toward algebra when proving a binomial identity, it is easy to assume that the student is being 
shallow (and we admit to adopting this perspective at times). However, such a student may be 
viewing the statement to be proven through an algebraic SRS, which may be meaningful to them. 
Thus, this perspective on proofs that convince versus explain may give agency to the prover. 

Finally, for those teaching discrete math, we suggest to keep in mind that in teaching 
counting and binomial identities specifically, we are asking students to coordinate multiple 
SRSs. The notion of SRSs highlights the fact that any discussion of explaining and convincing 
must be considered from the perspective of the prover and/or reader. In combinatorics, there are 
many different perspectives from which to interpret/view the same symbolic binomial identity. 
The fact that so many different SRSs exist (particularly in proving binomial identities) highlights 
that it is important to consider who is proving or reading a proof.  
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The Relational Meaning of the Equals Sign: a Philosophical Perspective 
 

Alison Mirin 
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While there has been research on students’ understanding of the meaning of the equals sign, 
there has yet to be a thorough discussion in math education on a strong meaning of the equals 
sign. This paper discusses the philosophical and logical literature on the identity relation and 
reviews the math education research community’s attempt to characterize a productive meaning 
for the equals sign. 

Keywords: Equals Sign, Equality, Identity, Equation 

 The study of students’ understanding of the equals sign has been a long-standing theme in 
mathematics education research. This line of inquiry predates mathematics education’s existence 
as a well-formed field, and the philosophical literature addressing the meaning of the equals sign 
dates to the late 19th century or earlier (Renwick, 1932; Noonan & Curtis, 2014). There is 
extensive discussion on the meaning of the identity relation that predates the equals sign and 
continues to this day. This discussion appears as early as the 4th century BCE in Plato’s 
Parmenides and as late as Williamson in the 20th century (Noonan & Curtis, 2014). In spite of 
the long history of the research and development of ideas associated with identity, math 
education literature is plagued with vagueness and carelessness in characterizing the meaning of 
the equals sign. Despite this lack of rigor, the field of math education has produced compelling 
research revealing that students have weak understandings of the equals sign (Baroody & 
Ginsburg, 1982; Behr, Erlwanger, & Nichols, 1980; Byrd, McNeil, Chesney, & Matthews, 2015;  
Denmark, Barco, & Voran, 1976; Kieran, 1981; Oksuz, 2007; Sáenz-Ludlow & Walgamuth, 
1998).  

 
The Importance of the Identity Relation 

Identity statements, and their assessments of sameness, are an important part of mathematics. 
This is especially evident when we consider the prevalence of the equals sign, and there is a body 
of math education literature addressing students’ understanding of it. This paper serves as a 
survey and critique of that existing literature, together with a philosophical discussion on the 
meaning of the equals sign. The importance of the equals sign in mathematics cannot be 
understated. There is not one branch of mathematics that does not rely on it. Consider, for 
example, the equation “2+2=4” or "𝑐𝑜𝑠(𝑥) = 𝛴∞

0 (−1)𝑛𝑥2𝑛/(2𝑛)! ".  
One way to view identity statements is to see them as giving multiple representations of the 

same thing. “The evening star” is a representation of the planet Venus (in the sense that it refers 
to Venus), as is “the morning star”, and the statement of identity tells us that in fact these phrases 
refer to the same thing, despite being different representations. 

Having multiple representations of the same thing plays an important role in mathematics – 
for example, in combinatorial arguments where we find two ways to calculate the same thing, 
resulting in an identity statement. A quick examination reveals that represents the number of 
ways to choose k items from a group of n items, and   represents the number of ways to leave out 
n-k items from a group of n items.  Hence, we see that =, which is indeed an informative and 
useful statement. 
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When we deal with mathematical statements, we run into another conundrum: what thing 
does the name of a function or number refer to? Clearly, the name of a function refers to a 
function, and the name of a number refers to a number, but what is a number, and what is a 
function? Numbers are not physical objects out there that we can easily point to. When we say 
that 7+2=8+1, what is it that we are saying is the same? That is, what are the referents of each 
side of the equation? Mathematicians and philosophers cannot agree on the existence of numbers 
as objects, let alone what numbers are (Horsten, 2016). Yet, despite there being an age-old 
question of what an abstract mathematical object is (if anything), mathematicians continue to 
reason productively using equations, identity statements, numbers, and functions.  

Consider the notion of a set; in Zermelo-Frankel (ZF) set theory, which is arguably the basis 
of much of mathematics, the word “set” is undefined (Bagaria, 2016).  We may think of it as a 
collection of objects. However, we infer sameness of sets via the axiom of extensionality, which 
says that two sets are identical if and only if they have the same elements. This requirement of 
sameness is what allows mathematicians to identify the set {3,2} as the same as the set {2,3}, By 
coming up with this criterion of sameness, mathematicians can define the set {3, 2} as the same 
as the set {2,3} while remaining agnostic about what a set is ontologically. We can see that 
criteria for sameness can give math inferential power.  
 

The Meaning of the Equals Sign 
For mathematicians, the equals sign means is the same as or is identical to. We must be clear 

about how we use the word “is”. There are at least two distinct ways that we use the word “is”. 
The word “is” can refer to identity (i.e. mean the same as “=”), but it can also be used as a means 
of predication (“To Be,” n.d.) 1 For example, in the sentence “the morning star is the evening 
star,” the word “is” denotes the identity relation, since the object “the morning star” refers to is 
the same object as “the evening star”. Contrast this with the sentence “Socrates is mortal,” in 
which “is” refers to a property of Socrates. In this paper, I use the word “is” to refer to 
predication, and for identity, I use “equals”, “is the same as”, and “is identical to” for emphasis. 

There is a standard modern criterion for truth of identity statements: “a=b” is true if and only 
if the object named by “a” is the same object as the object named by “b” (Frege, 1879/1967; 
Mendelson, 2009; Noonan & Curtis, 2014). For example, the “president of the United States 
inaugurated in 2017=Donald Trump” is true because the phrase “the president of the United 
states inaugurated in 2017” names the same object as “Donald Trump”.  Similarly, “2+3=4+1” is 
true because the object named by “2+3” is the same object (the same number) as 4+1 (provided 
that numbers are objects that exist). This is the criterion that Frege held for truth of equality 
sentences (Zalta, 2016).  

But what do identity statements mean, and why are they informative? What does “as the 
same as” mean? Gottlob Frege addresses these questions using his infamous puzzles in On 
Concept and Object and On Sense and Reference (Frege, 1892/1948). One of his puzzles 
discusses the meaningfulness of the sentence 

(1) “The morning star is the evening star”. 
If nouns mean no more than their referents, then since “the morning star” and “the evening 

star” both refer to a physical object (the planet Venus), (1) just means 
(2) “Venus is Venus”. 

                                                 
1 Frege wrote a letter to Wittgenstein that his opening line to the Tractatus, “The world is everything which is the 
case” ("Die Welt ist alles, was der Fall ist") is ambiguous due to not specifying whether the first use of the word “is” 
(“ist”) is used as predication or as identity.  
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However, (1) is clearly an informative statement, whereas (2) is not. In other words, if noun 
phrases do nothing more than refer to objects (in this case, the planet Venus), statements of 
identity are not informative. 

Although this is the accepted view, Frege himself struggled with the nature of the equality 
relation (the “is” of identity).  While he never doubted the criterion for truth of “a=b”, as 
described above, he initially considered two possibilities for the meaning and nature of the 
equality relation: (a) that the equals sign expresses a relation between names and (b) that the 
equals sign expresses a relation between objects. He decided that the equality relation is a 
relation between names, with the rationale that some identity statements (e.g. “The Morning 
Star=The Evening Star”, 2+2=4) are indeed informative (Dejnozka, 1981; Frege, 1879/1967; 
Makin, 2010). That is, he decides that “The morning star=the evening star” just means that the 
object that the name “the morning star” refers to is the same object that the name “the evening 
star” refers to, and that “2+3=4+1” means that “2+3” and “4+1” are names for the same number. 
However, he later rejects his assertion that the equality relation is a relation between names, on 
the grounds that the meaning of identity statements would then be statements about arbitrary 
linguistic convention, rather than expressing what he calls “objective knowledge” (Frege, 
1879/1967; Makin, 2010). As a result, he creates a notion of sense as an aspect of a name’s 
meaning (in addition to its referent). A name expresses a sense and refers to or denotes its 
referent. He characterizes a name’s sense as a “mode of presentation” of its referent (Makin, 
2010). Roughly, a name’s sense is what picks out its referent. Frege also called sense “cognitive 
value”. A sense is something that we grasp: “We relate to a sense by grasping it, which is what 
understanding the attached name consists in” (Makin, 2010). The terms “The morning star” and 
“the evening star” express different senses but denote the same referent (the planet Venus), and 
the sentence “The morning star = the evening star” means that the senses expressed by “the 
morning star” and “the evening star” pick out the same referent (the planet Venus). Similarly, 
“2+3” and “4+1” express different senses and denote the same referent, and the sentence 
“2+3=4+1” means that the senses expressed by “2+3” and “4+1” pick out the same referent (the 
number 5, which is the same as the number 2+3 and 4+1).  

To emphasize what I mentioned earlier, equality represents true identity, not merely an 
equivalence relation: a=b if and only if a is the same thing as b. It does not suffice for a to be 
equivalent or isomorphic to b. Taking another example from set theory, it is not the case that 
Z/2Z=Z2. Mathematicians might casually refer to them as “the same group,” but they are 
actually different groups (members of Z/2Z are sets of integers, whereas members of Z2 are 
integers).  Z/2Z and Z2 are of the same isomorphism class, but they are not equal to each other. 
This is not to say that that are unequal simply because we write members of Z/2Z one way and 
members of Z2 another way; indeed we can have two different names for the same thing. For 
example, we can write the same group with additive or multiplicative notation, we have the same 
group, not merely isomorphic. Similarly, we can call the same function both “f” and “g”. So long 
as the set for the group, together with its operation, are identical (despite different names), then 
the groups are identical.  

Hodges (1997), a model theorist, attempts to make a similar point that I am making here: “A 
group theorist will happily write the same abelian group multiplicatively or additively, 
whichever is more convenient for the matter in hand. Not so much for the model theorist: for him 
or her the group with ‘*’ is one structure and the group with “+” is a different structure.” (p.1). 
The main point Hodges makes is that isomorphism and identity ought not be conflated. However, 
he conflates the notion of isomorphic structures with structures of the same name. By reducing 
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the notion of isomorphism to the notion of naming, there’s an important nuance he’s missing: 
that we can have isomorphic, non-identical structures, yet also have a structure and name it two 
different ways. Let’s return to the example of groups with two elements: the groups Z/2Z and Z2 
are isomorphic but not identical, for the reasons described above. Yet, if we wanted, we could 
write Z2 the typical way, as the set {0,1} together with the function 
{(0,0,0),(0,1,1),(1,1,0),(1,0,1)},or we could simply say “let a=0 and a=1”, and write Z2 as the set 
{a,b} together with the function {(a,a,a),(a,b,b),(b,b,a),(b,a,b)} and indeed these would be the 
same group while still remaining distinct from Z/2Z.  

This may seem like mindless pedantry, however, there are good reasons to be careful about 
equivalence versus equality. If we conflated equivalence and equality, Galois theory (which 
involves counting isomorphisms) would be a lot less interesting (Burgess, 2015; Hodges, 1997). 
Despite the distinction, equivalency and identity do have some properties in common - namely, 
identity (equality) is a particular equivalence relation in the sense it is reflective, transitive, and 
symmetric.  

I choose to precede the literature review on the equals sign with a discussion of the 
philosophy of identity to emphasize that appraising the meaning of identity statements is a non-
trivial activity.  Frege himself considered at least three different meanings for the equals sign 
(relation between objects, relation between signs, relation between senses). It is thus entirely 
possible that students can also have multiple, nuanced meanings for equations. We can adapt the 
meanings that philosophers and mathematicians have considered, since they are ways of thinking 
of the equals sign that may pertain to students’ particular mental models  

Here is summary of the major philosophical and mathematical points the reader should keep 
in mind when reading the literature review on the equals sign. The sentence “a=b” is true if and 
only if the object named by “a” is the same as the object named by “b”. While this is a criterion 
for truth of statements of the form “a=b,” it does not account for the meaning of “a=b,” as can be 
seen by Frege’s work. As Frege shows us, discerning the meaning of such statements is 
nontrivial, and even an esteemed philosopher and mathematician such as himself considered 
more than one possible meaning. Another important thing to keep in mind is that in mathematics, 
“=” expresses the relation of identity: that is, “is equal to,” “is the same as,” and “=” all refer to 
the same relation. This relation is a specific example of an equivalence relation, but there are 
other equivalence relations that are not this specific relation.  

 
Understandings of the Equals Sign: the Relational View 

 “Operational” is the word in the literature used to characterize these weak understandings. 
Roughly, an operational understanding involves viewing the equals sign as involving a 
performance of an operation.  The authors contrast an operational understanding with a 
“relational” understanding, which is characterized in various ways. Although the authors vary in 
their meanings for “operational” and “relational,” they are consistent in that an “operational” 
view always describes an incorrect or unproductive understanding, and a “relational” view 
describes a correct or productive understanding. I will adopt this terminology throughout the 
remainder of this paper. Due to space constraints, we only discuss characterizations of the 
“relational” view.  

In the literature, the operational view is contrasted with the relational view. Authors tend to 
treat a relational view as anything that is not an operational view, but they are not explicit about 
this dichotomy and are sometimes imprecise or narrow about what they mean by a “relational” 
view. In all cases, the relational/non-operational view is what the authors endorse as the desired 
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view for students to hold. Despite the attention that philosophers and mathematicians have paid 
to the nuanced meanings of the equals sign, math educators focus only on the misunderstandings 
of the equals sign. That is, they focus on students’ operational understandings and do not 
consider the varied understandings within the relational characterization. As discussed, even 
within the mathematical community, there is a lack of consistency and clarity about what the 
equals sign means. While the nuances of the relational view vary across authors, what remains 
consistent is that the relational view involves viewing the equals sign as expressing an 
equivalence relation. Exactly what this equivalence relation is and what it applies to is not 
apparent or consistent in the literate.  

Several authors characterize a relational view of the equals sign in such a way that is 
tantamount to expressing a relation between names of numbers. Denmark et al. (1976) and 
Kieran (1981) describe a relational view in a precise but narrow way: a student has a relational 
meaning for the equal sign when she sees whatever is on each side of the equals sign as names 
for the same number. Sáenz-Ludlow and Walgamuth (1998) and Oksuz (2007) do not clearly 
state that a relational view means “names for the same number,” but do seem to imply it; Seans-
Ludlow and Walgamuth (1998)  describe a relational understanding as “quantitative sameness of 
two numerical expressions” and Oksuz (2007) describes it as a view that the equals sign is “a 
relationship expressing the idea that two mathematical expressions hold the same value” (p.3).  
Unfortunately, the authors do not define what “quantitative sameness” or “same value” means, 
but they indicate that the equals sign expresses a relation between symbols or signs by their use 
of the term “expressions”.  Notice that characterizing the equals sign as expressing a relation 
between signs or linguistic objects is a view that Frege originally espoused and then later 
rejected in favor of the notion of sense. 

Some authors suggest a relational meaning of the equals sign as involving sameness as an 
attribute of expressions. For example, Oksuz (2007) refers to the expressions having the same 
“value” but does not elaborate further on what he means by “value”. McNeil and Alibali (2005a), 
Knuth, E., Alibali, M., Hattikudur, S, McNeil, N., & Stephens, A (2008), and Seans-Ludlow and 
Walgamuth (1998) refer to “quantity” but in slightly different ways. McNeil and Alibali (2005a) 
say that the expressions actually are the “same quantity,” Seans-Ludlow and Walgamuth (1998) 
refer to the “quantitative sameness of expressions,” and Knuth et al. (2008) refer to the equals 
sign as “representing a relationship between two quantities. ” Notice that McNeil and Alibali 
refer to the expressions as being the same quantity, whereas Knuth et al. do not explicitly refer to 
expressions and instead refer to the equals sign as a relation between quantities (plural). McNeil 
and Alibali’s characterization is a bit odd - if an expression is a quantity, then different 
expressions (which is usually what is on either side of the equals sign) should indicate different 
quantities, yet they refer to the “same” quantity. Knuth et al’s characterization is also a bit odd - 
if the equals sign is referring to two quantities, then what is it that is the same? None of the 
authors define what they mean by “quantity,” nor do they explain what the equals relation says 
about quantities. Behr et al. (1980) are more explicit than the other authors about the relational 
meaning of the equals sign. They say that “the most basic meaning is an abstraction of the notion 
of sameness. This is an intuitive notion of equality which arises from experience with equivalent 
sets of objects. This is the notion of equality which we would hope children would exhibit” 
(p.13).  

In other words, Behr et al. seem to be suggesting a meaning of the equals sign that alludes to 
the sameness of numerosity of equinumerous sets of objects, that perhaps, “3+4” refers to the 
cardinality of the set resulting from forming the union of a set of 3 elements with a set of 4 
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elements, and a sentence such as “3+4=5+2” has the meaning that such a set is equinumerous to 
the set resulting from the union of a set of 5 elements with a set of 2 elements.  

Several authors (McNeil and Alibali, 2005 a and b; Byrd et al., 2015; Behr et al., 1980, 
McNeil et al, 2006; Kieran, 1981) ambiguously refer to the relational view of the equals sign as 
expressing “equivalence”. Unfortunately, the authors are not always clear about what particular 
equivalence the relation is on -- perhaps expressions or numbers -- nor are they clear about what 
the equivalence relation is. In fact, the authors do not explicate the relevance of the properties 
that make an equivalence relation an equivalence relation -symmetry, reflexivity, transitivity.  

Kieran describes the relational view as an “equivalence view” of the equals sign and 
synonymous with “another name for.” She opens her paper with a quote from Gattegno (1974) 
that “equivalence is concerned with a wider relationship [than identity or equality] where one 
agrees that for certain purposes it is possible to replace one item by another. Equivalence being 
the most comprehensive relationship it will also be the most flexible, and therefore the most 
useful” (p.83, emphasis added). Gattegno is not contrasting equivalence with computational or 
operational understandings - instead, he is contrasting equivalence with identity. He is making 
the point that identity is a special kind of equivalence. In other words, he is emphasizing the 
difference between identity and equivalence, not treating them as one-and-the-same. Gattegno 
elaborates on what he means by “equivalence” by discussing an analogy between mathematical 
statements and natural language; he describes equivalence as a sort of linguistic replaceability 
that is a consequence of identity. In his view, “2x16” and “32” name the same thing and hence, 
are equivalent in the sense that in mathematical computations it is permitted to replace one with 
the other. He compares this sort of permitted replacement with replacing “he is on my right” with 
“I am on his left”. In other words, for Gattegno, equivalence is a consequence of identity that 
allows for linguistic replacement in certain contexts. This sort of permitted replacement -- the 
“equivalence” --  is what Gattegno suggests gives identity its power. Gattegno is not explicit 
about what this equivalence relation is, but he seems to hint that it is an equivalence relation 
between signs - e.g., “a” and “b” are equivalent if and only if “a” is replaceable by “b”. Gattegno 
hints at a relationship between viewing terms as “equivalent” and viewing them as “names for 
the same thing” - one is a consequence of the other. He explains that “4+1” and “5” are names 
for the same thing, and that therefore they are “equivalent” in the sense that they are 
interchangeable linguistically. Kieran, in citing Gattegno, does not seem to notice the 
relationship between “name for same thing” and replaceability.  She instead muses that another 
name for is an equivalence relation on ordered pairs of numbers, which she calls “R”: “(a,b)R 
(c,d) iff a+b=c+d”. This relation R applies to statements like “4+5=3+6,” but not “4+5=9” or 
“9=9”. Moreover, it is not an equivalence relation on names - it is an equivalence relation on 
actual ordered pairs of numbers and only applies in narrow contexts. Moreover, it is odd that she 
seems to define this equivalence relation in such a way that it allows only for equations with two 
summands - why not instead say “aRb if and only if ‘a’ and ‘b’ name the same thing”? 

Kieran is not the only author ambiguously using the word “equivalence”. Other authors also 
refer to the equals sign as expressing an “equivalence relation” but are unclear about what this 
relation is or what the relation is on (Knuth et al. 2008;  McNeil & Alibali 2005;  Byrd et al. 
2015).  

Despite the ambiguous characterizations of the relational understanding, we can tease out 
some significance of viewing the equals sign as an equivalence relation. It is important that 
students conceive of the equals sign in such a way such that it expresses an equivalence relation. 
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Further, having the properties of an equivalence relation is what allows for substitutability. Let 
us return to the “rule violations” that characterize an operational (non-relational) understanding: 
 

 Rule Violations Rule Violated 

(i) 5 = 2 + 3 
 

The “answer” comes to the right of the “problem”. Here, the 
“answer” is on the left.  

(ii) 2 + 3 = 4 + 1 The “answer” should follow the “problem”. Here, the answer is 
“5,” but no answer is written.  

(iii) 5 = 5 There needs to be a “problem”. Here, there is no problem. 
Figure 1: three equations that students with operational views of the equals sign frequently reject 
 

Viewing the equals sign as an equivalence relation accounts for a way of thinking in which (i), 
(ii), and (iii) are not rule violations, and, relatedly, the power of replaceability. Suppose = is an 
equivalence relation. So long as 2+3=5, it follows from symmetry that 5=2+3, in which case (i) 
is no longer a rule violation. Similarly, it follows from reflexivity that 5=5, in which case (iii) is 
no longer a rule violation. Concluding (ii) is a bit more involved but can be easily obtained 
through symmetry and transitivity: we have that 2+3=5, and by symmetry, 5=4+1. Hence, it 
follows from transitivity that 2+3=4+1. In other words, it is permissible in a mathematical 
context to use “5”, “2+3”, and “4+1” interchangeably - i.e. we can replace one term with another 
and have used the properties of equivalence to do so. 
 

Discussion  
The equals sign literature discussed above indicates that many students are not 

conceptualizing the equals sign as an equivalence relation. If someone were to view the equals 
sign as representing an equivalence relation, then the rule violations commonly discussed in the 
literature would not be rule violations; students would accept “5=2+3”, “2+3=4+1,” and “5=5” 
as true assertions. The most common misconception manifested itself in a rejection of statements 
like “2+3=4+1” with an acceptance of equations like “2+3=5+1=6” (Rule Violation (iii)). 
Renwick (1932) found this misconception amongst 8-14 year old girls of varying abilities. Oksuz 
(2007) found this misconception amongst middle school students. Fifty 5th graders and sixty 6th 
graders were asked what goes in the blank in “6+7=___+4”, and 38% of 5th graders and 24% of 
6th graders answered with “13”.  Behr et al. (1980), through performing individual interviews 
with 6-12 year old students, found that students viewed (i), (ii), and (iii) all as rule violations. 
When asked to give a definition of the equals sign, most children’s responses could be 
summarized as “when two numbers are added, that’s what it turns out to be”. In other words, 
students have a conception of the equals sign in such a way that it does not express an 
equivalence relation, and therefore do not have a mathematically normative or productive 
understanding.  

 
References 

 
 

22nd Annual Conference on Research in Undergraduate Mathematics Education 789



 

Bagaria, J. (2016). Set Theory. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy 
(Winter 2016). Metaphysics Research Lab, Stanford University. Retrieved from 
https://plato.stanford.edu/archives/win2016/entries/set-theory/ 

Baroody, A. J., & Ginsburg, H. (1982). The Effects of Instruction on Children’s Understanding 
of the “Equals” Sign. 

Be. (n.d.). Retrieved January 13, 2017, from https://www.merriam-
webster.com/dictionary/hacker 

Behr, M., Erlwanger, S., & Nichols, E. (1980). How Children View the Equals Sign. 
Mathematics Teaching, 92, 13–15. 

Burgess, J. P. (2015). Rigor and Structure. Oxford University Press. 
Byrd, C. E., McNeil, N. M., Chesney, D. L., & Matthews, P. G. (2015/2). A specific 

misconception of the equal sign acts as a barrier to children’s learning of early algebra. 
Learning and Individual Differences, 38, 61–67. 

Dejnozka, J. (1981). Frege on Identity. International Studies in the Philosophy of Science, 13(1), 
31–41. 

Denmark, T., Barco, E., & Voran, J. (1976). “Final report: A teaching experiment on equality”, 
PMDC Technical Report No. 6 (No. 144805). Florida State University. 

Frege, G. (1948). On Sense and Reference. The Philosophical Review, 57(3), 209–230. (Original 
work published 1892) 

Frege, G. (1967). Begriffschrifft, a formal language, modeled upon that of arithmetic, for pure 
thought. In J. van Heijenoort (Ed.), From Frege to Godel: A Source Book in Mathematical 
Logic 1879-1931 (pp. 1–83). Harvard University Press. (Original work published 1879) 

Frege, G. (1980). On Concept and Object. In M. B. P. Geach (Ed.), Translations from the 
Philosophical Writings of Gottlob Frege (3rd ed.). Blackwell. (Original work published 
1892) 

Hodges, W. (1997). A Shorter Model Theory. Cambridge University Press. 
Horsten, L. (2016). Philosophy of Mathematics. In E. N. Zalta (Ed.), The Stanford Encyclopedia 

of Philosophy (Winter 2016). Metaphysics Research Lab, Stanford University. Retrieved 
from https://plato.stanford.edu/archives/win2016/entries/philosophy-mathematics/ 

Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in 
Mathematics, 12(3), 317–326. 

Knuth, E., Alibali, M., Hattikudur, S, McNeil, N., & Stephens, A (2008). The Importance of 
Equal Sign Understanding in the Middle Grades. Mathematics Teaching in the Middle 
School, 13(9), 514–519. 

Makin, G. (2010). Frege’s Distinction Between Sense and Reference. Philosophy Compass, 5(2), 
147–163. 

McNeil, N. M., & Alibali, M. W. (2005). Knowledge Change as a Function of Mathematics 
Experience: All Contexts are Not Created Equal. Journal of Cognition and Development: 
Official Journal of the Cognitive Development Society, 6(2), 285–306. 

McNeil, N. M., Grandau, L., Knuth, E. J., Alibali, M. W., Stephens, A. C., Hattikudur, S., & 
Krill, D. E. (2006). Middle-School Students’ Understanding of the Equal Sign: The Books 
They Read Can't Help. Cognition and Instruction, 24(3), 367–385. 

Mendelson, E. (2009). Introduction to Mathematical Logic, Fifth Edition. CRC Press. 
Noonan, H., & Curtis, B. (2014). Identity. In E. N. Zalta (Ed.), The Stanford Encyclopedia of 

Philosophy (Summer 2014). Metaphysics Research Lab, Stanford University. Retrieved 
from https://plato.stanford.edu/archives/sum2014/entries/identity/ 

22nd Annual Conference on Research in Undergraduate Mathematics Education 790



 

Oksuz, C. (2007). Children’s understanding of equality and the equal symbol. International 
Journal for Mathematics Teaching and Learning, 1–19. 

Sáenz-Ludlow, A., & Walgamuth, C. (1998). Third Graders’ Interpretations of Equality and the 
Equal Symbol. Educational Studies in Mathematics, 35(2), 153–187. 

Zalta, E. N. (2016). Gottlob Frege. In E. N. Zalta (Ed.), The Stanford Encyclopedia of 
Philosophy (Winter 2016). Metaphysics Research Lab, Stanford University. Retrieved from 
https://plato.stanford.edu/archives/win2016/entries/frege/ 

 

22nd Annual Conference on Research in Undergraduate Mathematics Education 791



 

Making Implicit Differentiation Explicit 
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This paper discusses the conceptual basis for differentiating an equation, an essential aspect of 
implicit differentiation. We explain that implicit differentiation is more than merely the 
procedure of differentiating an equation and carefully provide a conceptual analysis of what is 
entailed in understanding the legitimacy of this procedure. This conceptual analysis provides a 
basis for discussion of the literature, as well as empirical justification for the importance of this 
topic.  
 
Keywords: Implicit Differentiation, Related Rates, Derivative Operator, Calculus 

The topic of implicit differentiation has been identified as “missing” from RUME research 
(Speer & Kung, 2016). This theoretical paper aims to begin to fill that gap by addressing the 
legitimacy of applying the differential operator to each side of an equation, an essential aspect of 
implicit differentiation. We take as axiomatic that understanding implicit differentiation involves 
understanding why it is legitimate to perform the procedure of differentiating each side of an 
equation.   

In this article, we provide a conceptual analysis of what it means for someone to understand 
the legitimacy of differentiating both sides of an equation. By carefully examining an implicit 
differentiation problem and a related rates problem, we explain how, despite a procedural 
similarity, implicit differentiation is not merely the procedure of “taking the derivative of both 
sides,” a conflation that exists even within the math education literature. We discuss literature 
after presenting the conceptual analysis, as the discussion is through the lens of our conceptual 
analysis. Finally, student data illustrates that understanding the legitimacy of this operation is 
nontrivial for students.  

 
The Normative Solution to a Ubiquitous Problem 

We begin with a pair of ubiquitous problems as well as their standard solutions, which can be 
found in the implicit differentiation and related rates sections of most calculus curricula. This 
illustrates how the conceptual basis for implicit differentiation can easily be lost in the 
implementation of its procedure.  

Suppose a 3-meter ladder, starting flush against the wall, begins sliding down the wall, the 
top sliding down at 0.1 meters per second. 

 (a) Find the rate of change of the distance of the top of the ladder from the base of the 
wall with respect to the distance of the bottom of the ladder from the base of the wall. 

(b) Find the rate of change of the distance of the bottom of the ladder from the base of the 
wall with respect to time.  

Figure 1. The ladder problems 
 

A prototypical solution of problem (a) involves letting x be the distance the bottom of the 
ladder is from the base of the wall and y be the distance the top of the ladder is from the base of 
the wall, both in meters. Then we get: 
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(1a) x2+y2=9 From the Pythagorean theorem 
(2a) 2x+2y(dy/dx)=0 By differentiating with respect to x 
(3a) dy/dx=(-x/y) Solving for dy/dx 

This equation yields the relevant rate of change at any point in the ladder’s motion. The 
solution for (b) is similar: 

(1b) x2+y2=9 From the Pythagorean theorem 
(2b) 2x(dx/dt)+2y(dy/dt)=0 By differentiating with respect to t 
(3b) dx/dt=(-y/x)(dy/dt) Solving for dx/dt 
(4b) dx/dt=(0.1y/x) Substituting -0.1 m/s for dy/dt 

 
The most commonly used calculus texts (e.g. Rogawski, 2011; Stewart, 2006; Weir, M. D., 

Hass, J. R., & Thomas, G. B., 2011) present solutions to related rates and implicit differentiation 
problems similarly to what is above, often without an explanation of the legitimacy of the 
procedure (Broussoud, 2011). This treatment overlooks why the procedure works and treats the 
derivative like a basic algebraic operator that can be applied to both sides of an equation 
(Thurston, 1972, Staden, 1989). However, the derivative cannot simply be applied to both sides 
of any equation. To illustrate this point, consider the equation x=1. Taking the derivative of both 
sides of this equations leads to 1=0, an absurdity, whereas applying any basic arithmetic 
operation yields a related legitimate equation (2x=2, x+2=3, x-1=0, etc.). So clearly there is more 
to why the derivative of both sides procedure works and when it can be applied than is evident 
from the prototypical examples above. We explore this in the following section. 

 
A Conceptual Analysis 

In order to address why the procedure for solving implicit differentiation problems is valid, 
we begin with a conceptual analysis (under the epistemological perspective of radical 
constructivism (Thompson, 2008)). This conceptual analysis is intended to put the reader’s 
understanding of the relevant mathematics on solid footing and explicitly lay out conceptual 
operations involved for one to understand implicit differentiation and differentiating equations 
robustly. It can thus enhance any framework that addresses problems in which students 
differentiate equations, such as related rates problems (Engelke, 2007; Martin, 2000). This 
conceptual analysis facilitates our discussion of student struggles with the validity of the implicit 
differentiation procedure later in this manuscript. 

Let us revisit (a) from Figure 1 above. We start as before with the equation x2+y2=9, with 
y≥0. Treating y as a function of x, define f(x) as the unique y such that y≥0 and 

(1) x2+y2=9.    
Hence, for |x|≤3, 

(2)     x2+(f(x))2=9. 
 
Let’s call the function defined on the left hand side of equation (2) ‘m’ and the function on 

the right hand side ‘r’. So m(x)= x2+(f(x))2 and r(x)=9. Notice that m(x) and r(x) are both 
functions of x and that (2) states that they are equal on the interval 0≤x≤3. From this statement of 
function equality, we can conclude that r and m have the same rate of change on this interval. So 
when we take the derivative of both sides we maintain equality on this interval. That is:  

     (3)     m’(x)=2x+2f(x)f’(x)=0=r’(x) for 0≤x≤3 
In the above case we get that: 

     (4)    f’(x)=-x/f(x) 
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The conceptual steps involved in legitimately making the inference of taking the derivative of 
both sides (transition from (2) to (3) above) appear below in Figure 2:  

1. Defining f by using (1). 
2. Viewing both sides of the equation as functions (of x). 
3. Recognizing that the functions defined by the left hand side and the right hand side are 

equal on the relevant interval. 
4. Recognizing that, since the functions are equal on an interval, the respective derivatives 

of the functions are also equal on that interval. 
Figure 2. Conceptual steps involved in implicit differentiation, solving Fig 1 part a.  

 
It bears mentioning that both Thurston (1972) and Staden (1989) noted that the legitimacy of 

the derivative of both sides procedure is rooted in function equality, although, Staden (1989) 
referred to these statements of function equality as “identity statements.” However, as discussed 
in the introduction, much of the current education research on related rates and implicit 
differentiation problems overlooks this issue.  

We pause briefly to discuss notation usage. At this stage in the manuscript we have solved 
problem (a) twice. The introduction used Leibniz notation (d/dx) in its solution to (a). This is 
consistent with popular calculus textbooks, where “taking the derivative of both sides” is often 
equated with “taking d/dx of both sides” (e.g., Rogawski, 2011; Stewart, 2006; Weir, et al., 
2011). However, as we illustrated above, the reason taking the derivative of both sides is a 
legitimate procedure stems from the equation under consideration expressing function equality 
on some interval. Viewing the equation this way requires viewing the equation as (implicitly) 
defining a function; in the above, f(x) is implicitly defined in terms of its relationship to x2 and 9. 
Hence the label “implicit differentiation”. The role of function equality - in fact, the role of 
functions - is obscured by the procedural emphasis and use of Leibniz notation. With Leibniz 
notation, there are no functions explicitly under consideration. With the standard function 
notation used in the conceptual analysis, it is more apparent which functions are being 
differentiated and that f(x) is being implicitly defined. Further, some research suggests that 
students need to see equations written in standard function notation before differentiating 
(Engelke, 2008). 

 
When Does the Equation Serve as a Function Definition? 

The two problems in Figure 1 look very similar to each other; they have similar solution 
procedures that involve taking the derivative of both sides of the same equation, 

(*)     x2+y2=9, 
and then applying derivative rules accordingly. However, the underlying reasoning that justifies 
the validity of performing a derivative operator on an equation differs between the two. 
Specifically, it is more involved to conceptualize (*) as a statement of function equality in (a) 
than it is in (b). In (a), the equation (*) not only asserts equality of functions, but also 
“implicitly” defines a function (the function f, discussed in bold above). In order to make sense 
of (*) as asserting a statement of function equality in terms of functions of x, one must 
conceptualize (*) as defining f and viewing y as equal to f(x).  

The relevant functions in (b) are functions of time (not of x), since the task is to find a rate of 
change of distance with respect to time (t). Unlike with (a), Conceptual Step 1 is unnecessary; 
one does not need to conceptualize (*) as defining a function in order to view it as asserting a 
statement of function equality.  
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Given our previous discussion of the limitations of Leibniz notation, we use standard 
function notation in the remainder of this discussion. The letters x and y are shorthand for 
functions of time, x(t) and y(t), respectively. So for all t: 

 (**)    (x(t))2+(y(t))2=9. 
Similar to our earlier discussion, if we give the functions on the left and right side of the 

equation labels, say m(t)=(x(t))2+(y(t)2) and r(t)=9, respectively, then (**) simply asserts that the 
functions m and r are equal for all values of t. Using similar reasoning to that of the previous 
problem this statement of function equality implies that m’(t)=r’(t). So: 

(***)    2x(t)x’(t)+2y(t)y’(t)=0 
which, since we know y’(t)= -0.1m/s, yields: 

(****)    x’(t)=(0.1y(t)/x(t)) 
Notice that unlike (a), (b) entails only conceptual steps 2-4 from Figure 2, as there was no 

function of t implicitly defined by the equation. In other words, in problem (a), (*) 
simultaneously serves the purposes of both asserting a statement of function equality and 
implicitly defining a function. In problem (b), (*) only serves the purpose of asserting a 
statement of function equality.  In this sense, only (a) truly involves implicit differentiation.  In 
both situations, students must conceive of an equation as asserting function equality; however, to 
conceive of (*) as a statement of function equality involves first conceiving (*) as defining a 
function. Hence, it seems reasonable that problems like (a) might be more conceptually difficult 
for students than problems like (b).  Defining the function f, as in (2), although perhaps trivial to 
mathematicians, could be a conceptual obstacle for students. Notice that (2) takes the form of 
“f(x) is the unique y such that the proposition P(x,y) is true.” Being able to conceive of a function 
definition that involves outputs according to whether or not a proposition is true requires a 
process conception of function, which many students lack (Breidenbach, Dubinsky, Hawks, & 
Nichols, 1992). Unfortunately, it is common for educators to treat the two types of problems in 
Figure 1 synonymously as applications of taking the derivative of both sides of an equation, 
without attending to the meaning of the equation or the legitimacy of such an operation 
(discussed later). 

To summarize, in order for one to understand the legitimacy of differentiating an equation, 
one must have a robust understanding of the equation itself. This robust understanding should 
involve viewing the equation as asserting a statement of function equality (Conceptual Step 3), 
which requires viewing each side of the equation as defining a function (Conceptual Step 2). As 
argued above, in the problem in Figure 1b, Conceptual Step 2 is easier than in 1a, as Conceptual 
Step 1 is not involved. Our reason for carefully contrasting the two types of problems in Figure 1 
is to emphasize that, while these problems have similar procedural solutions, when attending to 
the legitimacy of differentiating the equation, they are not the same.  

We are not claiming that the only conceptual work involved in understanding implicit 
differentiation and related rates problems is in understanding the legitimacy of differentiating an 
equation. This is just the conceptual aspect that we choose to focus on in this paper, as it has 
largely been ignored so far in the literature. Now that we have provided the reader with a 
conceptual basis for understanding implicit differentiation/related rates problems, including the 
conceptual steps required to make sense of the legitimacy of these procedures, we shift to 
discussing the literature. 
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Literature  
We searched the literature thoroughly by reviewing every available RUME paper that 

included the words “implicit differentiation” or “related rates”, as well as every paper in the 
online archives of The Journal of Mathematical Behavior, Mathematics Teacher, Journal for 
Research in Mathematics Education, Mathematics Education Research Journal and all other 
National Council of Teachers of Mathematics publications. A Google Scholar search was also 
performed, but the methodology for that search was not recorded. Despite this expansive search, 
only two articles (Thurston, 1972; Staden, 1989) address the legitimacy of differentiating both 
sides of an equation. In both articles, the topic is only mentioned in passing, and there is no 
discussion of student understanding. Staden (1989) specifically argues that students are 
“mistaught” by being told that they can differentiate each side of an equation (when, as discussed 
above, this does not work for any true equation), and suggests that students might have resulting 
misunderstanding. 

The remainder of the literature tends to treat differentiating an equation as only a procedural 
aspect of implicit differentiation or related rates problems. In fact, many authors appear to treat 
“implicit differentiation” to mean something like “using Leibniz notation while differentiating an 
equation”, not distinguishing true implicit differentiation (like (a)) from differentiation in related 
rates problems that’s not truly implicit (like (b)) (Jones, 2017; Martin, 2000; Engelke, 2007; 
Garcia & Engelke, 2013). This is unsurprising when we consider that, when viewed 
procedurally, differentiating with respect to x and with respect to t is almost identical. Hare and 
Philippy (2004), for example, write a lesson plan outline that includes the assertion “Implicit 
differentiation must be used whenever the differentiation variable differs from the variable in the 
algebraic expression (p.9)” and stresses use of the chain rule. If one is not attending to the 
rationale for differentiating, then attending to the “differentiation variable” and when to use the 
chain rule is similar in problems like (a) as in problems like (b) (in (a), the “differentiation 
variable” is x, and in (b) it is t).  

Martin (2000) provides a “problem-solving framework” characterizing the steps in solving 
related rates problems similar to (b). She not only conflates “implicit differentiation” with 
“taking d/dx of both sides,” but also overtly labels differentiating each side of an equation as 
“procedural.” Engelke (2007) utilizes Martin’s framework to develop a “mental model”; this 
mental model further de-emphasizes the conceptual aspect of differentiating equations by 
consolidating Martin’s “implicitly differentiate” step with another step to create what she calls a 
“phase”. When we consider how Martin created her framework, it is unsurprising that she does 
not address the legitimacy of “implicit differentiation”; she created the framework by observing 
written solution procedures to related rates problems. Since conceptualizing a justification for 
differentiating an equation is not a procedure, it makes sense that it would remain unaddressed.  
This is not to suggest that Martin’s model is not useful, only that it leaves this particular matter 
unaddressed. 

 
Student Confusion 

We have established, that both common textbooks and the majority of mathematics education 
literature ignore the conceptual basis for implicit differentiation. However, we realize that some 
might view this as unproblematic. In this section we take a brief look at some data to establish 
that the lack of student understanding of the conceptual basis for implicit differentiation. A 
search of popular online student help forums, Khan Academy and Stack Exchange, suggests that 
students are unclear of the validity and meaning of applying the differential operator to each side 
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of the equation (Anonymous, n.d.; Frank-vel, 2015; Jon, 2013; Klik, 2013; 
Mathematicsstudent1122, 2016; Ryan, 2016; Wchargin, 2013). Further, the work of one of the 
authors of this manuscript suggests that a strong understanding of function equality may be 
absent in a number of calculus students (Mirin, 2017a; 2017b). 

In order to learn more about students’ understandings of the conceptual steps involved in 
implicit differentiation (Figure 2), a student, John, was interviewed by the first author of this 
manuscript. He was enrolled in Calculus II at Anonymous State University (ASU) and had taken 
Calculus I, which includes a unit on implicit differentiation, the semester prior. The interview 
was a semi-structured clinical interview and lasted an hour (Hunting, 1997). Throughout the 
interview, John was asked to think about ideas regarding implicit differentiation and function 
equality that he had perhaps not reflected on before. John might have never considered these 
matters, and might therefore have made on-the-spot explanations.  

The interview centered around four prompts:  
Prompt 1. What is your meaning for implicit differentiation? How do you interpret the 

word “implicit” in this situation? 
Prompt 2. Find dy/dx for x2+y2=1 when y>0 
Prompt 3.  A 10-foot ladder leans against a wall; the ladder's bottom slides away from the 

wall at a rate of 1.3 ft/sec after a mischievous monkey kicks it. Suppose h(t)= the height (in 
feet) of the top of the ladder at t seconds, and g(t)=the distance (in feet) the bottom ladder is 
from the wall at t seconds. Then (h(t))2-100=-(g(t))2. How fast is the ladder sliding down the 
wall? 

Prompt 4. True or false: Suppose f(x)=g(x) for all values of x. Then f'(x)=g'(x). 
Figure 3: The prompts that formed the basis for the clinical interview. 

 
The interview lasted an hour. Due to space constraints only the most pertinent highlights are 

reported here.  
John expressed that he did not remember exactly what the procedure of implicit 

differentiation was, but that it was something that must be done when there is no function (i.e., 
due to failure of the vertical line test). He did not have an idea of what the implicit referred to in 
implicit differentiation. John did not have an idea of how to approach Prompt 2, so the 
interviewer reminded him of a procedure that was done in his Calculus I class: replacing y with 
f(x) before differentiating the equation and that x2+y2=1, y>0 defines the top half of a circle, and 
asked him to elaborate on what x2+(f(x))2= 1 means. He explained that 1 is the radius, and 
having f(x) [in place of y] “makes the computation easier”. He was then asked him explicitly 
what it means for the right hand side of x2+(f(x))2=1 to equal the left hand side, and he responded 
“It’s a circle. I just see a circle.” When prompted to explain what the circle has to do with the 
equation, he graphed two parabolas - a sideways parabola (representing y2) and an upright 
parabola (representing x2) and asked “how is that a circle?”. In this situation, it seems that John 
was not thinking of y (or f(x)) as a function of x; instead, he seemed to be thinking of “y2” as 
denoting the parabola that he associates with “x= y2”.  After reasoning with a graph was 
unhelpful to John, he began considering specific values of x and y, observing that “as they 
change together, in this equation here, they have to change together in such a way that it always 
equals 1.”When asked about the legitimacy of taking d/dx of both sides, he drew an analogy to 
algebra: “If I have x=1, I multiply by 2 and get 2x=2, it would be the same thing.” He related the 
procedure of taking d/dx to inferring equal rates of change: “if you take the rate of change of this 
[left hand side], it is the rate of change of this [right hand side]. They’re equal to each other, so 
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the change in one is gonna be the change in the other.” Since John believed the inference of 
equal rate of change came from something being equal, to get at what that something was, the 
interviewer asked him what happens if he differentiates each side of x=1.  He noticed that it 
results in 0=1, which he said did not make sense.  

The interview then shifted to Prompt 3. John was reminded that he could take the derivative 
of both sides of the equation, and he did so with some minor errors. He explained that the 
distance the ladder is from the wall, g(t), and the distance the ladder is from the floor, h(t), 
“change together”. Even when pushed, he did not say why taking the derivative of both sides is a 
valid procedure. Instead, John continued to express an understanding of the two distances as 
changing together as time changes, and failed to mention each side of the equation as 
representing a function: 

“We take the derivative of both sides because...you need to have the two rates change 
together, in order for this scenario to work. Because if they don’t with respect to each other, 
then uh...it just doesn’t hold true. So we do it on both sides in order to have the scenario 
change together and everything stay true to itself...maybe.” 
Since John was not using the language of functions on his own, the interviewer decided to 

move to Prompt 4 in order to see if he could relate taking the derivative of each side of an 
equation to an inference from function equality. John almost immediately provided what he 
viewed as a counterexample to the assertion that if two functions are equal, then their derivatives 
are also equal. By misapplying the quotient rule, he argued that f(x)=x and g(x)=2x/2 are equal 
for all values of x but have different derivatives. He explained that, if he were to simplify g(x), 
he would end up with the same derivative as that of f, but that simplification before finding 
derivatives is not permitted. This highlights that John had a fundamental misunderstanding of 
how the derivatives of two equal functions relate, a key aspect in understanding the legitimacy of 
applying the derivative operator. We believe this misunderstanding contributed to his struggles 
with making sense of why the implicit differentiation procedure is legitimate.  

 
Discussion 

We have performed a conceptual analysis of the implicit differentiation procedure. We have 
established the conditions under which taking the derivative of both sides of an equation is 
legitimate, why it is a legitimate procedure under these conditions and when a function is 
implicitly defined. In the conceptual analysis this process is broken down into 4 conceptual steps, 
which may form the basis of instruction aimed at better student understanding of implicit 
differentiation. Only 3 of these steps are needed to make sense of related rates problems. We 
showed that the way of understanding described in the conceptual analysis is largely absent from 
the mathematics education literature, which in turn bolsters the need for this analysis. This points 
to the fact that the understanding developed in the conceptual analysis may be non-trivial to 
develop in students. Finally, the study reports a brief excerpt from a successful calculus student 
John, which establishes that the understanding developed in the conceptual analysis is not 
present in some students and is non-trivial to develop. In future research we aim to explore this 
issue in more detail by conducting a multi-student teaching experiment aimed at developing rich 
student understanding of implicit differentiation.  
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Evidence to date that active, student-centered learning in mathematics classrooms contributes to 
desired student outcomes has now accumulated to compelling levels.  However, promoting and 
supporting widespread use of alternative practices is challenging, even amongst practitioners 
open to such changes. One contributing factor is the fact that a majority of instructional change 
efforts focus on only a small portion of the instructional system, while true transformation 
requires systemic reform. Successful institutional change initiatives have been shown to involve 
common features: they involve ongoing interventions, align with individuals’ beliefs, and work 
within the existing landscapes of institutional values. Here we propose a theory to support 
instructional change in undergraduate mathematics by adding a new dimension – instructor peer 
observation– to an existing model for institutional change (the CACAO model), thereby aligning 
with evidence regarding what promotes effective change. An exemplar is given to illustrate how 
this theory might be realized in practice.  
 
Keywords: Institutional change, instructional change, active learning, peer observation 
 

Introduction 
 

Significant evidence supports active learning as critical for student success in mathematics 
classrooms. Freeman and colleagues’ 2014 meta-analysis of 225 studies found significant 
improvement in student grades and pass rates in classrooms with active elements compared to 
those with only lecture. Many other studies have identified additional benefits in active learning 
classrooms, such as demonstrable conceptual learning gains (e.g., Kogan & Laursen, 2013; 
Kwon, Rasmussen, & Allen, 2005; Larsen, Johnson, & Bartlo, 2013), reduced disparity between 
dominant and historically marginalized groups (President’s Council of Advisors on Science and 
Technology, 2012; Kogan & Laursen, 2013; Riordan & Noyce, 2001), continued student gains in 
future classes (Kogan & Laursen, 2013), and improved STEM retention rates (Rasmussen & 
Ellis, 2013; Seymour & Hewitt 1997). In light of the mounting evidence, the National Science 
Foundation has called for wider propagation of interactive instructional methods (NSF, 2013). 

Despite the clear evidence of effectiveness and the national mandates for change, classroom 
instructional practices do not reflect a prevalence of student-centered approaches. Lecture still 
dominates (Johnson et al., 2017; Hora, Ferrare, & Oleson, 2012) and, according to the National 
Science Foundation, “highly effective teaching and learning practices are still not widespread in 
most institutions of higher education” (NSF, 2013, paragraph 67). Change is difficult: even when 
instructors want to change and believe they can, lecturing persists in undergraduate mathematics 
(Johnson, et al., 2017). Providing people with evidence that active learning works is not enough 
to motivate change (Foertsch, Millar, Squire, & Gunter, 1997; Reese, 2014; Dancy & Henderson, 
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2010), and even disseminating research-based “best practice” curricular materials is insufficient 
to support meaningful shifts in undergraduate STEM instruction (Henderson, et al., 2011). 

Some researchers have been working to provide ongoing supports to practitioners trying out 
innovative curricula, in the hopes of helping them successfully implement and sustain new 
practices (Lockwood et al., 2013; Johnson, Keene & Andrews-Larson, 2015).  Because 
instructors must develop new knowledge and skills in order to teach in student-centered ways 
(e.g., learning how to elicit and understand student thinking, lead effective whole-class 
discussions, and build on student conceptions and strategies to advance course content goals), 
these professional development efforts focus on combating the finding by Henderson et al. 
(2011) that interventions lasting less than one semester were ineffective. These change initiatives 
focusing on ongoing supports have had some lasting success (Lockwood et al., 2013), but the 
cost is high. In one model, instructors are provided with comprehensive curricular materials and 
asked to engage in regular, ongoing (virtual) collaboration with other colleagues, thus the 
commitment required is extremely large. While effective, this type of intervention is feasible 
only for those with advanced practice who are interested in significant reform. This paper offers 
a more accessible alternative to these advanced-practice interventions, which targets instructors 
at any stage of the adoption spectrum. Namely, we propose peer observation as a research-
aligned tool for supporting and sustaining systemic change of teaching culture.  

 
Institutional Change Theory and the CACAO Model 

 
Theories of and models for organizational change are myriad and, though often 

contextualized for the business and non-profit sectors, pertain to all types of organizations, 
though their adaptation to the educational context is relatively recent (Reinholz, 2017B). Change 
models range from “top-down” strategies that rely on policy set by organization leaders to 
“middle-out” and “bottom-up” approaches that initiate change from the starting point of 
individuals, or that target departments or other small teaching units.  In 2011, Henderson, Beach, 
and Finkelstein conducted a meta-study of 191 published reports of organizational reform efforts 
that specifically addressed instructional change in STEM higher education. The authors 
identified four broad categories that captured the salient differences across the collection of 
systemic change initiatives. All approaches could roughly be characterized as focusing on one of 
the following: (1) disseminating curriculum and pedagogy, (2) developing reflective teachers, (3) 
enacting policy, and (4) creating a shared vision. These four headings emerged from their 
observations that change strategies tended to fall along one spectrum that measured intended 
outcomes (wherein efforts to achieve outcomes could be either prescriptive or emergent) and 
along another spectrum measuring the aspect of the system being targeted (either individuals or 
larger environments and structures). Taken together, these two axes suggest quadrants that 
distinguish types of approaches. For example, a project in the “disseminating curriculum and 
pedagogy” quadrant is characterized by a prescriptive effort that targets individuals rather than 
overall institutional structures (i.e., “here are some teaching materials that you should use”). 

Amongst the various approaches implemented, it was found that two change strategies 
commonly used in education – providing teachers with “best practice” curricular materials, and 
enacting top-down policies intended to levy new practices – were “clearly not effective” 
(Henderson, Beach & Finklestein, 2011). These authors, however, also distilled three features 
common to all the systemic change programs deemed successful with respect to realizing some 
portion of the intended outcomes.  The salient take-home messages for change agents are as 
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follows: effective projects (1) align with the beliefs of the individuals involved (or seek to 
change their beliefs), (2) include long-term interventions (beyond one semester), and (3) are 
compatible with the broader institutional culture and structure (Henderson et al., 2011). These 
findings communicate an important message for the RUME community: disseminating research-
based curricular materials may be a necessary component for widespread instructional change, 
but is insufficient to promote lasting change. Moreover, agents of reform must balance change 
efforts targeted at individuals with those addressing the larger systems at play.  

The CACAO model for institutional change, described below, is one theoretical paradigm 
that has been adapted for use in higher education and has been applied to a variety of programs 
in which change agents want to promote an institution-wide shift in teaching practices (Maker, et 
al., 2015). A synthesis of models previously developed by Kotter (1990) and Rogers (2003), the 
CACAO model was introduced by Dormant in 2011 and integrates top-down and bottom-up 
approaches in order to leverage existing institutional supports and mitigate barriers to change.  
The model is flexible enough to allow change agents to weigh the benefits and drawbacks of the 
proposed change, incorporate the beliefs of adopters and their relative stages of adoption, and 
consider the institutional context in recruiting a diverse project team and developing a 
customized plan. As such, the CACAO model is naturally well positioned to include multiple of 
the “necessary” conditions observed by Henderson and colleagues (2011). 

There are four dimensions addressed by the CACAO change model: Change, Adopters, 
Change Agents, and Organization. The Change dimension considers the proposed change itself – 
in our case, more widespread adoption of evidence-based instructional practices in undergraduate 
mathematics classes -- and guides an examination of the likelihood that a proposed change will 
be adopted by key stakeholders (i.e., instructors) by identifying existing incentives to change 
while anticipating and mitigating potential impediments. The Adopters dimension considers the 
audience – those poised to consider making the change – as well as the various “stages of 
adoption” that may describe a potential adopters' current mindset relative to change (awareness, 
curiosity, mental tryout, actual trial, sustained adoption). For example, the CACAO model would 
suggest that someone who is merely curious about the change but not yet ready for an actual trial 
is presented with the “2-minute elevator pitch” on the proposed change, rather than the one-hour, 
in-depth presentation that might be motivating for an adopter in the “mental tryout” stage. 
Change Agents is the dimension in the model that offers recommendations for building an 
effective leadership team with diverse expertise and broad influence with regard to proposed 
adopters. Finally, Organization is concerned with identifying and leveraging the complex 
organizational hierarchy and appropriately matching personnel with important roles within the 
change implementation plan. This dimension of the CACAO model is critical in identifying 
agents who can act as exemplars, early adopters, and opinion leaders, and who can provide 
perspective to new members about why the proposed changes are important to the overarching 
project goals and to an individual’s personal goals.   

 
Peer Observation 

 
Peer observation among instructors has been shown to be an effective tool for promoting and 

sustaining instructional change. In particular, structured peer observation has been shown to (a) 
stimulate reflection on one’s own teaching practice (Bell, 2001; Cordingley et al., 2005; Cosh, 
1999; Reinholz, 2015), (b) improve collegial relationships and collaboration (Carroll & 
O’Loughlin, 2014; Shortland, 2010; Reinholz, 2017A), and (c) provide on-going support for 

22nd Annual Conference on Research in Undergraduate Mathematics Education 803



shifts in teaching (Byrne, Brown, & Challen, 2010; Martin & Double, 1998). An unexplored 
outcome of peer observation is its potential to transform teaching culture across an institution. 
We describe how previous literature on peer observation fits with this theory of local 
instructional change, and posit a theoretical contribution of how peer observation can be 
leveraged toward sustained institutional transformation. 

 
Peer Observation to Support Reflective Practice 

 The model of peer observation we consider is one that relies on personal reflection and 
close-knit cohorts, rather than external judgment, as the catalysts for change. Gosling (2002) 
characterizes this type of peer observation model as collaborative: rather than focusing on 
training or evaluation outcomes, the collaborative model focuses on developing teaching through 
dialogue, reflection, and collaboration.  

 The role of the observer is radically different in the collaborative model than in an 
evaluative observational approach. Rather than observing with the intention of making 
judgments upon others, the observer seeks active self-development. As Cosh (1998) elegantly 
explains, “the rationale of the observation here [is] to make us aware of different approaches, to 
encourage an open-mind and questioning attitude, and to provide an environment in which we 
can reassess our own teaching in the light of the teaching of others” (p. 173). Thus the 
observation serves as a mirror: the observer can more readily see themselves in the reflection of 
others. The observer is also freed from the cognitive constraints of teaching to notice elements of 
instruction more aptly (Reinholz, 2017A). 

 
Peer Observation for Sustained Individual Change 

Peer observation has the potential to impact instructional change in a way that some 
professional development programs do not: it targets an instructor’s beliefs about mathematics 
instruction. Many researchers have noted that instructional change is extremely difficult, in part 
because our teaching practices stem largely from our beliefs about mathematics and mathematics 
instruction (Ambrose, 2004; Cooney, 2002; Stipek et al., 2001). Understanding learning theories 
or improved curricular materials typically has little lasting impact on instructional practices 
(Silverthorn, Thorn, & Svinicki, 2006). Peer observation offers the opportunity to expand one’s 
breadth of teaching styles and approaches. As part of peer observation, the peer is immersed in 
the classroom and takes part in the visceral experience similar to that of a student. We posit that 
this experience can be more powerful than a video club-style professional development program 
(which has been shown to have lasting impacts on instructional change) (Sherin & Han, 2004).  

 
Peer Observation to Improve Collegial Relationships and Foster Community 

Ongoing peer observation initiatives also have the potential to develop communities of 
practice, a critical element in sustained change. Rather than being evaluated by a more senior 
mentor, graduate teaching fellows who participated in peer observations noted greater 
camaraderie with their fellow peers (Reinholz, 2017A). However, the expectations for peer 
observation must be carefully managed: exposing one’s teaching practice to a colleague and 
inviting feedback makes one vulnerable. If achieved, though, this vulnerability can lead to trust 
and deeper professional relationships. 
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Linking Peer Observation to Institutional Change 
 

As discussed, collaboratively-oriented peer observation programs have been shown to impact 
individual instructional practice. This theoretical report describes how peer observation can be 
leveraged toward institutional change as well. Sustained, low-stakes (i.e., non-evaluative) peer 
observation aligns with all three of Henderson and colleagues’ (2011) elements of successful 
institutional change programs.  

 
Alignment with Beliefs 

As described previously, peer observation has been shown to develop and promote self-
reflective practice. In the process of self-reflection, instructors have the opportunity to articulate 
their beliefs more clearly; only when made explicit can beliefs be examined and possibly 
changed. The experience of being in a class and observing from the point of view of a student 
may create productive conflict within the observer’s beliefs (What does it mean to engage 
students?) and help problematize their own classroom practice (Are my methods as effective as I 
hope? Could my students benefit from what’s being modeled here?).  Additionally, when the 
observed instructor hears feedback about their teaching that conflicts with their own self-image, 
it creates an opportunity for them to reflect on their beliefs from this alternate perspective. 
Putting beliefs in direct conflict with one another is how beliefs change (Gill, Ashton, & Algina, 
2004). Thus, peer observation can be helpful in drawing out and formalizing one’s own beliefs, 
engaging with the beliefs of others, and potentially shifting beliefs as a result of experiencing 
different teaching practices. Of course, there is a risk that peer observation will reinforce an 
instructor’s existing beliefs in an unintended way: upon seeing another instructor struggle to 
implement a student-centered activity, an observer predisposed to lecture might conclude that 
lecture is indeed the preferred way to teach.  The hope in this case is that the self-reflection and 
peer-to-peer conversation built into this collaborative observation model are enough to compel 
participating instructors to reflect on how change might serve them and their students. 

 
Long-Term Intervention 

Peer observation (as formulated here) is also a long-term intervention. In our proposed 
model, instructors collaborate for an entire year, mutually observing one another (in pairs or 
trios) at least twice a semester. Unlike some interventions that can be extremely costly to 
implement, peer observation has very little cost in terms of curricular adoption (though there is 
the cost of instructor time). It can “grow with” the participants, supporting instructors at various 
stages along the adoption spectrum. For example, those merely curious about active learning are 
given the opportunity to try-out the practices mentally when observing student-centered teaching 
in action. At the other end of the adoption spectrum, instructors with advanced evidence-based 
practices will benefit from the sustained support from regular peer observations and the 
relationships developed therein. 

 
Alignment with Institutional Culture 

Finally, peer observation is a practice that can be molded to fit within virtually any 
institutions’ culture. Presently, formative peer observation is not widely employed within 
collegiate instruction. Many instructors of mathematics enjoy the privacy and autonomy of their 
classrooms: opening up one’s classroom can be uncomfortable and potentially invasive. 
However, even though formative peer observation is not currently a part of the teaching culture 
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at many institutions, it can be leveraged as a tool that addresses other institutional concerns. For 
example, if used conscientiously and carefully, it can provide a platform for better informed 
insights into peoples’ classrooms and, in turn, benefit teachers, students, and administrators 
alike. It has been well documented that student evaluations are systematically biased (e.g., 
Centra & Gaubatz, 2000), and yet reviews from students form the primary assessment measure 
for teaching at most institutions. Many faculty are dissatisfied with the “consumer-based” model 
of education this implies. On the other hand, having specific feedback from colleagues who can 
attest to the reflective growth one’s practice has undergone could be especially helpful in 
awarding teaching accolades or offering informed perspectives that supplement student 
evaluations in letters for promotion cases.  Thus, while peer observation can be introduced to 
shift teaching culture, its potential to address other institutional needs could add both to the 
longevity of the change effort and its fit with the institution.  

 
Instantiation 

 
The REFLECT project is an example of how change agents are applying the CACAO model 

together with collaborative peer observation to encourage systemic change across STEM 
departments on the campus of one small, private, comprehensive institution in the Pacific 
Northwest. The goal of the REFLECT project is to increase the awareness and use of evidence-
based and student-centered practices by STEM faculty on campus, while helping shift the 
teaching culture to one that widely embraces active learning and views peer observation as a 
valuable and regular part of reflective teaching practice.  Project organizers considered all facets 
of the CACAO model and identified a number of affordances specific to the institution that could 
be leveraged in support of the project (e.g., growing interest among faculty for evidence-based 
practices, an administration that supports reflective and innovative teaching, a desire among 
faculty for teaching feedback that is not student-based). They also identified ways to mitigate 
potential barriers to change (e.g., avoid top-down pedagogical prescriptions, work with entire 
departments to build support for change, compensate participants for their time), and identified 
key players who could support and enhance institutional change (e.g., the university provost and 
president, regional experts, respected faculty opinion leaders).  

The REFLECT project has three major components: (1) a week-long “innovation institute” 
designed to expose participants to rationale and techniques for implementing active learning, 
forge collaboration between new adopters, and provide planning time; (2) a one-day peer 
observation training, wherein participants examine, refine, and practice applying a protocol 
focused on student-centered teaching (via a 
customizable rubric); (3) monthly lunch 
gatherings to discuss teaching practice; and (4) 
an ongoing peer observation cohort consisting 
of both participants and project leaders, 
intended to provide continuing support for 
adopters by fostering reflection on 
participants’ teaching through conversation 
and shared experience.  An overview of the 
REFLECT project components and how they 
align with the Henderson et al. (2011) findings 
is shown in Figure 1. Figure 1: Summary of REFLECT project components 

mapped to Henderson et al. (2011) framework. 
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The observational protocol includes three components: pre-observation discussion prompts, a 
customizable rubric for observation, and a post-observation discussion and reflection. The pre- 
and post-observation meetings are intended to build trust, establish instructional context, and 
provide formative feedback (post-observation) from the observer’s perspective regarding topics 
of the observee’s choosing. The rubric is designed to provide both guidance for the observer and 
individualization for the observee. For example, the observee is asked to select one dimension of 
practice they would like the observer to focus on during the observed class (such as responding 
to student thinking, use of technology, goal-oriented instruction, or others).  The observee then 
reflects on where various aspects of their current practice fall within the rubric, which in turn 
provides aspirational examples for advanced practice without implying judgment or inviting 
summative external evaluation. While the rubric targets specific components of effective 
instruction, any new teaching practices implemented are determined primarily via self-reflection 
and cohort feedback. As such, specific changes being adopted by instructors are emergent, rather 
than prescribed, and can align more effectively with participants’ beliefs. Further, beliefs are 
made explicit and then examined in the pre-and post-observation discussions. Since these 
conversations are necessarily conducted by instructors immersed in the ambient teaching culture 
on campus, they imply an understanding of the broader institutional context. Thus, used with 
other elements in the CACAO framework, the peer observation protocol helps achieve balance 
between the emphases on individual and community, and avoids the main pitfalls of the 
unsuccessful efforts identified by Henderson and colleagues (2011) (namely, disseminating 
specific pedagogical materials and enacting top-down policies for change). Furthermore, this 
model allows change agents to incorporate the three dimensions evidenced as necessary for 
success: the proposed changes align with participants’ beliefs (or seek to change them via self-
reflection and community conversation), involve ongoing supports (a year or more of 
collaborative peer observation), and are consistent with the broader institutional context (in 
which reflective and innovative teaching are celebrated). 

 
Conclusions 

 
 Peer observation is demonstrably effective for increasing self-reflection and promoting 

individual instructional change. In this theoretical paper, we propose peer observation as a 
powerful tool that will enhance an existing model (CACAO) for systemic institutional change by 
helping it address the dimensions common to successful change efforts identified in Henderson 
et al. (2011). To date, it appears that this particular combination of a CACAO-based program for 
organizational change with a formal peer observation framework is untested, and thus represents 
a new theoretical contribution. We believe it offers a promising direction for change agents who 
wish to promote instructional change at scale, particularly in cases where the institutional context 
is similar to that in the REFLECT project. Moreover, by tying work already being done by the 
RUME community (in developing research-based curricular materials, and examining what 
supports are needed to help instructors reshape their teaching practice) to further evidence about 
how to achieve institutional change, this offers compelling invitations for RUME researchers 
who wish to accelerate the uptake of student-centered practices. 
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Providing Undergraduates an Authentic Perspective on Mathematical Meaning-making:  
A focus on Mathematical Text Types 

 
 Richard Robinson Rachael Gabriel Hannah Dostal 
 The Citadel University of Connecticut University of Connecticut 
 
A disciplinary literacy perspective suggests that the goal of instruction in any discipline is to 
apprentice students into increasing participation in the disciplinary community. In this paper we 
explore four distinct types of mathematical texts and the critical role each plays in mathematical 
meaning-making. We argue that understanding the nature and uses of mathematical text types 
moves undergraduate students closer to the goal of approximating/engaging in mathematical 
practices, resulting in greater access to powerful mathematics.  
 
Keywords: mathematical practices, disciplinary literacy, reasoning and proof, algebra and 
algebraic thinking 

Mathematics with Purpose 
When mathematics is used in the world it is always for a purpose. An engineer writes 

mathematical text in order to make structures more resilient to the elements (Grayson, Pang, & 
Schiff, 2012). A computer scientist writes mathematical text in order to predict the next unrest 
event (Dopson, Lowery, and Joshi, 2014), while an applied mathematician writes mathematical 
text in order to create better tools for image compression (Roach, 2010).  Therefore, 
understanding the nature and uses of mathematical text types moves undergraduate students 
closer to the goal of approximating/engaging in mathematical practices that make use of text in 
varied ways. 
 

A Disciplinary Literacy Perspective on Uses of Mathematical Texts 
A disciplinary literacy perspective suggests that the goal of instruction in any discipline is to 
apprentice students into increasing participation in the disciplinary community.  That is, to 
engage students in the practices of those who generate, critique and disseminate knowledge in a 
given field.  As Gabriel & Wenz (2017) note, members of a disciplinary community utilize 
“agreed-upon conventions that guide the production, communication, and critique of disciplinary 
knowledge. The central goal of disciplinary literacy instruction is to help adolescents develop 
‘insider status’ in these communities.”  We began our inquiry by working to uncover the nature 
of texts used in mathematics by interviewing six pure and applied mathematicians across the US 
to explore the ways in which members of the field of mathematics orient to and engage with 
texts.  

It should be noted that the notion of mathematical text types is distinct from multiple 
representations, in that utilizing multiple representations is an essentially pedagogical technique 
in which showing something multiple ways is intended to promote student understanding. In 
contrast, within the discipline of mathematics, one would usually not create multiple 
representations of a single idea without a rationale. Instead, each mathematical text type is 
utilized with a specific mathematical purpose in mind.  

Mathematical Text Types  
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Within disciplinary literacy circles, the phrase “mathematical text” often conjures up one 
of two visions: a math textbook (Feng and Schleppegrell, 2010; Shanahan & Shanahan, 2008) or 
a mathematical proof (Moje, 2007; Moje, 2008). With respect to the former, we agree with Fang 
and Coatoam (2013) that “school subjects are disciplinary discourses recontextualized for 
educational purposes” (p. 628). This is not to discount the important and thoughtful pedagogical 
work that goes into creating a school textbook. Our argument is that the texts students interact 
with most often are not necessarily representative of text types used in the doing of mathematics 
outside of classroom settings (applied or pure mathematics).  As a pedagogical text, its main 
purpose is to instruct, and its main audience is outsiders to the discipline’s community.  This is 
analogous to the way in which biology students study frogs. When a frog is recontextualized for 
educational purposes, the resulting corpse is more easily studied, yet lacks much of its inherent 
frog-ness (hopping, eating flies, croaking, etc.) that made it of interest in the first place.  In a 
mathematics textbook, mathematical ideas are explained and demonstrated, but perhaps not 
communicated in ways that are authentic to the discipline’s everyday work of generating, 
critiquing and sharing knowledge. 

Mathematical proof, on the other hand, is an example of an authentic mathematical text 
written to convince the reader of a mathematical claim (existence proof), or explain why that 
claim is true (constructive proof). In fact, this type of text is so synonymous with the discipline 
of mathematics that some literacy researchers view it as the only type of mathematical text 
(Moje, 2007; Moje, 2008). In our view, to limit mathematical text to only proof text would be to 
further privilege pure mathematics over applied fields of mathematics, fields which rely much 
more heavily on the other three text types (algebraic/symbolic, algorithmic, and visual).  

In the following paragraphs, we briefly introduce the other text types, providing not only 
a description of each, but also supporting evidence for the text types from a diverse set of fields 
including linguistics (O’Halloran, 2005, 2015; Pimm, 1987), literacy (Draper and Broomhead, 
2010; Feng and Schleppegrell, 2010; Moje, 2007; Shanahan & Shanahan, 2008), history of 
mathematics (Cajori, 1993; Maur, 2014), and mathematics education (Kaput, Blanton, and 
Moreno-Armella, 2008). For each text type we highlight the purpose and the text features which 
are used to accomplish that purpose.  

Technologically Driven, Algebraic/Symbolic Text 
The purposes of algebraic/symbolic texts are to generalize and condense (see Kaput, 

Blanton, and Moreno-Armella, 2008). The key feature of algebraic/symbolic text is specialized 
notation (Pimm, 2015). 

Algebraic/symbolic texts have developed as a natural outgrowth of mathematical work, 
as necessary tools for mathematical meaning-making, especially when it comes to increased 
levels of abstraction (for full descriptions of the history of mathematical symbols, see Cajori 
(1993) or the more recent and less terse work of Mazur (2014)). Since the early Renaissance, 
developments in mathematics are inextricably linked to developments in mathematical writing 
and associated technologies. For example, algebra can be thought to have developed in three 
stages: rhetorical, syncopated, and symbolic (O’Halloran, 2005). Rhetorical algebra is 
mathematics in which unknown quantities are referred to using words instead of symbols. As the 
printing press increased access to mathematical texts, mathematicians began to develop new 
arithmetic algorithms, while simultaneously standardizing mathematical procedures and 
symbols. This would set mathematics on a path to syncopated algebra (a combination of words 
and symbols), and finally symbolic algebra, with the first algebra text Summa de Arithmetica 
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printed in 1494. (O’Halloran, 2005). By the time of Descartes, symbols were able to “liberate 
algebra from the informality of the word” (Mazur, 2014, p.xvii).  

Notice how algebraic text allows us to treat complex relationships as a single object (or 
collection of objects). In order to work with algebraic text in any meaningful way, we must be 
able to unpack that complexity at will, attending to aspects of form relevant to the mathematical 
task at hand. Undergraduate students should not be expected to read mathematical text in this 
way as a simple byproduct of engaging in mathematics (Ferrari, 2004). The cultivation of such 
disciplinary habits of mind requires explicit instruction. Moreover, attending to the historical 
development of symbolic texts is important since “causes of the success or failure of past 
notations may enable us to predict with greater certainty the fate of new symbols which may 
seem to be required, as the subject gains further development” (Cajori, 1993, p.196). 
 
Mathematical Processes, Algorithmic Texts 

The purpose of algorithmic texts is to provide access to problems that have no known 
analytic solutions or are too large in scale for hand computation (e.g., large datasets or a large 
number of cases to consider). The key features of algorithmic texts are control structures. 

Along with symbolic text, algorithmic text is likely one of the two oldest text types, 
occurring anywhere that a person needed to perform a mathematical procedure repeatedly. While 
today we often associate algorithmic text with computer code, computers are a sufficient but not 
necessary condition for the use of these texts. For example, the classic description of how to 
approximate the square root of a number by repeatedly averaging successive guesses (Joseph, 
2010) is an algorithmic text that can be read and implemented on paper. Entire fields of 
mathematics now rely heavily on algorithmic text, including numerical analysis, numerical linear 
algebra, discrete mathematics, and computational algebraic topology to name a few. 

From Cannon Balls to Pendulums, Visual Text 
The purposes of visual text are to highlight relationships and appeal to mathematical 

intuition. The key features of visual text are static aspects of a functional relationship such as 
domain, range, maxima, or minima, or more dynamic aspects, including end behavior or average 
rate of change.  

Visual texts “enable mathematicians to represent the linguistically and symbolically 
encoded information in ways that are tangible to the human perceptual sense” (Fang, 2012, p.26). 
Historically, visual text has been spurred on by the advent of new technologies. Initially, 
advances in printing allowed for diagrams to be included in mathematical texts. The first of such 
texts in western mathematics included diagrams as additions to the mathematics being discussed 
(O’Halloran, 2005). But, in the hands of Newton and Leibniz, visual text became the 
mathematics. For example, the method of integration by parts undergraduates learn in second-
semester calculus is based on visual text and an accompanying geometric proof which relates the 
distance between an axis and the geometric center of a figure (i.e., the moment of the figure) 
(Suzuki, 2002). In fact, the calculus of Newton and Leibniz is largely the study of curves and the 
various types of change they encompass (including slope of the tangent line to a curve and area 
under a curve). More recently, since the 1980s, computers have allowed for the further 
integration of visual text into mathematical work, both inside and outside of the classroom. 
Notice that, by our definition, everything from graphs of functions, to tables of values, to 
interactive diagrams in DESMOS all count as visual texts. For the current discussion we focus on 
graphs of functional relationships due to their prominence within the undergraduate curriculum.  
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Feedback from disciplinary insiders: Initial results from a Delphi study. In order to 
further refine our understanding of the nature and use of these mathematical text types, we are 
currently undertaking a modified Delphi study (Green, 2014) of research mathematicians from 
several universities, representing multiple mathematical subdisciplines. While a complete 
discussion is beyond the scope of this paper, we present preliminary results from the second 
round of our modified Delphi, a focus group of 6 current research mathematicians (2 pure and 4 
applied), representing 4 different colleges and universities from the southeast, and 5 
subdisciplines of mathematics.  In the following paragraphs we highlight specific facets of the 
text types that these researchers were able to highlight, providing us with new insights into how 
these types of texts are created and negotiated within the discipline of mathematics.  
 
Visual Text: “...Not just a Cheap Cartoon Version of Proof” 

Defining the role and legitimacy of visual text as a means of mathematical meaning 
making has been a long running debate within mathematical circles. Davis (1974) provides one 
of the more ardent defenses of visual text, with his notion of “mathematical theorems of 
perceived type”: 

The analytic program [algebraic/symbolic text], then, is a prosthetic device, acting as a 
surrogate for the ‘real thing.’ The unit circle as perceived by the eye and acted on by the 
brain is a very different thing from the symbol string		"# + %# = 1...The visual circle is 
the carrier of an unlimited number of theorems which are instantly perceived. (p. 119) 
 

Algebraic text and its inherent malleability allow for the proof of mathematical results in ways 
that are not as readily possible with the often static visual text (O’Halloran, 2005). But for 
applied mathematicians who often create graphs as a mathematical result, visual text can play a 
much more central role in mathematical meaning making, a perspective which naturally bleeds 
over into their classroom teaching.  
 

Participant: In my world of applied math I try to get students to realize that that graph might 
be the answer. The whole solution text is that visualization. That’s not just a cheap 
cartoon version of a proof. It is itself in fact a mathematical object. Now I don’t know if I 
have convinced a lot of people of that…Everything else is secondary to proof, I know 
that that’s the way it is, but I don’t think I would teach like that. I don’t teach like that.  

 
This mathematician is aware of “the way it is” (visual text as secondary within the wider 
disciplinary community) and chooses to push back against prevailing disciplinary norms by 
providing an alternate perspective to his students.  The separation between texts used by and for 
students and those used by mathematicians was a frequent theme across the interview.  This 
signals a distance between the textual practices of math students and those used by insiders in the 
disciplinary community.  Advocacy for the use of visual text with students was also echoed by 
another mathematician: 

 
Participant: Visual text is by far the most powerful. It’s what I use in my classes. I use it 

instead of proof, and it seemed ok, but there is a part of me that’s thinking I’m only 
representing an example, I can’t draw all graphs that are decreasing or increasing. But, I 
can show them one graph that is decreasing, and sure enough, the tangents are all 
negative. I mean, it feels like a little bit of a cheat, but by far the students get it. Whereas, 
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you do the algebraic/symbolic text, they might not get it, or it might not be as meaningful 
to them.  

 
The notion of visual text as pedagogically powerful and meaningful was a recurring theme. Not 
only did mathematicians have this view when working with their students, students had this view 
when thinking forward to their future interactions in the workplace. 
 

Participant: I had a conversation about that point just the other day with my students in an 
applied math class. We’re doing Fourier series in two variables. You solve a problem and 
there’s the Fourier series. I asked them, and they were essentially all engineers, would 
you present this to your boss if your boss gave you that problem? Everybody said “Well 
God no! The boss would fire me!” Well what would you do? And the thoughtful students 
said “Well I’d show the surface. You know, I’d show the picture of the surface to the 
boss. That would give him the information he wants. That’s the sort of text, it’s a visual 
sort of text, not an algebraic text.”  

 
Again, this underscores the importance of purposeful choice of mathematical text type. When 
you want to convey mathematics with meaning, either from expert to novice or across 
disciplinary boundaries, you’ll likely choose visual text.  Understanding how and when that 
communication is necessary is part of the work of engaging in mathematics purposefully or using 
it to do work outside of a school setting.  Moreover, understanding the implications of certain 
choices for different audiences can contribute both to students’ understanding of mathematical 
texts types and their decisions to make use of one or another.  The quotes above also demonstrate 
the orientation towards different text types within the discipline - with an implied hierarchy of 
purity and legitimacy on the one hand, and a hierarchy of utility and accessibility on the other.  
Unlike other disciplines where the use of a certain text type and purpose for writing may be more 
neutral or may be defined entirely in relation to a certain sub-discipline (e.g., nonfiction in 
journalism), decisions about text type in mathematics convey something about the identity and 
purpose of the creator and their intended audience.   
 
Algorithmic Text: “...What is a Number?” 

Initially, algorithmic text made the list of text types as a clear rebuttal of the notion that 
proof text was the only type of mathematical text. During the focus group interview our 
participants discussed the ubiquity of algorithmic text across all fields of mathematics. For 
example, one participant underscored the strong mathematical relationships that tie together 
numbers and algorithms.  
 

Participant: One thing we deal with in numerical analysis is “what is a number?” I mean, do 
real numbers even exist, ones that can’t be represented in a computer, that can’t be 
constructed? So even like √2. That is a nonterminating decimal. Now it is the diagonal of 
a square with sides one by one. But what is √2	? …one argument we do talk about in my 
field is numbers are things that can be represented either as the conclusion of an 
algorithm, like Newton’s method, or numbers that are the limit point of something that 
can be described.  
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These comments helped the authors to better understand algorithmic text as it is viewed within a 
community of mathematicians. To mathematicians, algorithmic texts are not simply code on a 
computer, but also include any well-defined process that terminates. As a result, algorithmic 
texts are an essential part of both pure and applied mathematics that facilitate certain kinds of 
mathematical processes.  When students are introduced to these mathematical texts, the 
mathematical purpose (not just the communicative features) should be conveyed, so that students 
learn to make use of mathematical text in the work of mathematics rather than viewing them only 
as a way to capture or record mathematics after the fact.  In other words, knowing what such 
texts can be used to do in the processes of mathematical thinking interrupts the idea that 
mathematical texts are created as an end product for others - an idea that is reinforced if the main 
exposure to mathematical texts is within a textbook.  Students should be aware that mathematical 
texts have a key role in facilitating the process of doing of mathematics so that they can engage 
with them in this way. 
 
Proof Text: “...Mathematics is so Much Bigger Than That Now” 

Proof text has traditionally been viewed as the pinnacle of mathematical rigor and 
achievement, by both disciplinary insiders and the layman alike. Such a perspective can often be 
at odds with how mathematicians go about their daily work, especially for those in more applied 
fields.   
 

Participant: It is tough. I think proof has a privileged status in mathematics. As a numerical 
analyst myself…there are things you can’t prove. The best wavelet compression for a 
fingerprint? It depends on the fingerprint! So, some things you cannot prove. But there is 
definitely a bias towards things that are not followed up with a proof or knowing when 
this formula works, that’s important in mathematics.  

 
Such bias has direct implications not only for practicing mathematicians, but also for the next 
generation of scholars.  
 

Participant: I just advised a PhD student and there wasn’t a single proof in his dissertation, 
right? And those papers are getting published, applied papers about models and results, 
numerical algorithms, optimization, parameter estimation…so, I think it’s a much more 
broad spectrum of things that are published and acceptable.  

 
This participant is making the case that the mathematics she and her students create, mathematics 
without proof text, ought to be viewed as disciplinarily “acceptable,” where here acceptable is 
synonymous with mathematical rigor. The argument would be that as the discipline of 
mathematics changes, so too must the nature and role mathematical texts in mathematical 
meaning making. This is nowhere more apparent than in the increasingly interdisciplinary nature 
of mathematics itself. 
 

Participant: And all the connections that mathematics has made, I think biology has been a 
big driver in terms of change. All the sciences and social sciences have expanded what is 
meaningful, right? A biologist doesn’t care about a proof, necessarily, right?  

 

22nd Annual Conference on Research in Undergraduate Mathematics Education 816



While the discipline may be ever-changing, the perspective on the discipline that is enacted in 
the K-12 classroom is highly resistant to change. As a result, proof text can act as a gatekeeper to 
future mathematical engagement, providing an “inauthentic” perspective on what it means to do 
mathematics.   
 

Participant: I would say an undergraduate major doesn’t really fully understand the concept 
of proof and able to produce at any kind of maximal level, maybe junior or senior and I 
think there are students who not until they are a graduate student.  To be pushing that into 
the high school, and holding that up as a standard of achievement? I mean most students 
are not mathematically mature, and to say to them “you are not going to be a 
mathematician,” or whatever you are saying, to a 10th grader who can’t do proofs in 
geometry? If you say: this is what a mathematician does. You can’t do it. Therefore, this 
path is not available to you? Inauthentic! It’s so narrowly defining mathematics that you 
are eliminating the option for so many people. Because mathematics is so much bigger 
than that now.  

 
Thus, proof writing is only one of several disciplinary practices used by those who engage with 
mathematics. Moreover, it is a sufficient, but not necessary practice for full engagement with the 
discipline. In contrast, disciplinary literacy practices play a fundamental role in the work of 
today’s mathematicians (both applied and pure), and are a necessary for any real type of 
mathematical meaning making. As a result, they represent a high leverage opportunity for 
teachers.   
 
Conclusion 

 Discussion with our participants made us aware of notions of access to powerful 
mathematics that we would not have previously associated with mathematical text types. This 
further underscores the multifaceted role that mathematical text types play regarding not only the 
enactment of mathematical practices, but also issues of equity, including “students’ development 
of a sense of efficacy (empowerment) in mathematics together with the desire and capability to 
learn more about mathematics when the opportunity arises” (Cobb and Hodge, 2010, p.181).  
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Prospective secondary mathematics teachers frequently take as many (or more) mathematics 
courses from a mathematics department as they do methods courses from an education 
department. Sadly, however, prospective secondary teachers frequently view their mathematical 
experiences in such courses as unrelated to their future teaching (e.g., Zazkis & Leikin, 2010). 
Yet there is some optimism that having instructors alter their instructional approaches in such 
mathematics courses can enhance such experiences to be a positive part of their preparation for 
teaching. This theoretical report elaborates on four points of connection to secondary teaching 
that can be made in undergraduate mathematics courses, illustrated via examples from abstract 
algebra, and organized along a spectrum of intended implications on secondary teaching. The 
purpose is to provide a theoretical bridging between instructional approaches in undergraduate 
mathematics and aspects of secondary teaching practice. 

Keywords: Secondary teacher education, Content knowledge, Teacher’s mathematical education 

Over the past century, mathematicians and mathematics educators have weighed in about 
the preparation of secondary teachers. On the one hand, secondary mathematics teachers need a 
sufficiently deep and robust knowledge of mathematics to teach secondary content; on the other 
hand, (strictly) mathematical ideas are not the only aspect for which secondary teachers need 
preparation. Teaching is a notoriously complex profession; teacher education, then, is that much 
more complex.  

In this theoretical paper, we explore some of these issues as they relate particularly to 
instruction in undergraduate mathematics courses. We do so because secondary mathematics 
teachers are frequently required to be mathematics majors; the main point being that a significant 
portion of their teacher preparation program consists of content courses in a mathematics 
department. These include courses such as abstract algebra – which is the primary course we 
draw on in our examples in this report. This paper aims to explore the following questions: What 
are ways in which instruction in undergraduate mathematics courses such as abstract algebra, 
historically, have made connections to secondary teaching? What are other ways in which 
instruction in undergraduate mathematics courses such as abstract algebra might make 
connections to secondary teaching? We consider the first question by synthesizing extant 
literature; we explore the second through the use of intentionally selected examples from current 
teacher education efforts. 

Two Connections to Secondary Teaching in Mathematics Courses in Extant Literature 
In exploring and synthesizing extant literature, we attempt to make clear from the outset 

one of our assumptions. Namely, we aimed to identify common ways in which undergraduate 
mathematics course instructors have attempted – explicitly or implicitly – to make their content 
relevant to secondary teacher preparation. As Wasserman (2018) described: to make their 
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nonlocal content relevant not only to the local secondary mathematics but (in some way) to the 
teaching of local secondary mathematics. That is, what we report on below could be conceived 
of as potential actions an undergraduate mathematics instructor might take that could serve as a 
point of connection to teaching secondary mathematics. Essentially, the two points of connection 
described below – content connections and modeled instruction connections – stem from broad 
syntheses of literature from secondary teacher education and from research in undergraduate 
mathematics education studies. 

Content Connections 
One of the most influential, and innovative, scholars to consider content courses for 

secondary teachers was Felix Klein. Amongst other things, Klein (1932) pointed out what he 
described as a “double discontinuity” for secondary teachers. The first discontinuity was that the 
study of university mathematics did not develop from or suggest the school mathematics that 
students (i.e., future teachers) knew. That is, the teaching of, say abstract algebra, did not draw 
on or remotely resemble the algebra they had learned previously, which made learning it more 
difficult. Klein’s second discontinuity was a disconnect for these future teachers in returning 
back to school mathematics, where the university mathematics appeared unrelated to the tasks of 
teaching school mathematics. That is, the abstract algebra they learned did not seem useful for 
teaching algebra to secondary students. Despite the fact that his observation goes back about 100 
years, it still rings true today. Undergraduate students, including prospective teachers, often find 
their experiences in university mathematics courses difficult (e.g., Dubinksy, Dautermann, 
Leron, & Zazkis, 1994), and secondary teachers find them disconnected from their future 
classroom teaching (e.g., Zazkis & Leikin, 2010). Klein’s primary resolution to this dilemma was 
to make explicit the mathematical connections that existed between school and university 
mathematics – an approach he coined as “elementary mathematics from an advanced 
perspective.” Klein’s approach – content connections as a point of connections to teaching – is 
still important today. 

The Mathematical Education of Teachers (I and II), more recent reports published by the 
Conference Board of the Mathematical Sciences (CBMS, 2001; 2012) that outline 
recommendations for mathematical content and courses to be included in teacher education 
programs, adopts a similar stance to Klein. They suggest, for example, that “[i]t would be quite 
useful for prospective teachers to see how ℂ can be “built” as a quotient of ℝ[$] and, more 
generally, how splitting fields for polynomials can be gotten in this way” (CBMS, 2012, p. 59). 
Mathematicians and secondary teacher educators agree that these mathematical connections are 
important; textbooks about mathematics for high school teachers (Bremigan, Bremigan, & 
Lorch, 2011; Sultan & Artzt, 2011; Usiskin et al., 2003) frequently explore such connections 
between the content of undergraduate mathematics and how it relates to the mathematics studied 
in secondary school.  

The general premise is that studying undergraduate mathematics serves to deepen, and 
more rigorously confirm, the specific mathematical ideas secondary teachers will teach. In terms 
of teaching, though, the intended implication is that secondary mathematics teachers will have a 
normatively correct understanding of secondary mathematics topics and be able to convey these 
concepts accurately to their students. Such development is particularly important in mathematics 
writ large, given that mathematical ideas explored earlier in school are often re-explored later 
with increasing mathematical sophistication. That is, mathematical ideas build on themselves. 
Secondary teachers need to do a sufficiently good job teaching school mathematics to secondary 
students since, in undergraduate mathematics, these ideas will continue to be developed. 
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Coherent concept development and points of mathematical connection, at least ostensibly, serve 
a specific purpose in teacher education – a point of connection to secondary teaching.  

Modeled Instruction Connections 
Perhaps less explicit in the literature, but no less powerful, is a point of connection that 

might be described as modeled instruction. Undergraduate mathematics instructors have the 
opportunity to take advantage of the age-old adage, “we teach how we were taught,” by teaching 
in ways they would want their students to teach secondary mathematics. This is likely (and 
perhaps rightly) not at the fore of an undergraduate mathematics instructor’s mind when 
teaching; but it nonetheless provides another point of connection to teaching. Especially given 
the observation in teacher education (e.g., Brown & Borko, 1992) that “methods” courses are 
often insufficient to shift a prospective teacher’s future practice to more reform-oriented 
instruction; many revert to teaching in ways they themselves were taught. In the literature, we 
see much of this notion of modeled instruction of a point of connection to teaching, implicitly or 
explicitly, as part of the work of the RUME community. In this literature base, scholars have 
studied and redesigned undergraduate courses to be more in accord with how students learn and 
develop mathematical ideas, which aligns with more inquiry- and reform-oriented mathematical 
instruction. 

Frequently steered by the notion of guided reinvention from the instructional design 
theory of Realistic Mathematics Education (RME) (e.g., Gravemeijer & Doorman, 1999), the 
RUME community has provided many examples of, and resources for, instruction in 
undergraduate mathematics courses that align with reform-oriented instruction. (In abstract 
algebra, see Larsen, et al. (2013); in linear algebra, see Wawro, et al. (2013); in calculus, see 
Oehrtman, et al. (2014); etc.) Often, by building on student thinking, these instructional 
approaches help alleviate aspects of the first discontinuity Klein observed. But also, as argued by 
Cook (in press), such instructional approaches, which build on student thinking, provide a model 
of good pedagogical practices for secondary teachers. This portion represents another connection 
to secondary teaching via modeled instruction. By instructing in particular ways, students learn 
mathematics in new ways, which potentially shapes the way they believe that mathematics 
instruction should occur.  

Identifying Two Other Connections to Secondary Teaching in Mathematics Courses 
Essentially, the literature has pointed out two sides in what might be regarded as a 

spectrum of connections (Figure 1a). On one side are connections that are “mathematical” in 
nature – content connections which primarily aim to influence the mathematical aspects of one’s 
instruction. On the other side are those that are “pedagogical” in nature – modeled instruction 
connections which primarily aim to influence the pedagogical aspects of one’s instruction. 
Indeed, mathematics and pedagogy are two important, perhaps obvious, lenses through which to 
view mathematics teaching. The purpose in placing these two on different sides of one spectrum 
is not to claim they are disjoint, or even easily separable; rather, it is to highlight that content 
connections and modeled instruction connections – two “means” by which an undergraduate 
mathematics instructor might make a point of connection to teaching – have different “ends” 
when it comes to teaching, and also to situate the two other connections discussed in this paper 
as being between these two sides of the spectrum – that is, as having intended “ends” that aim to 
have influence partly on mathematics and partly on pedagogy. Indeed, part of the premise of this 
paper is that elaborating on different points of connection to teaching that could be made in 
undergraduate mathematics instruction is good because having an arsenal of “means” (not just 
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two – or three or four, for that matter, but many) and a variety of “ends” both expands and gives 
substance to the complexity of mathematics teaching. 

 

  
Figure 1a. Connections to secondary teaching in 

mathematics courses in extant literature 

 
Figure 1b. Four connections to secondary teaching in 
mathematics courses along a spectrum of implication 

In recent work, Wasserman (in press) elaborated on two other kinds of connections to 
secondary teaching that might exist – ones that fill in areas on the spectrum above, serving part 
mathematical and part pedagogical ways of connecting to secondary teaching (Figure 1b). Now, 
the purpose in elaborating on these other two kinds of connections is not to speculate some as 
better than others, but rather to add to the list of different points of connections to secondary 
teaching and to organize them along a spectrum of intended influence to be more explicit about 
their role in connection to teaching. In what follows, we elaborate on these two other kinds of 
connection to secondary teaching, using examples from abstract algebra: i) disciplinary practice 
connections; and ii) classroom teaching connections. 

Disciplinary Practice Connections 
By a disciplinary practice connection being the point of connection to secondary 

teaching, Wasserman (in press) meant that the same kind of disciplinary practice that one 
engages in while studying undergraduate mathematics can also be engaged in while studying 
secondary mathematics. Such practices might include defining, algorithmatizing, symbolizing, 
and theoremizing (Rasmussen, et al., 2005), or what Cuoco et al. (1996) termed mathematical 
habits of mind. Indeed, the processes that one engages in while “doing” undergraduate 
mathematics are related to some of the important mathematical practices that have been 
identified and stated as explicit learning goals for school mathematics – e.g., NCTM’s (2000) 
process standards, or CCSSM’s (2010) mathematical practice standards.  

Hence, these kinds of connections serve a dual purpose. First, they serve a mathematical 
purpose. By becoming better “doers” of mathematics, secondary teachers have a better grasp on 
the discipline itself – i.e., the epistemological nature of mathematics, etc. Second, though, these 
connections also serve a pedagogical purpose. That is, by learning more about what doing 
mathematics means, there is a hope that secondary teacher’s pedagogical choices will, in fact, 
engage their own students in these forms of thinking and doing. Thus, while these may be 
primarily about an improved mathematical sensibility (more on the mathematical end of the 
spectrum) there is also an embedded pedagogical implication (at least partially toward the 
pedagogical end of the spectrum). Indeed, one of the three perspectives of the Mathematical 
Understanding for Secondary Teaching (MUST) framework (Heid & Wilson, 2015) is 
mathematical activity; that how one is engaged in doing mathematics can be a point of 
connection to the practice of teaching mathematics. The MUST framework highlights 
mathematical noticing, reasoning, and creating as activities whereby one’s experience in 
undergraduate mathematics courses can parallel the work of teaching school mathematics (Zbiek 
& Heid, in press).  
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An example of disciplinary practice connections from an abstract algebra course. In 
a recent study, Baldinger (in press) used a multiple case study approach to describe four pre-
service secondary teachers’ learning of mathematical practices from an abstract algebra course.  

The abstract algebra course was designed specifically for an audience of secondary 
teachers, and, although there were certainly content connections (e.g., fundamental theorem of 
algebra) and modeled practice connections (e.g., problem solving), one of the primary 
instructional approaches in the course revolved around disciplinary practice connections. That is, 
the instructor was explicit in describing disciplinary practices, such as, “That’s one teaching 
tactic I have for a challenging proof. I try to come up with a simple example where all the 
reasoning for the general case is right there. A generic example... A generic example illustrates a 
line of reasoning that generalizes.” Indeed, students were provided intentional opportunities to 
practice using such generic examples as they solved problems during the course. 

Using a pre-post analysis from task-based interviews, Baldinger (in press) found that the 
pre-service secondary teachers had become more expert in engaging in mathematical practices. 
That is, when given a novel mathematical problem, the mathematical activities and lines of 
reasoning they engaged in better reflected such disciplinary practices after having taken the 
abstract algebra course. Furthermore, the specific disciplinary practices they engaged in reflected 
those that the instructor had made very explicit during the course. Although one would hope that 
taking undergraduate mathematics courses would improve students’ mathematical activities, 
students often emerge unable to engage in core practices such as proving (e.g., Weber, 2001). In 
this study, being explicit about disciplinary practices, with opportunities to practice using them 
in class, seemed to help the pre-service teachers incorporate such practices into their own 
mathematical activity. Additionally, three of the four participants also reported that they saw 
specific connections between the course and their own (future) teaching. The connections they 
described primarily suggested that they intended to incorporate such disciplinary practices into 
their own instruction. 

Classroom Teaching Connections 
In terms of a classroom teaching connection being the point of connection to secondary 

teaching, Wasserman (in press) meant that some connection regarding the content of 
undergraduate mathematics was being applied to a specific secondary teaching situation. That is, 
the undergraduate mathematics served as a means to motivate particular and specific kinds of 
pedagogical actions in the classroom. For example, Wasserman and Weber (2017) explored how 
the study of proofs of the algebraic limit theorems can be applied to situations when secondary 
teachers interact with secondary students about rounding and operating on rounded values.  

The primary implication in these kinds of connections is about shaping a teacher’s 
pedagogical response to a specific teaching situation – which may be about designing problems 
with particular characteristics, about responding to students, about sequencing activities, etc. 
However, such situations are also mathematical, in the sense that the intended point to exploring 
the teaching situation also includes applying and incorporating mathematical (and not strictly 
pedagogical) ideas. That is, one’s pedagogical response to a situation is explicitly informed by 
some mathematical idea or mathematical analysis. 

An example of classroom teaching connections related to abstract algebra content. 
In a recent paper, Zazkis and Marmur (in press) elaborated on several instructional situations in 
secondary mathematics where teachers’ knowledge of group theory could serve to shape 
teaching – namely, their responses to situations of contingency.  
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School mathematics requires that students understand different sets of numbers (i.e., 
ℕ, ℤ,ℚ, ℝ, ℂ) as well as basic operations on those numbers, (i.e., +,− ×,÷). In particular, one 
goal of school mathematics is to help students understand that, as the sets of numbers “expand,” 
the ways in which we conceptualize the operations might also need to expand. That is, while 
multiplication on the natural numbers can be viewed as “X groups of Y,” this idea makes less 
sense with rational, real, and complex numbers. So although students might “know” 
multiplication, their notion of multiplication must also adapt somewhat to take into account the 
kinds of numbers under consideration. Responding to student questions about “What does ./ ×

0
1 

mean?” or “What does (2 + 35) ÷ (5 + 5) mean?” takes paying attention to, and pointing out, 
the differences in meaning of an operation depending on the numbers involved. 

Here, an experience with programming may be a useful source for understanding the 
pertinence of group theory. In MAPLE, the command isprime tests for whether the input is 
prime. Yet, in an earlier version of MAPLE, the command isprime(14/2) returned “false” (i.e., 
not prime) – a strange conclusion indeed. It turns out, isprime was defined for integer inputs and 
division was defined for rational inputs. Individually, both of these are sensible: all primes 
belong to the integers; division makes the most sense with rational numbers because it then 
maintains the property of closure – dividing rational numbers yields rational numbers. Yet, in 
combination, MAPLE took 14/2 to mean the rational number 7.0, and not the integer 7 – and it 
reported the rational number 7.0 to be not prime since it was not an integer. (This bug has since 
been corrected in MAPLE.) Experiencing this sort of dissonance from a programming 
environment, and as connected to ideas in abstract algebra, can help teachers develop the ability 
to attend to ideas of mathematical importance in situations of contingency – e.g., recognizing the 
importance of different number sets in conceptualizing multiplication with rational numbers or 
pointing out the importance of closure in defining complex division.  

Discussion 
The aim of this theoretical report is to provide some initial organizational framing to 

different points of connection to secondary teaching – especially ones in which undergraduate 
mathematics instructors might incorporate into their own instruction. We see this as contributing 
in two aspects. First, although extant literature in the field has explicitly emphasized content 
connections and, more implicitly, underscored modeled instruction connections, we have 
identified and exemplified two others: disciplinary practice connections and classroom teaching 
connections. Second, organizing these four points of connection along a spectrum helps indicate 
what kind of influence these might have with respect to prospective teachers’ instruction. In 
particular, they provide an ability to be more explicit about how attempted connections made in 
undergraduate mathematics course might relate to teaching. 

We also offer some insights based on the specific examples used in this report. First, 
from the disciplinary practice connections example, we see that an instructor’s choice to be 
explicit about disciplinary practices during their instruction, and to give students the opportunity 
to engage in those disciplinary practices during class, appears to have been critical to helping the 
teachers in the study become more expert in incorporating such practices into their own 
mathematical thinking and problem solving. We regard being explicit as an important 
consideration for disciplinary practice connections: without such naming of particular activities, 
students may miss the generality of a disciplinary practice and the ways in which it gets enacted 
across a multitude of settings. Second, from the classroom teaching connections example, we see 
that problems which intentionally mix things may be particularly productive for learning. The 
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cognitive conflict that stemmed from isprime(14/2) being “false” required interrogating issues of 
definition and of closure; not only might we use similar strategies in helping secondary teachers 
develop additional mathematical awareness in situations of teaching, but we might also discuss 
pedagogical strategies that leverage cognitive conflict in similar ways to help students 
themselves attend to (and appreciate) such mathematical nuances and complexities. 

Lastly, we discuss some limitations and further reflections. In particular, our theoretical 
framing has paid particular attention to “mathematical” and “pedagogical” aspects of secondary 
instruction. This is some ways is a natural starting point – mathematics and pedagogy are 
intrinsically important. However, there are certainly other important areas of instruction that 
merit consideration as well – including affective implications, belief systems, issues of equity, 
etc. How instruction in undergraduate mathematics courses can intentionally make points of 
connection to other aspects of instruction is an interesting question, worthy of further 
consideration. In addition, it may be that the four points of connection described in this report 
also inherently attend to some of these other areas of instruction as well. Regardless, identifying 
and leveraging theory that merges instructional choices that can be made in the teaching of 
undergraduate mathematics, with the kinds of implications for secondary teaching that are 
related to such choices, is an important step in helping to make secondary teachers’ experiences 
in undergraduate mathematics a more meaningful component of their teacher preparation and 
development process. 
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Self-explanation is a reading strategy in which readers explain a text to themselves as they 

encounter new information. Hodds, Alcock, and Inglis (2014) reported proof comprehension 

gains on students who had been trained to self-explain, when compared to students who had not 

received this training. We report a multiple case study in which we interviewed undergraduate 

students in introductory and advanced proof-based courses, to examine their understanding of 

self-explanation training and their use of this strategy throughout one semester. Preliminary 

findings indicate that self-explanation made students examine each line of the proof more 

deliberately, because they knew they would have to hold themselves accountable for figuring out 

how to explain each line of the proof. However, some students reported almost never using the 

technique, either because they prioritized the proof techniques demonstrated by their professors, 

or because they only felt the need to do so with particularly difficult proofs.  

 
Keywords: Self-Explanation, Proof Comprehension, Proof Reading 

 Introduction 

Mathematicians and mathematics educators have stressed that comprehending mathematics 
text is fundamentally different to comprehending traditional text, and that we need to address the 
reading of mathematics in undergraduate, proof-based mathematics courses if we want to 
improve students’ understanding of the mathematics texts they are asked to read (Cowen, 1991; 
Fuentes, 1998; Österholm, 2006). Students have traditionally struggled with proof 
comprehension in undergraduate math classes. Such difficulties have been documented 
extensively in the literature and include difficulties attending to the logical structure of 
mathematical statements (Selden & Selden, 1995), and distinguishing between valid and invalid 
arguments within proofs (Alcock & Weber, 2005). In response to such difficulties, researchers 
have proposed various strategies. In this study, we focus on the strategy of self-explanation. 

Literature Review 

Students spend the majority of their time in undergraduate mathematics classrooms taking 
notes on lectures in which theorems and their proofs are presented to students by their professors 
(Fukawa-Connelly, 2012). In turn, professors expect their students to study these proofs outside 
of class. However, in a survey with 175 mathematics majors and 83 mathematicians, Weber and 
Mejia-Ramos (2014) found that students had vastly different ideas about the expectations of their 
proof reading behavior. Most mathematicians expected that students needed to spend more time 
reading proofs compared to the time expected by students. Additionally, when students did read 
proofs, they did not report engaging with them in ways that aligned with the reading behaviors of 
mathematicians that are expected for comprehension (p. 19-20). This implies that there is work 
to be done on the part of mathematics educators to promote proof reading behaviors that 
encourage productive reading strategies, such as avoiding attending to surface features in favor 
of attempting to infer implicit warrants between consecutive lines of proof (Inglis & Alcock, 
2012). One option for addressing proof comprehension is to change the format of the proof. 
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Notable examples of such techniques are Leron’s structured proofs (Leron, 1983), Alcock’s 
e-Proofs (Alcock, 2009), and Mason and Pimm’s generic proofs (Mason & Pimm, 1984). 
However, these techniques have been met with little success (Fuller et al., 2015; Roy, 2014; 
Weber et al., 2012) in terms of gains in student proof comprehension.  

Another option for addressing proof comprehension is to change the behavior of the reader. 
The most prominent example of such a technique in the proof-based literature is called the 
self-explanation strategy in which readers explain lines of texts to themselves as they encounter 
new information. It is hypothesized that self-explanation improves comprehension by promoting 
active integration of new knowledge with existing knowledge, the reevaluation of accuracy and 
usefulness of mental models, and the coupling of the relationship of actions in a text to overall 
textual goals (Chi et al., 1989; Chi et al., 1994). The genre of mathematical proof lends itself 
well to self-explanation due to the importance of logical connectives between lines and the 
principle-based writing style (Rittle-Johnson & Loehr, 2017). Self-explanation is sometimes 
accompanied by a training which encourages specific types of explanations and discourages 
other types of comments. In the case of mathematical proof, preferred explanations are those that 
promote the integration of prior knowledge with the information in the text, the inferencing of 
warrants to justify the conclusions drawn in specific lines, and the inferencing of goals and 
sub-goals of the proof. Self-explanation training discourages non-explanations such as 
paraphrasing and statements about the reader’s affective state (‘This is confusing’ or ‘I get this’).  

Several studies have promoted the use of self-explanation training (Rittle-Johnson, Loehr, & 
Durkin, 2017), particularly for participants with low levels of domain knowledge (McNamara & 
Scott, 1999; McNamara, 2004)  because it encourages behaviors that align with the hypothesized 
benefits of self-explanation. Hodds, Alcock, and Inglis (2014) showed that students who 
received self-explanation training specific to mathematical proof produced more explanations vs 
non-explanations and received greater proof comprehension scores when compared to an 
untrained control group. They also showed, using eye-tracking, that self-explanation training 
changed students’ proof reading behavior. Students who received training spent more time 
fixating on each line of the proof, and more time focusing on between-line transitions than those 
who did not. However, these successful students did still produce non-explanations. Thus, 
although self-explanation training has been promoted in the literature and shown to increase 
proof comprehension, little is known about the ways in which the training is interpreted by 
students, how those interpretations impact readers’ goals while producing explanations, and what 
material students retain about the training over time. This study addresses these gaps in the 
literature by having students describe the ways they used their training to create self-explanations 
in real time, rank explanations in terms of quality, and describe the features that impact the 
quality of an explanation. This study provides information about how students consciously use 
the training to create explanations, and how they interpret information about the types of 
explanations that theoretically promote understanding and those that should be avoided. 

Finally, little is known about the effects of self-explanation training over time. Hodds, 
Alcock, and Inglis (2014) found that readers retained the benefits of self-explanation training 
after a few weeks after going through the training only once. Arguably some of the greatest 
benefits of the training proposed by Hodds et al. (2014) are that it takes up no time on the part of 
the instructor due to the online format, and that it only takes one 20 minute session of a student’s 
time at home. However, in a meta analysis of self-explanation literature, Rittle-Johnson, Loehr, 
& Durkin (2017) found a large degree of variability with respect to the longevity of the 
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self-explanation effect. This suggests that more research is needed on the degree of initial 
scaffolding and the frequency of training required to sustain the self-explanation effect over a 
long period of time. To date, there are no studies of trained students’ self-explanation behavior 
over the course of an entire semester. Thus, although the students’ proof comprehension gains in 
Hodds et al.’s (2014) study were retained after a couple of weeks from initial training, it is 
unclear exactly what was their self-explanation behavior. It is possible that students did not 
consciously self-explain (or that they did it rather poorly compared to right after training), yet 
retained the benefits of the training in other ways (e.g. through the increased between-line 
transitions found by Hodds et al.). This study aimed to address this issue by interviewing both 
novice and advanced students immediately after their self-explanation training at the beginning 
of a semester (and again at the end of a semester) about their self-explanation behavior and their 
degree of retention of the training material. This information can help us determine how 
frequently self-explaining training should be done/discussed throughout introductory and 
advanced proof-based courses in order to see maximum benefits in student proof comprehension.  

Research Questions 

The goal of this study was not to establish whether self-explanation training is effective and 
leads to increased proof comprehension. These goals would necessitate an experimental study, 
and have been addressed by Hodds, Alcock, and Inglis (2014). Instead, the goals of this study 
were to detail the ways in which self-explanation training is used and understood by participants, 
and to use those data to generate hypotheses as to the ways in which self-explanation training 
could be made more effective for different student populations. In particular, the questions 
motivating this study are: How do novice and advanced students who have received 
self-explanation training (i) use their training to make decisions when self-explaining a proof 
(including decisions about the quality of individual self-explanations), and (ii) retain information 
about their self-explanation training (including how often they report using self-explanation over 
an entire semester)? 

Methods 
In order to answer these research questions, we conducted a multiple case study (Bromley, 

1986). The descriptive and in-depth nature of these goals necessitate a qualitative interview 
study, while the desire to address nuances between and within various student populations 
necessitates a method with students in both introductory and advanced proof-based courses. 

Participants 
Four students were interviewed at the beginning of the Summer 2018 semester. We were able 

to bring three back for follow-up interviews. Two students were enrolled in an introductory 
proof-based course, and two in a real analysis course for which the introductory course is a 
prerequisite. The real analysis course will be referred to as an advanced course for the sake of 
clarity. Neither of the researchers were teaching these courses in the Summer 2018 semester. 

All four participants were men in their second or third year of study at a four-year institution 
in the United States. Throughout this report, pseudonyms will be used to discuss each 
participant. Andrew and Brandon were second-year students enrolled in the introductory course, 
while Colin and David were third-year students enrolled in the advanced course. Both Colin and 
David had previously taken the introductory course at the same four-year institution. 
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The four participants were chosen from a list of students that had expressed interest in the 
study after it was discussed by the researchers during one class session. In the session, the 
researchers invited all students to indicate their interest in participating in two paid interviews 
about mathematical proof reading techniques during the semester. 

Procedure  

The first interview had four phases. In the first phase, students were asked about their current 
reading strategies and behaviors when reading proofs. In the second, students completed the 
online self-explanation training used in Hodds et al. (2014). In the third phase, students 
self-explained a proof involving concepts used recently in their respective math classes (e.g. 
students in the introductory course self-explained a proof about rational and irrational numbers). 
Self-explanations were followed by a series of questions that asked students to describe how they 
did or did not use their training to produce their self-explanations, how the training did or did not 
impact the way they read and understood the proof, and the degree to which they thought their 
explanations were of high quality. In the fourth phase, students were given pre-written 
self-explanations for Proof B  from the Hodds et al. (2014) study. The explanations were written 1

to intentionally focus on specific features of self-explanations that were either promoted or 
discouraged during the training. For example, one explanation would involve both inferencing of 
connections between consecutive lines and paraphrasing. Students were asked to comment on the 
quality of these explanations and the features they believed increased or decreased their quality.  

The second interview had three phases. In the first phase, students were asked to describe 
their current proof reading habits and whether those had changed over the course of the semester. 
In the second, students described what they remembered about their self-explanation training, 
how often they had used self-explanation over the course of the semester, and what factors either 
promoted or inhibited their use of self-explanation. Advanced students were also asked to 
describe the ways in which the self-explanation training did or did not change their established 
proof-reading behaviors. Students were reminded that saying ‘I don’t know’ or ‘I don’t 
remember’ was an acceptable answer. Students were also reminded that their use of the training 
did not impact the success of the study, so they could be honest in their responses. In the third 
phase, students self-explained a proof involving concepts used recently in their math classes. 
Students were asked the same questions about their self-explanations from the first interview. 

Interviews were transcribed and we are using thematic analysis to generate claims about their 
proof reading behaviors over time, and the effectiveness and impact of the self-explanation 
training. Namely, we describe how students reported using the training to generate explanations, 
to form their ideas about the desirable and undesirable qualities of self-explanations, and the 
degree to which those qualities were present in their own explanations.  

Preliminary Results 

We are in the process of analyzing these data, and briefly discuss two of the themes that 
have emerged from our analysis.  

On Perceived Impact of Self-Explanation Training  

1 Proof B is a proof of the statement: n is even if and only if 3 n2+8 is even for n in N. 
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Every student interviewed indicated that a main effect of self-explanation training on their 
behavior when reading proofs was that it made them examine each line of the proof more 
deliberately than they might have before, because they knew they would have to hold themselves 
accountable for figuring out how to explain each line of the proof. Andrew, for example, said the 
while explaining,  

I think it’s being honest with yourself because it forces you to say ‘am I actually learning 
things, am I actually retaining information in class, am I doing what I have to do?’ 
because it kind of holds yourself accountable. 

Andrew found that self-explanation made him more likely to question his own understanding 
of the proof. David echoed this statement by saying,  

I guess it makes me not try to skip over lines too quickly. Like I was like ‘okay I have to 
explain this I better read it carefully’. So it basically makes sure that you’re reading every 
line and if I don’t know something you won't be able to explain it yourself.  

Here, David emphasized that self-explanation motivated him to thoroughly examine each line 
to ensure that he would be able to explain each part of the proof well.  

On Using Self-explanation Over Time  

In the follow up interviews, professor influence and proof difficulty were large determining 
factors for the use of the self-explanation technique. Brandon and Colin both expressed that 
while the training was influential in the moment, its influence over their actions when reading 
proof weakened when they returned to class. Colin, for example, stated, “How the professor 
teaches is always being pounded into me whereas what you mentioned, I only talked with you 
once.” Colin considered the possibility that self-explanation was taught in person by his 
professor and stressed throughout the course,  

It would be something that would always be there in your mind because you might think 
of “how might the professor want me to do this?” [Students] probably [think] “this is how 
I’m going to be tested, this is what [the professor] would want on a piece of paper.”  

Colin felt that he would be more likely to use techniques endorsed by his professor, because he 
would assume these techniques would increase his chances of doing well on exams. Brandon, on 
the other hand, said he rarely used the technique with proofs in class because “If I’m reading a 
proof for the first time I don’t generally use the technique unless I’m confused or something” 
which occurred with about 20% of the proofs he read. For Brandon, the technique was a resource 
that was only necessary when he didn’t understand part of a proof, but this did not occur often.  

Questions for Audience 

1. All students emphasized that high quality explanations should explain the logic behind 
each line of the proof and why the line is necessary. However, not all students produced 
explanations that included both of these qualities. How should this be interpreted?  

2. Many students often conflated statements about reading and writing proofs. How should 
we handle claims in which a student is discussing the benefits of self-explanation for 
proof writing rather than proof reading?   
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Course Coordination Patterns in University Precalculus and Calculus Courses 
 

 Naneh Apkarian Dana Kirin Matthew Voigt 
 Western Michigan University Portland State University San Diego State University 

In this report we present findings from a preliminary investigation aimed at describing models of 
course coordination systems currently in place within university precalculus and single variable 
calculus courses. Hierarchical cluster analysis was used on national survey data to identify 
homogeneous clusters of courses based on the intended use of uniform course elements across 
sections. The analysis revealed eleven clusters of courses, nested within five larger groups. We 
briefly describe each of the eleven clusters in terms of the uniform course elements and the five 
larger groups in terms of the clusters nested within them. We then characterize these groups with 
respect to department type (Masters- versus PhD-granting), course level (Precalculus, Calculus 
1, and Calculus 2), regularity of instructor meetings, and type of course coordinator. 

Keywords: Course coordination; precalculus/calculus; course structure 

With enrollments increasing in courses across the Precalculus to Calculus 2 (P2C2) sequence 
(Blair, Kirkman, & Maxwell, 2018), many mathematics departments have begun implementing 
course coordination systems in an attempt to create consistency in student learning opportunities 
within and across these courses (Apkarian & Kirin, 2017; Rasmussen et al., in press). While 
creating consistency in student learning opportunities broadly underlines such efforts, the exact 
reasons for implementing such a system vary across institutions. Rasmussen and Ellis (2015) 
point out that course coordination systems can be used to ensure uniformity in certain course 
elements (e.g., textbook, exams) for all sections of a particular course, and they suggest that 
building and implementing coordination systems can engender a sense of community among 
regular instructors of a coordinated course. Other studies suggest that these systems are 
important program components for enacting and sustaining change in P2C2 courses (Apkarian, 
Bowers, O’Sullivan, & Rasmussen, 2018; Pilgrim & Gehrtz, 2018) and that such change has the 
potential to positively impact student learning (Rasmussen, Ellis, Zazkis, & Bressoud, 2014). 
Taken together these studies provide some evidence that developing and implementing such a 
structured system for P2C2 courses has the potential to positively impact both instructor and 
student experiences within this sequence. Yet surprisingly little is known about how P2C2 
coordination systems are currently organized and structured within mathematics departments 
across the United States. Thus, we ask: What, if any, patterns of usage exist among different 
aspects and components of course coordination systems in undergraduate P2C2 courses?  

Background 
Theory regarding course coordination systems, or how the coordination of particular course 

elements affects student experiences in introductory STEM courses is scarce in mathematics 
education literature. However, it is something many schools are interested in, it is important to 
begin that conversation (Apkarian, Kirin, Vroom, & Gehrtz, under review). One resource that 
stands out for thinking about course coordination of introductory mathematics courses is 
Rasmussen and Ellis’s (2015) work, which suggests that in addition to controlling some of the 
variation in student experiences by controlling course elements, coordination systems may have 
a social component which engenders a sense of community among instructors. This sense of 
community affects the development of norms, including norms for teaching, which has an effect 
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on student experiences in the classroom. A related body of work is that regarding curriculum. 
The constructs of written, intended, enacted, assessed, and learned curricula are particularly 
useful as different dimensions of course structure (Porter & Smithson, 2001; Stein, Remillard, & 
Smith, 2007). While postsecondary education is not governed by national standards and/or 
assessments as are the lower grades, a coordination system should, in principle, affect the 
curriculum. For example, a common course syllabus in Calculus 1, which includes a common 
textbook and a common set of topics to be covered, can be thought of as a common written 
curriculum; common exams relate to commonality in terms of the assessed curriculum. The 
transformation of written curriculum into intended and enacted curricula is affected by 
instructors’ identity and situational context, which are likely impacted by regular course 
meetings and conversations about instruction.  

Methods 
Data for this analysis comes from a national survey aimed at investigating P2C2 programs 

across the country. The survey was completed by 223 of the 330 university departments offering 
an MA, MS, and/or PhD in mathematics in the United States of America. The survey covered 
many aspects of these programs and departments, as well as details about the P2C2 courses 
themselves. From this survey, we gathered detailed information about course delivery and 
management for 889 courses, 261 of which were categorized as Precalculus, 327 categorized as 
Calculus 1, and 301 categorized as Calculus 2. These details include what, if any, course 
elements are uniform across sections; regularity of instructor meetings; primary instructional 
approach for regular course meetings and recitations; role of coordinator; and the regularity with 
which the course is taught by differently ranked members of the university (e.g., research faculty, 
teaching faculty, graduate students). Our knowledge of the literature related to course 
coordination led us to select particular items from the survey to investigate as part of modeling 
course coordination systems. In particular, Rasmussen and Ellis (2015) point out that systems of 
coordination include both superficial aspects, such as coordinating course elements across 
specific course sections, and departmental features, such as the presence and role of course 
coordinators. In the analysis presented here, we consider the items related to the presence of 
uniform elements across course sections, regularity of instructor meetings, and the presence and 
role of a course coordinator for each of the 889 courses. 

We began our analyses by grouping courses based on their response to the question about 
uniform course elements, specifically whether or not each of eleven1 course elements were 
indicated as uniform across different sections of the course. Our intention with this analysis was 
twofold. First, to explore conjectures about what course elements are coordinated together or 
separately. Second, to reduce the uniform course element data for further analyses. Grouping was 
done using agglomerative hierarchical cluster analysis. Due to the binary nature of the data (e.g., 
coordinated/not coordinated) we used complete-linkage (or farthest neighbor) clustering and the 
Jaccard distance measure (Choi, Cha, & Tappert, 2010; Hastie, Tibshirani, & Friedman, 2009). 
Agglomerative hierarchical clustering begins by assigning each observations (here, 889 11-tuple 
course responses) to its own cluster, then sequentially combining the two closest clusters. The 
result of this process is a sequence of cluster fusion indicating at what step the clusters joined, 
and from what distance. This sequence preserves nested relationships between clusters and 

                                                 
1 The survey contained 15 such items. Three were dropped to avoid confounding results based on the rarity of those 
elements; a fourth was dropped due to improper wording which make responses uninterpretable.  
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indicates relationships between the groupings. From the clustering sequence, decisions must be 
made to determine the appropriate number of clusters at which to “cut” the results. 

An ideal cluster sequence cutoff is one which minimizes the distance between observations 
in each cluster and maximizes the distance between clusters, thereby creating distinct clusters of 
similar observations. With this in mind, we employed the elbow and average silhouette methods 
to inform the number of clusters selected (Hastie et al., 2009). The elbow method considers 
within-cluster sum of squared error, and recommends cutting the clustering sequence at a point 
where increasing the number of clusters corresponds to relatively small decrease in that error. 
The silhouette method considers the quality of clusters by comparing the relative similarity of 
each cluster element to others in its cluster as compared to observations outside the cluster. 
Using this method, high silhouette values indicate an appropriate clustering configuration. Using 
these two methods and taking advantage of the hierarchical structure of the clusters, we 
identified eleven clusters of courses nested within five larger groups.  

Once the cutoffs were determined, we considered the responses which made up each cluster 
and group. Table 1 shows the proportion of observations within each cluster which selected each 
item. This allowed us to characterize the clusters based on the uniform course elements. Having 
satisfied ourselves that the clusters and groups were sensibly coherent, rather than just noise, we 
assessed the aggregated responses of courses in each cluster and group to the other course-
coordination related items. While future work will expand on describing existing patterns within 
and across the eleven clusters, for the purpose of this report we focus on describing and 
comparing the five larger groups. 

Preliminary Results 
The clusters (1-11) and groups (A-E) from our analysis are shown in Table 1, alongside the 

proportion of observations in each cluster coordinating each element.  
Table 1. Groups and clusters from hierarchical agglomerative clustering methods along with proportion of courses 
within each cluster that coordinate a particular course element. Reported values are those over 0.5 and true zeros, 
so that a blank entry carries a value between 0 and 0.50. 
Group A B C D E 
Cluster # A4 B7 C3 C9 C11 D2 D5 E1 E6 E8 E10 
Number of Courses 99 13 255 8 1 82 64 243 65 49 10 
Textbook 0 1 1 0.88 1 0.99 1 1 1 1 0 
Topics 0 0 1 1 0 1 1 1 1 1 1 
Pacing 0 0 0.87 0 0 1 1 0   0 
Midterms 0 0 0.90 0 1 0  0   0 
Final Exam 0  1 1 1 0 0.78  1 0 0 
HW (Online) 0 0 0.78 0 1 0 0.56 0  1 0 
HW (Written) 0 0 0.56 0 0 0  0 0  0 
Quizzes 0 0  0 1 0   0 0 0 
Grading (Course) 0 0 0.92 1 1 0   0  0 
Grading (Exam) 0 0 1  0 0  0  0 0 
Approach 0 0  0 0      0 
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Group A consists of only a single cluster, A4, which consists of 99 courses for which no 

elements were identified as intended to be uniform across multiple sections. Group B is also a 
single cluster, B7, which consists of 13 courses which all coordinate their textbook, 2 of which 
also coordinate final exams. Group C consists of three clusters, C3, C9, and C11, which 
coordinate a lot of elements. Group D consists of two clusters, D2 and D5, which primarily 
coordinate textbook, topics, and pacing. Group E is the largest group, consisting of four clusters, 
E1, E6, E8, and E10. These courses coordinate topics, most also coordinate textbooks, and are 
then delineated by the few other items which are coordinated. In the following section, we 
discuss other aspects of course coordination systems as they interact with these groups. For 
brevity, in this paper we omit a discussion of Group B. 

Group A (Cluster A4) is the set of 99 courses with no reported uniform elements across 
sections, 11% of the total courses reported. This cluster includes 71 (13%) of the 554 courses 
from PhD-granting universities and 28 (9%) of the 314 courses from MA/MS-granting 
universities. This cluster includes 22 (8%) of the Precalculus, 43 (13%) of the Calculus 1, and 34 
(11%) of the Calculus 2 courses reported. Of the courses in this cluster, only five indicated that 
there are regular instructor meetings at least once per term of instruction. There were 60 courses 
with no response to this item (80% of the blanks) and 34 which reported never, 13% of that set. 
Additionally, Group A accounts for 86% (25) of the courses which skipped this item and 56% 
(53) of those who responded with “N/A.” These findings corroborate the expectations one might 
have for courses with no uniform elements. 

Group C includes a total of 264 courses (30% of all), 255 of which are in cluster C3. Group 
C includes 249 (45%) of the courses reported by PhD-granting departments, and only 15 (5%) of 
those from MA/MS-granting departments. This group also accounts for 33% of the Precalculus, 
32% of the Calculus 1, and 24% of the Calculus 2 courses reported in the survey. The courses in 
this group have the most instructor meetings, accounting for 72% (94) of the courses which 
report weekly instructor meetings, 62% (29) of the biweekly meetings, and 45% (72) of the 
courses which report meeting 2-4 times per term. Additionally, Group C accounts for 24% (46) 
of the courses which meet only once per term, 6% (15) of those who report never meetings, and 
11% (8) of the courses which left this item blank. 69% (181) of the courses in Group C indicated 
that the person responsible for maintaining the uniform efforts was someone who took on this 
role for multiple years, and these 181 courses are 49% of all courses with a similar role for their 
coordinators. Though smaller in their respective proportion of Group C, courses in this group 
account for 34% (32) of courses with a one-year rotating coordinator, 37% (42) of those where 
the coordinator is one of the instructors on a term-by-term basis, and only 2% (4) of the courses 
coordinated by committees. Of the remaining courses, four were marked “other” and one “N/A;” 
there were no blanks.  

Group D consists of 146 courses, which is 16% of all those reported. This group includes 
19% of the courses reported by PhD departments and 13% of those reported by MA/MS 
departments. These 146 courses include 16% of the PC courses, 15% of the C1 courses, and 18% 
of the C2 courses. The majority of these courses have lower frequency of instructor meetings. 
The largest pool is a set of 52 courses for which instructors meet once per term, and this accounts 
for 27% of all such courses and 34 courses in which instructors meet 2-4 times per term, which is 
21% of that set. Group D also contains 15% (38) of the courses which never meet, 14% (18) of 
those that meet weekly, and 4% (2) of those which meet biweekly. Group D includes 22% (40) 
of the courses for which a committee is responsible for uniform course elements; 20% (73) of 
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those for which there is an individual coordinator who oversees the course for multiple years; 
18% (17) of the courses with a rotating coordinator structure; and 10% of those where one of the 
instructors in the term manages those elements. Of the remaining, there was one blank, one 
“N/A”, and 3 “other” responses. The clusters within this group, D2 and D5, are similar in size, 
differentiated primarily by the high rate at which courses in D5 have common exams, which are 
wholly absent in D2. Each accounts for a similar proportion of courses, with the following 
exception(s). While D2 includes 13% of the reported C2 courses, D5 includes only 5% of them.  

Group E is the largest group, including 346 (39%) of the reported courses. This group 
includes 25% of the courses from PhD departments and a whopping 72% of the courses reported 
by MA/MS departments. By course level, this group includes 41% of all reported PC courses, 
39% of C1, and 44% of C2. Instructor meetings are fairly rare in this group as well, including 
64% (164) of all courses which never have instructor meetings and 45% (87) of those with one 
meeting per term. This large group also includes 33% (160) of those courses which meet 2-4 
times per term; 34% (16) of those with biweekly instructor meetings; and 11% (15) of those 
which meet weekly. There were also five courses in Group E which did not provide an answer to 
the instructor meeting question. Group E accounts for 71% (127) of the courses which have a 
committee overseeing the uniform course elements, which is a large overrepresentation. This 
group also has 46% (52) of those courses overseen by one of the instructors and 45% (42) of 
those overseen by a rotating coordinator, 39% (37) of the courses which indicated “N/A”; and 
28% (102) of those which are overseen by a multiyear coordinator. There were three blanks and 
four “other” responses.  

Discussion & Questions for the Audience 
Our initial analysis of data related to coordination systems in university-level P2C2 courses 

reveals some structure. Recall that the clustering and grouping was done only using the course 
elements, not responses to other coordination items. Thus, over- or underrepresentation of other 
components is not due to the delineation of groups and clusters. There appear to be associations, 
as one might expect, between the number of coordinated course elements and the frequency of 
instructor meetings. There are also some suggestive patterns in the type of coordinator and 
groupings. In particular, coordination by committee is overrepresented in Group E, Calculus 2 
courses are underrepresented in cluster D5, courses from PhD-granting departments are 
overrepresented in Group C, and courses from MA/MS-granting departments are 
overrepresented in Group E. These patterns are suggestive of associations, but as yet we do not 
have evidence of the strength of these associations and only very preliminary conjectures about 
potential causes. We continue to analyze this data set and review related literature to strengthen 
these conjectures (e.g., taking into account school size, class size, number of sections). To further 
our work, we present the following questions for our audience: 

1. Are there other relevant bodies of work that we should be leveraging in order to 
understand/situate our results more appropriately? 

2. What questions do you have about our results, which further exploration might reveal? 
3. What conjectures (with what basis) exist about the nature of course coordination systems 

which are testable with our data and analysis? 
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Investigating Student Understanding of Rate Constants in Chemical Kinetics: When is a 
Constant “Constant”? 

 
 Kinsey Bain  Jon-Marc G. Rodriguez Marcy H. Towns 
 Michigan State University Purdue University Purdue University  

The concept of rate constants is important for developing a deep understanding of chemical 
kinetics, an area of chemistry that models the rates of reactions. Reaction rates are modeled 
mathematically, typically using an equation called a “rate law”. One of the terms in this 
equation, the rate constant, embodies important variables that affect rate, such as temperature-
dependence, Our primary research focus in this work is investigating the question: How do 
students reason about rate constants in chemical kinetics? Preliminary analysis reveals that 
students often conflate ideas from chemical kinetics and equilibrium, such as rate constants and 
equilibrium constants. Furthermore, students demonstrated varying levels of sophistication 
regarding the distinction and relationship between rate and rate constants. Finally, students 
conveyed different ideas about the mathematical nature of the rate constant quantity. 

Keywords: Constants, Parameters, Variables, Rate, Chemistry 

Introduction and Rationale 
One of the core ideas in the discipline of chemistry is change and stability of chemical 

systems (Cooper, Posey, Underwood, 2017; Holme, Luxford, & Murphy, 2015; Holme & 
Murphy, 2012; Laverty et al., 2016). This foundational idea that “energy and entropy changes, 
the rates of competing processes [emphasis added], and the balance between opposing forces 
govern the fate of chemical systems” takes many shapes and forms (Laverty et al., 2016). One 
area of study called chemical kinetics models rates of reaction, often utilizing rate law equations. 
For example, a generic chemical reaction, !	X + %	Y → (, the rate law would be  
rate = 	.[0]2[3]4 (concentration of a reactant is represented by surrounding the reactant with 
square brackets).  Rate laws are empirically derived and demonstrate the dependence of reaction 
rates on the concentration (or pressure) of reactants and other parameters, typically a coefficient 
(k) and reaction orders (m and n) (Holme et al., 2015). In the case of elementary reactions or 
reaction steps, the order is also empirically derived and relates to the molecularity, or the number 
of molecules that react. The coefficient that appears in the rate law is typically termed the rate 
constant (k). The temperature dependence of reaction rate is contained in the rate constant and is 

typically modeled by the Arrhenius equation, . = 56789 :;< , where Ea is the activation energy of 
the reaction, A is a preexponential or frequency factor, R is the gas constant, and T is temperature 
(Holme et al., 2015). As temperature is controlled in an experimental setting, rate constants are 
generally held constant during a reaction. 

Understanding the information encoded in rate constants is an important part of 
understanding the chemistry being modeled by kinetics equations (Holme et al., 2015). However, 
studies of chemistry students at both secondary and tertiary levels demonstrate that students have 
difficulty with this. Students often have an incorrect understanding of the relationship between 
reaction rate and temperature, a relationship that is contained in the rate constant (Bain & Towns, 
2016). Students also often falsely relate temperature and activation energy or mischaracterize the 
mathematical nature of rate’s time-dependence (Bain & Towns, 2016). While these studies give 
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some insight into the nature of student thinking in this area, more work is needed at the 
undergraduate level (Bain & Towns, 2016; Singer, Nielson, & Schweingruber, 2012). 

A robust understanding of rate constants would, among other things, include 
mathematical resources related to constants, parameters, variables, and functions. Mathematical 
symbols, like those present in a rate law, encode meaning. These quantities, represented by 
different symbols, could represent a constant (does not vary ever), a parameter (does not vary 
within a given setting), or a variable (varies with a given setting) (Thompson & Carlson, 2017). 
A rate constant would typically be considered a parameter, or a “generalized constant” (Philipp, 
1992; Thompson & Carlson, 2017). As discussed by colleagues from the physics education 
research community (Redish, 2005; Redish & Gupta, 2009), the labeling and use of constants, 
parameters, and variables is very different in scientific communities, such as physics or 
chemistry, compared to mathematics communities. Further, scientists also load meaning onto 
these symbols, which can lead to different interpretation of equations and changes how equations 
are viewed; such differences arise because the goals and purposes for the use of mathematics are 
so divergent (Redish, 2005; Redish & Gupta, 2009). These distinctions and differences are often 
not apparent to students, who are concurrently enrolled in math and science courses (Redish, 
2005; Tuminaro & Redish, 2007). Considering student reasoning from both a chemistry and 
mathematics perspective, this work was guided by the following research question: How do 
students reason about rate constants in chemical kinetics? 

Theoretical Perspectives  
We have framed our data analysis and discussion of results in terms of the resources 

framework, which is a model of cognition that defines knowledge as a network of fine-grained 
resources, or cognitive units, that are activated and constructed in response to a task or 
prompting (Hammer & Elby, 2003; Hammer, Elby, Scherr, and Reddish, 2005). The resources 
perspective builds on diSessa’s (1993) knowledge-in-pieces conceptualization, which accounts 
for the observed inconsistency of student responses, since different resources or groups of 
resources may be activated when reasoning about different contexts (Hammer et al., 2005).  

The resources perspective is in contrast to an alternate model of cognition that 
presupposes student understanding as composed of unitary, stable conceptions that are applied 
generally across contexts (Hammer & Elby, 2003; Hammer et al., 2005). This has implications 
for understanding the role of instruction in relation to how student ideas change over time; 
instead of targeting and replacing large entities or conceptions, conceptual change involves 
adding fine-grained resources and modifying connections between resources, ultimately 
restructuring students’ local cluster of ideas to create a more coherent network of meaningfully 
connected resources (Wittmann, 2006). We are interested in identifying the resources students 
used to reason about rate constants, and we are particularly interested in understanding the 
connections between these resources. One useful representation of resources discussed in the 
literature is a resource graph, which visually indicates the links between different resources 
activated in a specific context (Wittmann, 2006; Sayre & Wittmann, 2008). Ongoing analysis 
involves determining the utility of such a representation for our work. A better understanding of 
how students cognitively organize resources would provide insight regarding which resources 
need to be targeted and which connections between resources need to be emphasized. 

Methods 
The study that we discuss in this preliminary report is part of larger project interested in 

investigating how students integrate chemistry and mathematics when solving chemical kinetics 
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problems. For this project we have previously reported on student engagement in modeling 
(Bain, Rodriguez, Moon, & Towns, 2018), student conceptions regarding zero-order systems 
(Bain, Rodriguez, & Towns, 2018), productive features of problem solving (Rodriguez, Bain, 
Hux, & Towns, 2018), and student use of symbolic and graphical forms (Rodriguez, Santos-
Diaz, Bain, & Towns, Submitted); here we focus on student reasoning related to rate constants. 
Our primary data source for this study is semi-structured interviews involving students working 
through a series of prompts (Table 1), with data collection involving the use of a LivescribeTM 
smartpen to digitally synchronize audio and written data (Linenberger and Bretz, 2012; Harle 
and Towns, 2013; Cruz-Ramirez de Arellano and Towns, 2014). Participants were undergraduate 
chemistry students from a second-semester general chemistry course (n=40), an upper-level 
physical chemistry course (n=5), and an upper-level reactions engineering course (n=3). 
 
Table 1. Second-order and zero-order math and chemistry prompts. 

Second-Order Math Prompt Zero-Order Math Prompt 
Here is another equation you’ve probably seen in 
class:  
1
[5] = .> + 1

[5]?
 

How would you explain this equation to a friend 
from class? How would you explain this on an 
exam? 

Here is another equation you’ve probably seen in 
class:  
[5] = −.> + [5]? 
 
How would you explain this equation to a friend 
from class? How would you explain this on an 
exam? 

Second-Order Chemistry Prompt Zero-Order Chemistry Prompt 

 
 

Student interviews were transcribed and open coded using constant comparison (Bain et 
al., 2018; Strauss and Corbin, 1990). Data analysis involved two researchers coding in tandem, 
discussing coding discrepancies and requiring 100% consensus for code assignments (Campbell, 
Quincy, Osserman, & Pederson, 2013). The coding scheme for the larger project had three 
primary themes, where one was comprised of codes that characterized the type of chemistry and 
mathematics content resources expressed. The codes primarily related to rate and rate constants 
were further analyzed for themes surrounding student understanding of rate constants. 

Preliminary Results 
Our preliminary analysis reveals three primary themes: (1) conflation of rate constants 

with equilibrium constants, (2) potential levels of sophistication in differentiating the concepts of 

A second-order reaction 
 2 C4H6(g) à C8H12(g) 
was run first at an initial 
concentration of 1.24 M and 
then again at an initial 
concentration of 2.48 M. 
They were run under the 
same reaction conditions 
(e.g. same temperature).  
Data collected from these 
reactions are provided in the 
table.  Is the rate constant 
for reaction 2 (1.24 M) 
greater than, less than, or 
equal to the rate constant for 
reaction 1 (2.48 M)? 

Time 
(hrs) 

[C4H6] (M) 

Rxn 
1 

Rxn 
2 

0 1.24 2.48 

1 0.960 1.55 

2 0.775 1.13 

3 0.655 0.89 

4 0.560 0.73 

5 0.502 0.62 

6 0.442 0.54 

7 0.402 0.48 

8 0.365 0.43 

9 0.335 0.39 

10 0.310 0.35 

Below is a zero-order rate plot for the reaction  
N2O(g) à N2(g) + ½O2(g) 
where [N2O]0 = 0.75 M and k = 0.012 M/min. 
The reaction is conducted at 575 ˚C with a solid 
platinum wire, which acts as a catalyst. If you 
were to double the concentration of N2O and 
run the reaction again, how would the half-life 
change? At the half-lives for each reaction run, 
how do the chemical systems compare? 
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A second-order reaction 
 2 C4H6(g) à C8H12(g) 
was run first at an initial 
concentration of 1.24 M and 
then again at an initial 
concentration of 2.48 M. 
They were run under the 
same reaction conditions 
(e.g. same temperature).  
Data collected from these 
reactions are provided in the 
table.  Is the rate constant 
for reaction 2 (1.24 M) 
greater than, less than, or 
equal to the rate constant for 
reaction 1 (2.48 M)? 
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6 0.442 0.54 

7 0.402 0.48 

8 0.365 0.43 

9 0.335 0.39 

10 0.310 0.35 

Below is a zero-order rate plot for the reaction  
N2O(g) à N2(g) + ½O2(g) 
where [N2O]0 = 0.75 M and k = 0.012 M/min. 
The reaction is conducted at 575 ˚C with a solid 
platinum wire, which acts as a catalyst. If you 
were to double the concentration of N2O and 
run the reaction again, how would the half-life 
change? At the half-lives for each reaction run, 
how do the chemical systems compare? 
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rate and rate constants, and (3) various types of understanding regarding the mathematical nature 
of rate constants. 

Conflation of Rate Constant (k) with Equilibrium Constant (K) 
One commonly used idea is in the study of chemical equilibrium is the equilibrium 

constant, K. It is used to determine the extent of a reaction and the amount of reactants and 
products present at equilibrium from a given initial state; it is also a function of temperature and 
change in free energy (Holme et al., 2015). As reported in prior research, students often confuse 
kinetics and equilibrium concepts (Bain & Towns, 2016; Becker, Rupp, & Brandriet, 2017). In 
light of this, it was unsurprising to see that almost a quarter of our participants demonstrated rate 
constant (k) and equilibrium constant (K) conflation, a finding similar to Becker et al. (2017). 
The reason for this appears to be two-fold. First, the symbols for each constant are represented 
by the letter “k”, which are only distinguishable by capitalization (or lack thereof). Second, from 
the perspective of Sherin’s (2001) symbolic forms, the pattern of terms in the equations (symbol 
templates) is somewhat similar (Figure 1). 
 

 
Figure 1. Side-by-side comparison of two mathematical equations and their corresponding symbol templates that 

model various aspects of this generic equilibrium reaction. 

The sentiment that symbols and topics in general chemistry are similar and difficult to 
differentiate is summarized in a statement made by a general chemistry student, Nelly:  

Nelly: “That's like equilibrium [constant]. Not rate constant. I don't know. That's also 
another thing that's hard about chemistry. It just seems that everything is the 
same almost, and it's hard to distinguish each equation and each principle.” 

This discussion stemmed from her reasoning about if and how rate constants change for different 
reactions. She began reasoning about rate constants as equilibrium constants, but realized that 
she was thinking about the inappropriate constant, correcting herself. The similar nature of the 
symbols and equation structure caused temporary conflation of the ideas during her interview. 

Another general chemistry student, Georgina, demonstrated conflation of equilibrium and 
rate constants as well, utilizing an an equilibrium-like expression to solve for reaction order. 

Georgina: “I remember from zero order, you didn't have to do anything to do the 
concentration of a for it to be a straight line.” 

Interviewer: “Why do you think that is?” 
Georgina: “I know it has something to do ... I kinda remember vaguely that ... Say that 

your equation would be A plus B equals C plus D. [writing chemical equation, top 
of Figure 2] Concentrations of your products go over your concentration of the 
reactants. [writing variation of equilibrium expression, bottom of Figure 2] I 
know it has something to do with whatever exponents you ended up with here.” 
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Figure 2. Chemical and mathematical equations written by Georgina (general chemistry student). The mathematical 

equation is structured like that of an equilibrium expression. 

In this passage, Georgina was using the inappropriate equation to solve for order; she should 
have been using rate law equation, which contains a rate constant term, rather than the 
equilibrium constant. As shown in Figure 1, the symbol templates of the two equations are 
similar in structure. In general, each equation contained a variable related to the product of 
bracketed quantities, each raised to a power (Becker & Towns, 2012; Dorko & Speer, 2015; 
Rodriguez, Bain, & Towns, 2018; Rodriguez et al., 2018; Sherin, 2001). It is this similarity that 
often caused participants to activate the inappropriate resource for this context. 

Possible Levels of Sophistication in Student Understanding of Rate Constants 
There were a wide variety of resources characterized regarding student understanding of 

rate constants. Analysis revealed varying participant understanding of the relationship between 
rate and rate constant. Some students expressed conflation of these ideas, while others conveyed 
distinctive understanding of these two concepts with differing degrees of sophistication. The 
exact nature of these ideas is presently being explored. 

Levels of Sophistication in Understanding the Mathematical Nature of Rate Constants 
When analyzing participant understanding of rate constants among students who did 

conceive of rate and rate constants as distinct, there were three levels of understanding conveyed 
with respect to what type of quantity rate constants were. First, participants sometimes conveyed 
the idea that rate constants were like universal constants, that is quantity was the same at all 
times. This is distinct from other participants who stated that rate constants were only constant 
for a given reaction, demonstrating a more parameter-like understanding. Finally, some 
participants went further to describe on what rate constants depend. These participants cited 
specific variables, such as temperature, or provided the Arrhenius equation, demonstrating an 
even more sophisticated parameter-like understanding. 

Conclusions and Questions 
While the analysis for this work is ongoing, the preliminary findings for this project 

indicate that an important instruction target for undergraduate chemistry (and likely other science 
and mathematics courses) is a nuanced understanding of the distinction between constants, 
parameters, and variables. While terms like “rate constant” and “equilibrium constant” may be 
misleading for students, explicit discussion of the mathematical nature of equation terms is 
important in developing deep understanding of the chemistry being mathematically modeled.  

Further analysis involves addressing the following questions: 
(1) What insight into students’ knowledge structures can be gained using resource maps? 
(2) What is the relationship between participant understanding of rate and rate constants? 
(3) Are there other lenses in the RUME community that would be helpful for 

investigating students’ mathematical understanding in chemistry contexts? 
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Exploring College Geometry Students’ Understandings of Taxicab Geometry  
 

 Jose Saul Barbosa Priya V. Prasad 
 University of Texas at San Antonio University of Texas at San Antonio 

Non-Euclidean geometries are commonly used in college geometry courses to highlight aspects 
of Euclidean geometry. Scholars have theorized that working in non-Euclidean geometries 
requires thinking at the highest van Hiele level of geometric thinking, which was developed by 
investigating students’ learning of Euclidean geometry, but few have pursued this 
empirically. This empirical study seeks to develop levels of geometric thinking for students in 
Taxicab geometry, which is the non-Euclidean geometry that is closest in structure to Euclidean 
geometry. Students in a college geometry course that included prospective secondary teachers 
were audio-recorded in group discussions as they completed tasks about congruence and 
transformations in taxicab geometry, and their written work was collected. Portraits of 
participants’ thinking about Taxicab geometry were developed, leading to a proposed structure 
for the levels of geometric thinking for Taxicab geometry.  

Keywords: College Geometry, Student Thinking, Preservice Teachers 

Introduction 
College geometry courses can include a wide variety of students, from mathematics majors to 

preservice middle-grades and secondary teachers. These courses commonly introduce some form 
of non-Euclidean geometry, either as a worthwhile topic in its own right or as a way to highlight 
subtleties or assumptions in Euclidean geometry. The prevalence of non-Euclidean geometry in 
these courses makes student thinking about non-Euclidean geometries a useful topic for 
exploration in research. The van Hiele model was developed to characterize the different levels 
of geometric understanding and can be used to assess students’ levels of geometric thinking. The 
van Hiele model has generally been researched with applications to Euclidian geometry, but non-
Euclidean geometries may also be introduced to students in a college geometry course. However, 
limited research has been done on how the van Hiele model can be applied to non-Euclidean 
geometries. A non-Euclidian geometry that can be found in the curriculum for an undergraduate 
geometry course is Taxicab geometry. Due to its inclusion in curriculum, we conducted a 
preliminary exploration of the levels of thinking in Taxicab geometry.  

 
Background 

The van Hiele Levels 
The van Hiele levels of geometric thought are a way of identifying a student’s level of 

geometric thinking (Crowley, 1987). The van Hiele levels are as follows:  
1. Visualization: This is sometimes considered the base level. In this level, students can 

name figures judging by their appearance, but their properties are not understood.  
2. Analysis: In this level, figures are bearers of their properties and students can reason 

that they are classified based on their properties. However, the properties have no 
logical order to them. 

3. Informal Deduction: In this level, students can deduce that one property precedes or 
follows another property. Definitions are introduced. Students are also able to give 
informal arguments to justify their statements and follow formal proofs, but cannot 
construct a formal proof from a different or unfamiliar premise. 
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4. Deduction: Students can now construct proofs and see relationships between 
definitions, axioms, and theorems and use them to establish further theory and can 
distinguish between statements and their converses.  

5. Rigor: Geometry can now be seen abstractly by students. The students can work with 
different axiomatic systems to further study non-Euclidean geometries.  
(van Hiele, 1959/2004; Crowley, 1987) 

One of the properties that accompanies the levels is the sequential property which states that 
to achieve one level, one must have achieved all prior levels too (van Hiele, 1959/2004; 
Crowley, 1987). Mayberry (1983) displayed that the sequential property did take effect on her 
study of the van Hiele levels. Research conducted on college students demonstrates that most 
students only achieved level 3 thinking during a college geometry course (Mayberry, 1983; 
Wang, 2011). Research suggests that if students do not progress through to the fourth level, then 
they are not likely to succeed in a college based geometry course where they are generally 
expected to reason deductively (Mayberry, 1983; Wang, 2011). 

 
Taxicab Geometry  

Students in college geometry courses are most likely to have been exposed to Euclidean 
geometry in school, and most prospective teachers are only required to teach Euclidean geometry 
in their future careers. Other geometries can be constructed through changes in the axioms or the 
metric of Euclidean geometry. Taxicab geometry is created by changing the Euclidean metric to 
the Taxicab metric. In Euclidean geometry, the distance between two points 𝐴 = (𝑥1, 𝑦1) and 
𝐵 = (𝑥2, 𝑦2) is measured by the length of the straight line connecting the two points 
(analytically, 𝑑𝐸(𝐴, 𝐵) ∶= √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2) while Taxicab geometry measures 
distance by taking the sum of the horizontal and vertical distances between the two points 
(𝑑𝑇(𝐴, 𝐵) ∶= |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1|). This is demonstrated in Figure 1. A common analogy that 
is used pedagogically to describe this new metric is of a taxicab driving in a grid-like city such as 
Manhattan (Krause, 1986).  

 
Figure 1: Euclidean distance vs. Taxicab distance. 
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Research on Understandings of Non-Euclidean Geometries 
There is a lack of research concerning how levels of understanding, like the van Hiele levels 

for Euclidean geometry, would look for non-Euclidean geometries. Kemp & Vidakovic (2017) 
mention that despite over two decades of research on the van Hiele model, few participants have 
been classified to be at the fifth level of geometric thinking, which could be why the Rigor level 
has not been studied, resulting in a lack of research in levels of understanding for non-Euclidean 
geometries. While there is limited research on how levels of understanding in non-Euclidean 
geometries would be described, Guven and Baki (2010) have developed levels of understanding 
in spherical geometry known as Transition, Definition Comparison, Pre-Deductive, and 
Deductive, which develop sequentially. This work was very influential to this particular study.  

 
Research Question 

Since Taxicab geometry has the potential to improve the understanding students have of 
Euclidean geometry, particularly with respect to ideas about congruence (Boyce & Prasad, 
2018), it becomes useful to understand how students develop their thinking about Taxicab 
geometry. This study posits a preliminary results in response to the following question: What are 
students’ levels of geometric thinking in Taxicab geometry? 

 
Methods 

The setting for the data that was collected for this study was a college geometry course at a 
large southwestern university. Prospective middle and high school teachers are required to take 
this course and made up around 50% of the class. A course in introduction to proof writing was 
not a prerequisite. Students participated in a week-long exploration of Taxicab geometry. After 
the students were introduced to the Taxicab metric, they studied relationships between Euclidean 
and Taxicab geometry. The following tasks were assigned to the students in the course to gather 
information of how they understand Taxicab geometry. 

1. Come up with examples of each, or explain why such an example is not possible  
a. 2 triangles that are congruent in both Euclidean geometry and Taxicab 

geometry 
b. 2 triangles that are congruent in Euclidean geometry but not Taxicab 

geometry 
c. 2 triangles that are congruent in Taxicab geometry but not Euclidean 

geometry 
2. Identify all the Taxicab isometries. 
3. How can we define congruence in Taxicab geometry? 

Students worked on these problems in assigned groups of roughly four students; these groups 
were audio recorded and their written work was also digitized and synced with the audio 
recording using LiveScribe dot paper and smart pens (“Dot Paper”, n.d.). The researcher took 
notes over all group recordings to search for key pieces of dialogue and writing in order to 
identify group recordings for transcription. The authors transcribed the aforementioned groups’ 
recordings and took notes to find recurring patterns in the thought process of the students. Using 
these patterns and following Guven and Baki’s (2010) levels of understanding in spherical 
geometry and van Hiele’s levels of geometric thinking (van Hiele, 1959/2004), the authors 
created preliminary levels of geometric thinking for Taxicab geometry.  
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Results 

Students’ group work generally followed a few particular trajectories of thought, prompted 
by these tasks. These helped the authors propose the following preliminary levels of thinking in 
the Taxicab geometry.  

 
Level 1: Transition 

The student is now aware that they are studying a geometry different to Euclidean geometry 
because of the difference in metric. The student names observed figure in a manner consistent 
with Euclidean geometry. Most groups displayed this when they answered the first bullet point 
of the first task, spending time discussing the manner in which to measure the length of the 
hypotenuse in a right triangle (see Figure 2).  

 
Figure 2: Students’ work as they discuss the change in metric. 

 
Level 2: Geometry Comparison 

The student can focus on definitions of concepts and figures and learns to represent them 
visually on the Cartesian plane and can compare what they are and do in either geometry. While 
the student understands what the concepts are, they do not know how to use them for problem 
solving. For example, students demonstrate that the orientation of a figure will affect distance on 
that figure. The group whose work is shown in Figure 3 changes the orientation of a triangle so 
that the sides would be calculated differently, comparing in either geometry after changing the 
orientation. 

 
Figure 3: Students’ exploration of how orientation affects distance.  
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Level 3: Pre-Deductive 

The student can solve problems using Taxicab geometry constructions but does not yet solve 
problems involving deductive reasoning. The student can follow formal proofs but cannot alter 
the logical order of the proof or deduce a new proof. Only one of the groups studied attempted to 
use a Taxicab circle to justify a transformation where they placed one point of a triangle that was 
on a Taxicab circle to another point on that circle. They made the assumption that this would 
preserve distance since the distance from the center would not change but they did not account 
for the side of the triangle that did not share a point with the center of the circle.  

 
Discussion 

As expected by the Sequential property that both the van Hiele levels of geometric thinking 
and the levels of understanding in spherical geometry share, there were many examples of Level 
1 thinking throughout the student discussion while they worked on their assignments. Naturally, 
due to this being an early exploration, there was much discussion about the Taxicab metric. In 
discussing the second level of thinking in Taxicab geometry, a recent study by Kemp and 
Vidakovic (2017) shows a student having an understanding of the definition of a circle and 
recognition that the Taxicab circle will appear in a different manner to the traditional Euclidean 
circle but fails to construct such Taxicab circle. This situation shows growing thinking in our 
proposed second level of thinking in Taxicab geometry, Geometric Comparison, since the 
student was aware of the definition of the circle and showed development in the visualization of 
the Taxicab circle. The group data collected in this research displayed the groups using the 
notion of orientation to affect distance in Taxicab geometry. This gives insight to their 
understanding of the rotation transformation and the effect it had in Euclidean geometry. Only 
one group contributed to the development of Level 3. Due to the students studying Taxicab 
geometry for only a week, it was not expected that there would be many results to provide 
further analysis of this level. While they were not completely correct, this type of work helped 
highlight the characteristics of our proposed third level.  

The results in this paper do not include a Deduction level as previous findings do. This is 
primarily because none of the groups displayed characteristics expected of a student that can 
make deductions in Taxicab geometry. However, based on the Deduction levels proposed by van 
Hiele (1959/2004) and Guven and Baki (2010), the following was hypothesized as a candidate of 
the fourth level of thinking in Taxicab geometry (also called Deductive): The student can prove 
propositions deductively and support theorems through more universal definitions rather than 
specific geometry definitions. The student can make deductions from such definitions that are 
universal to other geometries. A hypothetical example of a student thinking at this level of would 
be able to give a proof or a counterexample to the following statement, “All rotations by 𝑘𝜋

2
 are 

isometries in both Euclidean and Taxicab geometry. k ∈ Z.” 
 

Next Steps 
The assigned tasks used to gather data for this research were not designed with the intent of 

developing levels of thinking in Taxicab geometry; thus, the levels proposed here are 
preliminary. Future plans for this research include conducting individual interviews in order to 
get a better understanding of the characteristics that can form the levels of understanding in 
Taxicab geometry, as Guven and Baki (2010) did to develop levels of thinking in Spherical 
geometry.   
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Writing out a group: Interpreting student generated representations of the group concept  
 

Anna Marie Bergman 
Portland State University 

In this presentation I will explore the various ways in which a pair of students used 
representations of the group concept to explore the structure of symmetry groups.  During a 
series of teaching experiments, a pair of mathematics education graduate students were asked to 
develop an algorithm for classifying chemically important point groups beginning with an 
investigation of a few ball and stick models of molecules.  The progress the students made 
through the use of each symbolization of the group concept is framed with the Realistic 
Mathematics Education design heuristic of emergent models. 

Keywords: Abstract Algebra, Group Theory, Realistic Mathematics Education, Emergent 
Models, Representations 
 

Group theory, specifically the study of symmetry groups or symmetry theory, is particularly 
prevalent in undergraduate chemistry curriculum.  Symmetry theory is especially powerful in 
inorganic chemistry and provides an important foundation for other concepts such as point-group 
notation, spectroscopy, and molecular orbital theory (Luxford, Crowder, & Bretz, 2011).  Once a 
chemist knows the particular symmetry group of a given molecule it gives them an idea of the 
various types of experimental techniques which will be most appropriate to perform on the 
molecule.  Results of these experiments can then give insight into structural properties of the 
molecule including, but not limited to, information on bonding including bond lengths and 
angles, and the various modes of vibration (rotation, vibration, translation) the molecule may 
possess.  The need for a firm understanding of symmetry is important in order for students to 
successfully understand so many topics within inorganic chemistry it has been outlined by the 
American Chemical Society in the guidelines for accreditation for bachelors programs in 
chemistry (Larive & Polik, 2008). 

Abstract algebra, the larger field of mathematics in which group theory is studied, is an 
essential part of undergraduate mathematics curriculum (Gallian, 2009; Hazzan, 1999; Selden & 
Selden, 1987).  Unfortunately, much of the abstract algebra literature highlights students’ 
difficulties in learning fundamental concepts in group theory in particular (Larsen, 2010; Leron, 
Hazzan, & Zazkis, 1995).  As noted in Dubinsky, Dautermann, Leron, and Zazkis (1994), and so 
“Mathematics faculty and students generally consider it to be one of the most troublesome 
undergraduate subjects” (p.268).  Many student difficulties within abstract algebra can be 
partially attributed to the abstract nature of the course’s content.  The course is built around 
objects such as groups that are discussed and argued about abstractly (Hazzan, 1999, 2001).  
Abstract algebra is often the first-time students are asked to go beyond ‘imitative behavior 
patterns’ for solution finding and instead reason about mathematical concepts and consequences 
from interpreting formal definitions  (Dubinsky et al., 1994).  In this new abstract approach, 
concepts are defined and presented by their properties and by an examination of ‘what facts can 
be determined just from (the properties) alone’ (Dubinsky & Leron, 1994, p. 42). 

The preliminary results reported here are from a recent effort to engage students in the 
richness of group theory and to gain experience with its applicability, through a design research 
experiment aimed to develop a local instructional theory for student reinvention of the 
classification of chemically important symmetry groups.  The primary goal of this research 
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project is to explicate a way in which students can reinvent a classification system for 
differentiating various shapes of molecules by engaging in the group theory that is used to 
differentiate and describe various shapes of molecules.  However, instead of the traditional 
approach of giving students definitions of symmetries, groups, and a ready-made flow chart to 
find specific groups, I want to provide students an opportunity to articulate their own algorithm 
for classifying symmetry groups based on their experiences with select ball and stick models of 
molecules, specifically so that the activity is experientially real to them. 

 
Theoretical Framework 

 
Realistic Mathematics Education (RME) serves as the underlying instructional design theory 

for this experiment and is built on the theoretical perspective that mathematics is first and 
foremost a process, a human activity (Gravemeijer & Terwel, 2000).  From its very beginnings 
Freudenthal has described this activity as, “an activity of solving problems, of looking for 
problems, but it is also an activity of organizing a subject matter. This can be matter from reality 
which has to be organized according to mathematics patterns if problems from reality have to be 
solved” (1971, p. 413).  Through the activity of mathematizing students can be guided in 
reinventing particular mathematical concepts, as opposed to learning the topic as a ready-made 
or previously discovered theorem.  Therefore, overarching goals of RME include discovering 
how to provide students an opportunity to reinvent mathematics and also how to support them 
throughout the activity of mathematizing so that the mathematics that they develop is 
experienced as developing common sense (Gravemeijer, 1998). 

The theoretical framework of RME has three accompanying design heuristics, which can 
serve as both guiding principles for instructional design and as a guide for further analysis.  
These heuristics include the reinvention principle, emergent models, and didactic 
phenomenology (Gravemeijer, 1998).  A local instructional theory (Gravemeijer, 1998) describes 
a generalized roadmap for student reinvention of a particular mathematical concept, in which 
students feel ownership over the mathematical concepts they investigate.  The first heuristic 
informed the development of the tasks used in teaching experiment.  A context was chosen that 
offered an opportunity for the students to begin using their own intuitions and experiences to 
develop informal highly context-specific solution strategies (Gravemeijer & Doorman, 1999) 
which can later be used in a more formal mathematical reality.  Didactical phenomenology 
focuses on the relationship between a mathematical content and the “phenomenon” it describes 
and analyses, or, in short, organizes (Gravemeijer, 2004).  In this sense the heuristic helped at a 
global level to inform a good starting point for the reinvention process.  Didactical 
phenomenology was also used at a more local level during the teaching experiments to drive the 
study by helping to identify ways in which I as the researcher could support the students 
transform their informal approaches to the molecules into more powerful formal arguments about 
molecules in general (Larsen, in press). 

Lastly, the design heuristic of emergent models is used to describe both the character and the 
process of evolution of student’s formal mathematical knowledge form an initial informal 
understanding.  Emergent models can also be helpful in describing the progression of the 
students’ mathematical activity from contextually situated to a more formal mathematical 
activity in a new mathematical reality (Gravemeijer, 1999).  While the overarching emergent 
model that I am investigating is a classification algorithm for chemically important point groups, 
this global model took on various manifestations and the meaning of the label model is in fact 
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much broader.  In Gravemeijer’s description of emergent models he highlights “…three 
interrelated processes.  Firstly, there is the overarching model, which first emerges as a model of 
informal activity, and then gradually develops into a model for more formal mathematical 
reasoning.  Secondly, the model-of/model-for transition involves the constitution of some new 
mathematical reality – which can be called formal in relation to the original starting points of the 
students.  Thirdly, in the concrete elaboration of the instructional, there is not one model, but the 
model is actually shaped as a series of symbolizations” (2002, p. 3).   

The inscriptions the students produce during their mathematical activity can serve as 
indicators of their emergent model.  Each symbolization, and the purpose the student associates 
with the symbolization, can offer the researcher insight on the current state of the student’s 
model.  Inscriptions also help the student make progress in their mathematization and 
organization activities.  This preliminary report focuses on these inscriptions and symbolizations, 
specifically those of the group concept, that the students created as evidence of their emergent 
model.  The discussion includes the ways in which the students use of each model varied with 
their mathematical activity and how their representations of the group concept helped them make 
progress toward their goal of classifying symmetry groups. 
 

Methods 
 

In order to gain insight on the mathematical activity of the students as they reinvent an 
algorithm for classifying chemically important symmetry groups, I have chosen to conduct a 
series of teaching experiments (Steffe, 1991).  In total the design experiment includes three series 
of teaching experiments including a pilot study.  The results shared in this preliminary report are 
from the pilot study recently conducted with a pair of students.  The goal of the pilot study was 
to explicate a way in which a pair of students successfully classified chemically important point 
groups.  In some sense the pilot study served as an existence proof, or an initial model of success 
that could ultimately inform an instructional sequence supporting this reinvention.  To better 
ensure that the students would be successful for the initial attempt I chose to conduct the pilot 
study with a pair of mathematics education graduate students at a large public university on the 
west coast.  The students, referred to by pseudonyms Emmy and Felix, had both completed a 
yearlong graduate sequence in abstract algebra including a term in which they classified various 
groups of finite order.  They had worked together as partners in a previous class and were 
extremely supportive work partners, especially in particularly difficult settings.  The pilot study 
consisted of four 60 to 90-minute episodes.  Data consisted of video recordings of each episodes 
and all written work was collected.  The participants were compensated monetarily for their time.  

An important aspect of this study overall was to avoid using mature, conventional 
symbolizations of mathematical starting points for instruction.  Often in traditional instruction, 
both formal mathematical definitions and rich molecular representations are often presented from 
the perspective of an expert.  These artifacts are representative of concepts that are meaningful to 
the expert given in a relevant representation, which the novice, the student, is meant to extract 
particular meaning from (Gravemeijer & Doorman, 1999).  In the attempt to avoid such an anti-
didactical inversion, the students had no apriori experience with a conventional classification 
flow-chart and instead were given a set of three ball and stick model representations of water, 
ammonia, and ethane, in an eclipsed configuration (as seen in Figure 1).  They were then asked 
to develop and describe a procedure for efficiently and comprehensively finding all the 
symmetries of any given molecule.  The molecules chosen for the initial task were conical 
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examples often used to introduce symmetry groups as they contain most, but not all of the 
symmetry elements present in 3-space (they were lacking an inversion center). 

 
Results 

 
The pilot students began the experiment by determining and describing the symmetry groups 

of specific molecules.  The students shared a common strategy; 1) identify all symmetries, 2) 
distinguish which symmetries could/should be considered as generators, 3) determine the 
relations between each pair of generators, and lastly 4) decide to which ‘familiar group’ the new 
found group was isomorphic.  The pair never wavered from is approach and it proved to be very 
powerful for them as they were able to successful identify the unique symmetry group of each of 
the molecules.  In this first phase the students’ mathematical activity was situated in the task 
setting as they were focused on the symmetry groups of specifically selected molecules.  Later in 
the experiment, the students reflected on their own activity of finding specific symmetry groups 
to create their model of how to find classify the symmetry group of any given model.  
Throughout the experiment the students used multiple representations of the group concept for 
various purposes. 

The group concept can be represented by many different symbolizations.  An in-depth 
textbook analysis of the most frequently used introductory abstract algebra texts identified at 
least 11 different representations for the group concept (Melhuish, 2015).  Some of these 
representations include group names, verbal descriptions, Cayley tables, lists of elements, group 
presentations, etc.  Not only did the students in the pilot study use different kinds of 
representations of the group concept they used them with different purposes.  A subset of the 
students group representations used while determining each of the ball and stick models they 
were asked to consider can be found in Figure 2 along with a short description of how the 
students used the representation. 

The preliminary presentation proposed here will discuss the progress the students made from 
the use of each of their representations towards their overall goals of classifying symmetry 
groups.  Furthermore, I would like to discuss the affordances and limitations of each of the 
representations, in particular how the students often produced a complete description of a group, 
say in group presentation form (eg. |R|=2, |S|=2, RS=SR) yet never felt “done” until they had the 
group name (eg. ℤ2 x ℤ2), and what implications this may have on student understanding of a 
group. 

 
 
 
 
 
 

Molecule Group representation / symbolization Student’s use of representation 

 
Water 

Geometric Images 

 

Determining various group 
elements, determining 
equivalence of group elements, 
checking relation between 
generator  
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Molecule Group representation / symbolization Student’s use of representation 

 
Ammonia 

Geometric Images 

             

Determining various group 
elements, determining 
equivalence of group elements, 
checking relation between 
generator 

Cayley Table 

 

List elements 

 
Ethane 

(eclipsed) 

Geometric Images 

 

Determining various group 
elements, determining 
equivalence of group elements, 
checking relation between 
generator 
 

Cayley Table 

 

List elements, count elements, 
record products of symmetry 
combinations 

Group Presentation 

 

Organize generators and their 
relations 

 
Ethane 

(staggered) 

Geometric Image (version 1 and 2) 

 

Determining various group 
elements, determining 
equivalence of group elements, 
checking relation between 
generator 
 

Function mapping 

 

Determining order and 
equivalence of group elements 

Group Name 

 

Encapsulating the symmetry 
group they had determined 
through investigation 

Figure 1 Student produced group representations and the ways in which the students used them. 
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Mathematical Errors When Teaching: A Case of Secondary Mathematics Prospective Teachers’ 
Early Field Experiences 

 
Kristen N. Bieda            Kevin J. Voogt 

       Michigan State University   Michigan State University   
 
The construct of mathematical knowledge for teaching (MKT) has transformed research and 
practice regarding the mathematical preparation of future teachers. However, the measures used 
to assess MKT are largely written tasks, which may fail to adequately represent the nature of 
content knowledge as it is used in instructional decision making. This preliminary report shares 
initial findings into one measure of MKT in practice – mathematical errors made during 
planning and enactment of mathematics instruction. We analyzed lesson plans and classroom 
video from prospective secondary mathematics teachers (PSTs)’ supervised field experiences in 
college algebra course. We found that there tended be more errors related to understanding of 
functions (especially logarithmic), but relatively few errors happened overall during instruction. 
Of the errors made during planning, the majority of these errors were issues of mathematical 
precision. Implications for the mathematical preparation of secondary PSTs, as well as research 
on MKT in practice, are discussed. 
 
Keywords: Pre-Service Teachers, Mathematical Knowledge for Teaching, Content Knowledge, 
Early Field Experience, Secondary Teacher Preparation 

Introduction 
Although the knowledge of mathematics teachers has been a widely discussed and researched 

topic for decades, surprisingly little empirical research has examined evidence of teachers’ 
mathematical knowledge from teaching episodes. The mathematical errors teachers make during 
instruction, particularly when consistent, may reveal aspects of their content knowledge that need 
further development. Certainly, anyone who has taught mathematics knows that making 
mathematical errors, when unintentional, is inevitable. Yet, surprisingly little empirical evidence, 
especially when compared against the extensive research on students’ mathematical errors, exists 
regarding the nature of mathematical errors made by teachers during mathematics instruction. 
Such work could shed light on the robustness of novice teachers’ content knowledge as they 
engage in the complex decision making inherent to classroom teaching, and suggest areas where 
novice teachers’ mathematical knowledge might be further developed prior to completing 
teacher preparation. 

 In this paper, we present exploratory research extending existing work measuring the nature 
of teachers’ content and pedagogical content knowledge using written assessments (e.g., Hill, 
Schilling & Ball, 2004; McCrory, Floden, Ferrini-Mundy, Reckase & Senk, 2012) that 
investigates the kinds of mathematical errors secondary PSTs make when planning and teaching 
mathematics. The results suggest not only interesting directions for future research on PSTs 
enactment of their content knowledge while teaching, but also implications for content and 
methods courses in terms of topics where PSTs may need reinforcement of their knowledge prior 
to being certified and, more importantly, how to support PSTs in managing moments where the 
inevitable mathematical errors will happen.  
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Theoretical Framework 
Much of the contemporary work in teacher education is founded upon the assumption, which 

some research has established empirically (Wilson, Floden & Ferrini-Mundy, 2002; Hill, 
Umland, Litke & Kapitula, 2012) that teachers’ knowledge influences their teaching practice. As 
a result, a number of projects to improve novice secondary mathematics teachers’ practice have 
aimed to develop prospective teachers’ content knowledge for teaching (Garet et al., 2016; Sevis, 
Cross & Hudson, 2017). However, much of the existing empirical research to understand and 
measure teachers’ content knowledge for teaching have involved the use of specifically designed 
written tasks rather than attending to how knowledge is used during practice. While written 
measures are certainly easier to implement and analyze at a large scale, they are imperfect 
measures of how a teacher might use or draw upon their content knowledge during instruction 
(see Shechtman, Rochelle, Haertel & Knudsen, 2010). Through an analysis of secondary PSTs’ 
planning and enactment of instruction in an early field experience, the research question 
addressed by this study was: What characterizes the kinds of mathematical errors made by 
novice secondary mathematics teachers when planning and enacting mathematics instruction? 

 
Methods 

To address the study goal, we analyzed data collected as part of a larger study to investigate 
the opportunities to learn about mathematics teaching through an early field experience planning 
and teaching lessons in a college algebra course. This experience was a required component of a 
secondary mathematics methods course participants were concurrently enrolled in. All 
participants were in their senior year of a 5-year, university-based, secondary mathematics 
teacher preparation program, which requires candidates to complete a Bachelor of Science 
degree in Mathematics, along with education coursework and a full-year student teaching 
placement in their fifth year of the program. A total of 14 PSTs (n=14) agreed to allow members 
of the project team to analyze the videos of their teaching in the college algebra class, as well as 
analyze their lesson plan artifacts (mathematics pre-planning worksheet (P1), initial lesson plan 
(P2), and revised lesson plan (P3)). 

To code the enacted lessons for mathematical errors, we first assembled the collection of 
instances where mathematical errors had occurred as captured on video of the 14 lessons taught 
by pairs of PSTs (each pair taught a lesson twice in the course). The first step to building this 
collection was to isolate all of the episodes where a mathematics teacher educator (MTE) who 
observed all lessons in the college algebra course intervened in the lesson to provide in-the-
moment coaching to the PSTs. The second step was to have a trained rater on the project team 
use the Mathematical Quality of Instruction rubric to identify moments where PSTs made a 
mathematical error regardless of whether this resulted in an intervention by the MTE. This 
resulted in an initial collection of 5 possible episodes where PSTs had made mathematical errors. 
We then reviewed each of these instances to develop open codes to describe the error that had 
been made. In addition, we reviewed feedback that the MTE had provided to the P1, P2 and P3 
lesson planning artifacts and isolated all instances (n=21 comments) where the MTE commented 
on mathematical content issues.  

Two iterations of refinements to the coding categories resulted in four codes to describe the 
types of content-related errors PSTs were making in their planned or enacted instruction. 
Instances coded as Content Error Correction required PSTs to have made an explicit 
mathematical error that needed correction. For instance, one PST pair had written in their lesson 
plan that “negative exponents create fractions.” The instructor was quick to point out, however, 
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that “negative exponents invert fractions,” making sure the PSTs understand that non-whole 
numbers also can be taken to a negative exponent. Instances coded Mathematical Precision 
included feedback or interventions that reminded PSTs to be careful about the language they use 
or the instructor asked clarifying questions to clear up parts of the lesson plan that were not 
immediately clear mathematically. The code Knowledge of Content and Students Suggestion 
included instructor comments suggesting alternate phrasing or terms in order to avoid confusion 
for the students while also providing justification by connecting the comment to students’ prior 
knowledge or broader knowledge of the content as it is taught in schools. Lastly, Typo/Other 
included comments that corrected a simple typographical error or comments that were otherwise 
different from the rest. 

In addition to assigning these codes, we accounted for the mathematical topic of the lesson, 
and whether the error during enactment was during content presentation or originated in response 
to a question from students. 

Results 
Table 1 shows the mathematical content addressed during the implementation interventions 

or in the lesson plan feedback. The most common mathematical areas where content errors 
occurred were in the areas of Functions and their Inverses (n=5), Composition of Functions 
(n=4), and Solving Exponential Equations (n=3). At first glance, one could see high error 
numbers as being a result of particular mathematical content being more difficult. It might also 
likely be a result of particular pairs finding difficulty in planning or teaching the content. The 
data suggest both of these conclusions are plausible; errors working with inverse functions 
spanned across three PST teams, whereas all four errors in composing functions happened with 
one particular team of PSTs. 

 
Table 1 
Mathematical content addressed by interventions during planning and enactment 
Content Number of Instances 
Functions and their Inverses 5 
Composition of Functions 4 
Solving exponential equations 3 
Properties of Logarithms 2 
Simplifying logarithmic expressions 2 
Exponential vs Logarithmic Functions 2 
Place Value for large numbers 1 
Transformations, parent functions. 1 
Perfect Squares   1 
Definition of Logarithmic Function 1 
Slope of a Line 1 
Interpreting Variable meaning 1 
Even, Odd functions 1 
Exponential Growth 1 
Negative exponents 1 

 
Kinds of Content-Related Errors in Planning 

All seven teams of PSTs received mathematical content error feedback on their lesson plans. 
Three teams of PSTs received feedback on their round two pre-instruction lesson plan 
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documents, while six teams received feedback on their round three documents. Of the 22 
feedback items coded as errors, 10 were coded as Mathematical Precision, 6 were coded as 
Content Error Correction, 4 were coded as Knowledge of Content and Students Suggestion, and 
2 were coded as Typo/Other. Select examples of each error can be seen in Table 2. 

 
Table 2 
Sampling of lesson plan errors and feedback given by Teaching Assistant 
PST Lesson Plan Error Teaching Assistant Feedback Code 
Make observations about how 
logarithmic and polynomial 
functions are different. 

 Exponential functions – there are no 
logarithmic functions included in the 
number talk. 

Mathematical 
Precision 

A student may incorrectly 
generalize from their classes 
on exponents, that “negative 
values are impossible.”" 

I’m not sure what you mean by this – they 
haven’t learned that negative values are 
impossible as exponents… Or do you 
mean that 10 to a power can never give 
you a negative value? 

Mathematical 
Precision 

This [standard] is used when 
students recognize that the x 
values and y values are 
constant when looking for 
slope (linear)" 

The change in x values and y values is 
constant, not the values themselves. 

Content Error 
Correction 

The inputs of the first 
function equals the outputs of 
the second function and hence 
are inverses. 

And vice versa – without also looking at 
the outputs of the first function and the 
inputs of the second function, you don’t 
have enough information to say they’re 
inverses. 

Content Error 
Correction 

Properties of Even/Odd 
Functions: Symmetric over 
the y axis (even) or origin 
(odd)   

 I would be careful with how you describe 
this – if the students are only thinking of 
reflective symmetry and not rotational 
symmetry, this could be pretty confusing. 

Knowledge of 
Content and 
Students 
Suggestion 

Also, just before the explore 
activity, we plan on having a 
“bridge” activity to list what 
they think log problems are. 

 Should [problems] be “properties”? Typo/Other 

 
Kinds of Content-Related Errors During Instruction 

Very few mathematical errors occurred during instruction (n=5), and no errors were repeats 
of those addressed during the lesson planning phase. The low number of errors and lack of 
repetitive errors indicates that receiving feedback during the lesson planning phase was 
successful in preventing many instructional errors. Of the five errors requiring intervention from 
the mathematics teacher educator (MTE) observing their instruction, four were coded Content 
Error Correction and one was coded Mathematical Precision. There were also two styles of 
interventions that occurred. In three of the error instances, teaching assistants made inquiring 
questions or comments to assist the PSTs in recognizing their error and worked with the PSTs to 
correct themselves and move on more naturally. In the other two instances, however, PSTs had 
to take a more direct intervention approach where the MTE took over instruction in order to 
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avoid student confusion. In both instances, PSTs resumed instruction when the MTE finished the 
explanation, continuing their instruction as planned. Intervention sequences were brief, with the 
longest being only 3 minutes and 20 seconds (and that one sequence included two separate errors 
requiring intervention). 

 
Discussion and Conclusion 

Although our sample size is small, the results suggest the need for further inquiry into 
fundamental conceptions that secondary prospective teachers hold about the mathematics they 
will be teaching. Existing literature documenting the nature of secondary mathematics’ PSTs 
content knowledge for teaching is sparse, with a few studies in areas such as geometry (Herbst & 
Kosko, 2012) and rational number (Depaepe et al., 2015), yet nearly all of the existing work has 
focused on capturing knowledge through written assessment measures rather than assessing 
knowledge as it is used in instruction. However, this study, along with work by Snider (2016), 
begins to unpack the nature of secondary mathematics’ PSTs content knowledge for teaching as 
it is used in instruction. 

The findings suggest at least two areas worthy of further inquiry. First, given the prominence 
of algebra in the secondary curriculum, it is important to acknowledge that participating PSTs 
needed further support in developing their understanding of topics such as invertible functions, 
composition of functions, and properties of exponential and logarithmic functions. The fact that 
these topics are difficult for secondary PSTs is not surprising as these are traditionally topics that 
pose difficulties for students in college algebra. However, our findings show that the additional 
coursework the secondary PSTs completed to prepare them for teaching mathematics did not 
resolve their misunderstandings or, for instance, add to their awareness of using mathematically 
precise terminology when discussing these topics in instruction.  

Second, relatedly, our research raises the question of how best to develop PSTs content 
knowledge for secondary mathematics instruction. If, ultimately, strengthening PSTs content 
knowledge as used during instruction is the goal, then more attention should be paid to both 
researching knowledge as it is being used as well as strengthening knowledge within the context 
in which it is being used. For example, many of the interventions by teacher educators in this 
case involved issues of using mathematically precise terminology, because being precise 
contributes to clear communication with students and minimizes opportunities for confusion. 
Yet, it is no surprise that PSTs might not have received feedback about mathematical precision in 
their mathematics coursework if the work they produced resulted in a valid answer. The key 
obligations of mathematics teaching (Herbst & Chazan, 2012), such as managing the learning 
needs of a classroom of individuals, that may elevate particular aspects of content knowledge as 
especially important for teaching. The design and implementation of “content-focused” methods 
courses might be particularly promising for not only addressing the question of developing 
content knowledge for teaching as it is used in teaching but also serving as a productive site for 
collaborations between mathematics educators and mathematics teacher educators. 
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“Derivative makes more sense with differentials”: How primary historical sources informed 
  a university mathematics instructor’s teaching of derivative1 

 
         Cihan Can                             Mehmet Emin Aktas 
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Abstract 

 In this brief research report, we address the recent calls to improve undergraduate 
mathematics instruction through our investigation of an instructor’s teaching of derivative in a 
Calculus course. Considering his efforts to modify the presentation of derivative in the textbook 
as attempts to improve his teaching as a result of his engagement with primary historical 
sources, we analyze his teaching to identify the changes in his practice by using Speer, Smith, 
and Horvath’s (2010) framework for “teaching practice.” With our analysis of instructor 
interviews and video-recordings of classroom sessions, we observe that Leonhard Euler’s use of 
differentials in defining derivative had responded to his pedagogical concerns, and had 
convincing power as a method, which, in turn, led him to make significant changes in how he 
selects and sequences content for his teaching. 
Keywords: Primary Historical Sources, Derivative, Calculus, Teaching Practice 
 

Introduction  
 When called upon improving their instruction, instructors of undergraduate mathematics 
are suggested to “present key ideas and concepts from a variety of perspectives, employ a broad 
range of examples and applications to motivate and illustrate the material, promote awareness of 
connections to other subjects, and introduce contemporary topics and applications” (Saxe & 
Braddy, 2015, p. 1). Given the importance of classroom mathematics teaching for student 
learning (Hiebert & Grouws, 2007) and the many challenges that an instructor has to deal with 
regarding, how can an instructor of mathematics ensure the completion of tasks that are expected 
from her? How can she manage to create learning environments that are meaningful to her 
students for every class that she is supposed to teach? 
 In this regard, a more important question to ask is about the support that instructors 
receive, rather than expecting them to meet the needs of students, departments, and institutions 
on their own. Instead, given the complexity and difficulty of teaching mathematics in itself along 
with all the logistics that an instructor has to deal with to create a learning environment, 
regardless of instructor’s philosophical or theoretical orientation towards pedagogy of 
mathematics, instructors should get, to list a few, logistical, curricular, and motivational support. 
In this preliminary report, we are arguing for the ways that primary historical source can 
encourage, inform, or guide teaching practice for the teaching of undergraduate mathematics. 

Problem Domain and Purpose 
 The primary motivation of this article is Speer, Smith, and Horvath’s (2010) call for more 
empirical research on collegiate mathematics instructors’ teaching practices. To better situate 
their discussion of instructors’ practices, Speer et al. distinguish instructional activity and 

                                                            
1 This research would not be possible without the suggestions, motivations, support of Dr. Janet H. Barnett, Dr. 
Kathleen M. Clark, Dr. Eugene Boman, and Dr. Robert Rogers. We are grateful for their contribution. The research 
discussed in this paper is based in part upon work supported by the National Science Foundation under grant number 
DUE-1523561. Any opinions, findings, and conclusion or recommendations expressed in this material are those of 
the authors and do not necessarily reflect the views of the National Science Foundation. 
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teaching practice. “Instructional activities are the organized and regularly practiced routines for 
bringing together students and instructional materials” (emphasis added, p. 101). Lecture, small 
group work, or whole-class discussion are some of the commonly used instructional activities at 
the undergraduate mathematics education. Accordingly, teaching practice refers to “teachers’ 
thinking, judgments, and decision-making as they prepare for and teach their class sessions, each 
involving one or more instructional activities” (p. 101). Furthermore, we are interested in a 
situation where history of mathematics was used in a specific way. In Jankvist’s (2009) 
terminology, this report is concerned with the “hows” but not the “whys” of using history of 
mathematics. 
 The purpose of this article is to share some preliminary findings of our research where we 
investigated the ways that primary historical sources can inform, guide, or inspire the teaching 
practices of a university mathematics instructor in his teaching of derivative. Through sharing the 
story of an instructor and making the changes in his teaching practices explicit as a result of his 
engagement with primary historical sources, we are aiming to contribute to “our understanding 
of collegiate mathematics teaching and of the resources that collegiate teachers, especially 
beginners, might access to learn about the work of teaching” (Speer et al., p. 99). The research 
question that our investigation was based on is the following: 

In what ways, do primary historical sources, inform, guide, or support a university 
mathematics instructor’s teaching practices for the teaching of derivative in the first course of the 
Calculus sequence? 

Theoretical Framework 
Our use of a theoretical framework in this report is to explore the teaching practices of an 

instructor and how they change as a result of his engagement with primary historical sources, 
rather than to discuss the effectiveness of such an engagement for student learning. In particular, 
we use Speer et al.’s (2010) framework on teaching practices to describe the practices of an 
instructor in his attempts to teach derivative as a result of his engagement with primary historical 
sources. Due to the space considerations, we only share results for only one component of the 
framework. There are seven dimensions of teaching practice that are identified by Speer et al. 
The one that we are interested in this proposal is italicized (a) Allocating time within lessons, (b) 
Selecting and sequencing content (e.g., examples) within lessons, (c) Motivating specific content, 
(d) Posing questions, using wait time, and reacting to student responses, (e) Representing 
mathematical concepts and relationships, (f) Evaluating and preparing for the next lesson, and 
(g) Designing assessment problems and evaluating student work. In this brief report, we are able 
to analyze our data for one aspect. 

Selecting and sequencing content. This component of the framework refers to the content 
to be taught for a course, the order of topics through the semester, and examples/exercises to be 
shared with the students are some of the aspects of how an instructor selects and sequences 
content. As Speer et al. (2010) noted, although instructors mostly rely on textbooks for this 
aspect of their teaching practice, there are times that instructors may decide to consider, for 
instance, omitting some parts of a chapter in the textbook, provide students with examples from a 
different source, or create her own set of exercises for her students. 

Methodology 
Our research is a result of our interest in an instructor’s attempts to modify his teaching 

of derivative based on his engagement with primary historical sources. Our goal is to provide in-
depth description of the experiences and views of the instructor to better demonstrate his 
interactions with the primary historical sources, and how such interactions led him to reconsider 
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his teaching of derivative. Therefore, our inquiry in this research is qualitative in nature and 
descriptive by purpose. In Stake’s (1998) terms, we identify our research as an intrinsic case 
study: a result of our interest in the story of an instructor, rather than trying to understand a 
phenomenon. 

The participant of our study is a male mathematics instructor, from now on we call T, 
who was at his first semester in teaching at a tenure-track faculty position at a university located 
at Central region in the United States of America. Our data is on his teaching of derivative in the 
first course of Calculus sequence. Although this was his first semester in teaching Calculus as a 
faculty member, he had three semesters of experience in teaching Calculus as a doctoral student. 
His first interaction with primary historical sources is through one of the instructional materials 
known as Primary Source Projects (PSPs). To describe briefly, a PSP is a curricular material 
aiming to guide students’ reading and study of selected excerpts from primary historical sources. 
(see Barnett (2012) and Barnett, Lodder, and Pengelley (2014) for detailed information on PSPs.) 

The PSP that T used for his teaching is The derivatives of the sine and cosine functions 
(Klyve, 2017), which is designed for two class sessions of teaching. This PSP includes excerpts 
from Leonhard Euler’s Foundations of Differential Calculus. Through some excerpts from Euler 
(1755) and tasks related to these excerpts, Klyve, first, aimed to familiarize students with how 
Euler used differentials. Consequently, the goal was to share an alternative approach to the limit 
definition of derivative, where Klyve, eventually, provided how Euler used differentials to 
calculate the derivative of the sine function. Our decision to conduct research on T’s teaching on 
derivative began with his decision on extending the idea of using differentials for the entire 
derivative chapter of the course. The following quote is used in the PSP as an excerpt from 
Euler’s original text to demonstrate how differential was calculated, and derivative was defined 
using differentials. 

 
From this fact there arises a question; namely, if the quantity x is increased or 
decreased, by how much is the function changed, whether it increases or 
decreases?  For the more simple cases, this question is easily answered.  If the 
quantity x is increased by the quantity 𝜔𝜔, its square 𝑥𝑥2 receives an increase of 
2𝑥𝑥𝜔𝜔 + 𝜔𝜔2. 
Hence, the increase in x is to the increase of 𝑥𝑥2as ⍵ is to 2𝑥𝑥𝜔𝜔 + 𝜔𝜔2, that is, as 1 
is to 2𝑥𝑥 + 𝜔𝜔.  In a similar way, we consider the ratio of the increase of x to the 
increase or decrease that any function of x receives. 
Indeed, the investigation of this kind of ratio of increments is not only very 
important, but it is, in fact, the foundation of the whole of analysis of the infinite. 
In order that this may become even clearer, let us take up again the example of the 
square 𝑥𝑥2with its increment of 2𝑥𝑥𝜔𝜔 + 𝜔𝜔2, which it receives when x itself is 
increased by 𝜔𝜔. We have seen that the ratio here is 2𝑥𝑥 + 𝜔𝜔 to 1. From this it 
should be perfectly clear that the smaller the increment is taken to be, the closer 
this ratio comes to the ratio of 2𝑥𝑥 to 1. (Klyve, 2017, p. 2) 
 
We collected data through pre-semester and post-semester surveys, interviews, and video 

recordings of selected classroom sessions. If the instructor believed that he would spend time on 
differentials, we decided to include that session for video-recording. Each class session was 75 
minutes, and ten out of 30 sessions were video-recorded. We conducted two interviews with the 
instructor: One at the beginning of the semester, where our goal was, basically, to develop an 
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understanding of him regarding his perspective on mathematics, pedagogy, Calculus and its 
teaching, and his experience with history of mathematics. Second interview was conducted at the 
end of the semester. We asked him to reflect on his experience by asking some specific questions 
on his teaching practice. In our analysis, we mainly rely on interviews and video recordings to 
describe and understand his teaching practice. 
 We analyzed data, primarily video-recordings in this case, to observe the changes in the 
teaching practice based on instructor’s description of his regular and planned teaching of 
derivative. In this analysis, we also paid attention to discovering the potential role of his 
engagement with the PSP and Euler (1755) on the changes in his teaching practice. We discussed 
our observations and interpretations with the instructor for the validation of findings. 

Findings 
Although T was about the begin teaching as a faculty member for the first time, he had 

observed extensively in his prior experience in teaching Calculus that students used to struggle in 
understanding the concept of derivative. As he stated in the pre-interview, one of the most 
notable challenges that students experienced was the limit definition of derivative, which was 
also a challenge for him when he was a mathematics major in his undergraduate program. 
 T’s initial decision to use a PSP for his teaching relied on his interest in the history of 
mathematics. However, he had never used any primary historical document for his teaching prior 
to his experience with PSPs. When he decided to make use of the opportunity of using PSPs for 
his teaching, T’s goal was primarily to supplement his teaching with the textbook, which was 
supposed to take two class sessions. However, as we share in our further analysis, T ended up 
making fundamental changes in his teaching after his engagement with the PSP. 
 When asked about his first reaction after his first reading of the PSP, T stated that he was 
very surprised with the emphasis given on differential in defining derivative concept since 
differential was mentioned in the last section of the nine sections in the derivative chapter of the 
Calculus textbook. In his words during the pre-interview, “but when you look at the textbook, 
there are nine sections in derivative chapter and the differential section is the last section.” He 
continued as follows to describe his reaction to the importance given on the differential in the 
PSP: 
 

When I look at my previous experiences, students cannot really learn the 
definition of the derivative, limit definition of the derivative and they just 
memorize the formula. […] They do not really learn what is going on, why that 
formula works, what that dx means in the formula. But […] when I define the 
derivative using differential and when I first explain the idea of using differential 
to them, and then using that idea to computing and defining the derivative, I 
believe and I expect […] they will really understand what is going on in the 
definition of the derivative and what the derivative is. 
 
In this regard, it is important to note that differential as a mathematical idea central to the 

definition of derivative provided the instructor with a vocabulary so that he believed that he had 
the tools to communicate commonly used symbols in derivative, dx and dy, with students in 
meaningful ways. For instance, using differentials in defining the derivative allowed T to provide 
a justification for why Leibniz’s notation in chain rule makes sense, and why it works, first of all, 
for himself as an instructor of mathematics. To us, Euler’s approach, using differentials to define 
derivative, allowed T to produce narratives on derivative that, first, convinced him as a learner of 
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mathematics. Therefore, he proceeded with modifying his teaching practice expecting that 
Euler’s approach would also support a meaningful conceptualization of derivative. 
 Next, we share the significant changes in T’s teaching practices as a result of his 
engagement with the PSP and Euler’s approach for defining derivative using Speer et al.’s 
(2010) framework. Due to the space considerations, we report our findings on selecting and 
sequencing content aspect of that framework. 

  
Selecting and Sequencing Content 
 In the pre-interview, when asked about how he used curricular materials, in particular 
textbook, informed his teaching, T told that textbook would be the main guide for his teaching in 
planning and delivering his lectures. The textbook used to dictate, as he expressed, almost all of 
his teaching practices, including how he defined the concepts, the examples he used to explain 
mathematical ideas, and the exercises that he asked students to work on in his prior teaching 
experiences, and would dictate if he did not meet Euler’s approach. 

Following his interaction with the PSP (Klyve, 2017), and Euler (1755), T did not only 
replace the limit definition of derivative with Euler’s approach using differentials, but also, he 
redesigned each section in the derivative chapter of the textbook. For instance, he used 
differentials while introducing the differentiation techniques for the derivatives of constant and 
identity functions. As another example, in the product and quotient rule section, he said in the 
class, “we will go back to 1700s and visit Euler in his office and ask him how we can take the 
derivative of product of two functions. Let’s see what he is doing” and showed what those rules 
are and why they work while using the differential approach. He used the Leibniz notation as the 
primary representation for derivative in his teaching. Associating it with the phrase “crucial 
word,” he used to call “the ratio of 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
,” as the “magical ratio.” 

  Therefore, we conclude that T’s engagement with the PSP (Klyve, 2017) and Euler 
(1755) provided him a different perspective on conceptualizing, defining, and introducing 
derivative, which ended up with significant changes in how the content was presented to 
students. 

Discussion Questions for Further Analysis 
For our work in this report, we found Speer et al.’s (2010) framework as an effective tool 

to explore the teaching practices of a mathematics instructor and investigate the changes in his 
practice as a result of his engagement with a PSP (Klyve, 2017) and Euler (1755). Clearly, T’s 
interest in the history of mathematics was influential on his interest in using Klyve’s PSP. 
However, based on what our data suggests, we argue that it was Euler’s approach that triggered 
the changes in the teaching practice. Although the effectiveness of these changes in teaching 
practice on student learning is a question of interest, we believe that finding a motivation for 
instructional change is noteworthy.  

In this regard, we highlighted the role of primary historical sources in this proposal, but 
we also believe that further research needs to consider instructor characteristics as an aspect of 
investigation to deepen our understanding on the dynamics of change in teaching practice. 
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Business Calculus Students’ Understanding of Marginal Functions 
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Business majors represent a significant proportion of the population of students enrolled in 
calculus at the college level. However, there is a lack in research literature that tackles the 
teaching and learning of business applications at this level. This pilot study represents the 
beginning phases of a project that aims to investigate business students’ reasoning through tasks 
pertaining to marginal analysis (derivatives in a business context), accumulation functions and 
Riemann sums. A preliminary analysis of interviews with two pairs of students is presented, with 
an emphasis on their thought process while answering questions related to cost, revenue and 
profit functions as well as their marginal counterparts. The context-based activities were 
designed with a realistic mathematics education perspective, motivated by guided reinvention. 
 
Keywords: Business Calculus, Marginal, Derivatives, Realistic Mathematics Education. 
 

The teaching and learning of calculus, relative to the theoretical advances in education, is 
a research area that has only recently gained the interest of mathematicians, educators and 
psychologists. Researchers such as Warnock, Orton, Tall, Vinner are considered the founders of 
the aforementioned field, and it was their work in the early 1980s that created the foundations for 
future research and a need for curricular reform (Rasmussen, Marrongelle, & Borba, 2014).  
Standard calculus topics such as limits and derivatives have been typically researched over the 
past couple of decades, but it was not until the mid-2000s that the teaching and learning of 
Riemann sums and definite integrals became an area of interest for some researchers. When it 
comes to the teaching and learning of business calculus, there is a scarce amount of research that 
deals with the cognitive obstacles that students face. In fact, business students represent about 
45% of the students that are enrolled in a first semester calculus at the university where this 
study was conducted. The lack of representation of this population of students in research studies 
is problematic.  

 
Motivation and Relevant Literature 

Originally, the pilot study the authors-researchers had in mind was designed to tackle 
students’ understanding of accumulation and Riemann sums in business contexts. The activity 
we are considering in this report was intended to prime them on rate of change in a business 
setting through the context of marginal cost, revenue and profit. We assumed that students came 
in with the knowledge since they had already covered it in class. When analyzing their work on 
that introductory task, we found that their understanding of derivatives and marginal cost, 
revenue and profit was not as fully developed as we had expected. Our research focus thus 
shifted to analyzing what the participants understood in order to build a new activity centered 
around marginal functions.  

Throughout the interview, students struggled to express their understanding of marginal 
quantities relatively to the context. This issue seemed to support previous theories that students’ 
struggle with the concept of integration is strongly related to a poor understanding of rates of 
change (Kouropatov & Dreyfus, 2014; Thompson, 1994; Thompson & Silverman, 2008). Some 
studies documented the main issues that arise with students’ interpretation of derivatives and 
noted that they generally perform derivative computations without paying close attention to what 
the values represent (Bressoud, Ghedamsi, Martinez-Luaces, & Törner, 2016). When it comes to 
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studies that analyze how students reason through problems involving applications of derivatives 
in business contexts, research is very limited. To our knowledge, only Mkhatshwa and Doerr 
(2016, 2017) first investigated context-based opportunities to learn for business calculus students 
and then focused on revenue maximization applications. In addition, students primarily view 
integrals as a tool to calculate areas of unconventional shapes using the antiderivative of the 
integrand. This is not enough for them to thoroughly understand the multiplicative summation 
structure and thus utilize it in non-routine situations (Jones, 2015; Sealey, 2006). Therefore, we 
took this opportunity to first analyze business calculus students’ understanding of marginal 
functions, which would eventually reinforce their understanding of accumulation functions, 
Riemann sums and definite integrals conceptually rather than algorithmically.  

Because this study represents the beginning phases of a bigger project tailored towards 
the aforementioned topics, our analysis revolved around the following questions:  

• How do students interpret and analyze the cost, revenue and profit functions as well as 
the relationship between them? 

• What are some of the observations that can be made with regards to student interpretation 
of marginal cost, revenue and profit values on optimal business strategies? 

 
Theoretical Perspective 

The original tasks, including the one we focus on in this report, were designed under a 
Realistic Mathematics Education (RME) lens through guided reinvention. RME is a teaching and 
learning theory developed at the Freudenthal Institute in the Netherlands. Historically, 
mathematics instruction is typically done through formal definitions, theorems and occasional 
proofs. Contextual applications are usually given as concluding activities to relate the formal 
theory to real life examples. RME advocates argue that mathematics should be viewed as a 
human activity (Hough & Gough, 2007). To this end, guided reinvention is utilized so that 
students engage in their own learning and “reconstruct” the mathematics that they are expected 
to learn (Freudenthal, 1978; Stephan, Underwood, & Yackel, 2014). In addition, the context and 
models should be experientially real to the students, in the sense that students need to connect 
what they are doing to the ultimate goal of the lesson (Stephan et al., 2014). According to 
Treffers (1987), teaching from an RME perspective requires the use of contexts and models, 
allowing students to construct their own mathematical understanding through interactive 
learning. Our sequence of tasks was designed to help students reinvent the big ideas within 
accumulation in a Business Calculus context. Due to the obstacles that appeared during students’ 
interpretation of marginal values, we decided to limit this study to an analysis of the latter topic. 

Context wise, marginal cost (or revenue or profit) is the instantaneous rate of change of 
cost (or revenue or profit) relative to production at a given production level (cite book). Hence, if 
x represents the quantity of items produced and sold in a hypothetical business context, the 
marginal revenue R’(x) is the derivative of the revenue function R(x), the marginal cost C’(x) is 
the derivative of the cost function C(x), and the marginal profit P’(x) is the derivative of the 
profit function P(x). For instance, a value of   means that the marginal profit at a 
production level of 50 items is 24 dollars/item. This implies that if the company produces and 
sells one additional unit, thus at the sale of the 51st item, it is expected to gain about $24. The 
same reasoning applies to marginal cost (estimate for the cost of production of the (n + 1)st item) 
and marginal revenue (estimate for the revenue generated from the sale of the (n + 1)st item) at a 
production level of n items. 

 

P��(50) = 24
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Methods 
During a summer semester at a large university, students from a business calculus course 

were given the opportunity to participate in a 90-minute recorded session while they work 
through all the tasks that were originally designed, and answered some questions asked by the 
researcher. The task that is the focus of our report situated students in a hypothetical jacket 
manufacturing company. Given the fixed and variable costs of production, as well as a quadratic 
revenue function, they were asked to develop a model for both the cost and revenue functions, as 
well as the corresponding marginal functions. Then, students had to evaluate those functions and 
their marginals at two different levels of production in order to decide whether or not it would be 
a good business move for the company to produce that many jackets. The last question prompted 
students to find the production level that would maximize the company’s profit.  

Two pairs of students volunteered to participate. They were split in two groups: Piper and 
Jay (Group 1), Mo and Ty (Group 2). The students had diverse ethnic backgrounds (African 
American, Hispanic and white). The researcher allowed students to get comfortable working 
together first and limited his interaction with them until it was clear that they were collaborating 
and sharing ideas. For both pairs, the first task (the one we are analyzing in this report) took 
about 45 minutes to complete, which included discussion time with the researcher. Hence, 
around 90 minutes of audio-video footage were analyzed using an open coding process in which 
annotations and comments were split into the two major themes that are elaborated in the next 
section. Below is a reproduction of the questions presented to the students in this first task. 
 

 
Figure 1. Questions from the first task of the interview.  

Preliminary Findings 
After a careful examination of the conversations between the participants, as well as the 

participants and the researcher, it seemed like students’ have uncertainties in how the cost, 
revenue and profit functions are related as well as what are the implications of the marginal 
function values at specific levels of production. 
 
Analysis and Interpretation of Business Functions 

The first half of the task tackled students’ familiarities with functions that model the cost, 
revenue and profit. Given fixed costs for production and variable unit prices, students were asked 
to model a cost function and were expected to utilize a linear model. After some guidance from 
the researcher, group 1 correctly modeled the cost function. When asked to write an expression 
for the profit function, Piper noted that “profit equals revenue minus cost because revenue is 
more, and cost is less”, which may indicate she believes that profit always represents a positive 
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quantity, a gain. Given a production level of 1000 jackets where profit is positive, the students 
were asked if it is a good idea for the company to produce that many jackets. Students in this 
group thought it was indeed beneficial because “the profit is substantially greater than the initial 
cost”, seemingly thinking of those as two comparable quantities. When asked to find the 
maximum profit, Piper and Jay utilized Desmos to plot the graph of the profit function and were 
able to locate the maximal value. Students in group 2 also compared cost to profit at a production 
level of 1000 jackets. Remarkably, when production level changed to 3000 jackets, they 
compared the cost and profit at that level to those at 1000 jackets “[the company ends] up 
making the same amount of money, but it costs more to produce”. When asked to find the 
maximum profit, Mo and Ty started by equating the revenue to the cost function. This reflects a 
confusion between the concept at hand and the break-even points, where the profit is in fact null. 
After discussing this idea with them, they took a graphical route. Surprisingly, they plotted the 
cost and revenue functions, but not the profit function and tried to estimate the production level 
(x value) that “maximizes the distance between the cost and the revenue […] biggest positive 
difference since you can have a bigger difference down there [pointing at regions of loss] but 
then [the company] would be losing money.” Their analysis of the difference between revenue 
and cost in lieu of analyzing the profit function directly indicates they may not have a robust 
understanding of the relationship between the three quantities. 
 
Analysis and Interpretation of Marginal Functions 

The second half of the task prompted students to answer questions pertaining to marginal 
cost, revenue and functions. Both groups had no issues in connecting marginals to derivatives 
and were able to find them using the power rule for polynomials. Group 1 was also familiar with 
the linearity property of the derivative, since they subtracted the marginal cost from the marginal 
revenue as a shortcut to finding the marginal profit. However, all four students seemed to face 
some obstacles when asked to interpret the marginal values they obtained at given levels of 
production. The hindrances started during a conversation about what “derivative” means to them 
in any context. One particular answer reflected students’ association of derivatives with an 
algorithmic process without paying close attention to its connection with rates of change: “it’s 
kind of like taking the original form and then transforming it or condensing it into something 
else”. In addition, For the given levels of production, students struggled to utilize correct 
terminology while interpreting the marginal values they obtained. For instance, Piper noted that 
“at [a production level of] 1000 jackets, the ROC for profit is 156, and there is no ROC for the 
cost”. Besides not using units with their values, it seemed like a constant rate of change for a 
function was mistaken with the function itself being constant, thus having a null rate of change.  

Perhaps the most notable observation, after redirecting the students to derivative values 
being slopes of tangent lines, is that students used linear approximations of functions to 
approximate the additional revenue and profit for any other level of production. The excerpt 
below showed us elements of a productive understanding of liner approximations and how they 
relate to rates of change, but the robustness that is needed for a more advanced interpretation was 
yet to be developed. While the reasoning below applies to the case of linear cost functions (the 
marginal cost is constant thus each additional unit costs the same to produce), it cannot be 
extended to the case of marginal revenue and marginal profit. The following is an excerpt of 
Mo’s interpretation for the marginal values he found at a production level of 1000 jackets.  
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Mo: So, for marginal cost, it’s like per unit or whatever so for cost, it’s going to be each unit 
costs $4 to produce on top of the last one. And then same for [the revenue and profit], 
each unit nets us $160 more revenue than the last one we made, and each unit gives us a 
profit $156 more than the last one. (Ty agreed with Mo’s statement) 

Interviewer: What do you mean by “each unit”? 
Ty: Like each additional unit 
Interviewer: So, if I’m at 1000 [units] and I [produce] one more unit, then […] the revenue is 

going to be $160. If I produce 10 more units after, is my revenue going to be $1600? 
Mo: I think that’s the assumption that it will do that as long as you’re basing it on that 1000  
Interviewer: Your starting point is 1000 [jackets] and after that you can take any value […] 

and estimate the additional revenue? 
Mo: Yes, so like when we base it on 3000 [jackets] now we have a negative number because 

we’re starting to lose money on each one that we make additionally. 
Interviewer: Okay so your “each” means that starting with 1000 or 3000, you can [increase] 

by as much as you want, say by 10, 100, 500 units… and then that would tell you what 
your additional cost, revenue and profit are? 

Ty: Yea for each one, I guess. 
 

This presents evidence to support our next claim that Mo and Ty understand the effect of 
a marginal value’s sign (positive or negative) on gain or loss. However, the use those values as 
local approximations of the additional revenue or profit is a skill that is yet to be acquired. 
 

Implications  
Our preliminary findings suggest that students did not master additional preparation in order 

to give correct interpretations of the marginal cost, revenue and profit functions. Finding 
derivatives by hand is a skill that is typically focused on during traditional calculus courses but 
with all the software available to do that in practical applications, it would be more beneficial for 
them to demonstrate strong analytical skills through interpreting the meaning of the marginal 
values. Taking our observations in this study into consideration, our next step would be to 
conduct a teaching experiment that emphasize on ideas that are not typically focused on, such as 
the profit being a quantity that could be positive or negative, the revenue and cost being 
comparable and how they relate to profit, as well as using correct vocabulary and units to 
describe the meaning of the derivative in any context. Thus, our ensuing goal is to create a 
sequence of tasks that guide students through the theoretical underpinnings of business functions 
and their marginal counterparts as bases for optimal business strategies. We have posited some 
initial learning goals for the next tasks that will be tailored towards students being able to:  
 

1. Write and evaluate the cost, revenue and profit functions using given information (fixed 
and variable costs, price-demand equation…)  

2. Interpret and analyze the cost, revenue and profit functions at a given level of production 
3. Derive the marginal cost, revenue and profit functions. 
4. Interpret and analyze the marginal cost, revenue and profit at a given level of production. 
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  How Do Students Interpret Multiply Quantified Statements in Mathematics? 
 

Paul Christian Dawkins Kyeong Hah Roh 
Northern Illinois University Arizona State University 

 
We presented introduction to proof students from five different US universities with multiply 
quantified statements to assess and interpret. The survey was designed to allow us to compare 
the influence of syntax, semantics, and pragmatics in student interpretation. We analyzed the 
ways students interpreted the statements both before and after instruction. Current analysis 
suggests that students became more sensitive to syntax (reversing quantifier order) after 
instruction and became better able to construct a semantically odd construal (e.g. the distance 
between two points is equal to multiple numbers). Our analysis of pragmatics suggests that 
students were more likely before instruction to construct a relevant construal, but we did not find 
evidence that truth-value influenced students’ interpretation of the given claims.  
 
Keywords: Logic; Multiple Quantification; Introduction to Proof 

 
Advanced mathematical language involves a number of very particular conventions of syntax 

and interpretation because mathematicians strive to communicate intended meanings with 
fidelity. Many previous studies have particularly investigated how students make sense of 
statements that combine universal (∀) and existential (∃) quantifiers, what we shall call multiply 
quantified (MQ) statements. Such statements appear quite frequently in advanced mathematics 
and experts almost always use them in a consistent manner, though the precise nature of the 
relationships conveyed varies in important ways (c.f. Durand-Guerrier & Arsac, 2005). These 
studies have assessed students’ naïve readings of such statements (Dubinsky & Yiparaki, 2000) 
and have proposed and evaluated certain methods of teaching students to interpret MQ 
statements as mathematicians do (Dubinsky, Elterman, & Gong, 1988; Dubinsky & Yiparaki, 
2000; Durand-Guerrier & Arsac, 2005; Roh & Lee, 2011). This study seeks to extend our 
insights into student interpretation of MQ statements by contributing a conceptual analysis of the 
interpretation process that is evaluated through survey instruments administered to introduction 
to proof students both before and after instruction. We investigate roles syntax, semantics, and 
pragmatics each may play in the ways students construct meaning for MQ statements.  

Interpreting MQ statements in mathematics resides at the interface between mathematical 
logic and mathematical language. We concur with previous authors that while there exist formal 
rules for trying to render mathematical language purely syntactic (able to operate by precise rules 
ignorant of subject matter), mathematicians rarely operate in this manner and teaching novices 
will almost certainly require some balance between syntactic rules and semantic sense-making 
(Durand-Guerrier, 2003; Durand-Guerrier, Boero, Douek, Epp, & Tanguay, 2012).  

Conceptual Analysis and the Research Tasks 
Previous studies have used the language AE (“for every-there exists”) and EA (“there exists-

for every”) to alternatively refer to 1) the structure of a mathematical statement, 2) the normative 
interpretation shared among mathematicians, and 3) a student’s interpretation of those 
statements. While we continue to use those two-letter codes for convenience, we adopt a 
different terminology to distinguish these constituents of the analytical process. Figure 1 presents 
the four statements (these are technically predicates, but we shall reserve that term for something 
else) that we asked students to interpret, each regarding two different referents. The wordings of 
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the statements clearly exhibit AE or EA structure. We refer to the meaning an individual makes 
for any such wording as their construal of the statement. The construal shared among 
mathematicians – AE means “each to some” and EA means “one to every” – we call the 
normative construal. Each student then construes each statement in ways tantamount to “each to 
some,” “one to every,” or something else.  

 
Figure 1. The four statements and four referents comprising the study tasks. 

We parse the elements that students may use to construct meaning in the following way: 
quantifiers, predicate, and referent. For instance, for S1 the quantifiers are “There exists a real 
number ! such that for all real numbers !,” the predicate is “! ! < !,” and the referent is 
“! ! = 3! + 2” or “! ! = sin (!).” To observe the influence of each, our survey alternated 
the order of quantifiers, the mathematical context and predicate, and the referent within each 
context. Students may alternatively give meaning to a statement like S1 by constructing a 
meaning for the syntax of quantification (one ! that satisfies the predicate for all !) or using 
their semantic knowledge of the boundedness property of the referent ! ! = sin (!).  

To assess the role of pragmatics, we operationalized two of Grice’s (1975) pragmatic 
maxims. Grice’s maxims express rules by which interlocutors in discourse may draw reasonable 
implications from another’s statements (possibly beyond the express meaning). We consider two: 
a Maxim of Quality “Try to make your contribution one that is true” (p. 46) and a Maxim of 
Relation “Be relevant” (p. 46). If this maxim were operative, then we would expect students to 
attempt to construe a false statement in some way that made it true. This maxim would be inert 
in interpreting a true statement. We expect this effect is preconscious, and we looked for its 
effect on the first statement students read in each context. The normative construal of both 
Statements 2 and 4 are semantically uninteresting (the former is always true and the latter is 
patently false), which we consider violations of the Maxim of Relation. Thus, if students avoid 
such a construal, this is evidence of the role of pragmatics in interpretation.  

Methodology 
We designed a survey that consisted of four pairs of tasks using the MQ statements and 

referents in Figure 1. Each task presents a pair of MQ statements differing only by the order of 
quantifiers. We refer to the task as follows: S1 – EA function, S2 – AE function, S3 – AE 
geometry, and S4 – EA geometry. The task presentation follows for two requests for response: 
(1) the truth-value (true or false) of each statement for the given referent and (2) an explanation 
of what each statement says about the given referent.  

We created two versions of the survey instrument: True-first version and False-first version. 
These two versions of the survey instrument contain the same tasks – four function tasks first 
followed by four geometry tasks – presented in different orders. For each task group (either 

 

S1. “There exists a real number ! such that for all real 
numbers !, ! ! < !.” 

 
referents 

! ! = 3! + 2 

S2. “For all real numbers !, there exists a real number 
! such that ! ! < !.” ! ! = sin (!) 

S3. “For every positive real number s, there exists a 
point ! on the segment [ray] such that ! !,! = !.” 

 

referents 
segment !" 

S4. “There exists a point ! on the segment [ray] such 
that for every positive real numbers s, ! !,! = !.” ray !" 
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function or geometry), T-first version presents a referent first that makes the first MQ statement 
in the pair to be true (EA – sine/ AE – ray), whereas F-first version presents a referent first that 
makes the first MQ statement in the pair to be false (EA – line/ AE – segment).  

Six instructors of introduction to proof courses from five different universities in the United 
States allowed their students to participate to our research study in Spring 2018. We randomly 
assigned the student participants into two groups. To facilitate the multi-site data gathering, 
students completed the surveys online through an emailed link. Students were invited to 
complete the survey both before and after their class covered topics related to MQ statements. In 
this paper, we report our results from the 77 students who completed both pretest and posttest.  

We first compared students’ responses to the determination of the truth-value for each 
statement and their explanations about what each statement says. We coded a student response as 
EA if it exhibits “one to every” structure, AE if it exhibits “each to some” structure, and OTHER 
if the student construal conveyed neither such relationship or it appeared the student construed a 
different predicate or referent. Once we coded all student responses to each statement the tasks in 
terms of the three codes, we calculated how frequently students construed each statement-
referent pair in a normative way. For instance, AE-sin refers to the percentage of students who 
interpreted S2 with reference to the sine function as an “each to some” relationship. The next 
section presents our preliminary analysis of these frequencies of normative construal.    

Results 
Figure 2 presents the rates of normative construal by group and time. These data show two 

initial trends: students more frequently construed the first statement in each pair normatively and 
the AE sine task resulted in the lowest percentages of normative construal overall. The first 
pattern results in the jagged appearance of each graph. This reflects on our hypothesis about 
pragmatics, namely that students were less likely to construct the normative construal when its 
contextual meaning was either obvious (the EA function statement) or patently false (the AE 
geometry statement). A possible alternative explanation has to do with the order of appearance, 
since students always saw the more “natural” (according to normative construal) statement first.  

 

 
Figure 2. Percentages of normative construal, organized by mathematical context and group.  
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It may be that students construed the second statement less normatively because they had to 
develop a new construal for a very closely related statement, and this was more challenging. Our 
current study design does not allow us to fully distinguish these two explanations.  

The AE sine task’s low normative construal rate should be viewed in part as a byproduct of 
gathering data in surveys rather than interviews. While S2 entails a slightly different construal 
than S1 (e.g. ! could be .5 when ! ! = 0), both statements can be verified by a single !. 
Under either construal S2 is true, and students declared it so 88% of the time. When a student 
explains their interpretation of the AE sine task by noting that ! = 2, this is insufficient 
evidence to indicate whether the student held a “one to every” or “each to some” construal. 
Without evidence that students thought that ! could vary with !, we did not code their responses 
as an “every to some” construal. It is likely that more students responded to the AE sine task 
according to a normative construal, but their explanation did not provide enough evidence for us 
to discern it. Many other explanations provided clearer evidence of either a “one to every” or an 
“every to one” construal, but we had to choose a system for coding ambiguous responses.  

If one ignores the AE sine tasks, a third pattern arises from the data in Figure 3: instruction 
greatly increased the rate of normative construal for the more difficult statements (function EA 
and geometry AE) and resulted in a much more consistent rate of normative construal across 
group and context. Indeed, the rate of normative construal was above 58% (and below 80%) on 
all of the posttest tasks (data points marked with squares in Figure 2) except the AE sine task. 
We currently do not have a clear explanation for why the rate of normative construal actually 
decreased after instruction for some groups on some tasks. 

Influence of Task Order 
One of our primary hypotheses regarded the influence of Grice’s Maxim of Quality that 

students might be prone to interpret statements to render them true. Operationally, would reading 
false statements first make students more likely to search for a (non-normative) construal that 
rendered the claim true? Comparing the two group’s construal of each task above, the rate of 
normative construal differed by 10% or more on the following tasks: EA sine pre (F-First 
+12%), EA line pre (F-First +25.9%), AE line pre (F-First +13.3%), AE segment pre (T First 
+14.4%), and EA line post (T-First +12.7). Thus, the strongest evidence that the order of 
presentation affected student construal appeared on the function tasks prior to instruction. In this 
case, we see that the F-first group (who read a false statement first) were much more successful 
in constructing the normative construal of both EA function tasks. This suggests that in this 
context, reading the statement with reference to the linear function first aided students in 
construing the definition of bounded above with reference to both functions. This disconfirms 
our hypothesis that reading the definition of bounded above with reference to a bounded function 
would aide in developing a normative construal.  

However, the geometry tasks caution against a simple explanation that seeing a false 
statement first is better. The T-First group fared better than the F-First group on three of the four 
geometry pretest tasks, with differences ranging from 5.1% to 14.4%. This means the group who 
saw the ray first (of which S3 is true) more frequently construed the geometry tasks normatively 
than did the group who saw the segment first (of which S3 is false). So, while there seemed to be 
some effect due to order of presentation, it varied with semantic content and not merely with the 
truth-value of the statement. This suggests that semantic content was more salient in student 
interpretation than was Grice’s Maxim of Quality.  
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Influence of Quantifier Order 
We assessed the influence of syntax, focused on the quantifier part of the statement, by 

comparing each student’s construal of statements that varied only in the order of quantifiers. 
Figure 3 presents the percentage of students who construed corresponding EA and AE statements 
with the same construal. The sine task showed the greatest frequency of invariant construal at 
both times. Prior to instruction, students construed the other three pairs of statements the same 
between one third and one half of the time. After instruction, this rate dropped from between one 
tenth to one third of the time. Thus, reversing quantifier order frequently did not elicit a novel 
construal before instruction and instruction made students more sensitive to quantifier order.  

 
Figure 3. Frequency of students construing different quantifier order statements the same way. 

Discussion 
This study investigates the resources that students use to give meaning to MQ statements. 

Our study design helped us to compare the relative roles of syntax, semantics, and pragmatics. 
Initial analysis of the data suggest that all three played some role in interpretation, and each 
aspects was at times inoperative in interpretation (for at least some students).  

Syntax clearly influenced student interpretation, inasmuch as students normatively construed 
the various statements with at least modest frequency, especially after instruction. However, 
before instruction students also constructed the same construal for AE and EA statements at least 
30% of the time. Semantics clearly played a role inasmuch as the pattern of interpretation was 
quite different between function and geometry settings. As was expected in the study design, it 
appeared that “one to every” relations were easier to construct in the function context and “each 
to some” relations were easier to construe in the geometry context. Instruction seemed to shift 
interpretation from semantics toward syntax inasmuch as the posttest rates of normative 
construal were less varied.  

Regarding pragmatics, we did not find support for the claim that Grice’s Maxim of Quality 
influenced students’ interpretations. On the function items, students fared better when they first 
read the definition of bounded above with reference to an unbounded function. A possible 
explanation is that since they could not give meaning to the statement based on their 
understanding of the sine function’s prominent property of being bounded, they had to attend 
more closely to the quantifier structure. The data may support the role of the Maxim of Relation 
in explaining why certain statements were uniformly harder to construe normatively, but we 
cannot rule out that order of appearance explains this pattern instead.  

Ongoing analysis will attend to other details of student construal such as how explicitly they 
explained quantification and the dependence between variables. We also plan to conduct 
statistical analysis on the data presented here. In our presentation, we will discuss the following: 

1. How can we explain the reduced rate of normative construal on some tasks? 
2. What other comparisons and analyses should we conduct on the data?  
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Mathematics on the Internet: Charting a Hidden Curriculum 
 

Ander Erickson 
University of Washington Tacoma 

 
I report on a pilot study for an explanatory multi-method (Creswell & Plano Clark, 2011) 
research project that examines how undergraduate students in mathematics courses make use of 
online resources in order to assist with their studies. A survey of 42 students in a diverse 
undergraduate institution along with 4 semi-structured follow-up interviews were used to collect 
preliminary data on how these undergraduates make use of the internet as well as to test the data 
collection protocol. Initial findings suggest that students make use of online resources (beyond 
those assigned by the instructor) extensively and to a greater extent than in other subject areas. I 
also report on which resources are being used by students and find evidence of two distinct ways 
in which these resources are being employed. Questions will be posed about how an expanded 
follow-up study can best be of service to the mathematics education research community.   
 
Keywords: Information literacy, Information seeking behavior, Multi-Method 
 

Introduction 
 

Students in mathematics courses spend the bulk of their time working outside of class and 
much of that work takes place in an online environment. Students may post textbook questions to 
mathematics forums, trade advice regarding the best YouTube tutorials, make use of online 
graphing calculators, or even sometimes go cold turkey when they realize that they are relying on 
the internet too much for help. These are all anecdotes related to the author by his students and, 
while of limited use for making generalizations, they serve to illustrate the variety of hidden 
work that often occurs out of the instructor’s sight. The invisible nature of this work is of 
particular concern when we consider those student populations (e.g., nontraditional, first 
generation, minoritized) for whom mathematics traditionally serves as a gatekeeper (Gainen, 
1995; Atanda, 1999; Eagan & Jaeger, 2008; Martin, Gholson, & Leonard, 2010). 

While there is a growing body of research devoted to undergraduate students’ general 
online searching behavior (Rowley & Urquhart, 2007; Urquhart & Rowley, 2007; Nicholas, 
Huntington, Jamali, Rowlands, & Fieldhouse, 2009; Lai & Hong, 2015), there is very little work 
that looks at how students are employing online resources for to help themselves learn specific 
disciplines. Undergraduate students make use of the internet as a supplement to their learning 
with increasing frequency (Selwyn, 2008; Lai, Wang, & Lei, 2012). This usage cuts across all 
demographic groups (Selwin, 2008) including those nontraditional, first generation, and 
minoritized students who are already marginalized by the education system (Stone, 1998; Stein, 
Kaufman, Sherman, & Hillen, 2011). Unfortunately, this informal use of the internet is not 
reflected in teacher training or professional development. Practicing mathematics instructors’ 
knowledge of which resources students are using and how they are using them is idiosyncratic 
because there exists no readily available knowledge base about such usage. Accordingly, this 
proposal will report on a pilot study that employs an explanatory multi-method approach 
(Creswell & Plano Clark, 2011) in order to a) describe the extent and type of online resources 
that students are using to help them study for mathematics classes and b) describe the strategies 
that students are employing as they make use of online resources.   
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Review of the Literature 
 
Mathematics Education and the Internet 

Much of the research on the online aspects of mathematics education explores how to 
teach mathematics on the internet (Timmerman, 2004; Engelbrecht & Harding, 2005; Foster, 
Anthony, Clements, Sarama, & Williams, 2016) or how students interact with novel web-based 
interventions (Rosa & Lerman, 2011; Biehler, Ben-Zvi, Bakker, & Makar, 2012). However, 
some researchers have looked at how students interact with online resources that are not part of 
assigned classroom activities. For example, Van de Sande (2011) studied 200 student 
interactions in a free online help forum and discovered that meaningful learning sometimes took 
place there. Similarly, Puustinen, Volckaert-Legrier, Coquin, and Bernicot (2009) report on a 
study in which they observed how 206 French middle school students sought out help with the 
mathematics that they were learning in school. These researchers also looked at submissions by 
students to a help forum. Notably, in both cases, the traces of student search activities in a 
particular website were examined without providing any analysis of what proportion of students 
relied on the website or whether the use they made of it was a typical way for students to seek 
out help online. For research along those lines, we must turn towards work in the information 
sciences. 
 
Information Seeking Behavior 

If we direct our attention to studies of how students seek out information online more 
generally, the field is much larger. Researchers in the information sciences have been attempting 
to model how people seek out information for decades now (Bates, 1989). One line of inquiry 
explores students’ pathological use of the internet (Anderson, 2001). In the course of this survey 
study (n = 1300), the researcher found that mathematics majors use the internet significantly less 
than many other groups, particularly those in the hard sciences. While not addressing the use of 
the internet for academic purposes, Sin and Kim (2013) provide an example of a study that 
examines how a particular population of students looks for information – in their case, the 
everyday information seeking of international students on social networking sites. The study was 
conducted with surveys and found that the use of social networking sites was a positive predictor 
of the perceived usefulness of information for everyday life. Torre, Reiser, LePeau, Davis, and 
Ruder (2006) used a grounded theory approach to describe the academic information-seeking 
behavior of 24 first-generation Latino/a students. However, this study did not actually address 
questions about how these students use internet resources to help themselves academically but 
rather focused on how students sought out academic advising-related information, such as the 
requirements for different majors or possible career fields. Some research looked at differences 
in internet use between different demographic groups (Odell, Korgen, Schumacher, & Delucchi, 
2000), but that work focused on macro-behaviors, e.g., how many online hours spent per week 
on games versus homework, without attempting to unpack exactly which resources students are 
accessing and how they are making use of them.  

 
Research Questions 

Mathematics educators need a better understanding of how students are making use of the 
internet. Current research either focuses on specific interventions or takes a broad look at student 
information-seeking without providing insight into how students in mathematics classes are 
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making use of the internet. Thus, the goal of this pilot study is to address the following research 
questions: 

 
1. Which online resources do undergraduate students in mathematics courses 

rely on in order to help them with their mathematics courses and to what extent do they 
make use of these resources? 

2. How are students seeking out and interacting with these resources? 
 

Method 
 
An explanatory mixed methods study (Creswell & Plano Clark, 2011) begins with the 

collection of quantitative data via surveys with follow-up interviews designed to explore the 
initial quantitative findings. An online survey was administered to students taking summer 
courses on a voluntary basis with the understanding that the students would receive a $25 
incentive if they were randomly chosen to participate in a 30-minute follow-up interview. The 
surveys collected basic information about the frequency with which students make use of the 
internet while also asking them specifically about a series of internet resources that had 
previously been brought up frequently in the course of informal surveys and conversations with 
students and colleagues. These questions had a dual purpose, they provided data on the resources 
that students are using and they also primed participants for the subsequent open-ended questions 
asking them more details about which information resources that they use and how they use 
them. The students were told to only refer to internet use that was not part of the curriculum 
provided by their instructor, thus they did not report on their use of online course management 
software.  

The sample (N = 42) in this pilot reflected the institution’s demographics with respect to 
race and gender1. They were enrolled either in the Calculus sequence, Differential Equations, 
and/or Linear Algebra. This constrained selection of courses is a limitation of the current pilot 
and the subsequent larger study will draw students from mathematics courses from all different 
stages. Follow-up interviews were conducted with four students as part of this preliminary study. 
These interviews were semi-structured (Arksey & Knight, 1999) in order to build off of our 
findings from the initial survey.  Given that our goal with these interviews is to come to a better 
understanding of how students seek out information, the students were asked to describe the 
most recent situation in which they sought out information to help with their mathematics class, 
to elaborate on the use of those resources that they stated that they used frequently in the survey, 
invited to reflect on how their use of the internet as a resource for mathematics courses had 
changed over the years, and to describe how they found out about the online resources they used.  

 
Findings 

Survey Results 
The surveyed students reported using online resources, beyond those assigned by the 

instructor, extensively. All of the students made use of online resources at least a few times each 
week and almost half of them made use of those resources every day (see Table 1). Further, most 
of the students reported using online resources more frequently in mathematics courses than in 

																																																								
1	This	information	is	available	upon	request,	I	am	only	leaving	it	out	of	the	present	proposal	due	
to	space	constraints.		
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other subject areas with only one student reporting that they used online resources less often in 
their mathematics courses.  

 
Table 1  
The Use of Online Resources by Students in Mathematics Courses 

How Often Frequency Percentages 
Every Day 19 45.24% 
A Few Times a Week 23 54.76% 
About Once a Week 0 0% 
A Few Times a Quarter 0 0% 
Less Than Once a Quarter 0 0% 
Compared to Other Courses 
More Often 29 69.05% 
About the Same 12 28.57% 
Less Often 1 2.38% 

 
Table 2    
Percentage of Students Using Different Online Resources 

Online Resource More Than Once a 
Week 

Several Times a 
Quarter 

Once a Quarter or 
Less 

Do Not 
Recognize 

Google 85.72% 14.28% 0% 0% 
Youtube 66.67% 28.57% 2.38% 2.38% 
Wolfram Alpha 38.09% 28.57% 16.67% 16.67% 
Khan Academy 33.33% 50% 14.29% 2.38% 
Desmos 21.43% 42.85% 14.29% 21.43% 
Chegg 19.04% 9.52% 52.38% 19.05% 
Mathematica 11.9% 14.28% 9.52 % 64.29% 
Wikipedia 9.58% 26.19% 64.29% 0% 
Stack Exchange 4.76% 19.05% 14.29% 61.9% 

 
The most commonly used resources (see Table 2) were Google and Youtube, a finding 

that highlights the limitations of the survey format as these resources could be used in any 
number of ways by students. The follow-up interviews, as reported below, provided an 
opportunity to learn more about what students meant when they reported using those two 
resources.  The next most commonly used resources were Wolfram Alpha and Khan Academy 
with around a third or more of students using these more than once a week and a strong majority 
of students using them several times a quarter or more. The use of these resources is consistent 
with two strategies for using online resources that arose in all of the interviews, namely the use 
of online instructional videos and the use of online calculators / answer engines. Students also 
had the opportunity to volunteer resources that were not mentioned by name in the survey. This 
elicited resources such as Symbolab, Geogebra, Mathway, Slader, IntegralCalculator and 
DerivativeCalculator as resources that they had used in their latest course. Symbolab, an answer 
engine, was brought up by over a quarter of the students who took the survey. 

  
Interview Results 

There were two primary ways that these students described using online resources in their 
interviews: solidifying concepts by interactively viewing online lectures and making use of 
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online calculators and/or answer engines in order to double-check problems that were causing 
the students difficulty. Crucially, all four of the students were frequently (i.e., more than once per 
week) using the internet for both purposes. The students all elaborated on how they made use of 
these resources. For example, students would choose lectures based on their popularity (both in 
terms of the total viewers and the number of “likes” received) and scan the comments in order to 
determine if they should skip to particular points in the lecture or to identify whether the lecturer 
made any mathematical mistakes. They generally settled on specific lecturers on Youtube – these 
were often encountered in the course of their searching, although they sometimes had been 
recommended by peers or even their instructors. The students also elaborated on their use of 
answer engines such as Wolfram Alpha and Symbolab. They stated that they would always keep 
them on hand in order to check their work if it was marked wrong (in the case of online 
homework) or if they suspected that they had done something wrong (in the case of written 
homework). One of the students said that they would use these resources if they were not 
confident in the steps that they took to arrive at their answer, even if they had gotten the correct 
answer.  

The student responses affirmed the importance of online resources for their studies. 
Indeed, beyond the fact that all four students used the internet extensively, three of the four 
students stated that they were uncertain whether they would have passed college-level 
mathematics courses without online resources. This is put in greater relief by the fact that none 
of these four students reported using the internet for help with mathematics when they were in 
high school. Two students stated that they wished that they had known about these resources 
when they were in high school because they may have been more successful, while another 
student said that it was the greater demands, particularly with respect to the amount of material 
being covered within an abbreviated timeframe that necessitated the use of online materials. This 
last student highlighted the role of answer engines as a way of checking their work, stating that 
they would spend much more time on their mathematics homework if they were not able to 
immediately confirm whether they had answered the problems correctly or not.  

 
Conclusion 

This pilot study serves to demonstrate that students are making extensive use of the 
internet to study for their mathematics courses. In particular, the interviews suggest that these 
students may believe that they owe their success in mathematics courses to the judicious use of 
internet resources. I will be following up this work with a large-scale follow-up study. In 
particular, such a study will help provide a general model of students’ information seeking and 
information use that can help support equitable mathematics instruction by making effective 
strategies for the use of online resources available to all students and instructors.    

 
Questions for the Audience: 

• As researchers and as educators, what would you most like to know about how 
your students are making use of the internet in order to aid with their studies? 

• What are your experiences with your students’ use of the internet? Do you adjust 
your instruction in order to take their internet use into account?     

• Would student diaries or screen-capture sessions be a useful supplement to the 
surveys and follow-up interviews? 

 
 

22nd Annual Conference on Research in Undergraduate Mathematics Education 888



References 
 
Anderson, K. J. (2001). Internet use among college students: An exploratory study. Journal of 

American College Health, 50(1), 21-26. 
Arksey, H., & Knight, P. T. (1999). Interviewing for social scientists: An introductory resource 

with examples. Sage. 
Atanda, R. (1999). Gatekeeper courses. National Center for Education Statistics, 1(1), 33. 
Bates, M.J. (1989). The design of browsing and berrypicking techniques for the online search 

interface. Online review, 13(5), pp.407-424. 
Biehler, R., Ben-Zvi, D., Bakker, A., & Makar, K. (2012). Technology for enhancing statistical 

reasoning at the school level. In Third international handbook of mathematics education (pp. 
643-689). Springer, New York, NY. 

Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods research 
(2nd ed.). Thousand Oaks, CA: Sage.  

Eagan, M. K., & Jaeger, A. J. (2008). Closing the gate: Part-time faculty instruction in 
gatekeeper courses and first-year persistence. New Directions for Teaching and 
Learning, 2008(115), 39-53. 

Engelbrecht, J., & Harding, A. (2005). Teaching undergraduate mathematics on the 
internet. Educational studies in mathematics, 58(2), 253-276. 

Foster, M. E., Anthony, J. L., Clements, D. H., Sarama, J., & Williams, J. M. (2016). Improving 
mathematics learning of kindergarten students through computer-assisted instruction. Journal 
for Research in Mathematics Education, 47(3), 206-232. 

Gainen, J. (1995). Barriers to success in quantitative gatekeeper courses. New directions for 
teaching and learning, 1995(61), 5-14. 

Kim, K. S., Sin, S. C. J., & Tsai, T. I. (2014). Individual differences in social media use for 
information seeking. The Journal of Academic Librarianship, 40(2), 171-178. 

Lai, K. W., & Hong, K. S. (2015). Technology use and learning characteristics of students in 
higher education: Do generational differences exist?. British Journal of Educational 
Technology, 46(4), 725-738. 

Lai, C., Wang, Q., & Lei, J. (2012). What factors predict undergraduate students' use of 
technology for learning? A case from Hong Kong. Computers & Education, 59(2), 569-579. 

Martin, D. B., Gholson, M. L., & Leonard, J. (2010). Mathematics as gatekeeper: Power and 
privilege in the production of knowledge. Journal of Urban Mathematics Education, 3(2), 
12-24. 

Nicholas, D., Huntington, P., Jamali, H. R., Rowlands, I., & Fieldhouse, M. (2009). Student 
digital information-seeking behaviour in context. Journal of Documentation, 65(1), 106-132. 

Odell, P. M., Korgen, K. O., Schumacher, P., & Delucchi, M. (2000). Internet use among female 
and male college students. CyberPsychology & Behavior, 3(5), 855-862. 

Puustinen, M., Volckaert-Legrier, O., Coquin, D., & Bernicot, J. (2009). An analysis of students’ 
spontaneous computer-mediated help seeking: A step toward the design of ecologically valid 
supporting tools. Computers & Education, 53(4), 1040-1047. 

Rosa, M., & Lerman, S. (2011). Researching online mathematics education: Opening a space for 
virtual learner identities. Educational Studies in Mathematics, 78(1), 69-90. 

Rowley, J., & Urquhart, C. (2007). Understanding student information behavior in relation to 
electronic information services: Lessons from longitudinal monitoring and evaluation, Part 1. 
Journal of the Association for Information Science and Technology, 58(8), 1162-1174. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 889



Selwyn, N. (2008). An investigation of differences in undergraduates' academic use of the 
internet. Active Learning in Higher Education, 9(1), 11-22. 

Selwyn, N., & Gorard, S. (2016). Students' use of Wikipedia as an academic resource—Patterns 
of use and perceptions of usefulness. The Internet and Higher Education, 28, 28-34. 

Sin, S. C. J., & Kim, K. S. (2013). International students' everyday life information seeking: The 
informational value of social networking sites. Library & Information Science 
Research, 35(2), 107-116. 

Stein, M. K., Kaufman, J. H., Sherman, M., & Hillen, A. F. (2011). Algebra: A challenge at the 
crossroads of policy and practice. Review of Educational Research, 81(4), 453-492. 

Stone, C. (1998). Leveling the playing field: An urban school system examines equity in access 
to mathematics curriculum. The Urban Review, 30(4), 295-307. 

Timmerman, M. (2004). Using the Internet: Are prospective elementary teachers prepared to 
teach with technology?. Teaching Children Mathematics, 10(8), 410-416. 

Torres, V., Reiser, A., LePeau, L., Davis, L., & Ruder, J. (2006). A model of first-generation 
Latino/a college students' approach to seeking academic information. NACADA 
Journal, 26(2), 65-70. 

Urquhart, C., & Rowley, J. (2007). Understanding student information behavior in relation to 
electronic information services: Lessons from longitudinal monitoring and evaluation, Part 2. 
Journal of the Association for Information Science and Technology, 58(8), 1188-1197. 

van de Sande, C. (2011). A description and characterization of student activity in an open, 
online, mathematics help forum. Educational Studies in Mathematics, 77(1), 53-78. 

 

22nd Annual Conference on Research in Undergraduate Mathematics Education 890



 

Bringing Social Justice Topics to Differential Equations: Climate Change, Identity, and Power 
 

Nicholas Fortune 
Western Kentucky University 

Justin Dunmyre 
Frostburg State University 

Chris Rasmussen 
San Diego State University 

 
Tiana Bogart 

Frostburg State University 

 
Karen Keene 

North Carolina State University 

Recently, Adiredja and Andrews-Larson (2017) challenged the field to consider and recognize 
the political and contextual nature of teaching and learning postsecondary mathematics 
education including its power dynamics and social discourses. In this preliminary report, we 
discuss the early stages of a classroom teaching experiment to bridge research and practice by 
bringing social justice topics into a differential equations course. Our iterative research process 
consists of using theory that informs our instructional design and theory that informs our 
classroom analysis. Here we discuss preliminary results from the classroom analysis through 
Gutiérrez’s (2009, 2013) four dimensions of equity. Preliminary results show that identity and 
power emerge from student portfolios after engaging in a climate change problem but more work 
is necessary in our instructional design to draw out those dimensions more explicitly. 

Keywords: Differential Equations, Social Justice, Equity, Teaching Experiment 

Issues of equity have come to the forefront in postsecondary mathematics education. 
Recently, scholars have argued that a sociopolitical perspective shift is necessary for the 
advancement of critical postsecondary mathematics education research (Adiredja & Andrews-
Larson, 2017). Adiredja and Andrews-Larson (2017) challenge the field to consider and 
recognize the political and contextual nature of teaching and learning postsecondary mathematics 
education including its power dynamics and social discourses. Further, issues of identity and 
power are of critical importance in today’s climate and must be considered at every level of our 
research (Gutiérrez, 2013). One avenue to include such topics in postsecondary mathematics 
education is to bring in relevant discussions through the mathematical content itself.  

In this preliminary report, we discuss how undergraduate mathematics students in inquiry 
oriented differential equations (IODE) courses confronted the social justice and environmental 
topic of climate change. The ultimate goal of this work is weave research and practice through 
conducting a teaching experiment (Cobb, 2000; Confrey & Lachance, 2000). Namely, we aim to 
conduct an iterative research process by using a Realistic Mathematics Education (RME) theory 
that informs our instructional design and an equity theory that informs our classroom analysis (in 
this case, the dominant and critical dimensions of equity (Gutiérrez, 2009, 2013)). In this report, 
we discuss only the preliminary analysis of the first iteration of our classroom analysis through 
Gutiérrez’s (2009) lens of the critical dimensions of equity (i.e., identity and power) as a means 
to inform future instructional designs. We aim to answer the research question: How are 
students’ identities and conceptions of power shaped and/or influenced by engaging with a 
differential equations task on climate change? 

Literature Review  
Here, we first briefly discuss the framing of equity and how it aligns with the framing of this 

study. We then discuss literature related to climate science to root our students’ mathematics 
exploration in current climate science research findings. 
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Framing Equity 
Gutiérrez (2009) argues that equity must be framed from four dimensions: access, 

achievement, identity, and power. Access considers the resources that students have available to 
them (e.g., technology, curriculum, teachers), but often does not consider that simply giving 
access to a resource at a time point in a student’s education does not account for the fact that this 
resource may never have been available to them in the past (Gutiérrez, 2009). Achievement 
refers to various student outcomes measured in many, inconsistent, ways. Oftentimes, 
achievement is tied to the idea of closing the achievement gap (Gutiérrez, 2008). However, 
Gutiérrez (2009) argues that moving from access to achievement is important considering the 
various levels of access of students. These two dimensions are the dominant dimensions of 
equity, that is, they prepare “students to participate economically in society and privileg[e] a 
status quo” (Gutiérrez, 2009, p. 6). Here, access is a precursor to achievement and moving from 
access to achievement measures “how well students can play the game called mathematics” 
(Gutiérrez, 2009, p. 6). 

Identity refers to focusing on students’ pasts including how they have been racialized, 
gendered, and/or classed. “The goal is not to replace traditional mathematics with a pre-defined 
‘culturally relevant mathematics’ in an essentialistic way, but rather to strike a balance between 
opportunities to reflect on oneself and others as part of the mathematics learning experience” 
(Gutiérrez, 2009, p. 5). Lastly, power considers social transformations such as who has the voice 
in the classroom or if students have opportunity to use mathematics to critique society 
(Gutiérrez, 2009). These two dimensions are the critical dimensions, where identity can be seen 
as a precursor to power, “ensur[ing] that students’ frames of reference and resources are 
acknowledged in ways that help build critical citizens so that they may change the game” 
(Gutiérrez, 2009, p. 6). 

In this preliminary report we focus on how differential equations students may ‘change the 
game’ (i.e., student identity and power systems) in reference to studying climate change and its 
impact on the world and society. 

Climate Change Background 
In studying climate, scientists are often concerned about positive feedback loops: two or 

more processes that magnify each other, creating a system of amplification that leads to an 
enhanced cycle (Kellogg & Schneider, 1974). One example is the interaction of water vapor with 
global temperature. As the global temperature increases, the capacity of the atmosphere to 
contain evaporated water vapor also increases. Continued relative humidity levels would result in 
an increased amount of water vapor in the atmosphere. Water vapor is a greenhouse gas. Thus, if 
a climate system has more water vapor in the atmosphere, the global temperature will elevate due 
to the increased insulation of the atmosphere. These positive feedback loops will eventually 
equilibrate at a higher temperature. In a high emission scenario, scientists predict that a global 
increase in average temperature would be enough to kick off a system of positive feedback loops 
that would equilibrate, by the end of the 21st century, relative to 1986-2005, to a temperature 
between 2.6 and 4.8 degrees Celsius higher (Intergovernmental Panel on Climate Change 
[IPCC], 2014). The result of this increase would be enough to melt ice caps, completely shift 
ecological systems, and contribute to species extinction due to significant changes in 
temperature, precipitation, and ocean acidification (IPCC, 2014). It may even redistribute the 
areas of the world that can support human life, making previously uninhabitable places like the 
northern reaches of Siberia and Canada habitable (though they may not support agriculture), and 
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previously habitable places, like coastal zones (McGranahan, Balk, & Anderson, 2007) and 
southwest Asia (Pal & Eltahir, 2016), uninhabitable. 

Climate Change Problem 
This environmental phenomenon can be studied in a first course in differential equations 

using bifurcation diagrams. A bifurcation diagram is a plot of equilibrium solutions as a function 
of a parameter in a differential equation. The climate change problem has important 
mathematical concepts, namely bifurcation analysis (i.e., the effect of varying a parameter in a 
differential equation) and practical implications related to understanding societies’ and 
governments’ impact on the climate. Specifically, this problem highlights how it may be the case 
that damage done to the environment by a small change cannot be reversed merely by undoing 
that small change. Instead, reversing the damage may require dramatic changes in policy. The 
problem sequence is as follows: 

 
• A group of scientists came up with the following model for this global climate 

system: !"!# =
1
10
(& − 20)(22− &)(& − 26) − ), where C is the temperature, in 

Celsius, and k is a parameter that represents governmental regulation of greenhouse 
gas emissions. Assume the baseline regulation corresponds to k=0, increasing 
regulation corresponds to increasing k, and the current equatorial temperature is 
around 20 degrees. To what equatorial temperature will the global climate 
equilibrate? 

• Sketch a bifurcation diagram and use it to describe what happens to the global 
temperature for various values of k. 

• Suppose at the start of a new governmental administration, the temperature at the 
equator is about 20 degrees Celsius, and k=0. Based on the model and other economic 
concerns, a government decides to deregulate emissions so that k=-0.5. Later, the 
Smokestack Association successfully lobbied for a 5% change, resulting in k=-0.525. 
Subsequently, a new administration undid that change, reverting to k=-0.5, and 
eventually back to k=0. What is the equilibrium temperature at the equator after all of 
these changes? 

• Use your bifurcation diagram to propose a plan that will return the temperature at the 
equator to 20 degrees Celsius. 

Methods 
The climate change problem is part of a full course on differential equations taught from an 

inquiry-oriented perspective. By inquiry-oriented we mean mathematics learning and instruction 
such that students are actively inquiring into the mathematics, while teachers, importantly, are 
inquiring into student thinking and are interested in using it to advance their mathematical 
agenda (Rasmussen & Kwon, 2007, Rasmussen, Marrongelle, Kwon, & Hodge, 2017). An 
inquiry oriented differential equations (IODE) course is problem focused, with problems being 
experientially real, meaning students can utilize their existing ways of reasoning and experiences 
to make progress (Gravemeijer & Doorman, 1999), and class time is devoted to a split of small 
group work and whole class discussion. Whole class discussion is facilitated by the instructor 
who focuses on generating student ways of reasoning, building on student contributions, 
developing a shared understanding, and connecting to standard mathematical language and 
notation (Kuster, Johnson, Andrews-Larson, & Keene, 2017). 

22nd Annual Conference on Research in Undergraduate Mathematics Education 893



 

Data for the first iteration of this classroom teaching experiment comes from student work 
submitted as part of an end of the semester portfolio. The portfolio consisted of the complete 
responses to three problems from the course (with the climate change being one of them) and a 
rationale statement that explains the personal significance of their work on that problem. Future 
iterations of this cycle will videotape students engaging in the tasks for a deeper look at in-the-
moment discussions of identity and power, and discussions of how the bifurcation diagram can 
functions in the RME inspired instructional sequence. 

We collected data from one IODE class resulting in 12 portfolios. These data were 
deidentified during analysis. Consequently, while we acknowledge the importance of reporting 
on student demographics in equity research (Adiredja & Andrews-Larson, 2017), we cannot do 
that in this first preliminary iteration. Future iterations of this classroom teaching experiment that 
collect video will be able to report on student demographics. The student works were coded 
using a constant comparative method (Strauss & Corbin, 1998) with particular attention given to 
how students discussed the critical dimensions of equity (identity and power). We acknowledge 
the dominant dimensions is also of importance but in this preliminary work we are not focusing 
on access nor achievement. 

Preliminary Results 
Recall our research question is: How are students’ identities and conceptions of power 

shaped and/or influenced by engaging with a differential equations task on climate change? This 
analysis is important in the iterative process of a teaching experiment as our prompting and 
facilitating of this task in future iterations will be shaped by the results here tacitly tied to the 
critical dimensions of equity. As stated, future iterations will also consider students’ mathematics 
engagement from an RME perspective. Overall, students gave a general thesis that this problem 
was important for them to work on because it showed them “mathematics in the real world.” 
These responses were not as deep as we would have liked to see, as educators. However, there 
were several instances of identity and power that emerged from students’ portfolios. 

Identity. Our climate change problem did not seek to draw out students’ pasts directly. 
Rather, through engagement with the task students sometimes positioned themselves and their 
identities within the context and spontaneously referenced such issues in their rationale 
statements. Two tentative themes emerged from the analysis of rationale statements: 
empowerment and future teaching practices. For example, one particular student discussed the 
pride they felt while engaging with this problem. In particular, they discuss how they knew they 
were truly learning: 

 
…it was the first problem that I completely understood the topic the entire way through. 
Even though that idea seems basic for people in an upper division class, for myself this 
was a very prideful moment. It made me realize that these difficult topics aren’t as 
daunting as they seem. Since the first day it was introduced to our class, my table seemed 
to click with what the question was asking. … Then I felt as if my brain went onto 
autopilot, it was exhilarating. The concept of each question became clear and I 
understood the path to finding each upcoming answer. It was the first time that I knew I 
was learning, with my group able to bounce ideas off each other as if we were 
discovering bifurcation for the first time, there was no stopping our progress. … The 
most rewarding part, was that I knew my mathematical ability was growing, and all this 
led to me getting my highest grade on an exam in my entire college career of a 99%. … It 
[the climate change problem] ignited my curiosity for mathematics. 
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Some of the students in these courses were pre-service teachers. As an example of the second 
theme, one student highlighted how this problem probed them to consider their identity as a 
future teacher. 

 
To me, as a future teacher it is a great reminder of how if you can make the material 
relevant and slightly more interesting to the student it can make a big difference on how 
well the student understands the material. … What this problem taught me is that 
working with problems in a context that the student is interested in is very beneficial to 
allow the student to truly own and understand that material in their own way. 
 
This preliminary analysis highlights how this context holds promise for situated students 

within the context of the mathematics they are studying. However, if we are to gain deeper 
insights our future iterations must more directly inquire into students’ pasts and identities. 

Power. In our analysis we found two ways in which power was discussed. First, it was 
discussed in the context of the mathematics (i.e., who has the power to do something about 
climate change). Second, it was discussed in the context of who has the power in the class. While 
different in their scope, both are important aspects of power.  

For example, one student said “I remember there was a time in Mexico City where people 
could not go outside because there was a lot of pollution in the air. The city got so polluted that 
the government placed oxygen tanks on the streets.” Here this student showcases that the power 
in this context lies with government. Another student said, “this is because after deregulation, 
you get stuck at the repeller [unstable equilibrium point].” Similarly, this student shows that the 
power to do something about climate change is tied to regulation/deregulation. Of course, this is 
tied to the problem we constructed, but it is important to reiterate that this problem is rooted in 
current climate change science research. 

Lastly, many students discussed how it was important for them to talk to their peers about 
this problem. In particular, one student said “for all of us, it took listening to other students’ ideas 
to really understand what was happening.” This power is related to the structure of an IODE 
class (i.e., focused on group work). While we are not explicitly analyzing the instruction here we 
believe this to be a critical aspect of power (i.e., whose voice is being heard in the classroom 
(Gutiérrez, 2009)). 

Questions for Audience 
We conclude with three questions for the RUME community: 
1) How can we better analyze the four dimensions of equity? In that same vein, is that lens 

appropriate here? 
2) How might we leverage the existing heuristics of the instructional design theory of Realistic 

Mathematics Education (guided reinvention, emergent models, and didactical 
phenomenology) to disrupt current teaching and learning practices? 

3) What other social justice contexts lend themselves to modeling with differential equations?  
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Mathematics Graduate Teaching Assistants’ Development as Teachers: Complexity Science as a 
Lens for Identifying Change 
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Mathematics Graduate Teaching Assistants (MGTAs) are both current and future teachers of 
college mathematics, but there is limited research investigating their growth as teachers. To 
create better professional development for training MGTAs, we first need to understand how 
they learn to teach. This study aims to identify why MGTAs change their teaching practices and 
what factors influence their development as teachers. Survey, group interview, and individual 
interview data from seven MGTAs at a doctoral-granting university were analyzed deductively 
using complexity science as a framework. 
 
Keywords: Graduate Teaching Assistants, Professional Development, Teaching Practices 
 

Background 
 Improving instruction in undergraduate mathematics courses has been a rising priority for 
mathematics education researchers and professional mathematics organizations. Research 
repeatedly shows that lecture-based teaching contributes to students leaving STEM fields 
(PCAST, 2012; Saxe & Braddy, 2015; Seymour & Hewitt, 1997), while active learning is linked 
to improved student performance (Freeman et al., 2014). In an effort to increase retention in 
STEM and better support student learning, college mathematics teachers are being urged by the 
mathematics community to incorporate active learning into their instruction. As a notable 
example, the Conference Board of the Mathematical Sciences released a statement in 2016 
advising the adoption of active learning practices:   

We call on institutions of higher education, mathematics departments and the 
mathematics faculty, public policy-makers, and funding agencies to invest time and 
resources to ensure that effective active learning is incorporated into post-secondary 
mathematics classrooms. (p. 1) 

 In an effort to support this change in instruction, mathematics educators and education 
researchers have looked to Mathematics Graduate Teaching Assistants (MGTAs). MGTAs are 
both current and future teachers of mathematics. During their time as graduate students, MGTAs 
have a significant role in the teaching and learning of mathematics for undergraduate students 
through their work as instructors, discussion and laboratory leaders, tutors, and graders (Belnap 
& Allred, 2009; DeFranco & McGivney-Burelle, 2001; Ellis, 2014). After completing their 
graduate programs, MGTAs continue to impact undergraduate learners: in 2016, over 60 percent 
of new Mathematics PhDs hires were employed in academic positions (Golbeck, Barr, & Rose, 
2016). Thus, MGTAs development as teachers impacts how mathematics is and will be taught. 
 Most graduate programs in mathematics offer some form of professional development for 
MGTAs (Deshler, Hauk, & Speer, 2015; Speer, Murphy, & Gutmann, 2009). There is wide 
variation in the duration and setting of these programs (Belnap & Allred, 2009), and most take 
place exclusively during a student’s first year as a MGTA (Deshler et al., 2015). To develop and 
assess teaching training for MGTAs, mathematics education researchers have drawn from the 
literature base in K-12 professional development. Although researchers have been able to 
document a change in beliefs about teaching and learning from participating in professional 
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development, this alone has not been sufficient for a change in MGTAs’ instruction (Belnap, 
2005; Defranco & McGivney-Burelle, 2001; Speer, 2001). 
 Previous studies have identified multiple factors influencing MGTAs’ decisions about 
teaching, including previous classroom experiences as a student (Deshler et al., 2015), perception 
of faculty attitudes about teaching (Harris, Froman, & Surles, 2009), social context of the 
department (DeFranco & McGivney-Burrelle, 2001), and types of teaching required (Beisiegel & 
Simmt, 2012). However, it is still unclear how to impart lasting changes in MGTAs teaching 
practices, and there is currently no consensus in the research community for how MGTAs learn 
to teach. In particular, a recent literature review revealed that MGTAs’ “growth as teachers is a 
largely unexamined practice” (Miller et al., 2018, p. 2). That is, there is little research attending 
to MGTAs development of teaching practices over time (Beisiegel, 2017; Miller et al., 2018). If 
we want to provide professional development that has a lasting impact on MGTAs’ teaching, we 
first need to understand why MGTAs teach the way they do. Thus, this study is guided by the 
following research questions: 

1. What do MGTAs cite as reasons for changing their teaching practices? 
2. What factors influence MGTAs development as teachers? 

For the purposes of this research, teaching practice refers to the definition explicated by Speer, 
Smith, and Horvath (2010). That is, teaching practices are the “instructional judgments, 
decisions, and actions employed by instructors inside and outside the classroom” (Miller et al., 
2018, p. 3). 
 

Theoretical Framework 
 Complexity science has been used in previous studies of teacher learning when considering 
both mathematics classrooms and professional development for mathematics teachers.  
For example, Davis and Simmt (2003) conducted a teaching experiment in a seventh-grade 
classroom, viewing the class as a complex system in an attempt to foster a mathematics learning 
community. The authors later used complexity science as a lens for investigating the 
mathematical knowledge for teaching (MKT) of a group of K-12 teachers attending monthly 
professional development sessions (Davis & Simmt, 2006). Both studies viewed a group of 
learners as a complex system.  
 Similarly, MGTAs can be viewed as a complex system. A complex system is both self-
organizing and adaptive. Self-organizing means that the group establishes norms and 
expectations without a specific plan or single leader. Adaptive indicates that the group is not rigid 
and can change over time (Davis & Sumara, 2001). To put these characteristics in context, 
consider the structure of a MGTA’s work as a teacher and graduate student. MGTAs are situated 
within an academic department, which is also part of the larger university. Each MGTA likely 
has multiple supervisors, such as a research advisor and the department chair, and they may also 
look to a graduate coordinator or a teaching committee advisor as a point of authority. Without a 
central leader or specific instructions about how to be a teacher, MGTAs self-organize and 
develop an understanding of “how things are done around here.” Also, as MGTAs continue their 
graduate programs, they learn and thus adapt. 
 Complexity science places a focus on “collective learners rather than collections of learners” 
(Davis & Simmt, 2006, p. 309). In the context of MGTAs, this notion implies that a MGTA’s 
teaching development influences, and is influenced by, the growth of their MGTA peers. 
Previous research indicates that a change in beliefs is not sufficient for an individual MGTA to 
change their teaching practices. A complexity science lens views MGTAs as a group rather than 
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as individuals and thus offers a means of considering what they need as a collective in order to 
grow as teachers. 
 The complexity science framework presented by Davis and Simmt (2003, 2006) includes five 
necessary but not sufficient conditions for a complex system to learn: a balance of internal 
diversity and internal redundancy of beliefs, attitudes, and understandings; decentralized control 
where authority is distributed among members; enabling constraints that provide guidelines for 
behavior but space for exploration and experimentation; and opportunities for neighbor 
interactions where beliefs, attitudes, and understandings can be shared between members.  
 

Methodology  
 The Mathematics Graduate Teaching Assistants (MGTAs) at a large doctoral-granting 
university in the United States were recruited to participate in a year-long study. Seven of the 
MGTAs contacted agreed to participate in the study. The participants’ ages range from 22 to 36, 
while five of the participants are first-year graduate students and two are sixth-year students. One 
first-year student identifies as female, while the other participants identify as male. The MGTAs 
have varying trajectories that brought them to graduate school: some participants started the 
program immediately after completing their undergraduate degrees, while the others taught high 
school, worked outside of academia, or completed masters degrees before attending graduate 
school. One participant is an international student, while the others are domestic.  
 At this university, MGTAs typically serve as the instructor of record. Most classes have 25-
35 students, and later-year MGTAs are frequently assigned to teach upper-division courses. 
Occasionally, a MGTA is assigned a grading position for a graduate course or serves as a 
teaching assistant for a lecture section of business mathematics. All first-year graduate students 
are assigned to teach a pre-calculus course during their first term of teaching. During this first 
10-week quarter, the MGTAs also attend a weekly teaching seminar. There are limited 
opportunities for formal discussions of teaching outside of this first-year, first-term seminar. 
 The data collected for each participant include an entrance survey, three focus group 
interviews, and two individual interviews. The survey and interview instruments were designed 
with the intention of capturing the participants’ experiences as teachers and learners of 
mathematics, with an emphasis on how their teaching changes over time. Although the data 
presented here is from one academic year, the study will repeat at the same university for a 
second year after another round of recruitment. 
 Analysis of the surveys and interview transcripts uses a thematic analysis approach (Braun & 
Clarke, 2006). In the initial stages of analysis, complexity science is being used as a deductive 
tool for identifying particular themes, namely the five necessary conditions for a complex 
system. Later analysis will shift to a less-structured, inductive coding approach to capture 
MGTAs’ growth as teachers more broadly. At this stage of the study, preliminary analyses have 
been conducted to begin exploring how the complexity science framework captures changes in 
MGTAs’ teaching practices.  
 

Preliminary Results  
 Talking to other graduate students, a neighbor interaction, is frequently cited by MGTAs as a 
resource for making decisions about their teaching practices and for finding support. For 
example, MGTAs will look to their peers for support in designing assessments for their students: 
“When we’re doing things like writing tests or whatever, I’ll just go up to other people and say, 
‘Hey, can you look at this test and make sure it seems reasonable?’ And, you know, I’ll do the 
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same for them and that way I get ideas about what other people are doing and I get other 
people’s ideas on what I’m doing.” Internal redundancy helps this MGTA find reassurance that 
they are creating a reasonable assessment, while internal diversity allows them to share ideas 
with their peers.  
 Additionally, MGTAs talk about teaching as a way to find guidance and support for their 
teaching choices. In the words of one first-year MGTA, “I was lucky enough to have three 
officemates, all who have been here at least two years, and so they have experience teaching 
numerous classes. Anytime something comes up I don’t know about, they’re just like, do this, do 
that, and oh I had that happen, don’t worry, it’ll happen again, it’ll be okay.” A sixth-year 
MGTA describes a similar experience: “I do spend a lot of time talking to other graduate 
students about their teaching experiences. I think that definitely it helps to make sure you’re on 
the same page as your peers.” In both of these examples, finding internal redundancy among 
others helps MGTAs to feel more confident in their teaching. 
 In another case, a MGTA explains the benefits of hearing differing ideas and how it helps 
inform their decisions about how they want to teach: 

Just like, hearing other people’s perspectives on things and how they deal with certain 
situations. I mean, sometimes it’s positive things, like, “Oh, that’s great. I should be 
doing more of that.” And also sometimes, even though you might not say it to their face, 
it’s kind of like, “Eh, I don’t know. I don’t know about that.” I think the more you can 
hear and see, the more you can kind of decide for yourself what you think is right and 
what you think is wrong. And so that has been really good for my development. 

This MGTA is relying on both neighbor interactions and the presence of internal diversity to 
hear multiple perspectives and then make their own judgment. Both when the MGTA is skeptical 
about someone’s decision and when they would like to adopt a particular teaching practice, it is 
the diversity of the ideas from the MGTAs own that make the interaction impactful. 
 However, not all MGTAs are having conversations about teaching that they feel are 
productive or helpful to their growth. As one MGTA describes in a Fall term group interview, 
“It’d be nice if we had more venues for productive discussion about teaching. Cause right now, 
at least for me, it’s mostly sort of Band-Aid kinds of things.” They reiterate this again the 
following term, stating, “Most of the shop talk is just kvetching about students, which is cathartic 
but not useful.” Here, examining these neighbor interactions illustrates that not all talking about 
teaching is impactful for MGTAs teaching practices. It seems that having internal redundancy in 
a conversation may make it seem more cathartic than useful. Instead, MGTAs perceive 
conversations that rely on internal diversity as more productive for their teaching development.  
 In an individual interview at the end of the year, a first-year MGTA recalls that they had 
shown up late to one of their graduate courses because they were finishing lecture notes for later 
that day. The instructor of the course approached them after class and said that while preparing 
for teaching is important, it was disruptive to come in late. From this, the MGTA felt conflicted 
about how they were expected to balance their coursework and their teaching duties:  

I have studies, but I also have 30 people who I am responsible for. And you can’t have a 
class of 30 students absolutely learning nothing. What are our priorities here? Am I 
lecturer, or am I not? I don’t understand. If it is a second priority, then tell me that up 
front, “Hey, if your studies are lacking, then procrastinate on your lecturing.” Oh, okay. I 
will do that, if that is from the top the message. But if we are going to get contradictory 
messages, I’m going to do what I feel is right. If I’m told you need to study and you need 
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to be good at lecture, then I’m going to do what I feel is right. And my obligation to those 
30 students takes priority. 

In this case, the MGTA was not experiencing enabling constraints. The MGTA believed they 
were doing something wrong by prioritizing preparing for lecture, and they felt restricted in how 
they should spend their time. However, the MGTA also did not know where to find guidance 
about how to balance their studies and their teaching, and so this constraint was not enabling to 
them. It also seems that the decentralized control of the system was too present; the MGTA was 
looking for a message “from the top” to provide directions about how they should manage their 
time and thus felt the absence of a central leader and explicit instructions. 
 The sixth-year MGTAs both discuss the amount of freedom they were given when teaching 
their own classes. As one MGTA explains, “After the first year, like starting the second year, I 
thought it was almost comical how little direct oversight there is of us. I was just like, I can’t 
believe they give me this much trust to do this. I feel like I’m just let free.” The sixth-year 
MGTAs appreciate the space to make their own decisions about teaching, but they also 
acknowledge that more involvement would have been valuable for their development: “It’s nice 
that they’re kind of hands off. You have some room to kind of explore and have some academic 
freedom to figure out how you want to do things. But I wouldn’t have minded a little more 
check-in over the years.” Having freedom in their teaching is enabling for the MGTAs because it 
offers them space to try different teaching methods and gives them, as one MGTA puts it, “free 
rein to fail.” However, it does not serve as any type of constraint, thus leaving the MGTAs 
wanting more feedback. For example, a MGTA describes their concern that the lack of direction 
is negatively impacting the quality of teaching in the department: 

I’ve been observed once. More than once every six years would be nice. I don’t mind that 
they’re not observing me, because of course I care and am trying to do a good job. But if 
I didn’t, and wasn’t, there’d still be no oversight. And so I don’t know. It seems a little 
irresponsible. It’s not hurting me, but I think it’s hurting some graduate students. 

The MGTA has identified that having their teaching observed would be a helpful enabling 
constraint for them, and they also believe that it would be beneficial for other MGTAs.  
 

Discussion 
 The five necessary conditions of the complexity science framework were helpful in 
identifying some areas where MGTAs are missing support for their teaching. Additionally, 
complexity science highlights how MGTAs are influenced by their peers and the context of the 
department they work in. However, it seems that there are some factors for change that were 
observed in the data but are not captured by the framework, such as MGTAs changing how they 
structure class time based on observations of their class while teaching. This prompts the 
following questions for discussion: 

1. Can the complexity science framework describe changes a MGTA makes to their 
teaching that are influenced by the individual rather than the collective?  

2. How might the results of this study be effective for informing professional development 
for MGTAs? Are the results applicable in other departments’ contexts? 

3. What types of professional development are fitting for supporting each of the necessary 
conditions?  
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This study describes a service learning-based mathematics course for non-math majors at a 
private liberal arts university in the Midwest. Thirty-six undergraduate students participated in 
the course and developed lesson plans from the content taught in class. Students then taught the 
lessons to third graders at a local public elementary school. Undergraduates wrote self- 
reflections that were collected after the service and analyzed. Data reveal students felt an 
increase in value and more confident learning mathematical concepts because of its real-world 
application in the community. We conclude that including a service learning component in 
teaching mathematics is valuable. Service learning can help students understand mathematics 
beyond numbers and equations and see its importance in societal reform. 

Keywords: non-math majors, service learning, mathematical anxiety, communication  

Today many undergraduate students experience math anxiety. Math anxiety is defined as a 
“feeling of tension and anxiety that interferes with the manipulation of numbers and the solving 
of mathematical problems in ordinary life and academic situations” (Hopko et al., 2003, p. 648). 
Math anxiety is cyclic in nature. More anxious students display a strong tendency to avoid 
learning mathematics, which results in students being mathematically unprepared, which in turn 
increases their math anxiety (Nagy et al., 2010). This often leads to failure of passing the 
graduation requirements for a four-year bachelor’s degree (Bound, Lovenheim, & Turner, 2010) 
as well as avoiding STEM fields and careers. Various studies (Maas & Schloeglmann, 2009; 
Philipp, 2007) suggest there is connection between students’ attitudes and their beliefs in their 
capability to learn. Attitudes are mental concepts representing favorable or unfavorable feelings, 
and beliefs are perceived information about an object (Koballa, 1998). Students with favorable 
feelings and beliefs about a subject are more likely to act in favor of it and in turn will see more 
value in learning it. On the contrary, students with high math anxiety develop negative attitudes 
toward mathematics and hence are less likely to engage in mathematical learning. This problem 
has encouraged educators to consider ways to help undergraduates in mathematics courses better 
learn, especially those students who experience math anxiety such as non-mathematics majors. 

Educators can use service learning as a tool in mathematics courses to lessen math anxiety 
and to demonstrate that mathematics is useful and applicable in students’ daily lives. Studies 
(Soria & Thomas-Card, 2014; Soria, Nobbe, & Fink, 2013) suggest service learning 
opportunities positively affect students’ self-confidence and sense of community responsibility. 
Schulteis (2013) discusses a service learning project for a non-major mathematics course at 
Concordia University and suggests service learning can be an “excellent way to enhance the 
extent of student learning” and help students develop “greater mastery of classroom material and 
an increase in civic values and skills” (p. 582). Here, we describe a study of a service learning- 
based mathematics course for non-math majors at a small, private liberal arts university in the 
Midwest. The approach to service learning discussed in this study is novel because 
undergraduate students directly applied the mathematical concepts learned in class to teaching 
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the concepts to elementary children. We also discuss the effect of service learning on 
undergraduate students’ views of mathematics in particular and education in general. 

Theoretical Framework 
Our study’s approach to service learning was grounded in a feminist community engagement 

framework (Iverson & James, 2014; Novek, 1999). This framework embraces consciousness 
raising, connectedness, and empathy by centering opportunities for dialogue and reciprocal 
collaboration (Rojas, 2014). In this study, undergraduate students communicated and 
collaborated with one another and the instructor to develop effective lesson plans; they then 
reciprocated their knowledge-making by teaching it to elementary school students. Ultimately, 
our study practiced “emancipatory feminist teaching” (Novek, 1999), which allowed students to 
practice concepts they learned in math class while “working cooperatively for the greater good” 
(pp. 230-231), in this case, by raising mathematical literacy in the elementary school students 
through service learning and community engagement.  

Methodology 
This study was conducted in a mathematics course at a small, private liberal arts university in 

the Midwest. This course is for non-math majors and counts toward undergraduate students’ 
general education graduation requirement. This course was offered during a short-term semester 
for one month, Monday through Friday for 3.5 hours each day. Thirty-six undergraduate students 
were enrolled in the course and participated in the study. Students used the course textbook, 
Heart of Mathematics by Burger & Starbird (2012), and were provided with supplementary 
activities. Additionally, the course had a service learning component that counted as 10 percent 
of the final course grade. Three service learning activities were conducted at a local public 
elementary school. Undergraduate students were divided into 18 groups, with 12 groups of 
teachers and six groups of observers for each of the activities. This allowed each student two 
teachings and one observation opportunity. The course instructor helped undergraduate students 
develop lesson plans based on hands-on activities about topics taught in class, including laws of 
reflection, fractals, and symmetry and quilting. Students used class time to prepare and practice 
the lesson plans before going to the elementary school. Class time also was used to visit the 
elementary school and teach the lesson plans to about 50 third graders. Undergraduate students 
spent one hour with the elementary students teaching them the lesson plans while observers gave 
feedback after the lesson. Based on feedback, subsequent lessons were adjusted accordingly. 

After each visit to the elementary school, undergraduate students were asked to write a self-
evaluation and self-reflection. These were adapted from the Campus Compact’s “The What? So 
What?? Now What??? Reflection Model” (A guide to reflection, n.d.). The WHAT component 
describes the event, i.e., teaching lesson plans to elementary students. The SO WHAT 
component examines the significance of the event in terms of classroom concepts as well as 
personal experiences. The NOW WHAT component reflects on future actions that relate to the 
“big picture” of using mathematics in the “real world.”  

Data Analysis 
We conducted data analysis from a qualitative, mixed methods approach. Drawing from 

Creswell’s (2007) description of qualitative research methods, we articulate our analysis as a 
combination of grounded theory and narrative approaches. Analyzing data from a grounded 
theory approach allowed researchers to code the undergraduate students’ self-evaluations and 
self-reflections according to emerging “major categories of information” (Creswell, 2007, p. 64). 
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Then, analyzing data from a narrative approach allowed researchers to use the emerging major 
categories to “re-story” the undergraduate students’ service learning experiences. This “re- 
storying” organized the emerging categories from the self-evaluations and self-reflections into a 
general framework (Creswell, 2007, p. 56) that provides overarching insights about the role of 
service learning in mathematics education and in reducing mathematical anxiety.  

Researchers read each self-evaluation and self-reflection, paying particular attention to the 
language undergraduate students used to express the SO WHAT and NOW WHAT of their 
service learning experiences (the WHAT descriptions were similar, as to be expected). 
Researchers used open coding to document initial findings (codes), which are listed 
alphabetically (left to right) in Figure 1.  

 
Figure 1. Initial open codes. Researchers identified 30 codes from the data collected. 

Next, researchers examined the initial codes and grouped them together under four emerging 
categories, which are listed alphabetically (top to bottom and left to right) in Table 1. 
 

Table 1. Emerging categories. Researchers identified four categories emerging from the 30 initial codes analyzed. 

Emerging  
Categories 

 Codes supporting categories 
 

 

Community  
engagement 

civic duty, collaboration, communication, community, connection, diversity, 
education, embrace challenges, enjoy, impact, interaction, passion, power, 
privilege, problem solving, responsibility, role models, service, tool, 
understanding  

Facing 
adversity 

attitude, communication, confidence, difference, education, embrace 
challenges, flexibility, growth, logic, patience, problem solving, 
understanding  

Looking 
forward 

attitude, confidence, diversity, education, enjoy, excited, future, growth, 
impact, passion, patience, privilege, responsibility, role models, service  

Relationship  
building 

civic duty, collaboration, communication, community, connection, embrace 
challenges, enjoy, flexibility, future, impact, interaction, passion, power, 
problem solving, role models, understanding  
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Researchers then narrowed and focused these categories into three themes. These themes 
described the data at the latent level, or the “underlying the phenomenon” being analyzed 
(Boyatizis, 1998, p. vii), which for our study were students’ reactions to learning mathematics 
through service learning. Because of their service learning opportunities, undergraduate students 
[1] viewed education a more joyful, purposeful and less anxious experience; [2] became more 
self-aware about the role of mathematics in the world; and [3] became aware of community ties 
and responsibilities to community. Below, we provide representative student comments that 
support each theme. 

[1] viewed education a more joyful, purposeful and less anxious experience  

●  [I enjoyed] “working with others to teach them something rather than doing something 
for others.”  
●  [I witnessed] “unexpected moments of joy that this interaction brought to both the 
students in our class and the young 3rd grader students.”  
●  “What’s the point of learning anything if we don’t share that knowledge with anyone 
else? Knowledge should be a conversation, and that’s something you can clearly see 
when you are working with the kids and they understand it.”  

[2] became more self-aware about the role of mathematics in the world  

●  “[I] learned applicability of math/math communication to everyday life.”  
●  “In class we talk about not always having the same strategies or ending up with the 
same answer so I used this knowledge to be able to talk with the students about their 
different approaches.”  
●  “[I] Re realiz[ed] math can be learned and service shows a way to think outside of the  
box.”  
●  “Math is a very important thing in our world, and being able to use it in my writing 
could prove very important in inspiring change in the world. It is very important to 
embrace things that are difficult, that is how you learn and grow as a person.”  

[3] became aware of community ties and responsibilities to community  

●  “Community involvement is crucial to a well-developed future ... and my civic 
responsibility is to make sure no one is left behind.”  
●  “[S]ocietal change can happen when we communicate and help each other as we did in 
this project.”  

Researchers used these themes and students’ supporting comments to “re-story” a framework 
about non-math major undergraduate students’ engagement in service learning. This framework 
is discussed in the Results and Conclusions section.  

Results and Conclusion 
The framework that developed from our data speaks to the growth mindset (Dweck, 2015) 

undergraduate students developed and fostered as they engaged in mathematics through a 
practical lens of service learning. First, students expressed more confidence in mathematics 
communication and a better understanding of its role in society. Service learning helped them 
reduce their math anxiety and realize learning mathematics is an ongoing process that takes time 
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and practice. Second, undergraduate students found teaching through hands-on mathematical 
activities more applicable to the real world, which was different than prior experiences learning 
in a traditional university classroom setting. In this way, service learning helped undergraduate 
students think of math beyond numbers and equations and see the “real world” value that 
studying and applying mathematical concepts can have in others’ and their own lives. Third, 
undergraduate students reflected on becoming more aware of future generations of young(er) 
students; they shared hopeful statements that these elementary children would grow up to make a 
difference in the world because of educational opportunities like this course/study. Service 
learning, therefore, was viewed as an important community investment. This helped 
undergraduate students develop a strong sense of civic responsibility. Ultimately, our data 
demonstrate that service learning opportunities can transform mathematics from something scary 
and disconnected to a more meaningful and civically engaged area of study for undergraduate 
students, particularly those who do not identify as math majors. 
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Departments 
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In many countries, concerns have been raised regarding the lack of participation of students in 
mathematics at the university level due to a dearth of skilled professionals to meet the needs of 
an increasingly technological, and thus mathematical, world. In this paper, we report on a study 
in which we are comparing first and final year undergraduate students’ experiences in 
mathematics departments. We focus on students’ conceptions of the supports and challenges that 
they experience in mathematics departments, using a multimodal data collection method, 
photovoice. We will share findings from this ongoing research project focusing on comparisons 
between first and final year students’ perceptions of their learning environment. The knowledge 
that will be gained from this research is crucial in understanding students’ lived experiences and 
thus making suggestions to address university mathematics pipeline issues.  

Keywords: Undergraduate Mathematics, Lived Experience, Learning Environment, Pipeline 
Issues, Photovoice 

Declining numbers of undergraduate students graduating in mathematics impact 
innovation in a world that is “becoming increasingly technological and significantly more 
mathematical” (Australian Academy of Science [AAS], 2016, p. 37). In Australia, a very small 
proportion (0.4%) of students enrolling in tertiary education plan to pursue degrees in the 
mathematical sciences (AAS, 2016). Consequently, several government and scientific 
organizations have stressed the need for increased participation in the mathematical sciences at 
the tertiary level (AAS, 2016; Australian Mathematical Sciences Institute [AMSI], 2017). 
Additionally, women remain a minority of students in university programs in the mathematical 
sciences, and women’s proportion of the enrolments has been declining in recent years (AAS, 
2016; AMSI, 2017; Johnston, 2015). To address these issues, we report on findings from a study 
focusing on issues of student experience in mathematics degree programs, via a multimodal 
methodology, photovoice, combined with individual interviews. 

Literature Review 
Tertiary mathematics education is an expanding field of research, and experts have 

suggested that research is needed about students’ experiences, as existing research often focuses 
on the teaching and learning of specific mathematical topics (Coupland, Dunn, Galligan, Oates, 
& Trenholm, 2016). While there are many studies (e.g., Hernandez-Martinez et al., 2011; Wade, 
Sonnert, Sadler, & Hazari, 2017) about the transition to university, there is a paucity of research 
about students’ progressions throughout mathematics degree programs. Rather, most studies of 
mathematics majors (e.g., Piatek-Jiminez, 2015) tend to focus on a particular year level. 

Previous researchers have identified issues in the tertiary mathematics pipeline that have 
contributed to attrition, such as a lack of understanding of career pathways, poor teaching, the 
demands of course load, and loss of interest in content (Fenwick-Sehl, Fioroni, & Lovric, 2009; 
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Piatek-Jimenez, 2015). While students of all abilities appear to lose mathematical confidence as 
they progress through introductory calculus (Ellis, Fosdick, & Rasmussen, 2016), students’ self-
beliefs warrant further examination (Sheldrake, Mujtaba, & Reiss, 2015). 

Gender-specific issues have also been highlighted. Reasons for women’s attrition include 
a lack of support from faculty members, feelings of being invisible or not fitting in, a low 
proportion of women in the program, and a loss of interest in the subject area (Damarin, 2000; 
Herzig, 2004; Mastekaasa & Smeby, 2008; Rodd & Bartholomew, 2006). In contrast, protective 
aspects include social and academic support from friends and family, encouragement from 
educators, and personal characteristics such as determination and competitiveness (Gill, 2000; 
Hall, 2010; Robnett, 2013, 2016; Rodd & Bartholomew, 2006). 

Theoretical Framework 
This study is framed by a feminist and social constructivist epistemological stance (e.g., 

Butler, 1999; Fosnot, 2005). We view knowledge as a human construction that is gendered and 
culturally, socially, and historically situated. Furthermore, we view disciplinary knowledge of 
mathematics, as well as views of mathematics and mathematicians, as socially constructed, 
gendered, and linked to the specificities of time and place. With regard to the context of the 
study, we apply this lens to the students’ experiences in mathematics degree programs by 
viewing their learning as “both a process of active individual construction and a process of 
enculturation into the mathematical practices of the wider society” (Cobb, 1994, p. 13). 

Objectives 
The current situation in undergraduate mathematics warrants further investigation to 

better understand the experiences that contribute to students’ perseverance in the field. By 
providing students with an opportunity to discuss their experiences, both supportive and 
challenging, we hope to develop an understanding of the issues that they face. In so doing, we 
will inform mathematics faculties and other stakeholders of ways to address students’ concerns.  

The aims of this project are: (1) to understand the experiences of undergraduate students 
enrolled in mathematics degree programs, in order to explore how mathematics departments 
support or challenge them, and (2) to examine how gender may play a role in students’ 
experiences of studying mathematics at the undergraduate level. Our project is guided by the 
following research questions: 

1. What are mathematics majors’ experiences of university mathematics departments? 
a. What aspects of the departments do students find supportive? 
b. What aspects of the departments do students find challenging? 
c. How do students’ experiences in the mathematics departments influence their 

career aspirations? 
2. Are there differences in experiences by: 

a. Gender? 
b. Year level (first year versus final year)? 
c. Institution? 

To address these questions, we will utilise qualitative research methodologies, namely 
comparative case study and photovoice. 

Methodology 
The research project is a comparative case study of two Australian universities. 

Specifically, we are investigating the experiences of first year and final year students, with a 
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focus on gendered aspects of students’ experiences. Experiences in the first year of university 
have been shown to be critical in supporting students, particularly women and gender minorities, 
to continue in the field (Herzig, 2004; King, Cattlin, & Ward, 2015). The final undergraduate 
year is the time when students need to finalise decisions about future careers and/or further 
studies. By having participants from different year levels, genders, and institutions, we will be 
able to examine how these aspects may influence students’ experiences. In the following 
sections, we provide an overview of the study’s methodology, namely comparative case study 
and photovoice, and discuss the data sources, participants, and analysis methods. 

Comparative Case Study 
As a case study, our research involves “the study of an issue explored through one or 

more cases within a bounded system” (Creswell, 2007, p. 73). According to Stake’s conception 
(1995, 2005), our research project is an instrumental case study, as we are focusing on a broader 
issue of which the case is representative, and a collective case study, as it is an instrumental case 
study extended to several cases (i.e., multiple case study design). The broader issue is the 
differential experiences and participation by gender and year level in studying university 
mathematics, as illustrated by the cases of the first year and final year students at each institution. 
To investigate this issue, we are using a modified version of photovoice (Wang & Burris, 1997). 

Photovoice 
Photovoice involves participants taking photographs that are relevant to their lives in 

order to “promote critical dialogue and knowledge about important community issues through 
large and small group discussion of photographs” (Wang & Burris, 1997, p. 370), with the goal 
of reaching policymakers. The participants both create and discuss the data, increasing their 
autonomy in the research process, as they can “identify, define, and enhance their community 
according to their own specific concerns and priorities” (Wang & Burris, 1997, p. 374). 

The use of photovoice has grown exponentially in the past few years, presumably due to 
the widespread use of smartphones. Several researchers (e.g., Cook & Quigley, 2013; Wilkinson, 
Santoro, Major, & Langat, 2012) have used photovoice to learn about post-secondary students’ 
experiences. However, we only know of three examples of photovoice in mathematics education 
research (Chao, 2012; Harkness & Stallworth, 2013; Tan & Lim, 2010), and these studies were 
not conducted at the post-secondary level. 

We are using a modified version of photovoice that begins with individual semi-
structured interviews, focused on each participant’s educational pathway into the mathematics 
degree program, experiences in the program, and career aspirations. Then, per the photovoice 
process (Wang & Burris, 1997), each participant takes photographs to represent the supportive 
and challenging aspects of the mathematics department. In focus group interviews, participants 
discuss the photographs. Photographs can focus and encourage discussion in focus group 
interviews, as well as provide a different mode in which participants can express themselves 
(Whitfield & Meyer, 2005). Supported by the interview facilitator, participants discuss themes 
that they see across the photographs. 

Data Sources 
We have data from three sources – individual interviews, focus group interviews, and 

photographs – with the latter two intertwined. The individual interviews are audio-recorded, the 
focus group interviews are video-recorded, and the photographs are provided electronically to 
the researchers for further analysis. Multiple data sources allow for triangulation, “a process of 
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using multiple perceptions to clarify meaning… [that] helps to identify different realities” (Stake, 
2005, p. 454). Moreover, by comparing the data sources, “various strands of data are braided 
together to promote a greater understanding of the case” (Baxter & Jack, 2008, p. 554). 

Participants 
Data are currently being collected from two comparable, prestigious Australian 

universities (herein referred to as University X and University Y), both of which have large 
mathematics departments. We will involve 20 participants per institution, 10 first year and 10 
final year students. Data collection will be completed by October of 2018 (i.e., the end of the 
semester). In Table 1, we provide information about the participants to date. These participants 
have completed individual interviews and are in the midst of undertaking the photovoice process. 

  Table 1. Participant information. 

  University X 
First year 
Final year 

Women 
4 
2 

Men 
4 
0 

 

  University Y 
First year 
Final year 

Women 
1 
2 

Men 
2 
1 

 

 
The focus groups will be comprised of five students each (first year or final year students 

only in each focus group), as this group size is ideal in terms of providing space for all 
participants to share their photographs and contribute fully to the discussion. 

Analysis 
The multiple data sources and participant groups necessitate a complex and multi-stage 

approach to data analysis. The individual interviews are currently being analyzed through a 
process of emergent coding (Bogdan & Biklen, 2007; Creswell, 2014). Due to the importance 
placed on the participants’ explanations of the photographs, they will be analyzed within the 
context of the focus group interviews. After the focus group interviews, we will further analyze 
the photographs using content analysis (Riffe, Lacy, & Fico, 2014), in order to provide additional 
detail and description that may not be evident in the focus group interview videos. 

With regard to the comparative case study methodology, analyses will occur at multiple 
levels. To begin, thematic analyses of the entire dataset will take place, in order to understand 
key themes regarding supports and challenges in mathematics departments for all participants. 
Then, the thematic findings will be further considered with regard to the year level and gender of 
the participants, to see if there are any trends specific to these groups. Each institution will be 
considered separately to develop a holistic understanding of each mathematics department. 

Results 
In the presentation, we will share findings from all aspects of the project – individual 

interviews, focus group interviews, and photographs – focusing on comparisons by year level. 
Here, we share initial findings from the individual interviews that have been completed.   

The participants have taken many different pathways into the field of mathematics, such 
as transferring from other programs or working prior to beginning their studies. While most 
participants were traditional-age undergraduate students (18-22 years old), five participants were 
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mature-aged students. Surprisingly, some participants reported that they have failed mathematics 
classes in past, and several described themselves as “slow learners” or “not that good at maths.” 
However, they reported that they persisted due to personal interest in mathematics or because 
they were close to completing their degree. All participants reported that peers were a major 
support in their academic success and persistence. Hence, a desire for more social dimensions to 
their programs was commonly reported, rather than changes to pedagogical/structural elements. 

The first year participants have had quite a positive experience. They reported that the 
faculty members are passionate and helpful, and the tutorials are interactive and focus on 
collective understanding. While unaccustomed to discussing mathematics in groups, the 
collaborative style of learning allowed the participants to meet other students and develop a 
better understanding of the content. The participants attributed any lack of achievement in 
mathematics to the challenge of transitioning between high school and university, rather than any 
distinct factors in the mathematics departments. The participants explained that if they had any 
difficulty adjusting, they have felt supported and encouraged by staff to continue participating in 
mathematics. Concerns raised by the participants related to the distribution of marks across 
assessments, the quantity of work to complete, and the level of scaffolding in some classes. 
Additionally, the participants reported an even gender distribution in their classes and noted that 
they have not felt that there has been any gender-related differential treatment of students. 

The final year participants echoed that they generally feel supported, but that the quality 
of support varied by faculty member. Students were very attentive to the implicit educational 
values of staff (i.e., whether the staff care about students and prioritize their teaching) as 
demonstrated in even minor interactions, such as providing email addresses and noting their 
availability for support. As with the first year students, the final year students did not report any 
gender-based discrimination. However, most were acutely aware of stereotypes regarding lower 
participation/interest of women in mathematics. The final year women participants reported 
feeling significant internal pressure to justify their own continued participation and felt that any 
personal failure would contribute to gender inequity. For instance, Participant 2 from University 
X stated, “Failing at a concept often feels like failing as a girl. Or, as a female in mathematics, I 
feel very representative of that.” Final year participants also identified issues regarding pedagogy 
and assessment (e.g., mandatory attendance, informal learning opportunities); in these 
discussions, the participants demonstrated their understanding of institutional constraints.  

Implications 
In this paper, we provide an example of the use of photovoice, a novel methodology in 

mathematics education, particularly at the university level. By sharing our experiences, we may 
assist colleagues in expanding their methodological repertoires. Photovoice allows participants to 
express their feelings about their experiences in a democratic, participatory manner. Visual 
representations allow participants to share their ideas in a mode that may be more accessible, 
thus providing unique insights into their experiences. 

Our findings will inform practice at the participating universities and hopefully increase 
retention of mathematics majors, thus addressing the National Innovation and Science Agenda 
aim to boost the number of Australian graduates in science and mathematics as a strategy to 
build Australian capabilities for innovative economies (Australian Government Department of 
Industry, Innovation and Science, 2015). An important aspect of meeting this goal is addressing 
the significant decline in students graduating in mathematics. This study will contribute to a 
greater understanding of the mathematics pipeline by investigating students’ (especially women 
and gender minorities’) reasons for remaining in (or leaving) mathematics departments. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 914



Acknowledgments 
Funding for this study has been provided by the Monash Small Grants Scheme. 

References 
Australian Academy of Science. (2016). The mathematical sciences in Australia: A vision for 

2025. Retrieved from www.science.org.au/mathematics-plan-2016-25 
Australian Government Department of Industry, Innovation and Science. (2015). National 

innovation and science agenda report. Retrieved from https://www.industry.gov.au/national-
innovation-and-science-agenda-report 

Australian Mathematical Sciences Institute. (2017). Discipline profile of the mathematical 
sciences 2017. Retrieved from http://amsi.org.au/publications/discipline-profile-
mathematical-sciences-2017/ 

Baxter, P., & Jack. S. (2008). Qualitative case study methodology: Study design and 
implementation for novice researchers. The Qualitative Report, 13(4), 544-559. Retrieved 
from http://tqr.nova.edu/ 

Bogdan, R. C., & Biklen, S. K. (2007). Qualitative research for education: An introduction to 
theories and methods (2nd ed.). Boston, MA: Pearson/Allyn and Bacon. 

Butler, J. (1999). Subjects of sex/gender/desire. In S. During (Ed.), The cultural studies reader 
 (2nd ed., pp. 340-358). London, England: Routledge. 

Chao, T. P.-L. (2012). Looking within: Mathematics teacher identity using photo-
elicitation/photovoice (Unpublished doctoral dissertation). University of Texas Austin, 
Austin, TX. 

Cobb, P. (1994). Where is the mind? Constructivist and sociocultural perspectives on 
mathematical development. Educational Researcher, 23(7), 13-20. 
doi:10.3102/0013189X023007013 

Cook, K., & Quigley, C. (2013). Connecting to our community: Utilizing photovoice as a 
pedagogical tool to connect college students to science. International Journal of 
Environmental & Science Education, 8(2), 339-357. doi:10.12973/ijese.2013.205a 

Coupland, M., Dunn, P. K., Galligan, L., Oates, G., & Trenholm, S. (2016). Tertiary 
mathematics education. In K. Makar, S. Dole, J. Visnovska, M. Goos, A. Bennison, & K. Fry 
(Eds.), Research in mathematics education in Australasia 2012-2015 (pp. 187-211). 
Singapore: Springer Science+Business Media. 

Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five 
approaches (2nd ed.). Thousand Oaks, CA: SAGE. 

Creswell, J. W. (2014). Educational research: Planning, conducting, and evaluating quantitative 
and qualitative research. Sydney, Australia: Pearson. 

Damarin, S. K. (2000). The mathematically able as a marked category. Gender and Education, 
12(1), 69-85. doi:10.1080/09540250020418 

Ellis, E., Fosdick, B. K., & Rasmussen, C. (2016). Women 1.5 times more likely to leave STEM 
after calculus compared to men: Lack of mathematical confidence a potential culprit. PLoS 
ONE, 11(7), 1-14. doi:10.1371/journal.pone.0157447 

Fenwick-Sehl, L., Fioroni, M., & Lovric, M. (2009). Recruitment and retention of mathematics 
students in Canadian universities. Journal of Mathematical Education in Science and 
Technology, 40(1), 27-41. doi:10.1080/00207390802568192 

Fosnot, C. T. (2005). Preface. In C. T. Fosnot (Ed.), Constructivism: Theory, perspectives, and 
practice (2nd ed., pp. ix-xii). New York, NY: Teachers College Press. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 915



Gill, K. (2000). Young women’s decision to pursue non-traditional science: Intrapersonal, 
interpersonal and contextual influences (Unpublished master’s thesis). University of Ottawa, 
Ottawa, Canada. 

Hall, J. (2010). The influence of high school and university experiences on women’s pursuit of 
undergraduate mathematics degrees in Canada. In H. Forgasz, J. R. Becker, K. Lee, & O. B. 
Steinthorsdottir (Eds.), International perspectives on gender and mathematics education (pp. 
365-390). Charlotte, NC: Information Age 

Harkness, S. S., & Stallworth, J. (2013). Photovoice: Understanding high school females’ 
conceptions of mathematics and learning mathematics. Educational Studies in Mathematics, 
84(3), 329-347. doi:10.1007/s10649-013-9485-3 

Hernandez-Martinez, P., Williams, J., Black, L., Davis, P., Pampaka, M., & Wake, G. (2011). 
Students’ views on their transition from school to college mathematics: Rethinking 
‘transition’ as an issue of identity. Research in Mathematics Education, 13(2), 119-130. 
doi:10.1080/14794802.2011.585824 

Herzig, A. H. (2004). ‘Slaughtering this beautiful math’: Graduate women choosing and leaving 
mathematics. Gender and Education, 16(3), 379-395. doi:10.1080/09540250042000251506 

Johnston, P. (2015). Higher degrees and honours bachelor degrees in mathematics and statistics 
completed in Australia in 2014. Gazette of the Australian Mathematical Society, 5, 290-296. 
Retrieved from http://www.austms.org.au/gazette 

King, D., Cattlin, J., & Ward, J. (2015). Building leadership capacity in university first year 
learning and teaching in the mathematical sciences. Retrieved from 
http://www.olt.gov.au/project-building-leadership-capacity-university-first-year-learning-
and-teaching-mathematical-scienc 

Mastekaasa, A., & Smeby, J.-C. (2008). Educational choice and persistence in male- and female-
dominated fields. Higher Education, 55(2), 189-202. doi:10.1007/s10734-006-9042-4 

Piatek-Jimenez, K. (2015). On the persistence and attrition of women in mathematics. Journal of 
Humanistic Mathematics, 5(1), 3-54. doi:10.5642/jhummath.201501.03 

Riffe, D., Lacy, S., & Fico, F. (2014). Analyzing media messages: Using quantitative content 
analysis in research (3rd ed.). New York, NY: Routledge. 

Robnett, R. (2013). The role of peer support for girls and women in the STEM pipeline: 
Implications for identity and anticipated retention. International Journal of Gender, Science 
and Technology, 5(3), 232-253. Retrieved from 
http://genderandset.open.ac.uk/index.php/genderandset/index 

Robnett, R. (2016). Gender bias in STEM fields: Variation in prevalence and links to STEM self-
concept. Psychology of Women Quarterly, 40(1), 65-79. doi:10.1177/0361684315596162 

Rodd, M., & Bartholomew, H. (2006). Invisible and special: Young women’s experiences as 
undergraduate mathematics students. Gender and Education, 18(1), 35-50. 
doi:10.1080/09540250500195093 

Sheldrake, R., Mujtaba, T., & Reiss, M. J. (2015). Students’ intentions to study non-compulsory 
mathematics: The importance of how good you think you are. British Educational Research 
Journal, 41(3), 462-488. doi:10.1002/berj.3150 

Stake, R. E. (1995). The art of case study research. Thousand Oaks, CA: SAGE. 
Stake, R. E. (2005). Qualitative case studies. In N. K. Denzin & Y. S. Lincoln (Eds.), The SAGE 

handbook of qualitative research (3rd ed., pp. 443-466). Thousand Oaks, CA: SAGE. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 916



Tan, S. F., & Lim, C. S. (2010). Effective mathematics lesson from the lenses of primary pupils: 
Preliminary analysis. Procedia – Social and Behavioral Sciences, 8, 242-247. 
doi:10.1016/j.sbspro.2010.12.033 

Wade, C., Sonnert, G., Sadler, P. M., & Hazari, Z. (2017). Instructional experiences that align 
with conceptual understanding in the transition from high school mathematics to college 
calculus. American Secondary Education, 45(2), 4-21. Retrieved from 
https://www.ashland.edu/coe/about-college/american-secondary-education-journal 

Wang, C., & Burris, M. A. (1997). Photovoice: Concept, methodology, and use for participatory 
needs assessment. Health Education & Behavior, 24(3), 369-387. 
doi:10.1177/109019819702400309 

Whitfield, D., & Meyer, H. (2005). Learning from our students: Photovoice and classroom action 
research. The Science Education Review, 4(4), 97-103. Retrieved from 
http://www.scienceeducationreview.com/ 

Wilkinson, J., Major, J., Santoro, N., & Langat, K. (2012). What out-of-school resources and 
practices facilitate African refugee students’ educational success in Australian rural and 
regional settings? Retrieved from 
http://www.csu.edu.au/__data/assets/pdf_file/0016/221155/African-Refugee-students-in-
Australia.pdf 

  

22nd Annual Conference on Research in Undergraduate Mathematics Education 917



Riemann Summary: An Investigation of How Instructors Summarize Group Work Activities to 
Build the Structure of the Riemann Sum  

 
 William Hall Vicki Sealey 
 Washington State University West Virginia University 

In this preliminary report, we present data and preliminary findings on the instruction that 
follows active learning activities designed to introduce first-semester calculus students to the 
definite integral. We are particularly interested in the two to three days of class that follow these 
group work activities to see how instructors leverage the content of the activities to summarize 
and build the structure of the Riemann sum and definite integral. Video data of five instructors 
has been collected, and we present preliminary analysis focused on the ways in which one of the 
instructors introduced the definite integral as a sum of products.  

Keywords: Riemann sum, definite integral, calculus, classroom instruction 

In this preliminary paper, we report on progress from our analysis of five instructors teaching 
the definite integral in a first-semester calculus class. Prior research on student understanding of 
definite integrals in both physics and mathematics education literature emphasizes the 
importance of viewing a definite integral as a sum of products (Jones, 2015; Meredith and 
Marrongelle, 2008; Sealey, 2014). While viewing the definite integral as area between a function 
and the x-axis is a common and prevalent way of thinking about definite integrals (Jones, Lim, & 
Chandler, 2017), many studies have shown that students need to be able to understand why area 
under a curve can be computed with a definite integral (Orton, 1983), especially in contexts 
where the goal is not to find area (Meredith & Marrongelle, 2008; Sealey, 2006).   

Jones, Lim, and Chandler (2017) report that even when classroom instruction emphasized the 
multiplicative structure of the Riemann sum through area under a curve, students still did not 
view the integral as a way to add up quantities that were multiplicative in nature (i.e. a sum of 
products). These authors as well as Sealey (2006, 2014) recommend that instruction on definite 
integrals begin with context problems that are not directly related to area under a curve. Sealey 
(2014) and Sealey and Engelke (2012) report on classroom activities that were designed to guide 
students towards developing a conceptual understanding of the definite integral as a sum of 
products. These activities were designed for students to work in groups to approximate various 
quantities, all of which result in Riemann sums. The Gorilla Problem provides students with a 
table of velocities of a gorilla and asks students to approximate the distance the gorilla fell, the 
Water Problem has students approximate the force of water on a rectangular dam, and the Spring 
Problem has students approximate the energy (work) required to stretch a spring. All of these 
activities are designed to be the first piece of instruction on definite integrals in a first-semester 
calculus class.  

Numerous researchers have outlined the pedagogical practices that best support student 
learning. For example, Kuster, Johnson, Keene, & Andrews-Larson (2017) outline four 
principles of what they call inquiry-oriented instruction, which includes developing a shared 
understanding and connecting to standard mathematical language and notation. Similarly, Smith 
and Stein (2011) state that instructors of mathematics should help “students draw connections 
between their solutions and other students’ solutions as well as the key mathematical ideas of the 
lesson” as one of their five practices for orchestrating productive mathematical discussions (p. 
11). In this vein, we are particularly interested in the whole-class discussion and/or lecture that 
follows group work. We seek to identify parallels, if they exist, between the way that students 
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approach the group work activities and the ways that the instructors use them to introduce 
Riemann sums and definite integrals.  

In our study, we analyze classroom video data from first-semester calculus courses that used 
Sealey's activities at the beginning of instruction on Riemann sums and definite integrals. In our 
work, we examine the two to three class periods following the group work using Sealey's 
activities to see how the instructors leverage these activities to highlight the structure of Riemann 
sums or definite integrals. Specifically, we seek to answer the research questions: How do 
instructors wrap-up student-centered, active learning tasks concerning accumulation? How do 
the topics of instruction align with Sealey's Riemann Integral Framework, and how are the 
instructors emphasizing the sum of product structure of a Riemann sum in these student-
centered, active learning tasks? 

Theoretical Framework 
Structuralism (Piaget, 1970, 1975), and constructivism more broadly, serves as the 

theoretical foundations for our beliefs about the teaching and learning of calculus and the 
construction of the Riemann Integral Framework. With such a perspective, understanding 
definite integrals includes not only understanding the constituent pieces (e.g. a series of products 
and their sum) but how those pieces relate to one another. The Riemann Integral Framework 
itself outlines four layers (product, summation, limit, and function) and one pre-layer (orienting) 
of mathematical components of Riemann sums and definite integrals. Sealey (2014) discussed 
this framework and how it can be used to analyze how students engage with word problems 
involving definite integrals in a way that encourages them to construct the structure of the 
definite integral as the sum of products. This serves as our analytical framework for data 
analysis. 

The calculus courses in which we collected data were designed to utilize Oehrtman's 
approximation framework (2008), which describes a way of conceptualizing the limit concept 
that is both intuitive to students and also aligns with the formal epsilon-delta definition of limit. 
Within this framework, students are expected to answer five approximation questions across 
several contexts. 

1.  What unknown value were you approximating? 
2.   What were your approximations? 
3.   Describe what the error for each approximation was. Why is the exact value of the error 

impossible for you to determine? 
4.   How did you bound the error? 
5.   Explain a procedure for getting an approximation with error smaller than any pre-

determined bound. (Oehrtman, 2008, p. 74) 
Oehrtman (2008) describes a method of instruction in calculus that relies on "layers of 

abstraction" throughout the course. Students complete several tasks related to the concept of 
limit, answering the five approximation questions, and then students are able to abstract the 
similar structure of the mathematics across these tasks. In our data, the instructors were using 
Sealey's (2014) curriculum, which was based on Oehrtman's (2008) framework. As such, in our 
analysis, we seek to identify areas in which students or instructors are referencing the five 
approximation questions, as well as how instructors guide students in this process of abstraction. 

In summary, Piaget's structuralism and Oehrtman’s approximation framework guided the 
development of the three group work activities that were designed by Sealey (2014). Sealey's 
Riemann Integral Framework is the framework through which we will analyze our own data, 
looking for instances of each layer of the definite integral in the classroom instruction. Sealey 
developed this framework by analyzing videos of groups of students working through the 
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Gorilla, Water, and Spring Problems, and in our analysis, we will look for ways in which the 
instructor leverages these activities to build the structure of the definite integral during the class 
sessions that follow these days of group work. 

Methods  
Data from this study is from a larger data set which includes videos of five instructors 

teaching first-semester calculus for two semesters. We use the term "instructor" to refer to the 
instructor of record for the course, regardless of position (graduate student, faculty, etc.). One of 
the authors coordinated the course, which used common exams across all sections. It was also a 
requirement that all instructors used three student-centered lessons throughout the semester, one 
to introduce limits, one for derivatives, and a version of Sealey's Gorilla, Water, and Spring 
Problems to introduce definite integrals, mimicking Oehrtman's (2008) recommendations for 
building opportunities for layers of abstraction in the limit context. Other than the three units to 
introduce limits, derivatives, and definite integrals, instructors were free to cover other material 
in any way he or she chose. In the unit on Riemann sums and definite integrals, instructors were 
required to use the Gorilla, Water, and Spring Problems with their classes, but could then 
continue their own instruction however they chose. However, instructors were provided notes 
from the coordinator explaining how she intended to leverage the group work activities to build 
the concept of the definite integral. All of the instructors used these notes to some degree, but 
everyone inserted his or her own information as well. 

Videos were taken of all five instructors during the first semester of data collection, starting 
when the instructor introduced the derivative. Select topics, including the definite integral, were 
recorded during the second semester of data collection for the same five instructors. All 
instructors except the author received a stipend for his or her participation in the study. Students 
in the classes signed media release forms to allow us to use the data for research purposes. In 
each class, the video camera was set at a wide angle in the back of the classroom, zooming in as 
necessary, and following the instructor if he/she walked around the room. Class size in each of 
the classes was between 30 and 35 students.  

Data analysis is on-going. Initially, both authors watched videos from the days following the 
Gorilla, Water, and Spring group work activities. Summaries were written for each video in 
order to get a global view the data set. Videos were transcribed, and we have now begun a line-
by-line analysis of the transcripts using Sealey's Riemann integral framework. To do this, we 
have coded each line of one of the transcripts according to which activity was being referenced 
(gorilla, water, or spring), which layer of the Riemann integral was being discussed (orienting, 
product, sum, limit, or function), and which of Oehrtman's approximation questions was being 
discussed. We believe utilizing a framework originally designed to investigate student 
understanding to analyze instructors’ practice will allow us a unique perspective on whether and 
how these summary lessons align with what we know about student learning of Riemann sums. 

Preliminary Results 
After watching and summarizing videos from all five instructors, it was clear that all 

instructors continued to use the Gorilla, Water, and Spring Problems throughout the next several 
days of class. The notes provided by the coordinator recommended that each instructor spend 
one day summarizing the three activities and pointing out the common mathematical structure in 
all three activities. Even though the context was different (distance covered, force of water on a 
dam, and energy to stretch a spring), the underlying mathematics all involved adding up pieces 
of quantities that were defined by a multiplicative relationship. The way in which the instructors 
covered this varied, and the depth that the instructors provided varied, but each instructor did 
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highlight the sum of products structure. For example, we found it interesting that one instructor 
used only half of one chalkboard to write notes for the students, while another instructor used six 
boards (two boards, erased and reused three times), indicating that even with common notes from 
the coordinator, each instructor enacted their lessons in different ways. 

The second day of instruction was devoted to understanding the summation notation in a 
Riemann sum and/or definite integral. Again, all five instructors continued to use the Gorilla, 
Water, and Spring Problems on this day of class, working with the students to express the 
quantities approximated in each activity as a Riemann sum and/or definite integral. At least one 
instructor needed to finish this part of instruction on the following day of class, which is why we 
continue some of our analysis into the third day of instruction after the groupwork activities.   
 
Table 1 
Summary of RIF Code Frequency Data 

RIF Layer Example of Coded Transcript Frequency 

Orienting “Okay guys what were we approximating for the gorilla problem?” 36 

Product “Energy. What was the formula? Force times distance.” 17 

Summation “So, we had some small things and we’re adding them.” 6 

Limit 
“So, you have to look at the beginning point when the gorilla steps 
off the roof, and the moment he lands on the ground and split this 
time interval, from zero to five, into smaller intervals.” 

28 

 
One way we decided to investigate the data on a deeper level was to look at the total 

frequencies for each layer of the Riemann Integral Framework (RIF). It should be noted that this 
approximates relative time spent during the lesson since the coded blocks were not uniform in 
size. The transcript was broken up using natural breaks in the conversation or when there was a 
large shift in topic. Table 1 contains a summary of this frequency data for one of the instructors. 
We see that the most common layer coded for was the Orienting layer with 36 instances, 
followed closely by the Limit layer with 28 instances, then the Product layer with 17 instances. 
The Summation layer was the least frequently coded layer with only six instances. A few aspects 
of these results stand out to us. First, the overwhelming presence of the Orienting layer was 
surprising given this lecture served as a summary for activities the students had already 
completed. We had not expected there to be as much attention paid to the context of the tasks 
throughout the lecture when we set out to code the data. Further investigation of the frequency 
and content of instances coded as Orienting warrant further investigation. This particular 
instructor spent a large amount of time discussing the fifth question in Oehrtman's (2008) 
approximation framework, which asks how many intervals would be needed to obtain an 
approximation with a predetermined error bound. As such, the Limit layer was quite prevalent in 
this day of instruction.  

Another lens we utilized on the data was a visualization of the progression of the lecture in 
terms of the RIF. In Figure 1, we have represented the entire coded lecture period horizontally 
with the RIF layers represented vertically as distinct rows. This perspective on the data allows us 
to see when each layer was utilized and in what order. We see that the instructor began in the 
Orienting layer then shifted to the Product layer and back again to the Orienting layer. Next, we 
see a jump to the Summation layer followed by a return to the Orienting layer. This pattern 
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showcases how there is a regular return to the Orienting layer throughout the lecture period. 
Additionally, we are able to see a late shift to the Limit layer starting approximately one-third of 
the way through the lecture. Again, this particular instructor spent a large amount of time on the 
fifth question of Oehrtman's framework. Interestingly, there is only discussion concerning the 
Summation layer in the first half of the lecture and it is rather sparse compared to the other 
layers. While we have not yet done this same analysis for the second day of class, we expect 
more time to be spent on the Summation layer on the day devoted to covering summation 
notation. The function layer is omitted from Figure 1 as this lesson did not attend to this layer of 
the RIF and was not observed in the data. 

 
Figure 1. Visualization of Coded Lecture 

 
We feel the data presented herein allow us to begin exploring the answer to the question: 

How do the topics of instruction align with Sealey's Riemann Integral Framework? We have 
seen some differences in how the topics of instruction during these summary lectures compare 
with how the students worked through the task from Sealey’s original study. Where students 
entered the RIF through the summation layer, the summary lecture began with the product layer. 
We are encouraged by the high frequency of the product layer code in these data given its 
importance to student learning for Riemann sums (Jones, 2015; Sealey, 2014). We are interested 
in exploring whether these trends persist throughout the data for the other instructors, specifically 
if the other instructors also begin by discussing the product layer instead of with the summation 
layer like the students. 
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Inquiry without Equity: A Case Study of Two Undergraduate Math Classes 
 

 Amelia Stone-Johnstone Daniel Reinholz 
 San Diego State University San Diego State University 

 Brooke Mullins Jessica Smith Christine Andrews-Larson 
 Virginia Tech Florida State University Florida State University 

Compelling evidence supports the benefits of active learning environments in undergraduate 
mathematics. Research shows that such environments can benefit all students, and especially 
benefit students who have been traditionally underrepresented in mathematics. To move beyond 
the general idea “inquiry supports equity,” we provide an analysis of two inquiry-oriented 
classrooms to highlight the ways in which equitable participation may or may not be present, 
particularly in terms of gender. We found some evidence of equitable participation in one of the 
classrooms, while the other was dominated by men in the class. These early findings suggest that 
more research is required to uncover the ways in which inquiry-oriented environments may or 
may not be equitable. 

Keywords: Equity, Gender, Inquiry-oriented instruction, Instructional measure, Observational 
research 

 Inquiry-oriented pedagogy consists of a teacher exploring students’ reasoning and engaging 
them in authentic mathematical activity (Rasmussen & Kwon, 2007). This gives students space 
to reconstruct mathematics through critical thinking and mathematical discussion. Laursen, 
Hassi, Kogan, and Weston (2014) discovered in their multi-institutional study on inquiry-based 
learning (IBL) that IBL can promote a more equitable learning environment in terms of gender 
equity when compared to non-IBL approaches. They found that women and men in inquiry-
based courses reported statistically equivalent cognitive and affective gains. On the other hand, 
women in non-inquiry-based courses reported lower gains when compared to the men. Laursen 
et al. (2014) suggested that “IBL approaches leveled the playing field by offering learning 
experiences of equal benefit to men and women” (p. 412).  
 Although the courses in this study helped students achieve more equitable outcomes, what 
about classroom-level participation? Research shows that talk-based participation plays an 
important role in learning (Bransford, Brown, & Cocking, 2000). Thus, even though women may 
have improved outcomes, it is possible that they could be marginalized at the level of classroom 
participation. This has implications for identity development and belonging, and if women were 
truly participating less in such classrooms, it would highlight an area for improvement in the use 
of inquiry-oriented pedagogies for mathematics instructors. Therefore, in this study we attempt 
to answer the following question: Are the opportunities for talk-based participation in inquiry-
oriented classrooms necessarily equitable? Given the length of this brief report we focus only on 
participation, recognizing there are other consequential aspects to classroom equity. 
 

Background 
Inquiry-Oriented Instructional Measure 
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 To measure whether or not a classroom is truly inquiry-oriented, Kuster, Johnson, Rupnow, 
and Wilhelm (2018) developed the Inquiry-Oriented Instructional Measure (IOIM) as a tool to 
clearly outline seven practices that coincide with the four inquiry-oriented instruction principles 
as defined by Kuster, Johnson, Keene, and Andrews-Larson (2017). These principles include: (a) 
generating student ways of reasoning, (b) building on student contributions, (c) developing a 
shared understanding, and (d) connecting to standard mathematical language and notation. The 
classroom enactments of the seven practices of IOIM, which have been described extensively in 
Kuster et al. (2018), are scored along a 5-point Likert scale from low (1) to high (5). 
 
Equity Quantified in Participation 
 To measure patterns in student participation, we use Reinholz and Shah’s (2018) classroom 
observation tool EQUIP (Equity Quantified in Participation). EQUIP uses equality as a necessary 
but insufficient baseline towards equity, recognizing that students who are underrepresented in 
mathematics typically received less than a proportional share of participation opportunities. This 
is measured by an equity ratio of actual participation to expected participation based on the 
demographics of the class (Reinholz & Shah, 2018). For example, if 35% of the students in a 
class were women then it would be expected that those students would participate in 35% of the 
classroom discourse to ensure equal representation. However, if the women actually contributed 
to 70% of the classroom discourse, their equity ratio would be 0.7/0.35 = 2, indicating that they 
participated more than expected. 
 To be clear, our argument is not that all students should receive an equity ratio of 1, 
indicating proportional representation. Rather, we can use an equity ratio of 1 as a point of 
comparison, recognizing that if students from underrepresented groups are receiving a ratio of 
less than 1, it would likely indicate a problem. As outside observers, it is beyond us to say what 
is equitable in a classroom, especially without interviewing students for their perspectives. 
 

Methods 
 For this study, three coders analyzed lessons from 42 teachers in a broader project focused on 
inquiry-oriented instruction; 20% of the videos were double coded and Krippendorf’s alpha > 0.8 
was achieved, indicating sufficient interrater reliability. Prior to this study, each of these classes 
were analyzed and scored using the IOIM rubric (Rupnow, LaCroix, & Mullins, 2018). We then 
aggregated the scores across the seven dimensions of the rubric, which ranged from 15.5 (low-
level implementation of inquiry-oriented instruction) to 35 (high-level implementation of 
inquiry-oriented instruction). Of the 42 classes, we chose two classes that received high IOIM 
scores (Class A scored 33 and Class B scored 34) and had roughly the same number of students. 
Class A consisted of 5 men and 2 women while Class B consisted of 5 men and 3 women. The 
gender composition of the classrooms was determined by the coders, where visual and audio 
cues were used as determinants; we acknowledge that this is a limitation of our study. 
 We coded participation sequences in the whole class discussions along several EQUIP 
dimensions including Student Talk. A participation sequence refers to a chain of utterances from 
a student where a new sequence begins once a new student enters the discussion (Reinholz & 
Shah, 2018). We provide a brief description of the relevant codes in Table 1. Each participation 
sequence is coded at the highest level of contribution (e.g., if a student gives both an “other” 
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response and a “how” response within a sequence, the sequence is coded as “how” for Type of 
Talk). The codes for the sub-dimensions of Student Talk in Table 1 are listed from low to high. 
Table 1. Descriptions of Student Talk from EQUIP. 

Dimension Codes & Description 
Type of Talk Other - Student asks a question or does not say a mathematical idea.  

What - Student reads our part of a problem, recalls a fact, or gives a 
numerical/verbal answer without justification.  
How - Student reports on steps taken to solve a problem. 

 Why - Student explains the mathematics behind an answer. 
Length of 

Talk 1-4 words – short single-worded responses.  
 5-20 words – a short response consisting of a sentence. 
  21+ words – a long response consisting of several sentences. 

 
Findings 

 We found that even though these classes successfully adopted inquiry-oriented practices in 
their classrooms as evidenced by their IOIM scores, opportunities to participate were not evenly 
distributed. With equity ratios below one, we see from Figure 1 that women were 
underrepresented in the classroom discourse in both classes. 
 

 
Figure 1. Gender equity ratios by class. 

Out of the 51 participation sequences, the women in Class A only contributed to 2 of them. The 
first sequence played out as follows: 

Teacher: So, what can we do with that? What conclusion did you draw? 
Michelle: When you multiply the (inaudible) a subset with itself you won't get it 

back. 
Teacher: So okay, so you won't get it back … 

The second participation sequence played out in a similar fashion.  

Teacher: Is there another one that does work? 
Suzy:  The only one we haven't checked is 𝐼𝐹𝑅3. 
Teacher: 𝐼𝐹𝑅3? 
Suzy:  Assuming that the identity has to be in the identity.  
Teacher: Okay. So, let's see we don't have that much time left but maybe we could 

try to verify if I and 𝐹𝑅3 works. 

1.
35

1.
04

0.
14

0.
94

C L A S S  A C L A S S  B

PARTICIPATION
Men Women

22nd Annual Conference on Research in Undergraduate Mathematics Education 926



The student responses in each of the sequences were short (5-20 words) “what”-type 
contributions. Both students contributed to the mathematical development in the class by simply 
stating facts. According to the hierarchy in the EQUIP framework, these are low-level 
contributions. An example of a high-level “why” contribution from another participation 
sequence from Class A between the instructor and one of the men progressed as follows: 

Anthony: Um if it's the identity then it has to be abelian. Because that's on identity 
element, right? 

Teacher: Um so let's see. So where did abelian come? So you're saying it has to be 
commutative, where's the rationale behind that? 

Anthony: Because if you did the identity, if purple's the identity… If you did purple 
then yellow, you'd get yellow. And yellow on purple should also be yellow. 
The vertical column would be the same as the horizontal column…  

This student speaks at length (21+ words) about his reasoning (“why”) behind his initial 
conclusion. 
 In Class B, the women only contributed to 12 out of the 34 participation sequences. These 
contributions were either “what” or “why” responses. Although they were overrepresented in 
overall participation, Figure 2 shows that the men in Class B were underrepresented (equity ratio 
less than 1) for both “what” and “why” talk. This indicates that in this inquiry-oriented 
classroom, women were providing the majority of the mathematical explanations. 
 

 
Figure 2. Gender equity ratios for Student Talk in Class B. 

According to Table 2, we see that even though most of the participation sequences were more 
than 1-4 words, the men spoke longer more frequently than the women. In terms of equity ratios, 
men were overrepresented for the “5-20 words”-length of talk (1.1 to .83) and “21+ words”-
length of talk (1.07 to .89).  

Table 2. Frequencies for Length of Talk by Gender in Class B. 
Length of Talk Men Women 

1-4 words 1 2 
5-20 words 11 5 
21+ words 10 5 

 
Discussion and Conclusion 

 Our findings show that high-inquiry does not imply equitable access to classroom discourse. 
Both high-inquiry courses provided more opportunities overall for men to participate in the 
mathematical discourse. The women in Class A contributed to the mathematical development in 
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only 2 out of the 51 participation sequences, all of which were low-level contributions. Likewise, 
the men in Class B also participated more than we would expect based on demographic 
representation, but there was a much better gender balance. In addition, the women in Class B 
were overrepresented in high-level talk (“why” responses), which indicates that when they did 
participate, they did so in mathematically meaningful ways.  
 Though the IOIM does measure the degree to which the four principles of inquiry-oriented 
instruction are implemented (Kuster et al., 2018), it does not highlight which students are driving 
the discourse. The results from this study demonstrate to us that two courses with a high degree 
of inquiry can potentially provide a very different learning environment for the students. While 
inquiry-oriented instruction allows students to interact with mathematics in a meaningful way, it 
may also amplify inequitable environments by allowing more dominant personalities to 
overwhelm the classroom discourse and restricting access to other groups of students. 
 Based on their IOIM score, the teachers of both classes demonstrated that they elicit student 
reasoning and contributions at a high level. From our findings, we now understand that their 
implementation was inequitably distributed. This shows us that we must not only be vigilant 
about increasing student engagement but also conscientious about the ways in which we engage 
different students. A future direction would be to consider how race factors into student 
engagement in inquiry-oriented classes. In addition, we would like to further study how equity in 
opportunities to participate may or may not relate to equity in student outcomes. Here are 
questions for audience consideration: 

1. What is required for inquiry-oriented classes to be equitable? 
2. Beyond participation, what other ways should we conceptualize equity in these 

classrooms? 
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Beliefs About Learning Attributed to Recognized Instructors of Collegiate Mathematics 
 

 Valentin A. B. Küchle Shiv Smith Karunakaran 
 Michigan State University Michigan State University 
 
Six collegiate mathematics instructors, who had all previously won teaching awards, were 
interviewed about their beliefs on learning. Differences between the beliefs of PhD and non-PhD 
mathematicians were evident, perhaps connected to the student population with which each 
worked. Furthermore, the four PhD mathematicians all held very different beliefs about learning 
and modelled their teaching accordingly. Additionally, each of the four had created at least one 
teaching analogy for himself (climbing instructor/spark, showman/coach, Sherpa, facilitator) 
that spoke to the role he saw himself in within the classroom.  

Keywords: Beliefs, Learning, Teaching 

Research on teachers’ belief systems suggests that there are strong ties between teachers’ 
beliefs and their instructional practices (e.g., Thompson, 1992). Ernest (1989), in particular, 
identified teachers’ beliefs about mathematics and the teaching and learning thereof as key. Since 
the late 1980s, the work on teachers’ belief systems has grown to encompass work on college 
instructors’ beliefs systems (e.g., Bruce & Gerber, 1995, Warkentin, Bates, & Rea, 1993) and 
now includes a noticeable subset focused on mathematics instructors’ belief systems, such as 
LaBerge, Zollman, and Sons’ (1997) interviews with 26 mathematicians, Weber’s (2004) 
documentation of a mathematics professor’s teaching style and beliefs, and Speer’s (2008) 
documentation of a doctoral student’s beliefs about the learning of mathematics.  

This study focuses on the beliefs about learning attributed to mathematics instructors—
regardless of whether they held a PhD in mathematics—who had received institutional teaching 
awards. Although we recognize that receiving a teaching award may not imply teaching 
excellence, teaching award winners represent teaching role models sanctioned by mathematics 
departments: They represent what is currently valued by mathematics departments. Thus, we 
believe that understanding their belief systems, particularly about learning mathematics, is a 
worthwhile endeavor. To this end, the research question that this study attempts to address is: 
What consistencies or inconsistencies exist in the attributed beliefs about mathematics learning 
of award-winning instructors of collegiate mathematics? 

The theoretical perspective we espouse aligns with Speer’s (2005) view that all beliefs 
are attributed to teachers by researchers, for we agree that differentiating between professed and 
attributed beliefs ignores the role of the researcher. Furthermore, we follow Speer in viewing 
interviews as insufficient for gaining a complete picture of an instructor’s beliefs. Thus, we see 
this study as the opening act to a larger study that collects classroom data and allows for fine-
grained levels of investigation. 
 

Method 
Due to the small pool of recent teaching award winners, we opted to conduct semi-

structured interviews with each of the participants. These interviews provided us with the 
opportunity to ask a number of core questions regarding the instructors’ beliefs, while also 
allowing the participants to expound on anything they brought up as relevant to their teaching. 
Lastly, careful reading of the transcripts by both authors allowed for the creation of a coding 
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scheme that enabled us to differentiate and categorize different beliefs about learning, teaching, 
and mathematics in general.  

 
Participants 

Six mathematicians at a large Midwestern university were asked and agreed to take part 
in a study on beliefs. Each of these mathematicians had received at least one institutional 
teaching award. Of four possible teaching awards, three encourage nominations from faculty, 
staff, and students and are decided on by committees at the departmental or collegiate level. 
These committees are composed of faculty members and sometimes students. The last of the four 
teaching awards requires nominations from chairs and directors, encourages support letters from 
fellow colleagues, and is decided upon by a collegiate-level committee. Of the six 
mathematicians, five received at least one of the three former awards, and one received the latter. 

Four of the participants held PhDs in mathematics while the other two did not. One of the 
non-PhD mathematicians was female, and the other five participants were male. Although 
unintended, this gender ratio approximately mirrored the gender ratio of their mathematics 
department at the time. Henceforth, we refer to the two non-PhD mathematicians as Aleph and 
Beth, and the others as Gimel, Dalet, Waw, and Zayn. (All names are pseudonyms.)   
 
Data Collection 

Each mathematician was asked to participate in about an hour-long semi-structured 
interview on their beliefs about learning mathematics. The interviews were conducted by the first 
author in the first half of 2018, audio-recorded, and transcribed. All participants were asked 
several core questions about their teaching, what learning (the action) and having learned (the 
state) meant to them, the roles of student and teacher in the learning process, differences—should 
they see any—between learning mathematics and other subjects, the goal of learning, and their 
own learning.  

 
 

 
Figure 1. The coding scheme used to code the interview transcripts. This scheme illustrates both the top-level codes 

as well as the subcodes.  
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Data Analysis 
As the interviews were spaced out over several months, we were able to reflect on the 

interviews before beginning the coding process. We realized that although the focus was on 
beliefs about learning, the conversations in the interviews also turned toward teaching and the 
nature of mathematics. Furthermore, participants would tell anecdotes or relate factual 
statements that fell in neither of these three domains. Thus, we agreed on four top-level codes: 
Learning, Teaching, Mathematics, and Miscellaneous. Furthermore, after doing a trial-run of 
coding on the first interview, we discerned that there was more nuance to the interviews that was 
not captured by our four top-level codes, and so we decided to add subcodes to each of them. 
Figure 1 provides a list and explanation of the codes. The examples in Figure 1 are made up by 
the authors, as the actual coded segments from the interviews would be too long to include. All 
transcripts were coded with the qualitative data analysis software MAXQDA.  

To stay true to the spirit and flow of the interviews, as well as to make codes coherent, 
codes typically span multiple lines and include surrounding interactions between the interviewer 
and interviewee to present the complete context of each coded segment. Furthermore, declarative 
statements explicitly indicating our participants’ beliefs as well as participants’ succinct 
summaries of their own responses were separately highlighted. 

 
Results 

We shall discuss three results: (a) Depending on their student population, there was a 
large difference between the ways in which the instructors spoke about learning and teaching; (b) 
beliefs about learning mathematics were quite varied among the PhD mathematicians; and (c) 
teaching beliefs appeared to be tied to the PhD mathematicians’ learning beliefs.  
 
Student Population May Matter 

In listening to the participants, it became clear that there was a big difference in the way 
PhD and non-PhD instructors spoke about students, students’ learning, and teaching. This was 
possibly due to the student populations they respectively worked with: The non-PhD instructors 
typically did not teach proof-based classes and did not exclusively teach mathematics majors—if 
at all. Furthermore, their courses were often large classes of freshman and sophomores.  

In the interviews with the two non-PhD instructors (Aleph and Beth), efficiency and 
students’ motivation were of much larger relevance than in the other four interviews. For 
instance, Aleph noted that students’ “motivation is primarily this piece of paper, primarily 
getting this grade.” Beth echoes these thoughts sharing that a lot of her students lack curiosity 
and that “If you’re gonna come to a university like this, you need to understand the point of it, 
and I doubt, they don’t. They think of it as a stepping stone to a job.” Both Aleph and Beth work 
with students who they perceive as possessing neither motivation nor curiosity for mathematics 
and who are instead driven by the prospect of a degree and its impact on their career paths.  

With the lack of intrinsic motivation being such a concern for Aleph and Beth, it is, 
perhaps, not very surprising that they embrace efficiency. Aleph clearly stated that efficiency is 
his “theme”, and both speak of the need to save time in lectures. This is achieved by preparing 
course materials containing a lot of text that students traditionally would have had to copy down. 
Thus, the perceived lack of student motivation as well as the fixed amount of material that needs 
to be covered result in a push for efficiency. Aleph summarized this teaching predicament by 
comparing the teacher-student dynamic to an optimization game in which instructors attempt to 
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maximize students’ exposure to content to achieve learning, whereas students seek to minimize 
their exposure to content to the minimum level required to obtain their desired grade.   
 
Beliefs About Learning Vary Among the PhD Mathematicians 

Rather remarkable was the extreme variation of learning beliefs among PhD-holders 
(Gimel, Dalet, Waw, and Zayn). Gimel stated that learning happens mostly when students are by 
themselves and solve exercises. Although one might pick up a high-level concept from a group 
or get a hint from others, “mathematics, it really is a [pause] ultimately a solitary activity.” Thus, 
classes are merely an introduction to the exercises, where the “real learning” happens.  

Unlike Gimel, Dalet believed that “Certainly, there is times where mathematics is a 
solitary activity and, uh [pause] but there is also times when mathematics is a very social 
activity.” This more balanced approach is based on Dalet’s belief that one should spend some 
time figuring things out for oneself, but that there is also much to learn from communication 
with others—not only by listening, but also by explaining.  

Almost antithetical to Gimel’s were Waw’s views. He declared that “[collaborative] 
learning is a, in some ways the most effective way of learning.” Waw later added: “What’s 
essential is that the student must attempt to formulate their own arguments and in addition they 
need to, uh, be willing to examine other people’s arguments with a critical eye.” The 
examination of other people’s arguments and the consequent discussion is an aspect of learning 
that sets Waw’s beliefs apart from Gimel and Dalet’s. Thus, these three instructors form a 
spectrum that ranges from learning is a solitary activity (Gimel) to learning is a collaborative 
activity (Waw), via a blend of these two (Dalet). Interestingly, these views lined up with the 
ways in which the three instructors themselves had learned and continued to learn.  

Zayn added another layer to the solitary-to-social spectrum by pointing out that learning 
proof-based mathematics involves students overcoming a hurdle consisting of the details and 
rigor required in proof-writing. How do they overcome this hurdle? “I think the point is they 
overcome it, there's as many ways of overcoming it as there are students. And the point is that 
[pause] if you don't try to, like, force them to do it your way, but you just create an environment 
where they can do lots of trial-and-error …” He is forthright about having a learning style which 
is uniquely his own and which he seeks not to impose upon his students. Although Zayn is alone 
in clearly distinguishing his learning from his students’ learning, it should be noted that Dalet, in 
the middle of the solitary-to-social spectrum, made some remarks in a similar vein: In speaking 
about overcoming mathematical struggles and getting unstuck, Dalet stated that he does not 
know how to tell students how to go through that process. “I don’t even know if we all do it the 
same. You know, I assume we don’t, you know.” 

Consequently, each of the four PhD mathematicians had a set of beliefs about learning 
mathematics that clearly set him apart from the others. These beliefs can be said to vary along 
two axes: first, from learning mathematics is a solitary activity to learning mathematics is a 
collaborative activity and, second, from not differentiating between one’s own and students’ 
learning to making that distinction.  
 
Connections Between Learning and Teaching Beliefs of the PhD Mathematicians 

A particularly interesting theme in the interviews is how closely the PhD mathematicians’ 
beliefs about teaching aligned with their beliefs about learning. All of them had, to different 
extents, even developed analogies of their roles in the classroom.  
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Gimel, who saw learning as a solitary activity best achieved through exercises, described 
himself both as a climbing instructor and a spark. It was his goal to point students towards the 
exercises he carefully crafted, but it was the students’ responsibility to do them and learn from 
them: “The teacher’s job is to lead the student to a convenient rock face that he can climb, and 
then the student has to climb it.” Gimel could be the spark, but the students needed to be the fuel. 

Dalet, believing that a balance of solitary and collaborative activity might be ideal, saw 
himself as a showman and coach. He described his classes as a performance in which he tells 
jokes and jolts people awake: “I get pretty pumped up, I feel the adrenaline before going to class 
and I think it comes out, you know, I act pretty excited about what I'm doing.” In addition to 
providing this showman-like extrinsic motivation, he also tries to foster students’ intrinsic 
motivation by taking on the role of coach and providing encouragement. Although his classes are 
lecture-based, he incorporates his beliefs about collaborative learning by seeking to make his 
classes very interactive. He encourages a back and forth with his students and does not bring 
notes to class as he is prepared to change his plans on the spot. Furthermore, he may sometimes 
hold a problem class giving exercises, circulating the room, and letting students work together.  

Waw, as a proponent of collaborative learning, preferred a flipped environment. He 
viewed himself as a Sherpa, a tour guide of sorts. He made clear that he’s “not a tour guide who 
says, ‘OK, look at this, look at that, that, that, that.’” Waw is willing to make recommendations 
when asked for them. He’s not the agent in the tour guide–tourist relationship; his students need 
to approach him with their interests and questions about the mathematical realm they are touring. 
In response, he does not provide answers: He provides suggestions.  

Lastly, Zayn sees himself as a facilitator: “I am simply there to facilitate with as little 
help as possible, but also giving as much help as needed …” Assuming that everyone learns 
differently, it is his goal to create an environment that allows him not to teach the students, but to 
facilitate their learning. This is done in a setting with minimal lecturing and a focus on group 
work. He also recognizes that this will not be beneficial for all students. Yet, he believes that he 
can help the greatest number of people with the environment he creates in his courses. 

Thus, we see that Gimel, Dalet, and Waw’s beliefs about their teaching align neatly with 
their beliefs about learning. Interestingly, Zayn realized during the interview that his own 
learning filtered through his belief that all students learn differently and affected his teaching: “I 
guess I made that whole teaching thing sort of. I guess it is made in my image, now that I think 
about it. I went through all that trouble of saying I don't want them to learn the way I learned, but 
now that you're making me say it …” Consequently, it appears as though all our PhD 
participants’ beliefs about their own learning translated to how they spoke about their teaching.  

 
Implications 

We see at least three implications of these interviews. First, “undergraduate mathematics 
instructors” as a group is perhaps too broad a set of participants for a beliefs study as the 
undergraduate population one teaches appears to provide important context for one’s beliefs. 
Second, the interviews demonstrate that as different as the PhD mathematicians are when it 
comes to their learning beliefs, most of them are very similar in not distinguishing between their 
own and others’ learning. Third, all PhD mathematicians’ beliefs about teaching mirrored their 
own learning, regardless of whether they distinguished between their own and others’ learning. 
Thus, awareness of the differences between one’s own and others’ learning does not necessarily 
translate into awareness of the frequent—as we discovered—similarities between one’s own 
learning experiences and one’s teaching beliefs.  
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Exploring the Impact of Instructor Questions in Community College Algebra Classrooms  
 

 Linda Leckrone Amin Ullah Amy Foster-Gimbel  
 
 Dmetri Culkar Holly Whitney Annemarie McDonald Vilma Mesa  
   University of Michigan  

We describe a process to characterize the questions asked by instructors and students in 
community college algebra courses. The goal is to measure the quality of mathematical 
questions that can speak to the level of student cognitive engagement with mathematics and to 
connect that quality with student outcomes in the course. As a first step, we explore the relation 
between frequency of different types of questions and other variables collected in the project. We 
seek to engage the audience in discussing the affordances and limitations of this work for 
assessing quality of instruction in connection to students’ performance. 

Keywords: Community Colleges, Algebra, Question Quality, Student Outcomes 

Questions are a form of discourse that have the potential to open up a conversation 
(Martin & White, 2005). Questioning in mathematics classrooms can play a significant role in 
advancing student engagement with mathematical content. In community college classrooms, in 
which the predominant mode of instruction is lecture, instructors say they use questions as a tool 
to keep students engaged with the content (Burn & Mesa, 2017). While most research has 
documented that questioning is an important classroom practice, it is unclear how questioning is 
correlated with student outcomes. Most of the literature on questions documents what instructors 
and students do when questioning takes place; describing for example the frequency of certain 
types of questions (Paoletti et al., 2018) or the types of reasoning that they may elicit (Temple & 
Doerr, 2012). However, assessing the impact of different types of questions has not been 
pursued, mainly because the work of analyzing classroom discourse is time-consuming, and is 
typically done on a small-scale basis with few instructors and lessons.  

We focus on community college algebra courses because their high failure rate is seen as 
a reason for students abandoning their plans to complete a degree (Bahr, 2010). As part of a 
large-scale study of algebra instruction at community colleges, we sought to establish whether 
and how, the quality of questions relates to various student outcomes in the course. In this 
preliminary report, we focus on the process of developing a system to code the quality of 
questions asked by community college instructors teaching algebra courses, and a preliminary 
analysis that seeks to link the types of questions instructors ask in the classroom with student 
outcomes in those courses. Our focus was to accurately and reliably code questions asked during 
instruction and use frequencies of those codes to explore relationships to student performance. 
Because questions play a predominant role in community college mathematics classrooms, if 
there is a connection between the quality of questions and student performance, then improving 
how questions are used in the classroom may lead to more opportunities for student learning. If 
questioning practices do indeed have an impact on student outcomes in these courses, one could 
envision a way to use questioning as leverage for improving instruction in ways that can have a 
real impact on students. 
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Supporting Literature 
Cognitive theory provides strong support for engaging learners in activities that 

encourage them to draw on their knowledge (factual, procedural, conceptual, metacognitive) 
using an array of cognitive processes (e.g., remember, apply, evaluate, etc., Anderson et al., 
2001). In an environment in which lecture dominates, questions can open a space for cognitive 
engagement (Mesa & Chang, 2010). The literature suggests that community college mathematics 
instructors ask a large number of questions as they teach (Mesa, 2010; Mesa & Lande, 2014). 
These, and other studies of lecturers and faculty, also suggests that that instructors tend to ask 
questions that for the most part require students to recall information they already know; 
questions that demand higher level reasoning are asked less frequently (Larson & Lovelace, 
2013; Mesa, Celis, & Lande, 2014; Paoletti et al., 2018). However, the quality of questions that 
instructors ask can encourage students’ critical thinking (Boerst, Sleep, Ball, & Bass, 2011). 
Questions that require students to go beyond what the instructor has presented in the lesson may 
compel students to bring in information or make connections beyond what is known in the class. 
Such questions have higher levels of cognitive demand than questions that ask students to recall 
facts they are expected to know. We may then expect that students in courses whose instructors 
ask them questions that challenge their thinking or that demand high cognitive work will have 
better performance.  

Methods 
As part of the larger project, in fall 2017, 40 different instructors were video recorded 

teaching at least two lessons in intermediate and college algebra classrooms on one of three 
topics: linear, rational, or exponential equations and functions. The instructors, who taught at six 
different community colleges in three different states, volunteered to take part in the study. They 
filled out questionnaires on beliefs, personal information, and a test of their Mathematical 
Knowledge for Teaching Algebra (MKT-A). Their students also filled out various 
questionnaires, including a test measuring covariational reasoning, which was administered twice 
in the semester: two weeks after the beginning of the term and two weeks before the end of the 
term. For developing ways to capture the quality of instructor questioning we coded 37 lessons 
from 15 instructors selected randomly from the high, average, and low scores in the MKT-A 
questionnaire. Instructor and student scores were not shared with the coders.   

To code the questions in a lesson we adapted the taxonomy proposed in Mesa and Lande 
(2014), which includes two major categories of questions, mathematical and non-mathematical. 
Mathematical questions were coded as realized if the students provided an answer or the 
instructor waited a sufficient amount of time after each question (5 seconds or more), and 
unrealized if there was no answer and little or no wait time. Mathematical questions were placed 
into three categories: authentic, quasi-authentic, and inauthentic. In this paper, we focus only on 
mathematical questions. Table 1 presents the categories of questions of the coding process, their 
definitions, and examples. 
Table 1: Coding system for mathematical questions in videos of community college algebra lessons. 
Realized Authentic (RA) 
Questions that, if answered, would require 
students to use information beyond what they 
have learned in class. These are often open-
ended questions.   

T: So, did you guys come up with an example 
of a situation where the input, right, how I 
evaluate the output, changes based off the 
input? What are you coming up with?  
S: We decided that money could be {... } 
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Realized Quasi-authentic (RQ) 
Questions that require some knowledge and 
have limited possible answers. Questions that 
can be answered with material to be recalled 
that is new in that lesson.    

T: Anybody see how you could clear all these 
denominators with a valid mathematical 
process?  
S: Inaudible response 

Realized Inauthentic (RI) 
Questions that require using information that 
is known, expected to be known 

T: But remember, x + x is actually what?  
S: 2x 

Unrealized (UA, UQ, UI) 
Questions that are not answered by students 
and the instructor waits less than five seconds 
for a response 

T: And speaking of defining terms, what the 
heck is a rational function? (no pause) Well, 
it’s {answers question} 

Procedure  
Seven coders were recruited to assist in the coding of lessons. One difficulty of working 

in a large group of people, when decisions need to be reached, is the threat of groupthink. 
Groupthink is “a concurrence-seeking tendency that can impede collective decision-making 
processes and lead to poor decisions” (Choi & Kim, 1999).The most effective ways to combat 
groupthink is with the encouragement of dissenters. In our group, we created an environment 
where all members felt comfortable voicing their opinion. Disagreement among coders was not 
seen as a hindrance to the study or an obstacle to be overcome, but rather as a key aspect of the 
objectivity and reliability of our process. By emphasizing each individual’s viewpoint, we 
ensured that the final coding was never reached solely through a member’s concession and that 
every code given had strong collective support. To do the coding, each video file was given to 
one coder who transcribed and coded the questions. Then, the codes were hidden, and the video 
file and transcription were given to a second coder, who watched the video again to find any 
questions the first coder may have missed and to code the questions. The coders resolved any 
discrepancies by consensus; we held weekly meetings to refine the coding process using 
understandings from the resolution of discrepancies. To measure inter-rater agreement, we 
calculated either Cohen’s k (2 coders) or Fleiss’ k (3 coders or more) prior to resolving the 
discrepancies. Initially k values were low (around 0.3) but they improved as the protocol was 
refined after discussions (~0.6-0.8).  

There were two areas of difficulty: (1) differentiating between rhetorical questions and 
unrealized authentic questions, and (2) deciding the authenticity based on the knowledge 
available to the class. For (1), when introducing a new topic an instructor may say: “What the 
heck is a rational function?” If students did not respond to the question, and the instructor did not 
leave time for students to respond, some coders code this question rhetorical and some as 
authentic unrealized. The final decision was to code these questions as unrealized mathematical 
acknowledges that they could prompt discussion of new topics and therefore help students create 
new connections, were the instructor interested in giving students opportunity to engage with the 
questions. For (2), because instructors in different community colleges introduce topics in 
different orders, material that may be completely new in one class might have been covered in a 
previous lesson in another. This made it difficult to know whether a question related to new 
material or students’ prior knowledge. In order to manage this issue, we used (a) the course 
syllabi to resolve disagreements about what constitutes new material and prior knowledge, (b) 
relied on coders with experience teaching the course to decide, or (c), when neither (a) or (b) was 
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conclusive, used the “generous” coding approach and assigning the higher level. These decisions 
helped improve the inter-rater agreement.  

Preliminary Findings 
We coded 8,323 instructor questions of which about 20% were either authentic or quasi-

authentic (n = 1,600) and 40% (n = 3,332) were inauthentic. The average wait time across all 37 
lessons after a question was asked was about one second (0.99); only 4% of the questions had a 
wait time of 5 seconds or more. Across all lessons, instructors asked, on average, five questions 
every two minutes (2.49 questions per minute). These averages mask variations by lessons. 
Because the lessons have different lengths, we calculated the rate of questions (# of questions per 
lesson divided by lesson duration) to facilitate cross-comparison.1 Table 2 presents descriptive 
information for several variables that were created. 
Table 2: Mean and Standard Deviation for Variables in the Study. (N=37) 
 Mean SD 
Rate per minute of Realizeda Authentic and Quasi Authentic Questionsb .116 .069 

Rate per minute of Unrealized Authentic and Quasi Authentic Questionsb .083 .049 

Rate per minute of all Authentic and Quasi-authentic Questionsb  .498 .402 

Rate per minute of Inauthentic Questionsb  .982 .528 

Proportion of Authentic and Quasi-authentic Questionsc .198 .091 
Average Wait Time (in seconds) .986 .809 
Proportion of Questions for which there is a 5s or more Pause .048 .047 
Normalized Gain in Scores on Test of Knowledged .102 .064 

Final Gradee .589 .153 
Proportion of Students Passing the Course .755 .192 
MKT-Af  27.6 2.983 

Notes: a. A question is realized when there is a student response or a pause of five seconds or 
more after a question has been posed. b. Estimated as sum of the two categories of questions and 
divided by the duration of the lesson. c. Estimated as the sum of the two categories and divided 
by the total number of questions asked. d. Difference between end of term and beginning of term 
scores divided by the number of questions not answered in the beginning of term test. e. Average 
final grade on a scale of 100, divided by 100. f. Instructor score in the MKT-A; maximum points 
in the test was 34. 

In these lessons, the instructors asked about one inauthentic question per minute, and 
about one authentic or quasi-authentic question every two minutes. On average the gains in the 
student test of knowledge were small: about one and a half more questions responded correctly 
and about 10% of gain at the end of the term. The average grade in the courses was 59%, and 
about 76% of students passed their course. To explore possible relations between the quality of 
questions and the student outcomes, we tested correlations between these variables, using a non-
parametric test (Kendall’s t) as the distributions of these variables were not normal.  
                                                
1 We also averaged these rates to obtain a single value for each instructor, under the assumption that while there 
might be differences in lessons that may result in more or less use of different types of questions, the way in which 
instructors use questioning is a feature of their instruction and not as dependent on the content at stake. In this 
proposal, we only present analyses at the lesson level. 
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We found positive and statistically significant correlations between the rate of realized 
authentic and quasi-authentic questions and the MKT-A score (t = .207, p < .05) and the 
percentage of questions for which there is a pause of 5s or more (t =.231, p < .05). We also 
found negative and statistically significant correlations between the rate of inauthentic questions 
and the proportion of students who pass the course (t = -.209, p < .05) and the MKT-A score 
(t = -.205, p < .05). Finally, there was a positive and statistically significant correlation between 
the proportion of authentic and quasi-authentic questions and the MKT-A score. This suggests 
that instructors with higher MKT-A scores tended to ask (1) a higher rate per minute of authentic 
and quasi-authentic questions for which they wanted an answer (i.e., questions that were 
realized) and (2) a lower rate of inauthentic questions per minute. The rate of questions per 
minute for authentic and/or quasi-authentic questions was positively correlated with the 
percentage of questions for which there was a pause.  We anticipated this result. And as a 
consequence of the coding, we believe this suggests that when instructors paused it was likely 
that they did so for an authentic or quasi-authentic question. We found a positive and borderline 
statistically significant correlation between the average length of the pauses after the question 
and the percent grade (t = .192, p = .053) and the proportion of students passing the course 
(t = .19, p = .056). Thus, as the duration of the wait time increased, the pass rate in the course 
increased (or in courses in which more students passed, there was more wait time after questions 
posed). 

Discussion  
These are preliminary analyses, but they suggest, first, that it might be detrimental to ask 

too many inauthentic questions per minute, and second, that instructors with more knowledge of 
algebra for teaching (as measured with the MKT-A test) will pose more authentic and quasi-
authentic questions with longer pauses. These findings also suggest that when instructors ask 
authentic and quasi-authentic questions without giving students opportunity to respond or time to 
think about the questions, such decision might be detrimental for student outcomes. While using 
rhetorical questions to introduce a topic can be a strategy to capture students’ interest and 
attention in the end they might not be as effective. The connection between scores in the MKT-A 
and use of types of questions is promising, as it suggests concurrent validity between the two 
measures. The lack of relationship between the types of questions and student performance on 
the test of knowledge might be related to the generic character of the coding system. 

Questions for Discussion 
1. We coded mathematical questions using six categories, based on the level of cognitive 

demand required to answer it and whether or not the question was realized.  What are other 
possible ways of measuring the quality of questions? 

2. Interpreting the anticipated cognitive demand of a question is challenging. What measures 
should be included to increase the reliability of this type of coding? 
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Finding Free Variables as a Conceptual Tool in Linear Algebra. 

 
Inyoung Lee 

Arizona State University 

This preliminary report examines students’ interpretations of free variables in linear algebra. In 
linear algebra, students build understandings of concepts, such as a (in)consistent system of 
equations, a linearly independent set of vectors, and a subspace. All these concepts will be the 
foundation for students’ future learning in various fields. Therefore, it is crucial to investigate 
the notion of free variables as it is one of the constructs underlying work with each of these 
concepts. Here, I analyzed 110 linear algebra students’ written assessments from three different 
classes using grounded theory (Strauss & Corbin, 1994). The analysis shows that students use 
free variables as a conceptual tool to answer questions given in different problem settings. This 
paper reports categories of students’ interpretations of free variables and explores what the free 
variables mean to students in each category.  

Keywords: Free Variable, Column Space, Linear (In)dependence, Consistent System 

Literature Review and Theoretical Framework  

In linear algebra, students reason and compute with a set of vectors in a matrix form. 
Thus, how to interpret a set of vectors has a large effect on students’ learning in linear algebra. 
Larson and Zandieh (2013) found students have three interpretations to the matrix equation of 

Ax=b, where A=!"11 "12
"21 "22%, x=!&1&2%, b=!'1'2%; (a) Linear combination interpretation of 

x1a1+x2a2=b giving weights x1 and x2 to the column vectors of a1 and a2 being equal to the 
resultant vector b. (b) System of equations interpretation a11x1+a12x2=b1 and a21x1+a22x2=b2 
viewing the entries of A as coefficients to the linear equations and entries of x as a solution set to 
the same system of equations. (c) Transformation interpretation T: xàb, where T(x)= Ax, 
reaching the vector b by multiplying A to the input vector x. Larson and Zandieh (2013) offer 
evidence about how students interpret the matrix multiplication of Ax=b and how students view 
the matrix A as well. Students may interpret the matrix A as a collection of column vectors or a 
collection of row vectors or neither of them. Also, Larson (2010) found that students have two 
different computational strategies for performing matrix multiplication; linear combination 
column vectors and row-focused computation. In this sense, I adopt Larson and Zandieh (2013) 
and Larson (2010)’s perspective for interpreting the matrix equation as my theoretical 
framework. 

Possani (2010) pointed out three types of students’ difficulties interpreting with the 
matrix equation Rx=b¢ shown in Figure 1, where R is a row reduced matrix obtained by applying 
elementary row operations to the matrix equation Ax=b. The first type of students is not able to 
unfold the form Rx=b¢ into the corresponding system of equation. The second type of students 
plugs a few numbers into the free variables but does not know what to do with them. The third 
type of students finds just a particular solution by substituting numbers for free variables. The 
three types of students’ difficulties raise the issue of how students treat free variables when they 
appear in a row reduced matrix. 

 
Figure 1. Rx=b¢ obtained from Ax=b (Possani, 2010) 
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Harel (2017) mentions how limited in-service teachers’ conceptions of free variables can 
be. This issue came out of the discussion about the relation between a solution, x=a+tb, of a 
non-homogeneous system S1 and the solution, tb, of its associated homogeneous system S2, 
where t is a free variable, and a and b are column vectors. Harel urged the in-service teachers to 
substitute 0 or 1 into the free variable so that they could find out the relation that the solution for 
a homogeneous system is nothing but a special case of the solution for the non-homogeneous 
system. However, the in-service teachers were reluctant to substitute 0 or 1 for the free variables 
t1,…tk, wherein the solution for the non-homogeneous is given in a vector form of 
x=a+t1b1+…+tkbk because they conceived that putting specific numbers in free variables is 
mathematically illegitimate. The in-service teachers did not allow the free variables to range 
freely across many values, leading me to question, “what in nature do free variables mean to 
students?”  

Dogan (2018) found that students connect the absence of identity matrix in RREF (Row 
Reduced Echelon Form) with the existence of a non-trivial type of solutions. In other words, 
students conceive that the existence of free variables guarantees the existence of non-trivial 
solutions to the system. Wawro (2014) investigated students’ quotes on free variables in her 
study of students’ reasoning about the invertible matrix theorem. A student mentioned that “If 
RREF is linearly dependent, you’re going to have a free variable, then there has to be more than 
one input to get the same output” This student conceives that linear dependence guarantees a free 
variable(s) and the existence of free variables allows for multiple inputs to reach a certain value. 
The studies of Wawro (2014) and Dogan (2017) provide evidence of students’ understanding 
that the existence of free variables is closely related to concepts in linear algebra, such as linear 
dependence and one-to-one transformation. Additionally, Hannah et al. (2016) pointed out that 
the number of free variables is also related to the dimension of the column space and row space 
in students’ conceptions. 

Many researchers in linear algebra have investigated students’ thinking and 
understanding of various concepts such as linear (in)dependence, span, and eigen theory; 
however, students’ conceptions of the notion of free variable itself have not been investigated 
much. Even though students regularly use them, free variables have never been a focus of study.  
Therefore there is a need to examine students’ foundational understanding of free variables and 
how this understanding affects their further reasoning processes. This study investigates what 
free variables mean to students by asking the following specific questions:  

(1) How do students determine if there is free variable? 
(2) What are the roles of free variables when students are solving problems in linear 

algebra? 

Methodology 

The population of this study is one-semester course linear algebra students enrolled in a 
large research university in the United States. The data comes from three different classes’ 
written assessments; 34 students with Exam A, 37 students with Exam B, 39 students with Exam 
C. The exams cover linear algebra concepts, such as solving linear systems, matrices, 
determinants, vector spaces, bases, linear transformations, eigenvectors, and decompositions. 
The exams consist of pairs of the multiple-choice question and its follow up open-ended question 
asking why it is chosen, T/F question and its follow up open-ended question justifying the 
answer, and independent open-ended questions. Students are required to show their work for 
each question to receive full credit. All the students’ work was digitally scanned before getting 
graded and documented in the alphabetical order by last names and then shared in Dropbox 
folder. 
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This study analyzed the data using the technique of grounded theory (Strauss & Corbin, 
1994). At the first stage, what students mentioned about free variables was explored in the 
context of the problem provided by the full version of the written assessments. As performing the 
initial open coding based on constant comparative analysis, the first level of categories emerged; 
(a) row-centered free variable interpretation R and (b) column-centered free variable 
interpretation C. The way students view the location of a pivot in RREF determines whether it is 
R or C. Focusing on the two interpretations of R and C, the second level of categories emerged; 
(a) linear independence LI and linear dependence LD, (b) column space CSP, and (c) consistent 
system of equations CS and inconsistent system of equations IS. These three categories disclose 
how students conceive free variables in relation to other concepts, such as linear independence, 
column space, and consistency. Students’ answers on every one of the concepts with free 
variables were coded accordingly.  

Result 

In this section, I report findings on the notion of free variables represented in students’ 
work by the categories that emerged during the two phases of data analysis. 
How to determine if there is a free variable(s) 

1. Row-centered interpretation “R”; this category connects the existence/lack of pivot 
in rows with the existence of a free variable. Students in R affirm the existence of free variables 
when there is a lack of the pivot in any “row”. Once any row of zeros is found, students 
recognize the lack of pivot for the row, taking a free variable from that row. Figure 2 illustrates 
students’ work that focuses on the relationship between the pivot row in a row reduced matrix 
and the existence of the free variable. The students marked boxes of ones representing them as 
pivots and interpreted that there exists a free variable x4 due to the lack of the pivot in the last 
row since the last row consists of all zeros. These are classified into R in that students obtain the 
free variable from the row-centered interpretation. This is consistent with Larson and Zandieh 
(2013) and Larson (2010)’s perspective in that students’ notion of free variables varies with row-
centered views on the vectors that make up a matrix.  

 

  

Figure 2. #3(a) of the assessment and students’ answer (Exam A); “R” 

2. Column-centered interpretation “C”; this category connects the existence/lack of 
pivot in columns with the existence of a free variable. Students in C affirm the existence of the 
free variable when there is a lack of pivot in any “column”. Once the lack of pivot for any 
column is found, students take a free variable(s) from that column. Figure 3 illustrates students’ 

answers that focus on the relationship between the pivot column in a row reduced matrix !1 0
0 1% 

obtained from ! . 4 . 3
−.5 1.2%	and the existence of free variable(s). These are classified into C in that 

students identify free variables from the column-centered interpretation. This is consistent with 
Larson and Zandieh (2013) and Larson (2010)’s perspective in that students’ notion of free 
variables varies with column-centered views on the vectors that make up a matrix.  
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“ it is one to one because row reducing 
the original matrix there are no free 
variables meaning for every ‘column’ 
there is a pivot.” 

 
“ No free variables, pivots in each 
‘column’ ” 

Figure 3. #5(d) of the assessment and student’s answers (Exam B); C 

What to do with the free variables 

1. Linear independence “LI” vs. linear dependence “LD”; this category shows 
students’ use of the existence of free variables with the concepts of linear 
independence/dependence. Figure 4 illustrates a student’s solution that focuses on the 
relationship between linearly dependence and the existence of free variables. The student finds 
free variables as a sufficient way to confirm linear dependence. Finding free variables is a tool to 
determine whether a set of vectors is linearly independent or dependent. 

 
“ there are two free variables. which means that twos of the mixes can be any 
amount ”  

Figure 4. #2(a), (b) of the assessment and a student’s answer (Exam C); LD 

2. Column Space “CSP”; this category shows students’ use of the existence of free 
variables to find bases of column space. Figure 5 illustrates students’ solutions focusing on the 
relationship between basis vectors in column space and the existence of free variables. The 
students interpret that finding columns with a pivot(s) is sufficient for the columns to be the basis 
vectors in the column space. Students selected the first two columns to be the vectors in the 
column space since those columns have pivots within it. Finding free variables is a tool to 
determine whether a column vector could be a basis for the column space. 

 

 

 
Figure 5. #2(b) of the assessment and students’ answers (Exam B): CSP 
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3. Consistent System of equations “CS”; this category shows students’ use of the 
existence of free variables to determine whether it is a consistent system of equations. Figure 6 
illustrates a student’s answer focusing on the relationship between the number of solutions of a 
system of equations and the existence of free variables. The student identifies the existence of 
free variable(s) from more unknowns than the number of equations and concludes that the free 
variable allows the system of equations to have infinitely many solutions. Finding free variables 
is used as a tool to determine whether the system of equations is always consistent or not. 

 
“~ more unknowns than equations… at least one free variable allowing 
for infinitely many solutions” 

Figure 6. #3 of the assessment and student’s answer (Exam C); CS 

In the second level of categories emerged as LI/LD, CSP, and CS along with the 
existence of free variables, students have different perspectives to view a matrix; as a collection 
of columns or as a collection of rows (Larson & Zandieh, 2013; Larson, 2010). 

Discussion 

I came up with two levels of categories on free variables found in students’ written 
assessments analysis. Figure 7 shows the categories disclosed throughout the different problem 
settings.  

 

Figure 7. Categories with two phases of students’ meanings of free variables 

Students mention the term ‘pivot’ frequently with the term ‘free variables’, however, I 
could not determine how students actually define ‘pivot’ from this written assessment analysis. 
Nevertheless, I could say that students note the existence of free variables from where the lack of 
a pivot in RREF appears. In addition to finding free variables, students link free variables to 
other concepts. In other words, students utilize free variables as a conceptual tool since free 
variables are used to answer questions related to the concepts, such as linear 
independence/dependence, basis vectors in column space, and consistent/inconsistent system of 
equations. Due to the nature of analyzing the comprehensive written assessment, it was not quite 
easy to discern how students justify the connections between the existence of free variables and 
other concepts. Despite the limitations, this study discloses many issues in students’ learning on 
a set of vectors of a matrix in linear algebra.     
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How Do Mathematicians Describe Mathematical Maturity? 
 

Kristen Lew 
Texas State University 

The concept of mathematical maturity is one that, for some, elicits clear meanings and perhaps 
illustrations of ideal mathematical students. Mathematicians have been reported to use this term 
in various ways, yet there is no clear or empirically based description of mathematical maturity 
at this time. This proposal explores existing descriptions of mathematical maturity as well as 
descriptions of the related concepts of mathematical intuition and mathematical beliefs. This 
proposal reports preliminary findings from interviews with mathematicians investigating their 
understandings of mathematical maturity. Preliminary results include three main components of 
mathematical maturity: ways of thinking about mathematics, mathematical intuition, and comfort 
with and competence in mathematics.  

Keywords: mathematical maturity, mathematicians, advanced mathematics courses 

“Mathematical maturity” is a term often used by many mathematicians to describe some 
collection of desirable features in their advanced undergraduate students. In some cases, 
mathematical maturity can even be listed as a prerequisite requirement for advanced mathematics 
classes or as a learning objective in undergraduate course descriptions and syllabi. The concept is 
ubiquitous enough within practice to warrant a Wikipedia page which provides the following 
description: 

Mathematical maturity is an informal term used by mathematicians to refer to a 
mixture of mathematical experience and insight that cannot be directly taught. 
Instead, it comes from repeated exposure to mathematical concepts. It is a gauge 
of mathematics student's erudition in mathematical structures and methods. 

Meanwhile, this description is worrisome for multiple reasons. First, describing mathematical 
maturity as an informal term suggest that it is not used in an official capacity. Second, describing 
mathematical maturity as “a mixture of mathematical experience and insight” is remarkably 
vague. Third, the perspective that mathematical maturity cannot be taught is suggestive of a 
perspective that a learner can inherently succeed at mathematics or they cannot.  

This proposal explores the concept of mathematical maturity from the perspective of 
mathematicians discussing their understanding of mathematical maturity in the context of their 
undergraduate students. The literature review and theoretical perspective ground the discussion 
in published opinions of expert mathematicians, mathematical philosophy, and existing work on 
related topics. Preliminary results from interviews with five pure mathematicians highlight three 
main components of mathematical maturity and ways these mathematicians report to foster 
mathematical maturity in their students.  

This study investigates the following research questions: How do mathematicians 
describe mathematical maturity? Is there a difference between how pure mathematicians and 
applied mathematicians describe mathematical maturity?  

Literature Review and Theoretical Perspective 
While mathematical maturity may be viewed as a goal of university mathematics and a 

characteristic of an ideal advanced undergraduate student, the treatment of mathematical 
maturity in the literature does not reflect this importance. Steen (1983) described mathematical 
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maturity as impossible to define, but suggested that there are “several marks of maturity that 
most mathematicians will instantly recognize” (p. 99). These marks include the ability to abstract 
and the ability to synthesize. Steen continues to identify additional “criteria of maturity” all listed 
as various abilities (for instance, the abilities to use and interpret mathematical notation, to 
generalize, to perceive patterns) she believed mathematically mature students must possess. 
Steen’s essay is based on the author’s and her colleagues’ professional opinions, and very little 
has been published on the specific topic of mathematical maturity since.  

Meanwhile, a number of famous mathematicians have published their opinions around 
their understanding of mathematical thinking, its development, and the mathematical education 
of an individual. For instance, Tao (2007) argues that mathematical education can be roughly 
divided into three stages: a pre-rigorous stage, the rigorous stage, and a post-rigorous stage. He 
suggested that mathematics is first taught informally, then students are taught to be more precise 
and formal, before they are ultimately to return to the informal—using their intuition which is 
now supported by their comfort with the “rigorous foundations”. Whereas, Thurston (1998) 
suggested that human language, visual/spatial sense, logic/deduction, 
intuition/association/metaphor, stimulus-response, and process/time are important for 
mathematical thinking.  

These various existing descriptions of mathematical maturity and important 
characteristics of successful mathematical thinking and learning do not offer empirically tested 
frameworks of mathematical maturity, but do provide an impression of what might be important 
or necessary aspects of mathematical maturity. In particular, these descriptions suggest the 
significance of a learner’s mathematical beliefs and intuitions, which are discussed below.   

Mathematical Beliefs 
The existing literature on mathematical beliefs is expansive and diverse in its 

interpretation of the concept. Muis’s (2004) review of 33 studies on students’ epistemological 
beliefs highlighted this variety and focused on “beliefs about the nature of mathematical 
knowledge and mathematical learning” (p. 324). In this review, Muis identified that much of the 
research surrounding students’ mathematical beliefs found the students to possess beliefs that are 
nonavailing—or those that either do not influence or negative influence learning outcomes. For 
instance, the literature reviewed identified students as believing that 1) mathematical knowledge 
is unchanging, 2) the goal in mathematics is to find the correct answer, 3) knowledge is delivered 
by an authority, 4) mathematical ability is innate, 5) components of mathematical knowledge are 
unrelated, and 6) students are incapable of constructing knowledge and solving problems on their 
own. Muis went on to explain the negative effects of students’ nonavailing beliefs on their 
strategies for learning and motivational orientations, calling for future research considering the 
impact of teachers’ epistemological beliefs and their instructional styles on students’ beliefs.  

Indeed, research has shown that students’ experiences within their mathematics 
classrooms are highly influential in shaping students’ beliefs about mathematics. For example, 
Schoenfeld’s (1989) survey of 230 high school students’ mathematical beliefs highlighted the 
separation in students’ minds between the procedural, rote mathematics they were accustomed to 
seeing in their schools from the interpretive and creative nature of mathematics.  

Moreover, the mathematics education literature has further shown that students’ 
mathematical beliefs affect their understanding and study of mathematical content. For instance, 
Szydlik’s (2000) study of 27 calculus students indicated that of the students interviewed, those 
with “internal sources of conviction provided more static definitions […] and fewer incoherent 
definitions than students with external sources of conviction” (p. 272). As such, students with 
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nonavailing beliefs, such as believing that the goal of mathematics is to successfully receive 
knowledge from an authority to directly use the knowledge to achieve the correct answer, may 
have more difficulties understanding mathematical content than those with availing beliefs.  

Mathematical Insight and Intuition 
The above descriptions of mathematical maturity given by Wikipedia and Steen (1983), 

as well as the descriptions of the learning and thinking of mathematics by Tao (2007) and 
Thurston (1998) all suggest the necessity of mathematical insight and mathematical intuition.  

Meanwhile, definitions of both mathematical insight and mathematical intuition seem to 
have largely evaded the literature. For instance, Keijzer and Terwel (2003) claim that 
“mathematical insight is widely recognized as an important goal of education”, despite failing to 
provide a definition of the term. Hartmann (1937) offered the generic definition of insight as the 
“process of making an organism aware of the conditions governing the phenomena to which it is 
reacting” (p. 19), but does not extend this discussion to explain precisely what is mathematical 
insight.  Griffiths (1971) even suggested that it would be impossible to define mathematical 
insight and instead offered examples and anecdotes of theoretical students who lacked 
mathematical insight. Griffiths does continue to suggest that mathematical insight and 
mathematical intuition are not the same concept; however, others disagree and use them 
interchangeably.  

Mathematical intuition has been more explicitly discussed in the literatures of 
mathematical philosophy and mathematics education. For instance, Feferman (2000) describes 
intuition as the “insight or illumination on the road to the solution of a problem” (p. 317) and a 
“mathematicians’ hunches as to what problems it would profitable to attach, what results are 
expected, and what methods are likely to work” (p. 318). Similarly, Fischbein (1982) described 
intuition as the unconscious ability to “organize information, to synthesize previously acquired 
experiences, to select efficient attitudes, to generalize verified reactions, to guess, by 
extrapolation, beyond the facts at hand” (p. 12). Tall (1980) described intuition as “the global 
amalgam of local processes from the current cognitive structure selectively stimulated by a novel 
situation” (p. 2). Thus, we do see an acknowledgement of an unconscious or semi-conscious 
aspect of intuition as well as the problem-solving aspect of intuition in each of these descriptions 
above. It is further noteworthy that in Burton’s (1999) study involving interviews with 70 
mathematicians, most of the mathematicians viewed intuition as a “necessary component for 
developing knowing” (p. 31). Burton continued that while these mathematicians had this 
opinion, none of them offered comments on how one might develop mathematical intuition.  

Methods 
This study took place at a large doctoral-granting research institution in the United States. 

Participants were recruited via email. Nine mathematicians (five pure mathematicians and four 
applied mathematicians) volunteered to participate and were interviewed by the author. In the 
interviews, participants were asked if they had ever used the term mathematical maturity. If the 
participant indicated that they had, they were then asked several probing questions about the 
nature of the term. If they participant indicated that they had not ever used the term mathematical 
maturity, they were asked if they were familiar with the term. If a mathematician was not 
familiar with mathematical maturity, the interview was terminated.  

For the mathematicians familiar with the term mathematical maturity, the interviewer 
asked 1) in what context they had used the term mathematical maturity, 2) if mathematical 
maturity is a feature of a person or a mathematical artifact, 3) how they would identify if a 
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student is mathematically mature, 4) what features of a student (or their work) would help them 
to identify the student as mathematically mature, and 5) if any of the features are clear or key 
signs of mathematical maturity. Finally, the interviewer asked the mathematician if mathematical 
maturity is something they aim to foster in their students and if so, in which classes, why those 
classes, and how they attempt to foster mathematical maturity in their students.  

Mathematicians were not compensated for their participation. Interviews ranged in length 
from 2 minutes to 50 minutes. Mathematicians varied in years of experience teaching advanced 
mathematics courses and areas of study.  

Analysis 
Each of the interviews in which the mathematician indicated familiarity with the term 

mathematical maturity was transcribed and analyzed. The data was analyzed using open coding 
in the style of Strauss and Corbin (1990). Each interview was individually coded for descriptions 
of mathematical maturity and various aspects or indicators of mathematical maturity offered by 
the participant. Categories of these indicators and descriptions were then tentatively identified 
per interview. The various themes and indicators of mathematical maturity of each of the 
interviews were then synthesized to identify categories of codes discussed by multiple 
mathematicians. Transcripts were then reviewed for any additional occurrences of the codes not 
identified in the earlier pass through the data.  

Preliminary Results 

Pure Mathematicians and Applied Mathematicians 
One striking finding from this study concerns the interviews with (self-reported) applied 

mathematicians. As noted in the methods, each interview began with the question, “Have you 
ever used the term mathematical maturity?” Surprisingly, none of the four applied 
mathematicians has used the term. Moreover, when probed further, none of the four applied 
mathematicians even appeared to be familiar with the term. At best, two of the four conjectured 
that the concept was related to a student’s competence in mathematical activities, but each of the 
applied mathematicians did not feel comfortable continuing the conversation around 
mathematical maturity. As such, the remainder of the results focus solely on the interview data 
from the pure mathematician participants.  

Aspects of Mathematical Maturity 
Below is a table representing each of the codes, and the categories they were sorted into, 

that resulted from the open coding analysis described above. As seen in Table 1, each code 
included was present in at least two different interviews and the codes were sorted into three 
categories: Ways of thinking about mathematics, Mathematical intuition, and Comfort with and 
competence in mathematics. Due to constraints on the length of this proposal, I note that the 
Ways of thinking and Mathematical Intuition categories are closely tied to the literature on 
mathematical beliefs and mathematical intuition (respectively) and provide only a brief 
description and selected quotes to highlight some of the codes included in the Comfort with and 
Competence in Mathematics category.  

 
Table 1. Categories and codes for mathematical maturity mentioned by the pure mathematicians. 

 M2 M3 M4 M5 M6 
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Ways of Thinking about Mathematics 
Having a holistic view of mathematics 
Being accepting multiple representations and changing definitions 
Having autonomy or agency over their own learning 

 
X 
 

X 

 
 

X 

 
X 
X 
X 

 
X 
X 

 
 

X 

Mathematical Intuition 
Knowing what to do with problems 
Recognizing the crux of an argument 
Knowing if a solution makes sense 

 
 
 

X 

 
X 
X 

 
 

  
X 
X 
X 

Comfort with and Competence in Mathematics 
Having the ability to absorb and use definitions and theorems 
Having the ability to effectively communicate mathematics 
Having the ability to abstract and make connections across topics 
Having the ability to self-assess, validate, and reconstruct 
arguments 

 
 
 
 

X 

 
X 
X 

 
 

X 
X 

 
X 
X 
X 
 

 
 

X 
X 
X 

 
Comfort with and competence in mathematics.  This category largely focuses on 

necessary skills described as indicators of mathematical maturity by the pure mathematicians in 
the study. For instance, M5 believed the ability to effectively communicate mathematics was 
essential to one’s mathematical maturity. When asked what a specific indicator of mathematical 
maturity might be, M5 said, “Being able to take an intuitive idea and express it using a sensible 
notation, and yeah, putting it into words in a sense”. M5 continued to explain that being able to 
express one’s ideas, as well as understanding the ideas of others’, regardless of the other person’s 
level of comfort with mathematical notation is essential.  

When asked if he had used the term mathematical maturity, M3 immediately agreed and 
continued to explain that mathematical maturity is the ability to abstract in a useful way. As an 
example, M3 said “if we show our students a proof that there are infinitely many primes, what’s 
the point? It’s not really that there are infinitely many primes.” Later he explained that by 
abstraction, he meant “the ability to read the story and understand the moral rather than just 
seeing that the tortoise beats the hare”. Throughout his interview M3 focused on students’ 
abilities to view (or abstract) the bigger picture and motivation behind a proof as indicative of 
mathematical maturity.  

Conclusion 
As a preliminary study, these findings are still being interpreted. The findings of this 

study will also have various limitations due to the small sample size and exploratory nature.  
However, mathematical maturity is a concept that has largely been deemed ineffable yet 

continues to be used in mathematical practice. Moreover, we see that not all mathematicians 
(notably the applied mathematicians in the study) are familiar with the term. Meanwhile, as 
mathematical maturity, mathematical beliefs, and mathematical intuition are intrinsically tied, 
not only to each other, but also to student success, this study aims to provide an empirical first 
step toward understanding mathematical maturity. Future research considering these topics could 
lead to future strides for mathematics education research. Such a clearer conception of 
mathematical maturity can afford future research on fostering and developing mathematical 
maturity over time and measuring a learner’s mathematical maturity.  
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Re-Humanizing Assessments in University Calculus II Courses

Kelly MacArthur

University of Utah

Answering the call of Francis Su (Su, 2017) that "math is for human flourishing" and a 

challenge by Rochelle Gutiérrez to rehumanize math (Gutiérrez, 2018), I changed assessments 

in two university calculus II courses. The traditional way to change assessments is to change the

questions, either by type or by content. Instead, I focused on changing/rehumanizing the 

structure of exams to include small group discussions between students for part of the exams. 

This assessment change, along with a consistently enacted classroom mission statement, 

produced higher exam scores and improved student engagement. Through surveys, focus groups 

and interview data, students also reported feeling they had a deeper understanding of concepts, 

as well as a humane and positive math experience in a math class they thought was very 

difficult.

Keywords: calculus, assessment, rehumanizing, engagement

Objectives/Purpose and Theoretical Framework

Mathemaphobia was first coined by Sister Mary Fides (Gough, 1954), who taught high 

school mathematics for years and was concerned about students who experienced anxiety in 

learning mathematics, with a pronounced increase in anxiety during exams, that then impacted 

their attendance and interest in mathematics and school. This phenomenon was later coined 

simply as math anxiety (Tobias, 1978), with studies showing correlation between math anxiety 

and test anxiety (Hembree, 1990). More than 50 years after the idea of mathemaphobia was 

introduced, we continue to grapple with this problem (Perry, 2004). It is still true that in most 

math classes exams tend to be high-stakes, since they substantially impact the grade a student 

receives and grades tend to be how many students (and society) measure success. Additionally, 

even for college STEM majors who do not have a general fear and loathing of mathematics, as 

Marilyn Burns called it (Burns, 1998), some of them may experience anxiety on math exams 

(Perry, 2004). 

Knowing that math anxiety is a serious issue, a variety of solutions have been proposed, 

including both behavioral-related methods and cognitive treatment (Hembree 1990; Perry, 2004).

A recent direction comes from ongoing discussions about math education and equity. Within the 

last year, Rochelle Gutiérrez has coined the term "rehumanize mathematics" (Gutiérrez, 2018), 

issuing a call to action to bring a more humane element into the classroom by focusing on 

practices and curriculum that better serve typically underrepresented groups of students. 

Similarly, another call for a focus on rehumanizing mathematics comes from a mathematician 

who, in his closing talk as he stepped down from being MAA President, called on 

mathematicians and math educators to remember that mathematics is "for human flourishing" 

(Su, 2017). 

While there are many ways to implement such goals of rehumanizing math, one potentially 

impactful leverage point is to focus on assessments as a known stressful and high-stakes part of a

math course. Theses changes were implemented in a college calculus II course where I was the 
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instructor of record and thus this is an example of teacher-researcher research. (Schoenfeld & 

Minstrell & van Zee, 1999; Zimmerman & Nelson, 2000). My goal in enacting these changes 

with my exams was to answer the call to rehumanize mathematics by playing  the game called 

mathematics and also changing the game (Gutiérrez, 2009). It was to answer the call to "find a 

struggling student, love them, be their advocate" (Su, 2017). It was to increase students' sense of 

belonging in their mathematical pursuits.

One important research question I'm exploring is: how does a rehumanizing-math approach 

to assessment in a large calculus 2 class impact exam scores and student learning? 

Methods

I drew on my previous knowledge and experience regarding mathemaphobia and exam 

anxiety; then combined that knowledge with the current call for change. Thus, I decided to 

change the structure of the exam and not the content of the exam. I attempted to rehumanize 

mathematics in my calculus II classrooms by decreasing test anxiety and increasing student 

interaction, to build a community rather than a competitive setting. Research has shown the 

importance of discussion for increased comprehension and a positive impact on learning 

(Roschelle, 1992; Engle  & Conant, 2010). Thus, I wanted the students to have access to 

mathematical discussion during exams to help showcase their knowledge. This change was made

in two sections of a high-enrollment calculus II course at a large public research institution. To 

explore what impact this change in assessment structure had on my calculus II students, I looked 

at their exam grades over the semester and their final grades, as well as qualitative data from 

surveys, focus groups and interviews. 

In my efforts to rehumanize the classroom and create a cohesive community of learners, 

every day in my classes, we have the class mission statement written on the board. "This is a 

kind, inclusive, brave, failure-tolerant classroom." The goal is to consistently remain in the 

conversation of kindness and to enact this statement every day in class, holding all students, TAs 

and instructor accountable for this work.

The three midterm exams were each split into two sections, one was a group portion of the 

exam (worth 32-36% of overall test score), taken during one class, and the other was a solo 

portion of the exam (worth the other 64-68% of the overall test score), taken on the next class 

day. The groups were created semi-randomly about 1-2 weeks before the exam. Each group 

contained three students (or possibly four). Each group portion of the exam contained some of 

the statistically hardest questions (based on years' of exam data). This encouraged the students to

discuss and defend their answers during the group exams. Each student turned in their own 

group-portion of the exam. 

During the group exam, students had 15 minutes to work on their own (silent-solo) and then 

the remaining 40 minutes to discuss the problems within their group. This way, each member of 

the group had time to process their ideas and actually solve most, if not all, of the problems on 

that part of the exam first, and then in the group discussions, everyone had something 

meaningful to contribute. For the silent-solo portion of the midterms, it was a usual testing 

structure where each student worked on their own.

The two-hour final exam was one intact exam, not in separate parts. The first 45 minutes was

silent-solo, the next 30 minutes was group discussion time, and the last 45 minutes was silent-

solo again. This enabled students to work on most of the exam by themselves and then discuss 
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some of their ideas/solutions within their group, get ideas to help them get unstuck, etc. Then, 

they had time to finish the exam on their own. 

Research data consists of (a) three different surveys students filled out throughout the 

semester which gave information about their attitudes, as well as feedback about their 

interpretations regarding rehumanizing the classroom, (b) focus group and interview data, and (c)

grade data, all from my spring 2018 calculus II courses. Additionally, I taught a high-enrollment 

calculus II course in the fall of 2017, and the grade data from that class is being used as control 

group data, since their exams were the standard exam structure. 

Data Analysis and Results

Grade Data

Table 1. This table shows the basic statistics from two semesters of Calculus II

courses. Fall, 2017, Calculus II course had no change in assessment. Spring, 2018, Calculus II courses 

had group-portion of exams implemented. 

Table 1 and Figure 2 show the statistics comparing exam scores from fall of 2017 (the 

control group), before implementation of the group portion of exams, and spring of 2018 

(comparison group), after implementation of the revised assessment structure. The results show 

that, in my aim to give students a more humane mathematical experience than a traditional math 

classroom provides, the spring 2018 scores on three midterms, final exam and final course scores

are all statistically higher than the fall 2017 data. Perhaps more interestingly, the standard 

deviations went down substantially with the new exam structure. (Note: no other changes to the 

courses were made between the two semesters.)

 

Figure 2. A line plot showing the same data as in Figure 1, with only the means (as points) and standard deviations

(as error bars at each point) present in this graph.

Fall, 2017 Midterm 1 Midterm 2 Midterm 3 Final Exam Final Scores

mean 79.6 64.4 73.7 82.5 81.9

median 85 64 77 86.5 84.2

stdev 18.6 21 22.8 16.5 15.8

low 24 8 12 7.5 19.38

high 106 106 107 103.5 104.34

n 169 157 151 144 144

Spring, 2018 Midterm 1 Midterm 2 Midterm 3 Final Exam Final Scores

mean 80.9 80.4 85.8 91 88

median 84 81 88 93 89.36

stdev 14 14.5 13.3 9.6 8.6

low 47 44 38 58 61.94

high 105 106 106 104 102.85

n 167 166 162 156 156
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The positive impacts of assessment changes were furthermore evident in the lowest exam 

grades, which were notably higher, suggesting that the changes helped students at the bottom of 

the class while also supporting students in the mid-performance range. For the top 10% of 

performers, there wasn't much difference in the statistics. Thus, this new exam structure does 

appear to either benefit students' grades or have a ceiling effect for the high performers' grades.

              Figure 3: This table shows the final score statistics broken down for each of the two semesters, for men and womxn.

          (Note: I've chosen to use womxn to denote all students who identify as either female, gender fluid or non-binary.)

 

In Figure 3, you can see the grade data, for only the final scores, across the two semesters for 

both men and womxn. Statistically, the grades went up for both groups of students. However, the

standard deviation for the men basically stayed the same and the standard deviation for womxn 

went down surprisingly with the new exam structure. 

Survey/Focus Group Data

For the survey data, unique codes were created from within the data and will be revised 

iteratively. So far, I've gone through the focus group and interview data with one pass, focusing 

mainly on patterns of comments and have not yet coded it iteratively. 

Recurring themes of (a) less anxiety experienced during the exams and (b) a community 

feeling in the classroom, in both the survey comments and the interview/focus group data, is 

captured by the following student quotes:

I feel like being able to start an exam by discussing the concepts and work with other 

students helps me do better on the solo portion and eases the nerves a bit.

I really think the group structure helps both those who are doing great and otherwise.

Explaining math and understanding it both require cooperation in my opinion.

The group portions are excellent, for me I have a tough time starting choosing the 

methods or test, but after I discuss with other I gain a better understanding of which one 

and why and then I can go forth with my process and usually complete it on my own.

The group exam structure not only positively impacted the grades, statistically, for the 

students, but it also helped build a community inside the classroom where students felt less 

anxious and more able to pursue mathematics as something to practice and make mistakes, as 

opposed to something they must be perfect at.

And, finally, when looking through the survey answers to a question about how students 
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interpret or define the idea of re-humanizing mathematics, I see a recurring theme of having a 

humane classroom environment initiated and enacted by the teacher, as well as the students, as 

one path to a rehumanized math experience. Here are a couple student quotes that epitomize that 

theme.

In my opinion, the idea of ‘Re-humanizing mathematics’ seems to be the idea of making 

math less robotic, cold and conspicuously heartless. I think the problem is less making 

math more human, and more getting people to see that math IS human. I think teachers 

could move towards this goal of ‘re-humanizing’ Mathematics by helping their students 

see that it is not a ‘genius subject’ that only someone with a computer for a brain could 

do, and that Mathematics is actually a really fun, cool subject invented by humans to help

us with our everyday lives.

I think teachers/educators can re-humanize math by making better learning environments 

in class, and by learning how to connect better with people.

I would like to think this has to do with framing math practice and math learning as a 

human endeavor, recognizing how it is connected to other human undertakings, and 

subject to some of the same biases and flexibilities, instead of being presented as 

sanitized, rigid, and binary by necessity. I think that the way we talk about math in 

classrooms can influence student receptiveness, and therefore, influence student 

engagement and comprehension. If students just feel like they are in class to intake a 

litany of procedures and formulas, and then to be assessed by reproducing them, 

mathematical thinking will stay relegated to one portion of their mind, and not interact 

with other ideas that students may simultaneously processing.

Significance

The group structure of part of the exams more closely mimics how mathematicians actually 

work, compared to the usual silent-solo style of examination. Mathematicians talk to each other 

when they're stuck on a problem. Then, they go back to work on the problem by themselves. 

Allowing students to discuss mathematics on high-stakes exams, defend their solutions to one 

another and bounce ideas off of someone else when they get stuck allows them to show what 

they truly know without having test anxiety get the better of them. I argue that this exam 

structure more authentically assesses student calculus knowledge than silent-solo exams.

Mathematics, as an intellectual pursuit, can frequently feel hostile for students. Many 

classrooms feel like such a competitive environment that students don't even want to ask 

questions in class for fear of being told they're wrong or incompetent or unintelligent, and even if

we educators don't explicitly say those words, that sentiment is too often portrayed to students 

(Jackson & Leffingwell, 1999). I argue that this new exam structure, along with the repetition 

and enactment of the class mission statement, created precisely the type of classroom where 

students felt a sense of belonging. 

I answered the theoretical call to rehumanize the classroom by boots-on-the-ground changes 

in assessments that produced overwhelmingly positive results. This structure engendered a kind, 

humane classroom, where students flourished doing mathematics. And, this structure can be 

replicated to increase the humanity within mathematics classrooms on a broader scale.
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“Let’s See” – Students Play Vector Unknown, An Inquiry-Oriented Linear Algebra Digital Game 

 
 Matthew Mauntel Janet Sipes 
 Florida State University Arizona State University 

 Michelle Zandieh David Plaxco Benjamin Levine 
 Arizona State University Clayton State University Arizona State University 
 
Abstract: The results we report are a product of the first iteration of a design-based study that 
uses a game, Vector Unknown, to support students in learning about vector equations in both 
algebraic and geometric contexts. While playing the game, students employed various numeric 
and geometric strategies that reflect differing levels of mathematical sophistication. Additionally, 
results indicate that students developed connections between the algebraic and geometric 
contexts during gameplay. The game’s design was a collaborative effort between mathematics 
educators and computer scientists and was based on a framework that integrates inquiry-
oriented instruction and inquiry-based learning (IO/IBL), game-based learning (GBL), and 
realistic mathematics education (RME). 

Keywords: Linear Algebra, Inquiry-Oriented Instruction, Game-Based Learning, Realistic 
Mathematics Education, Digital Game  

Student results in Linear Algebra courses and the extent of students’ struggles in the 
course are at times surprising to mathematicians and instructors. Making an enthusiastic case for 
the importance of linear algebra, Tucker (1993) states that Linear Algebra’s “theory is so well 
structured and comprehensive, yet requires limited mathematical prerequisites” (p. 3). In 
addition, he states “Linear Algebra is … appealing because it is so powerful yet simple” (p. 4).  
 The limited number of prerequisites and the simplicity described by Tucker often does 
not translate into ease for students (Britton, 2009; Dogan, 2017; Dorier & Sierpinska, 2001; 
Hannah, 2016; Hillel, 2000; Stewart, 2018; Wawro, Sweeney, & Rabin, 2011). Typically, a 
single course of linear algebra is offered or required in undergraduate education, a situation that 
presents additional challenges.  Tucker acknowledges and describes that “the challenge is to find 
a middle ground blending vector spaces and matrix methods and at a level that does not scare off 
the users and yet smooths the transition for mathematics majors to advanced courses” (p. 8).  
 The inquiry-oriented linear algebra (IOLA) curriculum was created based on principles of 
RME to guide students through differing levels of activity and reflection and to leverage their 
intuitive knowledge in the development of more formal mathematics (Andrews-Larson, Wawro, 
& Zandieh, 2017; Wawro, Rasmussen, Zandieh, Sweeney, & Larson, 2012; Zandieh, Wawro, & 
Rasmussen, 2017). Specifically, the curriculum includes a unit known as the Magic Carpet Ride 
(MCR) sequence that aims to support students in learning the concepts of span and linear 
independence (Wawro et al., 2012). Expanding IOLA and MCR into the realm of GBL, the 
promotion of learning by using digital games, may prove to be a productive way to support 
students’ learning of basic linear algebra concepts. Studies show a clear relation between games 
and learning (Gee, 2003), especially when thoughtful learning theories are incorporated into the 
design of games (Gee, 2005; Gresalfi & Barnes, 2015; Williams-Pierce, 2016). The combination 
of these various perspectives resulted in the development of the game Vector Unknown. 
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Theoretical Framework Utilized for Game Design 
The MCR task sequence, which follows RME design principles, aligns well with the 

structure of game design supported by GBL. Zandieh, Plaxco, Williams-Pierce, and Amresh 
(2018) developed a framework aligning aspects of GBL with RME and IO/IBL instruction. In 
considering the three perspectives, Zandieh et al (2018) focused on four aspects of design and 
implementation: structure of task sequence, nature of task sequence, students’ role, and teachers’ 
role. Drawing on specific recommendations from the literature the authors identified similarities 
along each of these four dimensions for each of the three perspectives. Consider, for instance, the 
structure and nature of task sequences. Gee (2003) states “Good games operate at the outer and 
growing edge of a player’s competence, remaining challenging, but do-able ... [therefore] they 
are often also pleasantly frustrating, which is a very motivating state for human beings”. 
Similarly, Rasmussen & Kwon (2007) articulate a perspective for Inquiry-Oriented instruction 
when they suggest that “challenging tasks, often situated in realistic situations, serve as the 
starting point for students’ mathematical inquiry”; they also assert that students should solve 
novel problems. Further, Laursen, Hassi, Kogan, & Weston (2014) state that “IBL methods 
invite students to work out ill-structured but meaningful problems”. Our research team has drawn 
on the design principles of GBL and IO/IBL to convert the first task of the MCR sequence (an 
RME-based task) to produce the game Vector Unknown.   

 
Vector Unknown Gameplay 

Gameplay currently consists of five levels and data from Levels 1, 2, and 5 was analyzed. 
The goal is to guide the rabbit to the basket; a sample screen is displayed in Figure 1. The player 
moves the rabbit by dragging up to two vectors from the Vector Selection area into the Vector 
Equation. Adjusting the scalars in front of the vectors in the Vector Equation generates a 
geometric representation (Predicted Path) of the linear combination. When the player has made 
selections and presses GO, the rabbit moves along each component vector until it reaches the 
sum of the rabbit’s location and the outcome of the vector equation. The mathematical notation 
for the move is recorded in the Log.    

 

 
Figure 1. Sample Screen 
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The game controls reflect common mathematical notation for a vector equation. Scalars 
were constrained to integers and can be adjusted  using plus and minus controls to encourage 
players 1) to make connections between numerical scalar adjustment and the corresponding 
change in geometry, and 2) to explore the idea of span. Each level includes a pair of linearly 
independent vectors along with a scalar multiple of each of the vectors. Level 2 excludes the 
Predicted Path provided in Level 1, requiring the player to visualize the path on their own or to 
find the solution using numerical methods. Level 5 includes the Predicted Path from Level 1, but 
the player must collect one to three keys on the board prior to approaching the basket; this 
requires the player to consider travel from a point other than the origin. 
   

Research Questions 
 This report presents some findings from the first iteration of a design-based research 
study (Cobb, Confrey, DiSessa, Lehrer, & Schauble, 2003) and will focus on answering the 
following questions:  

1. What are students’ strategies for completing the game Vector Unknown? 
2. How do students’ strategies vary according to their level of experience with linear 

algebra? 
Methodology and Participants 

This project is a collaborative effort of three public institutions: 1) a comprehensive 
Research I university in the southwestern United States, 2) a multi-purpose regional university in 
the southeastern United States, and 3) a comprehensive Research I university in the southeastern 
United States. Eleven clinical interviews were conducted across the three participating 
universities. Each interview lasted approximately one hour, during which participants were asked 
to complete three levels of the Vector Unknown digital game. As needed, the interviewer 
provided help on how to navigate the game’s screens and use the controls. Interviewers asked 
scripted questions along with impromptu follow-up questions. Impromptu questions were asked 
to further clarify and explore the participants’ thinking about gameplay as well as any 
mathematical insights or strategies the participant developed during gameplay. 

Participants were diverse with five students identifying as white, five students identifying 
as black, and one student identifying as Asian; five of the participants were males, and six were 
female. The students were selected to have a broad range of experience with linear algebra. 
Participants included Math, Biology, Computer Science, Education, and Engineering majors. 
The research team reviewed the interviews for strategies used in completing the game, and 
selected three research subjects to highlight differences in level of expertise in linear algebra. 
One student had never taken a linear algebra course, one was enrolled in linear algebra, and one 
had completed a linear algebra course a few months prior. 

  
Preliminary Results 

 
Case Study 1: Gwen - Limited Exposure to Linear Algebra 

Gwen has a degree in psychology and will be taking linear algebra in preparation for 
graduate school. She had no experience with linear algebra prior to playing the game. Her 
strategy for Level 1 consisted of a trial-and-error approach with vectors and scalars selected at 
random. Before long Gwen began to realize that the vector equation allows for two vectors to be 
used simultaneously and attempted to decipher what the scalars did: “I’m trying to figure out 
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what the orange square has to do […] is it 2 times [<0, -2>] to get me 0 over -4?” Gwen 
completed the Level 1 even though she “had no idea what I just did”. 

Gwen completed Level 1 again to gain a better understanding of what allowed her to 
complete the level. On her second attempt, she focused more on the numbers that would get the 
rabbit to the basket. Despite her numeric approach, Gwen described her strategy as “mindlessly 
clicking” until the trajectory path showed the correct combination of vectors and scalars. When 
asked to explain what happened, she responded: 

the little numbers in the orange square are […] multiplying by the numbers given. 
[…] I guess it’s what can I multiply in each of these areas to—hold on. […] I’m 
trying to figure out what I can multiply to get 0 on the x-axis or the numerator 
while at the same time getting from 0 to 12 on the denominator. 
For Level 2 Gwen was more numeric than in her approach to solving the previous level: 

“I’m not even looking at the position of the rabbit going to the basket. I was just trying to throw 
in numbers until I got to the position”. Level 5 contained one key before the basket unlocked. 
Gwen immediately selected the vector <-4, -6> from the Vector Selection and scaled it by -1 to 
reach the key at <4, 6>. Although Gwen had the Predicted Path, she was less dependent on it on 
Level 5 than on Level 1. In summary, Gwen’s guess-and-check numerical strategies evolved 
during gameplay, and her comments seemed indicative of a growing understanding of the vector 
equation. 
 
Case Study 2: Andrew – Enrolled in a non-IOLA Linear Algebra Course 
  Andrew, a senior biology and computation science major who had completed three post-
secondary mathematics courses, was enrolled in linear algebra. He focused on making the vector 
equation yield the goal position. Only after he completed Level 5, where he had to move to the 
key before moving to the basket, did he begin to direct his attention to the graph. He focused so 
completely on the equation that he initially noticed no difference in Level 1 and Level 2. 
However, after he had completed Level 5 and went back to Levels 1 and 2, he noticed that Level 
2 does not “show me where it would take me”. He mentioned using trial-and-error and intuition 
and seemed to have strong number sense that allowed him to complete each level quickly. 
  Andrew’s more inquisitive nature came out while talking about scalar multiples as 
illustrated by the following dialogue; his geometric conceptions seemed to be emerging. 

Interviewer: Do you notice anything special about those vectors? 
Andrew: About the -3 and the 9 and 3? [indicating <-3, -1> and <9, 3>] Well, one of them 

is both negative and one of them is both positive, and also they are multiples of 
each other. … 

Interviewer: So where could you get on the board with just those two vectors? 
Andrew: Um…can I try and see? [interviewer concurs] 
Andrew: Alright, let’s see! [Andrew moves the scalar multiples to vector equation, scales 

them up and down, and notes that the bunny was moving along the same line.] 
Andrew: Alright! [nods and points] Ok, so now I see kinda what it’s doing. […] if you 

add to this one or take away from it [referring to increasing and decreasing one of 
the scalars], it’s still on that same line. Likewise with this one. And since this is 
the multiple of that one, that means that this is the dependent one on that vector. 
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Interviewer: You used the word linearly dependent. What does linearly dependent mean 
to you? 

Andrew: So as far as I’ve learned in my linear algebra class, it means that, basically kinda 
like what I just said. […] it just means that if you multiply the independent vector 
by some scalar 1, 2, 3, whatever, -1, -2, you will be able to get that other vector, 
basically. [Andrew continuously clicks the mouse to change the scalars.] 

Ultimately, Andrew began to make connections between the numeric and graphical ideas of 
linear dependence despite his strong systematic use of numerical strategies. 
 
Case Study 3: Lauren - Completed an IOLA Linear Algebra Course 
 Lauren was a junior applied mathematics major who had completed six post-secondary 
mathematics courses, including linear algebra in Fall 2017. Lauren took on the conscious role of 
game tester and teacher during her interview.  She volunteered information about aspects of 
gameplay that she liked and did not like without being prompted by the interviewer.  This 
perspective precipitated in gameplay that was less focused on reaching the goal during each level 
and more focused on discovering how adjusting aspects of the vector equation and pressing GO 
resulted in different movements of the rabbit as illustrated by Figure 2.  

 
               Figure 2. Sample Path for Lauren in Level 2 

 Lauren’s playful nature resulted in an explanation of why two linearly independent 
vectors span ℝ2: 

[She chooses two linearly independent vectors.] This diagonal line stretches on 
forever [points to Vector 1] and this diagonal stretches on forever [points to 
Vector 2]. However much you multiply that vector, and they start wherever you 
add them […] And you can start anywhere along this by shifting it [points to 
Vector 1]. And so you can cover the entire board by starting with this vector 
[points to Vector 2] anywhere along this vector [Vector 1]. 

In brief, Lauren used a playful geometric approach and gave indications that she was 
beginning to conceptualize the idea of span. 

 
Preliminary Conclusion/Questions for Audience 

 Preliminary analysis of the data reveals that students used a variety of strategies which 
evolved during gameplay and resulted in mathematical realizations. What are some suggestions 
for expanding the game to help teach span and linear independence? How could this game be 
incorporated into a linear algebra course? What instructional sequences in linear algebra could be 
translated into a level of the game? 

22nd Annual Conference on Research in Undergraduate Mathematics Education 963



 
References 

Andrews-Larson, C., Wawro, M., & Zandieh, M. (2017). A hypothetical learning trajectory for 
conceptualizing matrices as linear transformations. International Journal of Mathematical 
Education in Science and Technology, 48:6, 809-829. 

Britton, S., & Henderson, J. (2009). Linear algebra revisited: An attempt to understand students’ 
conceptual difficulties. International Journal of Mathematical Education in Science and 
Technology, 40(7), 963–974. 

Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in 
educational research. Educational Researcher, 32(1), 9–13. 

Dogan, H. (2018). Differing instructional modalities and cognitive structures: Linear algebra. 
Linear Algebra and Its Applications, 542, 464–483. 

Dorier, J.-L., & Sierpinska, A. (2001). Research into the teaching and learning of linear algebra. 
In D. Holton, M. Artigue, U. Krichgraber, J. Hillel, M. Niss, & A. Schoenfeld (Eds.), The 
teaching and learning of mathematics at university level: An ICMI study (pp. 255–273).  

      Gee, J.P. (2003). What video games have to teach us about learning and literacy. New York: 
    Palgrave MacMillan. 

Gee, J. P. (2005). Learning by design: Good video games as learning machines. E-Learning, 
2(1), 5-16.  

Gresalfi, M. S., & Barnes, J. (2015). Designing feedback in an immersive videogame: 
Supporting student mathematical engagement. Educational Technology Research and 
Development,64(1), 65-86. 

Hannah, J., Stewart, S., & Thomas, M. (2016). Developing conceptual understanding and 
definitional clarity in linear algebra through the three worlds of mathematical thinking. 
Teaching Mathematics and Its Applications: An International Journal of the IMA, 35(4), 
216–235. 

Hillel, J. (2000). Modes of description and the problem of representation in linear algebra. In On 
the teaching of linear algebra (pp. 191–207). Springer. 

Laursen, S. L., Hassi, M. L., Kogan, M., & Weston, T. J. (2014). Benefits for women and men of 
            inquiry- based learning in college mathematics: A multi-institution study. Journal for 

Research in Mathematics Education, 45(4), 406-418. 
Rasmussen, C., & Kwon, O. N. (2007). An inquiry-oriented approach to undergraduate 
      mathematics. The Journal of Mathematical Behavior, 26(3), 189-194. 
Stewart, S. (2018). Moving Between the Embodied, Symbolic and Formal Worlds of 

Mathematical Thinking with Specific Linear Algebra Tasks. In Challenges and Strategies in 
Teaching Linear Algebra (pp. 51–67). Springer. 

Tucker, A. (1993). The growing importance of linear algebra in undergraduate mathematics. The 
College Mathematics Journal, 24(1), 3–9. 

Wawro, M., Sweeney, G. F., & Rabin, J. M. (2011). Subspace in linear algebra: Investigating 
students’ concept images and interactions with the formal definition. Educational Studies in 
Mathematics, 78(1), 1–19. 

Wawro, M., Rasmussen, C., Zandieh, M., Sweeney, G. F., & Larson, C. (2012). An Inquiry-
Oriented Approach to Span and Linear Independence: The Case of the Magic Carpet Ride 
Sequence. PRIMUS, 22(8), 577-599. 

Williams-Pierce, C. (2016). On Reading and Digital Media. Journal of Management 
Education,40(4), 398-404. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 964



Zandieh, M., Wawro, M., & Rasmussen, C. (2017). An example of inquiry in linear algebra: The 
roles of symbolizing and brokering, PRIMUS: Problems, Resources, and Issues in 
Mathematics Undergraduate Studies, 27:1, 96-124. 

Zandieh, M., Plaxco, D., & Williams-Pierce, C. & Amresh, A. (2018). Drawing on the Three 
Fields of Educational Research to Frame the Development of Digital Games for Inquiry 
Oriented Linear Algebra.  Proceedings from the 21st Annual Conference on Research in 
Undergraduate Mathematics Education (pp. 1270). San Diego, CA. 

 
 
 
 
  

22nd Annual Conference on Research in Undergraduate Mathematics Education 965



Mathematics Tutors’ Perceptions of their Role 
 

 Christopher McDonald Melissa Mills 
 Oklahoma State University Oklahoma State University 

In this study, we investigate the beliefs of undergraduate mathematics tutors. Thirty-three tutors 
completed surveys and twenty-five participated in interviews to assess their attitudes towards 
mathematics and their beliefs about the roles of a tutor and instructor. Our analysis provides 
examples of orientations, goals, and resources that were expressed by tutors in surveys and 
interviews. Tutors in this study viewed their role as distinct and supplementary to that of a 
teacher. The orientations, goals, and resources identified in this study provide a foundation for 
future studies that explain and predict tutor decision making. Although tutors are not content 
experts, they offer a valuable perspective that is different than that of the instructor. 

Keywords: mathematics tutors, beliefs, orientations, goals, resources 

Introduction and Literature Review 
In a recent study, 97% of universities surveyed offered mathematics tutoring to Calculus 

students (Bressoud, Mesa, & Rasmussen, 2015), therefore tutoring is a common resource for 
undergraduate student learning outside of the classroom. Tutoring has been linked to improved 
pass rates (Cuthbert & MacGillivray, 2007; Patel & Little, 2006) and an increase in grades 
(Byerley, Campbell & Rickard, 2018; Lee, Harrison, Pell, & Robinson, 2008; Rickard & Mills, 
2018), and has been shown to have a positive impact on student attitudes towards mathematics 
(Bressoud et al., 2015; Croft, Grove, & Bright, 2008; Topping, 1998). 

Some studies related to tutoring have emphasized that tutors are not experts in either 
pedagogy or content (Grasser, D’Mello, & Cade, 2011), but nevertheless, tutoring seems to 
improve student learning. Grasser et al. (2011) describe several different effective teaching 
methods and then, by analyzing a corpus of tutoring observation data, they conclude that tutors 
do not utilize these methods. This deficit perspective of tutoring does not help us to understand 
what it is that tutors are doing to help students. Also, the context of a one-on-one drop in tutoring 
session is so different from a classroom setting, it may not be reasonable to expect that an 
effective tutor would make similar moves to an effective teacher. Defining the differences 
between a tutor and a teacher can help us to unpack the specialized knowledge that tutors have 
that may be distinct from teachers’ knowledge. 

This study will report on undergraduate mathematics tutors’ views of mathematics and their 
perceptions of their role as a tutor, as well as how they perceive their role compares to the role of 
a mathematics instructor. Our analysis will focus on the orientations, goals, and resources that 
the tutors mention in their interviews. This foundational understanding of tutors’ views of 
mathematics and their perceived roles is a first step to understanding how these factors influence 
their practice.  

Theoretical Perspective 
Schoenfeld (2011) suggests that decision making in an academic setting (and many other 

settings for that matter) is influenced heavily by a person’s orientations, goals, and resources. In 
this theory, Schoenfeld describes how a person has some set of orientations, goals, and resources 
which all act on each other during the decision-making process. These factors can be used to 
construct a model of their decision making process that has explanatory and predictive power. 
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 Through their experiences in education, both as students and tutors helping students, tutors 
may develop their own perceptions of their role. Because we do not have direct access to a 
tutor’s thoughts and because a tutor may not be aware of them, we cannot say explicitly whether 
they have specific orientations, goals, or resources. Schoenfeld (2011) skirts this issue by stating 
that we can attribute goals, orientations, and resources to a person in a manner that explains and 
predicts their behavior and our model can be adjusted or replaced if the tutor’s actions are not in 
line with the model.  

Here, we discuss briefly what is meant by orientations, goals, and resources as given by 
Schoenfeld (2011). A person’s orientations are the set of that person’s beliefs, preferences, and 
values among other things. They are the different meanings and understandings created by the 
person from their experiences. Orientations play a big role in a person’s perceptions of a given 
situation and can trigger certain behaviors. Therefore, it is important to describe the specific 
situations as well as the person’s orientation.  

A goal is “something that an individual wants to achieve, even if simply in the service of 
other goals” (Schoenfeld, 2011). Goals may be immediate or long-term, and they may have sub-
goals. Goals may work together in a given situation or they may work against each other, and the 
person making the decision may not be consciously aware of their goals at any given time. Goals 
are prioritized by what the person with those goals believes is more important for the given 
situation. For this reason orientations play an important role in the prioritization of goals. This 
set can be adjusted and prioritized multiple times in the process of achieving a goal (or set of 
goals).  

Resources are defined to be everything that is available to use by a specific person. Each 
individual has their own set of resources, which contain intellectual resources, material 
resources, and social resources. Some examples of resources include the knowledge somebody 
has about a certain topic, physical objects or tools that can help a person achieve a goal, or ways 
of communication that can identify new information. 

Putting these three concepts together gives us a way to model a person’s decision-making 
process. Before decisions are made, a person starts with their own resources, goals, and 
orientations. They will then collect information about the situation. Goals will be either 
established or reinforced. Then the person will make decisions about how to direct an interaction 
or a situation that stay consistent with their goals. All of these steps are repeated as many times 
as necessary as a situation progresses and reevaluation is needed.  

Since decision making is influenced by a person’s resources, orientations, and goals, we may 
begin to construct models of tutors’ decision making processes to explain or predict their 
behavior. Thus, we aim to identify what a tutor believes his or her role is in a student’s learning 
process.  

Methods 
The participants in this study were undergraduate tutors from drop-in mathematics tutoring 

centers at two institutions: a large research university in the Midwestern United States and a 
small private university in the Northwestern United States. Thirty-three tutors were given 
surveys prior to the start of the Fall 2017 semester addressing their beliefs about mathematics, 
beliefs about mathematics instructors, and beliefs about mathematics tutors. The survey 
consisted of items that were modified from the CSPCC math attitudes survey (Bressoud, et al., 
2015) and the NCTM Teaching and Learning Beliefs Survey (NCTM, 2014). 

Twenty-five of the tutors were interviewed to allow them to elaborate on their responses. The 
interviews were conducted throughout the entire semester as the tutors completed a particular 
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part of their training. At one of the universities, the first semester tutors were not required to 
complete this portion of the training and thus not all of the tutors who completed surveys 
participated in the interviews. This study focuses on tutor responses when asked to compare and 
contrast their perceptions of their roles and instructors’ roles. The themes that emerged are 
presented with representative quotes from tutors.  

The surveys gave us some indication that the tutors viewed their role as a tutor slightly 
differently than that of an instructor. These results gave us a lens through which to look at our 
interview data. We analyzed the interview data using thematic analysis (Braun & Clarke, 2006). 
The first phase of our analysis involved transcribing the data and reading through all of the 
transcripts. Then we generated initial codes and searched for themes among the codes. Lastly we 
defined and named some orientations, goals, and resources that emerged from the interview data. 
This theoretical framework was helpful for organizing our analysis of their responses. Note that 
the tutors were not directly asked to talk about their perceived orientations, goals, and resources. 
In addition, we should note that the results that we present here are formed from a combination 
of all of the tutors’ responses, and may not reflect the perspective of each individual tutor. 

 
Results 

We interviewed the tutors in this study to address any gaps in information given, as well as to 
elaborate on anything from the surveys. For the purpose of this paper, we only analyzed the 
portion of each interview in which the tutors expressed how they conceptualize their role as a 
tutor and how that compares to the role of an instructor.  

Since we did not specifically ask the tutors to list their orientations, goals, and resources, the 
results found are not exhaustive. Instead, we provide an example of each category that the tutors 
in this study mentioned to help explain what tutors could think or do during a tutoring 
interaction. Furthermore, a tutor is not limited to only one orientation, goal, or resource. 

 
Orientations 

Instructors lay the foundation and tutors fill in the gaps. In the interviews, 82% of the 
tutors made statements that indicated that the instructor is the one who presents the theoretical 
material and “lays the foundation” while the tutor’s role is to work with individual students on 
the application of the theory and “fill in the gaps” in their understanding. 

 
…and I think a tutor is only there to reinforce it, and I think of it like building a bridge, 
so like the teacher lays the foundation, maybe puts the rough parts of the bridge on 
there, and the tutor comes around and puts the, you know, the pavement on it. Smooth 
and easy to travel over. Just to make it just a little bit better. – Anthony 
 

Many of the tutors in this study believe that like instructors, their goal is to enhance students’ 
knowledge of specific mathematics content. However, some tutors expressed that the instructor’s 
role is to present new mathematical ideas while the tutors’ role is to reinforce students’ 
understandings and address any gaps in the students’ knowledge. The tutors mentioned that 
instructors are constrained by class size and time, which are not constraints that tutors typically 
have in the drop-in environment. 

 
Tutors guide students, tutors do not teach students. It is a safe assumption that students 

who seek help from a tutor are enrolled in a math class. Also, those students usually ask 
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questions about something that was mentioned in class. One belief that these tutors expressed is 
that the tutors should not be responsible for teaching new material to the students, rather that 
they should assist the student in understanding new ideas and concepts. Tutors who expressed 
this belief focused more on what is not part of their role, whereas the tutors who expressed 
beliefs from the preceding section were focused more on what is part of their role. 

 
Tutors are not experts, but they offer a different perspective than instructors. Although 

tutors are not mathematics content experts, they do have a different kind of specialized 
knowledge than instructors have. Because not all tutors are math majors, they can often help 
students to understand how the mathematics that they are learning can apply in their subsequent 
engineering or physics courses. 

 
I’m a physics undergrad, but one of the things that might help them is like more tactile, 
you know, an example of how stuff works, that’s all I run into in my classes. . . I don’t 
try to get into that too much because if I try to start talking modern physics to someone 
in trig, they immediately glaze over. It’s just, it’s comforting to them to say, this is real, 
it’s not worthless to learn, there is an application for it. – John 

 
Goals 

Help students become independent learners. Part of this goal entails that tutors should help 
a student towards a correct solution rather than showing them how it is done. Furthermore, a 
person with this goal in mind may believe that tutors should help students with their problems in 
such a way that allows the student to succeed at similar tasks on their own. 

 
So they can kind of go through it themselves and if they get stuck, they can know what 
to do. Rather than having to go for help every time. – Molly  

 
Determine the needs of the student. Because the tutors in this study work in a drop-in 

setting, they may not know the needs of the students that come in to get help on any given day. 
So when a tutor approaches a student who has a question, the tutor has to assess what kind of 
help the student needs. The tutors in this study talked about four common ways in which they 
help students: 1. Checking student work for errors, 2. Showing students how to do an example, 3. 
Leading students through an example by questioning, 4. Helping students understand a specific 
concept.  Tutors do not believe that it is their responsibility to teach a student who has not been 
coming to class. 

Some tutors prefer a more direct approach to figuring out how much a student knows. By 
probing the student to describe their situation as much as possible, some tutors feel they can 
better understand what the student needs and then be able to help fill in what a student is 
missing. 

 
Help students stay on the right path. Tutors can be a valuable resource for students in that 

they can determine when the student is starting to go in a direction that will not be beneficial for 
them. It is worth noting here that the phrase “right path” means the path that the tutor believes 
will lead to a solution to a given problem. In previous research, physics tutors tended to focus on 
the next step toward a solution on a path dictated by the tutor and did not allow the student to 
stray too far from the path (VanLehn, Siler, & Murray, 2003). Tutors have different resources at 
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their disposal to address these kind of issues, for example asking questions to direct the students 
or providing their own explanations of certain problems.  

 
Ideally, I would just be able to sit there, and they would ask a question, and I would be 
able to ask a question back that would be able to guide them into the right answer. That 
would be ideal. – Jonah 
 
And try to... we can't process it for them. Just try to help them, stay on the right path, I 
guess. – Ashton 

 
Resources  

Tutors have a variety of resources available to them based on their own experiences with 
mathematics and with tutoring. Since they are undergraduate students, the tutors have taken math 
courses already. So they have built their own knowledge of problem-solving strategies which 
may be different from the teachers’ methods of problem-solving.  

 
I mean, the teacher may have one approach that they use in class, and then the tutor may 
have a different approach that the student can understand better, and that just may not 
have been mentioned by the professor before. – Veronica 

 
Conclusion 

The survey results showed us that undergraduate mathematics tutors view their role as 
different from an instructor in the sense that they elicit more student thinking and understanding 
than instructors do, and that they walk students through problems step-by-step more than 
instructors do. The one-on-one nature of tutoring may account for these differences.  

With the interview results, we were able to define a few possible orientations that a tutor 
might have regarding their role in a tutor-student interaction. From the information provided to 
us by the tutors that were interviewed, some possible orientations that a tutor may have include 
the following: 1) Instructors lay the foundation and tutors fill in the gaps. 2) Tutors guide 
students, they do not teach students. 3) Tutors are not experts, but they offer a different 
perspective than instructors. The tutors also mentioned some goals they have when helping a 
student including: 1) Help students become independent learners. 2) Determine the needs of the 
student. 3) Help students stay on the right path. Lastly, a few resources were named, for example 
the tutors can use their prior knowledge of mathematics and problem-solving techniques. Some 
expected resources, such as using the internet and asking a fellow tutor, were not mentioned by 
any of the tutors that were interviewed. This may be because tutors were not asked directly to 
name the resources they had or used when they were interviewed. 

During this research, tutors self-reported their own thoughts and beliefs about their roles as a 
tutor. Not having observed the tutors during live tutoring interactions where they may apply their 
beliefs makes it more difficult to say that a certain tutor’s behavior follows a certain orientation 
or goal. Future research can investigate how the identification of these resources, goals, and 
orientations work to explain or predict a tutor’s in-the-moment decision making while tutoring. 
Another line of research could investigate how students’ resources, goals, and orientations align 
or are different from the tutor’s resources, goals and orientations. Schoenfeld (2011) points out 
that in an interaction between two individuals, the two parties may have common or conflicting 
goals.  Thus, it may be interesting to see how the student’s goals affect the interaction.  
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An Exploratory Factor Analysis of EQIPM, a Video Coding Protocol to Assess the Quality  
of Community College Algebra Instruction 

 
 Vilma Mesa Irene Duranczyk 
 University of Michigan University of Minnesota 
  
 Emanuele Bardelli AI@CC Research Group* 
 University of Michigan Various Institutions 

Evaluating the Quality of Instruction in Post-secondary Mathematics (EQIPM) is a video coding 
instrument that provides indicators of the quality of instruction in community college algebra 
lessons. It grew out of two instruments that assess the quality of instruction in K-12 settings—the 
Mathematical Quality of Instruction (MQI) instrument (Hill, 2014) and the Quality of 
Instructional Practices in Algebra (QIPA) instrument (Litke, 2015). We present preliminary 
results of an exploratory factor analysis that suggests that the instrument captures three distinct 
dimensions of quality of instruction in community college algebra classes. 

Keywords: Algebra, Instruction, Video Coding, Community Colleges  

Various reports have established an indirect connection between students leaving science, 
technology, engineering, and mathematics (STEM) majors because of their poor experiences in 
their STEM classes (Herzig, 2004; Rasmussen & Ellis, 2013). Most of these reports, however, 
are based on participants’ descriptions of their experiences in the classes, rather than on evidence 
collected from large scale observations of classroom teaching (Seymour & Hewitt, 1997). When 
such observations have been made, they usually focus on superficial aspects of the interaction 
(e.g., how many questions instructors ask, how many students participate, or who is called to 
respond, Mesa, 2010) or their organization (e.g., time devoted to problems on the board, or 
lecturing, Hora & Ferrare, 2013; Mesa, Celis, & Lande, 2014). Undeniably, these are important 
aspects of instruction, yet these elements are insufficient to provide a characterization of such a 
complex activity as instruction.  

A key concern in post-secondary mathematics education is the lack of preparation that 
mathematics instructors receive in their graduate education (Ellis, 2015; Grubb, 1999).  We 
argue that the lack of a reliable and valid method to fully describe how instruction occurs hinders 
our understanding of the complexity of instructors’ work in post-secondary settings and therefore 
limits the richness of preparation and professional development opportunities focused on the 
faculty-student-content interactions (Bryk, Gomez, Grunow, & LeMahieu, 2015). As part of a 
larger project that investigates the connection between the quality of instruction and student 
learning in community college algebra courses, we have developed an instrument, EQIPM 
(Evaluating Quality of Instruction in Postsecondary Mathematics), that seeks to characterize 

                                                
* The AI@CC Research group includes: Megan Breit-Goodwin, Anoka-Ramsey Community College; Randy 
Nichols, Delta College; Patrick Kimani, Fern Van Vliet, and Laura Watkins, Glendale Community College; David 
Tannor, Indiana Wesleyan University; Jon Oaks, Macomb Community College; Nicole Lang, North Hennepin 
Community College; April Ström, Carla Stroud, and Judy Sutor, Scottsdale Community College; Anne Cawley, 
Saba Gerami, Angeliki Mali, and Vilma Mesa, University of Michigan; Irene Duranczyk, Dexter Lim, and Nidhi 
Kohli, University of Minnesota. Colleges and authors are listed alphabetically.  
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instruction. In this paper, we present the results of an exploratory factor analysis using ratings 
generated by coding lessons with EQIPM that suggest three aspects key to instructional quality.  

Theoretical Perspective 
We assume that teaching and learning are phenomena that occur among people enacting 

different roles—those of instructor or student—aided by resources of different types (e.g., 
classroom environment, technology, knowledge) and constrained by specific institutional 
requirements (e.g., covering preset mathematical content, having periods of 50 minutes, see 
Chazan, Herbst, & Clark, 2016; Cohen, Raudenbush, & Ball, 2003). We focus on instruction, 
one of many activities that can be encompassed within teaching (Chazan, et al., 2016), and 
define instruction as the interactions that occur between instructors and students in concert with 
the mathematical content (Cohen et al., 2003). Such interactions are influenced by the 
environment where they happen and change over time. Empirical evidence from K-5 classrooms 
indicates that ambitious instruction is positively correlated with student performance on 
standardized tests (Hill, Rowan, & Ball, 2005). Understanding mathematics instruction requires 
attention to the disciplinary content and the mathematical knowledge for teaching and learning. 
Therefore, we assume, first, that the experiences of instructors and students while interacting 
with mathematical content have a significant impact on what students are ultimately able to 
demonstrate in terms of knowledge and understanding, and second, that it is possible to identify 
latent constructs that might account for the observed quality of instruction.  

Instruction is central to EQIPM. The instrument was designed with the goal of assessing 
the quality of the interactions defining instruction assessed via three distinct constructs: (1) 
Quality of Instructor-Student interaction, (2) Quality of Instructor-Content Interaction, and (3) 
Quality of Student-Content Interaction, supported by the quality of Mathematical Explanations 
and Mathematical Errors and 
Imprecisions in Content or 
Language that are present in a 
lesson. Figure 1 illustrates the 
theorized structure of the coding 
instrument by showing 
individual codes within the three 
constructs. The codes under 
Segment features help 
characterize the segment (i.e., 
Mathematics is a focus, 
Procedure is taught, Modes of 
instruction, Technology used). 

                                    Figure 1. Dimensions and codes for the EQIPM instrument. 

Methods 
In the Fall 2017 semester we video-recorded 131 lessons in intermediate and college 

algebra classes from two different community colleges in three different states. The lessons 
ranged in duration between 45 and 150 minutes, and were taught by 40 different instructors (44 
different unique courses video-recorded; 4 instructors taught 2 sections of a course). The lessons 
covered one of three topics: linear equations/functions, rational equations/functions, or 
exponential equations/functions. These topics were chosen because they offer us opportunities to 
observe instruction on key mathematical concepts (e.g., transformations of functions; algebra of 
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Figure 2. Scree plot 

functions) and to attend to key ways of thinking about equations and functions (e.g., preservation 
of solutions after transformations; covariational reasoning), which are foundational algebraic 
ideas that support more advanced mathematical understanding (Breidenbach, Dubinsky, Hawks, 
& Nichols, 1992; Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). The development of EQIPM was 
similar to the process used by Hill and colleagues (2008) and by Litke (2015). Their instruments 
describe and qualify instructional practices from video-recorded lessons by subdividing lessons 
into 7.5-minute segments and rating all segments within a lesson.  

Using version 3a of EQIPM, each 7.5-minute segment within a lesson was coded by one 
member of a team of 14 researchers using a rubric that described the coding (AI@CC Research 
Group, 2017). Each code was rated on a 1 to 5 scale and each coder provided a justification for 
that rating that included evidence linked to a timestamp in the video. The researchers 
independently coded a maximum of 3 to 4 segments of a lesson to minimize bias due to 
familiarity with the instructor or the lesson. Ten percent of segments were randomly chosen for 
double-coding by a pair of researchers. Each pair held calibration meetings to discuss codes with 
a discrepancy greater than one point between ratings and subsequently reconciled when the 
researchers scores were more than 1 point apart or when a researcher identified a justification for 
their code and that justification was “missed” by the second researcher.  The reconciled scores of 
the double-coded lessons were used for the exploratory factor analysis along with single coded 
segments in the corpus.  

We conducted an initial exploratory factor analysis [EFA] using the 12 EQIPM items 
using Mplus 7.2. We extracted factors using the Mean and Variance Weighted Least Square 
(WLSMV) estimator with an oblique rotation (geomin). This extraction method is appropriate 
when using items that do not follow a normal distribution or items measured on a 5-point scale. 
We preferred an oblique rotation over an orthogonal one because this allows us to freely estimate 
the correlation between the extracted factors rather than assuming it to be zero. We used a Full 
Information Maximum Likelihood (FIML) approach to account for missing data. The scree plot 
for the 12-item EFA suggested that a solution between 1 and 3 factors would be appropriate (see 
Figure 2). We fit four separate EFAs by progressively adding these possible factors.  At the time 

of this submission, we had coded 17 out of the 88 
target lessons (19%) with a dataset large enough to 
run either a CFA or an EFA (169 segments). We 
chose to do an EFA because this allows us to make 
the least number of assumptions about the factor 
structure of our data. The data set included lessons 
from all but one of the colleges (8 from College 1, 1 
from College 3, 2 from College 4, 2 from College 5, 
and 4 from College 6), six of which were calibrated. 
The lessons are from 15 distinct instructors (34% of 
instructors in sample) 

Preliminary Findings 
We found that the 3-factor solution was an adequate to good fit to the data: c� = 47.466, 

p = 0.049, RMSEA = 0.051, 90% CI = [0.003, 0.082], CFI = 0.972, TLI = 0.944, SRMR = 0.065 
(Hu & Bentler, 1999). This suggested that we did not have to do any model modifications, such 
as dropping items, in order to reach an acceptable solution.  
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Our preferred EFA model extracted three meaningful factors using all 12 codes (see 
Table 1). We also found that these three factors are weakly and positively correlated: corr Factor 
1-Factor 2 = 0.184, corr Factor 1-Factor 3 = 0.245, and corr Factor 2-Factor 3 = 0.391. We noted 
that Q5 and Q12 have loading patterns that would suggest not to include them in the EFA 
solution (Worthington & Whittaker, 2006). We decided to retain these items in our model 
because we plan to confirm the extracted factor structure using a confirmatory factor analysis 
once the full lesson dataset becomes available. Moreover, the loadings on factor 3 are not high, 
which may suggest more commonality with the other two factors than what we would like to 
have. Descriptive information (e.g., item distribution will be made available in the presentation). 

 
Table 1. Factor Loadings for the 3-Factor Solution 

 Factor 1 Factor 2 Factor 3 
Q1 – St. Mathematical Reas. 0.790* -0.001 -0.028 
Q7 – Instructor-Student Cont. 1.055* -0.182 0.012 
Q9 – Inquiry/Exploration 0.594* 0.039 -0.016 
Q10 – Remediation Std Errors 0.281* 0.187 -0.057 
Q4 – Instr. Making Sense Proc. -0.179 0.661* 0.022 
Q5 – Supp. Proc. Flexibility 0.051 0.307* -0.283* 
Q6 – Organization Pres. of Proc. 0.072 0.454* 0.297 
Q11 – Math. Err & Impr. Cont.a 0.023 -0.224* -0.156 
Q12 – Math. Explanations -0.001 0.954* -0.792* 
Q2 – Conn. across Reprs. 0.036 -0.053 0.300* 
Q3 – Situating Math. -0.05 0.222 0.325* 
Q8 – Class Environment 0.374 0.011 0.530* 

Notes.  * Significant loadings at the 95% level.  
a A high rating in this code implies low quality of instruction. 

Discussion 
We interpret factor 1 as the quality of instructor-student interaction, as it embeds three 

of the codes under the fourth column of Figure 1 that were meant to address how students and 
the instructor were working together. This factor also included the Student mathematical 
reasoning and sense making code, which was theorized to be part of the student-content 
interaction. Being part of the instructor-student interaction factor may suggest that such 
reasoning occurs through invitations by the instructor. Some corroboration of this conjecture is 
grounded in the high number of segments in which lecture was the main mode of instruction 
(94%, 159 of 169 segments coded involved lecture and 90 of those used only lecture). In theory, 
mathematical reasoning and sense making should be evident without the mediation of the 
lecture; we anticipate that professional development targeting the importance of this feature of 
instruction, might yield differences that might align this code under the student-content 
interaction as theoretically envisioned. As more segments with other modes of instruction 
appear, we might be able to see if this code continues to be under this factor. We interpret factor 
2 as addressing the quality of instructor-content interaction; its five codes, three hypothesized 
under the third column of Figure 1, and the two codes we hypothesized as cross-cutting the three 
constructs, speak directly about how instructors manage the discussion of the mathematical 
content. While the cross-cutting code, Mathematical Explanations, allows for students providing 
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explanations that this code loads on the instructor-content interaction suggests that there are few 
opportunities for students to provide explanations, and could be a consequence of the emphasis 
on lecturing in these segments. Finally, factor 3, seems to capture the quality of student-content 
interaction by embedding two of the three codes found in the second column of Figure 1 with 
the Classroom environment code which suggests that student engagement in mathematics may be 
occurring in situations where the classroom environment is supportive of students’ interaction 
with the content. The negative high loading of the code Mathematical Explanations in this factor 
suggests that explanations might not occur when connections across representations, situating the 
mathematics, and classroom environment are rated highly. This is a puzzling result and merits 
further investigation.  

While these EFA results are encouraging, we recognize that the extracted structure 
depends on the lessons that were available to perform the exploration, which are not 
representative of our corpus. We will need to confirm our results using our whole corpus of data. 
We plan to run a split sample EFA/CFA to explore and validate the instrument’s factor structure 
once we have the full dataset coded. This will allow us to account for the multi-level structure of 
our data, specifically, segments within lessons. 

Being able to identify three distinct factors that can be used to describe the quality of 
community college algebra instruction is promising for the field: each of the constructs suggest 
specific areas for supporting the work of instructors in teaching community college algebra. 
These results also support previous research in K-12 that models learning via assessing the 
quality of instruction defined as the interactions between teacher, student, and content.  The 
connections between the classroom environment and the quality of student-content interaction 
rather than quality of instructor-student interaction may highlight the importance of classroom 
environment on building student engagement with the content. The factors used will be included 
in the full model of our data to determine links between instructional qualities and student 
performance. We plan to use the instrument in the design of professional development. 

Questions for the Audience 
The preliminary factor analysis of EQIPM, version 3a, supports the theoretical 

dimensions underlying the quality of algebra instruction at community colleges and three 
possible variables that can be used to assess quality and model student performance in these 
courses. Given these findings, we have the following questions: 
1. Is our interpretation of the EFA results plausible? Are there other links between the codes 

and the underlying factor structure revealed by the EFA that you believe can be made and be 
supported by current literature on teaching and learning? 

2. EQIPM is based on our conceptualization of instruction, and looks at the quality of 
interactions between instructors, students, and content. Other than modes of instructions 
playing a role in the results of the analysis, are there other segment features (e.g., technology) 
that come to mind that could also impact the loadings? Are there other ideas that come to 
mind about the EQIPM coding rubric or EFA that could enhance this research approach to 
describe the quality of instruction in community college settings? 
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Student, Teacher, and Institution Effects on Student Achievement and Confidence in College 
Calculus 

 
 Sarah Moore Martha Makowski Jim Gleason 
 The University of Alabama The University of Alabama The University of Alabama 
 
Using the Mathematical Association of America’s Characteristics of Successful Programs in 
College Calculus dataset (CSPCC) of 13,965 students from a variety of institutions nationwide, 
student characteristics and experiences were analyzed via pre- and post-course survey 
responses. This research evaluated the effect of student background, student-reported teaching 
behaviors, and institutional environments on academic achievement and student confidence. The 
findings of this research could lead to a better understanding of the impact of calculus teaching 
practices and the implications of retaking calculus for students of all experience levels. 

Keywords: post-secondary calculus, pedagogical behaviors, student confidence 

Approximately 61% of students taking Calculus I in a postsecondary school have already 
taken a calculus course in high school (Bressoud, 2015), with students of all demonstrated 
proficiency levels who took calculus in high school receiving higher grades in post-secondary 
Calculus I than their counterparts (Sadler & Sonnert, 2018). Existing research has explored the 
relationships between previous calculus experience and performance, as well as the relationships 
between different types of instructional strategies in postsecondary calculus classes (Bressoud, 
Mesa, & Rasmussen, 2015; Ellis, Fosdick, & Rasmussen, 2016; Ellis, Kelton, & Rasmussen, 
2014; Mesa, Burn, & White, 2015; Sonnert & Sadler, 2015). However, the interaction of these 
instructional strategies with students’ confidence remains underexplored. 

Using the Characteristics of Successful Programs in College Calculus dataset (CSPCC), this 
study contributes to the existing knowledge of college calculus by examining the impact of 
previous calculus experience on students’ confidence in a post-secondary Calculus I class.  

Calculus I in the Postsecondary Setting 
The choices made by instructors regarding in-class behaviors and homework have arguable 

impacts on student confidence and performance. Different categories of teaching behaviors have 
emerged from the CSPCC dataset. Three factors defined as ‘good’ teaching, technology, and 
ambitious teaching were found to have differing impacts on students’ attitudes towards math; 
‘good’ teaching had a positive impact, technology had no significant impact, and ambitious 
pedagogy had a negative impact (Sonnert & Sadler, 2015). These impacts varied further when 
students were grouped by performance. High performing students responded to progressive 
behaviors more positively than low performing students (Sonnert & Sadler, 2015). Other 
research expanded on these three factors and broke ‘good teaching’ behaviors into three 
categories: Classroom Interactions that Acknowledge Students, Encouraging and Available 
Faculty, and Fair Assessments (Mesa et al., 2015). Approximately half of Calculus I homework 
is submitted on paper, though homework that is graded is most often done so via on online 
homework system (Bressoud et al., 2015). However, the use of online homework has uncertain 
effects on student outcomes (Bressoud et al., 2015). This study builds upon the categories 
previously created by Sonnert and Sadler (2015). and Mesa, et al. (2015) with an exploration of 
homework categories and textbook choice as teaching behaviors and an additional focus on 
confidence as a student outcome.  
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This study contributes to an existing body of literature that has used CSPCC to identify 
elements of calculus instruction that impact student outcomes such as performance and 
confidence. These student outcomes are influenced by a student’s characteristics and prior 
experiences as well as the post-secondary Calculus I instruction they receive. In particular, we 
ask: 

● What are the effects of previous math background, classroom interactions, and 
institutional environments on student outcomes such as student confidence and 
performance in post-secondary calculus education?  

Conceptual framework 
This research draws on the framework for instruction as interaction framework (Cohen, 

Raudenbush, & Ball, 2003), which focuses on the dynamic between students, teachers, and 
learning environments. Our quantitative study utilizes categorical and numeric variables that fall 
into different domains of the framework: student, instructor, and institutional levels. In 
particular, we focus on student and teacher interactions within the institutional environment; 
analyze the impact of teacher behaviors, we take into consideration other influences on student 
outcomes at the institution, instructor, and student levels. 

Research Methodology and Results 

Sample 
Our sample draws from the CSPCC dataset, which was comprised of pre- and post-course 

survey responses from 13,965 students and 496 instructors, at 169 institutions of varying types 
across the United States. For our analysis, we retained students who had complete data on the 
variables of interest, resulting in a final sample of 2,831 students. The demographics of the 
analytic sample closely mirror those of the full sample (Table 1). 
 
Table 1. Full and Analytic Sample Demographics 
CSPCC Full Sample Analytic Sample 
 N %  N % 
Institutions 169  Institutions 131  
Associate’s 40 23.67 Associate’s 25 19.08 
Bachelor’s 41 24.26 Bachelor’s 30 22.90 
Master’s  21 12.43 Master’s  15 11.45 
PhD 67 39.64 PhD 61 46.56 
Instructors 496  Instructors 333  
Students 13,965  Students 2,831  
White 6,947 70.69 White 2125 75.06 
Black 456 4.64  Black 67 2.37 
Asian 1,340 13.63 Asian 365 12.89 
American Indian 
or Alaska Native 

128 1.30 American Indian 
or Alaska Native 

34 1.20 

Hispanic 957 9.74  240 8.48 
Male 5,688 56.36 Male 1,556 54.96 
Prior Calculus 
Experience 

6,837 65.77 Prior Calculus 
Experience 

2,018 71.28 

22nd Annual Conference on Research in Undergraduate Mathematics Education 981



Creation of Composite Variables 
The CSPCC dataset has numerous instructional variables and prior work has studied student 

perception of specific instructor behaviors (Ellis et al., 2014). However, we hope to expand upon 
this work by considering confidence as a student outcome and by further stratifying types of 
pedagogical behaviors. To create our instructional composites, we used pre- and post-course 
survey responses of the students. These variables were created first by combining survey 
questions that, on a conceptual level, addressed teaching behaviors of distinct types. This was an 
iterative process that went through conceptual and then statistical testing. The initial instructional 
categories were: Encouraging students, Fair exams, Interpersonal interaction, Student use of 
technology (Graphing calculator), Instructor use of technology, Student use of technology 
(CAS), Cognitively challenging homework, and Valuing students.  

Once categorized, we analyzed these collections of questions with a principle component 
analysis (PCA) to determine the questions with the strongest correlation. After running a PCA on 
each composite and eliminating survey questions that did not load on the same factor as the 
others or were not conceptually compatible with other questions, we were left with composites of 
3 to 9 items, all with Cronbach alpha scale reliability coefficients greater than .75. After this 
process was complete, we decided to remove the Student use of technology, Fair exams, and 
Cognitively challenging homework composites as the factor reports had low scale reliability 
coefficients. The Valuing students composite was removed because we determined, after 
additional scrutiny, that it was encompassed by the Encouraging composite.  

Analysis 
For our analysis, we used hierarchical linear modeling (HLM) with three levels, with 

students working under instructors who are operating within an institution. We ran a series of 
HLM models, adding covariates in blocks of related variables. Every model clusters on the three 
levels. In addition, this model, and all others, are weighted by institution type, as the original 
data over-sampled universities and under-sampled community colleges (Bressoud, 2015). The 
sample weight was created using the CBMS (Blair, Kirkman, & Maxwell, 2013) distribution of 
Calculus I students by institution type. When evaluating student outcomes, performance is 
measured on a 0-4 scale while student confidence is measured on a 0-5 scale. 

Results 
Table 2. Course Grade  
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Student Variables       
   ACT/SAT  2.108*** 2.001*** 2.315*** 2.198*** 2.187*** 
   Prior Calculus  0.253*** 0.252*** 0.333*** 0.314*** 0.315*** 
   Race       
      Black   -0.228 -0.204 -0.182 -0.188 
      Asian   0.142** 0.159*** 0.127** 0.130** 
      P.I., A.I., or A.N.   -0.04 -0.041 -0.062 -0.075 
      Hispanic   -0.118 -0.099 -0.093 -0.097 
   Gender   0.045 0.044 0.026 0.029 
   Parent Educ. Level       
      Some College   -0.071 -0.027 0.003 0.01 
      College   -0.138* -0.047 -0.028 -0.023 
      Graduate School   -0.058 0.02 0.044 0.052 
Instructor Variables       
   Homework Type       
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      Physical    0.319* 0.17 0.171 
      Online    0.256+ 0.155 0.154 
   Student Use of Tech.    0.088 0.103 0.159+ 
   Instructor Use of Tech.    0.148 0.017 -0.04 
   Class Sizea       
      30-70    0.108+ 0.07 0.109+ 
      70+    0.127+ 0.110+ 0.173* 
   Textbook        
      Hughes Hallett    -0.193** -0.199*** -0.255*** 
      Thomas    -0.057 0.007 -0.001 
      Rogawski    -0.155+ -0.023 -0.029 
      Anton    0.013 -0.037 -0.081 
      Other    0.007 0.056 0.015 
   Retaking Ratio    -0.628*** -0.467** -0.522** 
   Encouragement     1.496*** 1.503*** 
   Interpersonal     -0.111 -0.119 
Institution Type       
   BA      0.125 
   MA      -0.049 
   PhD      0.003 
Constant 3.136*** 3.016*** 3.071*** 2.972*** 1.994*** 1.976*** 
+ p<0.10, * p<0.05, **p <0.01, ***p< 0.001 
a Class size was estimated from the averages of instructor reports of enrollment. 
Note. The baseline student is a white female with an average SAT/ACT score and no previous calculus experience 
attending a two-year institution. She receives instruction in a small classroom that employs none of the given 
methods, uses the Stewart text, and does not use homework. Neither of her parents went to college. 
Note. Pacific Islander (P.I.), American Indian (A.I.), and Alaskan Native (A.N.) were combined due to sample size. 
Note. Models were run using Stata. 
 
Table 3. Student Confidence  
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Student Variables       
   Prior Confidence  0.569*** 0.384*** 0.355*** 0.354*** 0.355*** 
   ACT/SAT   -0.169 0.152 0.152 0.173 
   Prior Calculus   0.058 0.112** 0.114* 0.115* 
   Course Grade   0.580*** 0.486*** 0.490*** 0.488*** 
   Race       
      Black   -0.033 -0.03 -0.025 -0.022 
      Asian   -0.191* -0.212* -0.203** -0.195** 
      P.I., A.I., or A.N.   0.117 0.084 0.068 0.072 
      Hispanic   -0.098 -0.087 -0.086 -0.077 
   Gender   0.163*** 0.134*** 0.132*** 0.130*** 
   Parent Educ. Level       
      Some College   0.031 0.066 0.055 0.065 
      College   0.019 0.05 0.046 0.051 
      Graduate School   -0.035 0.008 0.005 0.018 
Instructor Variables       
   Retaking Ratio    -0.288* -0.361** -0.360* 
   Encouragement    1.598*** 1.566*** 1.588*** 
   Interpersonal    0.052 0.146 0.128 
   Homework Type       
      Physical     -0.292+ -0.331+ 
      Online     -0.262 -0.288+ 
   Student Use of Tech.     -0.084 -0.067 
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   Instructor Use of Tech.     -0.105 -0.151 
   Class Sizea       
      30-70     -0.02 0.006 
      70+     0.01 0.081 
   Textbook       
      Hughes Hallett     -0.06 -0.06 
      Thomas     -0.166** -0.134* 
      Rogawski     0.007 0.029 
      Anton     -0.034 -0.077 
      Other     -0.105+ -0.114+ 
Institution Type       
   BA      0.083 
   MA      0.138 
   PhD      -0.022 
Constant 1.263*** 1.301*** 1.471*** 0.122 0.604** -0.233 
+ p<0.10, * p<0.05, **p <0.01, ***p< 0.001 
a Class size was estimated from the averages of instructor reports of enrollment. 
Note. The baseline student is a white female with an average SAT/ACT score and no previous calculus experience 
attending a two-year institution. She receives instruction in a small classroom that employs none of the given 
methods, uses the Stewart text, and does not use homework. Neither of her parents went to college. 
Note. Pacific Islander (P.I.), American Indian (A.I.), and Alaskan Native (A.N.) were combined due to sample size. 
Note. Models were run using Stata. 

 
Preliminary results indicate that Encouraging students, Homework type, and Student use of 

technology (graphing calculator) are pedagogical methods that have a significant relationship 
with student performance. Encouragement and homework also significantly influence student 
confidence. The overwhelming influence of encouraging behavior paints a clear picture: 
instructors demonstrating their care for their students can significantly positively impact student 
confidence and grades. There is an evident need for compassionate Calculus I instruction to 
boost student morale and achievement. 

We also have found students’ previous math experiences to be significant in relationship to 
their confidence; students who have seen calculus before and/or fared well on standardized tests 
are more confident in Calculus I courses. After observing the influence of previous calculus 
experience on a student’s individual post-secondary calculus experience, we would like to 
continue our work on the peer effects within Calculus I classrooms and the influence of the ratio 
of calculus retakers within a classroom as an environmental factor. 

The Cognitively challenging homework composite caught our interest despite our inability to 
include it in our models; we plan to further investigate the influence of homework types, class 
size, and the student/instructor ratio in future work.  

Implications for Teaching Practice and Future Research 
This research has implications for the instruction of college calculus courses, specifically 

encouraging efforts to demonstrate care for students and direct instruction towards students who 
are taking calculus for the first time. Future work should focus on the effects of homework type 
and textbook choice as instructor behaviors.   

Intended Questions for the Audience 
Is there other research that supports this relationship between encouraging behavior and student 
performance? Any suggestions for a qualitative follow-up study? 
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Developing Pedagogical Content Knowledge: Can Tutoring  
Experiences be Used to Train Future Teachers? 

 
Kristin Noblet 

East Stroudsburg University 
 

This preliminary report explores data from a larger study investigating the nature of preservice 
elementary teachers’ content knowledge and pedagogical content knowledge (PCK) in the area 
of number theory. A prominent theme emergent from the data – a contributing factor in 
participants’ PCK – was the theme of tutoring experiences. Participants explicitly and regularly  
referenced their tutoring experiences when responding to hypothetical students in PCK tasks. 
The influential nature of preservice elementary teachers’ tutoring experiences on their PCK 
holds implications for teacher-training, but further investigation is necessary. Questions 
concerning the design of a future study are proposed for discussion.  
 
Keywords: Pedagogical content knowledge, preservice elementary teachers, tutoring 
 

Research efforts to improve on mathematics education in the United States focus on a 
variety of contributing factors, key among them is the professional development and education of 
teachers. The literature has consistently linked student success in mathematics with teacher 
pedagogical content knowledge or PCK (e.g., Hill, Rowan, & Ball, 2005; Speer & Wagner, 
2009), which is an understanding of content that is specific to teaching. A recent study also 
indicated a link between teachers’ mathematical content knowledge and student achievement 
(Campbell et al., 2014). However, the research suggests that many preservice elementary 
teachers (undergraduates enrolled in elementary teacher education programs) may lack the 
mathematical content knowledge and the mathematical PCK necessary to teach mathematics for 
understanding (e.g., Conference Board of Mathematical Sciences, 2012). This suggests a need 
for preservice elementary teachers to have additional opportunities to develop their mathematical 
content and pedagogical content knowledge. 

Some researchers have argued that mathematical PCK can only be developed through 
authentic interactions with students (e.g., Van Driel & Berry, 2010). However, preservice 
elementary teachers have few, if any, opportunities to engage elementary school students with 
mathematics prior to their student teaching internships. At many schools, mathematics methods 
courses for future elementary school teachers emphasize planning and preparation rather than 
practicum. Practicum can include classroom observations and, occasionally, the teaching of a 
mini-lesson. Neither of these activities allow for sufficient interactions with students for 
developing robust mathematical PCK. And during preservice elementary teachers’ student 
teaching experiences, mathematics is never the primary focus; it is only one of many subjects 
that elementary education majors are required to teach every day. 

In this preliminary report, I use data from a larger study exploring preservice elementary 
teachers’ number theory PCK to suggest that tutoring experiences might be used to develop 
preservice elementary teachers’ mathematical PCK. While suggestive, the evidence I present is 
hardly definitive. I conclude this report with a list of discussion questions concerning the design 
of a future study with which to further investigate the effects of structured tutoring experiences 
on preservice elementary teachers’ mathematical PCK.  

 

22nd Annual Conference on Research in Undergraduate Mathematics Education 986



Theoretical Framework 
The most prevalent model for mathematical PCK in the U.S. mathematics education 

literature is Ball and colleagues’ (e.g., Hill, Ball, & Schilling, 2008) Mathematical Knowledge 
for Teaching (MKT). This model distinguishes between types of subject matter knowledge and 
types of PCK, and it identifies three constructs of mathematical PCK. According to Hill, 
Schilling, and Ball (2004), one of the three constructs of PCK is knowledge of content and 
students (KCS), which pertains to “knowledge of students and their ways of thinking about 
mathematics – typical errors, reasons for those errors, developmental sequences, strategies for 
solving problems” (p. 17). Another construct, knowledge of content and teaching (KCT), 
combines knowing about teaching with knowing about mathematics and pertains to instructional 
decisions as they relate to mathematics. A third construct, knowledge of curriculum, is a 
knowledge of programs developed for the teaching of a particular subject, concepts covered at a 
given level, and instructional materials available.  

The emergent perspective (Cobb & Yackel, 1996) served as the lens for collecting and 
analyzing data. I primarily used the psychological lens because the bulk of the data represent 
individual conceptions. On the other hand, via the social lens I explored the classroom norms, 
expectations, and experiences that framed participants’ perspectives on mathematics teaching 
and learning. I also drew from Ball and colleagues’ MKT (e.g., Ball, Thames, & Phelps, 2008; 
Hill, Ball, & Schilling, 2008) in designing my interview tasks to elicit PCK and again to analyze 
responses.  

 
Methodology 

Data for this report came from an interpretive case study (Merriam, 1998) centered on 
preservice elementary teachers who were seeking a mathematics concentration and enrolled in a 
number theory course. Data included classroom observational notes, student coursework for 13 
volunteers, as well as responses from two sets of one-on-one task-based interviews with six 
purposively chosen participants (a subset of the 13 volunteers), which served as the focus of the 
data analysis. During the interviews, all six interview participants admitted to having had 
mathematics tutoring experiences, either with grade school students, their peers, or both (see 
Table 1). 
 
Table 1. Interview participants’ tutoring experiences 

 Brit Cara Eden Gwen Isla Lucy 

Grade School Tutoring X  X X X X 

Peer Tutoring X X  X  X 

 
Many of the interview tasks posed hypothetical student scenarios, designed to elicit 

number theory PCK. To elicit KCS specifically, I asked participants to identify the hypothetical 
students’ mathematical conceptions and misconceptions. I also asked participants to describe 
how they might respond to the students in the scenarios in order to elicit KCT. Many of the 
students scenario task also included a meta-cognitive piece; I asked participants to reflect on why 
they responded to the hypothetical student in that way.  
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During the initial stages of my data analysis, I coded data according to the primary 
constructs detailed in my theoretical framework: KCS, KCT, classroom norms, etc. Within those 
general, umbrella codes, I conducted open, thematic coding. Finally, I conducted constant-
comparative coding (Corbin & Strauss, 2008) until I achieved saturation. Among my efforts to 
ensure trustworthiness, I used member checking during the interviews and data triangulation 
afterwards. 
 

Results: The Influence of Tutoring on Participants’ Responses 
One theme that emerged from the data was the theme of tutoring experiences. 

Participants frequently referred to past tutoring experiences, sometimes spontaneously, 
sometimes in response to the meta-cognitive interview questions, in order to justify their 
proposed responses to the students in the hypothetical scenarios. It was clear from their 
responses that participants’ tutoring experiences contributed to their demonstrated PCK in 
general, and their KCT specifically. To depict this influence, I detail the results of one such 
interview task. 

During the first round of interviews, I posed the scenario, “Mark suggested that the least 
common multiple (LCM) of two numbers is equivalent to their product.” I asked participants to 
validate Mark’s conjecture, identify his conceptions and misconceptions (KCS), respond to Mark 
in a way that helped him improve his understanding (KCT), and explain their reasoning for how 
they responded to Mark. All participants determined that Mark’s conjecture was incorrect, and 
found appropriate counterexamples, but only Brit, Cara, and Lucy correctly determined that 
Mark’s conjecture works for pairs of relatively prime numbers. 

When I asked participants why they thought Mark might believe his conjecture to be true, 
they responded with a variety of insights, which I coded as “KCS” if the statement pertained to 
“students and their ways of thinking about mathematics – typical errors, reasons for those errors, 
developmental sequences, strategies for solving problems” (Hill, Schilling, & Ball, 2004). I also 
coded the KCS statements as “student reasoning” if the participant referred to why a student 
might believe a statement, claim, or conjecture about number theory is true or false. All six 
participants had acknowledged at some point during the interview that Mark’s conjecture works 
for some pairs of numbers. Cara, Eden, Gwen, and Isla explicitly cited this as a reason for why 
Mark may have formed his conjecture. I coded this as “KCS”, and “student reasoning”, more 
specifically, because it was a reasonable explanation for why Mark might have believed his 
conjecture to be true. 
 After I asked participants why Mark might believe his conjecture to be true, I asked them 
how they would respond to Mark to help him correct his misconceptions, hoping to elicit KCT. 
Eden suggested that she would explicitly tell Mark which types of numbers worked. However, 
Eden’s limited understanding of the concepts behind Mark’s conjecture led to an inaccurate 
response. “You could go in and say, ‘Yes, this method does work but only for certain types of 
numbers. And these certain types of numbers would be the prime numbers.’” Here, Eden’s 
content knowledge weakened her KCT.  

Gwen suggested that she would discuss a confirmatory example (four and five) with 
Mark so that he would better understand why it worked, but her explanation was insufficient. 
The data suggested that Gwen’s understanding of the content may have limited any explanation 
with regards to the role factors play in finding the LCM of two numbers.  

In their responses to Mark, Brit and Cara also suggested they would point out that while 
the product of two whole numbers is a multiple, it is not always the least common multiple. This 
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instructional decision did draw attention to the inaccuracy in Mark’s conjecture, so I coded it as 
“KCT.” At some point in their responses to Mark, all participants claimed they would present 
him with a counterexample to explore. I coded these statements as “KCT” as well, because not 
only were they hypothetical instructional responses, but by strategically picking a specific 
counterexample the statements pertained to the specific mathematics related to the 
misconception. Isla suggested the counterexample of two and six, and she went so far as to 
explain to Mark why it was a counterexample.  

Isla: If we had the numbers two and six, and if you multiply them together, you get 
12. But in the sense of the least common multiple of two and six, it can be six, 
because six times one is six and two times three is six. 

Cara claimed that she would also provide Mark with a counterexample. However, her tack was 
very different than Isla’s. Isla said that she would fully explain the counterexample to Mark, 
while Cara insisted that Mark explore the counterexample on his own. The other four 
participants, Brit, Eden, Gwen, and Lucy, suggested that they would give Mark a 
counterexample to explore using Cuisenaire rods. They all claimed that this would help Mark 
see, in a tactile and visual way, that his conjecture was not always true. This decision seemed to 
draw from participants’ SCK and experience with Cuisenaire rods from their number theory 
course. Brit also used this opportunity to draw attention to common factors. “With six and eight, 
they have that two in common, so they have that stuff to match up before they actually multiply 
together.” Brit went on to say that “we have to look at what they have in common and whether 
we can match up [the trains] before [the product].” Not only did Brit create an opportunity for 
Mark to realize that his conjecture was invalid, but she demonstrated KCT by also creating an 
opportunity for Mark to understand why his conjecture does not always work.  
 Participants offered a multitude of reasons for why they responded to Mark in the ways 
that they did. I coded all of these responses as “insight to KCT.” Brit, Eden, and Isla all cited 
their tutoring experiences with elementary and middle school students. Brit said that her response 
to Mark was “just a natural thing” for her because of her years of experience tutoring students.  

Eden’s tutoring experiences led her to believe that students can be quite adamant that their 
answers are correct and that it can take a bit of work to convince them of an invalid answer or 
procedure.  

Eden: I tutor some kids in math, and they always think that their method is right, but 
you kinda show them that, ‘if you do it this way I get this answer and it's not the 
same as yours. How come?’ And you kinda slowly take what they're saying and 
slowly show them why it's wrong. And hopefully they'll connect to it saying, oh 
yeah, that is wrong. 

It is evident from Eden’s response that her tutoring experiences contributed to her general 
strategy for responding to Mark. Eden was one of three students (including Brit and Isla) that had 
not yet taken a mathematics education course. Later in the interview, she claimed that her 
tutoring experiences were the only experiences that contributed to her responses to the 
hypothetical students in the student scenarios. She also suggested that her strategy when working 
with students mostly consisted of trial and error. She said she would “see what works and what 
doesn’t work.”  

Isla claimed that her tutoring experiences helped her to recognize the conflicts that arise 
when teachers tell their students that a “rule” always works when, in fact, it may not. She 
frequently tutored her younger cousin, a 5th grade student, and she witnessed her cousin attempt 
to make generalizations about her mathematical understandings from earlier grade levels in order 
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to better understand the current material. Isla claimed that this was problematic. She said, 
“You’re told this rule applies for all, but it really doesn’t.” 

Rarely did participants have experience tutoring the specific content of the interview 
tasks, but when they did, they would bring it up during the task to justify their responses. In 
some cases, as we see with Eden’s response to Mark, insufficient content knowledge can 
negatively affect PCK, thus making content knowledge another important contributing factor to 
preservice teacher PCK. 
 

Discussion 
While some might argue that teachers may only demonstrate true PCK (KCT, in 

particular) in the classroom, others suggest that demonstrations of PCK in a clinical interview 
may be a sort of pre-knowledge or a subset of the knowledge they could demonstrate in the 
classroom (Hauk, Jackson, & Noblet, 2010). Even Hill (2010), a contributor of MKT, developed 
and implemented PCK test items that proposed to elicit KCT. If clinical settings can elicit a 
subset of a future teacher’s mathematical PCK, then more authentic teaching experiences like 
tutoring sessions are very likely to do so. The data from this preliminary study suggests that not 
only would tutoring experiences elicit PCK, but they appear to contribute to PCK development. 
However, to better understand the potential for using tutoring experiences to develop preservice 
elementary teachers’, further inquiry is necessary. Such inquiry should also take into account the 
effects of content knowledge on PCK. In designing a future study, we might consider the 
following questions.  
 
Questions for Audience Consideration: 

1. How might we structure or supplement mathematics tutoring sessions with primary 
students in order for the tutors (preservice elementary teachers) to best learn from the 
experience?  

a. Which design elements will encourage the development of the tutors’ KCS? 
KCT? 

b. How might we ensure that participants’ content knowledge is sufficient and 
being used appropriately? 

2. It can be argued that the format of a tutoring session greatly distinguishes tutoring 
from an authentic field experience. What are some of the limitations (and benefits) of 
using tutoring sessions in the research design? 
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An increase in general quantitative literacy and discipline-specific Physics Quantitative Literacy
(PQL) is a major course goal of most introductory-level physics sequences—yet there exist no
instruments to assess how PQL changes with instruction in these types of courses. To address this
need, we are developing the Physics Inventory of Quantitative Literacy (PIQL), a multiple-choice
inventory to assess students’ sense-making about arithmetic and algebra concepts that underpin
reasoning in introductory physics courses—proportional reasoning, covariational reasoning and
reasoning about sign and signed quantities. The PIQL will be used to not only to assess students’
PQL at specific points in time, but also to track changes in and development of PQL that can be
attributed to instruction. Data from early versions of the PIQL suggest that students experience
difficulty reasoning about sign and signed quantities.

Key words: Signed Numbers, Negative, Quantity, Physics, Reasoning Inventory

(Physics) Quantitative Literacy
Quantitative literacy (QL) plays a major role in everyday life, affecting how one views general risk,
and health and economic choices; quantitative literacy facilitates performance on many tasks. Both
everyday sense-making and workplace performance rely on QL, and many K-12 and higher edu-
cation systems have undertaken systematic attempts to improve student performance, yet progress
remains elusive (Madison & Steen, 2003; Steen, 2004). We argue that physics, as perhaps the most
fundamental and transparently quantitative science discipline, should play a central role in help-
ing students develop quantitative literacy. We coin Physics Quantitative Literacy (PQL) to refer
to the rich ways that physics experts blend conceptual and procedural mathematics to formulate
and apply quantitative models. Quantification, a foundation for PQL, is the use of established
mathematics to invent novel quantities to describe natural phenomena (Thompson, 2010; Thomp-
son, Carlson, Byerley, & Hatfield, 2014). Quantification is at the heart of experts’ investigation of
patterns and relationships, which in turn anchor the quantitative models that are the hallmark of
physics. Galileo famously wrestled with the mathematical decision of whether to describe accel-
erated motion with a ratio of change in velocity to distance traveled, or to elapsed time. Choosing
the latter led to the formal concept of acceleration, a foundation for Newtonian synthesis.

Quantification relies on blending physics meaning with a conceptualization of the multiplica-
tive and other mathematical structures of the quantities involved; cognitive blending theory helps
to frame this blend (Bing & Redish, 2007; Fauconnier & Turner, 2008). Figure 1 illustrates a
double scope quantity reasoning blend, in which two distinct domains of thinking are merged to
form a new cognitive space optimally suited for productive work. Findings by Czocher support
this view. They observed students enrolled in a differential equations course solving a variety of
physics problems, and found that successful students functioned most of the time in a “mathemat-
ically structured real-world” in which the students moved back and forth fluidly between physics
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ideas and mathematical concepts (Czocher, 2016). Fluency within this blended space is a hallmark
of PQL. We argue that assessing students’ PQL gives us insight into the desired cognitive blend.

likely more fragile than what physics instructors may commonly assume based on the students’ 
completed prerequisite math courses.  

The current study extends this prior research.  We wondered if there was something 
particularly “dark” about negative numbers per se, and if students would have a higher success 
rate had they been asked about signed positive numbers. Additionally, in open-ended versions of 
the assessment items we saw that students seemed to attribute meaning to particular phrases in 
the question statement that was not implied. We formulated the research questions below to 
focus the new study. The remainder of this paper describes our preliminary work in addressing 
these questions. 

1. Are difficulties with negative quantity associated with negativity per se, or do learners 
struggle in similar ways with positively signed quantity? 

2. What assumptions regarding negativity do students make based on language commonly 
found in physics problems? Specifically, to what extent do students: 
• interpret “movement along the x-axis” to imply motion in the +x-direction? 
• interpret a negatively signed quantity to imply a motion in the negative direction? 
 
The cognitive blending 

theoretical framework (Fauconnier 
& Turner, 2008; Bing & Redish 
2007) describes the interdependence of 
thinking about the mathematical and 
physical worlds that we feel is 
necessary for quantifying effectively 
with signed quantities in physics. Figure 1 illustrates a double scope quantity reasoning blend, in 
which two distinct domains of thinking are merged to form a new cognitive space optimally 
suited for productive work. Findings by Czocher support this view. She observed students 
enrolled in a differential equations course solving a variety of physics problems, and found that 
successful students functioned most of the time in a “mathematically structured real-world” in 
which they moved back and forth fluidly between physics ideas and mathematical concepts 
(Czocher, 2013). 

Research Methods 

Our work adopts a concurrent mixed methods strategy. We have used Vlassis’s framework 
for negativity (Vlassis, 2004) to inform the design of six assessment items, three involving 
contexts from mechanics (ME), and three, contexts from electricity and magnetism (EM). (See 
Appendix.) Previously, we used multiple-choice (MC) versions of the items to reveal trends in 
large populations, and free-response versions to explore students’ in-the-moment thinking 
(Brahmia & Boudreaux, 2016). 

For the current study, the items were administered in a three semester, large enrollment, 
calculus-based physics course sequence at a large, diverse, public R1 university, and in an 
analogous three quarter sequence at a smaller, less diverse, public regional university. The items 
were ungraded, and were bundled with concept inventories routinely given as part of course 
assessment. At the R1 university, the course was composed almost entirely of engineering 
majors, while at the regional university, the course included not only engineers, but also students 

Physically  
meaningful reasoning  

about quantity in 
introductory physics  

Conceptual 
understanding of 

arithmetic operations 
and quantity 

 
Connection to the 

physical world 

Figure 1: Double scope quantity reasoning blend 
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Figure 1: Cognitive blend required for sense-making of
physics quantities

Though improvement of PQL is a primary
course goal, There is little research to assess
how PQL develops throughout a typical in-
troductory physics sequence. To address this
need, we are developing the Physics Inven-
tory of Quantitative Literacy (PIQL). The PIQL
is an assessment instrument intended to probe
students’ proportional reasoning, covariational
reasoning, and reasoning about sign; these
three areas are at the heart of quantification in
introductory physics (Sherin, 2001; Thompson, 2010; Thompson et al., 2014).

In this paper, we discuss recently collected data from a prototypical version of the PIQL (the
‘protoPIQL’) to preview the types of analyses we hope to achieve using data from more final
versions of the PIQL. Our focus in this preliminary report is on instrument items that foreground
student reasoning about sign and signed quantities in introductory level physics.

Reasoning About Sign and Signed Quantities
There has been significant research about the different meanings of the negative sign, and stu-
dent understanding of ‘negativity’ (Bishop et al., 2014; Vlassis, 2004). Findings indicate that
algebraic success is associated with greater ‘flexibility’ with negativity—that is, students that are
able to interpret correctly its use in different contexts show improved performance on tasks such
as polynomial reduction (Vlassis, 2004). Flexibility with negativity is analogously important in
introductory-level physics, yet no analogous research has been conducted in physics contexts. This
paper describes our effort to probe the published natures of negativity (Vlassis, 2004) in a physics
context.

Table 1: A map of the different uses of the negative sign in elementary algebra (Vlassis, 2004)

Unary (Struct. signifier) Symmetrical (Oper. signifier) Binary (Oper. signifier)
Subtrahend Taking opposite of, or Completing

Relative number inverting the operation Taking away
Isolated number Difference between numbers

Formal concept of neg. number Movement on number line

Table 1, reproduced from Vlassis’s 2004 paper, is a map of different algebraic meanings of the
negative sign. It served as a guide in our preliminary study of student understanding of the nega-
tive sign in introductory-level physics. To begin to probe the effect of introductory-level physics
instruction on development of flexibility with negativity, we modified existing signed-quantity
questions (Brahmia & Boudreaux, 2017) for use on the protoPIQL. Examples of such questions,
and how they fit into the map summarized by Vlassis, are shown in Figure 2.
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Figure 2: Items used on protoPIQL representing different algebraic natures of negativity. The acceleration item (left)
probes student understanding of the unary (structural signifier, direction of vector component) aspect of negativity,
while the work item (center) represents a binary (symmetrical, decrease in system energy) aspect. The position item
(right), represents a binary (operational signifier, position relative to origin) nature.

An object moves along a line, represented
by the x-direction, and the acceleration is
measured to be �x = �8 m/s2. Consider
the following statements about this situ-
ation. Select the statement(s) that must
be true. Choose all that apply.

a. The object’s speed is decreasing.

b. The magnitude of the acceleration is de-
creasing.

c. The object is doing the opposite of accel-
erating.

d. The acceleration is in the negative x-direction.

A hand exerts a horizontal force on a block
as the block moves along a frictionless,
horizontal surface. For a particular inter-
val of the motion, the hand does
� = �2.7 � of work on the block. Con-
sider the following statements about this
situation. Select the statement(s) that
must be true. Choose all that apply.

a. The work done by the hand is in the neg-
ative direction.

b. The force exerted by the hand is in the
negative direction.

c. A component of the force exerted by the
hand is in the direction opposite to the
block’s displacement.

d. Energy was taken away from the hand sys-
tem.

e. Energy was taken away from the block
system.

An object moves along a line, represented
by the x-direction, and the acceleration is
measured to be �x = �8 m/s2. Consider
the following statements about this situ-
ation. Select the statement(s) that must
be true. Choose all that apply.

a. The object’s speed is decreasing.

b. The magnitude of the acceleration is de-
creasing.

c. The object is doing the opposite of accel-
erating.

d. The acceleration is in the negative x-direction.

A hand exerts a horizontal force on a block
as the block moves along a frictionless,
horizontal surface. For a particular inter-
val of the motion, the hand does
� = �2.7 � of work on the block. Con-
sider the following statements about this
situation. Select the statement(s) that
must be true. Choose all that apply.

a. The work done by the hand is in the neg-
ative direction.

b. The force exerted by the hand is in the
negative direction.

c. A component of the force exerted by the
hand is in the direction opposite to the
block’s displacement.

d. Energy was taken away from the hand sys-
tem.

e. Energy was taken away from the block
system.

A person is moving along a line, repre-
sented by the x-direction. At a specific
instant of time the person is at position
� = �7 � . Consider the following state-
ments about this situation. Select the state-
ment(s) that must be true. Choose all
that apply.

a. The person moves in the negative direc-
tion.

b. The person is to the negative direction
from the origin.

c. The person is facing backwards.

d. The person is moving backwards.

Page 2

Methods and Analysis
PIQL is designed as a multiple-choice instrument for collecting quantitative data. Quantitative
methods are well-suited to our current investigation, as we are not probing students’ ‘in-the-
moment’ thinking. Rather, we hope to track changes to and development of PQL over the course
of instruction in introductory physics.

The protoPIQL was administered to N ⇠ 1000 students enrolled in each of the three quarters
that constitute one academic year of the calculus-based introductory physics sequence at a large,
public American university at the beginning of the academic quarter, before significant instruction
had occurred. Therefore, for students enrolled in the first quarter of the sequence, the protoPIQL
serves as a pretest for the entire introductory physics sequence. For students enrolled in the second
and third quarters of the sequence, the protoPIQL acts as a post-test for the previous quarter’s
course. Thus we are able to determine whether flexibility with negativity in physics changes over
the first two quarters of the introductory sequence. In addition, we wished to investigate how
flexibility across contexts is correlated with flexibility within a single context, as described below.

The protoPIQL consisted of 18 questions total: 10 on proportional reasoning, 6 on reasoning
about negative quantities, and 2 on covariational reasoning. We focus here on the results of the
three negativity questions presented in Figure 2. These three questions represent three different
natures of negativity in introductory physics. For ax, the x-component of acceleration, a negative
sign indicates the direction of the vector component relative to a coordinate system. Although
the position x is also a vector component (position~r is a vector quantity), it can be considered an
‘almost scalar’ quantity in this context, as a one-dimensional position measurement along an axis
differs from a location on a number line only in its units. Work W on a system is a scalar quan-
tity that is related to changes in the mechanical energy of a system via the work-energy theorem
(Wnet,ext = DE); therefore negative net work on a system indicates that the mechanical energy of
that system is decreased. In this case, with only one force that does work on the system, negative
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net work also indicates that the force and the system’s displacement have components in opposite
directions, as W = ~F · D~x. Thus, a full understanding of negative work requires flexibility within
the single context, as multiple interpretations of the negative sign are possible and (in fact) desired.

Changes in Flexibility With Instruction
For our first, preliminary investigation into changes in flexibility with negativity over the intro-
ductory physics sequence, flexibility was defined in terms of answers to these three questions. A
small percentage of students did not answer the position question correctly; these students were
not given a flexibility designation, as we see understanding of the negative sign associated with
position as the most basic understanding of a negative quantity (most analogous to a location on a
number line). These students, categorized “Nx” were not included in the following analyses. Stu-
dents answering only the position question correctly were categorized as “Inflexible” (In). Students
that answered only one of the acceleration and work items in addition to answering the position
item correctly were categorized as “Intermittently flexible.” Students answering all three of the
mechanics negativity questions correctly were categorized as “Flexible.”
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Figure 3: Flexibility for 5 populations of students

Results for students enrolled in a standard
introductory physics sequence (labeled Quar-
ter 1, 2, and 3), as well as students in the third
quarter of an ‘honors’ introductory physics se-
quence (Q3 Honors) and physics graduate stu-
dents (G) are shown in Figure 3. Although we
see an increase in flexibility after a single quar-
ter of instruction (that is, from Q1 students to
Q2 students), there is no significant increase in
flexibility thereafter.

Flexibility Within Contexts
To investigate the correlation between flexibility across contexts (as above) and flexibility within
a single context, we consider only students enrolled in the last quarter of the introductory physics
sequence (students in Q3 and Q3H, N = 317). We also define flexibility differently for this analysis,
using a slightly different subset of items: the position and acceleration questions described above,
and a third item regarding the meaning of the negative sign associated with a component of an
electric field, Ex. Mathematically, the meaning of the negative sign in the electric-field context
is similar to that in the acceleration context. We collapse the four categories above into two—
students answering zero or one items out of the three were considered to be inflexible, while
students answering two or three of these items correctly were considered to flexible. By this metric,
approximately 75% of Q3 and Q3H students are flexible (comparable to the sum of Flexible and
Intermittently Flexible in Figure 3).

The work item has two correct responses, one that connects the meaning of the negative sign to
the relative orientations of the factor vectors ~F and D~x, and one that relates to the system’s decrease
in mechanical energy. A complete understanding of the negative sign of work requires flexibility
within this single context—the negative sign has two correct interpretations. To look at whether
inter-context flexibility was associated with intra-context flexibility, we compared performance on
the negative work item for students that were rated as inflexible or having emerging flexibility as
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Figure 4: Left: number of students rated as flexible or inflexible based on answer choices. Right: conditional proba-
bility of being categorized as flexible or inflexible given answer choice(s).

defined above. (Recall that approximately 75% of these students are flexible by this definition.)
The results are shown in Figure 4. Answer choice C compared the relative orientations of the factor
vectors of the scalar product, while answer E relates the negative sign to the system’s decrease in
energy. Answer choice D incorrectly identifies negative work with an increase in system energy.
X2 analysis suggests that showing intra-context flexibility by recognizing both possible meanings
of the negative sign) is associated with inter-context flexibility (p = 0.024). We interpret this result
as an indication that flexibility across multiple contexts may help prepare students for the more
challenging contexts typical in subsequent physics courses in which there are multiple meanings
of signs in a single mathematical statement.

Comments and Future Work
Although the negativity items of the protoPIQL are yielding interesting findings, we believe that
our current analysis is limited by the negativity framework developed in the context of algebra. We
are developing a negativity framework specific to introductory physics. We find that uncovering the
natures of mathematical objects that play multiple roles in physics to be a productive framework
for assessment, instruction, and curriculum development. In a related paper in these proceedings,
we discuss the Nature of Negativity in Introductory Physics. Such a physics-specific framework
will, in turn, necessitate the construction of new items for the PIQL and may inform natures of
negativity in the context of quantity used in mathematics education.

Regarding PIQL more broadly, we are creating an analogous map for the natures of covaria-
tional reasoning in introductory physics that draws on the extensive work done in the context of
mathematics (Carlson, Oehrtman, & Engelke, 2010), and have made progress on a framework for
proportional reasoning in the context of physics (Boudreaux, Kanim, & Brahmia, 2015).

This material is based upon work supported by the National Science Foundation under grant
number IUSE:EHR #1832836.
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Teacher Candidates’ Cognitive styles: Understanding Mathematical Thinking Process used in the 
Context of Mathematical Modeling Tasks 

 
Ayse Ozturk 
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In this work we examined modeling routes, mathematical thinking styles and teaching foci of 
two prospective secondary teachers as they considered two modeling tasks so to consider 
connections between the candidates’ own modeling processes and their approaches to teaching 
modeling. Two questions guided the study: How might pre-service teachers’ preferred 
mathematical thinking styles impact their modeling routes? How might pre-service teachers’ 
preferred mathematical thinking styles impact their focus while contemplating how they would 
teach mathematical modeling? Close links were found between teacher candidates’ validation 
methods within the modeling process and their decisions regarding what would be important for 
school learners to consider. Recognizing teacher candidates’ natural approaches to modeling 
tasks might help teacher educators to be better positioned in developing tasks that motivate 
reliance on a larger repertoire of representations. 
 
Keywords: Mathematical Modeling, Cognition, Teacher Education 
 

Individuals’ mathematical modeling process does not progress linearly (Kaiser, 2013). 
one’s preferences and mathematical competencies influence their choice of modeling routes 
within the when tackling modeling problems (Blum & Ferri, 2009). While one individual may 
start the modeling process with a direct connection of a real situation to the mathematical 
model, another individual might spend time creating a real model first and then move from the 
real model to a perceived suitable mathematical model (Haines & Crouch, 2010). Ferri (2010) 
suggests that examining individuals’ modeling routes can enable researchers to better 
understand their mathematical thinking styles. 

According to Stenberg (1997), a thinking style is a “preferred way of thinking” or 
“preference in the use of abilities,” something which might be acquired through the social 
environment. Based on Stenberg’s theory, mathematical thinking styles are described as how 
individuals prefer to understand and learn mathematics (Dreyfus & Eisenberg, 1996; 
Schoenfeld, 1994). Later empirical studies classified these thinking styles into three categories: 
visual, analytic, visual, analytic, and integrated thinking (Dreyfus & Eisenberg, 2012). 

If we think about the connection between mathematical modeling and mathematical thinking 
styles, an “individual’s preferences” play an important role. Ferri (2010) argued that an one’s 
preferences along their choices of modeling routes can be a strong indication of the individual’s 
thinking styles. It is logical to typologies how teachers’ thinking styles affect their behaviors in 
mathematical modeling implementation: type 1- retrospective formalizer, type 2-realistic 
validator, and type 3-formalisticrealistic (Ferri, 2018). Although studies which examine the 
relationship between modeling routes and mathematical thinking styles exist in the literature 
(e.g., Blum &Ferri, 2009; Ludwig & Xu, 2010; Maltempi & Dalla Vecchia, 2013), these reports 
have involved work with high school students, teachers, or mathematicians. There is still a need 
for empirical studies involving teacher candidates who have newly developed knowledge of 
mathematical modeling and its implementation in the classrooms. In this study, we investigate 
the relationship between pre-service teachers’ mathematical thinking styles, their modeling 
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routes, and their focus while contemplating how they would teach modeling. The following 
questions guided this study: How might pre-service teachers’ preferred mathematical thinking 
styles impact their modeling routes? How might pre-service teachers’ preferred mathematical 
thinking styles impact their focus while contemplating how they would teach mathematical 
modeling? 

The Framework 
We considered three conceptual issues when selecting appropriate mathematical modeling 

tasks: the participants’ ways of mathematical thinking, ways in which their modeling routes 
proceed in modeling cycles, and their projected teaching behaviors when facilitating 
mathematical modeling tasks. Hence, three frameworks guided our data analysis process: 1) 
Blum and Leiβ’s (2007) modeling cycle (Figure 1) was used to be able track the participants’ 
modeling routes in their approaches to solving the tasks, 2) mathematical thinking styles 
(visual, analytic, and integrated) that influenced their modeling process (Ferri, 2010), and 3) 
Participants’ behaviors in teaching modeling (type 1-retrospective formalizer, type 2-realistic 
validator, and type 3-formalistic-realistic) are considered (Ferri, 2018). 

According to Ferri (2010), visual thinkers use mostly illustrative drawings to express real 
situations/problems while they are working within a mathematical model. They follow the full 
modeling cycle (Figure 1). Analytic thinkers usually work with symbolic or verbal 
representations, and they tend to create a mathematical model from a real situation and focus on 
mathematical results rather than creating a real model in the modeling cycle. Integrated thinkers 
combine visual and analytical ways of thinking and switch their modeling routes flexibly while 
creating different representations. 

 
Figure 1. Mathematical Modeling Cycle (Blum & Leiβ, 2007) 

Ferri’s study (2018) introduces three types of teacher behaviors when implementing 
mathematical modeling tasks. These are: 1) Type 1- A retrospective formalizer focuses on 
mathematical solutions and mathematical models, and they use only real facts for the 
validation of mathematical results; 2) Type 2- A realistic validator focuses on understanding 
and representing real situations/problems with pictures and graphics, and formalization has a 
low significance for them; and 3) Type 3- A formalistic realistic focuses on striking a balance 
between real-world situations and mathematical representations during modeling 
implementation. 

Research Methodology 
This research was a qualitative, descriptive account of the modeling routes and 

mathematical thinking styles of two secondary pre- service teachers. The study was conducted 
at a public university in a Midwestern state. The participants, Alonzo and Bria (pseudonyms) 
were enrolled in a methods course on teaching mathematics in secondary schools at the time of 
data collection. This course is the second of a yearlong sequence of methods courses, in which 
mathematical modeling was addressed explicitly addressed in three class sessions. The 
selection of the participants was deliberate, targeting variability among mathematical 
backgrounds and self- efficacy towards doing and teaching mathematical modeling. Each 
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participant was interviewed individually three times for approximately one hour each. 
Interview sessions had a two-part design. In the first part, each candidate worked on a 

modeling task and were then asked to comment on how they would implement the same task in a 
classroom. They were asked to comment on challenges they anticipated regarding learners’ 
difficulties, and how these challenges may be addressed in instruction. We used the think aloud 
technique (Ericsson & Simon, 1980) during the interview process. The three modeling tasks 
were selected from Three-Act Math Tasks (Meyer, 2011). The common objectives of the three 
tasks were defining variables, estimation, making assumptions, and modeling with geometry, 
which required applying concepts of density based on area and volume in modeling situations 
(e.g., water per cubic foot) (CCSSM, 2010). The tasks access to the mathematics through 
multiple entry points, and they foster the solving of problems through varied solution strategies. 
Each of the interviews was videotaped and transcribed, and the written work was digitized. The 
videos and transcripts were analyzed to capture the relationship between the mathematical 
thinking styles and modeling behaviors of teacher candidates from tasks to tasks (Auerbach & 
Silverstein, 2003). 

Results of the Research 
There is agreement that validation is an essential part of the modeling cycle (Cai et al., 

2014). Validation involves comparison of the responses predicted with a mathematical model 
to the responses in the real world model (Blum & Ferri, 2009). Both participants validated 
their results at almost every stage of the modeling process. However, their validation methods 
differed. While Alonzo relied on explaining his reasoning in a formal manner, Bria tended to 
validate her modeling steps drawing on her experiences, intuitive knowledge, and pictorial 
representations. In the following section, we show illustrative examples of the participants’ work 
in one of the modeling tasks from the interviews and the modeling routes used in the modeling 
cycle to show their preferred representational schemes. 

 

 
 
 

Task 1- Part 2: What would be your focus if you implement this task in your classroom? How 
would you assess your students during the modeling process? 
Participant Alonzo: Analytic Thinker, Retrospective Formalizer 

Alonzo’s first solution step was to turn the real problem into a mathematical problem and 
write down the volume formula V= π r2h, where h feet is the unknown height of the coffee cup 
and r feet is the unknown radius of the coffee cup. Alonzo created a mathematical model based 
on the volume of a cylinder, then used that formula to proceed to the problem’s solution. He 
brought up another mathematical consideration, which was the conversion from cubic feet to 
gallons, i.e., 1 cubic foot= 7.48 U.S. liquid gallons (real result). Hence, he wrote “The cup 
should hold V*7.48 gallons of coffee” (mathematical model) and then revised his 
mathematical model based on the world record. He suggested that since the biggest cup held 
911.5 gallons (real result), the new cup volume must satisfy V*7.48> 911.5 gallons 

Task 1- Part 1: World’s Largest Hot Coffee (Meyer, 2011)  
The Gourmet Gift Baskets team wants to break the record for 
the biggest coffee cup. According to the Guinness Book of                   
Records, the World’s Largest Cup of Coffee contained 911.5 
gallons of coffee in 2007. What should be the size of the coffee              
cup to break this record? If the rate of filling the cup is 2.1 
gallons per minute, approximately how long does it take to fill 
this cup? Explain your solution. 
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(mathematical model), in which h and r could be approximated based on that calculation 
(mathematical results). Then, he went back to the ‘how long it takes to fill the cup problem, and 
created another formula, (V*7.48 gallon)/2.1 gallons, which is another mathematical 
model, this time one to be used to approximate the time it would take to fill the cup. The 
mathematical calculation and approximations led him to answer “approximately 13 hours are 
needed to fill the cup.” As an analytical thinker, he relied on algorithms and procedures he 
knew and did not consider further iterations in the modeling cycle’s modeling route is 
presented in Figure 2 below: 

 
Figure 2. Alonzo’s modeling route in Task 1 

 
Alonzo’s response to the question “What would be your focus if you implement this task 

in your classroom?” was: “I believe that students have to think in structures and be able to 
move within these structures so that they are able to see and to build formulas. I imagine that 
students would start with simple representations for this problem, and my guidance would be 
pushing them the mathematical world, such as using more math terms. For me, the most 
important information in this problem is to be aware of why we use the volume formula.” 
Based on Ferri’s (2018) category, Alonzo comments and his methods to solve the problem 
matched type 1- retrospective formalizer teacher behavior. His formalization of solutions in 
the form of abstract equations was important, and validating ideas with real-life facts was less 
important for his instruction. 
Participant Bria: Visual Thinker, Realistic Validator 

Upon reading the task Bria immediately drew a sketch to create a situation model. She then 
simplified the resulting situation model to match a real model she believed compatible: the 
“Coffee cup is similar to a hot tub.” Bria mentioned how long it took her to fill up her hot tub. 
She compared hot tub size (real model) to coffee cup size and estimated that the coffee cup size 
was 5 x 7 feet. She then drew a 2-gallon water bottle and estimated the size of the bottle as 5 x 
10 inches. Bria said: “I imagine myself now, I am using this plastic bottle to pour 2 gallons of 
coffee per minute to fill up the big coffee cup” (real model/problem). Then, she attempted to 
mathematize the problem by drawing both the coffee cup and a cylindrical 2-gallon plastic 
bottle. She planned to divide the big cylinder’s volume by the small cylinder’ volume to figure 
out how many minutes it would take to fill up the big cup. She plugged the estimated size values 
into her formula “V1/V2” (mathematical model) and the first answer was “8.5 hours” 
(mathematics result)”. Bria’s answer to the question of “How do you know that your assumption 
(5 x 10 foot2) on coffee cup size is appropriate for breaking the world record?” was: “I do not 
know for sure, visually it (coffee cup) seems like little smaller than my hot tub. But, I could 
figure out the size of the coffee cup by comparing the biggest cup in the world’s record.” She 
decided to use 911.5 gallons to be more precise in her coffee cup size answer. She 
calculated the volume of the coffee cup in ft3, which was smaller than 911.5 gallons. Then, she 
revised the formula and wrote down “V1>911.5.” she started the modeling cycle once again to 
determine the size of the coffee cup more precisely. As a visual thinker, her primary method was 
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to draw the coffee cup and a 2-gallon bottle to express the problem situation. Real facts and her 
life experience guided her in validating her own assumptions. Bria’s modeling route is presented 
in Figure 3 below: 

 
Figure 3. Bria’s modeling route in Task 1 

 
Bria’s response to the question “What would be your focus if you implement this task in your 
classroom?” was: “For me, it is not very important that students do everything formally in a 
correct way and find the mathematical answer of this problem. But they need to understand 
that mathematics can help them in their way of thinking. My class would focus on encouraging 
students to start a solution with imagining the real situation. Then, students should be able to 
explain their mathematical ideas based on what’s happening in reality.” In contrast to Alonzo, 
Bria preferred to validate the modeling process with her real-life experiences. She sees 
visualization and estimation as important tools for interpreting mathematical results in her 
modeling process. Her focus while she contemplated how she would use this problem in her 
teaching is more similar to type 2- realistic validator in Ferri’s (2018) category. 
 

Implications for Teaching Practice 
Similar to the teachers in Ferri’s study (2018), teacher candidates’ methods for the 

validation of ideas within the modeling process and making decisions on what to focus on 
when teaching mathematical modeling depended on their thinking styles. Knowledge about 
different modeling behaviors based on the teacher candidates’ preferred mathematical thinking 
styles inform both teacher educators and teacher candidates about the articulation of the ways 
for teaching mathematical modeling and characterizing learners’ modelling efforts. This might 
help teacher candidates to be aware of their own ways of thinking mathematically as well as 
others’ modeling behaviors. Consequently, teacher candidates might be more prepared to 
anticipate learners’ modeling actions, the difficulties learners might face (e.g., building a 
mathematical model), and to respond their needs in the classroom. 

Manouchehri’s study (2017) revealed two challenges for teacher educators when engaging 
teachers in mathematical modeling to include managing teachers’ different mathematical 
backgrounds and creating a collaborative learning environment for mathematical modeling. 
The current report offers a venue for identifying a baseline knowledge for teacher educators 
about accessing pre-service teacher’s preferred mathematical thinking styles and teaching 
focuses in the modeling process. Recognizing teacher candidates’ natural approaches to 
modeling tasks might guide teacher educators to be better positioned in developing and using 
tasks that motivate reliance on a larger repertoire of representations. This approach can not 
only advance preservice teachers’ modeling competencies but also allowing them to gain 
pedagogical tools for navigating classroom implementations. Based on our findings, we would 
like to invite the RUME audience to discuss the following questions: How can we assess pre-
service teachers for mathematical modeling? What type of tasks would be helpful in developing 
a research-based teacher learning trajectory specific to mathematical modelling? 
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What is Difficult About Proof by Contradiction? 

 
David Quarfoot and Jeffrey M. Rabin 

Department of Mathematics, University of California, San Diego 

Although students face many challenges in learning to construct mathematical proofs in general, 
proof by contradiction is believed to be particularly difficult for them. We investigate whether 
this is true, and what factors might explain it, using data from an “Introduction to Proof” 
course. We examined proofs constructed by students in homework and examinations, and 
conducted stimulated-recall interviews with some students about their thought processes while 
solving proof problems. Preliminary analysis of our data suggests that students’ background 
knowledge about the typical content domains that appear in indirect proof plays a larger role 
than the logical structure of the proof technique itself.  

Keywords: Indirect Proof, Proof by Contradiction, Teaching Mathematical Proof.  

Introduction 
The teaching and learning of mathematical proof have received a great deal of attention 

in the field of mathematics education research, and this emphasis continues to increase. At the 
college level, the ability to understand and construct proofs is essential for students to transition 
from computationally oriented calculus sequences to more theoretically oriented upper-division 
mathematics courses. Many universities have instituted “Transition to Proof” courses to facilitate 
this. At the K-12 level, the Common Core Standards for Mathematical Practice emphasize the 
ability to construct and critique mathematical arguments, i.e., proofs. 

Indirect proof, also known as proof by contradiction (we will use these terms 
interchangeably), is an essential form of proof across all mathematical content areas. Instructors’ 
anecdotal experience as well as mathematics education research suggest that students have 
particular difficulty with this type of proof, where “difficulty” has been variously interpreted as 
pertaining to comprehending, constructing, deriving conviction from, or simply disliking indirect 
proofs (Tall 1979, Brown 2018). It is somewhat puzzling why indirect proof would be especially 
challenging cognitively, given that we use this kind of informal reasoning frequently in everyday 
life (Reid & Dobbin 1998). The common form of argument, “If that were true, then how do you 
explain X?” is clearly an informal sketch of a proof by contradiction.  

If indirect proof is indeed uniquely difficult in the formal mathematical context, what are 
the reasons for this? We explore this question using data from an “Introduction to Proof” course 
recently taught by one of us, in the context of students constructing indirect proofs for homework 
assignments and examinations.  

Purpose and Theoretical Background 
The purpose of this study was to identify difficulties faced by students in constructing 

indirect proofs as part of their regular coursework in an “Introduction to Proof” class. The 
problems solved by these students are part of the regular course pedagogy rather than tasks 
chosen by a researcher, for example in an interview setting. Since this study is somewhat 
exploratory, we wanted a wide range of “naturalistic” proof samples rather than one or two that 
might reflect peculiarities of those chosen tasks more than general student issues with indirect 
proof. 
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Assuming that the literature is correct that indirect proof is uniquely difficult for students, 
our intent was to test three hypotheses that might explain why, or to formulate additional ones. 

1. Logical hypothesis. Students have difficulty recognizing what constitutes a 
contradiction in the strict logical or mathematical sense. If a step in their proof 
contradicts a piece of their prior mathematical knowledge (which may never have 
been rigorously proved itself), is that sufficient? They may also manipulate 
mathematical statements too formally, assigning them so little meaning that 
contradictions go unrecognized (Sierpinska 2007).  

2. Psychological hypothesis. Indirect proof requires the temporary acceptance for the 
sake of argument of assumptions that are actually false, and may already be known to 
be false. Such counterfactual reasoning may be more difficult within the domain of 
mathematics than in everyday contexts (Antonini & Mariotti 2008). For example, I 
can fairly easily imagine that Hillary Clinton won the 2016 election, but how can I 
imagine that 7 is not a prime number? What kinds of reasoning can be trusted in such 
an “impossible world”? 

3. Structural hypothesis. In a direct proof task, both the hypothesis and the conclusion 
are known at the outset. That is, one knows where the proof begins and where it will 
end, providing a structural framework (Selden & Selden 2009). In contrast, the goal 
of indirect proof is “a contradiction”. The prover does not know in advance what this 
will be, so cannot structure the proof around it. 

Our initial research question was, what evidence do students’ proofs from their class 
assignments provide for or against these hypotheses?  

Based on our initial data analysis, however, we have broadened our hypotheses. It may be 
that indirect proof is difficult not (only) because of its logical nature, but because of the typical 
mathematical content in such proofs, for example rational versus irrational numbers. The 
background knowledge and beliefs that students have about such content may be a source of 
their difficulties. One would then expect to observe similar difficulties in direct proofs dealing 
with the same content. We have found it useful to think about students’ background or prior 
content knowledge in terms of the resource framework (Hammer et al 2005), or the knowledge-
in-pieces viewpoint (diSessa 2013). In these perspectives, student knowledge does not form a 
coherent theory, but rather a collection of pieces or “resources” that may not be mutually 
consistent and may be individually activated in varying circumstances. From such a perspective 
one would not ask whether a student “really believes” for example that (a+b)2=a2+b2 but rather 
in what contexts this type of assertion is activated.  

Participants and Methods 
The participants in this study were students in an “Introduction to Proof” class taught by 

one of the authors at a large public university in the southwestern United States. The class is 
normally taken following the two-year calculus sequence and is required for all mathematics 
majors. Of the 106 enrolled students, 72 agreed to participate in the study. The majority of these 
were mathematics majors, and the rest were from various other STEM majors. There were 
roughly equal numbers of male and female students.  

All homework and exams were graded using the Gradescope system, which preserved the 
students’ work for our later analysis. There were twelve graded proof by contradiction problems, 
some from the course textbook and some that we added based on previous research or for 
pedagogical reasons. During the course no attempt was made to match the assigned direct and 
indirect proof problems for difficulty or content, but for our analysis we selected a comparison 
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group of eleven direct proof problems that we considered comparable in difficulty and subject 
matter. The comparison is quite rough, since the direct proof problems assigned tended to 
involve specific topic areas covered in the course, such as equivalence relations or mathematical 
induction, which do not overlap greatly with the content areas for the indirect proofs. The proof 
by contradiction problems were clustered in two consecutive homework assignments near the 
middle of the course, or on the second midterm or final exam. We also solicited student 
volunteers to be interviewed, but only obtained six volunteers, all of whom were accepted. 
Nevertheless there were three male and three female interview subjects, representing a range of 
achievement levels in the course.  

Interviews took place just after the second midterm exam. These were semi-structured 
“stimulated recall” interviews (Shubert & Meredith 2015). Students were shown their own prior 
work on certain indirect proof problems, and were asked to identify the contradiction they 
reached and explain why it was a contradiction, how they searched for and then recognized the 
contradiction, why they chose a particular approach, and what other approaches they had 
attempted. Sometimes they were shown the work of another student and asked to locate the 
contradiction or to compare that solution with their own. After discussing specific proof 
problems, they were asked some general questions, such as what makes an indirect proof work, 
how they feel about reasoning on the basis of a counterfactual assumption or “impossible” 
geometric diagram, and whether they prefer direct or indirect proof for any reason.  

Homework and examinations are complementary data sources in some respects. Students 
are under less time pressure when solving homework problems, so one might expect their 
reasoning to better reflect their capabilities and knowledge about proof rather than careless errors 
due to time pressure. On the other hand, students have more opportunities to obtain help from 
friends, teachers, or online sources, when doing homework. We saw evidence for both effects.  

At this stage of data analysis, we have examined all student solutions to six indirect and 
two direct proof problems. We coded the different approaches taken, both correct and incorrect, 
and created categories of errors or misconceptions exhibited. Of particular interest were the types 
of contradictions obtained, whether they were reached in an efficient or a roundabout manner, 
whether any actual contradictions were written down but overlooked by the student, or 
conversely whether a student claimed to have reached a contradiction when she had not in fact 
deduced one. We have transcribed the interviews and begun to code them for students’ 
understanding of how proof by contradiction works, ability to recognize contradictions, comfort 
level when reasoning from counterfactual hypotheses, and so forth.  

Results 
As an initial rough indication of whether the indirect proofs were “more difficult” than 

the comparison group of direct proof problems for our students, we compared their mean scores 
on the two groups of problems using the Welch two-sample t test. The difference in group means 
was not significant at the 5% level, suggesting roughly similar levels of difficulty.  

One of the homework problems assigned was the Angle Bisector problem studied by 
Baccaglini-Frank et al (2013): show that the bisectors of two angles in a triangle ABC cannot be 
perpendicular to one another. This is an easy consequence of the angle sum in a triangle being 
180 degrees and can be demonstrated by direct (6 students) or indirect proof (48 students). 
Significantly, most students included a diagram with their proof and showed no confusion in 
reasoning from this impossible geometric figure (termed a pseudo-object by Baccaglini-Frank et 
al). Asked how he felt about this potential cognitive conflict, one student explained:  
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I think it might just be from experience of knowing that hand-drawn pictures can 
be inaccurate, and then there are a lot of stuff like optical illusions where some 
things look perpendicular when they’re not…It wasn’t necessarily to reassure 
myself that the statement was true because I knew the statement was true, and it 
was more so to visualize the relationship of that new angle and how it relates to 
A,B, and C. 
 

This and similar data do not support our Psychological hypothesis.  
Another homework problem asked students to prove that no positive integers m and n 

satisfy the equation 7/17 = 1/m + 1/n. There are many ways to show this, but only 8 out of 64 
submissions were correct. The most common approach was to write 7/17 = (m+n)/mn, or the 
equivalent form 7mn = 17(m+n). 24 students concluded incorrectly from this that m+n=7 and 
mn=17. We coded this reasoning, which we also observed in other problems, as SFE (Strong 
Fraction Equivalence, the view that equal fractions must have identical numerators and 
denominators) or SUF (Strong Unique Factorization, the view that ab=cd implies that a=c or 
a=d). These students then easily showed that the few values for m and n consistent with one of 
these restrictions do not satisfy the other. SFE might reflect students’ uncertainty about when it is 
legitimate to assume that a fraction is in lowest terms (as is often done “without loss of 
generality” in indirect proof) but this explanation does not seem to account for SUF.  

It is not plausible that large numbers of STEM majors “really believe” SFE or SUF, 
certainly not as part of a coherent set of background beliefs, but clearly these assertions are 
commonly activated (in direct proofs as well). This and similar observations of ours make more 
sense in terms of the resource framework. Neither SFE nor SUF seems connected to the logical 
structure of indirect proof, but the typical content of this type of proof may provide more 
opportunities than that of direct proof to activate such resources. These observations are 
consistent with the Logical hypothesis, in the sense that students are working formally rather 
than attending to the meaning of their mathematical assertions. However, we think it is more 
productive to locate their difficulties in the content of the proof (integers, rational numbers, 
divisibility) than in the logical structure of indirect proof.  

SFE and SUF can be viewed as parts of a broader category of errors that we observed in 
our data and termed AVNP, for Algebraic Visibility versus Numerical Possibility. That is, 
students attend to what is algebraically visible in an equation rather than what numerical 
possibilities might be consistent with it. For example, students see that an expression is not an 
algebraic perfect square, so they assert that it cannot be a square for any specific integer values 
of the variables. Or, a rational expression is in lowest terms (the numerator and denominator 
have no algebraic common factor) and students assume that it must be in lowest terms for any 
specific integer values of the variables. Examples occurred in both direct and indirect proofs. The 
domains of variables are also not explicitly visible in the expressions that students manipulate, 
and we observed uncertainty about the properties and relationships of the domains Z, Q, and R. 
For example, concepts like divisibility that only apply in Z were used in Q or R, as has been 
previously observed (Barnard & Tall 1997).  

Conclusion 
Our initial analysis of the data suggests that our students have a rather good 

understanding of and comfort level with proof by contradiction. They can negate claims, identify 
contradictions, and explain the logic of indirect proof, and they seem generally unperturbed by 
counterfactual reasoning. The difficulties they encounter in solving proof problems seem to 
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reflect the subject matter of the proof more than the proof type (direct or indirect). Many of the 
“misconceptions” they exhibit cannot be understood as genuinely held beliefs, which supports 
viewing them as resources or pieces of knowledge that are activated in particular contexts. The 
“difficulty” of proof by contradiction may lie in the types of resources that it tends to activate.  

Discussion Questions 
1. How can we operationally distinguish proof errors that reflect difficulty with indirect 

proof as such from those that reflect misconceptions about the subject matter of the 
proof, for example the rational number system? 

2. How can we better understand student “misconceptions” as resources activated in 
specific contexts? 

3. How can we improve the design of this study for future replications or extensions? 
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Graphs as Objects: Analysis of the Mathematical Resources Used by Biochemistry Students to 
Reason About Enzyme Kinetics 

 
 Jon-Marc G. Rodriguez Kinsey Bain Marcy H. Towns 
 Purdue University  Michigan State University Purdue University  

Interpreting graphs and drawing conclusions from data are important skills for students across 
science, technology, engineering, and mathematics fields. Here we describe a study that seeks to 
better understand how students reason about graphs in the context of enzyme kinetics, a topic 
that is underrepresented in the literature. Using semi-structured interviews and a think-aloud 
protocol, our qualitative study investigated the reasoning of 14 students enrolled in a second-
year biochemistry course. During the interviews students were provided a typical enzyme 
kinetics graph and asked probing questions to make their reasoning more explicit. Findings 
focus on students’ mathematical reasoning, with analysis indicating students tended to focus on 
surface features when describing related equations and graphs, which limited their 
understanding of the chemical phenomena being modeled.  

Keywords: Graphical Reasoning, Rate, Chemistry 

Introduction and Rationale 
Enzyme kinetics is an area of study within chemical kinetics, which focuses on modeling 

the rate of chemical reactions. Looking more broadly at the literature related to students’ 
reasoning about rate-related ideas and the use of calculus to model physical systems, it is 
apparent that students need more support learning these concepts (Bain & Towns, 2016; Becker, 
Rupp, Brandriet, 2017; Castillo-Garsow, Johnson, & Moore, 2013; Rassmussen, Marrongelle, & 
Borba, 2014; White & Mitchelmore, 1996). Biochemistry education research is an 
interdisciplinary and emerging field and little work has been done that seeks to understand how 
students reason about biochemistry topics such as enzyme kinetics, indicating the need for more 
discipline-based education research that can provide insight into how teaching and learning can 
be optimized (Singer, Nielson, & Schweingruber, 2012). Especially relevant for enzyme kinetics 
are Michaelis-Menten graphs, which tersely summarize large amounts of data. However, 
understanding the information a graph communicates (regardless of context) is not trivial 
(Carpenter & Shah, 1998; Phage, Lemmer, & Hitage, 2017; Planinic, Ivanjeck, Susac, & Millin-
Sipus, 2013; Potgieter, Harding, & Engelbrecht, 2007). Nevertheless, even if individuals are not 
pursuing careers in science, technology, engineering, and mathematics (STEM), in order to have 
an informed citizenry that can interact with global social issues, individuals should be able to 
interpret graphs and other forms of data, and have an understanding of how data is collected 
(along with the associated limitations inherent with data) (Driver et al., 1996; Driver et al., 1994; 
Glazer, 2011; Mahaffy et al., 2017; Matlin, Mehta, Hopf, & Krief, 2016).  

These considerations are encompassed in the Next Generation Science Standards’ 
definition of science practices, which reflect the combination of skill and knowledge used by 
scientists to approach problems and provide explanations for phenomena, including:  asking 
questions; developing and using models; planning and carrying out investigations; analyzing and 
interpreting data; using mathematics and computational thinking; constructing explanations; 
engaging in argument from evidence; obtaining, evaluating, and communicating information 
(National Research Council, 2012). It is within this context that we investigate student 
engagement in science practices, such as productively reasoning about models (Michaelis-
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Menten model of enzyme kinetics) and drawing conclusions from data (graphs). This work was 
guided by the following research question: How do students use mathematical resources to 
reason about enzyme kinetics? 

Theoretical Perspectives  
The design of this study was informed by the resource-based model of cognition, in 

which knowledge is conceptualized as a dynamic and complex network of interacting cognitive 
units called resources (Hammer & Elby, 2002; Hammer & Elby, 2003). Within the resources 
perspective, knowledge is framed as context-dependent, meaning that students’ specific 
resources may not be activated in a particular context, which helps explain fragmented and non-
normative reasoning (Hammer, Elby, Scherr, & Redish, 2005). Here we focus primarily on 
mathematical resources called graphical and symbolic forms, which involve associating 
(mathematical) ideas to a pattern in a graph or an equation, respectively (Rodriguez, Bain, and 
Towns, Submitted; Sherin, 2001). 

In a forthcoming paper, we provide a more complete overview of graphical and symbolic 
forms (Rodriguez, Bain, & Towns, Submitted). Tersely stated, graphical forms involve focusing 
on a region in a graph and assigning ideas; examples include steepness as rate (the relative 
steepness of regions in a graph provides information about rate), straight means constant (a 
straight or flat region in a graph indicates a lack of change), and trend from shape directionality 
(attending to the general tendency of a graph to increase or decrease) (Rodriguez, Bain, & 
Towns, Submitted; Rodriguez, Bain, Ho, Elmgren, & Towns, Accepted). In the case of symbolic 
forms, originally developed by Sherin (2001), the pattern under consideration is called the 
symbol template and the ideas assigned to the symbol template are called the conceptual schema. 
For example, consider a rate law, which has the following general form: rate = k[A]a. The 
symbol template for this expression would be , where each of the boxes represents a 
term. The pattern of terms implies mathematical relationships and represents a combination of 
symbolic forms, such as coefficient (a constant or factor that adjusts the size of an effect), 
dependence (the magnitude of the value on the left is influenced by changing the values on the 
right), and scaling exponentially (a term raised to a value scales or tunes the overall magnitude). 
Generally speaking, graphical and symbolic forms derive their importance from their role in 
supporting reasoning about processes and phenomena (Becker and Towns, 2012; Kuo, Hull, 
Gupta, & Elby, 2013; Rodriguez, Bain, and Towns, Submitted; Rodriguez, Satntos-Diaz, Bain, & 
Towns, Submitted; Rodriguez, Bain, Ho, Elmgren, & Towns, Accepted; Sherin, 2001). 

Methods 
The participants for this study were sampled from a second-year undergraduate 

biochemistry course for life science majors in the spring of 2018. Students were given a $20 gift 
card for their involvement, and all aspects of this project were conducted in accordance with the 
guidelines of our university’s Institutional Review Board. After the participants were tested on 
enzyme kinetics, we collected our primary source of data, which involved semi-structured 
interviews using a think-aloud protocol and a LivescribeTM smartpen (Linenberger & Bretz, 
2012; Harle & Towns, 2013; Cruz-Ramirez de Arrellano & Towns, 2014). During the interviews 
the students were given a Michaelis-Menten graph (provided in Figure 1), which they were asked 
to describe. This prompt was intentionally open-ended in order to provide a general idea of 
students’ reasoning. Students were also asked follow-up questions to make their reasoning more 
explicit and additional questions were asked to provide insight into resources students used as 
they reasoned about enzyme kinetics, such as ideas that are more explicitly emphasized in 
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general chemistry (e.g., What is reaction order? What are rate laws? How is that related to 
enzyme kinetics?). Following transcription of the interviews, the data was coded using the 
graphical and symbolic frameworks, inductive analysis, and a constant comparison methodology 
(Strauss & Corbin, 1990).  

 
Figure 1. Michaelis-Menten plot provided in the interview prompt. 

Preliminary Results 
Following analysis we noted student use of mathematical resources was particularly 

common during (and in some cases isolated to) discussions involving rate laws and reaction 
order. Generally, students described rate laws in algebraic terms and discussed reaction order in a 
way that emphasized graphs as objects, affording only a surface-level understanding of the 
Michaelis-Menten graph provided. However, in some cases, students displayed reasoning that 
productively integrated mathematical resources and chemistry knowledge, affording a more 
complete understanding. 

Rate Law as Symbol Template 
Among the students that discussed rate laws, we observed that the students tended to 

reason algebraically, which did not productively support their understanding of the Michaelis-
Menten model of enzyme kinetics. Looking at the “rate laws” drawn by Tim, Claire, and Alan, 
we can see there is an attempt to reproduce the rate law by mapping values onto a specific 
pattern of symbols, which is reminiscent of Sherin’s (2001) symbolic forms. In this context, the 
students were focusing on the symbol template of the rate law and attempting to reproduce some 
variation of this pattern ( ). This was particularly evident in Tim’s discussion where 
he commented that the rate law for a first-order reaction has two “boxes” (i.e., rate = k[A]), 
whereas the rate law for zero-order only has one (i.e., rate = k): 

 “I think if I remember right, like k and then you can do it to like the first order 
here and then, there was a, yeah, so there was a rate or something was equal to the 
k to the first order … If I remember right … [the rate law] had two boxes for here, 
but I think zero only had one … because there's two, there's two things that are 
multiplied here, essentially, you have the enzyme and you have the substrate. And 
so for the rate you have the enzyme, I think if I remember right for first order you 
had something multiplied by something else … which would leave for me to think 
it's a first-order, first-order rate reaction.” 
Following his discussion of rate laws, Tim then stated that the reaction involving the 

enzyme and substrate must be first-order, because then the two boxes would be filled by the two 
reactants. Dorko and Speer (2015) observed a similar “box-filling” tendency when they analyzed 
calculus students’ conceptions of measurement in the context of area and volume calculations, 
noting that students utilized the measurement symbolic form (  , magnitude and units), often 

V
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without considering what values filled the boxes (e.g., 144π as adequate to fill both boxes, even 
though it represents a single magnitude value).  

Graphs as Objects 
In our dataset the most common conception regarding reaction order involved the 

association of each order (e.g., zero order, first order, second order) with a particular graph. 
Eight students in our dataset described reaction order in a way that highlighted the connection 
between reaction order and graphical shapes, with five of these students explicitly drawing 
graphs to illustrate this connection. This is analogous to the observed student reasoning about 
rate laws in the previous section, although in this case the students were focusing on surface-
level graphical patterns instead of symbolic patterns. We refer to this type of reasoning as 
viewing graphs as objects, which is distinct from graphical forms, because in this case the ideas 
being associated with the graphs are not mathematical in nature.  

The discussions that accompanied the graphs shown in Table 1 were similar for each of 
the students, in which they concisely listed the shape associated with each order, focusing on 
surface features without thinking about the axes (all of the students that drew graphs did not 
initially draw axes, but some students labeled the axes after prompting by the interviewer, 
suggesting the salient feature for the students was the shape, and the axes were an afterthought). 
After discussing the graphical representations of order, the students often attempted to apply 
shape-centric thinking to reason about the order of the reaction represented in the provided 
Michaelis-Menten graph, a trend that was observed even for the students that did not draw a 
graph. For example, in the passage below Amanda discussed the graphs associated with each 
order, characterizing the Michaelis-Menten graph as a having the second-order “shape”: 

 “I believe that's first order, second order, and if it's linear then it's first order or 
something. If it's just a straight line, it's zero order. … I'm gonna take a straight 
guess and say it's second order [the Michaelis-Menten graph provided in prompt]. 
… Because it's curved, and it's  ... an exponential … maybe it's a log function, 
something like that, but I just remember it from the picture that it might be a 
second order one.”  

Although Amanda did not draw graphs to illustrate her understanding, she verbally traced the 
shapes using reasoning that is consistent with the other students. Amanda’s statement above also 
provides support for our characterization of students viewing the graphs as objects; in this case 
the student had an image in mind of the relevant shapes, with which she associated ideas. 
 
Table 1. Student reasoning about reaction order. 
Student  Written Work 
Malcolm 

 
Karen 
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Tim 

 
Claire 

 
Carrie  

 

Conclusions and Questions 
The results discussed in this chapter focused on students’ ability to connect the 

Michaelis-Menten model of enzyme kinetics to reaction order and rate laws, which are key tenets 
of chemical kinetics discussed and assessed in general chemistry (Holme and Murphy, 2012; 
Holme, Luxford, and Murphy, 2015). As mentioned by Schnoebelen (2018), retention of ideas in 
general chemistry is higher when concepts are reinforced throughout the undergraduate 
chemistry curriculum.  However, although reaction order and rate laws were discussed in the 
participants’ biochemistry course, they were not the focus of assessment, as is likely the case in 
other biochemistry courses. Since students study what is assessed, it is not surprising that only a 
couple of students were able to make the relevant connections, and it should not be assumed that 
students are making connections between content they are currently studying and content from 
previous courses  (Cooper, 2015). Therefore, we stress the importance of instruction that not 
only explicitly connects course content (e.g., enzyme kinetics) to relevant concepts previously 
learned by students (e.g., chemical kinetics), but we also emphasize the role of assessment in 
student learning, asserting the importance of exams that prompt students to provide evidence 
they understand these meaningful connections. This work requires further analysis, with the 
following questions informing our next steps:  

(1) What symbolic and graphical forms were productive for reasoning about this context? 
(2) How can instruction better support students to make connections between chemistry 

concepts and mathematical representations? 
(3) How do students make connections between the particulate-level mechanism and the 

graphs/equations used to model enzyme kinetics?  
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Undergraduate Mathematics Tutors and Students’ Challenges of Knowing-To Act 
 

 Megan Ryals Carolyn Johns Melissa Mills 
 University of Virginia The Ohio State University Oklahoma State University 

Colleges and universities are increasingly providing drop-in tutorial assistance through 
institutions’ learning or resource centers. In this study, we examine one-on-one mathematics 
tutoring interactions to discover how tutors naturally respond to student requests for assistance 
with knowing-to act, where a student may be familiar with a procedure, but not know-to use that 
procedure in the current situation. We contrast three 5-10 minutes episodes; in the first, the tutor 
appears not to recognize that the student knows-to. In the second, the tutor prevents the student 
from needing to know-to. In the final episode, a tutor incrementally narrows the vision of her 
student until the student knows-to. 

Keywords: undergraduate mathematics tutoring, types of knowing 

Introduction and Review of Literature 
While great effort has been and continues to be exerted to study and improve classroom 

instruction of post-secondary mathematics, comparatively little research has focused on how 
students study and learn math outside of class. Increasingly, institutions are providing out-of-
class assistance for entry level math courses through learning, resource, and tutoring centers 
(Bressoud, Mesa, & Rasmussen, 2015). These centers have the opportunity to design and 
implement tutor training, so there is reason to identify tutors’ natural tendencies and discover 
how those tendencies impact student learning.  

Studies of human tutoring interactions in disciplines besides mathematics have identified 
strategies tutors use in effort to assist students, including, but not limited to, direct instruction, 
error checking, questioning, and hinting (Chi, 1996; Roscoe & Chi, 2008). Examples from these 
studies show a strong reliance on direct instruction in many cases, which is not surprising 
considering that most tutors receive little, if any, training, and are not familiar with learning 
theory (Graesser, Person, & Hu, 2002). When tutors do avoid direct instruction, they tend to use 
hinting and questioning to guide students toward the tutor’s own solution path (Hume, Michael, 
Rovick, & Evens, 1996; James & Burks, 2018), much like classroom teachers have been shown 
to use questions in a funneling pattern (Wood, 1998).  

This study specifically examines tutoring interactions at a point where the student is needing 
to focus on the relevant features of a mathematical problem. Students’ inattentiveness to 
particular mathematical features provides a considerable challenge for educators and researchers 
alike. In multiple areas of mathematics, it has been shown that students can have a solid 
foundation of specific principles or procedures, yet still be unable to access that knowledge in 
novel situations (Hoch & Dreyfus, 2005; Schoenfeld, 1980; Selden, Selden, & Mason, 1994). In 
proof construction, for example, Weber (2001) explains that students who were unable to prove 
had the necessary syntactic knowledge yet were unable to construct a proof until someone 
specifically pointed them to the salient facts.  
 

Theoretical Framework 
Mason and Spence (1999) refer to this elusive flexibility as knowing-to act. They argue that 

instruction focuses almost exclusively on knowing-that, knowing-how, and knowing-why, yet 
success in mathematics relies heavily on students knowing-to act in the moment, which requires 
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an “awareness” or a particular “structure of attention” (p. 138). We use this distinction to identify 
episodes where tutors are assisting students with knowing-to act and we ask: How do tutors 
notice and respond to students’ ability to know-to? 

Our identification involves assumptions on both the part of the tutor and the researchers. First 
and foremost, we are selecting episodes where we feel confident assuming the students know-
how to do the things they may not know know-to do without the help of the tutor. For example, 
in one episode we assume the student is familiar with and has successfully applied the product 
rule in the past, so the focus of our exploration is his need to recognize the utility of the product 
rule in his situation, rather than his ability to apply it without error. 

In identifying and analyzing episodes, we use a constructivist lens, believing each individual 
must construct their own meanings (Thompson, 2013). We recognize the tutor and student 
cannot know what is in the mind of the other. According to Steffe and Thompson (2000), each 
must create a model of what the other is thinking and react to the other based on that model, 
rather than what the other is actually thinking. Similarly, we as researchers cannot know what the 
tutor or student is thinking, so we must formulate models for how we conjecture that both the 
student and tutor are thinking about the mathematics and their interaction with one another. 

We are intentional about viewing constructivism as a learning theory and not a prescriptive 
teaching method. We believe students can construct meaning for themselves, for example, while 
listening to a well delivered explanation from a peer tutor. We are not evaluating tutors’ 
responses or methods; rather, we wish to discover what peer tutors believe is helpful to students 
in a moment of not knowing-to.  
 

Methods 
The subjects of this study were eight undergraduate peer tutors at a large public university 

who work as drop-in tutors for the university’s mathematics department. The tutors had a variety 
of experience and differing amounts of training. As part of their in-service training protocol, the 
tutors were required to record a portion of their interactions with students using a Livescribe pen 
which captured both audio and video of their written work. Each tutor then selected one 5-10 
minute episode to transcribe and reflect upon through a written self-evaluation and debrief 
interview with their supervisor. The interviews between tutors and supervisor were subsequently 
transcribed by the researchers and pseudonyms were assigned to the tutors.  

This study identifies and analyzes tutoring episodes, rather than tutors, because individual 
tutors often take varying approaches at different times, even within the same short episode 
(Nardi, Jaworski, & Hegedus, 2005). For this study, we narrow our focus to episodes where the 
student is asking the tutor for assistance with an issue of knowing-to. To be classified as a 
knowing-to episode, the tutor must appear to be providing assistance in directing the student’s 
attention to salient mathematical features of their problem. For example, in one episode, the 
student must recognize that an expression is two functions multiplied together and decide to use 
the product rule to differentiate.  

We attempt to compare and categorize three episodes by the tutor’s strategies and their 
intentions as well as the student contributions. While we may describe the tutor strategies and 
student contributions from the tutoring episode itself, we rely on the tutor’s transcription of the 
episode, the tutor’s written reflection, and the interview transcript to make conjectures regarding 
the tutor’s intention for their strategies. We classify the episodes according to the focus or vision 
of the student and tutor and contrast them based on who was deciding the next move and how the 
tutor responded to student. We do not claim the three episodes are exhaustive or representative. 
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Results 
Case 1: Divergent Tutor and Student Vision 

Case 1 provides evidence that a tutor may not recognize that a student knows-to act if what 
the student knows-to do is not what the tutor knows to do; that is, if their proposed solution 
methods differ. In this episode, the student asks for assistance in finding the area of the shaded 
region, shown below in Figure 1. As the dialogue progresses, we notice that the tutor, Jane, and 
her student are attending to different aspects of the geometrical figure. 
 

 
Figure 1: Find the area of the shaded region. (Stewart, Redlin, & Watson, 2016). 

Jane: So what do you think are the formulas we’re going to be using to go about this are? 
Student: We’ll use area of a triangle, and then area of whatever this is [area of major sector]. 
Jane: Yes, so we are on the right track. So the first is area of a triangle. So what’s the 

formula? 
Student: ½ ab sine theta. 
Jane: Yep, that’s correct. Okay, so that will give us the area of this triangle right here, 

correct? Okay, so we are going to need that. So we are also going to want the area of this 
[minor] sector because if we get the area of the sector and subtract off the area of the 
triangle it will give us the area of the non-shaded region. Do you see that? 

Student: Yeah 
Jane: So it’s really area of the sector minus area of the triangle equals area unshaded. And 

then we have the area of the unshaded we can subtract off the area of the whole region… 
Jane: What’s our theta? 
Student: Um, pi, oh wait, would it be this? [indicating the angle of the major sector] 
Jane: …you are right; if we were doing the outer sector then we would use 5 pi over 3, but 

because we are looking at this sector with the triangle inside it, we’re going to do the pi 
over 3. Does that make sense? 

 
While Jane does not actually ask the student to suggest solution methods, the student’s 

answers to Jane’s prompts for formulas and calculations suggest that the student knows-to add 
the areas of the major sector and triangle. Jane, instead, knows-to find the area of the minor 
sector and subtract the area of the triangle to get the unshaded region, and then subtract the 
unshaded region from the circle. Jane does not recognize that the student knows-to because the 
student’s proposed method differs from Jane’s. It is not until the interviewer prompted Jane to 
consider it that Jane acknowledged that the student’s path might be viable.  
  
Case 2: Student Vision Unknown 

Here we present evidence that tutors may eliminate the opportunity and necessity for students 
to know-to. In some of these situations, tutors interpret hesitation as not knowing-to. In others, 
tutors give direction without first giving students an opportunity to demonstrate whether they 
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know-to. In the episode below, the tutor, Abby, asks for student input on the next move, and after 
a four second pause, explains what to do next. 

 
Abby: So what is the first thing you have to do to take the derivative? 
Student: (Ummm…awkward looking at me, indicating they’re not sure) 
Abby: Okay, so you notice how there’s two functions, right? There’s x to the fifth and three 

minus x to the sixth? 
Student: Yeah. 
Abby: Those are your two, so that means that you use the product rule, right? 

 
During the interview, Abby explains, “…basically they’re just like ‘umm…’…I interpreted it 

as ‘I don’t know where to start on this…I decided to point out, like help them see, like there are 
actually two functions, like two things multiplied together, and that means that we have to do the 
product rule.” 

Later in the same episode, the student is attempting to find the zeros of the derivative. Rather 
than asking for the student to provide direction this time, Abby provides it herself. 
 

Abby: Awesome. So we have this, and you said earlier that we set it equal to zero. So I’m 
gonna rewrite it…look good? 

Student: Yeah. 
Abby: Okay, so it’s kind of hard to determine what the zeros are of this function whenever 

we’re, like, adding something in the middle, sooo this is when you want to get things 
multiplied together. 

Student: Okay. 
Abby: And you do that by factoring. 

 
Abby explains in her interview that she made this decision to save time, saying “personally, I 

was like, let’s just guide them through this instead of like trying to get them to do it by 
themselves because that will be quicker.” She is not suggesting she knew it would never have 
occurred to the student to factor, but that it would have taken him longer to realize it than her. 
 
Case 3: Gradually Narrowing Student Vision 

At the point where we pick up the episode below, Felicia is helping a student simplify (1+cos 
x)/(sin x cos x + sin x). Felicia asks the student to provide direction for the session multiple times. 
At points where the student appears to be at an impasse, Felicia assists in the knowing-to process 
by incrementally narrowing the student’s focus. 
 

Felicia: …what do you think you’re gonna do next? 
Student: I kinda was stuck at that point. 
Felicia: Okay! So let’s look…so we’re trying to get some similarity either in the top or the 

bottom, so that maybe we could cancel something out or just make this guy simpler, 
right? So, do you see any similarities or any way you could make things look a little bit 
simpler? 

Student: Not really, no. 
Felicia: No? 
Student: Like the cosine on top and bottom maybe? 
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Felicia: Um, yeah, there’s definitely that. We could try to work with that.... Is there a way 
you could make that denominator a little bit simpler? 

Student: Sine x times cosine x plus sine x…shoot. 
Felicia: Well, let’s think about it this way. Is there anything that is similar to each of these 

two terms? (underlines each of the two terms in the denominator) 
Student: Both of them have sine. 
Felicia: Yeah! So maybe we could? 
Student: Take a sine out. 

 
Similar to Abby in the first part of her episode, Felicia first gives her student an opportunity 

to make the decision for where to go next. However, her response to the student’s hesitation is 
quite different. Felicia seems to be operating under the assumption that the student does know-to. 
She even challenges the student’s response of “Not really, no,” when asked if he could make the 
expression simpler. When the student is stuck or suggests something unexpected, Felicia first 
suggests some general strategies. (‘make it simpler,’ ‘cancel something out,’) When that fails, 
Felicia narrows the field of vision; she directs the student’s attention to where he can make it 
simpler or cancel something out. 
 
Summary 

The three episodes illuminate two important variables in tutors’ strategies for assisting 
students with issues of knowing-to. First, tutors decide whether to provide an opportunity for the 
student to demonstrate whether they know-to. Abby, for example, asked her student how to 
proceed in the first part of her episode, while in the second part, she stated that factoring was 
appropriate without asking for input from the student. Although we have some evidence from 
Abby’s episode that time limitations may encourage this strategy, we note that we do not know 
what motivates these different decisions in different situations and we reiterate that the same 
tutor can choose different strategies in different scenarios.  

The second variable we recognize is how tutors respond to students’ indications of their 
knowing-to or lack thereof. Students can provide solicited or unsolicited information indicating 
they know-to and tutors can build on or ignore this information. As we see from Jane, tutors may 
miss a student’s knowing-to if it differs from their own. Students can also be silent or verbally 
claim to not know-to. We see from Abby’s episode that a tutor may interpret silence or hesitation 
as the student not knowing-to. In contrast, as Felicia demonstrated, tutors may not accept a 
student’s claim that they do not know-to. Felicia shows us that tutors are capable of gradually 
narrowing a student’s focus to salient features in a way that still allows them to demonstrate 
knowing-to at various stages. 
 

Discussion 
Future research will provide additional cases and potentially refine those shown above. We 

seek input regarding the following questions. 
• As we analyze more episodes and extend/modify our classifications, should we 

differentiate based on tutor strategies, tutor intentions, or student responses? 
• What existing research, which examines similar phenomena between instructors and 

students, could we build upon in classifying these interactions? 
• How do we use this information to design effective tutor training? 
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This paper reports about using eliciting personification (Zazkis, 2015) as a means to study 

pre-service teachers’ (PSTs) beliefs. The method has the PSTs’ create a character named Math 

and describe their relationship with the character. The authors analyzed 68 personifications 

from college sophomore PSTs’ in an elementary math content course. At the end of the semester, 

the PSTs; revisited the assignment by describing a new character based on the math learned in 

class and writing a dialogue to themselves. At the beginning of the semester, the PSTs described 

math as having multiple personalities, out to hurt them, and having a relationship that fell apart 

throughout the years. The math described at the end was more compassionate, welcoming, and 

easier to understand.  

 

Keywords: Teacher Beliefs, Narrative Identity, Pre-service Teachers 
 

Introduction 
The recently released Association of Mathematics Teacher Educations Standards for 

Teacher Preparation states that “All teachers, including well-prepared beginners, must hold 
positive dispositions about mathematics and mathematics learning, such as the notions that 
mathematics can and must be understood, and that each and every student can develop 
mathematical proficiency” (AMTE, 2017, p 2.7).  A goal for mathematics classes for PSTs 
should be to try and align the students’ beliefs that align with those positive dispositions about 
mathematics and mathematics learning. Studies (e.g., Philippou & Christou, 1998) have shown 
that teachers tend to come into these courses with negative dispositions about mathematics. 

In this study, we focus on the beliefs of prospective mathematics teachers enrolled in an 
elementary mathematics content course taught in a mathematics department. The aim of this 
study is to see if the method of eliciting personification provides insight into PSTs’ beliefs that 
other metrics fail to capture. The results from the assignment were used in several ways 
throughout the semester to study the PSTs beliefs. We found that the idea proposed by Zazkis 
(2015) elicited a complex view of beliefs that are not captured by other methods.  

 
Literature Review 

When defining beliefs, we are using a definition from Phillips (2007) that treats beliefs as 
“psychologically held understandings, premises, or propositions about the world that are thought 
to be true. Beliefs are more cognitive, are felt less intensely, and are harder to change than 
attitudes. Beliefs might be thought of as lenses that affect one’s view of some aspect of the world 
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or as dispositions toward action. Beliefs, unlike knowledge, may be held with varying degrees of 
conviction and are not consensual. Beliefs are more cognitive than emotions and attitudes.” (p. 
259). Thompson proposed that a teachers’ belief about mathematics influences how the decisions 
they make in the classroom while teaching and they could possess either a conceptual orientation 
or a calculation orientation towards mathematics (Thompson, Philipp, Thompson, & Boyd, 
1994). Teachers who are conceptually oriented focus on engaging students in complex activities 
with a goal on developing problem-solving strategies or a deeper conceptual understanding while 
a calculation orientated view may emphasize calculations and procedures more.  

Researchers have used several methods such as questionnaires where the participants 
respond to a series of questions and rate whether they agree with the statement on some scale. An 
example question could be “if students learn math concepts before they learn the procedures, 
they are more likely to understand the concept”, which the participant can rate their agreement 
with the statement on a five-point scale from strongly disagree to strongly agree. Di Martino and 
Zan (2010) criticized this approach, as it uses questions that are entirely positive or negative. 
They argue that studying beliefs in this way is limiting by ignoring important factors such as the 
emotions of the individual and proposed a model that incorporated a students’ vision of 
mathematics, emotional disposition, and their perceived competence to mathematics. Other 
researchers (e.g., Drake, 2006) explored PSTs’ beliefs and identity by having them construct 
mathematical autobiographies. This approach produced a more multi-dimensional view of their 
beliefs as they described their changing relationship with mathematics by describing influential 
moments related to their experiences in mathematics. 

Zazkis (2015) described a process to study PSTs’ relationship with mathematics he called 
eliciting personification. The process entails having the PSTs’ give life like attributes to a 
character called Math. The participants described this character and wrote a dialogue between 
themselves and Math. In this paper, we will use eliciting personification to (a) elicit PSTs’ 
beliefs about mathematics, (b) incorporate their stories into the course, (c) have the PSTs 
construct new narratives about the mathematics they learned during the course, and (d) respond 
to their original narratives.  

 
Methodology 

This study uses the eliciting personification method (Zazkis, 2015) to survey 68 
sophomore PSTs enrolled in a semester long elementary mathematics content before they begin 
any of their teacher education classes.The course is taught out of a mathematics department with 
a focus on K-5 mathematics, counting, the operations, and rational numbers. Course material 
focuses on the standards for practice identified by NCTM. PSTs’ engaged in open-ended 
problem solving, analyze the solutions of school-aged children through watching videos (e.g., 
Cognitive Guided Instruction, the Video Mosaic Collaborative), and look at written work. At the 
start of the semester, the PSTs responded to a slight modification of the assignment prompt 
posed by Zazkis (Figure 1). 

At the end of the semester the students revisited the personification assignment in two 
ways (Figure 2). The first part has the PSTs’ write a new personification, but about this character 
called “New Math” based on the mathematics we explored throughout the course. Then the PSTs 
revisited the assignments they submitted at the start of the semester through the lens of a future 
mathematics teacher and imagine that a student submitted that assignment to them. They wrote a 
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script for a dialogue they would want to have to this student and what they would like to tell 
them. 

 
Figure 1: Beginning of the semester personification prompt from Zazkis (2015). 

 
Figure 2: End of the semester assignment prompt.  

 
To examine how elementary PSTs’ conceptualize mathematics we utilized a narrative 

identity lens (Kaasila, 2007). Narratives create opportunities to view how the narrator constructs 
the world around them (Lutovac & Kaasila, 2011). According to Sfard and Prusak (2005), 
teacher identities are just collections of narratives that can inform future actions. Narratives 
provide a conduit in exploring ones’ own identity and the identities of the personalities created 
within the narratives. Researchers have also shown self- exploration of created narratives to have 
positive impacts on mathematics related anxiety (Kaasila, Hannula, & Laine, 2012; Lutovac & 
Kaasila, 2011; 2014). 

The authors analyzed the submitted write-ups by the PSTs’ using a thematic analysis 
(Braun & Clarke, 2006) approach to open-code and develop themes related to beliefs about 
mathematics through the narrative identity lens. Throughout the process, the authors discussed 
their codes and themes and talked about any differences they had. In this paper we are presenting 
common themes across the assignments from the start of the semester and how, if at all, those 
themes shifted by the end of the course.  
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Results 
Forty-eight of the participants wrote about the first time they met their Math character and of 
those, 45 described first meeting Math during school, with 42 saying they first met Math in 
Kindergarten and three students in second grade. Two of the other students mentioned meeting 
Math as soon as they began counting and one student remarked that “informally, they knew Math 
all their life, but I was formally introduced to Math when I attended school”. A majority of the 
assignments also mentioned engaging with or avoiding Math in a school setting while others 
implied Math had not existed outside the school setting/environment.  
 A second common theme that arose when describing Math was that it had multiple 
personalities with contrasting personalities. One student described their math character as “kind, 
but also stern” and another saying “one day Mathius wants to be friendly and cooperate with me 
and the next minute he wants to cause trouble and make my life difficulty…I have seen these 
rapid personality changes in Mathius ever since I have known him”. Common amongst the 
described multiple personalities was that one side was friendly towards that and wanted to help 
while the other personalities were mean and out to intentionally hurt them. A positive attribute 
assigned to Math was that he was logical, but also that there was only one way to understand his 
solutions which seemed to give some students comfort as demonstrated in the statement, 
“....although it may not seem like it, there is always a solution to every problem, I just have to 
figure it out”.  Other themes the PSTs’ wrote about were growing apart from their character 
Math and wanting to rebuild their friendship. Algebra, geometry and calculus were described as 
points where their relationship with Math deteriorated due to the increased complexity in content 
as many of them claim in their reflections. 

In their dialogues, some PSTs’ addressed their failing relationship with Math. One 
student had math telling them that “Your lack of effort is why you didn’t do as good as me in 
Algebra” to which they responded “That’s very true. I should have managed myself better to do 
great in the class”. Several students expressed communication issues with Math, such as “In 
fourth grade Math completely changed on me. No longer did we communicate the same. My 
teacher decided that Math would no longer speak to me the same way. I was forced to speak to 
Math in English. Our whole friendship was based on how we had no language barrier in Spanish. 
We lost the friendship I relied on to help me reach the goals I had placed for myself”.  

In their second assignment, the “new Math” character described by the students was 
different than the Math they knew growing up. The student who struggled with being forced to 
speak to Math in English described this new character as “This Math wasn’t trying to confuse 
me, but help guide me to help others. This Math wasn’t out of my grasp this time. Math was 
almost speaking the same language again…Math was a lot friendlier than I remember and once I 
gave him a fair shot it wasn’t hard to get along”. A majority of the participants who described 
Math as having multiple confusing and conflicting personalities, described the new character as 
“straight forward”, “more approachable”, “the old math scared me causing not to speak up and 
ask a question…This math is different, more patient, understanding and has taught me to look at 
this subject in a different light”.  Others described this new Math as having “soft, king eyes that 
glow with radiance and happiness”, “more approachable”, “has a lot of very different layers that 
somehow all come together in a cohesive way”, “definitely kinder than the ‘mean’ one that I 
portrayed earlier”, “lives with me everyday” and it “welcomes me with open arms and wants to 
help”. 
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 When assuming the role of the teacher and responding to their beginning of the 
semester-self, the students responses included “Always keep trying, never give up on a problem 
just because you don’t understand it. Ask questions, because you might not be the only student 
who does not understand what they just learned. I learned that there are multiple ways to solve a 
problem. You don’t have to solve them a certain way.”, several students suggested that they 
“don’t be afraid to ask for help”, to “not be discouraged and that a lot of people experience the 
same problems”, and to focus on “try and understand the reasoning behind how math works 
rather than trying to just get the right answer”.  
 

Discussion 
            At the start of the semester the PSTs in the study exhibiting several negative beliefs 
related to mathematics. PSTs’ that engaged in the task viewed mathematics as an activity that 
occurred only in schools. They first met math when they entered school and all their described 
interactions, both positive and negative, occurred in a school setting or by engaging in tasks 
related to schooling (e.g., homework). They described a volatile relationship where math was 
alternating between a positive relationship and one which was out to hurt or punish them. They 
identified mathematics having a logical structure as a positive attribute, but as a result they 
viewed math as having only one way to approach a problem which was a negative attribute. 
When they tried to understand why their relationship failed they blamed themselves by saying 
they did not try hard enough and claimed all they needed to do was try harder indicating that 
their lack of persistence was the reason for their diminished relationship with Math. 
 After a class focused on teaching mathematics through a more conceptually based 
approach, the PSTs’ vision about how the mathematics we talked about in class was a stark 
contrast to their view of mathematics growing up. Their focus was on a more approachable 
mathematics that wants to help the students understand. Instead of blaming themselves for not 
working hard enough, they instead realized that they could ask questions of others to help 
understand the content and that math was “kind" and wanted the best for them. They also shifted 
towards more of a conceptual orientation view of mathematics as they focused on understanding 
and multiple ways to approach a problem instead of rote procedures with an emphasis on finding 
a solution. They also mentioned the overall utility of the mathematics they were learning and 
how they would use this “new Math” in their classrooms.  
 Being able to read their stories gave the authors a unique opportunity to engage with their 
PSTs’ and provide a way to frame issues that came up throughout the class. The personifications 
produced painted a complex view of their relationship that is not captured by belief assessments. 
It also created an opportunity for PSTs’ to re-frame their experiences and produce more 
productive ways of addressing the issues they identified along with implications for future 
teaching. Going forward, research is needed to focus on how to leverage activities such as this to 
help build positive identities and dispositions towards mathematics for future teachers.  
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Deaf and Hard of Hearing Students’ Perspectives on Undergraduate Mathematics Experience 
 

 Katherine Simmons Milos Savic 
 University of Oklahoma University of Oklahoma 

Deaf and hard of hearing (D/HH) students face many challenges in the study of undergraduate 
mathematics. Unfortunately, minimal literature exists in this area, evidencing the need for 
further research. Through five qualitative survey responses from D/HH students, we identified 
common themes of concern in addition to a number of specific struggles (and a few successes) 
encountered by each of the respondents in their own undergraduate mathematics courses. From 
these students’ experience, we can identify further areas of research with the goal of developing 
new educational tools for mathematics instructors with deaf or hard of hearing students. In 
doing so, we can help give equal opportunity to mathematics students regardless of their level of 
hearing.  

Keywords: deaf, hard of hearing, student perspective 

According to Walter (2010), around 60% of deaf/Deaf/Hard-of-Hearing (D/HH1) high 
school graduates enter some form of higher education, but only around 23% of D/HH ages 25-64 
have graduated from college. This statistic makes one wonder about how undergraduate 
mathematics education for D/HH students is factored, since mathematics is predominantly a 
general education requirement. We add on to the undergraduate mathematics education literature 
by exploring D/HH students’ experiences in mathematics: What roadblocks and successes 
happened in their mathematics education? 

Background Literature 
When analyzing how D/HH students experience mathematics at the undergraduate level, 

it is important to understand the different K-12 educational backgrounds they come from. Three 
common educational backgrounds for D/HH students are center schools (schools dedicated to 
D/HH students), integrated classrooms in main-stream schools (D/HH students in class with 
hearing peers), and self-contained classrooms (D/HH specific classrooms in mainstream schools) 
(Kelly, Lang & Pagliaro, 2003).  D/HH students entering higher education who take math 
courses are typically in integrated mainstream classes. This can be a disadvantage to students 
who did not have the same mathematical experience as their hearing peers before entering their 
first undergraduate mathematics course. One study has shown that students in self-contained K-
12 classrooms and center schools are exposed to fewer discrete mathematical concepts (Pagliaro 
& Kritzer, 2005); another has shown “teachers of [K-12] deaf students continue to place 
relatively less emphasis on the development of critical thinking, reasoning, synthesis of 
information, and other essential skills needed for effective problem solving” (Kelly, Lang & 
Pagliaro, 2003, p. 116). These teaching differences provide insight into D/HH students’ 
mathematical performance and reasons behind the need of accessibility accommodation in 
educational settings. 

Even when it comes to standardized testing for D/HH students, there is a need for 
accommodation. The SAT-HI was created with the intention of measuring D/HH students’ 

                                                 
1 It should be noted that the term "deaf" refers to a person who does not hear; "Deaf" refers to 

the identity of a person who is typically proud to be Deaf and be a part of the Deaf community. 
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knowledge more accurately than the SAT taken by their hearing peers. These accommodations 
include translation of testing materials into ASL and screening the students for the correct grade-
level test for each section (Qi & Mitchell, 2011). These accommodations are made mainly due to 
the English barriers D/HH students face. Over 95% percent of deaf children are born to hearing 
parents (Mitchell & Karchmer, 2004), and many of these children miss vital opportunities as a 
child for developing language acquisition (Spencer & Harris, 2006). This late language 
acquisition follows D/HH children through their education and shows itself through testing 
performance. 

 A study that analyzed periodic test results from the Stanford Achievement Test for D/HH 
students from 1969-2003 demonstrated that while D/HH students’ standardized testing has 
shown to be improving over the decades in certain areas, in 2003 the median grade level 
equivalence for mathematical procedures has decreased to right above a sixth-grade level for 
students who are 18 years old. (Qi & Mitchell, 2011). This same study showed that the median 
test scores in 2003 for mathematical problem solving was below a sixth-grade level and reading 
comprehension was below the fourth-grade level in students at the end of high school. Reasons 
for lower reading comprehension include the mode of acquisition or the way in which someone 
learns the meaning of words (Wauters, van Bon, Tellings, & van Leeuwe 2006) and mathematics 
ability has been shown to stem from “more restricted opportunities for incidental learning” 
(Kritzer, 2009, p. 418). While many might be testing at a lower grade-level than their hearing 
peers, there has been an increase of D/HH students entering higher education (Walter, 2010). 

Access to higher education for deaf and hard of hearing students has been promoted by 
the passing of laws such as the Vocational Rehabilitation Act in 1973 and Americans with 
Disabilities Act of 1990. Both aided in the increase of admission by prohibiting students’ 
rejection by reason of their disability. New admissions have increased the number of D/HH 
students in postsecondary education, and, because of this, there is a call for a wider range of 
accommodations. These accommodations tend to be in the form of interpreting services such as a 
physical interpreter or speech-to-text services. Coming into higher education, D/HH student 
barriers are addressed by the accessibility resources available to the campus, but perhaps are less 
informatively addressed by the instructor (Lang, 2002). 

Methods 
Our methodology for this study was conducting a qualitative online survey to determine 

some of the first roadblocks or successes D/HH students face in undergraduate mathematics. The 
reason we chose to conduct a survey for qualitative research was for a few reasons. There is a 
language barrier between researcher and participant that couldn’t be accommodated for due to a 
lack in financial resources. A two-way in-person ASL interpreter can run for up to $145 an hour. 
While ASL interpreter over-the-phone rates are cheaper, this would pass the financial obligation 
onto the participant if they do not qualify for government-funded video phone access. In future 
research, in-person interviews will be preferred.  

The survey was an anonymous online survey consisting of six open ended questions and 
two multiple choice demographic questions. We sent a survey link via email or in closed 
Facebook groups to prospective participants that fit our criteria for the survey. The initial criteria 
for the survey was that the individual identifies as Deaf/deaf or Hard of Hearing and has taken a 
mathematics course at the undergraduate level. We allowed the survey to be open for all ages 
over 18; this variety in age of participants can help to establish a roadblock timeline to analyze 
the evolution of difficulties or successes D/HH students may face in an undergraduate 
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mathematics course. We then used open coding, specifically structural coding, to label using 
themes (Namey, Guest, Thairu, & Johnson, 2008; Saldaña, 2009). 

Results 
Table 1. Participants’ Background  

Participant Undergraduate Mathematics Courses 
Taken 

Identification Age Range 

Student 1 "Survey of Mathematics 1, Survey of 
Mathematics 2, Statistics and Probability 
at [Medium Undergrad University]" 

Deaf/deaf 35-44 

Student 2 "pre-calculus, calculus I, calculus II, 
calculus III at gallaudet university 
calculus I at [Midwest Community 
College] (audit)" 

Deaf/deaf 25-34 

Student 3 "I took Data Analysis and College 
Algebra through [Small Midwest State 
University]" 

Deaf/deaf 18-24 

Student 4 "I have taken Elementary Statistics at 
[South Community College] and College 
Algebra at [SCC] as well." 

"I am culturally Deaf with 
a classification of Severe 
on the Audiogram"2 

18-24 

Student 5 "I took college algebra, statistics, and 
quantitative methods at [Large Midwest 
State University]" 

Hard of Hearing 18-24 

 
In table 1, all five participants and their backgrounds in mathematics education are 

displayed. When asked about their experience in those courses, four out of five of the students 
responded with negative descriptions: "a little difficult", "challenging", and "awful". Student 4 
went into detail about receiving the letter grade D in College Algebra, and how that grade was 
out of character: "this is the only D I have received in College, other than that I have no C's, 3 
B's, and 23 A's". The student who did not specify a negative experience, Student 3, mentioned 
their "experience was okay… I made an A in both courses and used CART (Communication 
Access Real-time Translation) as an accommodation."  

Three out of five respondents mentioned struggles related to the instructor writing notes 
on the board with their back turned. Student 4 stated, "Not only is it hard to see what steps are 
happening until they stay away [from the board], but I miss almost all their explanation when 
their mouths are facing the board. I confronted my Physics professor about this & she wish I had 
told her sooner." Student 1 mentioned there was "not enough of writing problems on the board… 
[there was] No tutoring support available due to conflict in interpreter schedule and tutoring 
hours." 
                                                 
2 An audiogram is a graph that shows hearing test results. A classification of "Severe" is testing 70 to 90 dB higher 
than normal (NHT Staff, 2014).  
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In terms of successes, four out of five of the respondents mentioned their grade as a 
success in their courses: "I had the highest grade," "I made an A in each class," and "…I learned 
and survived college algebra." Student 4 elaborated on their grade they received in a physics 
class, and although it is not considered a mathematics course, this participant felt it was 
important to include in reflection of their undergraduate mathematical experience:  

Earning an A in Physics was greatly credited to my classmates who assisted me & 
the TA who gave tutor sessions. Nonetheless, I am an extremely visual learner 
and people who taught me visually helped me advance the most. When people try 
to explain things with words with no visual aid it’s much harder for me to grasp 
the concept. 

 
Student 1 stated "taking the class with a deaf friend" as an example of a success in the 

classroom. Two out of five of the students mentioned successes related to online activities. 
Student 5 recalled having online homework assignments: "we were required to purchase the 
online homework assignments that explained things with captions and had you practice 
problems. That is how I learned and survived college algebra." Student 1 mentioned "taking the 
math course online with ALEKS program" as a success, but then went on to say, "It's not the 
best. I still struggled…" Finally, Student 5 stated, "Anytime the professor can use one of those 
projection things that allows them to face the class while working out the problem greatly 
helped." 

Discussion 

D/HH Experiences Related to the Course 
The main goal of the survey is to determine some baseline difficulties and successes for 

D/HH students in an undergraduate mathematics environment. These open-ended surveys can 
assist us in generating more research questions. In this survey, we inquired specifically about the 
participants’ difficulties and successes. First, we included a neutral question about experience to 
give the respondent a chance to give their initial thoughts about undergraduate mathematics. 
When asked, 4 out of 5 of the students responded with negative mathematics experiences; this 
seemed to be common to students regardless of D/HH classification (Betz, 1978). 

Three responses specifically mentioned struggles in the course directly related to the 
instructor facing the board. One of the other responses mentioned under-utilization of the board 
for presenting materials. Student 5 suggested professors use a projector while teaching; this will 
still give the students the visualization of the material being learned while keeping the professor 
turned to the class. If the professor makes a point to face the students while explaining the 
material, this will help the students who rely on lip-reading as a mode of receiving information. 
This simple change (where possible) can make a difference in D/HH students learning 
environment as well as hearing students who learn more efficiently in a visually-engaging 
classroom.  

Another theme that stood out was related to the instructor's speech. Even Student 1, who 
mentioned having an interpreter for the class, mentioned the professor "spoke through the lesson 
fairly quickly". For a student that has an interpreter in the classroom, they are relying on not only 
their own understanding of the material, but the interpreter's relay of information. Receiving 
information through a secondary perspective will provide its own challenges, and for students 
who have an instructor that goes over new material quickly, this can heighten that roadblock.  
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When asked about successes in undergraduate mathematics, four out of five of the 
respondents mention successes related to their grade in the class. Course grade outcome is 
unrelated to their deafness, but external motivation and rewards are still considered a large goal 
with many students. While only one student specified visual aids helped to bring them success in 
the classroom, online-related responses such as ALEKS add a visual element to the math course. 
Student 5 mentioned having captions with the online assignments which can help with 
understanding. Typically, with online courses, students can also dictate the pace at which the 
materials or assignments are presented, giving them more control over the communication of the 
course information. Student 3 mentioned using CART as an accommodation, which can help the 
student avoid missing information when the instructor's back is turned. It also allows more time 
to read the information on-screen rather than watching an interpreter and taking notes 
simultaneously. 

Representation of D/HH Students 
There was only one student, Student 2, who took any type of calculus class in this survey. 

It should be noted that this respondent took calculus classes at Gallaudet University, the only 
university designed for teaching D/HH students. Although this is a small sample, this agrees with 
the previous literature on D/HH higher education statistics (Walter, 2010). Her experience was 
"challenging as [she] was the only female in most classes." She took all of her non-audit classes 
at Gallaudet University. The female student population has consistently remained the majority 
since 1999 according to Gallaudet's enrollment records available online (Gallaudet University 
Office of Institutional Research, 2018). Since calculus is a required class for most STEM majors, 
her answer raises questions of D/HH female underrepresentation. 

Conclusion 
This paper outlines individual D/HH students' initial perspective on their undergraduate 

mathematical experience. Challenges identified in this study include breaks in communication 
between instructor and student, speech patterns of the instructor, and possible 
underrepresentation of D/HH female students. These challenges can be addressed by 
accessibility resources in higher education institutions and regarded by mathematics instructors 
seeking information related to teaching these students. Successes identified in this study include 
visual aids such as online-related elements in the course, usage of the board, and D/HH specific 
accommodations. Further research should be done to determine potential effects of a math course 
taught in visually-stimulating environment; developing this environment requires a composition 
of different visual elements in and out of the classroom similar to the ones mentioned previously. 
There should also be more exploration into the pedagogical effects of an instructor explaining 
materials while facing away from the classroom. This study gives direction for future research 
related to D/HH undergraduate mathematics students whose experiences we believe should be 
addressed more thoroughly. 

Questions for the Reader  
1. What pedagogical actions could be taken to create a more visually-stimulating 

classroom? 
2. What pedagogical actions could be taken to lessen communication breaks in the 

classroom? 
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Examined Inquiry-Oriented Instructional Moves with an Eye Toward Gender Equity 
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When considering undergraduate mathematics education, gender equity is an ongoing issue and 
it has been suggested that inquiry-based instruction could make classes more equitable for men 
and women. In this study, we analyze data from 42 undergraduate instructors and courses and 
681 students in the context of inquiry-oriented instruction in either abstract algebra, differential 
equations, or linear algebra. Specific instructional units were video recorded, watched, and 
coded to see how teachers distributed opportunities to participate in whole class discussion, how 
these opportunities were taken up by students, and what teachers did with student ideas. 
Mathematically substantial opportunities were not distributed equitably between men and 
women, which was consistent with inequitable student participation observed. Further, 
instructors tended to leverage women’s ideas less than men’s ideas when building on formalizing 
students’ mathematical contributions. 

Keywords: Inquiry-oriented instruction, Gender, Equity, Whole class discussion 

Many teachers use direct instruction that requires rote memorization and, thus, does not 
support student understanding of mathematical concepts (Quan-Lorey, 2017). This plays a role in 
engagement and comprehension in undergraduate mathematics courses if students’ primary 
experience with mathematics is through memorization or procedural methods (Chang, 2011). 
Alternate teaching methods, like inquiry-oriented instruction (IOI), can be useful in prompting 
students to think critically and immerse themselves in the mathematics they are learning. IOI is a 
type of inquiry-based learning (IBL), a student-centered method of teaching revolving around 
“ill-structured but meaningful problems” (Laursen, Hassi, Kogan, & Weston, 2014, p. 407), 
involving the use of novel, problem-solving tasks that require students to be engaged and active 
learners (Rasmussen & Kwon, 2007; Kuster, Johnson, Keene, & Andrews-Larson, 2017). These 
tasks usually involve multiple solution methods, require students to make connections, and call 
for the use of problem-solving skills. As students inquire into mathematics, teachers inquire into 
students’ reasoning so it can be leveraged in classroom discourse to create shared understandings 
that can then be formalized mathematically (Rasmussen & Kwon, 2007). Students’ work on 
tasks is leveraged in whole class discussions where students must explain and justify their 
reasoning whether through their teacher’s request or without prompt. IOI has been associated 
with improved student outcomes (e.g. Rasmussen & Kwon, 2007; Bouhjar, Andrews-Larson, 
Haider, & Zandieh, 2018). Laursen et al. (2014) found that IBL improved self-reported 
cognitive, affective, and collaborative gains in all students and leveled significant differences in 
cognitive and affective gains that existed between women and men in non-IBL courses. 
However, IOI does not guarantee an equitable distribution of opportunities to participate and 
engage in mathematical discourse. Our study examines this issue in 42 undergraduate 
mathematics classes by exploring the following research questions:  

1. How did teachers distribute opportunities for students to contribute to whole class 
discussion, and how did this differ by gender? 
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2. How were these opportunities to contribute taken up by men and women?  
3. In what ways did instructors leverage contributions from women and men? 

Theoretical Framework 
Laursen et al. (2014) argue that IBL “leveled the playing field by offering learning 

experiences of equal benefit to men and women” (p. 412). Johnson, Andrews-Larson, Keene, 
Melhuish, Keller, and Fortune (2018) did not find this to be true, as results in their study showed 
that men benefit more from IOI as evidenced by significantly different performance of men and 
women. This difference in findings leaves questions: Does IOI equally benefit men and women? 
Does it even the playing field? Does it disproportionately advantage men? 

We follow Leyva’s (2017) argument that gender differences in mathematics are socially 
constructed and Black’s (2004) argument that teacher-student interactions and teacher 
expectations can shape students’ identities and participation in the mathematics classroom. 
Esmonde (2009) also states that identity development in mathematics in crucial when 
considering equity. This suggests that a focus on teacher-student interactions will help future 
research concerning identity development and, thus, equity. In our study, we want to examine 
interaction patterns in the classroom to better understand gender-based differences in students’ 
experiences in hopes that this will offer insight into differences in outcomes.  

Data Sources and Methods of Analysis 
Our data comes from a broader NSF-funded study focused on providing undergraduate 

instructors with support for teaching linear algebra, abstract algebra, and differential equations in 
inquiry-oriented ways. This analysis focuses on video data of 42 instructors teaching units that 
varied in length from about 2-4 hours of instructional time. In these videos, a total of 681 
students were observed; 452 of these students were identified by coders as men and 229 were 
identified as women. In this analysis, coders relied on visual and audio cues (e.g. voice, clothing, 
names or pronouns used) to infer the gender of students. As a result, all claims are based on 
researchers’ binary interpretations of students’ gender, a limitation of our study. 

Table 1. Codes, subcodes, and subcode definitions 
Code Subcode Definition 

Solicitation 
Method – 
(how is 
speaker 

selected) 

Group Instructor calls on a group and a particular student speaks 
Individual Instructor calls on a student by name 
Volunteer Instructor calls on a student volunteering to talk 
Random Instructor uses randomization to identify a speaker  

Not Called On A student interjects without being called on by instructor 
 

Teacher 
Solicitation 
(question 

type) 

N/A Teacher does not ask the student a question 
Other Teacher asks a general question (e.g., “What did you think?”) 
What Teacher asks a student to read part of a problem, recall a fact, or 

give a numerical/verbal answer 
How Teacher asks for a student’s solution method 
Why Teacher asks why something is true/false 

 
Student 

Talk 

Other Student asks a question or says something nonmathematical 
What Student reads part of the problem, recalls a fact, or gives a 

numerical/verbal answer to a problem 
How Student explains solution method 
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Why Student explains why something is true/false 
 
 

Teacher 
Evaluation 

N/A Teacher does not respond to the student’s contribution 
Revoice Teacher repeats student contribution 

Evaluation Teacher explicitly says the student is correct/incorrect 
Elaborate Teacher expands on or formalizes the student’s idea 

Follow-Up Teacher asks a new question based on the student’s 
contribution and a new student responds 

To examine how teachers distributed opportunities for students to participate in whole class 
discussion, we used Reinholz and Shah’s (2018) observation tool, Equity Quantified in 
Participation (EQUIP), as a basis for our coding scheme and rules. We refer to our unit of 
analysis as a sequence of talk, where a sequence starts when a new student speaks and ends when 
another student speaks. With this definition, any length of interaction between the teacher and 
student is coded as one sequence. On the other hand, if two students are having a conversation, 
then a new coded sequence begins each time a student speaks so this situation would create many 
back-to-back lines of code. In this report, we draw on four EQUIP codes (Reinholz & Shah, 
2018), given in Table 1. Solicitation Method and Teacher Evaluation were modified for this 
study, to capture greater nuance in how teachers used student thinking. 

Interrater Reliability 
There was a total of 104.8 hours of video; and 20% of these videos were double-coded. The 

coding team consisted of three graduate students. One was the master coder, who all of the other 
students were compared against. Videos were assigned randomly to the three coders, each of 
whom coded approximately one third of the data. The coders completed double-coding in 
multiple phases, discussing the results after each phase. Once all videos were double-coded to 
acceptable reliability (at least 80% agreement on each code), the coders individually completed 
the remainder of their videos. The coding team met regularly to discuss coding issues that arose 
to maintain consistency. To compute interrater reliability, we used Krippendorff’s alpha (Hayes 
& Krippendorff, 2007), which is a generalization of Cohen’s kappa. An alpha value was 
calculated for each main level code and each non-master coder; all of these values were over 0.8, 
which is considered good reliability, the highest category that can be achieved (Carletta, 1996). 

 Equity Ratios 
After all the videos were coded, we used R statistics to aggregate all occurrences of codes 

and subcodes, and computed equity ratios, which is a ratio of the actual participation of a group 
to the expected participation of a group based on the demographic composition of the class 
(Reinholz & Shah, 2018). For instance, if a class was comprised of 40% women, the expected 
participation would be 40% of whole-class talk. An equity ratio less than one means that the 
observed group is underrepresented (compared to an equal classroom), a value greater than one 
means overrepresentation, and a value equal to one means that the participation of the observed 
group is proportional to the group’s representation in the population (e.g. mathematically equal). 
While equality is not the same as equity, research shows that underrepresented populations tend 
to receive less than a proportional share of participation opportunities, so equality can be used as 
a baseline to move toward equity (Reinholz & Shah, 2018). As outside observers we refrain from 
describing participation as equitable but can identify participation that is inequitable. 
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Preliminary Findings 
For our analysis, we examined how teachers distributed opportunities to participate in whole 

class discussion by first looking at who teachers called on and then by what kinds of questions 
they asked, disaggregated by gender. We then considered the nature of student contributions and 
what teachers did with these contributions, also disaggregated by gender. When organizing and 
analyzing findings, we look at the speaker selection and the content of interactions teachers have 
with men and women. We found that when teachers called on students individually or by group, 
men and women responded at rates comparable to their representation in the population, but this 
was not the case when teachers called on volunteers or allowed students to speak freely. Overall, 
teachers asked women less mathematically substantial questions and used women’s ideas less 
when formalizing mathematics. We support our claims by using gender equity ratios to quantify 
and compare the kinds of questions instructors asked, the kinds of contributions students made, 
and what teachers did with those contributions.  

How Teachers Distribute Opportunities to Contribute to Whole Class Discussion 
We organize our findings about teachers’ distribution of opportunities to participate to 

highlight two key aspects of this phenomenon: how they select a speaker and the kind of 
question they ask. Equity ratios (ERs) for how teachers selected speakers (Solicitation method) 
and the kinds of questions they asked (Teacher Solicitation) are shown in Table 2.    

Table 2. Equity ratios for opportunities for men and women to speak given by teachers 
Solicitation Method: Called on... Teacher Solicitation: Question Type 

 Group Individual Volunteer Not N/A Other What How  Why 
# Sequences 147 374 372 2545 1295 515 1201 123 303 
ER Men 1.02 1.00 1.12 1.07 1.05 1.04 1.09 1.08 1.10 
ER Women .95 1.01 .77 .86 .91 .92 .82 .85 .80 
*Note: Subcodes are organized so that our view of the mathematical rigor of each increases from left to right. 

When teachers call on individuals or groups, women participate relatively proportionally to 
their representation as evidenced by equity ratios of 1.01 and .95, respectively. We interpret this 
to mean that teachers are treating men and women relatively equally when calling on students by 
name, and that when teachers call on a group, men and women tend to speak proportionally to 
their representation in the population. Contrarily, women are much more underrepresented when 
the teacher asks for a volunteer (ER .77) or in instances where students freely interject (ER .86).  

The equity ratios for question type broadly suggest that in interactions with women during 
whole class discussions, teachers ask mathematically substantive questions (what, how, why) at 
disproportionally low rates (ERs < 1). We note that women received N/A (a student spoke 
without the teacher asking a question) and Other category questions (e.g. “What do you think 
about this) at considerably more equal rates.  

How Opportunities Were Taken Up by Students 
When women took opportunities to participate in whole class discussion, they were 

contributing mathematically substantive ideas (What and Why) at underrepresented rates in 
whole class discussion, as evidenced by the equity ratios shown in Table 3. Interestingly, how 
contributions (which are likely more procedural in nature) are distributed relatively equally 
between men and women. The link between Student Talk and Teacher Solicitation is also 
notable as student responses tend to be linked to the teachers’ questions.  
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Table 3. Equity ratios for how students respond to instructors’ prompts 
Student Talk 

 Other What How Why 
# Sequences 778 2099 209 351 
ER Men .96 1.11 1.02 1.09 
ER Women 1.07 .79 .97 .83 
*Note: Subcodes are organized left to right from least to most mathematically 
substantive student talk. 

What Teachers Did with Student Contributions 
Teachers revoiced and elaborated on women’s contributions at rates much lower than their 

representation in the population, as shown by the equity ratios in Table 4. Elaborate often 
involved the teacher using a student’s idea to formalize a mathematical idea and revoice was 
sometimes used to repeat a student’s idea so that the class can hear it or because the teacher is 
thinking through the student’s idea themselves. In either case, teachers leveraged women’s ideas 
in this way at inequitable rates.  

Table 4. Equity ratios for how instructors use student contributions 
Teacher Evaluation 

 N/A Revoice Evaluation Elaborate Follow Up 
# Sequences 1397 482 186 846 524 
ER Men 1.03 1.17 1.04 1.11 1.03 
ER Women .95 .67 .93 .79 .94 
*Note: Subcodes are arranged left to right from the least to most mathematically substantive 
use of student contributions. 

Discussion 
When examining trends in our findings regarding how teachers distribute opportunities to 

students, we looked at it in two parts: student selection and student-teacher interactions. In 
analyzing student selection, we found that there was more equitable participation when students 
were called on individually or by group. Calling on a group could be more equitable because this 
method creates a smaller pool of students to speak, which creates space for women to share their 
ideas. Men were more likely to interject or contribute their ideas when asked to volunteer. When 
examining trends in teacher-student interactions, we notice an interesting link between Teacher 
Solicitation and Student Talk. Teachers asked women less mathematically substantive questions, 
suggesting women had fewer opportunities to contribute mathematical ideas in whole class 
discussion. This might explain why teachers revoiced and elaborated on women’s ideas at lower 
rates, as women were not prompted to give as many mathematically significant contributions. 
Though teachers likely did not mean for this to happen and are probably unaware of this 
inequity, the prevalence of these inequities in discussions in mathematics classrooms merits 
notice and discussion. The fact that the equity ratio for teachers calling on individual students by 
name was extremely close to 1 suggests that teachers intend for contributions in whole class 
discussions to be equal between men and women. In the future, we plan to explore the variation 
of these equity ratios by content area (abstract algebra, differential equations, and linear algebra) 
as the differences appear to be considerable and this could help explain what gives rise to these 
phenomena and any links to student outcomes.  
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Exploring Experiences of Students of Humanities and Social Sciences in an Undergraduate 
Mathematics Course and Their Perceptions of its Usefulness 
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This hermeneutical phenomenological study explored the experiences of students in the College 
of Humanities and Social Sciences (CHASS) in an undergraduate mathematics course and their 
perceptions of its utility. Field observations and semi-structured interviews were conducted. Six 
themes emerged from the collected data. The phenomenon of being a CHASS student in Topics in 
Contemporary Mathematics is perceived as enjoyable, but impractical and useless. Moreover, 
what moves students to be successful are mostly (or only, in some cases) external regulators that 
do not promote autonomy. A set of implications is provided. 

Keywords: Phenomenology, Attitudes Toward Mathematics, Self-Determination Theory 

Undergraduate students in the College of Humanities and Social Sciences (CHASS) are 
required to take what may be the last one or two mathematics courses in their lives as 
requirements for their degree. Understanding how CHASS students perceive their experiences in 
an undergraduate mathematics course designed for them, and their perceptions of the course’s 
usefulness are first steps to deciding if the curricula for these courses need revisions to better 
meet students’ interests and needs. Furthermore, caring about their perspectives is crucial for 
future generations because parents’ attitudes toward mathematics significantly predicts their 
children’s attitudes toward mathematics (Mohr‐Schroeder et at., 2017). Therefore, the purpose of 
this study is to explore CHASS students’ experiences in an undergraduate mathematics course 
and their perceptions of its utility. To fulfill this purpose, the following research questions are 
addressed: (a) How do students feel about being required to take mathematical courses for their 
degree? (b) What is the perceived relevance and usefulness of the mathematics course they are 
taking to their life, major, and future career? (c) What motivates them to be successful in the 
mathematics course? and (d) What are their attitudes toward mathematics? 

Literature Review 
There is important literature about affect in mathematics and motivation, in general, that can 

provide meaning and serve as a theoretical framework to this study. This section will focus on 
attitudes toward mathematics (ATM) and Self-Determination Theory (SDT) as lenses to 
understand CHASS students’ experiences and perspectives of mathematics.  

ATM has been extensively studied and this construct has been constantly developing 
(Middleton, Jansen, & Golding, 2017). It has been shown that ATM is reciprocally correlated 
with achievement (Ma, 1997; Ma & Kishor, 1997). Additionally, recent studies consider other 
factors affecting (or affected by) ATM, such as math anxiety, gender, cognition, self-efficacy, 
problem-solving, cooperative learning, absenteeism, class participation, homework completion, 
urban and rural differences, socioeconomic factors, teaching materials, teachers’ content 
knowledge and personality, and teaching with real life enriched examples. (Green et al., 2012; 
Ho et al., 2000; Hopko, Ashcraft, Gute, Ruggiero, & Lewis, 1998; Kolhe, 1983; Mishra, 1978; 
Saha, 2007; Schoenfeld, 1985). Thus, ATM relates to students’ perceptions of mathematics.  

Motivation has also been studied in mathematics education, but not as much as ATM. Given 
that motivation explains a big portion of human behavior in almost every situated context, it is 
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relevant in education. In general, the more autonomous the motivation is, the better students’ 
achievement is (cf. Lee, Bong, & Kim, 2014). Ryan and Deci (2000a) shed light when they 
introduced different types of extrinsic motivation by presenting them on a continuum of the 
Organismic Integration Theory starting from less autonomous to more autonomous. When 
combined with other theories, the seminal Self-Determination Theory is created. Summarized by 
Ryan and Deci (2007), this theory also explains basic psychological needs for optimal motivation 
and reward contingencies, which can also serve as lenses to understand students’ experiences.  

As suggested by Middleton et al. (2017), ATM and motivation should be considered 
together along with other affect in mathematics and social interactions. Relationships found 
between ATM and motivation in mathematics are that both are correlated to engagement and 
achievement (Ma, 1997), both are malleable (Middleton et al., 2017) and tend to change 
negatively across the school grades (Mata, Monteiro & Peixoto, 2012). Additionally, having 
positive ATM does not guarantee an autonomous motivation and vice versa (Mata et al., 2012). 
However, many factors can enhance or diminish positive ATM and an autonomous motivation.  

One conclusion that can be extracted from this is that if students are lead into the abstract and 
demanding mathematics’ curricula without providing meaningful activities for them, they could 
easily lose autonomous motivation and develop negative ATM, both of which relate to 
mathematics achievement, engagement, enrollment in mathematics courses, cognition in 
mathematics, and general behaviors in the classroom, among other constructs (Middleton et al., 
2017). Now, are we providing students with meaningful and interesting activities related to their 
majors and future professions so that we promote positive affect and internal motivation?  

Methods 
This study is a hermeneutical phenomenology study oriented toward the lived experiences of 

students from CHASS enrolled in Topics in Contemporary Mathematics. This course is primarily 
designed for CHASS students, and it should illustrate contemporary uses of mathematics 
frequently including topics such as sets and logic, probability, modular arithmetic, and game 
theory. This study includes six research foci (van Manen, 1990, 2014). Two of them are 
described as follows: First, the lived experiences in mathematics of whom may be seen as the 
others in STEM, CHASS students, and the research community not paying attention to their 
voice is an abiding concern to the researcher. Second, this experience is investigated in terms of 
how the participants live it, and their reality will be presented.  

The data for this study consists of field observations and semi-structured interviews. During 
the week of field observations, the researcher was a nonparticipant observer and used natural 
descriptions (Bernard, 2011). Semi-structured interviews were conducted one week later. Three 
students enrolled in the course, majoring in History or Political Science, were interviewed. The 
interviews were audio-recorded and transcribed. The purposes of these interviews were to 
understand the phenomenon under study from the participants’ point of view, to understand the 
meaning of their experiences, and to uncover their perspectives of the phenomenon (Brinkmann 
& Kvale, 2015). Therefore, open-ended questions, such as “How do you feel about mathematics 
being a requirement for your program?”, “What has been your experience so far in the course?”, 
and “What moves you or motivates you to study and be successful in that class?”, were asked.  

Codes were created, defined, and used for significant statements in the transcripts. Then, 
significant statements were grouped by codes. Afterwards, themes emerged when groups of 
codes were analyzed together with their significant statements. Finally, textural and structural 
descriptions were developed to describe the essence of CHASS students’ experiences (Creswell 
& Poth, 2017). 
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Findings 
The six themes that emerged from 63 significant statements will be discussed in this section. 

Emerging Themes 
Theme 1: Calculus as a turning point. To understand the essence of the students’ 

experiences in the course, it is important to understand their perceptions of mathematics in 
general. During interviews, two participants discussed their experiences with high school 
calculus; both Tom and Jake expressed that calculus was very difficult for them and that they did 
not do well. In fact, Tom expressed, “I liked math before calculus”. As Jake mentioned, 
mathematics was getting “confusingly harder” in high school. Having these experiences, where 
they were not as successful as they wanted to be, may have created negative ATM and low 
motivation to learn mathematics. Consequently, this experience and mindset would follow them 
to undergraduate mathematics courses.  

Theme 2: Overcoming math anxiety. CHASS students’ previous perception of 
mathematics was described as: “Confusing. I think math is pretty confusing” and “I just find it 
harder than anything else”. When expressing how they felt upon noticing that their 
undergraduate program required two mathematics courses, Tom expressed, “I get nervous when I 
have to take math classes. Um… probably just nervousness. Um, I try to study for math more 
than anything else.” Then, he explained that he felt anxious about taking mathematics, and that 
he “just wanted to get through it”. Additionally, Jake was worried that he was going to have to 
take “hard math”. However, once they were told a description of the course and experienced it, 
they seemed to overcome math anxiety.       

The course’s low difficulty level seems to be the key for students to overcome math anxiety. 
Perhaps knowing that they can do it changes the way they feel about mathematics? Before, they 
felt worried, nervous, and anxious. Now, Sarah, Tom, and Jake, respectively, expressed: “I don’t 
really mind that class. It is going to be an easy A. I don’t have a problem with it anymore”, “It’s 
pretty simple and definitely way easier than calc in high school”, and “Is pretty simple that is 
honestly like easier than most of the math courses I took in high school”.  

Theme 3: Defining a mindset. The type of mindset these students had before and during the 
experience of being a CHASS student in the mentioned mathematics course was still defining 
itself or getting more concrete. Statements, such as: “I’m not a math person”, “[Math] wasn’t my 
thing” “I am not good at math, like complex math”, and “But when you are required to do that, 
and you don’t have a brain that is good understanding math, I think that can really put people off 
school” evidenced that most of these students had the belief that they do not possess the “ability” 
to be good at math. Thus, making it clear that they had a fixed mindset (Dweck, 2008). Although 
all the statements related to their mindset suggested that they did not believe they could master 
higher level mathematics, the following statement is particularly interesting: 

I’ve become a different person from high school in college. So, like the person that didn’t 
like math in high school is not around anymore. I think it’ll be interesting to go in a high-
level class to see if I can perform. Like having an increased in work ethic and trying to 
have good grades and stuff like that, whereas I didn’t care like that in high school. 

Thus, suggesting that the experience changes the mindset of some students, but for others it 
reaffirms their fixed mindset thinking that they are only successful because the course is “easy”. 

Theme 4: Increasing enjoyment with controlling motives. Students have been enjoying an 
“easy” math course at college. One student had the following epiphany: “And I honestly kind of 
miss it, like I like math, and I realize, I think that I realize now that I do like it”. Another student 
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expressed that his negative ATM changed because he considers this course to be easy. It seems 
that, this course, by being “easy”, allows them to enjoy it more.  

When asked what moves them to be successful in that course, all replied that grades are what 
moves them. None mentioned the content of the course or what they may gain from it. If the 
difficulty of the course matched that of the calculus, they may feel the same negative feelings 
that they expressed before. Thus, what they seem to enjoy is the low complexity and the “easy 
A”. For example, Jake mentioned: “But sometimes I just miss like ‘here is a problem and figure 
that out’ and it’s kind of basic and you can do that”. Therefore, the enjoyment seems not inherent 
in this case but caused by external factors, such as grades. These external factors are controlling 
motives and grades in particular are extrinsic motivators with the lowest autonomy in the SDT.  

Theme 5: Viewing mathematics as useless. Students showed their perspective that most 
applications were impractical and that there has not been an evident transfer of knowledge, 
except for the topic of voting methods. Most topics, according to them, are useless because “one 
could solve the given problems by flipping a coin” (e.g., deciding where to eat with friends) or 
simply “cutting the cake however you want”. A student described it as “unnecessary and dumb”. 
Another student expressed that although it is simple math, he would not know where to apply it. 
In particular, Sarah mentioned: “I don’t think I’ll use anything to be completely honest. Once 
I’m out of this class, I’ll keep the notebook and not think about it again.” All expressed an 
inability to apply what they have learned to real-life situations, except for the topic of voting 
methods, whose relevance was clear to them and they enjoyed it.  

The transfer of knowledge to new contexts is one of the main goals of education (Bransford, 
Brown, & Cocking, 2000). However, students found themselves unable to make this transfer of 
knowledge from the mathematics classroom to other contexts. In fact, they do not see the 
relevance of most topics to them, their careers, or their majors. Thus, referring to SDT, this 
experience does not seem to promote identified or integrated regulation. Oppositely, the 
experience lets them stay with low autonomy, low internalization and externally regulated.   

Theme 6: Reflecting on its appropriateness. Here, students focused on the characteristics 
that make or do not make this course appropriate. First, they all explained that the course is 
appropriate for CHASS students because it is a “simpler math” that is “digestible”. Additionally, 
they expressed that they have a good instructor and that a “good teacher is what probably makes 
the difference between really hard or getting through it better”. Then, a dilemma emerges when 
they talk about the course content:  

Also, it has real world applications which humanities majors usually like. Um, but 
also, like I said with the apportionment with like the cake problem, it doesn’t 
seem practical for use in like daily life. Some of the things we learn about, I feel 
are things I’m never gonna have to use again. 

That is, although it has concrete applications, they seem to be impractical, inappropriate or 
useless for them. Although they clearly enjoy the easiness that characterizes the course, they 
want more out of that experience. For example, Jake shared: “I wish that like I could have a math 
course that related to me more”. Sarah added: “So, like, um, not just here you would use it but 
also why we would need to use it”. Moreover, Jack added: “...so that the course would be more 
difficult and challenging and also related to what I’m doing, and I would enjoy that”, expressing 
that more challenging and related topics would be more enjoyable.  

According to Ryan and Deci (2007), satisfying students’ basic psychological needs for 
autonomy, competence, and relatedness leads to optimal motivational function. By contrast, they 
explained that “whenever the social context thwarts or neglects one of these needs, intrinsic 
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motivation and internalization, as well as positive experience, wither” (p. 7). Students seem to 
have one or two of these psychological needs satisfied. Having what they consider a good 
instructor may satisfy the need for relatedness, which makes them feel comfortable and part of a 
community. On the other hand, it is unclear whether they feel competent in this course. They are 
doing “good” in this course, but they feel that it is not complex. Perhaps they may feel competent 
in the course, but not in general. For example, Sarah said: “I also understand that this level of 
math is easier than the one I had in high school. So, it’s good but I also understand why I’m 
doing good”. However, what is clear is that this experience is not supportive of their need for 
autonomy. For example, when asked about the assignments, a student said: “There just um, 
basically he’ll tell us a formula in class and I will go over one or two examples and it’s just a 
copy of those questions pretty much. The test is the same as the web assigns”. Lastly, they have 
expressed that almost nothing in that course relates to their interests, major, or future careers.    

Conclusion and Implications 
In general, at the beginning of the experience of being a CHASS student enrolled in Topics in 

Contemporary Mathematics, students felt anxious and had negative ATM. The perceived low 
difficulty of the course and the positive reinforcement of good grades made them overcome the 
anxiety and helped them enjoy the course. The instructor also plays a role that, in this case, was 
positive in helping them enjoy the course. However, except for one topic, their perception is that 
there is no clear relationship between what they are learning in that course and their interests, 
major, or future careers. That seems to make transfer of knowledge almost impossible for them. 
Therefore, the phenomenon of being a CHASS student in Topics in Contemporary Mathematics 
is perceived as enjoyable, but impractical and useless. Moreover, what moves students to be 
successful is mostly (or only, in some cases) the grade, which is an external regulator that does 
not promote autonomy. Nevertheless, they got their desired A.  

For CHASS students, what may be the best kind of motivators are those that are perceived as 
integrated and identified regulators, which are considered as the most internal types of extrinsic 
motivators in the continuum (Ryan & Deci, 2000b). That is, intrinsic motivation is desired, but 
we do not want students to do mathematics only because they inherently enjoy doing 
mathematics. We also want them to understand its importance, why they need it, how they can 
use it, how they can relate mathematical reasoning in other contexts, etc. We want them to 
transfer that knowledge in a way that it is useful for them. Based on these students’ perceptions, 
this is not happening in this course, even when the field observations suggested that the professor 
was teaching for conceptual understanding and also giving applications. The researcher plans to 
keep interviewing students in the future as it is clear that there is an opportunity to optimize 
students’ experiences in this course. Therefore, this study has the following implications: (a) 
more activities in which students can feel in control of the learning process, see its relation to 
them, and, at the same time, feel that it is challenging are needed. Those activities promote 
students’ autonomy, which is required for their cognitive development, transfer of knowledge 
and optimal motivation; (b) applications given in the classroom should be changed to more 
practical ones. For example, making a decision matrix to decide where to eat is not practical. 
Making a decision matrix to decide which graduate schools to apply, where to move, what job to 
accept, what topic to investigate, and the like, are worthwhile and relevant; (c) topics discussed 
in the classroom should cater the needs of most students, not only those majoring in political 
sciences; (d) make instruction more individualized through assignments; (e) collaborate with 
professors from CHASS to create the mentioned assignments; and (f) more research is needed 
with this population in mathematics. 
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Reasoning Covariationally to Distinguish between Quadratic and Exponential Growth 

 
 Madhavi Vishnubhotla Teo Paoletti 
 Montclair State University Montclair State University 

In this report, we present preliminary findings from clinical interviews examining inservice 
teachers’ understandings of quadratic growth and exponential growth. The purpose of this pilot 
study is to investigate how teachers may naturally leverage covariational reasoning to 
distinguish between the two types of growth. In this report, we first present relevant constructs 
pertaining to teachers’ covariational reasoning and then describe one task we used in clinical 
interviews. We then present preliminary findings regarding how teachers’ leveraged (or did not 
leverage) covariational reasoning as they addressed this task to differentiate between quadratic 
and exponential growth. We conclude with preliminary implications and questions regarding 
how these preliminary findings may have implications for a larger study with pre-service 
secondary mathematics teachers.  

Keywords: Covariational reasoning, quadratic growth, exponential growth 

Although several studies have indicated that covariational reasoning can support students 
develop various mathematical ideas, such as quadratic, exponential, trigonometric, and 
parametric functions (e.g., Castillo-Garsow, 2012; Ellis & Grinstead, 2008; Johnson, 2012; 
Moore, 2014; Paoletti & Moore, 2017) the available research suggests that reasoning 
covariationally is uncommon and minimal among high school mathematics teachers in the U.S. 
(Strom, 2006; Thompson, Hatfield, Yoon, Joshua, & Byerley, 2017). Particular to quadratic and 
exponential growth, researchers have indiciated middle school students (e.g., Ellis, 2011a; Ellis, 
Özgür, Kulow, Williams, & Amidon, 2015) can reason covariationally to construct and reason 
about quadratic and exponential relationships, but there is limited research examining pre-service 
and in-service teachers’ understandings of these growth patterns. Consequently, the aim of this 
pilot study was to examine teachers’ meanings related to quadratic growth and exponential 
growth. We present preliminary findings from clinical interviews providing insights we will 
leverage in implemeting a semester long teaching experiment with undergraduate pre-service 
teachers. We address the research question: “How might teachers reason covariationally to 
differentiate between quadratic growth and exponential growth? 

Theoretical Perspective 
Researchers have articulated varied perspectives of covariational reasoning. Providing a 

contrast to an emphasis on functions as representing correspondence rules, Confrey and Smith 
(1994) advocated a covariational approach to function that involves coordinating successive 
values of one variable (ym to ym+1) with successive values of another variable (xm to xm+1). 
Whereas Confrey and Smith focused on coordinating sequences of numeric values, Saldanha and 
Thompson (1998) proposed a more continuous perspective on covariational reasoning as 
“someone holding in mind a sustained image of two quantities’ values (magnitudes) 
simultaneously” (p. 298). This involves the student imagining both quantities being tracked for 
some duration and understanding that “if either quantity has different values at different times, it 
changed from one to another by assuming all intermediate values” (p. 298). For example, as the 
side length of a square increases continuously from 4 units to 5 units, taking all intermediate 
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values between 4 and 5 units, the area increases continuously from 16 sq. units to 25 sq. units, 
taking all intermediate values between 16 and 25 sq. units.  

Building on these and other researchers’ characterizations, Carlson, Jacobs, Coe, Larsen, and 
Hsu (2002) proposed a framework encompassing five mental actions that students engage in 
when reasoning covariationally. The mental actions involve identifying change in two quantities 
(MA1), the direction of change of one quantity with respect to the second quantity (MA2), 
amounts of change in one quantity for equal changes in the second quantity (MA 3), and the 
average and instantaneous rate of change of one quantity with respect to the second quantity 
(MA 4-5).  

Paoletti & Moore (2017) noted that leveraging these different forms of covariational 
reasoning can support students in developing more robust quantitative structures and a better 
understanding of the relationships they are representing. In this report, we focus on inservice 
teachers’ covariational reasoning as they conceived of and described quadratic and exponential 
growth. 

Literature Review: Conceptualizing Quadratic and Exponential Growth 
Although there are studies (e.g., Chazan, 2006; Zaslavsky, 1997) pointing to student 

misconceptions related to quadratic and exponential growth, there are fewer studies providing 
evidence of students or teachers maintaining productive understandings of these ideas. We 
briefly describe researchers’ characterizations of productive understandings of quadratic and 
exponential growth using a covariational reasoning lens and synthesize key findings from these 
studies. 

With respect to quadratic growth, researchers (Ellis, 2011b; Lobato, Hohensee, Rhodehamel, 
& Diamond, 2012) taking a covariational lens compatible with Confrey and Smith’s (1995) 
description have characterized quadratic growth as a student envisioning changing rates of 
change and identifying that the rate of change of the rate of change is constant. For example, 
Ellis (2011a, 2011b) showed that middle school students can identify constant second differences 
to realize the quadratic growth in the area of a growing rectangle.  

With respect to exponential growth, researchers have used two of the aforementioned 
characterizations of covariational reasoning to characterize productive meanings of exponential 
growth. Confrey and Smith (1994, 1995) leveraged their operationalization of covariational 
reasoning to describe exponential growth as a juxtaposition of values of one variable changing in 
arithmetic progression with values of a second variable changing in geometric progression. They 
reported on students interpreting a table of values by calculating the ratio of successive values of 
one variable for constant unit changes in the other variable to conceive of exponential growth. 
Confrey and Smith proposed this conceptualization of a constant multiplicative rate as a 
foundational idea to approach exponential growth. 

In contrast to comparing successive values, Thompson (2008) emphasized, “a defining 
characteristic of exponential functions is that the rate at which an exponential function changes 
with respect to its argument is proportional to the value of the function at that argument” (p. 39). 
Drawing on this view of exponential growth, Castillo-Garsow (2012) presented tasks in the 
context of interest bearing bank accounts to high school students and reported on one student 
who, consistent with Thompson’s description, conceived that the rate of change of the value of 
the account at a moment was proportional to the value of the account at that moment. 

Drawing on both Confrey and Smith’s (1994, 1995) and Saldanha and Thompson’s (1998) 
characterizations of covariation, rate, and exponential growth, Ellis and colleagues (2015) 
examined the activity of three eighth grade students who developed understandings of 
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exponential growth by reasoning about the height of a plant changing over time. The students 
reasoned covariationally to conceive exponential growth as the coordination of multiplicative 
growth of height values for constant unit changes of time, through numerical tabular 
arrangements. Eventually students were able to make these comparisons for non-constant 
changes in time.  

Although the aforementioned researchers noted that students at various ages are capable of 
reasoning covariationally to develop understandings of exponential growth, such understandings 
may not arise naturally from school experiences. For instance, Strom (2006) engaged in-service 
secondary mathematics teachers in a series of tasks she conceived to be related to exponential 
growth. She noted that a majority of teachers in her study had difficulties coordinating the 
images of two quantities changing together and concluded that covariational reasoning was 
minimal in most teachers’ responses. Strom’s study highlights that although students can develop 
understandings about exponential and quadratic growth by middle school, experienced teachers 
do not necessarily have this reasoning immediately available to them. 

We note there is dearth of literature examining teachers’ (or students’) conceptions of 
quadratic growth and exponential growth in relation to reasoning covariationally. Moreover, 
there are no investigations we are aware of examining how teachers’ may differentiate between 
the two growth patterns by reasoning covariationally. For instance, even if a teacher can engage 
in MA3 as described by Carlson et al. (2002) to determine that Quantity A increases at an 
increasing rate with respect to Quantity B, how might that teacher determine if Quantity A grows 
quadratically, exponentially, or in some other pattern with respect to Quantity B? Therefore, in 
addition to adding to the literature on teachers’ covariational reasoning and understanding of 
quadratic and exponential growth, our study aims to better understand how students and teachers 
can develop more sophisticated understandings of these growth patterns. 

Pilot Study Methods and Task Design 
The first author conducted four individual task based semi-structured clinical interviews 

(Clement, 2000) that lasted for 60-90 minutes with in-service high school mathematics teachers. 
The teachers volunteered to participate from a convenience sample accessible to the researchers. 
Each teacher had a minimum of ten years teaching experience and had taught a variety of high 
school math courses. 

Carlson et al.’s (2002) framework informed the design of the Two Quadrilaterals task which 
is an adaption of tasks implemented in previous studies that investigated students’ reasoning 
about rate (Johnson, 2012) and quadratic growth (Ellis, 2011b). In this applet, we provided two 
sliders. Whereas the longer, pink, slider allowed teachers to animate the two quadrilaterals (one 
in blue and the other in brown) the shorter, red, slider allowed teachers to change the increment 
the longer slider changed by, thus allowing both seemingly continuous and discrete growth of the 
two quadrilaterals (see Figure 1 for several screen shots of the task). At the start, the 
quadrilaterals are congruent. As the pink slider drags to the right, each side length of the blue 
quadrilateral increases proportionally with respect to the slider’s position and thus the area of the 
blue square can be represented by quadratic growth. As the pink slider drags to the right, the 
brown quadrilateral doubles in size for each unit change in the slider by first having its width 
double then its height double, and so on and thus the area grows exponentially. We intended to 
examine how teachers’ may conceptualize and compare the growths of each quadrilateral. The 
interviewer prompted the teachers to consider how the areas of each quadrilateral covaried with 
the pink slider.   
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Figure 1. The first four jumps of the Two Quadrilaterals task. 

Results  
We first present an example of a teacher who explicitly described exponential and quadratic 

growth when addressing the Two Quadrilaterals task. We then briefly synthesize the other 
teachers’ responses to highlight other ways of reasoning the task elicited. 

Rick’s Ways of Reasoning: Considering Changes to Determine a Relationship 
Rick was the only teacher to make statements regarding the type of growth exhibited by the 

areas of the two quadrilaterals as the slider (or side length) increased. He coordinated how the 
areas and the slider (or side length) covaried in terms of direction of change (MA2) and the 
amounts of change (MA3). He then introduced numerical values in order to further analyze and 
differentiate between the growths of the areas of the two quadrilaterals.  

For the blue quadrilateral, Rick noted that both the side lengths increased by one unit if he 
moved the slider by one unit and claimed “the area is increasing by whatever that side is 
squared.” He considered the initial side length to be ‘x’ units and described that the areas of the 
growing square would be x2, (x+1)2, (x+2)2. Rick next assumed x to take the value of 1, 
calculated the areas to be 1, 4, 9, 16 and 25, found the differences between these numbers, and 
also their second differences. Circling the second differences (see Figure 2a), Rick explained 
“this is the rate of the rate. So the rate of the rate is constant. It tells me it is quadratic.” We infer 
from Rick’s explanation that he understood quadratic growth in ways compatible with the 
characterizations of Ellis (2011a) and Lobato et al. (2012); Rick understood quadratic growth is 
defined by a relationship such that the rate of change of the rate of change is constant. 

        
                                             (a)                                                                                (b) 

Figure 2. Rick’s work describing the growth of area of (a) the blue quadrilateral and (b)the brown quadrilateral. 

For the brown quadrilateral, Rick noted that one side length alternately doubles as he moved 
the slider by one unit. Similar to his aforementioned work (see Figure 2b), Rick described that 
the area of the brown quadrilateral would be x2, 2x2, 4x2, 8x2 and 16x2 at the first five unit values 
of the slider, assumed x to take the value 1, and calculated the areas as 1, 2, 4, 8 and 16. He 
identified that for a unit change in the slider, each consecutive area is double the previous area 
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and stated, “the first rate is constant multiplication which tells us it is an exponential growth. The 
rate is constant.” We infer from Rick’s activity that he was coordinating the ratio of the area of 
the quadrilateral with equal changes in the slider to explain exponential growth. His explanation 
is compatible with Confrey and Smith’s (1994) description of exponential growth as having a 
constant multiplicative rate. 

We note that for each quadrilateral, Rick first engaged in the mental actions described by 
Carlson et al. (2002) in order to conceive that the area increased at an increasing rate with respect 
to the incremental changes in the slider. He then introduced numerical values for the side length 
and the corresponding areas to make the distinction between the two growth patterns. 

Other Ways of Reasoning 
In contrast to Rick’s activity, two other teachers were able to correctly identify relationships 

without explicitly examining the underlying growth patterns. Consistent with pre-service 
teachers’ activity reported on elsewhere (Stevens et al., 2015) these teachers attempted to either 
derive a formula or recall facts from memory to define the relationships they conceived in the 
situation. For example, Aman established that the differences in the areas of the blue 
quadrilateral can be represented by the rule (2n-1) x2 where n is a natural number, but did not 
describe any pattern in the second differences of this relationship. Similarly, for the brown 
quadrilateral, he established that the areas can be represented by the formula 2(n-1) x2. Although 
Aman successfully determined rules to describe patterns in the growth of the areas, he did not 
elaborate on what these growth patterns meant with respect to specific function classes.  

As another example, David described that the blue quadrilateral remains a square when the 
slider is dragged and drew the graph of y = x2. However, David did not justify why the graph 
would be an appropriate representation of the situation. We hypothesize that David recalled from 
facts that the area of a square can be represented by y = x2 where x represents side length and y 
represents area. In both this and Aman’s example, we note that, we do not make any claims 
regarding the teacher’s meanings with respect to quadratic or exponential growth; each teacher 
may have been able to differentiate between exponential and quadratic growth but did not 
experience any need to discuss these patterns when addressing the task. 

Preliminary Implications and Intended Questions 
We note, that Rick first engaged in the mental actions described by Carlson et al. (2002) 

before providing hypothetical numeric values which supported him in identifying the different 
growth patterns characterized by previous researchers (Confrey & Smith, 1994; Ellis, 2011b; 
Lobato et al., 2012). This is consistent with the productive interplay between different ways to 
reason covariationally as described by Paoletti & Moore (2017). Further, despite being able to 
animate the quadrilaterals (seemingly) continuously, none of the teachers seemed to naturally 
leverage continuous reasoning as described by Saldanha and Thompson (1998) when addressing 
this particular task. Finally, a limitation of our task was that several teachers successfully 
produced known rules which limited our ability to make inferences regarding their understanding 
of the underlying growth patterns represented by the two quadrilaterals. This raises several 
questions for our follow-up study. 

Should we expect pre-service teachers to respond differently to similar tasks than in-service 
teachers? Why or why not? What other task situations would lend themselves to supporting 
teachers in distinguishing between quadratic and exponential growth? What other constructs 
(e.g., smooth/chunky reasoning) may be useful to consider when designing tasks and analyzing 
data? 
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First-year Mathematics Students’ View of Helpful Teaching Practices 

 
 Kristen Vroom Jessica Gehrtz Tenchita Alzaga Elizondo 
 Portland State University Colorado State University Portland State University 

 
 Brittney Ellis Naneh Apkarian Jess Ellis Hagman 
 Portland State University  Western Michigan University Colorado State University 

Research in undergraduate mathematics education has identified various research-based 
instructional practices to support students’ learning. However, little is known about how 
students experience those practices or how helpful they perceive those practices to be for their 
learning. As part of a larger national project of first-year mathematics, this study focused on 
classroom experiences in the Precalculus to Calculus 2 (P2C2) sequence. Using survey data 
from 4,969 students, we considered how helpful students find various teaching practices and 
then compared student and instructor reports of how characteristic these practices are of their 
P2C2 class. Here we report students’ ratings of twelve different teaching practices in terms of 
helpfulness for their learning in and descriptiveness of their P2C2 experience. 

Keywords: Precalculus, Calculus, Instructional approaches, Survey 

The national study of Characteristics of Successful Programs in College Calculus (CSPCC) 
distinguished between aspects of good and ambitious teaching (Sonnert & Sadler, 2015). In that 
work, good teaching is characterized as instruction that is traditionally accepted as good teaching 
practices, regardless of pedagogical approach (e.g., being available, grading fairly). Ambitious 
teaching refers to instruction that incorporates more innovative or novel approaches to 
instruction, including more student-centered strategies (e.g., working with peers in class). The 
CSPCC study showed that both good and ambitious teaching are beneficial for students’ learning 
in Calculus 1 (Bressoud, Mesa, & Rasmussen, 2015). In this study, we extend that previous work 
to explore levels of usage of particular good and ambitious teaching strategies and provide 
insight into students’ perception of the helpfulness of those strategies. 

Ellis, Kelton, and Rasmussen (2014) laid a foundation for understanding Calculus 1 
instruction from both student and instructor perspectives, comparing student and instructor 
reports of the frequency of specific instructional practices. They found that, on average, students 
and instructors agree on the frequency of various instructional practices in the classroom, though 
instructors were more likely to over-report practices identified as part of ambitious teaching. 
They also noted the presence of more variation among students’ responses to items related to 
ambitious teaching constructs than to items related to good teaching. That is, students in the 
same course reported a wider range of frequencies for activities like “whole class discussion” 
than for “lecture.” Furthermore, students who reported a lower frequency of ambitious teaching 
strategies were more likely to switch out of the calculus sequence, suggesting an association 
between students’ perception of instruction and interest in continuing in STEM. This leads us to 
believe that documenting students’ perspectives on not only what happens in class, but how 
helpful they find it, is important for understanding why students do or do not continue through 
the calculus sequence. 

The undergraduate mathematics and science education research communities have identified 
many pedagogical practices that have been shown to support student learning. However, there is 
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literature to suggest that students’ experiences of those practices are not uniform and their view 
of these practices is not always aligned with that of an external observer (Ellis, Kelton, & 
Rasmussen 2014; Rogowsky, Calhoun, & Tallal, 2015; Willingham, Hughes, & Dobolyi, 2015). 
Additionally, students’ perceptions of their learning and the helpfulness of the instructor’s 
actions have an effect on their experience of a course. We suggest that the utility of our work is 
not to identify what teaching practices should be used because students believe they are helpful, 
but rather to identify where there are discrepancies between students’ perceptions and education 
research literature, either in general or disaggregated based on other student factors. That 
knowledge may help instructors recognize where to build buy-in, what practices are perceived 
differently, and address students’ concerns about their teaching style in a timely fashion. 
Implementing ambitious teaching practices in ways that students believe are helpful to their 
learning should not only improve students’ learning of content but also improve their overall 
experience. 

In this study, we identify instructional practices that students find most helpful and identify 
how characteristic these practices are of their Precalculus to Calculus 2 (P2C2) classes, 
considering both the instructor and student perspectives. In this report we aim to answer: (1) 
What teaching practices do students regard as helpful for their learning?, and (2) Do students and 
teachers describe their class with practices that students deem helpful? 

Methods 
The data for this study comes from surveys designed for a larger, multiphase national project 

aimed to examine current P2C2 programs. During the first phase of the project, a large census 
survey was administered to all universities across the country whose math department offered a 
graduate degree. Census survey responses were considered to select 12 mathematics departments 
for in-depth case study sites during the second phase of the project. Specifically, the chosen 
departments were interesting in regards to the seven features of successful programs identified in 
the CSPCC study (Bressoud et al., 2015) as well as an eighth characteristic: diversity, equity, and 
inclusion (Hagman, under review).  

The study presented here reports on instructor and student survey data that were administered 
to all instructors of P2C2 classes and their students. The surveys included 12 parallel items 
regarding classroom experiences (e.g., ‘I guide students through major topics as they listen’ and 
‘I listen as the instructor guides me through major topics’). Instructors and students were asked 
to indicate whether the statements were descriptive of their P2C2 class. Both surveys used a 5-
point Likert scale ranging various levels of descriptiveness of the classroom (5=very descriptive, 
4=mostly descriptive, 3=somewhat descriptive, 2=minimally descriptive, 1=does not occur/not at 
all descriptive). For each item which a student responded with 2 or higher (i.e., indicated the item 
occurs in their class), they were asked to report how much that aspect of the course helped their 
learning. The helpfulness item was measured on a 3-point scale (3=very helpful, 2=somewhat 
helpful, and 1=not helpful).  

For this study, we reduced our data to responses from courses with an instructor response and 
at least five student responses, following the methods of Ellis, Kelton, and Rasmussen (2014). 
These restrictions resulted in a total of 4,969 student responses from 173 P2C2 classes. More 
specifically, this includes 1,789 student responses from 55 precalculus classes, 1,806 student 
responses from 74 Calculus 1 classes, and 1,374 student responses from 44 Calculus 2 classes. 
We considered descriptive statistics for all of the items as well as conducted a paired samples t-
test comparing the student and instructor responses for the classroom experience items. The 
following section presents sample results to highlight findings regarding how helpful students 
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rate certain teaching practices and students’ perspective of how characteristic the teaching 
practices are of their P2C2 class.  

Table 1 offers the student version of the helpful and descriptive items. We coded the items 
based on Sonnert and Sadler’s (2015) factor analysis categories: ambitious and good teaching. 
Specifically, we coded items that related to traditionally accepted good teaching practices 
regardless of pedagogical approach as good and practices related to student-centered strategies as 
ambitious. Item 1 is reverse coded as ambitious, meaning that more of this practice indicates a 
less ambitious approach. The items not highlighted as good or ambitious remain uncategorized 
because there is ambiguity in the terminology which admits many possibilities. Specifically, the 
nature of feedback, questions, and individual work can support both student-centered and 
instructor-centered classrooms.  

Table 1. Helpfulness and descriptiveness items on student survey. 

Ambitious 
1. (reverse association) I listen as 

the instructor guides me through 
major topics  

2. I talk with other students about 
course topics during class 

3. I constructively criticize other 
students’ ideas during class 

4. I work with other students in 
small groups during class 

5. Class is structured to encourage 
peer-to-peer support among 
students 

Good  
6. The class activities connect 

course content to my life 
and future work 

7. The instructor knows my 
name 

8. I receive feedback from my 
instructor on homework, 
exams, quizzes, etc. 

9. My instructor uses 
strategies to encourage 
participation from a wide 
range of students 

Other 
10. I receive immediate 

feedback on my work 
during class 

11. I am asked to respond to 
questions during class time  

12. I work on problems 
individually during class 
time 

 

 
Sample Results 

In what follows, we will focus on the students’ perspective and draw on the helpfulness and 
descriptiveness items on the student survey. Students were asked to rate the items listed in Table 
1 regarding how helpful they were for their learning and how descriptive they were of their class. 
We focus on what students find to be (un)helpful, and then discuss the extent to which the 
strategies that we categorize as “ambitious” are being implemented.  

We will begin by focusing on the helpfulness items. Figure 1 depicts the percent of students 
that rated each item as not helpful, somewhat helpful, or very helpful. More than half of the 
students that responded to the first, seventh, eighth, and tenth items indicated that these 
instructional practices were very helpful for their learning. Specifically, 73.2% of students 
reported listening to their instructor guide them through topics was very helpful for their 
learning, 64.6% of students indicated that receiving feedback on assignments was very helpful, 
52.7% of students reported that the instructor knowing their name was very helpful, and 51.6% 
of the students said that receiving immediate feedback in class was very helpful.  

At least 90% of the students indicated that the following are either somewhat helpful or very 
helpful for their learning: listening to the instructor guide them through topics (Item 1), receiving 
feedback immediately in-class (Item 10) as well as on assignments (Item 8), talking with 
students during class (Item 2), and working individually on problems during class (Item 12). On 
the other hand, 16.5% of the students indicated that being asked to respond to questions in class 
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was not helpful for their learning (Item 11) and 23.3% of the students said that constructively 
criticizing other student’s ideas during class was not helpful for their learning (Item 3).  
 

 
Figure 1. Summary of helpfulness item in percentages. 

We further investigated if certain teaching practices were more helpful for students in 
different courses (Precalculus, Calculus 1, or Calculus 2). Data from several teaching practices 
were significantly different (p<0.05) in terms of helpfulness across courses (i.e., Item 1, Item 5, 
Item 7, Item 8, Item 9, Item 11, Item 12). For instance, we found that a greater percentage of 
Calculus 2 students (77.6%) found listening to their instructor guide them through major topics 
was very helpful compared to Calculus 1 students (70.2%) and Precalculus students (72.8%). 
Additionally, more Precalculus students (41.5%) than Calculus 1 (36.9%) and Calculus 2 
(38.4%) students found class structures that allowed peer-to-peer support very helpful. 

Next, we considered students’ perspective of how characteristic the helpful teaching practices 
are of their P2C2 class. Here, we offer the descriptive rating from the students that rated items 
classified under ambitious as helpful for their learning (either somewhat or very helpful). See 
Figure 2. We found that 86.3% of the students that indicated listening to their instructor was 
helpful for their learning (Item 1, N=4655) also said that it was very or mostly descriptive of 
their class. Additionally, 53.4% of the students that indicated that talking with students during 
class was helpful (Item 2, N=2431) said that it was mostly or very descriptive of their class. Of 
the students that found constructively criticizing other student’s ideas during class helpful for 
their learning (Item 3, N=1937), only 11.3% of them reported it was very descriptive of their 
class, while 35.1% of them said it was minimally descriptive.  

 

 
Figure 2. Summary of descriptiveness of ambitious items from students that deemed them helpful. 
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Alternatively, Figure 3 considers the descriptive rating from the students that reported the 
ambitious items as not helpful for their learning. Comparing Figure 2 to Figure 3, there appears 
to be a connection between how helpful students report an item and how descriptive it is of their 
class. Students who deemed Item 2, Item 3, Item 4, and Item 5 as unhelpful more commonly 
report them as minimally descriptive of their class compared to students who report them as 
helpful. This suggests that students who experience any amount of these ambitious teaching 
practices and who think they are helpful for their learning tend to report them more regularly in 
their class. 

 

 
Figure 3. Summary of descriptiveness of ambitious items from students that deemed them not helpful. 

Implications 
Careful attention needs to be given to the implications of our research, especially for findings 

that suggest that many students find a particular teaching practice helpful (or unhelpful) for their 
learning. One might think that the “fix” is to either increase (or decrease) that specific teaching 
practice; however, the solution may not be so simple. For instance, we found that an 
overwhelming amount of students think listening to their instructor lecture about major topics is 
helpful for their learning. Moreover, less than 5% of the students indicated that it was not 
helpful. Although this finding does not indicate that the same students do not find a more active 
approach also helpful, it is clear that students value a passive experience. However, it is well 
documented in the literature that a more active approach is far more productive for students’ 
learning (e.g., Freeman et al., 2014). Thus, it seems more useful to focus on student buy-in for 
certain practices (ones that are known for being beneficial for students) than to increase the 
presence of, for example, lecture. 

In addition to information similar to what is reported here, in the presentation we will 
consider the instructors’ perspective of how descriptive the items are of their class. We will 
present subsequent analyses to compare the students’ perspective to their instructor’s view of 
how characteristic the teaching practices are of their P2C2 class. The preliminary report and 
subsequent analyses will contribute to research on how students experience research-based 
instructional practices in the P2C2 sequence.  
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Contextualized Instruction as a Motivational Intervention in College Calculus 
Enes Akbuga  

University of Michigan 
Abstract 
The purpose of this quasi-experimental study is to measure the impact of a contextualized-
instruction intervention on student performance expectations, utility-value, and interest in college 
calculus courses. Six calculus sections were selected for this study, and three were randomly 
assigned to take the intervention. Students in the three intervention sections completed calculus 
tasks that were contextualized to various STEM disciplines, whereas students in the comparison 
sections did not. Three tasks, one from each in computer science, physics, and engineering were 
contextualized. The results indicated that the impact of the intervention on student motivation 
was not statistically significant. However, student motivation significantly changed over time.  
Keywords: Motivation Intervention; College Calculus; Design Experiment 
 
Introduction 
Calculus students often ask, “why are we learning this?” Students might not see the value or the 
connections between course material and their lives (Wulf, 2007; Brophy, 1999). If students are 
not given the opportunity to see this connection, they might lack the motivation (Clarke & 
Roche, 2017; Harackiewicz, Tibbetts, Canning, & Hyde, 2014). Expectancy-value theory (1983) 
was the framework used in this study, which posits that students’ task values and expectations of 
success are determinants of students’ achievement-related choices and behaviors (Hulleman et 
al., 2010). Aligned with this theory, interest, utility-value, and performance expectations were 
investigated: (1) How do the contextualized calculus tasks impact utility-value, interest, and 
performance expectations in college calculus? (2) How do students’ utility-value, interest, and 
performance expectations change throughout a semester in college calculus? 
 
Methodology 
The study followed a quasi-experimental research design. 66 participants from a Southeastern 
university were selected. Each course section was randomly assigned to intervention and 
comparison conditions. The intervention was comprised of three contextualized calculus tasks 
with applications to science, technology, and engineering disciplines. The researcher 
implemented the tasks in all the sections twice. The data only came from a survey to measure 
student motivation and Cronbach’s alpha reliability coefficients were strong (greater than .90).  
 
Results 
Linear-mixed effects modeling was used to examine the impact of the intervention on student 
motivation, and repeated measure analysis was used to investigate change in student motivation 
across three time points. Results showed that the effect of the intervention on student motivation, 
although positive in some cases, was not significant. Furthermore, three models—performance 
expectations, utility-value, and interest were presented for the effects of time and intervention. 
Results showed that time was a significant factor for change in student performance 
expectations. One unique aspect of this study was the idea of implementing contextualized 
calculus tasks that were explicitly developed by potential future instructors of students in 
computer science, physics, and engineering fields. However, there was not enough evidence to 
suggest that the intervention had a positive impact on their motivation. More details on the 
implications and limitations of the study will be discussed.  
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Towards Better Mathematics Teaching Assistant Preparation in Graduate Programs 
 

Aida Alibek 
University of Illinois at Chicago 

This work focuses on the preparation of graduate Teaching Assistant in the mathematics 
department of a large midwestern R1 university. We explore the author’s experience with three 
different versions of the course in three varying capacities: as a student, a mathematics 
education researcher and a co-facilitator. As we delve into the author’s reflections on the 
evolution of the teaching preparation within this timeframe, we highlight some issues with the 
course structure and execution. This leads to the development of another, more realistic version 
of the preparation course. 

Keywords: Teaching Assistants, Teaching Assistant Preparation, Professional Development 

Teaching Assistant (TA) preparation is a relevant topic for graduate programs, including 
those housed in mathematics departments (Shannon, Twale, & Moore, 1998; Speer, Gutmann, & 
Murphy, 2005). However, not all schools offer regular, consistent teaching training that help 
first-time TAs adjust to their new job (McGivney-Burelle, DeFranco, Vinsonhaler, & Santucci, 
2001). In this poster we will look into such a preparation program at a large midwestern R1 
university and its evolution, as experienced by the author. The math TA preparation at this 
institution is presented as a semester-long course offered each fall, and mandatory for all 
incoming first-year graduate students, as well as new math TAs hired from outside the 
mathematics department. 

In this study we encounter reflections on the three versions of the TA preparation course. 
First is the reflection of the author on their experience in the Version 1 course as a first-year 
math graduate student in the department. Version 2 is a course model based on the author’s 
research into the extant literature on graduate math TA training. Version 3 is the current Fall 
2018 iteration of the TA preparation course, which is co-facilitated by the author of this paper in 
the role of one of the Teaching Assistant Coordinators. 

This poster highlights the variation of the course goals and its hidden curriculum (e.g. 
Martin, 1976) from year to year, depending on the instructor in charge. For example, the amount 
of class time spent on discussing “What it means to be a math graduate student?” varied greatly 
depending on the instructor, as well as attitudes towards teaching. Such variability of goals (e.g., 
teaching as a primary focus vs. teaching as a secondary focus), assignments (e.g., writing NSF 
grant proposals vs. writing teaching statements) and the overall tone (e.g., spend as little time on 
teaching as possible vs. teaching is an important part of your job) of the course has led to highly 
variable outcomes and student perceptions of the department’s TA preparation over the years. 
Thus, there is a need for more consistency in the course, as well as better practices in its 
instruction, especially taking into account that this might ultimately be the only teaching 
preparation that graduate students going into academia would ever get. 

As a result of these experiences, the author produces a list of suggestions for Version 4 based 
on all three previous versions, the extant literature and constraints within the department towards 
a more realistic and productive course, which could benefit the author’s own department, as well 
as other institutions looking into starting or improving their TA teaching preparation. 
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Like it or Love it: Exploring Elements Affecting Student's Mathematical Achievement 
 

Ezell Allen     Leigh Harrell-Williams 
University of Memphis / Auburn University              University of Memphis  

Mathematics achievement, both in high school and early in college, is one of the strongest 
predictors of college completion. Research conducted within the framework of expectancy-value 
theory has shown that math interest, utility, engagement, self-efficacy, and identity are related to 
mathematics achievement. Hence, this study uses structural equation modeling to evaluate 
Ford’s (2017) empirical model linking mathematics beliefs and achievement with a sample of 
students enrolled in multiple sections of two algebra-focused remedial math courses at a 
community college near a midsize metropolitan southern city in the United States.  

Keywords: remedial mathematics, expectancy value theory, community college, mathematics 
achievement list  

Chen (2016) documents that mathematics achievement early in college is one of the strongest 
predictors of college completion and community college students complete remedial 
mathematics courses and graduate at a significantly lower rate than students who start at 
traditional four-year colleges and universities. Expectancy-value theory (EVT; Wigfield & 
Eccles, 2000) provides a framework for exploring how students’ beliefs and perceptions 
influence their mathematics achievement. Building on Eccles’ EVT model of achievement-
related choices (2005) and Middleton’s model of mathematics achievement (2013), Ford (2017) 
proposed an empirical model of mathematics achievement using a nationally representative 
sample of 9th graders from the High School Longitudinal Study (HSLS: 09; Ingels et al., 2011). 
This study seeks to evaluate Ford’s proposed model linking mathematics beliefs and 
achievement with a sample of community college students enrolled in sections of algebra-
focused remedial math courses near a midsize metropolitan southern city in the US. 

Structural equation modeling was implemented using MPlus. Results are shown in Figure 1 
with dashed lines indicating non-significant pathways. Similar to Ford (2017), positive pathways 
linked (1) interest to utility, self-efficacy, and utility, (2) utility to self-efficacy, and (3) self-
efficacy to identity; engagement and math achievement were negatively related. In this study, the 
pathways between (1) efficacy and engagement and (2) identity and achievement were not 
significant, whereas they were in Ford’s study. Additionally, the R2 for achievement was lower. 

 

Figure 1. Model with Standardized Estimates 

Implications for community college instruction, including ways to increase interest in 
mathematics, and future research plans with community college students will be discussed.  
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Exploring Connections Between Students’ Representational Fluency and Functional Thinking 

Nigar Altindis               Nicole Fonger    
Syracuse University  

This study explores the relationship between preservice teachers (PTs) representational fluency 
and functional thinking. We conducted task-based interviews with five preservice teachers within 
a growing rectangle context. Although PT create, interpret, and connect representations with 
covariational and corresponding approach, they identified relationship between area and height 
an exponential rather than a quadratic. These findings illustrate a challenge of building rich 
conceptions of functions from emerging representational fluency and functional reasoning.   
   
Key words: Representational Fluency, Covariational and Correspondence approach, Functions  
 
         This study is designed to understand relationship between representations and functional 
thinking by focusing on PTs reasoning with attention to representational fluency and 
covariational and corresponding approach about functions. Representation fluency (discursive 
activity in creating, interpreting, and connecting representations) supports meaning-making of 
mathematical objects (Fonger, 2018; Selling 2016). Students’ flexible movement among and 
created relationships between each of numerical, graphical, tabular and verbal representations 
strengthened students understanding and sense-making of mathematical objects (Brenner, Mayer, 
Moseley, Brar, Duran, Reed, & Webb 1997; Yerushalmy, 2006). Covariation (change in one or 
more columns or compare change among different columns -e.g., change in x and change in y) 
and correspondence reasoning (a relationship between output values, range, related to input 
values, domain, and a symbolic equation between dependent and independent values) are 
important for strengthening sense-making of functions (Confrey, & Smith, 1995; Thompson, & 
Carlson, 2017). The research question: What is the relationship observed between preservice 
teachers’ representational fluency and functional thinking?  
 
We curated four quadratics tasks set in a rate of change context. We asked five PTs to pick one 
to solve and reported one results (Emma). We employed a representational fluency framework 
(Fonger, 2018); each method or approach to a problem was analyzed as a unit of analysis to 
discern meaningfulness in representational fluency according to four levels (pre-structural, multi-
structural, unistructural, and relational). We used interview transcript with artifacts from PTs 
solutions, then compared and situated it in existing literature (Baxter & Jack, 2008). Despite 
evidence of PTs use and connection of representations, and covariation and correspondence 
approaches, PTs were not able to generalize their reasoning about a constant rate of rate of 
change to symbolize a quadratic function. Emma hypothesized the relationship between 
dependent and independent variables was exponential rather than quadratics. She said: “So the 
increases [change in slope] are not the same. Which would mean like it's not linear because it 
doesn't have a consistent slope which would make it exponential...” Our findings suggest that 
even for PTs, like Emma, who successfully employ covariational and corresponding reasoning 
with representational fluency on growing rectangle, it is not enough to identify functional 
relationships. Emma created graphical representations to argue that the function did not have 
negative domain with inconsistent rate of change, so the function must be exponential (without a 
symbolic representation to support their claim). This study highlights the importance of 
networking theories—representational fluency, functional thinking—to understand student 
reasoning. However, it also points to a need to better support PTs in linking these understandings 
to understanding and symbolizing functions as relationships of change and dependency relations.  
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Faculty and Undergraduate Students’ Challenges When Connecting Advanced Undergraduate 
Mathematics to School Mathematics 

 
James A. Mendoza Álvarez   Elizabeth Burroughs 

The University Texas Arlington  Montana State University 
 
When implementing lessons connecting advanced undergraduate mathematics to school 
mathematics, challenges arise for faculty and for the undergraduate students. The Mathematical 
Education of Teachers as an Application of Undergraduate Mathematics (META Math) project 
has created, piloted, and field-tested lessons for undergraduate mathematics and statistics 
courses typically part of a mathematics major that leads to secondary mathematics teacher 
certification. Lessons in calculus, discrete mathematics, algebra, and statistics explicitly link 
topics in college mathematics with high school mathematics topics prospective teachers will 
eventually teach. The goal of this poster presentation is to discuss our preliminary observations 
of the challenges faced by faculty and undergraduate students when implementing or using these 
lessons. We also wish to gather feedback and suggestions on the study design and potential 
directions for further research.  

Keywords: Pre-service secondary teachers, Undergraduate mathematics, Curriculum modules 

Based on recommendations in the Mathematical Education of Teachers II (MET II) report 
(Conference Board of the Mathematical Sciences, 2012) and the Statistical Education of 
Teachers report (American Statistical Association, 2015), the The Mathematical Education of 
Teachers as an Application of Undergraduate Mathematics (META Math) project integrates 
applications of advanced mathematics to high school mathematics and high school mathematics 
teaching into courses that are part of typical mathematics course sequences taken by mathematics 
majors intending to teach. The lessons enable faculty to maintain a focus on advanced 
mathematics topics while simultaneously integrating connections to high school mathematics. 

After piloting lessons developed by META Math and monitoring faculty implementation of 
the lessons, preliminary data analysis and observations suggest that lesson development may 
need to address more scaffolding for faculty and students to strengthen their understanding of 
connections highlighted. Discussion with RUME attendees will assist us in identifying additional 
methodological and design components to strengthen the research team’s goal in understanding: 
(1) How do faculty perceive connections between advanced mathematics and high school 
mathematics? (2) What connections do undergraduate students make between the advanced 
mathematics they are studying and the high school mathematics linked in the lessons? (3) How 
should faculty perceptions and undergraduate students’ connections influence lesson design? 

Lessons have been piloted at several universities across the United States. We apply a 
qualitative case study approach, in which each content area is a case. Data consists of in-depth 
qualitative observations of faculty using modules in their classrooms, preliminary and follow-up 
interviews with faculty, and cognitive interviews with students. This poster will provide 
preliminary findings from the field-testing of six lessons. 
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Developmental Mathematics Students’ Reactions to a Novel Tutoring Program 
 

 Geillan Aly Larissa Schroeder 
 Hillyer College – University of Hartford University of Hartford 

Two populations of undergraduate mathematics learners can benefit from extra support: 
preservice elementary (PsE) teachers and developmental mathematics (DM) students. In this 
project, PsE students tutored DM students; the former gained experience working with students, 
the latter received extra, structured support. Results of a survey given to DM students show that 
although perception of the program was tepid, they were remarkably successful in the course.  

Keywords: Pre-Service Teacher Training, Developmental Math, Student Thinking and Learning 

Preservice elementary (PsE) teachers train to be generalists and are not required to have 
significant mathematical training, entering teaching with less mathematical knowledge. They 
oftentimes also have significant mathematics anxiety (Brady & Bowd, 2005). DM students are 
unable to place into college-level mathematics classes and often need extra support in other 
subjects as well (Bahr, 2007), implying that these students need help to develop general study 
skills. Both populations require low-stakes support to ensure their future mathematical success. 

In this study, DM students and PsE mathematics students were partnered in small groups; the 
PsE students tutored the DM students. The goal was to provide PsE students with a low-stakes 
opportunity gain experience teaching mathematics and develop their mathematical discourse, 
while the DM students received extra support in a structured, supportive environment. This study 
explored the DM students’ feedback through two research questions, what were DM students’ 
perceptions of this tutoring program and what were these students’ outcomes?  

Population and Methods 
The DM algebra students (n=9) were first-year students, retaking a course they failed the 

previous semester. Many of these students were on academic probation and at risk of being 
dismissed. They were required to attend one-hour tutoring sessions twice per week with the PsE 
tutors. Anonymous surveys were given after the final exam asking for feedback on the program.  

Results and Discussion 
Seven out of nine (78%) DM students passed the class, a remarkable rate compared to similar 

classes taught by the instructor and found in the literature (Bahr, 2010; Chen & Simone, 2016). 
Although the program was helpful, the DM students’ support for the program was not strong. 
Four students agreed and five students were neutral to the statement “Tutoring helped me 
improve my math grade.” Four students agreed, four were neutral, and one disagreed with “I am 
satisfied with the help my tutors gave me.” The DM students supported the PsE tutors: six 
students agreed, two were neutral and one disagreed that “tutors made me feel comfortable and at 
ease” and eight agreed and one disagreed that “the tutors treated me in a respectful manner”. 

Open-ended responses show that DM students had a difficult time with scheduling, and were 
frustrated with tutors’ difficulty with the material “they didn’t know how to work problems out”. 
As this pilot program was designed to provide confidence and academic support to both groups, 
future iterations will reset DM students’ expectations by having students work cooperatively to 
solve problems, with PsE teachers more closely resembling experienced problem solving guides 
rather than mathematics experts. Results from this pilot will be shared to develop students’ trust. 
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An Inquiry-Oriented, Application-First Approach to Linear Algebra 
 

 Tom Asaki Heather Moon Marie Snipes 
 Washington State University Lewis-Clark State College Kenyon College 

The IMAGEMath project combines inquiry based learning with an application-inspired 
approach.  Students first learn about an application, and then, in an inquiry framework they 
develop the mathematics necessary to investigate the application.  A novel feature of this 
approach is that the applied problem inspires the mathematics, rather than the applied problem 
being presented after the relevant mathematics has been learned.  In this poster, we give an 
overview of the IMAGEMath modules that use image and data applications (radiography, 
tomography and heat diffusion) to inspire linear algebra topics.  We present results from 
implementing the modules on a small scale at a few institutions, including student and faculty 
feedback.  We also provide information for faculty interested in using IMAGEMath materials. 

Keywords: Linear Algebra, Inquiry-based Learning, Technology, Applications 

The IMAGEMath Project (www.imagemath.org), funded by a collaborative NSF IUSE grant 
(DUE-1503929, DUE-1642095, DUE-1503870, and DUE-1503856), consists of a suite of 
classroom modules that use data applications to inspire mathematical concepts in upper-division 
math classes.  In this poster, we focus on the two IMAGEMath modules designed for linear 
algebra.  The two data applications (brain scan tomography and diffusion welding) motivate 
most topics taught in a standard linear algebra course.  These modules use inquiry-based learning 
strategies and group work to guide students to forge mathematical tools. 

In brain scan tomography, students' main goal is to reconstruct a 3D view of a brain based on 
2D radiographic data.  In the process, they discover and work with vector spaces, span, linear 
independence, linear transformations (and properties such as injectivity and surjectivity), inverse 
transformations, and pseudo inverse transformations like SVD. 

In the diffusion welding setting, students must predict how long it will take for a diffusion-
welded rod to cool to a safe temperature.  The heat diffuses out the ends of the rod as the weld 
sites cool, causing the temperature profile to change over time.  Along the way, students develop 
the ideas of eigenvectors, diagonalizability, and long-term behavior. 

Active learning and inquiry based learning techniques were studied by Kogan & Laursen 
(2014), and inquiry methods found to be at least as effective as traditional methods for all 
students and more effective for some groups of students.  Additionally, the incorporation of 
applications has consistently been recommended as a good practice for linear algebra courses 
(see (Carlson, Johnson, Lay, & Porter, 1993) and (Zorn, 2015)).  While the IMAGEMath project 
incorporates both of these, the application-inspired approach at its core differs markedly from 
other application-integrating approaches that illustrate the use of learned tools on real problems.  
IMAGEMath modules begin by introducing a cutting edge research problem.  The solution path 
inspires the development of mathematical concepts. 

We administered pre- and post- content and attitudinal surveys.  Content results were 
positive. Results of the attitudinal surveys were statistically inconclusive.  In this poster we also 
present student and faculty comments.  In the future, we hope to study on a larger scale the 
efficacy of the linear algebra IMAGEMath materials.  In addition, should this prove to be a 
fruitful approach, our vision is to create a community of undergraduate faculty interested in 
module development using other applications, targeting linear algebra or other courses.  
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Observing active learning in mathematics classes: Do we have the right tool? 
 

Amy Been Bennett 
University of Arizona 

Observation protocols allow researchers to document moments of teaching and learning, as well 
as reveal inequities and opportunities for improvement.  In two undergraduate mathematics 
courses, I used the OPAL protocol to understand if and how active learning strategies created 
equitable learning environments. In this poster, I share findings from observations and discuss 
possibilities for adapting observation protocols to align with equitable teaching practices. 

Keywords: observation protocol, methodology, active learning, equity 

Background and Motivation 
Recently, there has been a general effort in STEM departments across the nation to 

implement active learning (AL) strategies at the university level (CBMS, 2016).  While some 
researchers claim that AL is the best way to help students learn mathematics (Freeman et al., 
2014; Prince, 2004), others question whether issues of inequity arise in classrooms where 
students actively participate and collaborate (Gehrtz, Sampera, & Ellis, 2017).  Considering the 
increased focus on issues of equity in mathematics education research (Adiredja & Andrews-
Larson, 2017; Aguirre et al., 2017), I ask how researchers can continue to examine classrooms 
where instructors and students engage in AL strategies.  To this end, this poster illustrates how I 
used and adapted a well-known observation protocol in order to document qualities of equitable 
learning environments in mathematics.   

This poster will represent research that addresses the following questions: 
1. What are examples of appropriate observation tools that explore the qualities of equitable 

learning environments in active learning mathematics classrooms? 
2. How can we use observational data to examine issues of equity in these classrooms? 

Methodology and Findings 
These preliminary findings report observation data from two undergraduate mathematics 

instructors who teach entry-level courses at the same large, public university.  Although both 
instructors took a student-centered approach to their teaching, they modified two traditionally 
lecture-driven courses using various collaborative and technology-based teaching practices. 

Over one semester, I observed both instructors multiple times using the Observation Protocol 
for Active Learning (OPAL) (Frey et al., 2016).  OPAL has been validated for undergraduate 
STEM classes that use an AL approach, and thus was an appropriate observational tool for my 
study.  Codes for this protocol were created by the authors or adapted from the Teaching 
Dimensions Observation Protocol (TDOP) (Hora, Oleson, & Ferrare, 2013) and the Classroom 
Observation Protocol for Undergraduate STEM (COPUS) (Smith, Jones, Gilbert, & Wieman, 
2013).  In addition to the original codes, I developed some of my own after frequent occurrences 
during observations.  For example, I noticed that both instructors frequently called students by 
name in an attempt to create a comfortable learning community, so I created a code to record 
these instances.  I plan to discuss these new codes with fellow scholars and open the 
conversation for further adaptations to observation protocols that address equitable teaching. 

The poster will provide quantitative and qualitative data obtained from the OPAL tool, as 
well as comparisons of other observation protocols used in undergraduate STEM courses. 
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Predicting Final Grades in Calculus using Pre- and Early-Semester Data 
 

 Steve Bennoun Matthew Thomas 
 Cornell University Ithaca College 

It is well-known that too many students abandon a STEM career because of their calculus 
requirement. Therefore, being able to identify early on which students may be at risk of failing is 
important. Using indicators of mathematical readiness (SAT/ACT and PCA) and attitudes toward 
mathematics (MAPS), we build models predicting final grades. Our analyses show that all three 
indicators are significant predictors of success in calculus. 

Keywords: PCA, MAPS, calculus, student success 

Historically, first-year calculus courses have high D-Fail-Withdraw (DFW) rates and because 
of these many STEM majors, including STEM education majors, are driven away (Bressoud & 
Rasmussen, 2015). This situation is highly detrimental for the U.S. as its economy is increasingly 
reliant on STEM workforce (Olson & Riordan, 2012). In this study, we investigate how to 
predict success in calculus using pre- and early-semester data. Having such a model would 
enable instructors to identify early on which students are at risk of failing. 

To explore our question, we have combined two approaches used in the literature. First, we 
have assessed students’ mathematical readiness for calculus using the Pre-Calculus Concept 
Assessment (PCA) developed by Carlson et al. (2010).  Second, we have evaluated students’ 
confidence and attitudes toward mathematics using the Mathematics Attitudes and Perceptions 
Survey (MAPS) (Code, Merchant, Maciejewski, Thomas, & Lo, 2016). We have also controlled 
for SAT/ACT scores. The population is students in two introductory calculus courses in a large 
private research university in the Northeast. Data was collected in Fall 2017 and Spring 2018. 
Students completed the two surveys in the first two weeks of the semester. 

Linear models using only one indicator (SAT/ACT, PCA or MAPS scores) indicate that 
taken individually, these variables are all statistically significant predictors but explain relatively 
little of the variation of the final exam grades (adjusted R2 of 0.26, 0.07 and 0.14, respectively). 
Using a multiple regression model (N=531), we found that SAT/ACT scores (b = 6.21, beta = 
0.4007, t(527) = 10.69, p<0.001), PCA scores (b = 0.57, beta = 0.206, t(527) = 5.382, p<0.001), 
and MAPS scores (b = 14.42, beta = 0.208, t(527) = 5.823, p<0.001) are all significant predictors 
of final exam scores. Moreover, this model explains a larger variation of the final exam grade 
(adjusted R2 = 0.36) than linear models using only one of these indicators. Looking at the beta 
scores, it is interesting to note that the PCA and MAPS have nearly the same effect on the final 
grade. This supports the idea that both mathematical preparedness and attitude toward 
mathematics are important for being successful in introductory calculus. The implication for 
classroom practice is that instructors should not only help students reinforce their mathematical 
knowledge but also support them in developing an expert attitude toward mathematics. A 
multiple regression model using the MAPS sub-scores (that evaluate different aspects of attitudes 
and perceptions of math) indicate that Confidence in one’s ability to successfully engage in 
mathematical tasks and Persistence when solving non-routine exercises are the most important of 
these aspects. 
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Mathematical Knowledge for Teaching in Chemistry 
Kristen Bieda Lynmarie Posey 
Michigan State University Michigan State University 

 
Charles Fessler Pamela Mosley 
Michigan State University Michigan State University 

 
Abstract 

The Mathematical Knowledge for Teaching (MKT) theoretical framework describes effective 
mathematics teaching in a way that relies on an instructor’s subject matter knowledge (SMK) 
and on their pedagogical content knowledge (PCK).  This proposal reports our initial effort to 
understand MKT within chemistry instruction, namely what MKT could support chemistry 
instructors’ efforts to help students develop a deeper understanding of the mathematics used in 
general chemistry. Coding of several types of general chemistry problems involving ratios and 
proportions and covariation are provided as examples.  
Keywords: Mathematical Knowledge for Teaching; Chemistry Instruction 
 

Students’ challenges with the mathematics used in general chemistry are long-standing 
(Kotnik, 1974) and persistent (Muzyka, 2018). Efforts to address the deficiencies in mathematics 
preparation that impact outcomes in general chemistry have largely focused on providing 
students with more practice of procedures. Simply giving students more practice without 
building understanding of the underlying mathematics is unlikely to have long-term benefit and 
will not prepare students to address novel problems. 

Suppose that the focus was shifted to building chemistry instructors’ ability to anticipate, 
identify, adapt, and respond to students’ difficulties with mathematics in chemistry. We propose 
that building chemistry instructors’ mathematical knowledge for teaching (MKT) (Ball, Thames, 
& Phelps, 2008), which combines subject matter knowledge with pedagogical content 
knowledge (PCK) (Shulman, 1986), would equip them to address the challenges faced by their 
students and support students in building a deeper understanding of the mathematics used in 
chemistry.  

This poster reports our efforts to characterize mathematical knowledge for teaching 
applied to the context of chemistry instruction, specifically common content knowledge (CCK) 
and PCK. We used the Common Core State Standards for Mathematics (National Governors 
Association, 2010) to systematically code the CCK required for general chemistry instruction. In 
addition, our framework identifies PCK into the categories of known difficulty, pedagogical 
opportunity, anticipated gaps in prior knowledge, and areas of difference between chemistry 
applications and mathematics instruction. Our results show the particular importance of 
chemistry instructors’ PCK of ratio and proportional reasoning and covariation, as this content 
surfaces throughout general chemistry. 
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Students’ Views of the Relationship Between Integration and Volume When Solving 
Second-Semester Calculus Volume Problems 

 
Krista Kay Bresock 

West Virginia University 
Vicki Sealey 

West Virginia University 
 

Volume problems are a typical first type of integral application problem that students encounter 
in second-semester calculus. We will present students’ responses to the question, “Why does 
integration give a volume?” Participants were Calculus 2 and Calculus 3 students enrolled in 
summer classes at a large, public university. Task-based interviews consisted of students 
working on and discussing second-semester volume problems. Students had varied and 
interesting responses that included formula-, units-, and derivative/antiderivative-based 
reasoning. These results are part of a larger study on how students understand the underlying 
structure of the definite integral, and how they use pictures and visualizations when solving 
volume problems. 

Key words: Calculus, Definite Integral, Volume, Student Interviews 

Second-semester calculus volume problems are a standard first step in the study of 
applications of integration. Previous research has found that when solving definite integral 
application problems, students often rely on formulas, patterns, and previously encountered 
methods for setting up integrals (Yeatts & Hundhausen, 1992; Grundmeier, Hansen, & Sousa, 
2006; Huang, 2010). Other studies have shown that students have very little idea of the 
dissecting, summing, and limiting processes involved in integration (Orton, 1983; Sealey, 2006, 
2014; Jones, 2015). The overarching goal of this research is to investigate how students 
understand the underlying sum-of-products structure of integration when solving volume 
problems. The focus of this poster will be on student responses to the question, “Why does 
integration give a volume?” 

This research is built on the foundation of the constructivist learning theory (Piaget, 1970), 
and the framework guiding analysis of student understanding of definite integral concepts is 
based on Sealey’s (2014) Riemann Integral Framework. 

Clinical interviews were conducted with 10 students who were enrolled in Calculus 2 or 
Calculus 3 during the summer 2018 semester. The video-taped, one-on-one interviews involved 
the participants working through three volume problems and talking aloud about their thought 
processes and problem-solving strategies. The interviewer asked several questions throughout 
the interview in order to determine if the students could unpack their methods to explain why 
they worked. The videos are transcribed and data analysis is ongoing.  

Responses to the question, “Why does integration give a volume?” varied from formula-
based explanations (“Because the formula does it?”) to focusing on units (“…because meter 
times meter times meter gives you meters-cubed which is a volume”) to a 
derivative/antiderivative connection between volume and area (“Integrating area gives you 
volume”). As we continue to analyze this data, we will investigate the connection between 
students’ responses to this question and their abilities to solve more complex volume problems. 

With this research, we hope to develop activities for second-semester calculus students that 
emphasize their understanding of the underlying Riemann sum structure of integration and foster 
a deeper appreciation for how integration can be used in many different situations. 
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Exploring Remedial Math through a Number Course for Preservice Teachers 
 

Rachael Eriksen Brown 
Penn State Abington 

Michael Tepper 
Penn State Abington 

 
This proposal describes a pilot study of replacing a remediation mathematics class for 
undergraduates with a credit-bearing mathematics course designed for elementary education 
majors. The replacement course focused on number and operations. Results of pass rates, 
placement test scores (pre and post the course), as well as course feedback will be shared. 

Keywords: Undergraduate mathematics, Algebra, Remediation 

According to the National Center for Education Statistics report by Chen (2016), “33 
percent of students entering public 4-year institutions took a remedial math course” (p. 16). 
Many of these remedial math courses are targeting algebra, which is a gatekeeper for many 
students in successfully earning degrees (Moses & Cobb, 2002). Remedial coursework is 
widespread and impacts both advantaged and disadvantaged populations of students (Chen, 
2016). In addition, Complete College America’s (2012) report estimates that $3 billion are spent 
on courses, such as remedial math courses, that are not going to count towards a degree.   

In order to address the problem of offering remedial algebra classes at a university in the 
Northeastern United States, this semester a math course for elementary teachers focused on 
number and arithmetic was designated as a replacement for the remedial algebra course. This 
course would allow students to earn three credits towards degree completion. Two sections of the 
math course for elementary teachers were taught by the same instructor with one section having 
primarily remediation students (N = 18) and the other section primarily having education 
students (N = 23).  

This pilot study examines the success of the use of the math course for elementary 
teachers as a replacement for the remedial math course through a few different measures. The 
analysis focuses on the remediation students (N = 24), compared to the education students (N= 
17) and the remedial students in the two sections of the traditional remedial algebra course 
offered during the same semester (N = 39). One measure of success is examining pass rates of 
the pilot group compared to pass rates of the other two sections of the remedial math course and 
the education students. In this regard, success is measured by undergraduate students earning 
mathematics credits by passing the course as well as the course grade positively impacting the 
students overall grade point average. Another measure of success will be examining pre-test 
scores compared to post-test scores on a placement test (ALEKS) before and after the course by 
both remedial and education students. Information from students around their mindset when 
taking the pre-test as well as the circumstances of the pre-test will be taken into account as the 
scores are examined. The pre-test was taken by the students off campus on their own terms. 
Historically, students have gotten assistance on the pre-test or have not taken the test seriously by 
taking it on a cell phone or just completing it quickly. Finally, course feedback will be analyzed 
and shared.  

Because the course is being completed now, the analysis has not been completed. The 
poster, however, will share results of the described analysis. These results will indicate what, if 
any, measures of success were gained. Future research might investigate changes in beliefs and 
attitudes about mathematics as well as incorporate qualitative analysis from data sources such as 
student interviews while implementing a replacement course such as this.  
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Students’ Proving as a Collaborative Work-in-Progress: 
The Case of a Graduate Course in Topology 

 
Wenrui Cai                                      Igor’ Kontorovich 

The Pennsylvania State University The University of Auckland 
 
We observed recordings of instances from a graduate course in topology where students 
engaged in proving theorems on the whiteboard in a collaborative environment. We considered 
the written component on the whiteboard as “the proof”, which was aided, in 17 out of 20 
instances by some form of verbal explanation. The peculiarity of the class structure allowed each 
lesson to be followed by an open discussion regarding “the proof”. As a result of the 
discussions, the written component of each proof would undergo improvements. When analyzing 
the developments of the proofs in this course, we employed the thematic of proof introduced by 
Mariotti. Stemmed by these proof-presentations, we introduce the idea of proving as a “work-in-
progress” activity.  

 
Keywords: Collaborative learning, Proof and proving 
 

As part of a larger project on teaching and learning of topology in a collaborative and 
discursive classroom setting, we analyzed video recordings of an activity that has been atypical 
to traditional university courses (Pinto & Karsenty, 2018) – students proving theorems on the 
whiteboard and discussing their proofs with their peers and the course teacher. Our study was 
aimed at characterizing such an activity with a special focus on what is said, what is written, 
what is gestured, and the coordination between the three. In 17 out of 20 instances of the activity 
that took place during a semester, the written component was treated as “the proof”, when the 
verbal counterpart played an auxiliary role of explaining “the proof”. The remaining three 
instances converged to the written components only as the provers did not accompany their work 
by verbal speech.  

After provers have concluded the described phase, the classroom floor was opened for a 
discussion, in which the rest of the students raised clarification questions and offered suggestions 
on how the written component could be improved. This part often resulted in the prover 
revisiting their writing to account for the received feedback. These developments instantiate 
what Mariotti describes how all proofs have to undergo through a negotiation that leads to social 
acceptance. An acceptance, in our context, occurred in a classroom setting. Accordingly, this 
phase can be associated with Mariotti’s theoretical frame positioning the activity of proving “as 
work-in-progress”. Indeed, even after the described improvements, it is plausible to think that 
students’ proofs could be further enhanced.  

Several conclusions could be drawn from the presented conceptualization. First, proving 
as a work in-progress is a social and situational activity that mimics to some extent the activity of 
professional mathematicians. Second, every proving instance of such a kind is unique since 
neither the coordination of its written, spoken, and gestured components nor the following 
discussion may be replicated. This uniqueness challenges a common view of students and 
teachers, in which a resulting text that emerges from a proving activity is treated as an object 
with proving powers that are indifferent to time, place, and people who engage with it.  
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What Content is Being Taught in Introductory Statistics?: Results of Nationwide Survey 
 

       Samuel Cook         Robert Sigley    Dana Kirin 
               Boston University   Texas State University  Portland State University  
 
                                  Sheri Johnson                                               Asli Mutlu 
                            University of Georgia                         North Carolina State University 
                           
Introductory Statistics is a course commonly taken by students from a variety of wide-ranging 
majors, sometimes across departments; however, there is little known about the extent topics are 
covered generally across courses. Textbooks include more material than can reasonably be 
covered in a single course, but the non-linear nature of many topics means that from course to 
course the covered content can diverge greatly. We provide results of a nationwide survey of 148 
introductory statistics instructors and assess how often concepts are covered in introductory 
courses across instructor experience, course audience and course pedagogy. 
 
Keywords: Instructors, Content, Curriculum, Introductory Statistics 
 

Introductory statistics course content varies from school to school, and instructor to 
instructor. The content that a student is exposed to in an introductory statistics course can vary 
greatly, particularly when compared to a course like Calculus I. This affects common university 
interactions such as transfer credits and compromises researchers’ ability to generalize 
introductory statistics course studies to larger populations. Statistics education research papers 
often dedicate substantial space to articulating what content the course(s) of study covered. Yet, 
relatively little is known about what content is being covered in introductory statistics courses in 
the United States. Nationwide surveys that poll the demographics of mathematics content areas 
have been useful in producing recommendations for best practices in teaching the content and 
providing insight into areas of future research (Bressoud et al, 2015; Johnson el al, 2018). In the 
most recent International Handbook of Research in Statistics Education, researchers have called 
for similar efforts (Gould et al, 2018). In response we report on the content taught in Introductory 
Statistics based on a nationwide survey of instructors. The participants (n=148) were selected 
through a cluster sample of all possible 2 and 4-year institutions such that every listed instructor 
of introductory statistics classes from 80 randomly selected institutions for spring 2018 was 
contacted and asked to respond to a Qualtrics survey (response rate 27.2%). The survey included 
topics about their course content, instruction decisions and demographic information.  

We report results from this survey focusing on course content including the proportion of 
time content is included in a course. Additionally, we consider how the course content differs 
over the instructor, audience of the course, and instructional tools employed. For example, 14% 
of the instructors report covering multiple linear regression; however, of instructors who report 
having a statistics degree, only 2.8% of them report covering multiple linear regression.  
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Assessing Conceptual Learning in Calculus I: Preliminary Results and Future Ideas  
 

 Beth Cory Taylor Martin 
 Sam Houston State University Sam Houston State University 

Our initial project focused on assessing conceptual understanding of key topics in Calculus I, 
specifically measuring changes in the achievement gap between underprepared and prepared 
students in Active and Traditional classrooms. However, a main hurdle is the lack of instrument 
for assessing Calculus readiness. In this poster, we present results of student understanding of 
continuity in Active vs. Traditional settings from 16 sections of Calculus I. We present ideas for 
refining this study to be able to better assess student growth by creating and validating questions 
regarding students’ initial understanding of Calculus topics: continuity, differentiability, limits, 
and area. We present our study design and initial findings; we look forward to feedback as we 
enter the latter half of our project.   
 
Keywords:  Calculus, Active Learning, Assessment, Task Design  
 
      Calculus I is a crucial benchmark in the path to a STEM education; however, many students 
rely heavily on memorization and repetition as paths to success in mathematics. These 
techniques fail when they are asked to explore the abstract concepts of limits, continuity of 
functions, differentiability, and area. One pedagogical approach to increasing student 
understanding and mastery is active learning. Active learning activities provide a setting for 
students to learn in cooperation with others, thus placing them in an excellent environment to 
construct complex mental frameworks (Bransford et al., 1999; Vygotsky, 1978). Existing 
literature supports the idea that active learning techniques can increase student learning outcomes 
significantly (Freeman et. al, 2014; Bressoud, 2011; Haak et. al, 2011; Boaler & Greeno, 2000). 
In this project, we study active learning specific to the calculus classroom.  
      In the initial phases of our project, we targeted the population of students who enter calculus 
with deficiencies in algebra, trigonometry, and/or pre-calculus. One question we attempted to 
explore was the following:  Does the performance gap between underprepared and calculus-
ready students change to a different extent in an active classroom as compared to a traditional 
classroom? We compared student-learning outcomes in four classrooms employing active 
techniques to outcomes in four traditional lecture-based classrooms in each of Fall 2017 and 
Spring 2018. Due to a lack of instrument for assessing calculus readiness, we chose to use the 
Precalculus Concepts Assessment (PCA) (Carlson, Oehrtman, & Engelke, 2010) to identify 
students with weak preparation. During both semesters, the active sections discussed each of our 
target concepts: limits, continuity, differentiability, and area, using a common exploratory 
activity, discussion, and follow-up assignment. The traditional sections covered the same 
content, but from a lecture approach. We assessed learning outcomes by scoring performance on 
in-class exams and again administered the PCA as a post-test. Unfortunately, the PCA was not 
adequate for distinguishing between prepared and underprepared students or for answering our 
research question. However, our preliminary analysis of final exam data involving continuity 
revealed that students in the active sections performed better than their traditional counterparts 
on the continuity exam questions. Our next plan is to refine our study to be better able to assess 
student growth by creating and validating questions regarding students’ initial understanding of 
our four target calculus concepts, and we look forward to feedback. 
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Connecting Constructs: Coordination of Units and Covariation 
 

 Andy Darling Cameron Byerley 
 Colorado State University Colorado State University 

 Steven Boyce Brady Tyburski Jeffrey Grabhorn 
 Portland State University Colorado State University Portland State University 
 
We investigate links between units coordination structures and covariation schemes. 
Keywords: Covariation, Quantitative Reasoning, Units Coordination, Multiplicative Object 

We hypothesize the units coordination structures underlying the construction of 
multiplicative fraction schemes are also important for covariational reasoning.  We used a units 
coordination diagnostic assessment (Norton et al., 2015) for clinical interviews with college 
calculus students. We interviewed 25 students about their units coordination structures and 
fraction and measure schemes. Eleven students agreed to a follow up interview on covariation 
tasks such as the Bottle Problem (Carlson, et al, 2002). So far we have analyzed eight videos to 
identify connections between students’ units coordination structures and covariation schemes. 

Theoretical Perspective. Units coordination refers to the mental operations that begin in 
childhood with counting schemes that are reorganized in the construction of whole number 
multiplication and fractions meanings (Steffe & Olive, 2010). Thompson et al., (2017) studied 
covariational reasoning in 487 teachers and found “one must construct a multiplicative object of 
quantities’ attributes in order to reason about their values covarying smoothly and continuously 
(p. 128).” Someone with an advanced covariation scheme holds “in mind a sustained image of 
two quantities’ values (magnitudes) simultaneously” and a multiplicative object is formed from 
the two quantities (Saldanha & Thompson, 1998, p. 299). A person who has constructed a 
multiplicative object “tracks either quantity’s value with the immediate, explicit, and persistent 
realization that, at every moment, the other quantity also has a value” (Saldanha and Thompson, 
1998, p. 299).  Frank (2017) explored students’ covariation schemes and found that, “imagining 
little bits of change is essential to construct an image of a quantity’s chunky continuous variation 
(p. 281).” We hypothesize that coordinating two varying quantities and small associated changes 
in both quantities requires assimilating tasks with three levels of units.  

Results.  Three of the eight students who have been analyzed consistently assimilated 
with two levels of units. These students had gross covariation schemes but did not have chunky 
covariation schemes (Thompson and Carlson, 2017). Further, these students did not talk about 
associated changes in quantities. Four of the eight students assimilated tasks with three levels of 
units. Three of these students had constructed smooth or chunky covariation schemes. One of the 
four only had a gross coordination scheme, suggesting that the construction of three levels of 
units does not guarantee a student will construct a chunky covariation scheme. The final student 
sometimes assimilated tasks with two levels and sometimes three levels and she had a fragile 
chunky covariation scheme. She knew she needed to consider associated changes in quantities 
but had trouble keeping track of the relationships. Although the sample is small, the empirical 
evidence is consistent with the hypothesis that constructing three levels of units is important for 
covariational reasoning. Further research should be done to link research in these two areas. 
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Understanding Calculus Students’ Thinking about Volume 
 

 Tara Davis Roser Giné 
 Hawaii Pacific University Lesley University 

We present the methodology and preliminary findings from a pilot study undertaken at three 
institutions during Spring 2018. Our purpose is to uncover student reasoning around volumes of 
solids of revolution. Initial findings suggest issues arise in the Product layer of the Riemann 
Integral Framework (Sealey, 2014).  

Keywords: Geometric and Spatial Thinking, Calculus, Post-Secondary Education  

Motivation and Research Question 
The purpose of this study is to explore student thinking of volume in the context of a second 

semester calculus course. We are interested in sharing our methodology and in exploring its 
applicability to a follow-up research project. 

The central research question that guides this study is, how do students think about the 
Riemann Sum and Integral when approximating and computing volumes of solids of revolution? 
We consider the Riemann Integral Framework (Sealey, 2014), and the role of visualization 
(Giaquinto, 2007; Tall, 1991) to make sense of student thinking evident in our data. 

Methods 
Student participants in this study were enrolled in Calculus II. We videotaped interviews of 

three pairs of students from three institutions as they collaborated on mathematical tasks. 
Students were paired so that we might capture student thinking through discourse. The tasks we 
created focused on volumes of spheres. Our first problem prompted students to approximate the 
volume of a rotated semi-circle by slicing into a fixed number of pieces. Follow-up prompts 
asked students to approximate using an arbitrary number of slices and to compute the exact 
volume of the resulting sphere. This task also raised questions around the role of dx and  in 
students’ computations. In addition to using routine tasks (Brestock and Sealey, 2018), we 
included Kepler’s volume approximation of a sphere (using infinitesimal cones) and asked 
students to explain this method. Non-routine problems had the potential to reveal student 
thinking as they moved from n subdivisions to the actual volume of a solid.  

Results and Discussion 
Preliminary results reveal that students had a strong conceptual grasp of the role of dx and  

in their computations and they understood the exact volume as the limit of a finite sum. 
However, students had difficulty visualizing appropriate slices of the solid of revolution as 
cylinders. We partially attribute this difficulty to teaching, where approximating area is given 
more instructional time than approximating volume. Students also had difficulty distinguishing 
between varying and constant quantities in setting up a Riemann Sum, e.g. height and radius of a 
disk. We position this difficulty within the Product layer of the Riemann Integral Framework 
(Sealey, 2014). As we frame our study based on this pilot project, we hope to revise tasks so that 
we may gain additional insight into such difficulties. We are also considering how visual 
thinking arises in the Riemann Integral Framework (Sealey, 2014), as we found this to be 
essential in constructing volume approximations and deciding on quantities that vary in such 
problems.  
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A Single Case Study of Smartpen-enhanced College Algebra Tutoring 
 

Rebecca Dibbs  Ja’Bria Miles 
Texas A&M University-Commerce 

Students taking courses below calculus are an understudied population in undergraduate 
mathematics education, as are students with mathematics difficulty or disability. Students 
seeking additional help are likely to seek YouTube and other outside resources, which may not 
mesh with in-class instruction. Since secondary education research suggests that targeted 
tutoring is beneficial to students with mathematics difficulty or disability, this single case study 
investigated if there was a functional relationship between a Smartpen to create videos for a 
student with a mathematics disability to listen to during tutoring sessions and her achievement 
on synthetic division problems over a four week intervention. 

Key words: college algebra, disability, single case design,   

Students with mathematics difficulty and disability are an understudied population in 
undergraduate mathematics education. Additionally, while there has been research on college 
students with disabilities in multicultural and special education (eg. Getzel & Toma, 2008; 
Wisbey & Kalvodia, 2011), there has never been a study in undergraduate mathematics 
education focusing on this population of students (Speer & Kung, 2016), and college instructors 
receive no training in supporting students with disabilities.  

Previous research at the secondary level indicated that targeted one on one tutoring is 
most effective at helping students through algebra, which is similar in content to entry level 
undergraduate mathematics courses below calculus (Burton, Anderson, Prater & Dyches, 2013).  
Struggling students are most likely to seek help using online resources such as YouTube (Dibbs, 
Rios, & Christopher, 2017), but YouTube videos are rarely targeted to the learning objectives or 
teaching technique of a specific course. Additionally, most YouTube videos intended for 
undergraduate mathematics students are often 10-20 minutes long and can be difficult for 
struggling students to follow (Dibbs, Rios, & Christopher, 2017). Although Smartpens have not 
been studied more in the context of a data collection instrument, group work, or online 
instruction (Czocher, Baker, Tague, & Roble, 2013; Dibbs, Beach, & Rios, 2018; Fisher & 
Raines, 2014; Tague & Czocher, 2013). 

We conducted a changing criterion single- subject design with one participant enrolled in 
college algebra diagnosed with a mild learning disability. This design is to evaluate the outcomes 
of individuals instead of groups and compares the effects of different conditions on individuals. 
First we collected observation data by watching how the participant performed mathematics. 
After we have created a stable baseline, we then introduced the Smartpen videos. We used the 
smart pen during the intervention.  We collected data weekly for four weeks. Although the visual 
inspection of the data revealed a moderate functional relationship between the Smartpen 
supported tutoring and participant achievement, the maintenance check indicated student 
retention of learning the material (synthetic division) beyond what the student reported in 
previous exposure. Furthermore, the social validity check following the conclusion of the 
intervention indicated that the participant found the Smartpen-supported tutoring to be more 
effective than the one on one tutoring she had received through both disability support services 
and the baseline phase of the study.  
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Examining the Effectiveness of Culturally Relevant Lessons within the  
Context of a College Algebra Course 

 
Gregory A. Downing 
NC State University 

Brittney L. Black 
NC State University 

 Whitney N. McCoy 
NC State University

 
In an attempt to bring more realistic situations into college mathematics classroom environments, 
lessons were created that utilized culturally relevant pedagogy for a college algebra course at a 
large historically black college/university (HBCU) in the south. These lessons were aimed at the 
growing population of diverse students in an effort to gauge their effectiveness with students, in 
regards to achievement and self efficacy. This poster will illuminate the conceptual developmental 
process of four “experimental” lessons and provide some preliminary findings of the course that 
utilized these lessons in comparison with a control class that did not. 
  
Keywords: College Algebra, Equity and Diversity, Student Affect, Curriculum 

 
While algebra is a gateway course for high school graduation (Moses, Kamii, Swap, & 

Howard, 1989), college algebra is a gateway to graduation for many non-STEM college majors 
(Van Dyken, 2016). Each year, only 50% of students are successful enough to earn a grade of A, 
B, or C in their college algebra courses (Ganter & Barker, 2004). This means that half the 
students who are enrolled in this entry level mathematics course are receiving grades of D, F, or 
are withdrawing from the course. This is extremely problematic when we couple this with the 
fact that most college majors require students receive a C or better in this course to make 
adequate progress toward their degree. The purpose of this research study is to investigate the 
following hypothesis: Student outcomes, including self-efficacy, will be improved by 
participation in a college algebra class at a historically black university, where the instructor uses 
culturally relevant pedagogy (CRP) in the course. The effect of teaching with culture has been 
shown to have a substantial increase in self-confidence and self-efficacy; effectively replacing 
feelings of failure and alienation that is all too common with the subject of mathematics and 
students of color (Aronson & Laughter, 2016; Dover, 2013; Tate, 1995). CRP is founded upon 
three principles: academic rigor, cultural competence, and sociopolitical consciousness (Ladson-
Billings, 1995a, 1995b). In accordance to the paradigms of CRP, four lessons were developed. 

The four lessons were delivered in alignment of three of the units taught in this course: 
Functions and Graphs, Polynomials and Rational Functions, and Exponential and Logarithmic 
Functions. The CRP lessons were composed of Matthews, Jones, and Parker’s (2013) Culturally 
Relevant Cognitive Demand Mathematics Task Framework and its corresponding evaluation 
tool. Each lesson was designed to not only appeal to students’ racial backgrounds, but also their 
cultural backgrounds. The lessons attended to the issues of the urban city the students attend 
school in, and topics related to college-aged students and experiences that are relevant to them. 
Specifically, the lessons began with a guiding question that students investigated using 
mathematics. They were entitled: What does incarceration look like in County X [pseudonym], 
and the United States?. What are the ramifications of the collegiate ‘Cuffing Season’?, What is 
the true price tag of a college degree? and How is the population of the United States changing? 

This poster will contain the conceptual developmental process of these four 
“experimental” lessons and provide some preliminary findings of the course that utilized these 
lessons in comparison with a control class that did not. 
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Students’ Understanding of Trigonometric Functions in an Active-Learning Course 
 

Gregory A. Downing 
NC State University 

Karen Allen Keene 
NC State University 

Brooke A. Outlaw 
NC State University 

 
Minimal research has been conducted surrounding how best students learn trigonometric 
functions in a precalculus course. Using motivation from a study conducted by Weber (2005), 
results from this study indicate that students who participated in a college level precalculus 
course where the unit circle was taught before right triangle trigonometry were better able to 
utilize a unit circle but struggled to conceptualize some of its properties. This report has 
implications for mathematics programs looking to determine best practices for the instruction 
order of precalculus courses. 
 
Keywords: Precalculus, Trigonometric Functions, Student Thinking and Learning 
 

In the mathematics education community of researchers, there is the understanding that 
the goal of mathematics is to learn mathematics with deep understandings – methods that go 
beyond memorizing facts and formulas to provide correct solutions on worksheets and 
examinations (Common Core State Standards Initiative, 2010). Students should be able to use 
procedures and explain why they are appropriate and justify why concepts in mathematics have 
the properties they do (Weber, 2005). With this being said, researchers have noted that this does 
not always apply to the teaching and learning of trigonometric functions in trigonometry or 
precalculus classrooms (Thompson, Carlson, & Silverman, 2007; Weber, Knott, & Evitts, 2008). 
They are often geared towards the memorization of mnemonic devices or acronyms. 

Weber (2005) states that the form of instruction that students receive will influence how 
they learn trigonometry. Generally, there are two forms  of instruction commonly associated with 
the learning of trigonometric functions: (1) the method involving special right triangles, where 
the trigonometric functions are defined as ratios of the lengths of the sides in the right triangles, 
or (2) the unit circle method where the cosine and sine of an angle is defined to be the x- and y-
coordinates of the point that rests at the terminal side of the angle that intersects the unit circle 
(Kendal & Stacey, 1998). Researchers have tested which instructional strategy will lead to a 
better understanding of trigonometric functions in order to aid students in overcoming their 
misconceptions they may have with them (Kendal & Stacey, 1998; Weber, 2005). 

This case study is a smaller part of a larger mixed methodological exploratory research 
study designed to introduce active learning components to study how these new practices are 
implemented and how they affect student outcomes (Keene, Skrzypek, Downing, & Kott, 2017). 
Motivated by the dichotomous approaches to learning trigonometry by the work of Weber (2005) 
and Kendal and Tall (1998), the goal of this study is to see the extent to which students are able 
to reason through trigonometric concepts after engaging in team activities, in which students 
worked each other to work through conceptually-based tasks. 

The poster will provide the preliminary findings to students’ understanding through a 
semi-structured task-based interview. These results show that students were able to draw upon 
their experiences with team activities to aid them through tasks. use the unit circle at least as a 
reference, however, they struggled to conceptualize why it has the properties it does. 
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Building Coherence in Circular and Complex Trigonometry with Inquiry-based Modeling 

 
Celil Ekici 

Texas A&M University – Corpus Christi 

The trigonometry is first framed on a right triangle, next on a unit circle with a parametrized 
pair of coordinates (r cos t, r sin t), and then on a complex frame, r (cos t + i sin t) unifying the 
Cartesian pair (Ekici, 2010).  Students often struggle in understanding the connections and the 
transitions among triangle, circle, and complex trigonometry which serve as a critical 
mathematical foundation in many STEM fields. It is a challenge for students and teachers to 
coordinate the multiplicity of these trigonometric frames to develop coherent meanings. To 
support this transition, dynamic manipulatives using GeoGebra are here developed for student 
experimentation in modeling with modified circular and complex trigonometric functions. The 
results show that inquiry-based modeling using these multiple yet interconnected frames 
facilitate the emergence of coherence observed while validating these trigonometric models.  

Keywords: inquiry-based learning, complex trigonometry, circle trigonometry 

There is a need for a disciplined inquiry into the problem of teaching trigonometry towards 
building coherence across Euclidean, Cartesian and Complex frames in the teaching/learning 
practice with trigonometric functions (Ekici, 2010). Building coherence requires some deliberate 
focus on the connectedness of alternative mathematical frames in modeling periodic phenomena. 
Mathematical models can yield multiple solutions depending on the choice of mathematical 
frame, so the focus less on coming up with a specific answer and more on the validation of the 
model as framed (Anhalt & Cortez, 2015). Modified circular functions are here introduced here 
as a composition of sine and cosine functions with different periods. This approach is 
experimented here as a way to build advanced coherent perspective while modeling periodic 
functions in rich contexts such as sound modeling using alternative trigonometric frames. 

Inquiry-based modeling with multiple mathematical frames is here adopted as a pedagogical 
strategy (Ekici & Plyley, 2018). GeoGebra applets are designed and offered by the author to help 
learners experiment and develop their models with dynamic manipulatives. Integrating such 
technologies for flipped learning provides extended support towards building connections within 
and between each trigonometric frame with critical reflections and anticipation. The emergence 
of coherence is observed in modeling with multiple trigonometric frames along a series of IBL 
lessons connected with a theme across the course. Collaborative action research is adopted to 
develop and refine an evidence based practice towards building coherence (Stringer, 2014).   

The validation of the trigonometric models serves as a critical modeling stage examined 
across circle trigonometry, modified circular, and complex trigonometry.  Through concept maps 
and reflections, the results of inquiry based modeling demonstrate that interpretation and 
validation of these multiple yet interconnected trigonometric models facilitate the emergence of 
coherence. This work informs the trigonometry practices in undergraduate and high school level 
providing an advanced perspective for teaching/learning trigonometry. The results show that 
inquiry-based modeling using these multiple yet interconnected frames facilitate the emergence 
of coherence observed while validating these trigonometric models. Reflections by learners 
provide evidence of their critical understanding of multiple trigonometric frames by observing 
how more simplicity is achieved in modeling with Complex frame as opposed to Cartesian. 
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Relationship Between Precalculus Concepts and Success in Active Learning Calculus Courses 

 
Tenchita Alzaga Elizondo Brittney Ellis Jeffrey Grabhorn 
Portland State University Portland State University Portland State University 

As part of an ongoing project to redesign a calculus sequence centered around core calculus 

concepts through an active learning approach, we aim at understanding the knowledge students 

need in order to be successful in this setting. In particular, we are interested in exploring what 

conceptual understandings of precalculus concepts support students in an active learning 

intensive calculus sequence. We present preliminary results of an analysis carried out to answer 

the question: What is the relationship between students’ precalculus understandings and 

performance in this newly redesigned calculus sequence?  

Keywords:  Assessment, Calculus, Student Outcomes, Active Learning 

There has been a recent call for an increase in STEM bachelor’s degrees (Olson & Riordan, 
2012) and it has been suggested that empirically tested and validated teaching practices, like 
active learning, are critical to attain this goal (Freeman et al., 2014). In response to this call, there 
is an innovative calculus curriculum currently being developed and implemented by mathematics 
education faculty and graduate students at Portland State University. This curriculum has been 
designed with active learning strategies in mind and was adapted from Pat Thompson’s DIRACC 
project which is grounded on research pertaining to students’ mathematical thinking and 
understanding of core calculus concepts (Thompson, Byerley, and Hatfield, 2013).  

For this study, we present some preliminary results aimed at answering our research 
question: What is the relationship between students’ precalculus understandings and their 

performance in this newly redesigned calculus sequence?  Data for this analysis was collected 
during the 2018 summer term. The pre-assessment we administered consisted of six items 
adapted from the Precalculus Concept Assessment (Carlson, Oehrtman, and Engelke, 2010), 
Aspire MMK assessment (Thompson, 2016), or from tasks created by Hackenberg and Lee 
(2015) designed to assess students’ reasoning with linear equations. One section of each of the 
redesigned Calculus I (differential calculus) and Calculus II (integral calculus) courses received 
this assessment. There was a combined total of 64 students in the two courses who took the 
pre-assessment as well as completed the course.  

A Pearson correlation was used to investigate the relationship between Calculus I students’ 
precalculus understandings ( M=2.85, SD=1.64) and their final exam scores ( M =80.09, 
SD =16.2). Results suggest a significant positive correlation between precalculus understandings 
and final exam scores, ( r (30)=0.52, p<0.001, N=32). A similar analysis revealed a moderately 
significant positive correlation ( r (30)=0.28, p=0.058, N=32) between Calculus II students’ 
precalculus understandings ( M=2.93, SD=1.48) and their final exam scores  ( M =79.3, 
SD =15.95). Future analyses will investigate correlations between particular final exam items and 
performance on each of the individual items on the pre-assessment. We hope to use the results of 
this study to aid in the continual refinement of this calculus curriculum by providing insight into 
what knowledge our students are coming into calculus with and how that knowledge supports 
them in the success of this active calculus sequence.  
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A Glimpse of Change in GTA PD Programs in U.S. Mathematics Departments 
 

Brittney Ellis Tenchita Alzaga Elizondo Jessica Ellis Hagman 
Portland State University Portland State University Colorado State University 

As part of an ongoing effort to understand how mathematics departments in the U.S. can better 
support graduate students teaching in precalculus and calculus courses, we are interested in 
investigating plans (or potential plans) departments are making toward improving their 
graduate teaching assistant (GTA) professional development (PD) programs. Contributing to a 

larger national project of first-year mathematics, this study looked at mathematics departments’ 

survey responses to three items regarding changes to GTA PD programs. Out of the 223 

departments that responded to the survey 66 of them indicated some level of plans of change to 

their program. For those schools, we analyzed the open-ended responses elaborating on the 

current status of the GTA PD program and found several noticeable themes regarding changes 

or plans to change their programs.  

Keywords: GTA, professional development, institutional change, survey  

As graduate teaching assistants (GTAs) become more integrated in the teaching of 
courses in precalculus through calculus two (P2C2) sequences (Vroom, Kirin, & Larsen, 2017), 
further research is needed to better understand how departments can effectively support GTAs in 
their teaching (Ellis, 2014). In a recent study, Ellis, Deshler, and Speer (2016) reported that 
nearly 40% of mathematics departments surveyed said changes to the current graduate teaching 
preparation program were being carried out or are planned. To better understand what types of 
changes departments are making, we further investigated departments that indicated changes (or 
plans to change) by considering their responses to follow-up survey items. Guiding this study is 
the following research question: Of the departments that indicated plans or potential plans to 

change their GTA PD program, what changes did they implement or plan to implement? 
The data for this analysis comes from a census survey designed for a multiphase national 

project aimed to examine current P2C2 programs. The survey was administered to all 
universities in the United States granting either a Masters or PhD in mathematics. To answer our 
research question we looked at responses to three items of the survey regarding changes (or 
potential changes) to GTA PD programs. Out of the 223 schools that responded to the survey 66 
of them indicated some level of plans of change to their program.  

For the preliminary results shown here, we used a general qualitative approach to search 
for patterns in the open-ended responses elaborating on the status of the GTA prep program (e.g., 
no change, change being implemented, change being discussed). In our initial pass through the 
data, we recorded some obvious patterns in responses around change: (1) From pre-semester 

orientation to more ongoing support (15%), (2)  change in personnel (14%) , and  (3) creation of a 

new program (25%) . Note that these results do not add up to 100% since not all schools have 
been categorized and some responses fell under multiple categories. We hope to continue 
refining these results by searching for additional descriptive patterns as well as considering 
connections with previous findings,  such as connecting the changes to how departments are 
evaluating the success of their programs (Ellis, Deshler, & Speer, 2016) and the structure of their 
programs ( Bragdon, Ellis, & Gehrtz, 2017 ). 
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Student Engagement in a Post-Secondary Developmental Mathematics Class 
 

David Fifty 
University of New Hampshire 

Dr. Orly Buchbinder 
University of New Hampshire 

Dr. Sharon McCrone 
University of New Hampshire 

 
I report on the first stage of my dissertation project which sought to understand engagement in a 
Precalculus course at a four-year public university. Breaching instructional activities, student 
interviews, and classroom recordings were used to study the development of several sociological 
and psychological constructs to help characterize students’ engagement. Despite the instructor’s 
attempts to negotiate productive norms, data analysis shows that some students’ detrimental 
practices and beliefs remained unchanged or were even supported by the course. I examine the 
roots and consequences of this phenomenon.  
 
Keywords: Social Norms, Sociomathematical Norms, Communal Mathematical Practices 
 

Students of many post-secondary developmental mathematics courses experience long-term 
mathematics struggles and high attrition rates (Bailey, Jeong, & Cho, 2010; Bahr, 2013). This 
project explores how one such course, a Precalculus course at a public four-year university, 
attends to developing students' mathematical capabilities and practices by studying the social 
norms, sociomathematical norms, and communal mathematical practices emerging in the course. 
Development of these constructs coincides with development of students' beliefs and practices 
(Yackel & Cobb 1996), which may improve students’ mathematical engagement and support 
long-term mathematical learning. One way to develop more constructive beliefs and individual 
practices is to negotiate productive norms and communal practices. The instructor of the studied 
Precalculus course attempted to negotiate such norms by introducing instructional activities that 
breach students’ mathematical expectations, which allowed for explicit negotiation of productive 
norms and practices. In addition to 360° video recordings of these activities, data collection 
included repeated interviews with students which provided information about their beliefs, 
values, and individual practices, and how these changed or persisted over the semester. The data 
was then analyzed in conjunction with the interpretive framework of Cobb & Yackel (1996).  

I focus on the case of Audrey, who, despite being a diligent and successful student in the 
Precalculus class, retained her detrimental practices and beliefs. For example, she would 
enumerate steps to memorize and would focus on repeating algorithms that she did not always 
understand. Audrey represents a student who is eager to learn, but whose efforts do not allow for 
extensive advancement of her mathematical capabilities. One critical observation from the study 
data is that the pedagogical instructional practices and course structure did not require her to 
change her practices to be successful in the course, and that some of these instructional practices 
actually supported and perpetuated her own. At the same time, the data shows that the 
instructor's attempts at negotiating productive norms and practices were often hindered by the 
need to coordinate his teaching approach and assessments with other instructors of that course.  

The results concur with the literature by showing that repeated content exposure will not 
necessitate changes in students’ practices and beliefs (Goudas & Boylan, 2013; Carlson et al., 
2010). Although there were some attempts to make changes to the way the course is usually 
taught, more systemic change is needed. Because of institutional support for reform in 
Precalculus, the course can be redesigned with a focus on negotiating norms and practices to 
redirect students' efforts toward more productive mathematical engagement.  
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MathChavrusa: A Partnership Learning Model 

Rochy Flint 
Columbia University 

In this poster we introduce a new learning modality called MathChavrusa.  Inspired by the 
ancient rabbinic approach to Talmudic study, the chavrusa model pairs students in a partnership 
of deep text-based analysis, discussion, and debate.  Over centuries the model has proved its 
ability to generate thorough understanding, build skills, develop the courage to question, and 
demonstrate to students the value of both independent thinking and collaboration. 
MathChavrusa is a complementary model to other accepted modalities for generating student 
understanding in mathematics.  It is particularly effective when employed after a lecture class.  
In teaching about the model, we will discuss its origins, how it facilitates deep learning and 
understanding in mathematics, and techniques for implementation.  We have begun to utilize the 
model in our classes, and are gathering data about its real-world effectiveness.  Preliminary 
data implications will be discussed. 

Keywords: Mathematics Identification, Text-based learning, Collaboration, Peer study 
partnership 

Cultivating mathematics identification is critical to engage undergraduate students in 
mathematics.  Peer support and collaboration are critical components for increasing mathematics 
identification (Walker, 2006).  A demonstrably effective educational philosophy exists which 
moves away from the teacher-centered classroom to student-centered learning environments 
where learning can happen in a profound way (Freeman et al, 2014).  Effective tools for 
mathematics skill building and mathematics identification are paramount for student success in 
mathematics.  Peer collaboration has been shown to improve students’ ability in tasks that 
require reasoning (Phelps & Damon, 1989). There is evidence that student-centered small group 
learning alleviates attrition and is beneficial in undergraduate STEM student presence in all 
demographics (Springer et al, 1999).  Students are often too teacher dependent and fear the math 
textbook.  The learning model MathChavrusa is designed to foster independent mathematics 
learning, peer collaboration, critical thinking, and text-based learning.  We introduce and study 
the practical benefits of implementing this learning model in undergraduate mathematics 
learning environments.   

In summary, MathChavrusa implementation requires students to be paired (they can self-pair 
or the instructor can do the pairing) and maintain the same partner throughout the duration of the 
course.  Depending on course structure, it is recommended a minimum of twenty minutes per 
class session to engage in MathChavrusa.  Students engage in inside math textbook reading and 
discussion with their study partner (chavrusa).  A study guide and posed questions highlighting 
the mathematics material can help deepen and increase the benefits of MathChavrusa.    

Currently MathChavrusa has been implemented in 6 institutions in the following courses: 
remedial college algebra, calculus, linear algebra, differential equations, and topology.  Currently 
our data gathering and analysis is focused on qualitative data, evaluating initial benefits such as 
deeper mathematics understanding, improved mathematics communication, confidence in 
mathematics assignments and increased aptitude in mathematics text-book learning.  We are in 
the process of analyzing data as to its effectiveness. 
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Upgrading the Learning for Teachers in Real Analysis; A Curriculum Project 
 

 Tim Fukawa-Connelly Nicholas Wasserman 
 Temple University Teachers College 
  
 Keith Weber Pablo Mejia-Ramos 
 Rutgers University Rutgers University 

Upgrading Learning for Teachers in Real Analysis is a project in which we designed and 
implemented an innovative real analysis course for pre-service and in-service mathematics 
teachers (PISTs). More generally, this project provides an alternative model to teaching 
advanced mathematics to PISTs, a model that more meaningfully connects the teaching of 
secondary mathematics to the advanced mathematics content. This poster describes the 
theoretical model, the means of developing connections between real analysis and secondary 
mathematics content, the 12 modules we designed and how they fit in a standard real analysis 
curriculum, and presents evidence for their efficacy. The instruction is built from and returns to 
authentic secondary mathematics classroom situations.   

Keywords: Real Analysis, Teacher Education, Mathematical Knowledge for Teaching 

We describe an innovative real analysis course that developed for pre-service and in-service 
secondary mathematics teachers. The course had a multitude of goals: (i) PISTs would learn the 
real analysis; (ii) PISTs would understand secondary mathematics better; (iii) PISTs would have 
the pedagogical content knowledge to respond more effectively to pedagogical situations; (iv) 
PISTs would see the relevance of real analysis to secondary mathematics teaching; and (v) there 
would be genuine positive changes in PISTs’ instructional practice. We developed an 
instructional model that grounds the study of advanced mathematics in pedagogical situations 
and asks teachers to revisit those same situations and apply their new knowledge. To accomplish 
our goals, we developed 12 modules that connect the content and practices of real analysis to the 
teaching of secondary mathematics. In each module, PISTs are first presented with an authentic 
classroom situation from high school mathematics in which a teacher needs a deep understanding 
of mathematics to respond appropriately. From the discussion that ensues, PISTs build up from 
teaching practice to tackle the underlying mathematical issues at play in a real analysis context. 
After the work in real analysis resolves these mathematical issues, PISTs step down to 
practice and are asked to revisit the original and analogous classroom situations. As such, each 
module has both mathematical goals (what mathematics are PISTs learning?) and pedagogical 
goals (what pedagogical practices are PISTs going over in the module?). To design a module we 
generated pedagogical situations that had three characteristics: (i) the pedagogical situations 
were authentic (i.e., not contrived but true to situations that arise in teaching), (ii) the prospective 
teachers were asked to engage in a High Leverage Practices (TeachingWorks, 2013) that are 
central to the work of a secondary mathematics teacher, and (iii) successfully engaging in these 
High Leverage Practices required mathematical knowledge that could be informed by or 
reinforced via real analysis. This poster will show the theoretical model, the means of developing 
connections between real analysis and secondary mathematics content, illustrate how the 12 
modules fit in a standard real analysis curriculum, and present evidence for their efficacy. We 
will include a QR code that navigates to all of the modules as well as provide printed examples. 
We argue that the course was effective in many ways, and describe ongoing challenges. 
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Humanizing the Coding of College Algebra Students’ Attitudes Toward Math 
 

 Amber Gardner  Amy Smith Heather Lynn Johnson 
University of Colorado Denver University of Colorado Denver University of Colorado Denver 
 
Through their coding of survey responses, researchers can create spaces to humanize students’ 
attitudes toward math. To account for complexity in students’ attitudes beyond positive or 
negative, we developed three additional codes: mixed, ambiguous, and detached. In our coding 
methods, we account for a diversity, rather than a binary, of student attitudes.  
 
Keywords: Attitude toward mathematics, College algebra, Humanizing, Research methods 
 

Even before Calculus, College Algebra is a gatekeeping mathematics course, and students’ 
attitudes toward math can impact their persistence in such courses (Bressoud, Carlson, Mesa, & 
Rasumussen, 2013; Ellis, Fosdick, & Rasmussen, 2016). College Algebra students can express 
complex attitudes toward math, and we posit that researchers’ coding methods should begin to 
open space to acknowledge the complexities of students’ attitudes. Drawing on survey responses 
as sources of data, researchers have coded students’ attitudes toward math as positive, negative, 
and other/indifferent (Ding, Pepin, & Jones, 2015; Pepin, 2011). In our coding methods, we 
account for a wider range of students’ attitudes, to give more voice to attitudes outside the 
positive/negative binary. For example, students can express a mixture of positive and negative 
attitude, ambiguity in their attitude, or a detached attitude toward math. 

We administered a fully online attitude survey to College Algebra students at the beginning 
and end of the Spring and Fall 2018 semesters. We used Pepin's (2011) open-ended question 
stems, (e.g., "I like/dislike math because…"), because the question stems allowed students to 
self-narrate a range of attitudes that may not fit into binary categories. Beyond positive and 
negative, we included three additional codes: mixed, ambiguous, and detached. We coded mixed 
for a response that presented more than one attitude (e.g., positive and negative), ambiguous for 
responses that crossed multiple attitudes, and detached for a response that separated the person 
from the mathematics, treating mathematics as something “out there” or not connected to self. 
Table 1 shows examples of student responses we coded as mixed, ambiguous, or detached. 

 
Table 1. Examples of responses coded as mixed, ambiguous, or detached 

Code 
Mixed 
Ambiguous 
Detached 

Example Student Response 
I love and enjoy problem solving, but I dislike having to remember a lot of rules. 

I don’t care either way. 
Math is the universal language. 

 
Langer-Osuna & Nasir (2016) called for researchers to develop methods that humanize 

students’ experiences. Were we not to have included the additional codes, we would have coded 
the student responses in Table 1 as “other/indifferent,” because they are neither positive nor 
negative. Yet, the responses presented distinct attitudes, which we valued and wanted to name.  

As researchers, our methods are never neutral. In our coding of hundreds of College Algebra 
students’ responses to survey questions, we worked to amplify students’ voices to extend 
possibilities for the kinds of attitudes counted. As a result, we created a richer landscape of 
possibilities, which requires more than a linear continuum to represent. 
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Inquiry-Oriented Differential Equations as a Guided Journey of Learning: 
A Case Study in Lebanon 

 
Samer Habre 

Lebanese American University 
Beirut - Lebanon 

 
Integrating innovative pedagogical initiatives within the learning environment at the Lebanese 
American University in Beirut, Lebanon, has been set as a strategic goal. Active learning, as one 
medium of instruction, has seen widespread implementation in mathematics classrooms. This 
study reports on an inquiry oriented differential equations class offered in spring 2018. The 
focus is on the role of the curriculum in guiding students reinvent successfully key mathematical 
notions covered in any introductory differential equations class. 

Keywords: Inquiry oriented differential equations; curriculum; guided reinvention. 

  Inquiry Based Learning (IBL), as an active learning medium of instruction, has seen 
integration in a variety of mathematics classes. An implementation of an inquiry-oriented 
curriculum is considered successful if it guides learners in reinventing the course key 
mathematical concepts. Guided reinvention (Freudenthal, 1991) allows “learners to come to 
regard the knowledge they acquire as their own private knowledge” (Gravemeijer & Doorman, 
1999, p. 116). True to the nature of an inquiry-oriented learning environment, the Inquiry 
Oriented Differential Equations (IODE) course was developed by Rasmussen, Keene, Dunmyre, 
& Fortune (2017). The curriculum drew its inspiration from a dynamical systems approaches to 
differential equations (e.g. Blanchard, Devaney, and Hall (1998), and Hubbard and West (1991)), 
representing “a significant departure from conventional treatments of differential equations that 
emphasize a host of analytic techniques” (Rasmussen and Known, 2007, p. 190).  

In spring of 2018 I taught an IODE course in my home institution. The material covered 
in the course was similar to a traditional course; however, learning was based on the four 
principles of IODE: Generating students’ ways of reasoning, building on student contribution, 
developing a shared understanding, and connecting to standard mathematical language. The class 
was divided into seven groups consisting of 3 to 4 students each. Whiteboards, markers, and 
erasers were distributed to each group at the beginning of every class. To answer the research 
questions, To what extent were students successful in reinventing the key concepts of the course 
and what obstacles were faced in acquiring the desired course outcomes, I analyzed personal 
notes taken at the completion of each unit (14 units in all), snapshots of in-class students’ work, 
copies of homework assignments (5 in total), and results of 5 online questionnaires posted on the 
Discussion Board of Blackboard Learn. Some recent empirical studies on students enrolled in 
IBL math-track courses have reported “greater learning gains then their non-IBL peers on every 
measure [such as] cognitive gains in understanding and thinking”. (Lauren, S. L., M.L. Hassi, M. 
Kogan, and T.J. Wetson, 2014).  While this study confirms these findings, reinventing 
knowledge proved to be cognitively demanding and in some cases required the intervention of 
the instructor to control and guide the discussion. Results also show departing from the 
conventional treatment of mathematical concepts was the main obstacle students faced.    !
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Supporting Instructional Change: The Role of Facilitators in Online Working Groups	
	

William Hall 
Washington State University 

Nicholas Fortune 
Western Kentucky University 

Karen Keene 
North Carolina State University 

	
Research has shown that faculty benefit from support and collaboration when introducing 
student centered instruction into their teaching (Henderson, Beach, & Finkelstein, 2011; Speer 
& Wagner, 2009). The RUME community has some knowledge about how these supports take 
shape and grow (e.g., Hayward, Kogan, & Laursen, 2015), but work is still needed. A crucial 
component is researching the facilitation of these supports. In this study, we focus on how the 
facilitation of online working groups occurs. Our preliminary results indicate that the actions 
facilitators take play crucial roles in how to use discussions of mathematics to proactively 
engage in student thinking.	
	
Keywords: Instructional change, online faculty collaboration, facilitators	
	

Faculty are currently making changes to their instruction by introducing different modes of 
student-centered instruction (Mathematical Association of America [MAA], 2018). Numerous 
support avenues have become available to these faculty such as faculty collaborations (Nadelson, 
Shadle, & Hettinger, 2013) and summer workshops (Andrews-Larson, Peterson, & Keller, 2016). 
In this study we focused on online working groups (OWGs) that supported mathematicians 
learning to teach inquiry oriented differential equations, abstract algebra, or linear algebra. 
Previous research has shown the importance of doing mathematics in this process to situate 
faculty’s understanding of these “new” curricula (Andrews-Larson et al., 2016), but facilitating 
those discussions is largely unexplored. Thus, we aim to answer the research questions: 1) What 
role do facilitators take within OWGs focused on doing and understanding the mathematical 
content? 2) How does the topic of conversation shift as a result of the facilitators’ actions?	
	

Methods	
The current analysis focuses on facilitators who were participants from previous OWGs. 

Each session occurred via Google Hangouts and was screen recorded and transcribed. The 14 
sessions under analysis were chosen to fit the research focus on weeks when the OWG 
participants were discussing how they solved the mathematical tasks. Two researchers developed 
a codebook that included a priori codes based on the stated goals of the OWG, and emergent 
codes from the analysis, and met to discuss and resolve any discrepancies.	
	

Preliminary Results and Discussion	
We have found that facilitators regularly use discussions concerning how the OWG 

participants solved the mathematical task as a springboard for discussions regarding reporting on 
and student mathematical thinking and more general discussions concerning the pedagogical 
choices participants made or will make in their classrooms. Our continued analysis will be 
focused on unpacking the specific ways the facilitators make these transitions and whether/how 
participants respond to the facilitator’s efforts. Implications for this work include showcasing 
how productive OWGs are facilitated so they can be replicated and have a deeper understanding 
of how online synchronous professional development programs operate. 	
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Basic Research on Instructor Practice: What do We Want to Know? …and How? 
 
 Shandy Hauk Natasha Speer 
 WestEd The University of Maine 
 
There now exist resources (e.g., text- and video-based case activities) for use in the professional 
development of novice college mathematics instructors. We do not yet know much about the 
characteristics of effective use of those resources. Even less is known about what facilitators 
need to know to use the resources successfully. A newly funded project is building meta-
materials to help providers use resources. These Provider Packages are a virtual facilitation 
partner, taking on some of the cognitive load of facilitation (e.g., audio tracks that can be turned 
on and off, notes from a more experienced peer that are virtual whispers in the ear). The project 
will examine use of the facilitation support tools in the Provider Packages to identify 
characteristics of effective facilitation of activities. At the poster, we will seek conversations 
about research designs that can leverage the opportunities of the Provider Packages. 
 
Keywords: Novice College Mathematics Instructors, Professional Development for Teaching 
 

To create high-quality learning opportunities for undergraduate mathematics students we 
need to provide opportunities for novice college mathematics instructors to learn knowledge and 
skills for teaching. Those learning opportunities often occur during teaching seminars led by 
faculty. Certainly, activities are available for these Providers of professional development and 
some are accompanied by guidance to help Providers use the activities effectively (e.g., 
Friedberg et al., 2001; Hauk, Speer, Kung, Tsay, & Hsu, 2013). However, from our experience, 
utilizing Provider guides and facilitating an activity for the first time can be very challenging. 
Facilitation requires 
bringing to mind and 
coordinating several 
streams of information. 
We are creating digital 
Provider Packages to 
serve as a virtual 
facilitation partner, taking 
on some of the cognitive 
load of organization and 
orchestration (Figure 1). 
Just-in-time facilitation 
expertise is available with 
options to turn on (or off) various scaffolds. For example, with all supports “on” a novice 
Provider allows the built-in audio of an expert facilitator to lead the session. Or, by selecting 
only visual supports, a more experienced Provider uses the Package as its lead facilitator. We are 
developing Provider Packages for several publicly-available, case-based activities. The poster 
will have images from sample Provider Packages to illustrate the types of supports provided.  

As part of this work, we will do research to explore what faculty need to implement such 
professional development activities. To that end, we seek input from the RUME community 
about research designs and questions we might use in the context of this project, data that might 
be most valuable to gather, and ideas for future expansions of the project.  
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An Exploration of Math Attitudes and STEM Career Interests for Community College Students 
 

 Elizabeth Howell Candace Walkington 
 North Central Texas College Southern Methodist University  

Survey data for community college algebra students reveals relationships between a student’s 
attitudes towards mathematics and the student’s STEM career interests. Results show that while 
students may not always have a clear understanding of the tasks related to a chosen STEM 
career area, the student’s math interest predicts interest in some STEM careers and not others.  

Keywords: STEM, career interests, algebra 

In community colleges across America, students are struggling with mathematics. 
Mathematics has long been a stumbling block for undergraduates, including those pursuing 
science and engineering degrees (Harackiewicz et al., 2012). The school experiences that create 
this situation disproportionately affect students from groups underrepresented in science, 
technology, engineering, and mathematics (STEM) majors (Reardon, 2011), and can drive these 
students away from STEM fields (Moses & Cobb, 2001). Pass rates in math courses required for 
STEM careers like College Algebra are low (Howell, 2016). In the present study, we examine 
whether interest in math is predictive of College Algebra students’ interest in STEM careers. 

As part of a larger study, students enrolled in College Algebra (n = 367) at a mid-size 
community college in the southern United States were invited to take a survey regarding their 
STEM career interests, as well as their interest in algebra and mathematics in general. Male and 
female students were represented equally, and students were largely 18-24 years old. 
Respondents were 52% Caucasian, 29% Hispanic, 6% African-American, and 13% other 
races/ethnicities. The survey (drawn from the Basic Interest Scales; Liao, Armstrong, & Rounds, 
2008) asked students to rate their interest in fourteen career areas, first using four questions 
related to activities one would perform in each area (e.g., “Build a structure to withstand heavy 
winds”), and then using the name of the career area (e.g., “Engineering”). Additionally, survey 
items asked students to rate their interest in algebra and mathematics in general using interest 
survey items from Linnenbrink-Garcia et al. (2010) and Renninger and Schofield (2014).  

Analyses were conducted where the career activities aggregates were compared to the 
students’ interest rating in the career area. Results showed these measures were consistently only 
moderately related, suggesting that students may not be clear on what different STEM careers 
entail. The relationship was particularly weak for physical science. The career ratings were then 
compared to student responses related to their level of interest in mathematics and algebra in 
general. The mathematics interest items were strong predictors of interest in careers in 
math/statistics and in STEM teaching, and were moderate predictors of interest in careers in 
engineering, finance, information technology, and mechanics/electronics. Interest in math did not 
predict interest in a variety of other STEM career areas, including life science, physical science, 
and social science. Finally, overall differences in math interest between student groups were 
explored. Results suggest that females in College Algebra have lower math interest than males, 
and non-Hispanic Caucasian students have lower math interest than other racial/ethnic groups. 

The survey results indicate that students in the sample may not have clear ideas of the nature 
of specific STEM career areas, and their math interests do not align well with their intended 
career interests in many cases. The larger study hopes to improve learning outcomes for 
mathematics students by explicitly tying College Algebra course content to STEM careers. 
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Students’ Responses to Differing Prompts for Reasoning and Proof Tasks  
 
 Jihye Hwang  Shiv Smith Karunakaran 
 Michigan State University Michigan State University 

Students are engaged in various reasoning and proving tasks corresponding to the increased 
emphasis on reasoning and proving in mathematics education. Students routinely encounter 
differing language present in prompts for these reasoning and proving tasks. The semantic 
meaning of the language used in these prompts is not usually explicitly discussed and thus may 
cause inconsistencies in students’ responses to these tasks and in the assessment of their work. 
The preliminary results imply Calculus I students have various conceptions for prompts such as 
“prove”, “explain”, “show”, and “convince”. This poster will focus on students’ various 
conceptions on the two prompts “prove” and “show.” 

Keywords: Proving, Reasoning, Prompts 

The mathematics and mathematics education community have emphasized the importance of 
reasoning and proving across the K–16 levels. As a result, curricula and research have asked how 
students understand reasoning and proving (Harel & Sowder, 1998; Knuth, Choppin, & Bieda, 
2009; Weber & Alcock, 2004). Students face differing language within these prompts—such as 
“prove”, “explain”, “show”, “convince”, etc.—both in textbooks and research tasks (Knuth et al., 
2009; Otten, Gilbertson, Males, & Clark, 2014). As the semantic meaning of these prompts is not 
explicitly discussed, researchers have raised questions about the perceived differences between 
these prompts. For example, a teacher might expect either rigorous proof, or a causal argument 
when they asks students to “explain” their reasoning (Dreyfus, 1999; Hersh, 1993). Dreyfus 
(1999) also questioned whether the prompt “show”, asks students to generate an actual 
mathematical proof, or examine some examples. In keeping with such research, we hypothesized 
that there may be differences in students’ responses to each type of prompt. These differences, 
then, might cause inconsistencies in students’ learning, and in the assessment of students’ work. 

This poster presents preliminary findings based on a study with the following research 
question: How differently do Calculus I students perceive and respond to different prompts, such 
as “prove”, “explain”, “show”, and “convince”, for reasoning and proving tasks? The survey 
data was collected from 131 students enrolled in a Calculus I course at a large public university 
in the Midwest United States. The survey consisted of three parts: the students’ academic 
background, questions to choose hypothetical prompts based on given arguments, and Likert–
type questions regarding the perceived meanings of these differing prompts.   

The preliminary findings indicate the existence of differences in meanings for students for 
different prompts. Among results, we want to focus on the prompts “prove” and “show” for this 
poster. Although some students (26.7%) considered “prove” and “show” as synonyms, aligning 
with mathematicians’ understanding of the two prompts as synonyms (Alcock, 2013), the 
majority of students (55.7%) regarded the prompts “prove” and “show” as different. Some 
students considered these two prompts to be distinct, and a second group of students thought the 
meanings of these prompts to have an intersection, but also that each have independent 
characteristics. Across the data, the students’ responses imply that presenting some examples is 
enough for the prompt “show”. This inconsistency in students’ responses challenges the notion 
that students may perceive “prove” and “show” as synonyms and justifies further research on 
students’ perception of the language used for prompts of reasoning and proving tasks. 
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Insight into Prospective Elementary Teacher’s Beliefs About Mathematics 

Kim Johnson, PhD  
West Chester University of Pennsylvania

kjohnson2@wcupa.edu

This study attempts to answer the question:  why do prospective elementary teachers (PTs) have 
high levels of anxiety learning mathematics and low levels of confidence to teach mathematics? 
Using a survey of 300 undergraduate PTs and a mixed methods approach, I report the results 
from the analysis. Identifying and addressing the causes of negative beliefs about mathematics is 
crucial to ending the negative cycle of beliefs in their future students.  A survey of 300 
undergraduate PTs was taken and a mixed methods analysis was done. 

Keywords: Teacher Beliefs, Affect, Emotion, Beliefs, and Attitudes 

The goal of this project was to gain insight into the underlying factors that contribute to 
beliefs and anxieties about mathematics experienced by prospective elementary school teachers 
(PTs).  Teachers’ beliefs about mathematics have a powerful impact on the practice of teaching 
(Charalambos, Philippou & Kyriakides, 2002).  The students of teachers with positive beliefs 
about mathematics tend to enjoy successful learning experiences that often result in them seeing 
mathematics as useful and necessary (Karp, 1991).  Therefore, it can be argued that teacher 
beliefs play a major role in their students’ achievement and the formation of their beliefs and 
attitudes toward mathematics.  Identifying and addressing the causes of negative beliefs about 
mathematics held by PTs is crucial for improving their teaching skills and helping them 
transform the anxieties that they would perpetuate onto their future students.  

I administered a survey to over 300 PTs focused on their beliefs about the nature of 
mathematics, mindset and their prior experiences in learning mathematics. All participants were 
asked to complete a survey that utilized both quantitative and qualitative items about their beliefs 
and attitudes on learning mathematics as well as their prior experiences with mathematics.  I 
analyzed the data uwing a mixed method approach to look for correlations between the PTs’ 
beliefs about mathematics and their experiences throughout their mathematics education.  
Quantitative data was analyzed by using analysis of variance to determine whether differences 
between sample subgroups were statistically significant.  Descriptive statistics were used to 
analyze qualitative responses and will serve as the basis for conclusions drawn about the nature 
and etiology of attitudes toward mathematics.    

The poster will show the reasoning behind the questions asked and the correlated results of 
the survey that indicate that there are strong relationships between PTs’ previous educational 
experiences and the level of their anxiety and confidence toward teaching mathematics. PTs’ 
lack of confidence in teaching mathematics was highly correlated with previous experiences 
learning mathematics that emphasized memorizing procedures and finding correct answers 
quickly. The findings from this survey provide the first steps in understanding PTs’ beliefs about 
mathematics, and their anxieties and lack of confidence in being able to teach mathematics.  
Mathematics teacher educators can use these results to address these issues in mathematics 
education courses so that PTs might have an opportunity to transform their beliefs. 
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Using a Scripting Task to Probe Preservice Secondary Mathematics Teachers’ Understanding 
of Function and Equation  

  
Theresa Jorgensen(1)   James A. Mendoza Álvarez(1)   Janessa Beach(1) 

(1)The University of Texas at Arlington  
  

In order to determine preservice secondary mathematics teachers’ (PSMTs) conceptual 
understanding following an inquiry-based lesson on the constructed meanings of the equals sign 
and the distinctions between the concepts of function and equation, we utilized a scripting task in 
which the PSMTs individually continued a dialogue between two hypothetical students with 
opposing viewpoints with respect to an equation arising from a function context. This study is 
part of the Enhancing Explorations in Functions for Preservice Secondary Mathematics 
Teachers Project which is developing research-based tasks and explorations together with 
instructor materials to be used in mathematics courses for PSMTs. The goal of this poster 
presentation is to discuss our implementation of the scripting task to gauge PSMTs’ 
understanding of the nuances between function and equation. We also wish to gather feedback 
and suggestions on the study design and potential implications of our research.  

 
Keywords: Mathematical Knowledge for Teaching, Preservice Secondary Mathematics 
Preparation, Functions, Equations  
  

Functions are a foundational component of the mathematics that preservice secondary 
mathematics teachers (PSMTs) will be expected to teach. However, the research literature 
identifies ways in which conceptions of functions can be limited for both PSMTs and inservice 
mathematics teachers (ISMTs). For example, some PSMTs and ISMTs believe that a function 
can always be represented by an algebraic formula, and others believe that the terms function and 
equation are interchangeable (Even, 1993; Hitt, 1998). Script writing in the context of a 
mathematics course for preservice teachers can be a useful tool to investigate and detail nuances 
in mathematical knowledge and understanding for prospective teachers (Zazkis & Zazkis, 2014). 
This study aims to detail what script writing revealed about PSMTs understanding of the 
distinctions between function and equation, particularly following their in-class experience in an 
inquiry-based lesson.  

Data gathered from the scripting task were coded using open and axial coding, then inductive 
thematic analysis was applied (Braun & Clarke, 2006; Corbin & Strauss, 2008). 
Discussion with RUME attendees will assist us in identifying design issues that need to be 
accounted for in addressing the following research question using scripting tasks: How 
do PSMTs reconcile their understanding of function and equation with their in-class experiences 
with equations that arise from functions?  

Based upon our initial analysis, though we were utilizing the scripting task to identify 
obstacles related to PSMTs’ capacity to explain distinctions between functions and equations, it 
seems that the scripting task itself served to improve their understanding by helping PSMTs 
reflect on the constructed meanings of the equal sign in function and equation contexts. 
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Creativity in Problem Solving for non-STEM majors in Calculus Courses 
 

Kimberley Cadogan 
University of Northern Colorado 

 
 Dr. Gulden Karakok Dr. Spencer Bagley 
 University of Northern Colorado Westminister College 

In this poster we share a qualitative study aimed at investigating creativity in problem solving 
for non-mathematics tracked students enrolled in a calculus course. Three task-based semi-
structured interviews with volunteered participants were analyzed using a modified whole-to-
part inductive approach (Erickson, 2006). Our findings suggest that even though students may 
perceive creativity as a process, this understanding may not necessarily be reflected in their 
written work. 

Keywords: Mathematical creativity, problem solving, creative process 

Given the critical role mathematics has played in contemporary innovation, the development 
of the talent pool in mathematics has great scientific and economic impact. As research studies 
exploring math majors’ creativity in undergraduate math courses commence (e.g., Savic, et al., 
2017), there is still a need to explore how such emphasis can be shifted to explore creativity at 
lower-level math “service” courses such as calculus.  

In this poster, we share a qualitative study that aimed to investigate creativity in problem 
solving for non-mathematics tracked students enrolled in a calculus course. Individual students’ 
problem-solving process and their self-perception of mathematical creativity were documented 
through interview data. These task-based semi-structured interviews with 3 volunteered 
participants were analyzed using a modified whole-to-part inductive approach (Erickson, 2006).  

Although no explicit description of the creative process in problem solving emerged from the 
data, each participant was observed to exhibit all four phases of Carlson and Bloom (2005)’s 
problem-solving framework. Our findings suggest that even though students may perceive 
creativity as a process, this understanding may not necessarily be reflected in their written work. 
Teachers therefore need to create opportunities in the classroom to challenge and push students 
to take risks to develop their mathematical creativity. 
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Overview of Evaluating the Uptake of Research-Based Instructional Strategies in 
Undergraduate Chemistry, Mathematics, and Physics 

Sarah Kerrigan     Naneh Apkarian   Estrella Johnson 
      Virginia Tech          Western Michican University            Virginia Tech   

   
Research-Based Instructional Strategies have been show to increase learning and retention of 
students in undergraduate STEM classes but have not been widely implemented in classrooms 
across this country. While there is research indicating the level of usage of RBIS across the 
country in gateway chemistry, mathematics, and physics courses, less is known about why 
instructors choose to use RBIS or not. We report on the design of an ongoing research study to 
assess the relative impact of individual, departmental, institutional, and disciplinary factors on 
instructional decisions in key courses for postsecondary STEM-intending students. 

 
Key words:  STEM, research-based instructional strategies, instructional practice, survey 

 
There is persistent and mounting evidence that lecturing is not the best instructional strategy 

to support student learning, engagement, and retention which has led to repeated calls for a shift 
to student-centered instructional practice in undergraduate science, technology, engineering, and 
mathematics (CBMS, 2016; Freeman et al., 2014; Kogan & Laursen, 2014). Alongside these 
general calls for more student-centered instruction, researchers have developed many specific 
instructional strategies referred to as research-based instructional strategies (RBIS). Researchers 
have also demonstrated that RBIS can have a positive impact on student success in terms of 
learning, retention, persistence, and/or enjoyment of the content. Despite mounting evidence of 
the impact of using RBIS in classrooms and some student-centered approaches used, lecture (or 
didactic) approaches to instruction are still the norm in undergraduate STEM classes (Rasmussen 
et al., in press; Stains et al., 2018). This poster presents the current state of our research project 
focusing on current knowledge of uses of RBIS and how it lead to Phase 1 of our research study.  

Our research project investigates the relative impact of factors which affect instructors’ 
decisions to use RBIS in their classrooms. For this study, we are engaged with an investigation 
of introductory postsecondary chemistry, physics, and mathematics courses. These three courses 
are particularly important because they function as gateway courses – required of most first-year 
STEM-intending students, often high-enrollment, foundational for future coursework, and have 
demonstrably low passing rates (Koch, 2017). By considering instruction and instructors in three 
disciplines, we hope to learn more about variation across STEM fields. In particular, identify 
factors which impact across disciplines and which seem relevant in one but not others. This 
knowledge will support future efforts of change agents by identifying factors that affect the 
likelihood of using RBIS in classroom and which factors are likely to have the most leverage. 

Prior research has identified certain factors related to RBIS usage in these three disciplines, 
and Phase 1 of our research study involves a national survey querying many of these same 
factors across all disciplines and all at once. This will allow for partial replication of other 
studies as well as combining those results across disciplines and factors to build a model of 
levers for instructional change at scale. It will also provide a data point regarding current levels 
of RBIS usage which will support further monitoring of the spread of RBIS across the country. 
Targeted factors include culture and context (e.g., Selinski & Milbourne, 2015), interactions with 
the education community (e.g., Henderson & Dancy, 2009), growth mindset (e.g., Aragón, Eddy, 
& Graham, 2018), and instructor attitudes (e.g., Fukawa-Connelly, Johnson, & Keller, 2016). 
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Nature of Students’ Meanings of Angle Measure and Trigonometric functions in an online 
interactive forum 

 
Ishtesa Khan  

In an online environment that promotes self-learning and online interaction between teacher and 
students, this poster proposal presents the nature of students’ meanings of introductory 
trigonometry while they interact with each other. Students’ communication in the online 
interactive forum is crucial as their reasoning influence others to make their own meaning of the 
problem. The poster proposal also presents the difficulties students encounter in developing 
trigonometric understandings when they work online independently.    

Keywords: Online Forum, Interaction, Angle Measure, Trigonometric Functions, Proportional 
Reasoning 

Introduction and Research Questions 
  Trigonometry has been a difficult mathematical idea for students and using geometric 

objects only to make sense of angle measure is not helpful to make proper connections between 
angle measure and trigonometric functions. Moore (2013) discussed the issue of how without 
having a robust understanding of the process of measuring an angle and how the structure of the 
unit relates to this process make little sense to students. For this study, I observed students’ 
interactions in an online undergraduate precalculus course that is focused on quantitative, 
covariational and proportional reasoning. Mathematical ideas here are supported by animations 
and videos leveraging students’ conceptual images. Wallace (2003) addressed the importance of 
online community as without it an online course is a mere source of information. In the online 
precalculus course, students were encouraged to use the online forum to discuss their 
understanding of trigonometric ideas introduced in their online lessons and homework. This 
proposal investigates the nature of students’ meaning making of trigonometry and difficulties 
they encounter based on their online forum discussion threads. The primary research question 
driving this study is- 

• How do students explain their understanding of angle measure and trigonometric 
functions to help others who post specific lesson/homework problems addressing that 
they are having trouble getting it? 

 
Methods and Results 

I observed interactions among teacher and 14 students and 4 of them only provided 
explanations to others but never asked for help. I used grounded theory (axial coding) (Strauss 
and Corbin, 1990, 1998; Strauss 1987) to categorize and subcategorize students’ nature of 
explanations and difficulties for introductory trigonometry ideas. As findings from this study, a 
limited number of students were having difficulties to reason quantitatively because of their habit 
of using Google for help and using SOH CAH TOA for trigonometry was not applicable directly 
for the problems in this curriculum. A larger number of students who worked through their 
lessons and watched videos attached in the lessons were successful to provide meaningful 
explanations that connects angle measure and trigonometric functions and reflect their 
quantitative and proportional reasoning. Some students struggled to reason proportional 
relationship among quantities like angle measure and subtended arc.  
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Hypothetical Learning Trajectory Leveraging Proportional Reasoning 

Ishtesa Khan 

This poster presents conceptual analysis and hypothetical learning trajectory for learning 
proportionality which was previously limited only to figure out missing value using cross-
multiplication. Based on a series of clinical interview that investigated students’ meaning of 
proportionality in an online format, I found that students tend to use only cross-multiplication 
strategy to reason proportionally which did not help them to reason proportionally. That 
emphasizes how learning proportionality along with the constant rate of change among 
quantities given in any specific word problem helps to reason proportionality conceptually. 

Keywords: Proportional Reasoning, Conceptual Analysis, Hypothetical Learning Trajectory.  

 
Introduction and Theoretical Framework 

In proportional reasoning, we are interested in comparing quantities in relation to one another 
instead of finding the ‘missing’ number of given situations. The fundamental concept we need 
for proportional reasoning is the idea of ‘ratio’. A ratio is a binary relation which involves 
ordered pairs of quantities. (Lesh, Post, & Behr, 1988). According to Thompson (1994), a ratio is 
a result of comparing two quantities multiplicatively. When we discuss proportionality we not 
only consider one ratio, we compare two ratios with likely quantities. And the rate of change of 
both ratios remains the same constant in this relationship. By Thompson (1994), a rate is a 
reflectively abstracted constant ratio. Both definitions of ratio and rate followed by Thompson’s 
1994 paper are fundamental perspectives to look forward to proportional reasoning.  
 

Conceptual Analysis and Hypothetical Learning Trajectory 
A conceptual analysis is a way to describe what students might understand about an idea to 

reason the way it should be understood (Thompson 2008). To conceptualize and reason 
proportionality I conjecture that the student will need to achieve seven learning goals I tried to 
identify in this poster. Simon’s (1995) development of hypothetical learning trajectory(HLT) is 
consist of the goal for the student learning, and hypotheses of the students’ learning (Simon, M. 
& Tzur, R., 2004). Generalizing conceptual analysis (Thompson 2008) and HLT (Simon 1995),  
this poster is going to present an HLT for proportional reasoning- 

1. Students will draw a picture which represents the given situation 
2. Students will identify quantities and determine whether they are varying or fixed 

quantities, and they will always verbalize them with corresponding units.  
3. Students will be able to represent the situation graphically with scaled measurements. 
4. Students will identify the varying quantities in the given situation and will be able to 

relate these quantities to the constant rate of change.  
5. Students will understand that one quantity is as many times bigger or smaller as the 

second quantity. If there are more than two quantities in one situation they will be able to 
understand the relationship among them as well.  

6. Students will avoid seeing ratio and proportions only as a tool for performing 
calculations, applying rules and formulae and manipulating numbers and symbols in 
proportion equations.  

 

22nd Annual Conference on Research in Undergraduate Mathematics Education 1134



 

 

References 

Lesh, R., Post, T., & Behr, M. (1988). Proportional Reasoning. In J. Hiebert & M. Behr (Eds.) 
Number Concepts and Operations in the Middle Grades (pp. 93-118). Reston, VA: Lawrence 
Erlbaum & National Council of Teachers of Mathematics. 

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. 
Journal for Research in Mathematics Education, 26(2), 114–145.  

Simon, Martin A.; Tzur, Ron. Explicating the Role of Mathematical Tasks in Conceptual 
Learning: An Elaboration of the Hypothetical Learning Trajectory. In Mathematical Thinking 
and Learning: An International Journal , v6 n2 p91-104 Apr 2004. 

Thompson, P. W. (1994). The Development of The Concept of Speed and its Relationship to 
Concepts of Rate. In The development of multiplicative reasoning in the learning of 
mathematics, 179-234. 

Thompson, P. W. (2008b). Conceptual analysis of mathematical ideas: Some spadework at the 
foundations of mathematics education. In Proceedings of the annual meeting of the 
International Group for the Psychology of Mathematics Education, 45-64. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 1135



Investigating Instructional Strategies in Introductory Statistics 
 

 Dana Kirin Sheri Johnson Samuel Cook 
 Portland State University University of Georgia Boston University 
 
 Robert Sigley Asli Mutlu 
 Texas State University North Carolina State University 

Recommendations for the teaching and learning of introductory statistics at the tertiary level 
have been set forth by the research community, including recommendations outlining desirable 
pedagogical strategies, such as the use of student-centered instruction and the integration of 
technology and resampling methods to support the development of students’ conceptual 
understanding. Yet, surprisingly little is known about how introductory statistics is being taught 
at colleges and universities across the United States. The research presented here aims to shed 
light on these aspects of the introductory statistics course by reporting preliminary findings from 
an instructor survey that was recently completed by 148 instructors nationwide. 

Keywords: Instructional Strategies, Introductory Statistics 

The importance of teaching for conceptual understanding has been stressed in 
mathematics and statistics education research at both the K-12 and college level. To support the 
development of students’ ability to think and reason with data, researchers have set forth 
recommendations for the teaching and learning of statistics, including recommendations that 
instructors foster active learning and leverage technology as part of their instructional approach 
(ASA GAISE College Report Revision Committee, 2017). Additionally, emerging empirical 
evidence suggests that teaching statistics using simulations and resampling methods has the 
potential to support student learning of statistics (Hildreth, Robison-Cox, & Schmidt, 2018). 
Since statistics is one of the fastest growing undergraduate degrees of any STEM disciplines 
(ASA GAISE College Report Revision Committee, 2017), it is important that we understand if 
the pedagogical strategies used by instructors align with the recommendations made by 
researchers.  

Based on a nationwide cluster sample, instructors from 80 selected universities were 
surveyed in Spring 2018, resulting in 148 participants (response rate 27.2%). Preliminary 
findings show that of these 148 instructors, 64% use lecture as their primary instructional format 
while approximately 28% integrate some form of active learning as part of their instruction (i.e., 
problem-based learning, inquiry oriented instruction, etc.). Additionally, despite calls for use of 
statistical software and technology to support student learning, only 46% of instructors report 
using technology as a fundamental or supplemental part of their course, with many limiting the 
use of technology to graphing calculators. As part of our poster presentation we will expand on 
these findings and report on how institutional and instructor characteristics relate to how 
statistics is being taught in these courses. 
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Future Teachers’ Identification of Multiplicative Situations 
 

                        Merve Nur Kursav              Sheri Johnson 
                  Michigan State University               University of Georgia 

 
This study examines 22 future middle school teachers’ problem solutions on proportional 

relationships. Using the appropriateness attribute (Izsák, Jacobson & Lobato, 2011) as a 
framework, we explored to what extent future middle school teachers were able to appropriately 
identify multiplication situations (MS), as well as identify and classify as partitive division 
situation (PDS) or quotitive division situation (QDS). Findings reveal that participants 
succeeded in identifying multiplicative situations, but more interestingly, with problems 
requiring division, PDS was recognized four times as often as QDS.  

 
Keywords: Proportional relationship, Appropriateness, Multiplicative situation (MS), Partitive 
division, and Quotitive division  
 

Multiplicative reasoning contains various operations such as fractions, decimals, ratios, 
percent, proportions, linear functions and higher level topics (Izsák, Jacobson, and Lobato, 
2011). A considerable amount of previous research has shown that future and current teachers 
struggle to recognize appropriate mathematical operations, especially for multiplication and 
division situations (e.g., Harel, Behr, Post, & Lesh, 1994; Tirsoh & Graeber, 1990). This present 
study investigates how middle-grade preservice teachers discriminate multiplicative situations, 
partitive division situations, and quotitive division situations on a proportional relationship task. 
According to DTMR, reasoning about fractions entails four attributes including referent unit, 
partitioning and iterating, appropriateness, and multiplicative comparison (Jacobson & Izsák, 
2015). Appropriateness requires identification of an association between the quantities of the 
given problem and relating this quantitative association with an accurate mathematical operation 
(Izsák et.al., 2011). Using a uniform definition of multiplication based on equal size groups 
(MxN=P) that clearly differentiates between the Multiplier “M” (number of groups) and the 
Multiplicand “N” (# of base units in each group), a quotitive division situation is one where “M” 
is unknown, and a partitive division situation is one where “N” is unknown.   

 
➢ Use of MS (i.e., 5x(40÷7)) and division (i.e., 40÷7) 
➢ Identification of PDS: “how many grams are in 1 group” 

 
➢ Use of MS (i.e.,  

"
#x40) and division (i.e., 5÷7) 

➢ Identification of QDS: division 

Figure 1: Use of MS, PDS, and QDS with indicators for division 
 

Each of the 22 future teachers were asked to solve a task with two different methods, 
resulting in 44 solutions. Results revealed that all participants could identify MS, however only 
15 of the 44 solutions identified division as the appropriate operation. Furthermore, only 3 of 
these solutions identified QDS, which may signal that it is more challenging. Implications 
include the importance of focusing instruction on QDS for future teachers.  
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Writing Explanations: Provoking Different Knowledge Bases by Context	
	
 Yvonne Lai Erin Baldinger	
 University of Nebraska-Lincoln University of Minnesota	
Recent research shows the promise of using tasks that situate mathematics in a pedagogical 
context for secondary teachers, including tasks where teachers are asked to explain a solution to 
a mathematical task. We use a theory of positionality (Aaron, 2011; Herbst & Chazan, 2003, 
2011) to make sense of why explanations might differ when the solver is positioned as a 
secondary teacher as compared to positioned as a university mathematics student. 

Keywords: positionality, mathematical knowledge for teaching	

In this poster, we examine the research question: When positioned as a teacher as opposed to 
positioned as a university mathematics student, what differences in knowledge bases emerge 
when solving mathematics tasks? To address this question, we interviewed 17 practicing 
secondary teachers. They wrote explanations to two versions of a task adapted from Biza, Nardi, 
and Zachariades (2007), first in the context of a university course and second in the context of 
high school teaching. Using the results of three teachers whose solutions were mathematically 
valid, we make the argument that positioning as a teacher can elicit the development of 
mathematical knowledge for teaching (MKT: Ball, Thames, & Phelps, 2008; Silverman & 
Thompson, 2008) in ways that are not activated when positioned as a university mathematics 
student. We contribute an illustration of this phenomenon and extend the results of Biza et al. 
(2007). Figure 1 shows the tasks and positioning as presented to participants.	

Positioning as university student Positioning as secondary teacher 
Your mathematics professor assigns this problem 
during a unit on mathematical justification. 
Explain why the equation |x| + |x + 1| = 0 has no 
solutions. 
Write a solution that you would hand in to the 
professor of this course. 

You plan to assign this problem to your high school 
student during a unit on mathematical justification. 
Explain why the equation |x| + |x + 1| = 0 has no 
solutions. 
Write a solution that you would share with students this 
course. 

    Figure 1. Absolute Value Task, adapted from Biza et al. (2007)	

The explanations differed based on context, as exemplified by the quotes in Figure 2. In the 
university context, these participants primarily summarized their deductive reasoning. When 
positioned as a teacher, they used more representations and attended explicitly to student 
thinking and instructional moves to guide student thinking. They discussed how to help students 
generate conviction that the statement is true, but none discussed motivating this idea in the 
university context. Thus, in the position of secondary teacher, but not university student, 
participants engaged in all of Silverman and Thompson’s (2008) practices for developing MKT. 

Positioning as university student Positioning as secondary teacher 
This task “requires you to know a lot about what 
it means to justify it. … that it works for all the 
cases, is important… understand how absolute 

values work and how to prove things 
surrounding them.” 

“I think [students’ knowledge about absolute value is] a good 
place to start because if they have that knowledge, then they can 

play with it and make drawings and use number lines and see 
what's happening and from there convince them self and justify 

whatever they're saying.” 
Figure 2. Differences in explanations by context	

We acknowledge funding from the Edgerton Foundation that supported this research. 	
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Developing the Developers:  Lessons Learned from Work to Support  
Providers of Professional Development for Graduate Teaching Assistants 

 
 Sandra Laursen Shandy Hauk 
 U. Colorado Boulder WestEd 

 Natasha Speer Jessica Deshler 
 U. Maine West Virginia University 

Preparing graduate teaching assistants (GTAs) well for their teaching roles is a high-leverage 
opportunity to improve undergraduate mathematics education. The College Mathematics 
Instructor Development Source (CoMInDS) seeks to assist people who build and lead teaching-
focused GTA professional development (TAPD) at their own institutions. CoMInDS offers direct 
support to these TAPD providers and seeks to enhance the development and use of research-
based TAPD practices. We draw upon project evaluation data and team members’ reflections to 
identify progress, opportunities and challenges in this work. 

Keywords: professional development, teaching assistants, instruction, graduate education 

As a group, graduate teaching assistants (GTAs) teach mathematics to thousands of 
undergraduates, particularly in lower-division courses that may serve as students’ only college 
mathematics experience (Ellis, 2014). Yet GTAs often lack good preparation, skills and models 
for teaching (e.g., Speer, Gutmann & Murphy, 2005; Kung & Speer, 2009). Moreover, many 
college STEM educators gain their first teaching experience as a GTA (Connolly, Savoy, Lee & 
Hill, 2016). Preparing GTAs to be effective teachers thus offers a two-fold opportunity to 
improve undergraduate mathematics instruction, in courses taught by GTAs and in courses 
taught later by those who go on to careers as college instructors. Indeed, strong, teaching-focused 
GTA training is linked to good student experiences, retention and success in early college math 
courses (Rasmussen, Ellis, Zazkis & Bressoud, 2014). But this is not the norm: most GTA 
training is short in duration and focuses on logistics and uniformity of multi-section courses, 
rather than seeking to develop GTAs as effective teachers (Ellis, Deshler & Speer, 2016).  

CoMInDS supports mathematics TAPD providers, especially newer providers, through 
intensive and online workshops that model TAPD activities and topics, connections to other 
providers, and a suite of practical resources—sample syllabi, activities, assessments and program 
models for TAPD. CoMInDS leaders also work with RUME scholars to help enrich research on 
TAPD and build research-practice connections (e.g., Deshler, Hauk & Speer, 2015). This poster 
identifies lessons learned from this work, drawing from evaluation findings and team members’ 
insights to highlight what has worked, what we have learned, and what has challenged us. For 
example, we find that workshops reduce providers’ isolation and foster their sense of TAPD as 
professional work, but most providers do not (yet) feel strong ties to a wider TAPD community. 
For many, the workshop is a first exposure to systematic thinking about the goals and design of a 
TAPD program. Not all providers embrace active learning as a program vision, but most seem 
open to framing that emphasizes building GTAs’ skills in probing and using student ideas. 
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Mathematics of Graphic Animations of Solids of Revolution 
 

 Inyoung Lee Fern Van Vliet 
 Arizona State University Arizona State University 

The purpose of this study is to look at the covariational reasoning necessary to define surfaces 
parametrically in 3-space and the mathematics involved in writing statements in Graphing 
Calculator (GC). This study offers evidence on how developed ideas of covariational reasoning 
and parametric explanation have an impact on visualizing animations, especially in the case of 
solids of revolution. Additionally, the analysis of seven calculus textbooks focusing on 
parametrically defined relationships reveals that the use of parametric explanation is confined to 
representing familiar graphs parametrically and the trends of describing parametric 
relationships in the textbooks will be discussed as well. Through the structured way of thinking 
embedded in the statements in GC, students will be able to understand how the surfaces are 
formed as the parameters vary. 

Keywords: Covariational Reasoning, Parametric Relationship, Solid of Revolution, Technology 

Project DIRACC (Developing and Investigating a Rigorous Approach to Conceptual 
Calculus) utilizes didactic objects to support students’ dynamic imagery (Thompson, 2002). In 
the online calculus textbook ‘Newton meets technology’ (Thompson & Ashbrook) developed as 
a part of the project DIRACC, students can use the animations in 3-space to develop  productive 
and meaningful images of solids of revolution.  

We analyzed seven textbooks focusing on parametrically defined relationships. The trends of 
describing parametric relationships are disclosed as follows; 1) Parametric equations are a way 

of defining a ‘curve’ in the ‘xy’ plane. 2) The parametric context is only for finding as slope 

of tangent line. 3) Parametric relationships are just to use the chain rule to find and .   

The textbook analysis led us to ponder what would be the most problematic part for students 
when connecting the parametric representations with the visualization of animations. The 
mathematical ideas of parametrically defined relationships and covariational reasoning are 
correlated. In other words, the development of dx and dy as variables throughout the DIRACC 
textbook is crucial to show the rate at which one quantity changes with respect to the rate of 
change of another quantity, where these two quantities are related to a common third variable t. 

Covariational reasoning and parametric reasoning are implemented in the statements of 
Graphing Calculator (GC), so that they provide students with the ways of thinking of parameters 
as varying quantities within finite sized intervals. We created four animations of revolving the 
graph y=sin(x) around the x-axis and the y-axis, where  using two different perspectives 
for each revolution; varying height and varying width. All the animations have multiple variables 
varying simultaneously to create the image. To understand the creation of each surface, a method 
we found helpful is to consider a particular value of all parameters but one and focus on the 
changes in the remaining parameter. By focusing on the variation in each parameter individually, 
we are able to put the variations together more coherently.  

Through beginning with this structured way of thinking, students looking at these animations 
will be able to understand how the surfaces are formed as the parameters vary. 

 

dy
dx

dy
dt

dx
dt

x∈[o,π ]
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Students’ Consolidation of Knowledge Structures through Problem Posing Activities 
 

Kyungwon Lee, Oh Nam Kwon 
Seoul National University 

This study explored a pedagogical way to contribute to students’ consolidation of their newly 
formed mathematical knowledge. We applied problem posing activities in complex analysis 
course. Students posed a problem in a group and then solved this. In the process of these 
activities, we could observe three modes of consolidation in the students’ mathematical 
knowledge and the epistemic actions emerging in aspects of problem posing. A problem posing 
activity can act as a practical way to stimulate students’ consolidation.   

Keywords: Consolidation, Problem posing, Complex analysis 

Hershkowitz et al. (2001) introduced Abstraction in Context (AiC). AiC theory explains 
the process of the construction of mathematical knowledge. Since newly constructed knowledge 
is fragile, it needs to be consolidated. Consolidation is a process in which abstraction becomes so 
familiar that it is available to the learner in a flexible manner (Dreyfus, & Tsamir, 2004). 
Analyzing students’ consolidation of knowledge structures can be a way to diagnose their 
understanding of newly constructed knowledge. However, there is little consideration of 
pedagogical ways to lead students to the consolidation phase. A problem posing activity can be a 
way to stimulate such consolidation. This is because problem posing extends students’ 
perception of mathematics, and enriches and strengthens their knowledge of basic concepts 
(English, 2003). Also, to understand how problem posing can be enacted in classrooms, there is a 
need for analysis of practice (Cai et al., 2015). So, in this study, we conducted problem posing 
activities to explore students’ consolidation.   

The participants were 27 undergraduate students in a course on complex analysis. Two 
activities were carried out in groups of three. The first activity was posing a problem using the 
concepts of complex analysis, and the second was solving the posed problems. Two groups were 
selected for videotaping and post-activity interviews. All their discussions and interviews were 
transcribed. We analyzed students’ individual utterances based on three modes of consolidation: 
B (Building-with), RfB (Reflecting on Building-with), and Rf (Reflecting) (Dreyfus, & Tsamir, 
2004). Also, we traced the students’ consolidation by determining their epistemic actions during 
the problem posing activities in the dimensions of task organization, knowledge base, heuristics 
and schemes, individual considerations of aptness, group dynamics and interactions, which are 
repetitive facets in the framework of Kontorovich et al. (2012).  

Three modes of consolidation are shown by the students’ utterances focusing on concepts 
and reviewing problems that they had previously solved. The students continued the 
mathematical discussion based on their own knowledge base and explored the condition of 
theorems in their group. Also, they discovered relations between their discussion and the 
concepts they had learned. In these problem posing aspects, we could observe that students 
consolidated their knowledge, and that problem posing stimulated epistemic actions that initially 
postponed students’ consolidation but induced them to reach the consolidation phase before long. 
Therefore, problem posing in a group activity contributes to epistemic actions by students that 
lead to the consolidation phase. This means that this activity can provide an opportunity for 
students to reflect on their own learning process and enable them to apply mathematical contents 
in a flexible way.  
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Characterizing Transition to Proof Courses: The Case of Liberal Arts Colleges 
 

Yaomingxin Lu 
Western Michigan University 

 
Many undergraduate students experience significant difficulty in learning to prove mathematical 
propositions nationwide. A previous study by David & Zazkis (2017) used document analysis of 
publicly available syllabi to create a national portrait of approaches to supporting students’ 
transition to proof across a large sample of R1 and R2 universities. Liberal arts colleges (LACs) 
operate under different sets of institutional constraints and thus offer the possibility of different 
approaches to this issue. We report results of a preliminary survey study, the goal of which was 
to enhance previous work on approaches to the transition to proof by specifically focusing on the 
case of LACs. Analysis of the survey data show that LACs’ approaches have distinctive features 
as compared to R1 and R2 universities. Notably, discrete mathematics courses served as a 
transition to proof course in almost half of the surveyed institutions. 
 
Keywords: Transition to proof, Liberal Arts Colleges, Instructional Approach 
 

Learning to prove mathematical propositions is a cornerstone of the mathematical discipline 
(de Villiers, 1990), however, many undergraduate students struggle to learn to prove (Selden, 
2012). Mathematics departments have recognized this problem and experimented with different 
curricular and instructional approaches to supporting students' entry into proof, including courses 
dedicated to this transition (Smith et al., 2017). A previous analysis by David & Zazkis (2017) 
showed that numerous departments have developed courses to introduce students to the nature of 
proof and effective arguments and that these courses have a surprising variability in their form 
and content. However, David and Zazkis’s focus was on R1 and R2 research universities, and the 
field currently knows little about the range of approaches followed by other kinds of institutions. 
Our goal for this survey study was to enhance previous work on approaches to the transition to 
proof by specifically focusing on the case of LACs. 

Fifty LACs were selected randomly based on the list of all liberal arts colleges by US news. 
We asked college mathematics faculty involved in the teaching of collegiate transitions to proof 
courses (or courses that use to facilitate the transition to proof) at those 50 LACs to complete a 
brief survey that we designed about the approach currently being taken at their colleges. 
Currently, 15 (30%) LACs have filled out the survey. For those 15 participating colleges, only 2 
out of the 15 responded that they do not have any kind of the “transition to proof” courses.  

Preliminary results indicate that LACs’ approaches to supporting students’ challenges 
through this transition are unique in many ways. The biggest difference is the non-coordinated 
nature of their “transition to proof” course as evidenced by the following range of approaches: 
out of the 15 responses, 20% write their own textbooks, 27% said the course varies according to 
instructor each semester, 20% embed the skills or practices students need in other courses such 
as number theory or linear algebra. Notably, discrete mathematics courses served as a transition 
to higher-level math courses in almost half of the surveyed institutions. Despite the differences, 
there are also similarities with the approaches used by R1 and R2 universities. In particular, 
while the results of the current study are preliminary, the results allow a broader picture of the 
range of possible ways to support this difficult transition for students and thus have implications 
both for LACs college faculty and R1/R2 institutions. 
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“Bold Problem Solving” in Postsecondary Mathematics Classes: Validation and Patterns 
 

Martha B. Makowski 
The University of Alabama 

This study (a) validates a measure “bold problem solving” for postsecondary students and (b) 
examines patterns in bold problem solving tendencies within and across various math classes. A 
confirmatory factor analysis demonstrates the general construct holds for the postsecondary 
population. Course and gendered differences in bold problem solving tendencies exist.  

At the highest levels, math requires inventiveness, experimentation, and risk taking. 
However, whether early orientations towards mathematical inventiveness and risk-taking have 
some relationship to those who choose to pursue careers involving advanced math remains 
unclear. College students who take Calculus tend to be more confident than those in lower level 
courses (Hall & Ponton, 2005). However, confidence does not suggest actionable behaviors that 
students can develop to help them become oriented toward math. Bold problem solving (BPS), a 
type of mathematical risk taking that involves a preference for solving problems using novel or 
invented solutions, a preference for working on more open-ended problems, and a desire to work 
independently, offers one possible avenue to address this. This study: 

x Validates the six-item BPS tendencies scale with the postsecondary population. 
x Examines relationships between self-reported “boldness” and students’ level of 

enrollment in mathematics, with a particular focus on gender. 

Methods 
Data were collected at a large southeastern university during the Fall 2018 semester. Four 

classes were surveyed: Intermediate Algebra, entry level Finite Mathematics, Calculus I (non-
honors), and Discrete Mathematics. These classes loosely capture the standard curriculum of the 
first few years of the postsecondary mathematics pipeline. The survey asked about students’ 
demographics, math background, and career plans. The bold problem-solving tendencies scale 
that was piloted and partially validated with a sample of eighth grade students (Author, in 
preparation), and several other measures of students’ attitudes towards math, were also included.  

Analysis and Results 
Using the entire sample, a confirmatory factor analysis (CFA) was conducted which resulted 

in four of the original six items being retained. Using the four retained items, BPS scores were 
created for each individual. Independent sample t-tests were run to examine gender differences in 
scores within classes. Table 1 presents the results from these analyses. Additional results and 
discussion will be presented on the full poster. 

Table 1. Bold Problem Solving Scores and Differences by Gender 
  Sample 

BPS 
  Female   Male       

Course   n BPS   n BPS   Difference Significance 
Intermediate algebra 2.937 

 
74 2.838 

 
29 3.19 

 
-0.352 0.016 

Finite mathematics 2.874 
 

86 2.89 
 

17 2.794 
 

0.096 0.62 
Calculus I 3.223 

 
111 3.079 

 
86 3.41 

 
-0.331 0.001 

Discrete mathematics 3.375   26 3.308   48 3.411   -0.103 0.599 
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Expert vs. Novice strategy Use During Multiple Integration Problems 
 

Ana Martinez Rebecca Dibbs 
Texas A&M University-Commerce 

 
One of the most challenging tasks in multivariate calculus for students is correctly setting up 
integration problems. The limited research in multivariate calculus suggests that this is due 
to the need to coordinate algebraic and geometric representations of the problem while 
maintaining representational flexibility. The purpose of this study was to explore the 
approaches that both experts and novices take to set up and solve triple integral problems 
using data collected via Smartpen-recorded task based interviews. The initial analysis of the 
data suggests that a difference in representational flexibility is one of the main differences 
between expert and novice approaches to multivariate integration. 
 
Key words: integration, multivariate calculus, representational flexibility 
 

Research examining students’ success in introductory mathematics courses consistently 
shows that students are not learning the intended material (Apkarian & Kirin, 2017). In fact, 
multiple studies have revealed that students that achieve a high grade in introductory calculus 
actually have a weak understanding of the course’s key concepts. These results put in question 
whether or not the traditional calculus curriculum is preparing students to use ideas of calculus in 
future courses (Bressoud, Carlson, Mesa, & Rasmussen, 2013). Ongoing efforts to reform 
calculus instruction arise from concerns that students are learning calculus as simply a series of 
algorithms without conceptual understanding (Dawkins & Epperson, 2014). Such algorithmic 
learning is problematic for students in multivariate calculus, where students need to be able to 
recognize and convert to appropriate coordinate systems to complete many multivariate integral 
problems.  

The purpose of this basic qualitative research interview study (Merriam, 1998) was to 
explore how students in multivariable calculus strategize how to solve multiple integrals 
compared to expert mathematicians. This exploration is significant because there has been no 
research on integral strategy use beyond introductory calculus (Speer & Kung, 2016). Both the 
students and experts participated in task based interviews where they will complete multivariable 
calculus problems using a Smartpen, which allows for an audio recording to be synced with the 
writing without the use of video recording. The Pencasts were then be analyzed to compare 
problem trajectories and strategy use with the ultimate goal to compare and contrast expert and 
novice multivariate calculus users. The research questions for this study were: (1) What are the 
strategies used by expert and novice multivariate calculus students when solving multiple 
integration problems? (2) To what extent do experts and novices employ similar strategies?  

The expert participants for this study were three tenured faculty members who had all taught 
multivariate calculus at least five times with the most recent iteration of the course being within 
two semesters of data collection. The novice participants were six undergraduate sophomores 
and juniors who had recently completed a multivariate calculus course within one semester of 
data collection. Expert participants were interviewed alone while the novice participants were 
interviewed in pairs. All participants completed the same 45-minute task-based interview of 
representative multiple integration problems using a Smartpen to capture their written work and 
audio discussion throughout the process. These Pencasts were then open coded for strategy use. 
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A Survey of Student Attitudes toward Math in CRAFTY Inspired Classes for Business Students 
 

Mike May. 
Saint Louis University 

 
Abstract: The author is part of a multi-institution grant that is attempting to implement the 
recommendations of the MAA Curriculum Foundations Project CRAFTY report on mathematics 
for partner disciplines. The author’s institution is focusing mathematics for business students.  
Although the CRAFTY report is nearly 15 years old there seems to be little in the literature 
looking at the effectiveness of implementation of the report’s recommendations.  This report 
looks at how implementation changes student’s attitudes toward mathematics. 
 
Key Words: Business Mathematics, Spreadsheets, Client Discipline Expectations 
 

Background and Motivation 
 

The MAA’s Curriculum Foundation Project and its CRAFTY reports [MAA 2004] 
looked at the desires for partner disciplines desires for introductory mathematics courses.   This 
was followed by a series of attempts to implement the recommendations in college courses, 
particularly focused on college algebra [MAA, 2011].  Two RUME reports [May, 2013, Mills, 
2015] have looked at the desires of business faculty and confirmed the findings of the CRAFTY 
report.  However there seems to be almost no RUME or SOTL studies on the effectiveness of 
any implementation or its impact on student attitudes toward mathematics.  The work behind this 
poster is an attempt to start that examination. 

 
Context of the Work 

 
The work is part of a multi-institution grant, NSF-Number, with the author’s institution focusing 
on math for business students.  After the CRAFTY report, there were two serious attempts to 
implement the report recommendations in business calculus projects [Felkel and Richardson 
2008, Thompson and Lamoureux, 2002].  All schools using either of those books have gone back 
to traditional books for there students.  The work of [Felkel and Richardson, 2008] served as the 
inspiration for a online book, WEBSITE that is used at the author’s institution and one other 
school for business calculus.  Following the advice of a working group of business and math 
faculty at the author’s institution, the author is adapting CRAFTY inspired materials from 
another school in the grant to develop a course in college algebra focused on business students. 

 
Research Framework 

 
Anecdotal evidence indicates that the changed focus of the course changes the students 

attitudes toward mathematics, with the added context, focus on modeling and discipline specific 
problems, and appropriate use of technology making mathematics more relevant.  The students 
in treatment groups and control groups were given a survey on attitudes toward math and those 
are compared. 

 
References: 

22nd Annual Conference on Research in Undergraduate Mathematics Education 1154



DuPort, D. (2012), Teaching quantitative methods to business and soft science students by using 
interactive workbook courseware, Spreadsheets in Education (eJSiE): Vol. 5: Iss. 2, 
Article 3. Available at: <http://epublications.bond.edu.au/ejsie/vol5/iss2/3>. 

Felkel, B. and Richardson, R., (2009) Networked Business Math, Kendell Hunt. 
Lamoureux, C. and Thompson, R. (2003), Mathematics for Business Decisions, MAA. 
Liang, J. and Martin, L. (2008), An Excel-Aided Method For Teaching Calculus-Based Business 

Mathematics, College Teaching Methods & Styles Journal, November 2008, Volume 4, 
Number 11. 

MAA Curriculum Foundation Project, 2004, Curriculum Foundations Project: Voices of the 
Partner Disciplines. - < http://www.maa.org/programs/faculty-and-depart-
ments/curriculum-department-guidelines-recommendations/cupm/cupm-guide-2004> 

MAA Curriculum Foundation Project, 2004, Curriculum Foundations Project: Voices of the 
Partner Disciplines. – Chapter 3, report on Business and Management. 
<https://www.maa.org/sites/default/files/pdf/CUPM/crafty/Chapt3.pdf> 

Mathematical Association of America , 2004, Undergraduate Programs and Courses in the 
Mathematical Sciences: CUPM Curriculum Guide 2004, A report by the Committee on 
the Undergraduate Program in Mathematics of The Mathematical Association of America, 
< http://www.maa.org/programs/faculty-and-departments/curriculum-department-
guidelines-recommendations/cupm/cupm-guide-2004> 

MAA Curriculum Foundation Project, 2011, Partner Discipline Recommendations for 
Introductory College Mathematics and the Implications for College Algebra, 
<http://www.maa.org/sites/default/files/pdf/CUPM/crafty/introreport.pdf> 

May, Mike, Rethinking Business Calculus in the Era of Spreadsheets, Proceedings for 
Conference on Research in Undergraduate Mathematics Education, XVI, 2013 

May, Mike, Business Calculus with Excel, (BCE) the current version of an electronic textbook,                                                            
<http://math.slu.edu/~may/ExcelCalculus/>, 2018 

Mills, Melissa, Business Faculty Perceptions of the Calculus Content Needed for Business 
Courses, Proceedings for Conference on Research in Undergraduate Mathematics 
Education, XVIII, 2015 

Thompson, R., and Lamoureux, C. Mathematics for Business Decisions Part 1: Probability and 
Simulation (Electronic Textbook) MAA, 2002, < http:// 
business.math.arizona.edu/MBD/mbd.html> 

Thompson, R., and Lamoureux, C. Mathematics for Business Decisions Part 2: Calculus and 
Optimization (MBD) (Electronic Textbook) MAA, 2002, < http:// 
business.math.arizona.edu/MBD/mbd.html> 

Thompson, R, Business College Support of Mathematics for Business Decisions Motivates 
Students, Focus, August/September 2004, pp 16-17, < http:// 
business.math.arizona.edu/WORD/focus04.PDF > 

 

22nd Annual Conference on Research in Undergraduate Mathematics Education 1155



Alternative Scoring Methods in Collegiate Mathematics Courses 
 

 Michelle A. Morgan Jeffrey J. King 
 University of Northern Colorado University of Northern Colorado 

This poster presentation will highlight the results of a qualitative, multicase study which 
explored the use of alternative scoring practices in collegiate mathematics classes.  Specifically, 
the researchers explored the use of two different scoring practices: one in an entry-level College 
Algebra course and one in an upper-level Modern Geometry course.  In addition to classroom 
observations, data collection for each case consisted of two interviews for each course 
instructor, one interview with each course designer, and interviews with students in each course.  
This poster presentation will detail themes from cross case analysis which suggest important 
details for successful implementation of alternative scoring practices in collegiate mathematics 
courses. 

Keywords: Assessment, classroom practices, case study 

Grading and scoring practices have been a topic of debate and discussion for more than a 
hundred years (e.g., Starch & Elliot, 1913).  There has been a recent push, however, in collegiate 
mathematics to implement alternative scoring practices (e.g., MAA, 2018).  At a University in 
the rocky mountain region, there are two different methods used in two different courses.  The 
purpose of this case study was to explore the implementation of each of these methods during the 
fall semester.  In both cases, the scoring practices were implemented by instructors who were 
mentored in the method by another instructor who designed the course and initially implemented 
the scoring method.  This study sought to describe the nature of alternative scoring practices in 
collegiate mathematics courses. 

Data Collection and Analysis 
For each course, the first author conducted pre- and post-interviews with each course 

instructor.  The purpose of these interviews was to better understand their teaching philosophies 
as well as their use of the alternative scoring practice.  She then observed each course for a 
period of four weeks on days in which the instructor returned scored work.  Following classroom 
observations, she interviewed the course designer as well as three students per course.  After data 
collection, the data was analyzed using an open coding process to determine and explore 
emergent themes. 

Themes and Discussion 
The emergent themes from cross case analysis suggest key details for the successful 

implementation of alternative scoring practices.  These themes include instructor buy-in and 
consistent implementation, communication between instructor and students, and the ability to 
implement feedback and correct work for an improved score. 
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Impact of Historical Mathematical Problems on Student Metaperspectives of Mathematics 
 

Scarlett Nestlehut, Todd Abel 
University of Central Arkansas 

 
Undergraduate students in a History of Mathematics course engaged with various historical 

mathematical problems. Reflective journals and interviews were used to analyze their 

perspectives on meta-issues of mathematics. The results indicate some revision of their 

metaperspectives and new cultural awareness. 

 
Keywords : Metaperspectives, History of Mathematics, Meta-Issues, Cultural Mathematics 

 
Jankvist (2009, 2011) distinguishes between mathematical in-issues  and meta-issues.  In 

contrast with in-issues, meta-issues are concerned with mathematics as a whole (Jankvist, 2009, 
2011), including the nature of mathematics as a discipline and the social and 
cultural-situatedness of mathematical work (Bishop, 1988, 2002; D’Ambrosio, 1985). Student 
conceptions of these meta-issues are termed metaperspectives , and are important in shaping how 
they interact with and understand mathematics.  

Work of the past few decades has established a number of potential benefits for integrating 
the history of mathematics into mathematics curriculum (Clark, 2012; Clark, Kjeldsen, Schorcht, 
Tzanakis, & Wang, 2016; Fauvel, 1991; Swetz, 1995). This project considers undergraduate 
metaperspectives as students engage with historical problems grounded in primary sources 
(Barnett, Lodeer, & Pengelley, 2014), investigating the research question: How do students’ 

meta-perspectives change as they engage with historical mathematical problems? 
Twelve undergraduate STEM majors enrolled in a history of mathematics course completed a 

series of journal entries reflecting on meta-issues in mathematics and their own experiences 
encountering historical mathematics. Initial journals included prompts such as “Describe a 
mathematician”, and “Is mathematics invented or discovered?” As the semester progressed, 
prompts addressed reactions to class work more specifically. All journals were completed online. 
In addition, five students were interviewed two times each. One interview asked students to 
expound on passages from their journals, while a follow-up interview at the conclusion of the 
course prompted reflection on their views of the meta-issues described above. Themes within 
these journal entries emerged using open coding (Charmaz, 2014). 

Results indicate that students initially viewed mathematics as “discovered” - existing 
independently of any human knowledge of it. Furthermore, an archetypal mathematician was 
described as an “old, white Greek man”. Initial meta-perspectives indicated widespread exposure 
to a modified Eurocentric perspective on mathematics history (Joseph, 2011), with some 
awareness of historical mathematical work in Asia. As the semester progressed, students began 
to describe mathematics as arising from practical needs within a culture and recognize 
differences in mathematical communication. The proposed poster highlights themes in student 
metaperspective shifts, particularly new cultural awareness and appreciation of the way 
mathematics is embedded in cultures that produce it. The results indicate that historical problems 
prompted students to reflect on mathematical meta-issues and adjust their metaperspectives 
while not entirely dismissing their existing ones. For example, though more students described 
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mathematics as arising from needs within a culture, they still viewed mathematics as existing 
separately from any mathematician or culture’s conception of it. 
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A Case Study of Student Motivation and Course Structures in Introductory Calculus  

 
 Paran Norton Karen High  
 Clemson University  Clemson University  

Student success in introductory calculus is imperative to obtaining a degree in STEM. Calculus I 
is a main gatekeeper course for STEM majors, and many students leave the class with a 
diminished motivation to pursue further courses related to mathematics. This poster reports a 
qualitative case study from a larger mixed-methods project aimed at exploring the relationship 
between course structures (hybrid, traditional, and large active learning) and student motivation 
in calculus. Using the theoretical framework of self-determination theory (SDT), six students 
were interviewed to investigate how each course structure was related to students’ perceptions 
of their competence, autonomy, and relatedness. Emerging themes showing differences in student 
motivation between the three course types will be presented.  

Keywords: Calculus Success, Motivation, Active Learning  

The Mathematical Association of America (MAA) national study of Characteristics of 
Successful Programs in College Calculus revealed that introductory calculus occupies a 
gatekeeper role for STEM majors across the country. Even if students persist through Calculus I, 
they leave the class with a diminished confidence and enjoyment of mathematics and a decreased 
desire to continue pursuing further mathematics (Bressoud 2015). Thus, the goal of this research 
study was to provide a better understanding of the relationship between learning environments 
and student motivation in introductory college calculus. Results of this work will help guide 
mathematics faculty and administrators to create environments that are most conducive to 
fostering students’ motivation, thus supporting their academic achievement in calculus.  

The theoretical framework of self-determination theory (SDT) was used to guide this study. 
SDT is a macro-theory of motivation and has been widely used to study the social factors of an 
environment under which people thrive (Ryan & Deci 2000).  According to SDT, three basic 
psychological needs are essential to fostering a student’s motivation and engagement: 
competence, autonomy, and relatedness. Competence refers to students feeling confident and 
effective in the classroom, autonomy means they have a sense of agency and authority, and 
relatedness incorporates students’ need to feel a sense of belonging in the classroom (Niemiec & 
Ryan 2009).  

This poster will report the qualitative piece of a larger mixed-methods design that 
investigated the interaction of course structures, students’ basic psychological needs satisfaction, 
and motivation. Three different course types of Calculus I were sampled at a large research 
university, which included traditional methods, hybrid online, and a large-enrollment active 
learning classroom. The Basic Psychological Needs Scale (BPNS) and the Situational Motivation 
Scale (SIMS) were administered to students in the three course types (N=323). Six students were 
purposefully selected based on their survey responses, and one-on-one interviews were 
conducted to determine what aspects of each course structure were contributing to students’ 
perceptions of their competence, autonomy, and relatedness. This poster will present emerging 
themes from the case study analysis (Merriam 1998), and implications for mathematics faculty 
will be discussed.  
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Understanding the Impact of Supports on Adjunct Mathematics Instructor Knowledge 
 

Jessica Tybursky Nuzzi Eileen Murray Madhavi Vishnubhotla 
Montclair State University Montclair State University Montclair State University 

 
Zareen Rahman Amir Golnabi Teo Paoletti 

James Madison University Montclair State University Montclair State University 
 
This proposal describes findings of an ongoing project designed to support adjunct instructors’ 

teaching of undergraduate Precalculus. We are studying the impact of supports on Precalculus 

instructors’ knowledge through interview and assessment data. Using Shulman’s (1987) 

components for a teaching knowledge base, we discuss shifts in instructors’ perspectives. 

Keywords:Teacher knowledge, Adjunct instructors, Undergraduate mathematics, Precalculus 

We know students’ persistence in pursuing STEM degrees is heavily influenced by their 
experiences in undergraduate first year mathematics courses (Pampaka, Williams, Hutcheson, 
Davis, & Wake, 2012). In this regard, the quality of pedagogy can make a difference in retaining 
students, as improved instruction may motivate students to learn more mathematics and consider 
pursuing a STEM degree (Ellis, Kelton & Rasmussen, 2014). Moreover, current trends in higher 
education are to employ more part-time, non-tenure track faculty to teach introductory courses in 
science and mathematics (Curtis, 2014). These trends have motivated the field to better 
understand how institutional policies and practices can improve part-time instructors’ 
professional growth (Kezar & Sam, 2013). T his proposal presents findings from a study of 
Adjunct Mathematics Instructor Resources and Support (AMIRS) to explore the impact on 
Precalculus adjunct instructor knowledge in an effort to address these issues. 

To investigate Precalculus adjunct instructor knowledge, we adapted three components 
for teaching knowledge base Shulman (1987) argued,  allow teachers to develop deeper 
understanding of their subject : Structures of subject Matter (SOM), Principles of conceptual 
organization (PCO), and Principles of inquiry (POI). We looked at how supports (e.g. course 
coordination, summer workshop, PLC meetings ) impacted their knowledge through pre- and 
post-interviews and content assessments aligned with an adopted research-based curriculum. 
Based on interview data, we found differences in SOM by observing changes in the depth of 
instructors’ content knowledge in terms of thinking about specific structures of precalculus (e.g. 
tangent being the slope of a curve). Second, although instructors had previous experience 
teaching mathematics, and therefore prior conceptual webs of precalculus topics (PCO), there is 
evidence that teachers not only began reorganizing their knowledge but also valued this 
reorganization as a benefit for their students’ understanding. Finally, regarding POI, instructors 
moved from general to more specific ideas about how students can engage in mathematical 
inquiry, while also citing opportunities for students to model situations to problem solve, and for 
students to drive instruction. Currently, we are analyzing results from content assessment to 
better understand the nature of these changes. 
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Student Engagement while Establishing Classroom Mathematical Practices 
 

 Emmanuel Barton Odro Derek Williams Jonathan López Torres 
 Montana State University Montana State University North Carolina State University 

This study investigates student engagement while learning through use of an app that collected 
student engagement reported by participants during a classroom teaching experiment. This 
paper discusses preliminary results on students’ engagement in the process of learning. Though 
not anticipated, we observed differences between male and female students’ engagement while 
working in mixed-pairs worthy of investigation. 

Keywords: Student engagement, Classroom mathematical practices, Preservice teachers 

There is a significant connection between student engagement and performance achievement. 
Klem and Connell write, “student engagement has been found to be one of the most robust 
predictors of student achievement and behavior in school, a conclusion which holds regardless of 
whether students come from families that are relatively advantaged or disadvantaged 
economically or socially” (2004, p. 5). However, student engagement is complex, and currently 
relationships to outcomes such as mathematical understanding and learning are elusive 
(Fredricks, Blumenfeld, & Paris, 2004; Middleton, Jansen, & Goldin, 2017). This study 
investigates student engagement in the process of learning. 

Theoretical Framing 
From the perspective of flow theory, student engagement is comprised of interest, enjoyment, 

and concentration (Shernoff, Csikszentmihalyi, Schneider, & Shernoff, 2003), where interest and 
enjoyment make up emotional and behavioral aspects and concentration accounts for cognitive 
engagement. The emergent perspective describes learning as social and individual, where 
classroom mathematical practices comprise collective learning and individuals’ ways of 
participating in such practices reflects individual learning (Cobb & Yackel, 1996). We consider 
students’ affective and cognitive experiences through these theories. 

Methods 
We conducted a classroom teaching experiment (Cobb, 2000) with 6 preservice teachers (3 

female and 3 male) to address the question, what characterizes relationships between student 
engagement and learning? Participants were sent a 5-item survey on engagement at two random 
times during each one-hour session through a mobile app on their smart phones. One-on-one 
recall interviews were conducted based on survey responses and mathematical contributions. All 
sessions and interviews were video recorded. Data were analyzed for participants’ engagement 
and classroom mathematical practices (Stephan & Rasmussen, 2002). 

Results and Conclusions 
We observed differences between male and female students’ engagement while working in 

mixed-pairs surrounding important mathematical contributions from female partners. Female 
students described situations in which they perceived of male partners overlooking valuable 
contributions towards completing tasks, resulting in dips in engagement. With regards to data 
collection, the app and survey effectively gathered information on student engagement, which 
was triangulated by students’ descriptions in recall interviews. 
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TRANSFORMATIVE LEARNING THEORY: A LENS TO LOOK AT 
MATHEMATICS COURSES FOR PREPARING FUTURE TEACHERS 

 
  Dana Olanoff               Kim Johnson 
       Widener University   West Chester University of Pennsylvania 

  
We suggest a 4-step cycle for helping prospective teachers transform their mathematical 
understandings from procedurally-based to more conceptually-based understandings. We use 
Mezirow’s (1991) idea of Transformative Learning Theory (TLT), which is an application of 
androgogy, or the methods of teaching adults. In this poster, we share our model of a TLT cycle 
and illustrate it using an example of a proportional reasoning problem for prospective teachers. 
  
Key Words: Learning Theory, Teacher Education-Preservice, Andragogy 
 

Research has shown that prospective teachers (PTs) enter their mathematics content 
courses with procedural understandings of mathematics (e.g. Thanheiser et al., 2014). However, 
they will be required to know and understand more than just how to solve mathematics problems 
(AMTE, 2017). We believe that it is our job as mathematics teacher educators to help PTs 
develop the conceptual understandings and specialized mathematics content knowledge that they 
will need in their work as teachers. In studying how to help PTs transform their understandings 
of mathematics, we look at what makes PTs’ relearning of mathematics different from children 
learning mathematics for the first time. We begin by studying the concept of andragogy, which 
involves methods of teaching adults. (This contrasts with pedagogy, which are methods for 
teaching children.) Malcolm Knowles (1984) researched the concept of andragogy in the 1980’s 
and proposed four assumptions about adult learners. Self-concept relates to the idea that adults 
are more responsible for their own learning than children. The role of experience encourages 
instructors who work with adult learners to take the experiences they bring into account when 
planning and implementing instruction. Adults are often motivated by how the content they are 
learning applies to them and their future careers. An adult’s readiness to learn and orientation to 
learning are tied to their internal appreciation of how the information applies to their lives.  

Transformative learning theory (TLT) is an application of andragogy that attempts to 
establish and clarify a learner’s prior assumptions and then transform these assumptions 
(Mezirow, 1991). The theory claims that only after learners are aware of their assumptions can 
they develop strategies to transform these assumptions. We present a 4-step implementation 
cycle based on TLT to help university instructors plan and implement lessons to help their 
students deepen their mathematical knowledge. In the first step the instructor presents the learner 
with a disorienting dilemma where his/her preconceived ideas are challenged and perturbed, or 
where the procedures that they already believe they know are not enough to solve the problem. 
In the second step students are asked to work through the dilemma while reflecting on their 
previous assumptions.  The third step focuses on justifying and explaining their proposed 
solutions with peers in order to reach an equilibrium between their prior assumptions and the 
disorientation presented by the task.  The fourth and final step involves making connections 
between the procedural fluency and the conceptual understanding, helping students to see how 
the procedures they learned (their prior assumptions) are related to their new knowledge (their 
transformed understanding). We suggest that TLT can be a valuable resource for helping PTs 
and other undergraduate students to expand and transform their mathematical understandings. 
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Conceptual Desires and Procedural Demands: Conflicting Aims in University Mathematics 
Students’ Work on Tasks in Seminar Groups 

 
Kerstin Pettersson 

Stockholm University 

Small groups teaching as part of first semester was studied through observations of the 
seminars, analysis of the tasks, and students’ responses in surveys and interviews. The research 
question posed is how the teaching activities enabled the students to develop their conceptual 
and procedural knowledge. The results show a desire for a development of conceptual 
knowledge but the demands on procedural knowledge placed the students with conflicting aims. 

Keywords: university mathematics teaching, conceptual knowledge, procedural knowledge 

In the area of university mathematics education there is a growing interest in the teaching 
(Biza, Giraldo, Hochmuth, Khakbaz, & Rasmussen, 2016). Small groups teaching has shown 
reasonable effects on students’ conceptual understanding (eg. Jaworski, Robinson, Matthews, & 
Croft, 2012), but still there is need for research on the use of small groups teaching to understand 
students’ learning in such settings. The poster presents results from a project at a mathematics 
department in Sweden where small groups teaching was part of the schedule for the first 
semester mathematics students (Pettersson & Larson, 2018). The aim of the project was to 
develop the small groups teaching and a study was set up to better understand the situation. The 
so called seminar groups met once a week, included about 10-15 students in each group and were 
led by an experienced lecturer. There were also four times a week ordinary lectures given in a 
lecture hall for all the students (>100 students). In the seminars students were discussing tasks 
that promoted conceptual knowledge. An example of a task is “What does it mean for a function 
that the derivative is missing in one point?” The students were before each seminar obligated to 
hand in written solutions of one or two tasks. These tasks are marked and commented on by the 
teacher of the seminar group. An example of such a task is “Give the global maximum and 
minimum for the function  f (x,y) = ln (1+x2+y2) – x on the disc given by x2+y2 ≤ 4.” 

The research question for the study presented here was: How did the small group teaching 
activities enable the students to develop their conceptual and procedural knowledge? Data 
collection includes observation of small group sessions, analysis of the given tasks, and students’ 
responses to surveys and interviews. For the data analysis a deductive thematic analysis has been 
used where procedural and conceptual knowledge are used as defined by Baroody, Feil, and 
Johnson (2007). Starting from Hiebert (1986), further discussions argued that both procedural 
and conceptual knowledge could be of different quality (eg. Star, 2005) and that both procedural 
and conceptual knowledge need to be developed and to be intertwined (Baroody et al., 2007). 

The results show that both the students and the teachers desire a development of conceptual 
knowledge. The discussion tasks were posed in a way to promote this kind development. The 
students appreciated this and wanted time to even more think about conceptual tasks. However, 
the tasks that the students are obligated to work with and deliver for grading were mostly 
engaging the students in development of procedural knowledge. The students used a lot of time 
to get every symbol right. So, even if the lecturer in the seminar raised conceptual aspects 
according to the comments made, the students were not able to fully take on that. The demand 
for procedural knowledge gave rise to a conflict with the desire for conceptual knowledge, and 
that hindered a development where procedural and conceptual knowledge got intertwined. 
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Introducing IOLA-G: The Inquiry Oriented Linear Algebra Game 

 

 David Plaxco Michelle Zandieh Ashish Amresh 

 Clayton State University Arizona State University Embry Riddle University 

This poster introduces early results from IOLA-G, a project exploring the possibilities of 
supporting inquiry-oriented instruction with digital videogames. During the poster presentation, 
we will describe our game design process, including the theories we have drawn upon during its 
development. We will also show small samples of gameplay from a corpus of data we collected 
with undergraduate students at three different universities. Additionally, we will demonstrate 
gameplay on laptops, providing poster visitors with first-hand experience playing the game. 

Keywords: Linear Algebra, Inquiry Oriented Instruction, Videogames, Game-Based Learning 

In recent years, videogames have gained traction as an educational tool, leading to theoretical 

perspectives to inform game design and a growing body of research into best practices for 

supporting student learning through gameplay. Within the same period, developments in internet 

and mobile technologies have led to a ubiquitous market of digital games that are being produced 

at staggering rates and with rapidly increasing sophistication. However, relatively few of these 

games have explicit educational goals and a small fraction of those games draw on best practices 

as identified through research, especially in order to support the learning of undergraduate 

content. The goal of IOLA-G is to modify our team’s research-based Linear Algebra curriculum 

toward a theoretically oriented videogame for Linear Algebra (Zandieh, Plaxco, Williams-Pierce, 

and Amresh, 2018). In this endeavor, we leverage best practices from multiple communities, 

drawing on theory from three different bodies of research – Game-Based Learning (GBL; Gee, 

2003; Gee 2005; Gresalfi, 2015), Realistic Mathematics Education (RME; Gravemeijer, 1999), 

and Inquiry-Oriented (IO) and Inquiry-Based (IB) Instructional practices (Zandieh & 

Rasmussen, 2010; Zandieh, Wawro, & Rasmussen, 2017; Rasmussen & Kwon, 2007).  

In our first year of the project, the IOLA-G team worked with undergraduate capstone 

Computer Science students to develop an initial version of a videogame called “Vector 
Unknown.” Throughout the game’ development, our team explicitly drew on the various 

theoretical framings cited above to make decisions about game design, instructional goals, and 

player experience. The goal during gameplay in the current version of the game is for the player 

to help a bunny avatar reach a goal using vectors from a given set. In order to move the bunny, 

the player must insert vectors into blank boxes on a control panel to create a linear combination. 

The player changes the scalars of the vectors using “+” and “–” buttons to increase and decrease 

the scalars of the vectors in integer increments. On some levels, projections of the resulting 

vectors emanate from the bunny’s location before the player clicks a “Go” button. On other 

levels of the game these guides are removed to help necessitate a change in the player’s strategy.  

We have collected and are currently analyzing our first round of individual interview data 

with undergraduates who have varying levels of Linear Algebra experience playing the game. 

Additionally, we are now working with a second group of programmers to improve the game 

beyond its current state. With this revision, we intend to draw on our experiences collaborating 

with the first team as well as the insight we continue to gain through our analysis of the interview 

data. During our poster presentation, we will describe the gameplay and our development 

process in greater detail. We will also present visitors with a laptop on which to play the game 

during the poster session and also with a link to the current version of Vector Unknown. 
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Adjunct Instructors’ Opportunities for Learning Through Implementing  
a Research-based Mathematics Curriculum 

 
Zareen Gul Rahman  

James Madison University 
This study explored adjunct instructors’ opportunities for learning as they faced challenges 
while implementing a research-based mathematics curriculum. Three case studies explored 
adjunct instructors’ experiences as they implemented a research-based precalculus curriculum 
for the first time over the course of two semesters. The similarities and differences between the 
challenges faced by the instructors and the opportunities for their learning were analyzed. 

Keywords: Teacher learning, adjunct instructors, research-based curriculum 

Teachers play an important role in providing meaningful learning experiences to their 
students and can influence their decisions to stay in STEM fields (Cohen & Ball, 1999; Ellis, 
2014). Research suggests that teachers should be supported as they implement research-based 
curricula (Cohen & Ball, 1999; Remillard, 2000). Implementing such curricula can provide 
learning opportunities for teachers in addition to their students (Ball & Cohen, 1996; Remillard 
& Bryans, 2004; Doerr & Chandler-Olcott, 2009; Drake & Sherin, 2009). In this poster I present 
findings from a study exploring the opportunities for teachers’ learning that arise as a result of 
their interaction with a research-based precalculus curriculum. My specific research question 
was: 
How does engagement with a research-based Precalculus curriculum provide opportunities for 
adjunct instructors’ learning? 

Remillard and Bryans (2004) found that teachers’ unique ways of engaging with a 
curriculum can provide opportunities for student as well as teacher learning. They define 
opportunities for learning as arising from “events or activities that are likely to unsettle or 
expand teachers’ existing ideas and practices by presenting them with new insights or 
experiences” (p. 12). These opportunities arise as teachers engage with a curriculum while 
making instructional decisions for effective student learning experiences. 

Case study methodology (Yin, 1994) was used to study the opportunities for three adjunct 
instructors’ learning while they implemented a research-based precalculus curriculum over two 
semesters. The study took place at a Ph.D granting institution in the northeastern United States. 
Three adjunct instructors were selected as participants for this study with each having over ten 
years of teaching experience. This was their first semester teaching precalculus using the new 
research-based curriculum. As part of this implementation the instructors participated in weekly 
online meetings where they discussed the curriculum and their experiences implementing it. 

Data was collected in the form of semi-structured interviews and classroom observations 
conducted at the beginning and end of Fall 2016 and Spring 2017 semesters. In addition, audio 
recordings and chat logs from instructors’ participation in online meetings were also collected. 
Qualitative data analysis methods were used to code and sort data (Saldaña, 2009). The key 
findings from this analysis were as follows. In order to avail the emergent learning opportunities, 
teachers should: 1) be mindful of their own challenges, 2) be able to explore in depth what those 
challenges entail, even if it includes analyzing their own teaching practice, and 3) be willing to 
take the necessary steps for overcoming the challenges. These findings have implications for 
adjunct instructor professional development. 
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Graphical Forms: The Adaptation of Sherin’s Symbolic Forms for the Analysis of Graphical 
Reasoning Across Disciplines 

    Jon-Marc G. Rodriguez             Kinsey Bain            Marcy H. Towns 
Purdue University        Purdue University           Purdue University 

 

This work involves a methodological presentation of an analytic framework for characterizing 
mathematical reasoning, introducing the construct of “graphical forms”. Graphical forms build 
on Sherin’s (2001) symbolic forms (i.e., intuitive ideas about equations) by focusing on ideas 
associated with a pattern in a graph. In addition to providing an overview of the symbolic forms 
identified in the literature, we describe how we expand the symbolic forms framework to 
encompass graphical reasoning. Analysis involving the graphical forms framework is illustrated 
by providing examples of interpretations of graphs across disciplines, using introductory 
biology, calculus, chemistry, and physics textbooks. Our work suggests the broad applicability of 
the framework for analyzing graphical reasoning across different contexts.       
 

Keywords: Mathematical Reasoning, Symbolic Forms, Interdisciplinary 
 

 
The framework we describe in this work is informed by the resource-based model of 

cognition, which posits that knowledge is composed of fine-grained cognitive units (“resources”) 
that form a network and are activated in response to specific contexts (Hammer et al., 2005). 
Resources reflect ideas that may be characterized as conceptual, epistemological, or procedural 
(Becker, Rupp, & Brandriet, 2017). Symbolic forms can be considered “mathematical resources” 
that describe intuitive ideas associated with patterns in an equation, such as attributing the idea of 
“balancing” to the pattern “☐ = ☐” (a box represents a term or group of terms) (Sherin, 2001). 
Sherin’s (2001) initial work involved characterizing algebraic operations in physics problem 
solving, but recent work has utilized the symbolic forms across disciplines, characterizing 
advanced mathematical reasoning about topics such as differentiation, integration, and vectors 
(Dreyfus et al., 2017; Dorko and Speer, 2015; Hu and Rubello, 2013; Izsak, 2004; Jones, 2013, 
2015a, 2015b; Rodriguez et al., 2018; Schermerhorn and Thompson, 2016; Von Korrff and 
Rubello, 2014).  

It is also worth noting that the symbolic forms framework has focused on students’ 
reasoning, but we assert that experts have access to a similar set of mathematical resources about 
equations. Furthermore, we describe an analogous type of reasoning about graphs, graphical 
forms. Using examples from graphs presented in introductory biology, calculus, chemistry, and 
physics textbooks, we illustrate examples of graphical forms, including “steepness as rate” (the 
relative steepness of a graph provides information about rate), “straight means constant” (a 
straight line indicates a lack of change), and “curve means change” (a curve indicates change). 
Graphical forms, like symbolic forms, have broad utility and applicability for interpreting 
mathematical reasoning because they are not context-specific. In addition, these mathematical 
ideas serve as an anchor to attach meaning and describe phenomena. In this work we hope to 
draw attention to the role of intuitive mathematical ideas in interpreting graphs and provide a 
potential avenue for future research across disciplines.  
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Student Reasoning about Basis and Change of Basis in a Quantum Mechanics Problem 
 

Kaitlyn Stephens Serbin 
Virginia Tech 

Rebecah Storms 
Virginia Tech 

Megan Wawro 
Virginia Tech 

 
In this study, we explore how quantum mechanics students understand linear algebra concepts in 
the context of two spin-½ probability problems, the second of which required a change of basis. 
In particular, our research question is: what problem solving approaches do students use, what 
mathematical concepts are involved in that approach, and how do students reason about basis 
and change of basis as they engage with the problems? Data come from individual, semi-
structured interviews with twelve quantum mechanics students from two different universities. 
Our poster will share preliminary results for all parts of the research question. 
 
Keywords: linear algebra, change of basis, quantum physics, student reasoning, problem solving 
 

Several studies (Adiredja & Zandieh, 2017; Hillel, 2000; Stewart & Thomas, 2010) explore 
student understanding of basis. For example, Adiredja and Zandieh (2017) explored students’ 
conceptual metaphors for basis related to real-life contexts. Students’ verbs related to bases 
generating or describing a space, and their adjectives described bases as minimal, maximal, 
essential, representative, different, and non-redundant. However, little is known about student 
understanding of change of basis, especially in a upper-division physics context. 

In our study, semi-structured interviews (Bernard, 1988) were conducted with 12 quantum 
mechanics students at the end of the semester. Eight were from a junior-level spins-first course at 
a large public research university in the northwest US, and four were from a senior-level spins-
first course at a medium public research university in the northeast US. Interview questions were 
designed to prompt student reasoning about linear algebra concepts used in quantum mechanics. 
For this study, we analyzed responses to: “Consider the quantum state vector |"⟩ = %

√'% |+⟩ +
)*
√'% |−⟩. (a) Calculate the probabilities that the spin component is up or down along the z-axis. (b) 
Calculate the probabilities that the spin component is up or down along the y-axis.” The follow-
up question of interest was: “How do you see this problem relating to basis or change of basis?” 

Through a grounded analysis (Strauss & Corbin, 1998), preliminary results indicate that to 
complete the spin up portion of problem (b), students used two main approaches: changing |"⟩ to 
be written in terms of the y-basis, or changing y-basis vectors to be written in terms of the basis 
the given |"⟩ was expressed in. The linear algebra concepts involved in at least one of these 
approaches include linear combinations, inner product properties for orthonormal bases, squared 
norms of inner products, and systems of equations. We also found some nuance in the ways that 
the students discussed change of basis. Students used phrases in which the object of focus is 
either a basis or a vector as they discussed the result of changing the basis. Of the students whose 
object of focus was a vector, some indicated that change of basis is a way of rewriting the vector, 
and some indicated that change of basis is a process of transforming the vector in a way that the 
post-change vector becomes a different vector than the original. Students whose object of focus 
was a basis referred to switching or changing the basis of a vector, rather than the changing the 
vector itself. Additionally, we examined the context of the phrase “in a basis” as it appeared in 
the students’ dialogue. This is a common phrase used in many different contexts, sometimes 
imprecisely. We noticed that students talked about any of the following as being “in a basis”: a 
vector, a procedure, a person, or the problem setting. 
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Examining College Precalculus Teachers’ Noticing of Mathematics Department Curriculum 
Materials 

 
Ariel Setniker 

University of Nebraska-Lincoln 
 

This preliminary report will focus on how college precalculus teachers, mostly graduate 
teaching assistants, interact with department-provided curriculum materials. We specifically 
address what collegiate teachers notice in curriculum resources while planning. Comparisons 
will be drawn between first-time instructors and those with more experience, ultimately 
informing what and how collegiate teacher educators might incorporate experiences for 
precalculus teachers to develop curriculum use practices. 

Keywords: Curriculum, Graduate Teaching Assistant, Precalculus, Teacher Training 

Curriculum materials are at the core of lesson planning, influencing what teachers plan for 
and enact in their classrooms (Brown & Edelson, 2003) and ultimately influencing what learning 
opportunities are provided. However, we still know little about how this influence is exerted 
(Stein, Remillard, & Smith, 2007), and we know even less about undergraduate education. 

Collegiate teaching practices are widely underrepresented in the literature (Speer et al., 2010) 
and specifically, we know very little about how collegiate teachers learn to use curriculum, and 
further how varying designs influence use. This preliminary report will focus on how college 
precalculus teachers, mostly GTAs, interact with department-provided curriculum materials, 
specifically what they attend to within a lesson, and inform what and how teacher educators 
might incorporate experiences for collegiate teachers to develop curriculum use practices. 

 The data was collected at a large doctoral-granting university, with half the teachers 
being first-time instructors of record. Further, the mathematics department, as part of an ongoing 
effort to support active learning in their classrooms, developed an Open Educational Resource 
(OER) to be put into use for the first time during the semester. This joined the other curriculum 
resources already provided - a course packet of worksheets to be used by students in class, online 
teacher lesson guides, and a set of online homework assignments. 

 The main research question addressed in this report is how, and to what extent, do 
precalculus teachers interact with department-provided curriculum? Narrowing the scope of this 
broad question, this study aims to address the following questions: 

1. What do teachers notice while using department-provided curriculum materials to plan? 
2. In what ways does the department-provided curriculum inform teachers’ lesson plans? 
We use the Curricular Noticing Framework (Dietiker et al., 2018) to describe this interaction. 

Curricular noticing is a set of skills “that enable teachers to recognize, make sense of, and 
strategically employ opportunities available within their curriculum materials” and is comprised 
of three interrelated skills: Curricular Attending, Curricular Interpreting, and Curricular 
Responding. 

In this preliminary report, we specifically focus on how what is in the curriculum and the 
format of the curriculum influence teachers’ attention when planning a lesson and how this 
informs the work of teacher trainers and educators. Further analysis of this data will link teacher 
interactions and use of curriculum to teacher training, pedagogical goals and beliefs, and student 
factors such as target audience and achievement gaps, thus providing a more complete picture of 
the role teacher noticing plays in precalculus courses. 
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Studying the Relationship Between Students’ Perception of the Mean and Their Understanding 
of Variance 

 
                      Robert Sigley                            Layla Guyot                              Alex White 
               Texas State University              Texas State University             Texas State University  
                           
This poster explores how Introduction to Statistics students think about and compare the mean 
and variability of four datasets. They explored the datasets through various representations (e.g., 
balance beam, leveling off) and ranked them from most to least variance. When exploring the 
mean, the students found value in both the balance beam and leveling off representation, but 
preferred the balance beam for reasoning about variability. However, when reasoning about the 
variance using the balance beam representation, the students focused on the wrong properties 
and made faulty inferences. When reasoning using the leveling off representation, they focused 
on the correct properties and made sound inferences about the data.  
 
Keywords: Statistics Education, Content Knowledge, Mean, Variance 
 

A key idea in an Introduction to Statistics course is the mean as not only a measure of central 
tendency but as a measure of variability. Policy documents (e.g., The Gaise Report) stress the 
importance of students having multiple conceptions of the mean such as a measure of center and 
as a balance point. In this poster, we intend to explore how a student’s conception of the mean 
influences their thinking about variation by having students view the mean through some of the 
popular representations and seeing what features of the representations are they attending to 
when trying to determine the mean and variance of a dataset. This study took place at a large 
four-year college in the southern part of the United States. The participants (n=7) are students 
who were taking an Introduction to Statistics course during the time of the interview, which took 
place at the end of the semester after the course ended. They engaged in an hour long video-
taped task-based interview (Maher & Sigley, 2014) with two of the authors where they: (1) 
describe what they thought the mean and variance are, (2) identify the mean and variance of a 
series of histograms and then ordered the histograms in terms of least variance to most, (3) 
engage in a task that had them construct a distribution on a line using Unifix cubes and then 
move the cubes to show a distribution that would have more and less variance than the one they 
constructed, (4) use a program developed in Mathematica (White, Straughn, & Guyot, 2016) to 
dynamically explore different interpretations of the mean, (5) re-rank the initial histograms (from 
least variance to most) based on the different interpretations, and (6) select one interpretation 
they had the most trust in being correct. When viewing the mean as a balance point, the students 
preferred the approach, but focused on the mode and symmetry of the data around the mode 
when considering variability which led to faulty inferences. When focusing on the leveling off 
representation, the students focused on the distance of the data points from the mean, which led 
them to making correct inferences about variation.   
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Developing a Reasoning Inventory for Measuring Physics Quantitative Literacy 
 

 Trevor I. Smith Suzanne White Brahmia 
 Rowan University University of Washington 
 
 Alexis Olsho Andrew Boudreaux 
 University of Washington Western Washington University 

In an effort to improve the quality of citizen engagement in workplace, politics, and other 
domains in which quantitative reasoning plays an important role, Quantitative Literacy (QL) has 
become the focus of considerable research and development efforts in mathematics education. 
QL is characterized by sophisticated reasoning with elementary mathematics. In this project, we 
extend the notions of QL to include the physics domain and call it Physics Quantitative Literacy 
(PQL). We report on early stage development from a collaboration that focuses on reasoning 
inventory design and data analysis methodology for measuring the development of PQL across 
the introductory physics sequence. We have piloted a prototype assessment designed to measure 
students' PQL in introductory physics: Physics Inventory of Quantitative Literacy (PIQL). This 
prototype PIQL focuses on two components of PQL:  proportional reasoning, and reasoning 
with signed quantities. We present preliminary results from approximately 1,000 undergraduate 
and 20 graduate students.	

Keywords: Quantitative Literacy, Physics, Assessment, Psychometrics	

The development of students’ PQL is an important goal in many introductory physics 
courses, but previous research suggests that students often do not achieve robust learning gains 
(Brahmia, 2017). We aim to develop a valid and reliable reasoning inventory to measure 
students’ PQL. We present preliminary results from an 18-item reasoning inventory focusing on 
two constructs as proxies for PQL in general: reasoning using ratios and proportions (Arons, 
1983; Boudreax et al., 2015), and about signed quantities (Brahmia & Boudreaux, 2016; 
Brahmia & Boudreaux, 2017; Bajracharya et al., 2012; Hayes & Wittmann, 2010; Vlassis, 2004). 
Future iterations will include items involving co-variational reasoning (Carlson et al., 2010).	

Data for our primary analyses are comprised of responses from 1,076 undergraduate 
introductory physics students. We use descriptive statistics and classical test theory (CTT) to 
analyze our results. Overall, scores are fairly normally distributed (small but negative values of 
both skewness and kurtosis, -0.3 and -0.2, respectively) with an average (mean, median, and 
mode) of 11 out of 18 correct, and a standard deviation of 3.0. The internal reliability is below 
the commonly accepted threshold for making measurements of individuals: Cronbach's á = 0.67 
< 0.80 (Doran, 1980). CTT results indicate that some questions may be too easy for our target 
population, with difficulty > 0.8. In addition, student performance on no single item strongly 
correlates with the overall score, i.e. CTT discrimination < 0.6 (Wiersma & Jurs, 1990). The test 
is a work in progress and will continue to be revised based on our analyses.	

Results from graduate students show that one multiple-choice-multiple-response item about 
negative charge is particularly difficult: only 3/22 students answered completely correctly, 
compared to at least 18/22 for five other items. This highlights the interesting case of the sign of 
charge being used as a label for a type of charge, which is uncommon for scalar quantities.	

Future work will involve interviewing students and faculty to validate the interpretations of 
inventory items (Adams & Wieman, 2010), as well as item development and refinement.	
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Students’ Use of Programming as a Problem Solving Strategy in Probability 
 

Karoline Smucker 
The Ohio State University 

In this work we examined the effects of programming as a problem solving heuristic on students’ 
mathematical work on tasks involving probability and expected value. Analysis of student 
performance on a unit of instruction that focused on students’ competence in both programming 
and calculating probabilities and expected values revealed that students can see programming 
as a valid problem solving strategy and use it effectively. 

Keywords: Computational thinking, Curriculum, Probability, Programming, Simulations 

Computational thinking is a fairly recent development in the mathematics education research 
arena. Its origins are in computer science, but Wing (2006) states that it is a “fundamental skill 
for everyone, not just computer scientists” (p. 33). It includes practices with data, modeling and 
simulation, computational problem solving, and systems thinking (Weintrop et al., 2016). 
Drawing on this perspective, this study focused on the utility of programming as a problem 
solving strategy when examining probability tasks in one mathematics classroom. One broad 
question guided data collection and analysis: does the use of programming in addition to 
virtual/physical simulations and theory enhance student understanding of these topics? 

Methodology 
A unit of instruction was developed and implemented in a precalculus class consisting of 10 

students. The curriculum utilized several strategies, including programming, to teach concepts 
related to probability and expected value. The unit, which consisted of five lessons, first 
introduced students to several programming concepts, including conditionals and loops. It then 
included simulations related to three specific games of chance. Upon completion of the unit, 
students were asked to evaluate the curriculum and what they seemingly gained from the unit. 

Results 
Students were engaged throughout the unit and showed persistence in solving tasks, which 

involved modeling games of chance. Post unit assessment results indicated that a majority of 
students became competent in writing basic programs to solve probability tasks. Students also 
identified the potential of programming as a complement to other strategies with which they had 
familiarity. Several students used the word “shortcut” when evaluating programming as a 
strategy. It appeared that they questioned the theoretical value of programming for solving 
problems, even if the method yielded the same result. Students used creative strategies when 
writing programs, some of which were unanticipated by the teacher/researcher. 

Implications 
Because the sample group for the curriculum was small and the scope of curriculum fairly 

limited, more research is needed to further expand students’ perceptions of and facility with 
programming when solving problems. With increased interest in inclusion of computational 
reasoning skills in the curriculum more systemic research is valuable in defining effective ways 
to help students not only acquire programming skills but also realize its value for extended 
mathematical work. 
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Knowledge Used in Teaching Undergraduate Courses: Insights from Current Literature on 
Knowledge for Teaching Across STEM Disciplines 

 
 Natasha Speer Tessa Andrews Ginger Shultz 
 The University of Maine University of Georgia University of Michigan 

Research on Mathematical Knowledge for Teaching has helped the education community 
understand the complex, knowledge-related factors that shape instructors’ practices and the 
learning opportunities they create for students. Much of this work has occurred in the context of 
K-12 teaching. Although expanding, research on knowledge for teaching undergraduate 
mathematics is not extensive. A similar situation exists in science education. To help support 
these research efforts and theory development, we analyzed existing literature on knowledge for 
teaching undergraduate STEM content. Findings take the form of cross-disciplinary themes and 
differences that can help inform research efforts in this area. We seek feedback from the RUME 
community about our representations of knowledge for teaching, ideas about findings from 
research on Mathematical Knowledge for Teaching that have been especially useful, and/or 
ideas for research investigations that would be particularly useful to inform curriculum 
development, professional development for teaching or theory. 

 Keywords: knowledge for teaching, novice college instructor professional development, STEM 
disciplines  

Evidence-based instructional strategies can improve outcomes for all students and the 
retention of students from underrepresented groups in undergraduate STEM degrees (Freeman, 
S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, 2014; 
Laursen, Hassi, Kogan, & Weston, 2014). As a result of this potential, there have been repeated 
high-profile calls for substantial reform in teaching practices in undergraduate STEM. Achieving 
widespread adoption and effective use of evidence-based teaching strategies demands attention 
to the role of college instructors, including what instructors know and are able to do as evidence-
based teachers. Although work in this area has increased in recent years, undergraduate 
mathematics instructors’ knowledge and teaching practices have not been extensively researched 
(Speer, Smith III, & Horvath, 2010). Examining the role of teaching knowledge in evidence-
based instruction and how to support its development is crucial to progress in reforming 
undergraduate instruction. 

Although also not extensive, research also exists on undergraduate instructor knowledge and 
practices in science disciplines. In an effort to encourage and support additional research in this 
area, an inter-disciplinary team of researchers has conducted a review and analysis of literature 
about studies of knowledge for teaching across STEM disciplines. In this report, we share 
findings from our review and highlight key challenges and opportunities in this research area. 
We discuss how major categories of knowledge for teaching that appear in multiple disciplines 
(e.g., pedagogical content knowledge) are defined in those different disciplines. We also discuss 
research on types of knowledge that can apply across disciplines (e.g., pedagogical knowledge) 
and knowledge types that currently appear only in descriptions of knowledge used to teach 
mathematics (e.g., specialized content knowledge, horizon content knowledge).  

We seek feedback on our representations of the knowledge for teaching across STEM 
content areas and on our suggestions for next steps to advance research on undergraduate 
instructors’ knowledge and practices. 
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Developing Freshmen Math without Developmental Math 
 

Angela Thompson 
Governors State University 

Abstract: Most universities and community colleges are struggling with how to prepare incoming 
students for the rigor of college-level mathematics courses. At Governors State University, 
developmental courses are not offered, although a significant number of students do not have the 
required prerequisite mathematics knowledge for college-level courses. This poster has three 
themes: an analysis of institutional data on freshmen mathematics, a discussion about navigating 
conflicting goals and ideas from university leadership, and an examination of mathematics 
interventions, both those that were tried and recommendations for next steps.  

Keywords: developmental mathematics, remedial mathematics, freshmen 

At Governors State University (GSU), the Board of Trustees mandated that they would not 
offer or require any developmental mathematics courses, and that the only courses offered were 
at college level for college credit. At the same time, the university supports a diverse body of 
non-traditional students, many of whom do not have the prerequisite knowledge to succeed in a 
college-level mathematics course. After four years, and given the body of research on success 
rates for students who may need developmental mathematics, it is not surprising that most of 
these freshmen were not successful in their first-semester mathematics courses (Bailey, 2009).  

Instead of required remedial instruction, the university offers a variety of resources for 
students, including the Academic Resource Center, mathematics success workshops, 
Supplemental Instruction, Smart Start Mathematics, and other initiatives. What administrators 
did not do is examine the possible reasons why many freshmen do not succeed in mathematics. 
Without this critical information, any interventions produced to remedy high rates of D/F/W 
grades are not likely to be effective (Ashby & Sadera, 2011, Sadler & Sonnert, 2016). 

The university now has four years of data that can be mapped to local-area high school 
curriculum, the placement exam, research on strategies in higher education and mathematics, and 
possible intervention techniques; both ones that have been tried and others that haven’t. For this 
poster, I will summarize the findings based on data from four years of enrolling freshmen at 
GSU. Each intervention implemented is correlated with success rates. A review of research and 
an exploration of interventions offered by other universities will help point to more targeted 
solutions that meet each student’s individual needs (Melguizo, Kosiewicz, Prather, & Bos, 2014, 
Jaggers & Stacey, 2014, Woodard, 2004).  

A second theme for this poster is navigating between colleges, administration, and faculty 
who all have different ideas on how to approach freshmen mathematics and the specific needs of 
our students, whether they are accurately understood or not. For example, many university 
mathematics professors may lack the pedagogical skills required by a high school teacher, and 
may be resistant to change, particularly if it seems more work will be required (Brownell & 
Tanner, 2017). Qualitative data is also being collected in order to better understand reasons why 
a student may not be successful in college-level mathematics.  

The final theme of the poster details the changes recommended for this university, based on 
current data analysis and research. It is the author’s expectation to implement some of these 
changes beginning with the Spring 2019 semester, and so by the next RUME meeting, a full 
paper with results will be forthcoming.  
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Development of Equity Concepts During Professional Learning About Teaching  
 
               JenqJong Tsay                  Shandy Hauk                Billy Jackson               Alma Ramirez 
       University of Texas RGV             WestEd            University of Louisville             WestEd 
 
Using a stakeholder-centered design, this interactive poster presents a research framework for 
attending to equity and supporting transformative change for faculty who teach courses for 
future K-8 teachers. The poster reports on a research and development project that is creating 
and examining the impact of professional learning modules for these faculty. One aim of the 
project is intentional awareness development among faculty about their own views of 
mathematics and opportunities to learn it, those of their undergraduate students, and those of the 
children their students will one day teach. The particular focus of the poster is our research 
attempt to identify and capture aspects of equity that factor into instructor decisions in each 
phase of their professional learning experience (motivation, construction, and organization).  
 
Keywords: Equity, Faculty Professional Development  
 

The NCSM and TODOS position paper, Mathematics Education Through the Lens of Social 
Justice: Acknowledgement, Actions, and Accountability emphasized mathematics education  
should include "fair and equitable teaching practices." In response, Hauk and D’Silva (2018) 
proposed a process for attending to equity 
in college mathematics education research 
and development through purposeful, 
stakeholder-centered design (Figure 1). 
Using such a design, we are creating and 
investigating a mini-course for faculty 
who teach future K-8 teachers. It is made 
up of a series of online learning modules. 
Modules include explicit attention to the 
importance of cross-cultural interaction in 
K-8 and collegiate teaching and learning. 
Across the mini-course, faculty engage in 
two cycles, each activating a set of three 
phases of professional work: motivation, 
construction, and organization (Kubitskey 
et al., 2014). In motivation, faculty identify 
their own problem of practice. In construction, they participate in opportunities to learn (e.g., a 
within-module activity) and prepare for change in practice. In organization (between-module 
activity), faculty rely on the knowledge constructed and activate its use in the classroom, with 
emphasis on monitoring progress (to support reflection and identifying subsequent instructional 
aims).  The poster presents the conceptual framework for attending to equity, using the cycle in 
Figure 1, for the development and implementation of the modules. Given the model in Figure 1, 
the visuals about current project research efforts, and goal of equitable teaching practice, the 
question driving poster conversation is: How do we improve the documentation, research, and 
feedback on equity in faculty decisions for each phase of professional learning? 

 

Figure 1. Stakeholder-centered design cycle. 
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Using Identity to Frame Mathematics Educational Learning Experiences of 
Historically Marginalized Students

Belin Tsinnajinnie
Santa Fe Community College

The goal of this study was to illustrate how notions of identity could be used as an analytical 
tool to account for such diverse perspectives along with issues of power in the context of Latinx 
and Native American students. Interviews and classroom observations revealed an array of 
perspectives regarding what counts as mathematics within a classroom, yet is reflective of an 
ongoing assimilationist practices that have negatively impacted Indigenous peoples for centuries.  
I argue for the need for mathematics educators to identify dehumanizing practices in 
mathematics by seeking the perspective of Indigenous educators. 

Key words: Diversity, equity, identity, sociocultural, sociopolitical, Indigenous, Latinx 

The underrepresentation of students in historically marginalized groups are often illustrated 
and framed in the research as an achievement gap in STEM between students from these 
underrepresented groups and students from white backgrounds (Gutiérrez, 2008). However, 
research centered on closing such achievement gaps relies on narrow notions of learning and 
equity (Gutiérrerz & Dixon-Román, 2010).  I seek to answer the research question: to address the 
research question: How can we use identity to better understand the various forces impacting the 
mathematical learning experiences of Native American and Latinx students?  This study utilizes 
the notions of normative identity and personal identity (Cobb, Gresalfi, & Hodge, 2009) as well 
as Martin’s (2000) multilevel framework that seeks to describe the interaction of influences from 
both inside and outside the classroom on students’ mathematical learning experiences by 
considering the agencies made available to and exercised by students, school level forces, 
community and family, and sociohistorical influences.   

Semi-structured interviews and classroom were collected from Native American and Latinx 
students and their classroom, their mathematics teacher, the parent of one of the students, and an 
assistant principal in order to account for the multiple influences on a student’s mathematical 
learning experiences. Analysis of the interviews from the teacher, parent, and assistant principal 
reflected strong influences from top level government and educational policies and a historical 
disconnect between the perspectives of students’ communities and their schools.  

I draw upon the findings of this study to argue for greater integration of perspectives from 
Indigenous education researchers. In particular, I argue for the need for frameworks in research 
in undergraduate mathematics education that incorporate notions of identity while accounting for 
multilevel sociopolitical and sociohistorical forces on mathematical learning experiences to 
better describe the damage of assimilationist practices in higher education.    
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Computational Thinking Mediating Connections Among Representations in Counting 
 
Sylvia Valdés-Fernández  
Oregon State University 

Elise Lockwood 
Oregon State University 

José Fernández 
Oregon State University 

 
Abstract. There is increased focus on exploring the role of computation in students’ learning of 
mathematical concepts, and the notion of computational thinking has gained prominence. In this 
poster, we demonstrate ways in which students make connections among different combinatorial 
representations, and we argue that computational thinking mediated such connections.  
 
Keywords: Computational Thinking, Combinatorics, Mathematical Representations 
 

The role of computation in students’ learning of mathematical concepts has received 
increased focus in recent decades. As such, the notion of computational thinking (CT) has gained 
prominence among computer scientists and STEM educators. We define CT as a way of thinking 
that one uses to formulate a problem in such a way that a computer could effectively carry it out 
(Wing, 2014). In this study, we interviewed two pairs of undergraduate students, who were 
novice counters and relatively novice programmers. Each pair was interviewed for 15 total 
hours, during which they sat together at a computer and used basic Python coding to solve 
counting problems. In this poster, we share one aspect of this project that focuses on the role of 
CT in helping students connect mathematical representations as they solve counting problems. 
The ability to make connections between mathematical representations is highly valued by 
mathematics educators as a means for students to make sense of mathematics and deepen their 
understanding (Pape & Tchoshanov, 2001; Stein, Engle, Smith, & Hughes, 2008). Counting 
problems can be difficult for students to solve  (Batanero, Navarro-Pelayo, & Godino, 1997) and 
facilitating connections between representations may improve student understanding of such 
problems. We present findings that answer the following research question: How does CT help 
students make connections among multiple representations in counting problems?  

We identified five mathematical representations that arose in our interviews: i) computer 
codes, ii) outputs, iii) lists, iv) tree diagrams, and v) expressions. In the poster, we demonstrate 
ways in which students make connections among combinatorial representations and discuss how 
CT mediates these connections. For example, one pair answered the question “Write a program 
to list all possible outcomes of flipping a coin 7 times.” They related output of code (Fig. 1 
shows partial output) and a tree diagram (Fig. 2), saying, “So, this [the tree diagram] is what we 
were talking about with the third column [of the output] as like it’s splitting into four.” In the 
poster we offer additional examples and explore why we think CT afforded such connections. 

    
Figure 1:  Partial Output          Figure 2:  Tree Diagram 

In our observations of students working with combinatorial problems, we are beginning 
to notice not only a unidirectional affordance between CT and mathematics, but a bidirectional 
effect where computational and mathematical knowledge are co-constructed. Our findings could 
have broad implications in terms of influencing practices that instructors employ when teaching 
combinatorial problems in particular, and possibly other mathematics problems in general. 
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Exploring Co-Generative Dialogues with Undergraduates to Improve Teacher Feedback 
Practices in a Probability and Statistics Class 

 
Mitchelle Wambua   Nicole Fonger   Joash Geteregechi 

     Ohio University              Syracuse University   Syracuse University 
 
Providing students with explanation feedback on their homework has been shown to highly and 
effectively support their learning. However, there is limited research on how students might play 
an active role, in collaboration with teachers, to tailor feedback, to meet students’ needs. This 
study, carried out as a form of practitioner-inquiry in a teacher’s own classroom, explores how a 
teacher used their own and their students’ shared experiences to refine and develop explanation 
feedback that supports students’ mathematics learning in an undergraduate Probability and 
Statistics class. Data include records of co-generative dialogues between the teacher and her ten 
students, and the students’ homework worksheets. Emergent findings show that co-generative 
dialogues provide an effective opportunity for teachers to learn from their students how to 
improve their pedagogical practices, especially in providing effective explanation feedback.  
 
Keywords: Probability & Statistics, Homework, Explanation Feedback, Co-generative Dialogues  
 

There are many potential positive consequences of providing students with feedback on 
their homework (Fyfe, 2016; Landers & Reinholz, 2015). Explanation feedback is 
conceptualized as information provided by a teacher regarding students’ performance, with 
details on how to improve. Inviting student voice into the nature of explanation feedback makes 
it possible for students to agree with teachers on how their work was judged, then use those 
standards in producing new work (Landers & Reinholz, 2015). Consistent with this finding, this 
study was guided by a reality pedagogy framework, wherein teaching is guided by a teacher’s 
developing understanding of students’ experiences (Emdin, 2011).  The aim of this study was to 
investigate how student voice can be leveraged to refine instructional practices of giving 
effective explanation feedback on students’ homework. We hypothesized that when students 
have more agency in determining the nature of explanation feedback on their homework, 
teachers may improve feedback practices, and ultimately support students’ learning.  

We carried out a practitioner-inquiry study (Samaras & Freese, 2009) in the first author’s 
freshmen Probability and statistics class at a university in the Northeast of the United States. We 
enacted co-generative dialogues, defined as a form of structured discourse, where teachers and 
students engage collaboratively to identify and implement positive changes in a classroom 
teaching and learning (Martin, 2006). Data were collected through 15 minutes of co-generative 
dialogues after class, with all students, once a week, for each of the six weeks of study. The 
dialogues were active and reflective, as Wambua and her students discussed the explanation 
feedback she had provided in the previous assignment, then agreed on ways of refining future 
feedback. The data were recorded via teacher fieldnotes and students’ notes. Students’ 
homework worksheets were also analyzed to note how students implemented the feedback. 

Findings indicate that the type of explanation feedback preferred by students vary based 
on their self-identified needs. For example, while some requested for specific details on why they 
were wrong, others needed details for correct solutions. Working with students, the teacher 
learned how to give specific yet probing feedback. This implies that, working closely with their 
students better positions teachers to provide feedback that support individualized student needs.  
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Pre-service teachers’ concept image of numeral 
 

Ben Wescoatt 
Valdosta State University 

David Tall’s Three Worlds of Mathematics provides a framework through which to study the 
development of mathematical thought, the three worlds being the embodied, the symbolic, and 
the formal. This poster shares initial investigations and findings into how the concept of numeral 
is situated in the symbolic world, beginning with developing a concept image for numeral that is 
held by pre-service elementary teachers. An analysis of eight mathematics textbooks for pre-
service teachers provided an initial definition. Additionally, students in a college mathematics 
content course for pre-service elementary teachers completed a survey. The participants in the 
survey were given several symbols and prompted to respond whether or not they believed the 
symbol represented a numeral. Results of the textbook analysis and the survey were used to 
understand the students’ concept image of numeral. 

Keywords: Pre-service teachers, Numerals, Three Worlds of Mathematics 

This study represents the initial stage of a planned study to better understand the 
development of the concept of numeral. David Tall’s Three Worlds of Mathematics framework 
(Tall, 2013) suggests that embodied actions or rote memorization leads to procedures with 
symbols. The symbols that are used represent both a procedure and an object. This dual nature 
occurs as a result of a compression of the concept from an action to an object. While the ultimate 
goal of the project is to understand how people apprehend the dual nature and the compression 
process of a numeral, this current study attempts to develop a concept image of numeral held by 
pre-service elementary teachers (PSETs). 

Students in two sections of a capstone mathematics content course for PSETs were 
participants in the study. In order to establish a baseline for their understanding of numeral, a 
textual analysis of eight textbooks commonly used in mathematics content courses for PSETs 
examined the book’s stated definition for numeral. One textbook did not provide a definition. Of 
the seven other books, six defined a numeral as a symbol for a number with the seventh calling a 
numeral a name for a number. Instruction in the course regarding numerals was in line with the 
common textbook definition of numeral as a symbol for a number. 

Near the end of the course, sixty-four students completed an online survey that probed their 
beliefs about numerals. Of the participants, fifty-five provided complete responses to the prompt, 
“State your definition of numeral.” Twenty-seven participants stated that a numeral was a 
symbol for or a representation of a number, twenty-one participants conflated numeral with 
number, and seven participants gave a mixed definition. The results indicated that despite 
numerals being defined and treated as numerals, less than 50% viewed a numeral explicitly as a 
symbol.  

Participants were then shown a series of symbols and asked to indicate whether or not they 
considered the symbol to be a numeral. For example, 95.3% of participants believed 512.37 to 
represent a numeral, while 70.3% believed 22/7 represented a numeral. Moreover, participants 
who defined numerals as symbols identified 70.3% of the symbols as numerals, while 
participants who defined numerals as numbers identified 62.4% of the symbols as numerals. 
While analysis of the data is ongoing, the preliminary analysis suggests that students may not 
fully apprehend the dual nature of a numeral.  
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Exploring Preservice Teachers’ Views of Students’ Mathematics Capabilities Within Mediated 
Field Experiences 

 
Tonya R. Wilson 

Syracuse University 

This research explores preservice teachers (PSTs) views of students’ mathematical capabilities 
(VSMC) within mediated field experiences (MFEs) and the role of beliefs on instructional 
decisions. In MFEs, teacher educators serve as instructors, coaches and supervisors as PSTs 
plan, enact, and debrief instruction (McDonald et al., 2014). The research questions were: What 
is the nature of PSTs VSMC across an MFE cycle? How might PSTs beliefs impact instructional 
decisions? What role might MFEs play in developing productive VSMC? Findings showed that 
some teachers believed students were incapable of engaging in rigorous instruction, and 
consequently, would not always respond to student difficulty in ways that helps students 
participate in rigorous mathematical environments. Results suggest the need to study how 
teachers might develop more productive VSMC and better support students who struggle. The 
analysis also revealed how daily debriefs within MFEs supported PSTs to glean general 
instruction principles to inform their teaching.  

Keywords: Preservice Teacher Education, Teachers’ Beliefs, Field Experiences 

Studies show teachers’ beliefs, specifically, how teachers frame student difficulty in 
mathematics, will determine the type of support teachers give to students, and therefore, 
ultimately play a role in how they will support students who struggle in mathematics. (Jackson, 
Gibbons, & Sharpe, 2017). Therefore, it is important to explore ways to support preservice 
teachers (PSTs) to develop productive view of students’ mathematical capabilities (VSMC) 
within teacher education programs. In the realm of PST education, teacher educators have used 
mediated field experiences (MFEs), or methods courses held on university campuses and at K-12 
schools, as a context for supporting PST learning (Campbell & Dunleavy, 2016). Daily co-
planning sessions and lesson debrief discussions are rich sites to discuss critical moments and 
reframe student difficulties in terms of supports rather than lowered expectations. 

The research questions for this study were: What is the nature of PSTs VSMC across an MFE 
cycle? How might PSTs instructional decisions in classroom enactments relate to their beliefs 
about students’ capabilities to engage in high-quality mathematics instruction? What role might 
MFEs play in supporting PSTs to develop productive VSMC? This qualitative study involved 
interviewing, surveying and analyzing the written work of seven PSTs enrolled in an elementary 
mathematics methods course embedded within an MFE. To explore the nature of PSTs’ VSMC 
throughout the study, I employed the analytic framework, Views of Students’ Mathematical 
Capabilities (Jackson, Gibbons & Sharpe, 2017), to analyze whether PSTs framed student 
difficulties from an asset or deficit perspective (their diagnostic framing), and to categorize the 
nature of supports they feel are appropriate for students who struggle in mathematics (prognostic 
framing). Findings showed that some teachers believed students were incapable of engaging in 
rigorous instruction, and consequently, would not always respond to student difficulty in ways 
that help students participate in rigorous mathematical environments. Results suggest the need to 
study how PSTs might develop more productive VSMC and better support students who 
struggle. Our analysis also revealed how daily debriefs within MFEs supported PSTs to glean 
general instruction principles to inform their teaching. 
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Students’ Interpretations of Animations Supporting Dynamic Imagery 
 

    Franklin Yu                                    Alison Mirin 
Arizona State University                Arizona State University 

 
                                        Surani Joshua                                 Ishtesa Khan 

Arizona State University                Arizona State University 
 
The study of calculus focuses on change and thus dictates a need for instruction involving 
dynamic imagery. DIRACC (Developing and Investigating a Rigorous Approach to Conceptual 
Calculus) utilizes animations to support students’ dynamic imagery. This poster investigates how 
students use and understand animations in the DIRACC textbook in connection with associated 
calculus topics. 
 
Keywords: Calculus, Technology, Animations, Variables 
 

 Calculus can essentially be explained as “using how fast a quantity is varying at every 
moment to find how much of that quantity there is at every moment, and vice versa”. 
Accordingly, it is important that students conceptualize variables as truly varying (dynamically). 
In a calculus course developed by Thompson and Ashbrook emanating from an NSF-funded 
study called DIRACC (Developing and Investigating a Rigorous Approach to Conceptual 
Calculus), the curriculum takes the position that dynamic imagery of smoothly varying quantities 
is important for learning calculus ideas (Thompson, P. W., Byerley, C., and Hatfield, N., 2013; 
Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., and Hsu, E., 2002). DIRACC utilizes animations 
as didactic objects (Thompson, 2002) to support dynamic imagery in an online textbook. This 
poster investigates how students interpret the animations and discusses how the animations were 
refined as a result. 

This study arose from a survey given to DIRACC students regarding their usage of these 
online animations where a majority of students indicated difficulties understanding them clearly 
upon their first watch. This led to our team to investigate the following: “How do students 
interpret animations in the online textbook?”, “In what ways do animations assist students in 
developing dynamic imagery of varying quantities?”, “How do the animations help students 
construct the meanings we intend, and how do they not help?”.  

In this study, four Calculus II DIRACC students were clinically interviewed (Clement, 
2000), asked to watch three different animations and respond to a set of questions related to their 
interpretations of the animations. These interviews provided data on how each animation was 
conveying information, whether intended or unintended, as well as implications on how 
animations can be used and improved. Across all three animations, students initially responded 
with a general idea but had trouble articulating details. It was through pausing animations and 
prompting students with probing questions that elicited answers where students reflected on their 
understandings. This suggests that animations should deliberately make students pause and 
reflect on what they saw, and teachers should be trained to use animations as didactic objects in 
class, including pausing and questioning of students as part of class discussion. Additionally, 
interviews indicated that students interpreted one of the animations in an unintended way, 
resulting in a refinement of the animation within the textbook. This refinement demonstrates the 
iterative aspect of research-based curriculum design in the context of DIRACC. 

22nd Annual Conference on Research in Undergraduate Mathematics Education 1201



References 
Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., and Hsu, E. (2002). Applying covariational 

reasoning while modeling dynamic events: A framework and a study. Journal for Research 
in Mathematics Education, 33, 352–378. 

Clement, J. (2000). “Analysis of Clinical Interviews: Foundations and Model Viability”. In A.E. 
Kelly and R. Lesh (Eds.) Handbook of Research Design in Mathematics and Science 
Education (pp. 547–589). Mahwah, NJ: Lawrence Erlbaum Associates. 

Thompson, P. W. (2002). Didactic objects and didactic models in radical constructivism. In K. 
Gravemeijer, R. Lehrer, B. van Oers, and L. Verschaffel (Eds.) Symbolizing and Modeling in 
Mathematics Education (pp.191-212). Dordrecth, The Netherlands: Kluwer. 

Thompson & Ashbrook (2016) Calculus: Lagrange Meets Technology. A textbook emanating 
from Project DIRACC: Developing and Investigating a Rigorous Approach to Conceptual 
Calculus. Retrieved from http://patthompson.net/ThompsonCalc/ 

Thompson, P. W., Byerley, C., and Hatfield, N. (2013). A conceptual approach to calculus made 
possible by technology. Computers in the Schools, 30, 124-147. 

 

22nd Annual Conference on Research in Undergraduate Mathematics Education 1202



A Student’s Meanings for the Derivative at a Point 
 

Franklin Yu 
Arizona State University 

 
Abstract: The purpose of this study is to examine the meanings and interpretations a student has 
about the derivative at a point. The responses given by the student is representative of many 
Calculus 1 students and their beliefs about derivative. 
 
Key Words: Derivative at a Point, Calculus, Student Thinking 
 

This poster discusses one particular student’s reasoning about the following task: 
Task 4 – The Approximation Derivative Problem 

Given that P(t) represents the weight (in ounces) of a fish when it is t months old,  
a.  Interpret the statement P’(3) = 6  
b.  If P (3) = 15 (and P’(3) = 6) estimate the value of P (3.05) and say what this value represents. 
 
The purpose of this study is to build models of students’ mathematics, termed the mathematics of 
students (Steffe & Thompson, 2000). In this study I attempt to build a model of a student’s 
understandings of the derivative at a point and the factors that might have contributed to the 
student’s responses. The study of derivatives is fundamentally about change and thus dynamic 
situations, yet as evidenced by Zandieh (2006) students tend to recall the finished static product 
and not the dynamics involved. The research questions this poster endeavors to address is “What 
images do students have of derivative at a point? Is it dynamic or static?”. 

Due to students’ wide range of beliefs about functions (Szydlik, 2000) and students’ 
tendency to recall a finished product Zandieh (2006), I theorize that students’ will not consider 
the derivative at a point as concerning a small interval, but rather a point. This notion is 
reminiscent of Harel and Kaput’s (1991) discussion of pointwise versus uniform operators and 
bolsters this idea on student thinking about functions. Students are often introduced to function 
as a correspondence (Sfard, 1992) and see one input being mapped to one output. It should be 
natural then that as this notion is rarely challenged, student’s conception of function as a 
mathematical object (Thompson & Sfard, 1994) has the property of only being concerning with a 
singular input value. Despite dynamic teachings of the derivative that involve secant lines 
converging towards a tangent line, Zandieh (2006) notes that students forget the dynamic motion 
and recall the finished product of the tangent line. This informs the possibility that students may 
interpret a statement such as P’(3) = 6 as one that is focused solely on one point.  

This poster presents a study of one student’s meaning for the derivative at a point in a 
quantitative context. I take the constructivist approach (Glasersfeld, 1995) espousing that it is 
impossible to know completely a student’s knowledge and hence the goal is to model the 
student’s beliefs. In this study, the student’s responses indicate a consistency with Zandieh’s 
(2006) assertion that students recall a finished product. His responses either noted completed 
change, or anticipation of change to come both of which lacked dynamic imagery for the point 
involved. This student’s responses indicate a need for teaching of the derivative to flesh out 
meanings of the derivative at a point so that students might construct a productive meaning for it.  

Figure 1: Task 4. Interpreting Derivative at a Point 
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Developmental Mathematics Reform: Analyzing Experiences with  

Corequisite College Algebra at an Urban Community College 

 

Jennifer Zakotnik-Gutierrez 

University of Northern Colorado 

 

Roughly half of the nearly 44% community college students referred to developmental 
mathematics never make it into, let alone through, the college-level mathematics courses 
required for their academic major. The disproportionate number of these students who are from 
underrepresented groups combined with the low success rates has prompted many community 
colleges to undertake developmental mathematics reform. The purpose of this study is to provide 
a multi-perspective account of one community college’s program redesign using Gutiérrez’s 
equity framework, Tinto’s model of persistence, and activity theory to analyze and interpret the 
experiences of students, instructors, and administrators.  
 
Key Words: Developmental Mathematics, Corequisite Support, Activity Theory, Equity 

 

Through an institutional equity initiative in 2013, Lowry Community College (LCC, a 

pseudonym) discovered that their African-American students had a much lower rate of degree 

completion or transfer within three years of first enrollment than all other groups at the college. 

Furthermore, African-Americans were disproportionately represented in developmental 

mathematics, not succeeding in developmental mathematics, and underrepresented in college 

algebra. The initiative not only led to a targeted goal of increased student success for African-

American students but brought to light the struggles of many of LCC’s developmental 

mathematics students similar to the published research (e.g., Bailey, Smith Jaggars, & Jenkins, 

2015). The equity initiative provided the impetus for LCC’s developmental mathematics reform.  

Following the recommendations of Bailey et al. (2015) and Complete College America, LCC 

implemented a newly-designed college algebra course incorporating a corequisite model of 

support to replace the previous sequence of developmental mathematics courses leading to 

calculus. In this model, developmental mathematics content is taught in service to the college 

algebra content, first during an intensive 5-week on-boarding class at the beginning of the 

semester, and then as a separate, mandatory corequisite course that meets either directly before 

or directly after the college algebra class during the remaining 10 weeks of the semester. The 

course was first implemented in the Fall 2018 semester. 

This study adopts the theoretical perspectives of activity theory (Engeström, 1987), Tinto’s 

(1975, 2006) model of persistence, and Gutiérrez’s (2009) equity framework to provide an 

account of the experiences resulting from the course redesign. In activity theory, individual and 

collective experiences can be characterized through goal-directed activity systems, allowing the 

interpretation of interactions between and within systems (Engeström, 1987). Students, 

instructors, and administrators form distinct activity systems with components informed by the 

constructs of equity and persistence, which also indicate contradictions as drivers of change 

within and between systems.   

Preliminary results of the initial data analysis will be discussed.     
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