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Preface

As part of its on-going activities to foster research in undergraduate mathematics education and the

dissemination of such research, the Special Interest Group of the Mathematics Association of America on

Research in Undergraduate Mathematics Education (SIGMAA on RUME) returned to Boston, Massachusetts

for its twenty-fourth annual Conference on Research in Undergraduate Mathematics Education from Febru-

ary 24 - February 26, 2022.

The program included plenary addresses by Dr. Paul Dawkins, and Dr. Karen Keene, and the presen-

tation of 145 contributed, preliminary, and theoretical research reports and 75 posters. The conference was

organized around the following themes: results of current research, contemporary theoretical perspectives

and research paradigms, and innovative methodologies and analytic approaches as they pertain to the study

of undergraduate mathematics education.

The proceedings include several types of papers that represent current work in the field of undergraduate

mathematics education, each of which underwent a rigorous review by two or more reviewers:

- Contributed Research Reports describe completed research studies

- Preliminary Research Reports describe ongoing research projects in early stages of analysis

- Theoretical Research Reports describe new theoretical perspectives for research

- Posters are 1-page summaries of work that was presented in poster format

The conference was hosted by the Wheelock College at Boston University. Many members of the RUME

community volunteered to review submissions before the conference and during the review of the conference

papers. We sincerely appreciate all of their hard work by the 152 reviewers. We wish to acknowledge the

conference program committee for their substantial contributions to RUME and our institutions. Without

their support, the conference would not exist.

This was also the first year the RUME Conference was held in a hybrid format. The conference was

simultaneously accessible in person and online using GatherTown. There were 397 registrants in total. Of

these, 208 attended in-person and 189 attended virtually.

Finally, we wish to express our deep appreciation for Wheelock College and Boston University. Their

support enabled us to have our conference and continually support our community.

Shiv Smith Karunakaran, RUME Organizational Director

Samuel Cook, RUME Conference Local Organizer
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A Case Study of Abstract Algebra Learners Fluency for Quotient Groups towards Efficacy Research . 331

Jessica Lajos

The World in a State of Panic: Disaster Vulnerability and Digital Technology in Emergency Remote

Undergraduate Mathematics Courses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Melinda Lanius, Tiffany Frugé, Jones Nicole Sullivant
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Counterexamples and Refutations in Undergraduate Mathematics 
 

 Lara Alcock Nina Attridge 
 Loughborough University, UK University of Portsmouth, UK 

How do undergraduate mathematics students interpret refutations?  We investigated this 
question by asking participants to 1) decide whether statements are true or false and provide 
refutations, 2) evaluate counterexamples and ‘correct versions’ of the statements as valid or 
invalid refutations, and 3) judge which potential refutations are better, explaining why.  We 
report a study in which 173 undergraduate mathematics students completed this task.  Results 
reveal that participants did largely understand the logic of counterexamples but did not reliably 
understand the broader logic of refutations. 

Keywords: Counterexample, Refutation, Conditional Statement, Logic, Undergraduate 

Introduction  
Logical reasoning is core to mathematics.  It is promoted officially in educational policy and 

guidance documents (e.g., DfE, 2014; NCTM, 2000), it is addressed explicitly in undergraduate 
introduction-to-proof courses (e.g., Hammack, 2013), and its development is considered in depth 
in studies in undergraduate mathematics education (e.g., Hub & Dawkins, 2018; Yopp et al., 
2020).  Moreover, logic and content knowledge are interlinked.  Some teaching sequences rely 
upon students using reasoning skills to construct content knowledge (e.g., Dawkins & Cook, 
2017), and there is evidence that intensive mathematical study at age 16-18 develops abstract 
logical reasoning skills (Attridge & Inglis, 2013). 

But what of situations in which content knowledge interferes with logical reasoning?  
Understanding logical statements is difficult (Dawkins, 2017; Evans, Handley, Neilens & Over, 
2007), and even relatively simple situations can mislead students into using familiar content 
knowledge without considering all relevant logical possibilities (Dawkins & Cook, 2017; Epp, 
2003).  The study reported here addresses this issue from a novel angle.  Its design is based on 
observation of real analysis students’ responses to questions asking them to state whether 
statements were true or false and, for each that they declared false, to justify their answer with a 
counterexample or a brief reason.  One such statement, for which results are reported here, was  

∀	𝑎, 𝑏 ∈ ℝ, |𝑎 + 𝑏| < |𝑎| + |𝑏|. 
We might anticipate that some students would incorrectly answer true because the statement 

‘looks like’ one that appears in the course, so inattentive students might fail to notice the 
difference and declare it true without considering possible counterexamples.  Or students might 
search for counterexamples, but fail to find any due to insufficiently developed example spaces 
(Goldenberg & Mason, 2008) or insufficient checking that a relevant example really has the 
required properties (Edwards & Alcock, 2010).  In the real analysis course, some students did 
indeed give incorrect true responses.  However, many also gave correct false responses 
accompanied by invalid refutations.  The following was common for the statement above.  

FALSE.  Reason: It should be ∀	𝑎, 𝑏 ∈ ℝ, |𝑎 + 𝑏|	£	|𝑎| + |𝑏|. 
The provided reason can be considered a ‘correct version’ of the original statement.  But it 

does not refute the original.  This illustrates the possibility of interference between content 
knowledge and logical reasoning, but the mechanism, as discussed below, is not obvious.   
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Theoretical Background 
Perhaps, to explain invalid refutations like that above, accessibility is key.  If correct versions 

come readily to mind for students confronted with similar but false statements, they might write 
those down as refutations and think no further.  This would be consistent with phenomena 
observed in research around dual-process thinking in mathematical situations (e.g. Evans & 
Stanovich, 2013).  Alternatively, perhaps accessibility is key in that counterexamples do not 
come to mind.  Students’ example spaces take time and effort to develop (Watson & Mason, 
2005), and reasoning about concepts is often skewed by early or familiar examples (Zazkis, 
Liljedahl & Chernoff, 2008).  This might make counterexamples relatively inaccessible, 
especially where concepts are or poorly explored (Sinclair, Watson, Zazkis & Mason, 2011; 
Zazkis & Chernoff, 2008).  If accessibility is key, we would predict that on seeing appropriate 
counterexamples, some students would recognise them as such and switch answers accordingly. 

It might be, however, that invalid refutations arise from explicit value judgements.  Perhaps 
students who give correct-version reasons do think about the logic of their answers—even 
generating counterexamples—but nevertheless judge correct-version reasons to be better.  This 
might occur if students’ mathematical epistemologies are not well developed: some might 
believe that mathematics is primarily about dutiful recitation of correct answers (Muis, 2004).  
Alternatively, students might think about the logic of their answers but fail to arrive at valid 
conclusions.  Extensive research has shown that people in general do not reason in normatively 
correct ways (e.g., Evans, Handley, Neilens & Over, 2007), and that mathematics students 
typically perform better but far from perfectly (Attridge, Doritou & Inglis, 2015; Attridge & 
Inglis, 2013).  If explicit value judgements are key, we would predict that if presented with 
appropriate counterexamples, some students would stick with correct-version reasons as better. 

The study presented here investigated these possibilities using a three-stage instrument. 
Undergraduate mathematics students were presented with three items and asked to give initial 
true/false and counterexample/reason responses.  Then, for each item, they were asked to 
evaluate the validity of both a counterexample and correct-version reason, and subsequently to 
decide which of the two is the better response, explaining their decision.  The outcomes have 
pedagogical relevance: instructors must understand the origin of this phenomenon in order to 
intervene in a way that connects with student thinking.  They also have theoretical relevance: we 
know that mathematical and logical reasoning are linked (Inglis & Attridge, 2016), but we know 
little about how reasoning does or could develop alongside content knowledge in the logically 
demanding world of early proof-based mathematics (Dawkins & Cook, 2017; Lee, 2017).   

Method 
Our study used a specially constructed true/false instrument, completed by students in a 

lecture in a real analysis course that covered sequences, real numbers, and series.  Approximately 
two thirds of the large class (more than 200 students) were first-year students registered for a UK 
mathematics degree; they spent 75-100% of their study time on mathematics.  The remainder 
were second-year students on joint-degree programmes involving approximately 50% 
mathematics.  All had high but (usually) not elite prior mathematical attainment. 

The instrument used the three items: 
• ∀	𝑎, 𝑏 ∈ ℝ, |𝑎 + 𝑏| < |𝑎| + |𝑏|. 
• If 𝑥 < 3 then 1/𝑥 > 1/3. 
• A sequence (𝑎!) is increasing if and only if ∀𝑛 ∈ ℕ, 𝑎!"# ≥ 𝑎!. 
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For the first, absolute value item, the obvious correction is to the triangle inequality, which 
involves correcting the conclusion.  Providing a counterexample requires two numbers.  The 
second, reciprocal item invites correcting the premise by ruling out cases where 𝑥 < 0.  It is 
simpler than the first in that providing a counterexample requires just one number.  The third, 
sequence item invites correction to the definition of increasing, which in the course was given as 
‘A sequence (𝑎!) is increasing if and only if ∀𝑛 ∈ ℕ, 𝑎!"$ ≥ 𝑎!’.  Because all sequences that 
satisfy this definition also satisfy ∀𝑛 ∈ ℕ, 𝑎!"# ≥ 𝑎!, a counterexample must not be increasing 
and is nontrivial to construct because it cannot be drawn from the sequences that, for most 
students, would be considered prototypically non-increasing (Alcock & Simpson, 2017).     

The true/false instrument contained four pages.  On the initial response page, participants 
were presented with all three items and the prompt ‘Answer TRUE or FALSE to each question.  
For those that are FALSE, give a counterexample or a brief reason’.  On each remaining page, 
participants saw one item again, together with a possible counterexample response and a possible 
correct-version reason.  As shown in the sample page in Figure 1, they were asked to evaluate 
each response by ticking boxes, then state which answer they thought better and why. 

 
Figure 1: Evaluation and forced-choice page for the absolute value item (in original layout); the small-font numbers 

to the right label which item is which to facilitate analysis of the randomised-order versions. 
 

Evaluation of Answers to Question 1 1

8a,b 2 R, |a+b| < |a|+ |b|.

Below are some examples of typical answers. Tick one circle to show how you would evaluate
each answer.

1. FALSE 1.2

Counterexample: If a = 1 and b = 6 then |a+b| = 7 and |a|+ |b| = 7.

� The answer is correct and the counterexample is valid.

� The answer is correct but the counterexample is not valid.

� The answer is incorrect.

2. FALSE 1.3

Reason: It should be ‘8a,b 2 R, |a+b|  |a|+ |b|’.

� The answer is correct and the reason is valid.

� The answer is correct but the reason is not valid.

� The answer is incorrect.

3. Which answer is better and why? 1.4

4. Would you change your own answer and, if so, what would your new answer be? 1.5

v.1.1 3
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We constructed six versions of instrument with different permutations of the three items.  For 
each evaluation page in each version, multiple copies were created in which the orders of the 
counterexample and correct-version reason were randomised.  The instrument was distributed on 
individual paper copies.  The front page contained informed consent information, explaining the 
purpose of the study and the way in which the data would be used.  Participants were given 15 
minutes in week 3 of the course to complete their versions of the instrument; 173 agreed that 
their data could be used.  We report here on the initial, evaluation and forced choice responses. 

Results    

Initial Responses 
The initial responses were classified according to whether participants stated true or false, 

and qualitative analysis revealed several categories of counterexample/reason.  The categories 
(and short codes) are shown below, with illustrative responses from the absolute value item.   

• CEX: Single correct counterexample.   
‘False. a=5, b=6, |a+b|=|a|+|b| à |5+6|=11, |5|+|6|=11.’ 
• CEXG: Correctly specified general class of counterexamples.  
‘False. If a and b are both positive, |a+b|=|a|+|b|.’ 
• CEXI: Single incorrect/incomplete counterexample.  
(Participant simply wrote the symbol ‘≤’ without numbers.) 
• CVR: Correct-version reason.  
‘False. ∀	𝑎, 𝑏 ∈ ℝ , |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|.’ 
• CVRI: Incorrect correct-version reason.   
‘False as ∀	𝑎, 𝑏 ∈ ℝ , |𝑎 + 𝑏| = |𝑎| + |𝑏|.’ 
• E: Alternative form of explanation.   
‘False. Arguments can be equivalent/equal, not stated.’ 
• EI: Incorrect alternative form of explanation. 
‘False. Counterexample: (𝑎 + 𝑏)# ≮ 𝑎# + 𝑏#,   𝑎# + 2𝑎𝑏 + 𝑏# < 𝑎# + 𝑏#.’ 
• T: True. 
• O: Other (blank, incomplete, or inconsistent responses like ‘true’ with a counterexample). 
Regarding the CEX and CEXG classifications, we note that some authors value general 

classes over single correct counterexamples due to their power to provide insight into why a 
claim is false beyond ‘exceptions’ (Giannakoulias, Mastorides, Potari & Zacharides, 2010) and 
to their consequent relationship to mathematical theory building (Yopp, 2017; Zeybek, 2016).  
Here our focus is on simple refutation, but we respect the distinction in these descriptive results. 

Table 1 documents the distributions of initial responses.  For all items, about one fifth of the 
173 participants answered true (not the same participants each time: 19 answered true twice and 
none answered true three times).  For false responses, justifications that were incorrect on their 
own terms (with an ‘I’ in the code) were uncommon, though more appeared for the sequence 
item.  Beyond this, distributions across the three items differed considerably.  The reciprocal 
item was the ‘easiest’ to respond to in a normatively correct way: 119 participants provided only 
counterexamples and a further nine included valid counterexamples.  Thus 74% of participants 
gave a counterexample for this item, and 95% of those who correctly answered false included a 
counterexample.  This shows that, of those not tripped into answering ‘true’, a majority 
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understood the logic of counterexamples well enough to provide these in some circumstances (cf. 
Stylianides & Al Murani, 2010).  For the absolute value and sequence items, however, the data 
clearly document the observed reasoning problem.  For these items, correct-version reasons 
formed the entire response for 43 (25%) and 72 (42%) of participants respectively.   
Table 1: Initial responses summarized by type for the absolute value, reciprocal and sequence items.  Responses 
involving extra explanation are included with the main type except where they occurred separately. 
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Abs  50 9 2  1 18 8   43  4 1 1 34 2 
Rec 64 29 26  1 3 4 1 1 5     38 1 
Seq 23 1  1 8 12    72 3 3 6  35 9 

Evaluation Responses 
Almost all participants who erroneously said true at the initial response stage recognised 

their mistake during the evaluation stage and accepted at least one suggested false answer as 
correct.  The striking feature of the evaluation data was that the majority of those who had 
correctly answered false neither stuck with their initial response type nor switched.  Instead, they 
accepted both the counterexample and the correct-version reason as valid.  This is captured in 
Table 2 where, for each sub-table, the shaded cell highlights the number and percentage of 
normatively correct responses: counterexample valid and correct-version reason invalid.  For all 
items, this combination was much less frequent than accepting both as valid.   

Table 2:  Counts of validity judgements for the evaluation responses.  CV=answer evaluated as 
correct and counterexample/reason as valid, CI=answer evaluated as correct and 
counterexample/reason as invalid, I=answer evaluated as incorrect.  Blank or unreadable 
responses mean that one participant is omitted for each question. 
 Counterexample 

CV CI I 
Absolute 
value 

Correct-
version 
reason 

CV 114 (66%) 12 (7%) 5 (3%) 
CI 36 (21%) 2 (1%) 0 (0%) 

I 2 (1%) 0 1 (1%) 
 Counterexample 

CV CI I 
Reciprocal Correct-

version 
reason 

CV 119 (69%) 6 (3%) 0 (0%) 
CI 44 (26%) 0 (0%) 0 (0%) 

I 2 (1%) 0 (0%) 1 (1%) 
 Counterexample 

CV CI I 
Sequence Correct-

version 
reason 

CV 95 (55%) 15 (9%) 13 (8%) 
CI 33 (19%) 2 (1%) 1 (1%) 

I 4 (2%) 5 (3%) 4 (2%) 
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Thus, only a small minority of participants rejected the counterexamples, indicating that they 

understood these to be valid refutations.  But, for each item, only around one fifth to one quarter 
of participants rejected the correct-version reason.  This means that participants largely did not 
interpret the broader logic of refutations in a normatively correct way.   

Forced Choice Responses 
The above result renders the forced-choice responses of particular interest: when asked to 

choose, which would participants judge better?  Responses for the absolute value item are 
summarised in the tree diagram in Figure 2.  To render these readable, initial response categories 
are combined so that F CEX includes all false responses with valid counterexample-only 
justifications, F BOTH includes all false responses with valid counterexamples and correct-
version reasons, and F CVR includes all correct-version-reason-only responses. 
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Figure 2: Tree 
diagram showing 
contingent responses 
for the sequence item. 
Numbers differ 
slightly from those in 
Table 1 because, for 
example, a participant 
might have given a 
counterexample at the 
initial stage but 
introduced an 
inconsistency later, 
and thus be classed as 
‘other’ here. 
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Responses for the reciprocal and sequence items were broadly similar and, in theoretical 
terms, these findings cannot be explained by the accessibility account alone.  When offered 
counterexamples, some participants who initially gave correct-version reasons switched, but 
more did not.  Moreover, some participants switched from counterexamples to correct-version 
reasons and, for all three items, close to half judged the reason better when forced to choose.  
This suggests that value judgements account at least partly for students’ responses; it does not 
appear that the result of reflective thought is necessarily a mathematically valid answer.     

We conclude these results with a by-participant perspective.  Table 3 shows the distributions 
of participants according to scores out of three for the number of initial counterexample 
responses (initial score), the number of evaluations only the counterexample judged valid 
(evaluation score) and the number of counterexamples selected at forced choice (choice score).  
This confirms a lack of simple interpretations: a majority of participants gave and accepted 
counterexamples and judged them better some but not all of the time.  This indicates that for 
most, valid reasoning was possible but not reliable (cf. Dawkins & Cook, 2017; Epp, 2003).   

Table 3:  Distributions of initial, evaluation and choice scores out of three. 
 0 1 2 3 Mean (SD) 
Initial Score 23 69 62 19 1.45 (0.86) 

13.3% 39.9% 35.8% 11% 48.2% 
Evaluation Score 104 35 16 18 0.70 (1.01) 

60.1% 20.2% 9.2% 10.4% 23.3% 
Choice Score 33 36 44 60 1.76 (1.13) 

19.1% 20.8% 25.4% 34.7% 58.6% 

Discussion 
This study investigated reasoning about refutations in undergraduate mathematics.  For all 

three items in our instrument’s initial response stage, a large majority of participants correctly 
answered false.  However, for the absolute value and sequence items, substantial minorities 
justified false answers only with correct-version reasons.  In the evaluation stage, participants 
who had answered true recognised their mistakes, and very few rejected counterexamples as 
invalid refutations.  However, a majority also accepted correct-version reasons as refutations, 
indicating that they did not understand their logical inadequacy.  By-participant analysis 
confirmed that most participants gave normatively valid responses in some but not all cases.   

Methodologically, we acknowledge that a survey provides limited insight into what students 
‘really think’.  Our instrument provided information on both spontaneous reasoning and more 
considered reflection in response to structured prompts but, if pushed in an interview setting, 
some students might change their minds or reveal thinking that was not captured on paper (cf. 
Stylianides & Al Murani, 2010).  We also acknowledge that our instrument’s instruction that a 
false response should be accompanied by ‘a counterexample or a brief reason’ implicitly 
condones justifications of both types, and might have influenced some participants toward or 
away from providing counterexamples.  It would be interesting to compare responses to versions 
of the instrument that ask specifically for counterexamples and generally for justifications.   

In the meantime, our findings shed light on student understanding of refutations as an aspect 
of logical reasoning, and lend larger-scale support to arguments (e.g. Dawkins & Cook, 2017; 
Hub & Dawkins, 2018; Ko & Knuth, 2013) that students specialising in mathematics might 
benefit from interventions designed to help them interpret issues of logic in normatively valid 
ways and consistently across mathematical content. 
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The Synchronous Online Environment as a Mediator of Collective Proving Activity 
 

Tenchita Alzaga Elizondo 
Portland State University 

Technological tools can transform how students interact not only with each other but also with 
the mathematics itself. This study investigates how students in a synchronous remote 
Introduction-to-Proof course operationalize the technological tools available to them to engage 
in collective proving activity. I identify several utilization schemes students developed for these 
tools and describe how students coordinated them and their impact on the role of proof.  

Keywords: Proof, Computer Mediation, Instrumental Genesis, Collaborative Learning 

Technology fundamentally changes the way students interact by acting as a mediator 
(Vygotsky, 1962), impacting not only interactions between students  but also the process of 
developing knowledge through those interactions (Borba & Villarreal, 2006). Consequently, 
mathematics courses offered remotely present new challenges as well as opportunities for 
students to learn collaboratively with one another. This is only magnified in proof-based courses 
which traditionally do not engage students in collaborative work.  

The impact technological tools can have on student learning has been investigated by 
various scholars. Stahl (2006) found that shared online whiteboards can provide students with a 
consistent reference to their work and Clark et al. (2007) discussed how they support students 
during argumentation. When it comes to collaborative writing, Zhou et al. (2012) found that 
technological tools that like Google Docs can support students in developing a shared meaning, 
providing a rich learning experience. Lastly, Öner, (2008) noted that dynamic technology can 
promote a doing perspective of math that focuses on the process rather than the result.  

While this literature is very insightful, very little of it is in the context of proof and if it is, 
it is primarily related to geometrical proofs (e.g., Fukawa-Connelly & Silverman, 2015; Öner, 
2008). This study hopes to build on this literature by addressing how technological tools can 
impact students’ collective proving activity in a remote Introduction-to-Proof course.  

Theoretical Perspective 
 
Instrumental Genesis 
 In order to study how the remote learning environment impacts students’ collective 
proving process, this study will draw on Instrumental Genesis Theory (Lonchamp, 2012; 
Rabardel & Bourmaud, 2003). This theory describes a relationship between artifacts and their 
users, and the impact of that relationship on cognition.  
 An instrument is differentiated from an artifact through a process called instrumental 
genesis. Béguin and Rabardel (2000) define an instrument as made up of the physical structures 
of the artifact and what is referred to as a utilization scheme which is a cognitive structure that 
designates a method for using an artifact (Carvalho et al., 2019; Lonchamp, 2012). It is only 
when an artifact is paired with a utilization schemes that it becomes an instrument (Rabardel & 
Bourmaud, 2003). The process of instrumental genesis contains two sub-processes. First, 
instrumentalization is oriented toward the artifact and describes the process of exploiting the 
properties of an artifact either temporarily or permanently (Carvalho et al., 2019; Lonchamp, 
2012). Alternatively, instrumentation is oriented toward the subject and describes the 
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development and evolution of utilization schemes (Lonchamp, 2012). In classroom settings, 
instrumentation is specifically focused on the practices students develop to create an instrument 
in support of knowledge-building activities (Hakkarainen, 2009). This study will be particularly 
focused on the students’ instrumentation process as it focuses on how students learn to use the 
artifacts available to them to work with their peers on proving activities.  

Students in remote environments have access to multiple artifacts which can both support 
each other and complete similar tasks. Together, these artifacts make up an instrument system  
(Rabardel & Bourmaud, 2003). In courses where students meet for short periods of time (like 
synchronous online courses) the instructor has an important responsibility in preparing the 
system (Lonchamp, 2012). When preparing for a course, the instructor develops initial utilization 
schemes that shape the artifacts for the students, students then develop additional and personal 
(to themselves and their group) utilization schemes. Development of these schemes with 
accompanying goal-directed activity, will be the focus of this study. 
 
Proof as Problem-Solving 

In this study, the students’ proving activity is viewed as a form of problem-solving. 
Scholars with this view work to “understand the skills, competencies, and dispositions that 
students need to produce adequate performance on proof related activities” (Styliandes et al., 
2017, p. 239). Carlson and Bloom (2005) developed a Multidimensional Problem-Solving 
framework that identifies problem-solving phases and attributes that impact each phase. For this 
study I draw specially on the problem-solving phases to describe the structure of students’ 
proving process. There are four major phases in Carlson and Bloom’s problem-solving cycle. 
Orienting involves taking actions to develop an understanding of the problem situation through 
behaviors like sense making, organizing, and constructing. Planning involves developing a 
strategy for how to approach the problem. Savic (2015) noted that this can happen at a local level 
(e.g., identifying warrants for individual lines) or at a global level (e.g., choosing a proof 
framework). Carlson and Bloom identified a sub-cycle that occurs during this phase, a 
conjecturing cycle where students: a) conjecture an approach to the problem, b) imagine how 
that approach would play out, and c) evaluate that approach. This cycle is repeated until a plan 
has been established. After planning, students execute their strategy that was developed in the 
planning phase. Lastly, checking involves verifying the accuracy and adequacy of the executed 
strategy. Like the planning phase, this can happen at a local or global level. As students work 
through these phases, they either cycle forward when an executed solution is deemed valid, or 
cycle back when an approach needs to be reworked.  
 This study is focused on understanding how students operationalize the remote learning 
environment to engage in collective proving and the impact of that operationalization on their 
collective proving activity. In particular, I will use these theories to help me answer: How do 
students operationalize the remote environment to engage in the collective proving process? 
How does that operationalization impact their engagement with the mathematics itself? 

Methods 
 
Data Collection 

The data for this preliminary analysis is from a university Introduction-to-Proofs course 
that was part of a larger, ongoing NSF-funded project (ASPIRE in Math, DUE #1916490) that is 
developing Introduction-to-Proof curricula and accompanying instructor support materials. This 
course was taught remotely with 14 students and met synchronously over Zoom for 10 weeks, 
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three times a week for an hour and five minutes each day. For each day of the class, screen 
recordings were used to capture the entirety of the students’ activity both in breakout rooms and 
whole class. Moreover, the screen recordings were used to capture simultaneous use of the 
different modalities each day (e.g., Google Docs and Zoom). 

This study focuses on three students’ collective work during one day of this course. The, 
three students Abigail, Alison, and Justin, worked together to collectively write a proof of what 
the class called the Sudoku Property of group Cayley tables. This refers to the fact that for each 
row and column of a Cayley table, every group element appears exactly once (i.e., it exists and is 
unique). The instrument system was made up Google Docs and Zoom. The instructor had 
prepared the Google Docs before class by including the task with instructions for the students.  
 
Data Analysis 

Analysis for this study drew on Powell et al.'s (2003) methodology for studying video 
data. The first stage of this plan is identifying critical episodes that are significant to the research 
agenda. The episode described above was identified as a critical episode since from an initial 
impression, it seemed that the technological artifacts played an important role in students’ ability 
to work together. A multimodal transcript (Hoffman, 2018) was created using the video data to 
capture all student interactions as accurately as possible. The transcript was then analyzed using 
Carlson and Bloom’s (2005) problem-solving framework and Instrumental Genesis. Coding of 
different problem-solving phases involved identifying the problem-solving phase a student’s 
action belonged to relative to the group’s collective problem-solving. To capture the students’ 
instrumentation process, each time the students used a technological artifact I answered the 
questions: 1) What is the goal of using the artifact? 2) How did the student(s) use the artifact?  

Once the multimodal transcript was created and coded, I conducted dual thematic 
analyses on the Instrumental Genesis coding (Braun & Clarke, 2006). First, to identify themes 
for students’ goal directed activities (using my answers to the first question) then, to identify 
themes for the utilization schemes for each goal directed activity (using my answers to the 
second question). This dual thematic analysis resulted in the identification of different goal 
directed activities and associated utilization scheme(s). I then went back to the transcript and 
video to analyze how the students’ instrumentation process impacted their collective proving 
process by coordinating the students’ instrumentation process with the different problem-solving 
phases. Moreover, identified how the instrumentation processes impacted the kind of proving 
activity the students engaged in and how the instrumentation processes supported (or hindered) 
the collective activity. From this, I created descriptions of the role of students’ instrumentation 
processes in their collective proving process.  

Results 
 
Students’ Different Instrumentation Processes 

I identified seven sub-goals that students developed toward the general goal of engaging 
in collective proving activity, five of which corresponded to a specific problem-solving (P-S) 
phase (see Table 1). In what follows I discuss how the students coordinated some of these 
schemes and how this coordination aided in them writing collectively. 
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Table 1: Identified themes of students use of technology to engage in collective work 

P-S Phase Goal-directed 
Activity Artifact Utilization Scheme 

Orienting 
Phase Understand Task 

Zoom • Discuss Goals with Peers 

Google Doc • Read from or Add Information to Worksheet 
about the Task 

Planning 
Phase 

Communicate 
Idea 

Zoom • Verbally Share Ideas 

Google Doc • Write Out Proposed Idea 
• Use Cursor to Reference 

Evaluate Peers’ 
Idea 

Zoom • Listen to Peers’ Ideas  
• Read Peers’ Chat  

Google Doc • Read Peer’s Written Proposed Idea 
• Identify What Peer is Referencing 

Execution 
Phase 

Create Team 
Solution to Task 

Zoom • Verbally Dictate Answer 

Google Doc  
• Add on to Existing Text 

(repurposing/adapting) 
• Write Full Answer  

Checking 
Phase 

Check Team 
Solution to Task 

Zoom • Verbally Share Concern or Acceptance 
Google Doc • Read Full Answer  

Throughout 

Update 
Workspace Google Doc • Delete Unnecessary or Irrelevant Text  

• Update Visual Aids 

Receive Instructor 
Feedback  

Zoom • Ask Instructor Questions Verbally 
• Move to Whole Class Discussion 

Google Doc • Read Instructor Comments  
 

Coordinating between instruments. Several of the students’ instrumentation processes 
involved developing utilization schemes for one artifact that relied on the utilization scheme for 
the other. Specifically, the students coordinated the textual affordances of the Google Doc with 
the verbal affordances of Zoom in two ways. First, during the planning phase, the students used 
the Google Doc to aid in communicating and evaluating an idea. Consider the following two 
students who discussed why a group element must show up at least once in a Cayley table. 

Alison: …Once an element shows up once, it can’t show up again. So, it has to be filled by a 
different one. An empty space. Are you following my train of thought? […] Here, I’m 
gonna write it out and then then read and tell me what you think. (Alison writes in google 
doc “We already proved that each symmetry can show up at most one time in each row. 
So, if B appears once, it cannot show up again….”) 

Abigail: (as Alison is typing) Oh, yeah, that makes sense. Because there’s only like, Okay, if 
it’s a six-by-six table, then and you place one. And then you can’t place it again. So, you 
have to pick another one from the five remaining. 

Even though Alison wrote down almost exactly what she said out loud, to Alison the Google 
Doc was an instrument that could better help her communicate her ideas. For Abigail, the writing 
on the Google Doc acted as a visual mediator, providing additional insights to Alison’s approach.  

The second way this coordination was observed was by students visually referencing 
existing text with their cursor during their verbal communication. For instance, when discussing 
further justifications that their proof needed, two students had the following conversation: 

Alison: Should we regroup it too? 
Justin: Probably at that point. Do we use two steps somewhere? 
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Alison: Maybe associativity right here. 
As seen in Figure 1a and Figure 1b, Alison’s cursor was visible to the everyone viewing the 
Google Doc. At this point, the group had established the utilization scheme of using the cursor as 
an indicator of where in the document the cursor’s owner (i.e., the student’s) attention was. With 
just the placement of the cursor, Justin knew where in the proof Alison’s attention was when he 
suggested they regroup “at that point” and Alison knew that her cursor would indicate to Justin 
what she meant by “right here”. Students would also highlight the text to visually reference parts 
of their document. This coordination allowed the students to use indexical terms (e.g., this one, 
that one, here) in such a way that avoided ambiguity during conversation. 

Writing collectively. The students in this study developed various utilization schemes to 
achieve the goal of creating a team solution. Engaging collectively in the execution phase of the 
problem-solving process often involved different people executing different parts of the task. For 
instance, Figure 2 shows the group’s completed proof of the uniqueness of group elements in a 
Cayley table that was written among all members. The different colors represent different student 
contributions, showing how the proof writing was carried out by all students. 

While at times the group engaged in collective writing by writing simultaneously, a 
particularly interesting use of the instrument system was the students’ schemes to repurpose and 
adapt existing text. As was discussed earlier, students’ schemes of communicating ideas involved 
writing text down in the Google Doc as an aid to their verbal communication. This syntactic 
communication scheme supported the development of a repurposing scheme in which students 
repurposed text originally serving a communicative function so that it was now serving a final 
solution function. This scheme was often utilized without any explicit comments from the 
students and instead the text was implicitly identified as serving this new function when students 
moved on to the execution phase. For example, consider the proof in Figure 2, the lines “AQ=B 
and AW=B, so AQ=AW, then Q=W” were originally written by two students to communicate 

Figure 2. Proof written collectively with different colors representing different student contributions   

Figure 1a. Alison’s cursor identifying “that point” Figure 1b. Alison’s cursor identifying “right here” 
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their ideas about how the proof by contradiction should work during the planning phase. This 
exact text was then built on and slightly edited during the group’s execution phase and makes up 
an important part of the final solution. By employing the repurposing scheme, students opened 
up the pool of ideas to include more than just contributions during the execution phase.  
 
The Instrumentation of Proof 

Students’ instrumentation of the technological artifacts (i.e., Zoom and Google Docs) 
transformed the role that the proof played in their collective activity. Beyond being a document 
that represented a complete, formal argument, a proof became an evolving artifact that 
represented the sharing of ideas and their dynamic argumentation during the proving process. 
The students developed several utilization schemes that leveraging this feature transforming the 
proof into an instrument.  

Due to the students repurposing and adaptation schemes, their proof was encoded with the 
group’s discussions. Using their referencing scheme, the students developed a utilization scheme 
to use the proof to engage in argumentation with each other. For example, consider the case 
when a group of students were discussing why their current proof proved that an element appears 
at most once in each row of a Cayley table: 

Justin: Because they have to be the same thing. Because we’re- that shows that Q and W 
equal each other. 

Abigail: Yeah, it does the same thing as being, like like R equals R (writes R=R in the 
Google Doc), we wouldn’t even have that because those are the same symmetry. You 
know what I mean? So, these are like the identical symmetry (highlights R=R and then 
W=Q). And so, it wouldn’t be one of the like, one’s on the outside of the table…  

By writing R=R and then immediately highlighting W=Q, Abigail is doing more than just 
referencing to bring attention to the very last line of the proof. Instead, she is relying on the last 
line to communicate the argument from the full proof: if an element B shows up twice in a row A 
then there must exist two elements W and Q in the header row that are equal to each other.  

In addition to the proof acting as an instrument to communicate ideas, the students’ 
instrumentation processes transformed the proof into an instrument that represents their evolving 
argument. Specifically, the students developed a utilization scheme of using the proof as a record 
of their current understanding. The students’ proving process involved multiple iterations of 

Figure 3. Evolution of the Students’ Proof 
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proposing and evaluating warrants for different parts of the overall argument; often including 
simultaneous executing and checking cycles. Throughout these cycles the students employed 
several utilization schemes for the technological artifacts in such a way that their written proof 
was continuously updated and thus, evolved as their argumentation evolved. To model this 
evolution, consider Figures 3 which represents a few steps in how the group’s proof evolved as 
they engaged in several problem-solving cycles.  

Discussion 
These results show that students use and operationalize the instrument system of the remote 

environment in many ways to engage in collective proving activity. Moreover, through an 
instrumental genesis lens, we can see how students can successfully transform artifacts into 
collaborative instruments.  

Students used multiple instruments in a complimentary way to help organize their collective 
activity around a common task (e.g., writing on the Google Doc to supplement a verbal 
explanation). Not only did this dual scheme enrich students’ communications to one another, but 
it also enriched their abilities to understand and listen to one another. Scholars have noted that 
due to the many moving parts of the remote environment, successful coordination of instruments 
can play an important role in developing a collective understanding (e.g., Çakir et al., 2009; 
Stahl, 2006). The students in this study also developed schemes that leveraged this coordination 
to create a collective solution. Their repurposing schemes allowed their communication to be 
embedded into their final work and the editing features of the Google doc allowed for easy and 
simultaneous editing to occur among the students. Together these schemes supported the creation 
of a collective proof that reflected the ideas of each individual.  

The students’ instrumentation of the technological artifacts resulted in the instrumentation of 
their proof. Due the various utilization schemes applied to the Google Docs and Zoom, the 
students’ proof became an evolving artifact that represented the sharing of ideas and their 
dynamic argumentation during the proving process. As such, the proof was utilized to 
communicate with one another and to record their evolving understanding of the argument. 
CSCL literature on students’ use of Dynamic Geometry Systems often emphasizes how students’ 
use of these artifacts results in an emphasis on the process of doing math rather than on the final 
product (Öner, 2008). Results from this study show evidence of an analogous view of math when 
it comes to proving activity. This evolving feature of proof can support students in seeing 
proving as a process that involves first, second, etc. attempts, where ideas are proposed, 
executed, and refined. If proof is viewed as a dynamic object and not as a final document full of 
formal (and perhaps foreign) language, it might become more accessible and inviting to students.  

This study presented a case of how one group of students successfully navigated and 
leveraged the remote environment to engage in collective proving activity and how that impacted 
their proving process and their conception of proof overall. Future work is needed to further 
explore these results further and how students can be supported to leverage technological tools in 
a productive way.  
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Developmental Math Students’ Perceptions of (Re)learning Outcomes:  
The Value of Algebra All Over Again 

 
 Kristen Amman Juan Pablo Mejía Ramos 
 Rutgers University Rutgers University 

We report findings from an exploratory study on developmental mathematics students’ perceived 
experience re-learning content they had already studied in middle- or high-school. Our findings 
suggest that these experiences may be largely shaped by students’ expected and perceived 
learning outcomes associated with that content. Rather than describing the mathematical 
concepts learned, students focused on the additional value of the Intermediate Algebra course 
when describing their expectations and perceptions learning about a topic they had seen before 
in previous algebra courses. We describe how six of those learning outcomes depended on 
students’ confidence in their previous understanding of the content to be relearned, and how 
those learning outcomes influence students’ modes of engagement during (and emotional 
reactions to) their relearning experience. 

Keywords: developmental mathematics, relearning, confidence 

Developmental (or remedial) education courses are commonly offered at U.S. colleges and 
universities for students that are deemed underprepared for “college-level” work in mathematics, 
reading, or writing. Traditional developmental courses are often nestled within a sequence, 
meaning that a student needs to pass multiple courses before enrolling in a credit-bearing course 
of the same subject. The Conference Board of the Mathematical Sciences Survey (CBMSS) 
found that in Fall 2015 approximately 41% of all two-year college and 11% of all four-year 
college and university mathematics and statistics enrollment was in developmental courses. 
Despite this sizable enrollment, only an estimated 50% of students beginning at public two-year 
institutions and 58% of students beginning at public 4-year institutions pass or earn some credit 
for all the developmental mathematics courses (DMC) they attempt to take (Chen, 2016). 
Reasons for these failure rates have been proposed at various levels, but most research has thus 
far focused on entry and exit problems with the developmental course sequence such as 
placement and attrition (e.g. Bahr, 2008a; Bahr 2012a; Bailey, Jeong & Cho, 2010). These 
studies give us a broad sense of the paths students take to credit-bearing courses, but leave the 
reasons for rates of attrition, passing, and graduation obscured with a “black box” of teaching 
and learning in DMC (Grubb, 2001). In order to address the black box problem in developmental 
mathematics reform, more research needs to be done that characterizes student experiences in 
developmental mathematics programs and identifies aspects that appear to be critical to the 
formation of end-of-course outcomes over time. This exploratory study began to fill this gap in 
the literature by describing student experiences with content through the theoretical lens of 
relearning, or the experience of trying to learn about something one has already tried to learn 
about before.1 
 

 
 

 
1A brief report of these results appears in the proceedings for the 43rd Meeting of the North 
American Chapter of the International Group for the Psychology of Mathematics Education. 
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Literature Review 
Student experiences in DMC involve significant amounts of time learning about content 

students have seen before, either from a previous K-12 mathematics course or from a previously-
attempted DMC (Ngo & Velasquez, 2020; Fay, 2020). Stigler, Givvin and Thompson (2010)  
summarize student experiences in DMC as being, “presented the same material in the same way 
yet again” (p. 4). In their study of 306 first year students placed into intermediate algebra at 
California State University, Benken, Ramirez, Li, and Wetendorf (2015) found that 60% of these 
students had taken courses beyond Algebra II in high school. Likewise, Ngo (2020) investigated 
the percentage of college students who take “redundant” math courses, or courses whose content 
is either at the same or lower level than their highest completed math course in high school (or 
lower than what they would be predicted to pass given their results on a 12th grade math 
assessment). He found that while roughly 20 percent of all college students take redundant math 
courses, that percentage increases to roughly 40 percent when looking at developmental math 
students specifically. Taken together, these studies indicate that the experience of learning about 
content one has seen before (possibly even to some level of mastery) occurs more frequently for 
developmental mathematics students than students enrolled in other math courses in college. For 
students enrolled in a multi-course sequence or for the large proportion of students who fail 
DMCs, this repeated interaction with content seen before occurs more often.  

This similarity to content seen before across multiple timepoints is a point of concern for 
developmental math educators due to the high numbers of students who are recommended to 
take developmental mathematics courses who fail to complete them because they never enroll in 
the final course in the first place (Bahr, 2008a; Bailey, Jeong & Cho, 2010). Accordingly, the 
past 10 years has seen an influx in the adoption of new forms of developmental mathematics 
experiences throughout colleges and universities other than the traditional, sequential, semester-
long experiences. These reforms change the amount of time students spend in remedial courses, 
but nevertheless involve the underlying phenomenon of learning about content seen before. 
Across traditional and reform-oriented DMC, studies of effectiveness have thus far relied on end-
of-semester outcomes such as student passing rates and graduation rates. However, the over-
reliance on this method of evaluation combined with the lack of information about student 
experiences in DMC has made it difficult for researchers and practitioners to understand the 
reasons for these outcomes and apply them to other contexts. In order to address this issue, 
researchers have been called to open up the “black box” of instruction in DMC (Grubb, 2001; 
Sitomer et al., 2012; Mesa, Wladis & Watkins, 2014), particularly when it comes to student 
experiences with content. Although such research is limited, the research that does exist suggests 
that students’ past experiences with content influence their current experience each time that 
content is re-encountered (Sitomer, 2014; Zientek et al., 2013; Givvin, Stigler, & Thompson, 
2011). However, currently no such studies have been conducted in service of describing what it 
is like for students to learn about content they have seen before, despite the defining role of this 
phenomenon in developmental math classes. The purpose of this study is to begin to fill this gap 
by characterizing student experiences with content they have tried to learn about before, an 
experience we define below as “relearning”.  

Theoretical Framework: Relearning 
At the most basic level, we define relearning as requiring three things: some (mathematical) 

content, a “time 1” (T1) representing a past occurrence when an individual has tried to learn 
about that content, and a “time 2” (T2) representing the most recent time an individual has tried 
to learn about that same content again. While the content at T1 and T2 need not be identical, it 
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does need to cross a threshold of similarity such that the content learning goals at T2 are 
essentially the same as those at T1. Although the name relearning appears to suggest some 
degree of mastery of content at T1, we make no such assumption in our conceptualization. As 
argued previously, although it may not be the case that absolutely every piece of content a  
student encounters in DMC has been seen before, it is likely that most of the content is familiar. 
Further, by nature of their design, the learning goals of DMC are identical to those of middle and 
high school algebra courses considered prerequisites for undergraduate mathematics instruction. 
Given the scarcity of research on student experiences with this phenomenon in DMC, we turned 
to what research does exist that in some way considered developmental mathematics student 
experiences with content in order to begin to structure our investigation. In order to incorporate a 
focus on the influence of students’ past experience with that same content, we additionally 
anchored our analysis in variables that have proven useful in research from cognitive psychology 
on the influence of past experiences on perception in interaction (Kleinschmidt & Jaeger, 2015).  

First, in two papers on community college developmental mathematics students, Stigler, 
Givvin, and Thompson (2010) and Givvin, Stigler, and Thompson (2011) suggested that 
repeated exposure to instruction that associates learning mathematics with rote memorization 
may explain data indicating that developmental mathematics students’ procedural knowledge is 
disconnected from actual mathematical concepts, resulting in minimal ability to evaluate the 
validity of their answers. Second, in their research on 169 developmental classes in 20 
community colleges, Grubb and Gabriner (2013) provided an account that pushed back on the 
idea that student experiences would be homogenous. Instead, they proposed that there were five 
different types of developmental mathematics students according to their “learning needs”. The 
two that focus on student relationships to content are “brush up” students (deemed only to need a 
quick reminder of content) and students with insufficient basic academic studying skills, which 
leaves them with an understanding of content that is just good enough to pass, but not good 
enough to retain concepts beyond a final exam. While the later is reminiscent of Givvin, Stigler, 
and Thompson‘s hypothesis, the former presents another possibility. The other categories 
(students who have been misplaced, students with learning disabilities, and students with mental 
health issues) are less relevant to our focus on relationships to content, but nevertheless highlight 
the important role that affective states and attitudes towards the course on student experiences. 
Finally, Cox and Dougherty (2019) described types of student experiences from their interviews 
with 25 pre-algebra students across four sections of a developmental math course at a community 
college. The resulting categories were defined by either the expected or perceived impact of the 
course on students’ relationship to the content they had seen before. In a notable departure from 
the results of the previous studies, some students characterized their experience as wanting to 
deeply understand the reasoning behind their use of procedures in a way that they had not done 
before (although, it was relatively uncommon for students to feel this had been accomplished by 
the end of the course). Others indicated that the course was useful in “refreshing” their memory, 
similar to the “brush up” students described previously. However, unlike Grubb and Gabriner, 
Cox and Dougherty described student perceptions of their own experiences rather than 
instructor’s perceptions of students, and thus were able to identify variation within the “brush 
up” student category in terms of affective disposition (e.g., while some students were satisfied 
with the function of the course as a ‘refresher’, others found ‘reviewing’ to be a waste of time 
given their prior experience). 

The convergence of these results suggested that the question of what students get out of a 
DMC in terms of their relationship to the content might be a defining experiential feature 
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because it is unique to this type of mathematics course. Given the previously-noted possible 
variation in this type of experience in terms of engagement and affective disposition as well as 
the lack of theory that would allow for a targeted investigation of this concept, we turned to 
research in cognitive psychology on the influence of past experiences on perception  
(Kleinschmidt & Jaeger, 2015) for further guidance. In particular, the variables of perceived 
similarity of experience and relevance of the prior experience in the new situation were variables 
that seemed to characterize how individuals perceive and approach scenarios they have been in 
before. With these variables as well as methods of engagement and affective disposition in mind, 
we set out to explore how developmental mathematics students experience relearning content 
they had seen in previous algebra courses. In particular, we focused on the following questions 
addressing two aspects of that experience: how similar do students think the content of DMCs 
are to that of their school algebra courses, and how relevant do they perceive their current 
knowledge of algebra to be in their success in DMCs? 

Methods 
This was a multiple-case study in which three students enrolled in an Intermediate Algebra 

course at a four-year public university in the Spring 2020 semester participated in one-hour, 
semi-structured interviews before and after learning about a topic they indicated they had seen 
before (Equations of a Line and Polynomials) in a previous algebra class. Each student also 
participated in one follow up interview in the Fall 2020 semester. Simon and Zena were students 
of Instructor A, had never previously taken an algebra course in college, and were an 18-year-old 
first year student and a 19-year-old second year student at the time of the study, respectively. 
Valeria was a student of Instructor B, had previously taken three algebra courses in college, and 
was a 20-year-old third year student at the time of the study. Both Instructor A and B were 
recommended by the head of the department for their quality of instruction, and as many 
participants as possible were recruited through an online survey. All course meetings in which 
these topics were covered were conducted in person, prior to the switch to online instruction due 
to the Covid-19 pandemic. Each of these meetings were observed and recorded with the first 
author taking fieldnotes on participant behaviors and problems worked on during class. In 
interview 1, students were asked to describe their history learning about the topic, confidence in 
their current understanding, and to predict what the experience of learning about the topic again 
would be like. In interview 2, after the topic had been taught, students were asked to describe 
what it was like to learn about the topic again, including how predictions aligned with what 
occurred. Discussions were anchored in problems gathered from field notes or student work as 
often as possible. A detailed discussion of the instructor interviews and student follow-up 
interviews is beyond the scope of this report. The results reported here focus on student 
interviews from the Spring 2020 semester. Interviews were transcribed and analyzed using a 
modified thematic analysis. While data collection was guided by some theoretical propositions, 
the novelty of the research called for a more exploratory approach. Thus, coding proceeded in 
five stages beginning with in vivo coding (Creswell, 2007) and progressing to a modified 
thematic analysis (Braun & Clarke, 2012) as familiarity with the dataset increased. 

Results 
Due to space constraints, we report results around one variable central to our findings on 

student experiences: learning outcomes, or the resultant relationship between a student and 
material they have seen before at the end of a relearning experience. This is not a grade or an 
indication of passing/failing but instead an answer the question: what was the value of this 
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learning experience in terms of students’ understanding of content this time around? Across 
Interview 1 and 2, students described six types of learning outcomes (Table 1). 

Table 1. Students’ expected/perceived learning outcomes when relearning algebra content seen before. 

Outcome Definition Example 

Gain a Deeper 
Understanding 
 
 
 
 

Confirm my 
Understanding 
 
 
 
 

Jog my Memory 
 
 
 
 
 

Reconstruct my 
Memory with 
Guidance 
 
 
 
 

Fix Past 
Mistakes 
 
 
 
 
 

Accept what I 
Don’t 
Understand 

Students see previously-learned 
material in a new way and use 
this shift in perspective to gain a 
"deeper” understanding than they 
did before.  
 

Students already know the 
content and verify that their 
existing understanding is 
adequate.  
 
 

Students refresh their memory of 
material they have forgotten due 
to matters unrelated to inadequate 
prior understanding such as time. 
After the class is completed, they 
do not require further practice.  

Students are guided through a 
reconstruction of their memory of 
previously-learned material and 
avoid remembering things 
“incorrectly”. After the class is 
completed, they require further 
practice.  

Students identify and address 
inadequate understandings of 
course material gained from past 
experiences.  
 
 
 

Students acknowledge that they 
hold inadequate understanding of 
course material gained from past 
experiences, but see themselves 
as being unable to address it.  

Zena, Interview 2: I think [in high 
school] I definitely just memorized it 
short term for the exam or class and 
now I actually understand what I’m 
solving for and what I’m trying to do 
with the equations. 

Simon, Interview 1: We’re just 
learning what I already know. It takes 
a load off the class cause you just 
know what’s gonna happen and so it’s 
kind of fun to be able to [solve 
problems] while he’s explaining.  

Valeria, Interview 1: It will be like a 
refresher. Cause I took it already and 
like I said, I’m bad with names of 
things, so I don’t really know what it 
looks like, but once we’re doing it in 
class I’ll know what to do.  

Zena, Interview 1: If I’m trying to 
remember what I first learned I could 
get confused easily with what I 
vaguely remember and what I don’t; 
so I just want a concrete ‘this is how I 
should do it’…and I think that would 
help me understand faster.  

Zena, Interview 2: When I have to 
make my own linear model, what I 
have trouble with is corresponding the 
x and y with the variables they give…I 
think I’ve gotten better at it in this 
class just because he really kind of 
breaks down why we’re doing it.  

Valeria, Interview 1: I just can’t get it. 
[Word problems don’t] make sense to 
me at all, and I try, like I’ve been 
watching videos and all that stuff, but 
I still won’t get it at all. 
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While the codes are not ordered hierarchically, they were each associated with a degree of 
confidence in the student’s perception of their current understanding of the relearned material. 
Confirm my Understanding, for example, was associated with a high degree of confidence in a 
student’s perception of their understanding of the relearned material, thus allowing them to 
simply confirm that their current understanding is adequate. On the other and, the learning 
outcome Reconstruct my Memory with Guidance was associated with a lower degree of 
confidence, as students who mentioned this outcome felt that they understood the material 
enough to partially rely on memory, but not well enough to do so without significant assistance 
from an instructor. Some of these outcomes, as with Jog my Memory are reminiscent of prior 
conceptualizations of the value of developmental math courses (i.e., Grubb and Gabriner’s 
(2013) brush up students, Cox and Dougherty’s (2019) refreshing). Others, such as Confirm my 
Understanding and Accept what I Don’t Understand are novel. Each of these outcomes were 
informed by students’ pasts, and represent a multitude of frames through which they could 
interpret their experiences. Importantly, discussions of their expected and perceived learning 
outcomes were associated with particular methods of engagement with re-learned material and 
affective dispositions while relearning. Differences in engagement and affect were frequently 
observed across the same learning outcome. For example, although all three students noted 
Confirm my Understanding as a learning outcome, Simon and Valeria associated this outcome 
with not paying attention during class, whereas Zena did not describe engaging in this behavior.  

This variation in engagement and affect for each learning outcome was even observed for the 
same student across Interview 1 and 2. For example, Simon described the experience associated 
with Confirm my Understanding as “kind of fun” in Interview 1, and as boring in Interview 2. 
Due to the exploratory nature of this study, it remains an open and critical question about the 
extent to which students’ degrees of experience with re-learning informed their dispositions 
towards the learning outcomes as well as the types of learning outcomes they perceived as 
viable. Student descriptions of their experience with re-learning also shifted both from Interview 
1 to Interview 2 when discussing the same topic (from expected to perceived learning outcomes), 
and within the same interview when discussing different aspects of a topic. Because each of 
these interviews centered around one unit (3-4 classes), this meant that students were describing 
different learning outcomes for different problems, subsections, and problem-solving strategies 
within one unit as well as different learning outcomes from those that they expected going into 
the lesson. For example, in Interview 2, Valeria described different anticipated learning 
outcomes for sub-topics within the polynomials unit. With many subtopics in the unit that 
involved adding or multiplying polynomial expressions, Valeria found herself frustrated with the 
experience of learning about content that she already understood (confirm my understanding) to 
the point where she saw little value in paying attention during class. 

Valeria: Polynomials is just like, a thing to me like I honestly could care less. So when I 
know, I know. I'm like, I'm kind of getting lazy with this, cause this is like the third time 
of taking this class. But usually, I don't know, in class I just, I don't like it cause of the 
time.  

Interviewer: Cause it takes so long, you mean?  
Valeria: Well like the class period and cause she explains like every little thing sometimes. 

Like she's like 'what's 3 times 2?' like we all, we all should know that, so there's no point 
in asking it. But she does that sometimes.  

Interviewer: And when you said like the stuff that you know, you know. Can you say more 
what you mean by that?  
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Valeria: Like if, like when she starts doing examples and I do them on my own and get the 
right answers, like maybe she'll do five and I get the first three right then I'm like I don't 
really need to pay attention any more. So then I'll just either like daze off or like go on 
my phone to be honest. 

However, for other sub-topics that she found more difficult, Valeria’s experience seemed to 
be dominated by avoidance behaviors and anxiety gained from her past history with algebra. For 
example, when discussing factoring techniques she remarked, “If [a polynomial] has a number in 
front of the 𝑥ଶ

 one, then I’ll usually just sit there and just stare at it, but if it doesn't then I can 
usually just do it...I think it just scares me or something. It just like scares me.” In a follow up 
interview, Valeria went on to suggest that her difficulties with this type of factoring, both 
conceptual and emotional, could only be resolved if she had learned about them in a different 
way the first time they were introduced (Accept what I Don’t Understand). As Valeria’s case 
illustrates, due to their previous experience with algebra, developmental mathematics students 
are frequently making judgments about what they expect to get out of their re-learning 
experience often based only on perceived similarity of content (to what they've seen before) and 
their confidence in understanding the material at that time. Interestingly, she saw her experience 
with Accept what I Don’t Understand as similar to Confirm my Understanding, given that both 
outcomes were motivated by her unwillingness to engage with course content. This suggests that 
the relationships between these learning outcomes would be a worthwhile pursuit for future 
investigations in this domain. 

Conclusions 
Given that some learning outcomes may be more or less desirable than others, the results 

provided here may be useful to DMC instructors seeking to understand the potential impacts of 
their pedagogy on student understanding, and how this may vary from other courses in which 
students are learning new mathematics for the first time. The fact that student perceptions of their 
learning outcomes shifted not only by topic within an interview, but across interviews as they 
gained more information casts doubt on literature that attempts to classify students as one 
particular type, or as having one type of learning need. Given the exploratory nature of this 
study, we would encourage future inquiry into the types of learning outcomes across various 
DMC contexts: both topic-by-topic and considering course experiences more holistically. It may 
be the case that DMC as well as other courses that involve relearning may be designed in ways 
that encourage or discourage particular learning outcomes from being achieved. A mathematics 
department looking to evaluate the effectiveness of a DMC could ask: what learning outcomes 
are desirable for us in these courses? Beyond setting expectations for the content students should 
be learning in these courses, instructors of courses that contain relearning experiences need to 
ask: what relationship to this content could a student build in this course given the type of 
instructional support and content engagement I am providing? Practically, the language of 
learning outcomes also may provide more specific information about not only what students 
learned while in the course, but how they approached the task of relearning in order to achieve 
that outcome. Having language that can go beyond ‘a review’ could facilitate more meaningful 
conversations with students that result in setting more appropriate expectations for their learning 
experience. Additionally, the notion of “fixing” one’s past mistakes shares similarities to 
findings from Dibbs (2019) who investigated the experiences of undergraduates retaking 
calculus courses, another type of relearning experience. The extent to which the findings 
described here might be relevant to other such contexts is an area for future inquiry.  
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Vector spaces are often taught with an axiomatic focus, but this has been shown to rely on 
knowledge many students have not yet developed. In this paper, we examine two students’ 
conceptual resources for reasoning about null spaces drawing on data from a paired teaching 
experiment. The task sequence is set in the context of a school with one-directional hallways. 
Students’ informal reasoning about paths that leave the room populations unchanged supported 
more formal reasoning about null spaces. We found that one student used context-based 
resources (such as ‘loops’ in hallway) to reason about null spaces, while the other student drew 
largely on previously formalized mathematical resources (e.g. free variables, linear 
dependence). The use of formal resources sometimes required recontextualization, which may 
function to constrain student sense-making or afford opportunities for broadening students’ 
formal prior knowledge. 

Keywords: linear algebra, subspaces, null spaces, conceptual resources 

Axiomatic treatments of vector spaces are thought to be often inaccessible to students 
because they unify and formalize many ideas that many students have not yet developed (Dorier, 
2000; Grenier-Boley, 2014). In their genetic decomposition of vector spaces, Parraguez and 
Oktaç (2010) identified the binary operations of scalar multiplication and vector addition, as well 
as the closure of sets under linear combinations of these operations, as the critical constructs for 
consideration in regard to students’ learning about vector spaces. We thus argue that subspaces 
function as a more accessible entry point for supporting students’ learning about vector spaces.  

Given the increasingly important role of linear algebra in real world applications, more work 
is needed to support students in developing robust conceptualizations for subspaces, and 
particularly null spaces, given their applicability to a wide range of closed systems problems. In 
this paper, we examine data from an instructional sequence on subspaces whose design is 
informed by the principles of Realistic Mathematics Education (RME; van den Heuvel-
Panhuizen & Drijvers, 2020). In particular, we address the research question: What are students’ 
conceptual resources for reasoning about null spaces in the context of an RME-based 
instructional sequence focused on subspaces?  

Literature and Theory  
A limited number of studies target students’ early reasoning about vector spaces, subspaces, 

and especially null and/or column spaces (Stewart et al., 2019). Two recent exceptions in the 
area of subspaces are the work of Wawro et al. (2011) and Caglayan (2019). Wawro et al. (2011) 
documented 8 undergraduate students’ concept images for subspaces in relation to how they 
reasoned about the concept definition -- identifying geometric and algebraic interpretations, and 
the critical role of reasoning about a subspace as a part of a whole for making sense of the formal 
textbook definition presented to students. Caglayan (2019) interviewed 14 undergraduate math 
majors who had recently taken linear algebra, asking them to use a digital geometry system 
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(Matlab) to classify 57 subsets of 7 different vector spaces as subspaces or not -- particularly 
highlighting ways in which students used the zero vector to show the set was not closed. These 
studies and others (e.g. Açikyildiz & Kösa, 2021; Dogan, 2018) highlight the potential value of 
geometry for introducing ideas related to vector spaces. Our study differs as we examine an 
experientially real context for engaging students in reasoning about ideas related to subspaces 
and null spaces, but do not leverage the geometry of two and three dimensional space. 

We draw on diSessa’s (2018) Knowledge in Pieces (KiP) view of learning and cognition, 
which is influenced heavily by constructivist and cognitivist traditions. We value this as a lens to 
theorize conceptual resources (Taber, 2008) and adopt anti-deficit views of students and their 
learning (Adiredja, 2019). KiP emphasizes the complex, continuously shifting, and contextually-
bound nature of knowledge, where learning involves reconfiguration of “naive” knowledge into 
more normative understandings (diSessa, 2018). For example, the notion that ‘multiplication 
makes bigger’ is a concept that is considered normatively correct in some contexts (numbers 
larger than 1) and not others. It is a “small knowledge structure” that can either be cast as an 
unuseful idea from a deficit perspective or a useful idea that can be more explicitly 
contextualized and reconfigured to reflect broader and more normatively accepted 
understandings. 
 

Study Context 
This work was conducted as part of a broader research project focused on developing a series 

of research-based linear algebra materials. These materials were developed in alignment with 
RME principles of experientially real starting points, guidance from an instructional figure, and 
the critical role of model-of, model-for shifts in students’ mathematical activity (Van den 
Heuvel-Panhuizen & Drijvers, 2020). In this manuscript, we leverage a KiP lens for examining 
students’ mathematical activity. To our knowledge, KiP frameworks have not been heavily 
leveraged in the literature to analyze student reasoning in RME-inspired task sequences and we 
believe coordinating these perspectives may provide a meaningful contribution to the field.  

In its current form, the sequence consists of three core tasks. In this manuscript, we focus our 
analysis on students’ reasoning in the context of the second and third tasks. Our team’s approach 
to subspaces was organized around the notion that subspaces are non-empty subsets of vector 
spaces that are closed under linear combinations. To support students’ development of meaning 
in relation to this notion, we leverage the scenario of one-way hallways during a pandemic 
(Plaxco et al, 2021). The hallway scenario can be viewed as a coordination between two sets of 
quantities: the number of people who pass through each of the one-way hallways as observed by 
cameras and the change in the population of each classroom that occurs during a period of 
observation (Figure 1a). For example, assuming people do not linger in the hallway, if 3 people 
pass by Camera 1 and Camera 2 during a class changeover, then the net change of the number of 
people in the Biology Lab is zero. This induces a mapping of the set of n-tuples encoding of the 
number of people passing by the camera in each hallway (“camera vectors”; in the West Wing, 
vectors of the form <c1, c2, c3, c4, c5>) to the set of m-tuples showing the net change in each 
room’s population over the period of hallway observations (“room change vectors”; in the West 
Wing, vectors of the form <∆A, ∆B, ∆C, ∆D> = <c4 + c5 – c1, c1 – c2, c2 – c3 – c4, c3 – c5>). In 
Tasks 1 and 2, students are asked to represent journeys of students walking through halls using 
camera vectors, reason about the relationships between the camera vectors and the room change 
vectors within the problem context, and reflect on and make generalizations based on their 
reasoning. These activities are focused on supporting students to reason about the set of camera 
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vectors that do not change the populations of the rooms (which corresponds to the null space of 
the matrix that maps camera vectors to room change vectors). This activity culminates in the 
students representing the problem context using a matrix transformation. During the third task, 
students are asked to reason about a new wing of the school (the East Wing; Figure 1b) based on 
a given matrix, rather than a given hallway diagram.  

 

 

 
 
M = 

(a) (b) 
Figure 1. Information about the West Wing (a) and East Wing (b) of Ida B. Wells High School 

 
Participants, Data Sources, and Methods of Analysis 

The study had two white male participants (who we refer to with pseudonyms Drew and 
Carson) at a predominantly minority public post-secondary institution in the Southeastern U.S. 
Drew and Carson were the only two volunteers satisfying the study constraints of their age being 
18 and older and having taken an inquiry-oriented linear algebra course based on the IOLA 
curriculum. Both students had earned an “A” in the course. Our data sources for this analysis 
consist of video-recordings of a four-day paired teaching experiment (Steffe & Thompson, 
2000), as well as any inscriptions created by participants or the teacher-researcher.  

The paired-teaching experiment (PTE) consisted of four, 90-minute sessions. Each session 
was conducted and recorded on Microsoft teams and included two research team members. One 
was the teacher-researcher across all sessions; the other collected field notes and asked clarifying 
questions. Students were asked to think aloud and respond to questions regarding their work. 
Student work was captured by having students upload work, hold up their work to the screen, or 
work on a shared whiteboard. The research team debriefed after each interview session, noting 
mathematically significant aspects of student reasoning that emerged in the interview.  

To identify students’ conceptual resources for reasoning about null spaces, our team began 
by first assigning two team members to review each session of the PTE and note themes in 
students’ mathematical reasoning that related to ideas about topics related to null spaces 
(including linear combinations of vectors, span, linear transformations, and solutions to 
homogeneous systems of linear equations as well as their applications in the problem context.) In 
this analysis, we focus on the final two days of the teaching experiment, when the definition of 
null spaces was formally introduced to students in relation to their prior work, and they were 
asked to extend their reasoning to a new context (one-directional hallways in relation to room 
locations in the East Wing of the high school, with information inscribed in a matrix rather than a 
map). Based on team members’ notes, videos were selectively transcribed, and we identified two 
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broad themes that functioned as conceptual resources for reasoning about null spaces: closed 
loop reasoning and RREF reasoning.  

     Findings 
Though the data presented in this analysis comes from the final day of the PTE, it is 

important to note that students developed important ways of reasoning about camera vectors, 
room change vectors, and relationships between them on the previous days. Namely, the students 
described the sets of camera vectors corresponding to possible paths a single person or 5 people 
could take from room A to room C, and from room C to room C. They identified the former sets 
as not closed under linear combinations, and they identified the latter sets as being closed under 
linear combinations (with vectors in these latter sets earning the designation of “closed loop” 
vectors). See Plaxco et al. (2021) for more detail on this. The students agreed that closed loop 
vectors left room populations unchanged and identified ways of expressing the relationship 
between camera vectors and room population change vectors. In this section, we highlight how 
closed loop reasoning emerged as the core conceptual resource for one student across a pair of 
questions, whereas linear dependence and RREF reasoning emerged as the core conceptual 
resource for the other student. (Though interviewed as a pair, the students rarely engaged in one 
another’s reasoning so for clarity we discuss their reasoning in ways that are largely separate.) 
 
Closed Loops as a Context-based Conceptual Resource  

Early on the fourth day of the PTE, both students were then given the equation in Figure 2 
and asked to interpret what it meant “for that four-tuple on the right-hand-side to be all zeros.” 
Almost without hesitation, Drew responded, “there is no net change in the room population after 
all movement is complete” indicating a fluency between the two contexts of hallway movement 
and the matrix equation. The students were then asked if the set S of vectors c in R5 such that 
Ac=0 (in correspondence with the matrix equation shown in Figure 2) is a subspace of R5 (with 
the reminder that this would mean that if we sum of any two vectors in S the result must also be 
in S, and if we scale a vector in S the result must also be in S).  

 

 
Figure 2. Matrix equation given to students to reason about the null space 

 
Drew initially argued that the sum of two vectors in S would be in S by stating “yes, because 

they both equal zero.” Drew later elaborated: 
Drew: “Since both vectors are going to be equal to zero, the subspace will cover zero, so zero 

plus zero will still be in the subspace.” 
Interviewer: Are you saying that the camera vector has to be zero? 
Drew: No, because they’re both equal to zero after multiplying by the matrix.  That’s what 

we’re saying…  In order to get back to zero, we need to have a bunch of loops. That's 
how we get zero. If we keep adding more loops matter what and we just add the vectors 
of the loops together and we multiply it by that, it would still be zero, would it not? This 
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is the way I'm seeing it. I'm saying 'cause like the way we get zeros is we just add a 
bunch of loops together. Uh, we just have a bunch of loops there and they're just 
constantly repeating. So if we had another vector, it’s just another, butt ton of loops. We'd 
just have more loops which will get back to zero. The way I'm seeing it.  

Drew later connected to the students’ prior work describing paths from C to C: 
… it’s like the linear combination that we did a while back, I think it's probably day one 
where it was like, like the big loops in the small loops and you could have as many of 
them as you wanted if you just continuously add more and more loops to it.  It's still 
going to get you back to the same point. So, as long as we have loops like that one and 
the other one. It would, it would basically just be two different scalars…  multiplied by 
those loops. And, that would be the combination of the vectors that we're adding together. 
 

 
 

(a) Instructor’s inscription of West Wing loops (b) Drew’s East Wing map and loop vectors 
Figure 3. Inscriptions related to Drew’s closed loop reasoning  

 
As Drew spoke, the interviewer made the inscription shown in Figure 3a, as these corresponded 
to what students had described as the big and small loops on prior days of the PTE. The 
interviewer prompted, “if you just combine these two vectors together….”  and Drew responded 
that we would “just have more loops.” When asked by the interviewer if “more loops is also just 
a solution to this equation here,” Drew again reverted to his hallway reasoning, “yeah, because 
they’re just looping around.” Drew similarly extended this line of reasoning when asked about 
scalar multiplication, saying in reference to figure 3a that, “if you multiply a1 and b1 by like ten 
each, it’s just more loops.”   

When later presented with the matrix M in Figure 1b and asked to describe all the possible 
hallway flows that leave the number of students in each room unchanged, Drew generated the 
map shown in Figure 3b -- which is an appropriate translation of the matrix back into a hallway 
diagram -- and correctly identified three closed loop vectors (which mathematically speaking are 
a basis for the null space of the matrix M). 

Drew’s use of closed loops (or closed loop vectors) as a conceptual resource was 
characterized by four core ideas around which his reasoning was largely organized:  

1. Closed loops are paths from a room back to itself 
2. Closed loops leave room populations fixed 
3. Linear combinations of closed loops are closed loops 
4. Closed loop vectors are solutions to homogeneous equations 
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The first three ideas were developed on prior days of the PTE as indicated by Drew in his 
comments. However, Drew also connected these ideas to the matrix equation presented in Figure 
3 - initially by connecting the zero vector on the right hand side of the equation to unchanging 
room populations, and then by further connecting these unchanging room populations to “closed 
loop” camera vectors (which sum and scale to closed loop vectors when scaling by non-negative 
integers). We argue that in this way, Drew’s closed loop reasoning, as characterized and 
contextualized by this set of ideas, functioned as a robust conceptual resource for reasoning 
about null spaces in the hallways task sequence. 
 
Multiple Solutions, Linear Dependence, and RREF as Formalized Conceptual Resources    

In contrast with Drew, Carson did not leverage closed loops as a central conceptual resource 
in his reasoning on the tasks presented on the final day of the PTE. Rather, he drew heavily on 
more formal ideas from the linear algebra class but found that the hallways task setting required 
contextual reinterpretation of these ideas in ways that were not always straightforward.  

When asked to reason about closure of the set S in relation to Figure 2, Carson did not 
immediately engage in the question set forth by the interviewer (namely, whether any two 
vectors that satisfy the given homogeneous equation would sum to a vector that also satisfies the 
homogeneous equation). Rather, he focused on interpreting the matrix equation, inquiring “So 
we’re trying to solve the homogeneous equation, right?” After the interviewer restates his 
previous prompt (presumably to get Carson to focus on the closure aspect of the question), 
Carson continued. “There’s a free variable, correct? … which means there is more than one 
solution to the homogeneous equation.” Several minutes later, Carson seemed to continue this 
line of thought, saying “I have a question. If it wasn’t linearly dependent, I don’t think you’d be 
able to do it, be able to do loops and stuff. Is that correct?” The interviewer agreed that if the 
column vectors didn’t form a linearly dependent set, then the only solution would be the trivial 
solution. The following exchange ensued.  

Interviewer: Ok. So if those column vectors are linearly independent, then the loops would 
be what? 

Drew: They wouldn’t exist. They would be null, they wouldn’t actually exist. They would 
get you a homogeneous answer. 

Interviewer: Right. So the only way to get the classrooms to not change? 
Drew: Would be to replace the c vector with zeros. 
Interviewer: So what does that mean about student movement? 
Carson: No one moves. 

This episode highlights Carson’s ideas about solutions to the homogeneous equations, free 
variables indicating multiple solutions, and linear dependence being important for the ability to 
“do loops.” He then correctly reinterprets the trivial solution to the homogeneous vector equation 
to mean that no one moves in the hallway context. 

When Carson is asked to find the hallways flows that leave room populations unchanged for 
the matrix shown in Figure 1b, he suggests “since it's dependent, find something that makes two 
of them zero. I make it, two of them, zero I guess? Try to find out the homogenous solution 
cause it wants to be unchanged… You could solve it using reduced row-echelon form is one 
way.” Carson then used Maple to row reduce the matrix M. The conversation then turned to 
Drew’s map (as discussed above) before the interviewer asked how Drew’s loop vectors related 
to Carson’s row reduced matrix. Drew argued that if you multiplied his vectors by Carson’s 
matrix (excluding the final column of zeros), it should give you the zero vector, and verified it 
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does. Carson commented that he “thought it would because it gives an absolute answer every 
single time. That’s why I like matrices. They give exact answers every time.”  When asked if 
Drew’s closed loop vectors might be extracted from Carson RREF, Carson’s initial reaction was:  

It’s basically the idea of, there’s a free variable, right? So you could use any scalar to get 
to any other location that you wanted to by using scalars and adding them together. This 
is the part where I kind of get confused. I did all the steps, I just don’t know, I know each 
of these are column vectors that equal zero, zero, zero. 
We interpret this comment to reflect Carson’s effort to brainstorm information he can glean 

from row-reduced matrices: the presence of free variables, information about span (e.g. places 
you can “get to”) -- but indicating that the connection between his row-reduced matrix and 
Drew’s closed loop vectors was not obvious. 

We argue that Carson’s use of multiple solutions, linear dependence, and row reduction as 
conceptual resource was characterized by three core ideas around which his reasoning was 
largely organized:  

1. Free variables indicate multiple solutions 
2. Linear dependence is needed for (closed) loops 
3. Row reducing matrices gives exact answers 

Carson productively leveraged the first two ideas to reason about some aspects of null spaces, 
but the final p-prim did not provide sufficient detail to extract the desired camera vectors. 
Potentially complicating this issue is the fact that, in cases with infinitely many solutions, row 
reduction produces solution sets with free variables that can presumably range through all real 
numbers -- yet the hallways problem context requires limiting to solutions in which all entries 
are non-negative integers. 

Discussion 
The contextually developed conceptual resources organized around the idea of closed loops 

provided a productive entry point for several aspects of reasoning about null spaces (e.g. 
specifying elements, reasoning about closure, and identifying a basis), and both students had 
ideas related to closed loops. Previously formalized mathematical resources also offered useful 
insights into some aspects of null spaces, but were more useful in connecting to the hallways 
context at some times (e.g. connecting multiple solutions to linear dependence and closed loops) 
than at others (trying to extract camera vectors that leave room populations unchanged based on 
the RREF of a given matrix).  
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Short-duration and long-duration professional development workshops on inquiry-based 

learning (IBL) were designed to increase participants’ capacity to teach using IBL methods. This 

study used a sample of 66 participants in short-duration workshops (one day or less) and 199 

from long-duration workshops (four days plus ongoing support) held from 2016-2019 to 

investigate the role of workshop duration in increasing IBL capacity, and in fostering uptake of 

IBL teaching practices. After participating in professional development, both short-duration and 

long-duration workshop participants reported comparable levels of IBL capacity–meaning the 

beliefs, knowledge and skills that prepare them to use IBL. However, short-duration workshop 

participants implemented IBL teaching practices less intensively than long-duration participants. 

These findings support the use of both short-duration and long-duration professional 

development as a means to increase instructors’ capacity to use IBL and their adoption of IBL 

teaching practices.  

Keywords: Inquiry-based learning, Professional development, Workshops, Teaching 

Introduction 

 Research-based instructional strategies (RBIS) have been shown to promote student learning 

and academic success in US undergraduate STEM education (Freeman et al., 2014; Ruiz-Primo, 

2011). In undergraduate math contexts, a form of RBIS, inquiry-based learning (IBL), has been 

associated with positive student outcomes (Kogan & Laursen, 2014). However, use of RBIS by 

undergraduate STEM instructors is not common; approximately 20% use RBIS extensively 

(Stains et al., 2018; Eagan, 2016). 

Prior research has shown that teaching-focused professional development (PD) can increase 

STEM college instructors’ use of RBIS, including those of undergraduate mathematics 

instructors using IBL (Archie et al., 2021; Benabentos et al., 2020; Chasteen & Chattergoon, 

2020; Manduca et al., 2017; Bathgate et al., 2019). The focus of these studies were long-duration 

PD experiences (e.g. multi-day workshops), rather than single instance “one-off” experiences. 

Duration has been identified as a “critical feature” of professional development (Viskupic et al., 

2019), and research on PD in higher education settings has consistently demonstrated that PD is 

effective when it occurs over extended periods of time (Desimone, 2009; Allen et al., 2011; 

Ebert-May et al., 2015; Garet et al., 2001; Pelch & McConnell 2016; Postareff et al., 2007; 

Wilson, 2013). A review of PD in higher education found that PD that takes place over an 

extended period of time results in more changes in instructor teaching practices than one-time 

PD activities (Stes et al., 2010).  However, this review contained few studies focused on short 

duration, one-time events.  

K-12 contexts also have shown similar findings. For example, Supovitz and Turner (2000) 

found that 40 hours or more of PD participation was needed to make a detectable impact on 

teachers’ use of inquiry-based teaching practices. Other studies suggest ideas about teaching and 
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teaching practices change over time, rather than from “one-shot” workshops (Loucks-Horsley et 

al., 2009; Postareff et al., 2007).  However, Kennedy’s 1999 review of PD indicated that PD 

content was more strongly related to participant outcomes than duration.  Given the costs of 

professional development for facilitation, participant support, and travel, it is important for 

providers and funders of PD to know what features of PD generate measurable impact on 

teaching practice and, by inference, on students’ experiences and success in courses where 

research-based teaching is applied. 

While research indicates that long-duration PD is effective in generating change to teacher 

practice, few studies have shown that short-duration workshops were less effective in doing this, 

thus more research is necessary to determine the importance of duration, among other variables, 

in PD. This study addresses this gap by investigating the outcomes of short-duration IBL 

workshops for undergraduate math instructors. In this study, we compare short workshop 

findings to those from long workshops that have already been shown to be effective in increasing 

math instructors’ capacity to use IBL and to increase their use of IBL methods (Archie et al.; 

2021). Specifically, this study sought to answer the following research questions: 

 

RQ1: Do short-duration workshop participants report the same gains and levels of IBL 

capacity (attitudes, knowledge, and skill) as long-duration workshop participants? 

 

RQ2: Do short-duration workshop participants implement and use IBL teaching practices to 

the same degree as long-duration workshop participants? 

 

 

IBL workshop description 

Long-duration workshops are an established, research-supported method of professional 

development for instructors to learn to use IBL. Participants travelled to workshops that occurred 

over four consecutive days, utilized consistent content and format, and featured ongoing support 

from workshop leaders and peers following the workshop (see Hayward & Laursen, 2018; 

Yoshinobu et al., 2021 for a full description of the long duration workshops). Long-duration 

workshops have been shown to increase participants’ capacity to use IBL methods and 

subsequently, increase their use of IBL teaching practices (Archie et al., 2021). 

 Short-duration workshops were designed to complement long-duration workshops. Both 

models serve as professional development opportunities for mathematics instructors to learn 

about IBL and increase participants’ capacity to use IBL teaching methods. Short workshops 

were intended to provide an introduction to IBL, while the long-duration workshops provided a 

deeper, implementation-focused experience. In both long and short workshops, leaders modeled 

IBL techniques through their facilitation. For example, leaders asked participants to engage in 

Think-Pair-Share activities to help participants understand how to use this technique in their own 

classrooms. Short and long-duration workshops were planned and led by the same cadre of 

trained workshop facilitators, working within a single, coordinated project grounded in PD 

literature, sharing a broad philosophy of IBL (Laursen & Rasmussen, 2019), and drawing on 

their training and experiences with long workshops to develop short workshops. Evaluation data 

show that both long and short workshops received very high ratings of participant satisfaction. 

Between 2017 and 2020, the project supported 26 short workshops reaching at least 500 

participants. The workshops were between 1-8 hours in length and were held at various 

institutions across the country, including two- and four-year colleges and sessions held at 
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professional development conferences of the MAA and AMATYC. Short workshop content was 

non-standardized and varied by audience and facilitator preference, but most workshops 

provided a general introduction to IBL. A few workshops emphasized enhancing specific skills, 

such as assessment techniques, facilitating discussions, and generating classroom materials, and 

one centered on a particular audience, instructors of pre-service elementary teachers. The 

primary goals of the short workshops were to: increase awareness of IBL methods, enhance 

component skills of IBL, recruit new audiences of faculty into IBL teaching, reach departments 

or groups not yet active in IBL, and offer an “on-ramp” to IBL practice.  

  

Methods 

Data collection 

Long-duration workshop participants completed a pre-workshop survey about one month 

before their workshop, a post-workshop survey immediately after, and a follow-up survey about 

18 months later. Of 293 long-duration workshop participants from 2016-2019, 291 (99%) 

completed the pre-workshop survey, 275 (94%) completed the post-workshop survey and 199 

(68%) completed the follow-up survey.  

Short-duration workshop participants completed a brief post-workshop survey immediately 

following the workshop. In all, 328 post-survey responses were collected from an estimated 470 

participants from 24 workshops, for an overall response rate of 70%. A more extensive follow-up 

survey about IBL implementation was sent in late 2020 to all participants who provided contact 

information when they attended a short-duration workshop from 2017-2020 (n = 270). Sixty-six 

follow-up survey responses were collected for a response rate of 25%. While the response to the 

post-survey was high (70%) and likely representative of the workshop population, the follow-up 

survey had a lower response rate (25%) and cannot be considered representative. Moreover, the 

follow-up was sent to all workshop participants in late 2020, so the time between workshop 

attendance and follow-up varied, ranging up to 3 years. Given this response rate, the high reports 

of IBL implementation in particular may be skewed due to non-response bias where the follow-

up survey respondents may be those who were most interested or enthusiastic about IBL. 

Measures 

Measures of IBL capacity were used to answer RQ1 and are indicators of short-term 

outcomes resulting from workshop participation. Measures of IBL capacity include participants’ 

attitude about IBL, their knowledge of IBL, and their skill using IBL. Short- and long-duration 

workshops used identical measures of IBL capacity attitude, knowledge, and skills on follow-up 

surveys and on long workshop pre and post surveys. As a measure of IBL attitude we asked “To 

what extent do you believe inquiry strategies are an effective learning method?” and was 

measured on a four-point scale (1 = Don’t know, 2= Not very effective, 3= Somewhat effective, 

4 = Highly effective).  IBL knowledge and skill were measured with similar separate measures 

asking “How would you rank your current level of knowledge/skill in inquiry-based teaching” 

with both items sharing the same four-point response options (1=None, 2=A little, 3=Some, and 

4=A lot). Thus, we can directly compare levels on these items at the follow-up timeframe and 

can compute gains for long workshop participants by comparing rankings across timepoints.   

Since short workshop participants did not take a pre-survey, we instead asked them to rate 

their perceived gains in IBL attitude, knowledge, and skills on the post-workshop survey using a 

five-point scale (1= A lot less, 2= Less, 3=About the same, 4= A little more, 5= A lot more). 

To answer RQ2, we directly measured short and long workshop participants’ self-reported 

implementation of IBL and, as an indirect measure of implementation, their self-reported 
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teaching practices. On short and long workshop follow-up surveys, we asked respondents to self-

report their implementation of IBL methods by asking “Have you implemented an IBL course 

since the workshop?” with four response options: “No; Not a fully IBL course, but applied some 

approaches; Yes, one IBL course; Yes, more than one IBL course.” 

Separately, we asked long workshop participants on the pre-workshop survey, and both short 

and long workshop participants on a follow-up survey, to indicate their frequency of use of 11 

teaching practices using the following scale: 1= never, 2= once or twice during the term, 3= 

about once a month, 4= about twice a month, 5= weekly, 6= more than once a week, or 7= every 

class. As described in Hayward et. al (2016), five of these 11 teaching practices are classified as 

‘core IBL’ practices because they characterize all variations of IBL that were emphasized in 

workshops: decreased use of instructor activities, including lecture and instructor problem-

solving on the board, and increased use of student activities, especially student presentations of 

their own work and student discussion in small groups or as a whole class.   

 

Data analysis 

To answer RQ1 we computed frequencies of short workshop participants who reported gains 

in IBL attitude, knowledge, and skills in the post-workshop survey. For comparative purposes, 

we computed frequencies of the long-duration workshop participants who reported gains in IBL 

attitude, knowledge, and skills from pre-workshop and post-workshop surveys. We also 

calculated means of IBL attitudes, knowledge, and skill of short and long workshop participants 

from their respective follow-up surveys. We conducted an independent samples t-test to check 

for differences in follow-up survey IBL capacity measures by workshop duration. 

To answer RQ2 we computed IBL intensity scores for each instructor based on their self-

reported frequencies of the five core IBL teaching practices as follows: IBL intensity= student 

group work + student presentation + class discussion – lecture – instructor solving problems. IBL 

intensity scores were computed at the follow-up time point for both short- and long-duration 

workshop participants. We conducted an independent samples t-test to check for differences in 

intensity of use of IBL teaching practices by workshop duration. 

 

Results 

To answer RQ1, we compared both the proportion of reported gains in IBL capacity 

measures, and the final levels of IBL capacity, by workshop duration. First, as shown in Figure 1, 

a majority of both short and long duration workshop participants reported gains in all three IBL 

capacity measures (attitude, knowledge, skill). Since we measured and calculated gains 

differently across workshop types, it was not appropriate to make direct statistical comparisons 

of gains in IBL capacity. However, it is evident that the relative gains in capacity (attitude, skill, 

and knowledge), are the same for both short and long workshops; that is, the greatest gains are in 

IBL knowledge, followed by less extensive gains in skill and IBL attitude. 

 Also addressing RQ1, we conducted an independent samples t-test to check for differences 

in mean IBL capacity reported by workshop participants in respective follow-up surveys. While 

gains measures differ, the measure of final levels is the same in surveys sent to both long and 

short workshop groups. Descriptively, short workshop participants reported lower mean IBL 

capacity than did long workshop participants (Table 1). However, the only statistically 

significant difference in the individual indicators that make up IBL capacity was in IBL attitudes, 

and the effect size indicates that this difference was minimal. We found no statistically 

significant differences in either IBL knowledge or skill by workshop duration. 
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Figure 1. Proportion of workshop participants who reported gains in IBL capacity measures by 

workshop duration 

  

Table 1.  

t-test of mean IBL capacity follow-up measures by workshop duration 

  Short workshop  

(n = 53) 

Long workshop 

(n = 189) 

  

IBL Capacity M SD M SD t (df = 240) p d 

Attitude 3.59 0.50 3.71 0.51 -2.96 0.003 0.23 

Knowledge 2.96 0.65 3.24 0.61 -1.54 0.126 0.46 

Skill 2.64 0.74 2.80 0.64 -1.49 0.137 0.24 

Note: d = cohen’s d and is a measure of effect size. 
 

To answer RQ2, we compared the proportions of participants who implemented IBL 

methods, by workshop duration. The measures used were identical for both survey groups. As 

shown in Table 2, we found that a higher proportion of short workshop participants (19%) did 

not implement IBL than long-duration workshop participants (5%). A greater proportion of long 

workshop participants (29%) reported implementing IBL in one fully IBL course than did short 

duration workshop participants (13%). 
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Table 2. 

Proportion of workshop participants who implemented IBL methods by workshop duration 

  Workshop duration 

IBL implementation Short (n = 62) Long (n = 199) 

No 19.%* 5%* 

Not a fully IBL course, but have applied some IBL 

approaches 

53% 44% 

Yes, one fully IBL course 13%* 29%* 

Yes, more than one fully IBL course 15% 22% 

* short and long workshop proportions differ at p  < 0.05 
  

RQ2 was also answered by comparing participants’ intensity of use of IBL teaching practices 

after participating in their respective short or long workshops. An independent samples t-test 

indicated that average intensity scores after long workshops (M = 7.87, SD = 5.44) were 

significantly higher, (t(226) = 2.71, p = 0.007), than the IBL intensity scores after short 

workshops (M = 5.43, SD = 4.37. The effect size (Cohen’s d = 0.46) indicated a moderate 

difference in the use of IBL teaching practices between long and short workshop participants.  

  

Discussion 

Both the long workshops and short workshops were designed to increase participants’ 

capacity to use IBL teaching methods, and our findings suggest that short and long workshops 

may be effective in doing so. This study provided the opportunity to compare workshops that are 

driven by a shared philosophy and led by the same facilitators, but with different durations. 

However, the limited sample of short-workshop follow-up survey respondents (discussed in 

detail in the final section) provides a sense of the possible outcomes from short-duration 

workshops, while the robust sample of long-duration workshop participants provides a 

generalization of typical outcomes from the long-duration workshops. Therefore, direct 

comparisons of short and long workshops should be interpreted with caution.  

Both short and long workshop participants reported the same pattern of gains in the three 

individual IBL capacity measures. The lowest gains by both groups were in IBL attitude; 

participants self-selected to participate and thus many participants already had a positive attitude 

about IBL, so their gains were small. Both short and long workshop participants reported higher 

gains in IBL knowledge than in skill. This is a logical finding considering that skills take time 

and practice to develop. Overall, both workshops seem to be improving participants’ capacity or 

readiness to use IBL methods in a consistent way. 

The lack of statistical and/or meaningful differences in follow-up measures of IBL capacity 

by workshop duration were unexpected and are inconsistent with prior research which has shown 

that long duration PD is more strongly related to outcomes than short duration PD (Stes et al., 

2010). We expected that, in short workshops, the limited time participants had to acquire IBL 

knowledge and skill would translate into lower gains in IBL capacity than from long workshops. 

This finding is likely due to the small, and likely biased, sample of short workshop participants 

who completed a follow-up survey. 
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Findings related to RQ2 indicated that short duration workshop participants implemented 

IBL teaching practices to a lesser degree than long workshop participants. About 20% of short 

workshop participants who responded to the survey implemented no IBL teaching practices, and 

a greater proportion of long workshop participants implemented one course they considered to be 

fully IBL. Follow-up reports of IBL intensity also showed that short workshop participants used 

particular IBL methods less intensively. These findings are consistent with prior research, which 

has shown that long duration PD is positively associated with changes in teaching practices (Stes 

et al., 2010). These findings were expected given that the long workshops were implementation-

focused: they used a consistent structure designed to meet implementers’ needs and allowed 

participants work time to plan their own IBL course. Long duration workshop participants 

committed to four days, so they had a prior high level of commitment to implement IBL. Short 

workshops were less focused on implementation; rather, they sought to create broader awareness 

of IBL. Short workshops also required less participant commitment to implement IBL in their 

teaching and did not allow time for participants to plan how to implement IBL in their teaching.  

  

Limitations and conclusion 

While some aspects of these findings seem to support the efficacy of short workshops, 

several limiting factors of this research must be considered in interpreting these findings. The 

relatively small sample size from participants in short workshops (n = 66) is likely biased. Those 

short workshop participants who implemented IBL may have been more likely to respond to a 

follow-up survey than those who did not. Thus, the short workshop findings represent a best-case 

scenario for outcomes. They suggest that some participants respond to the workshops by 

implementing IBL methods in their own classrooms, but these findings should not be considered 

to be representative of all workshop participants. 

While we measured pre-workshop and follow-up IBL capacity and teaching practices, we did 

not collect corresponding measures for short-duration workshop participants (Archie et al., 

2021). Since short-duration workshop participants were not required to pre-register, we were 

unable to administer a pre-workshop survey. This prevented us from knowing participants’ initial 

levels of IBL capacity and their teaching practices before attending a workshop. Without this 

data, we can’t be certain about how much short workshop participants gained and the degree to 

which their teaching practices changed. Although we can’t know the outcomes for all 

participants of short workshops, these results suggest that for some participants, short workshops 

may be an effective way to build IBL capacity. Others have suggested that starting with less 

intense implementations and building over time may lead to more widespread adoption, a 

process known as “phased inquiry” (Yarnall & Fusco, 2014) or “trialability” (Rogers, 2003); one 

interpretation of the findings is that short workshop participants are moving through this process. 

Thus, short workshops may have served in some respects as an effective “on-ramp” for 

instructors as they work towards full adoption of IBL teaching methods, while the long 

workshops led to greater measured change in teaching practice. Because duration is a basic PD 

design parameter that in turn affords or constrains other choices about content and engagement, 

these findings are important for PD providers and funders to consider as they make decisions 

about where to invest their effort and funds.  
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Comparing Student Strategies in Vector Unknown and the Magic Carpet Ride Task 

 

 Jeremy Bernier Michelle Zandieh 

 Arizona State University Arizona State University 

We present findings from a study analyzing and comparing the strategies participants deployed 

in playing the game Vector Unknown and completing the Magic Carpet Ride task. Both the game 

and task are designed to give students an introduction to basic concepts about vectors needed for 

success in linear algebra. We found that participants used a diverse array of strategies, tending 

to favor algebraic approaches to the Magic Carpet Ride task. We also found that participants 

tended to try the same strategies in both tasks, but did not usually follow through with the same 

strategy in both contexts. These findings have implications for instructors considering using one 

or both tasks in their linear algebra class. 

Keywords: linear algebra, game-based learning, inquiry-oriented instruction 

Game-based learning (GBL) has proven to be a popular approach in STEM education and 

STEM education research (Klopfer & Thompson, 2020). However, much of the research into 

GBL in mathematics education has been focused on K-12 and especially K-8 education (Byun & 

Joung, 2018). One of the few games developed specifically for undergraduate mathematics 

instruction is Vector Unknown (VU; Mauntel et al., 2021), an adaptation of the Magic Carpet 

Ride (MCR) task from the Inquiry-Oriented Linear Algebra (IOLA) curriculum (Wawro, 

Zandieh, et al., 2013). VU, like the MCR task, is designed to give players an introduction to 

basic concepts about vectors needed for success in linear algebra. While the goals of both tasks 

overlap, the differences between them may lead to differences in the kinds of thinking students 

engage in when playing VU or solving the MCR task. This could be important to instructors 

deciding how they might use either or both in their own instruction. To begin to explore these 

differences, we present findings from a qualitative interview study with the following research 

questions:  

RQ 1: What strategies do students deploy in solving the Magic Carpet Ride task and in 

playing levels in the Vector Unknown game? 

RQ 2: What patterns are apparent in the use of strategies across tasks? 

Context and Background 

Literature Review 

The idea that games and puzzles are environments where people engage in mathematical 

thinking is not new. Puzzles like Sudoku and games like Chess and Go have been the objects of 

study for mathematicians over the years (Silva, 2011). Moreover, the use of video games for the 

teaching and learning of STEM topics has been a popular application of GBL given their 

computational nature, their ability to simulate complex situations, and the active engagement 

they demand (Klopfer & Thompson, 2020). Vector Unknown is one of the few video games that 

have specifically been developed for undergraduate linear algebra (Mauntel et al., 2021). 

Drawing from K-12 literature on GBL in mathematics education, there are clear indications 

of potential positive outcomes for student learning. In their meta-analysis on GBL research in K-

12 math education, Byun and Joung (2018) computed an average effect size of d = 0.37 from 
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quantitative studies, indicating a small-to-moderate-sized positive effect on math learning 

outcomes. Even so, some quantitative (Beserra et al., 2014) and mixed method studies (Ke, 

2008) comparing games to similar non-game active learning opportunities have found that games 

may not always offer additional advantage over other active learning activities in terms of 

learning outcomes. While the VU game (Mauntel et al., 2021, Mauntel et al., 2020, Mauntel et 

al., 2019) and the MCR task (Wawro et al., 2012; Wawro, Rasmussen, et al., 2013) have each 

been the subject of several publications, no work thus far has compared student thinking in these 

tasks. 

The Tasks 

To properly contextualize the remainder of this paper, we present a brief summary of the two 

tasks being compared in this study below. 

Magic Carpet Ride. The MCR task used in this study comes from the IOLA curriculum 

(Wawro et al., 2012; Wawro, Zandieh, et al., 2013) and is designed as a “day one” task as part of 

a larger “Magic Carpet Ride” unit that introduces concepts related to vectors, span, and linear 

(in)dependence. The day one MCR task asks students to determine if they can reach Old Man 

Gauss’s cabin at the point (107, 64) using two forms of transportation represented by vectors <3, 

1> and <1, 2>. The next task in the unit asks students to consider whether there are “some 

locations that [Old Man Gauss] can hide and you cannot reach him with these two modes of 

transportation.” This task was used as a follow-up in some of the interviews as time allowed. 

Vector Unknown. In VU, each level randomly generates a goal position (represented by a 

basket) and two pairs of vectors that are scalar multiples of each other (so one possible set of 

vectors is <-3, 2>, <-9, 6>, <1, 3>, and <2, 6>). Players then use any two of those vectors and 

integer scalars to get a rabbit from the origin to the goal. In this study, the current first three 

levels were used for the interviews. All participants played Levels One and Two, which work the 

same except for the Predictive Path feature. In Level One, as players choose their vectors and 

scalars, a Predictive Path line shows them where the rabbit will move when they hit “Go;” this 

feature is absent from Level Two. Level Three includes the Predictive Path and has an added 

component of a player first needing to get to three keys on the map and then go to the goal 

position. Completing Level Three usually requires the player to move from a location other than 

the origin after gathering some or all of the keys. See Figure 1 for an illustration of the game. 

 
Figure 1. Gameplay of Vector Unknown. 
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Conceptual Framework 

 In answering our research questions, “strategy” needed to be operationalized. Because the 

purpose of this research was to compare two specific tasks, and because both of those tasks have 

published material to draw from, we used past work to develop a conceptual framework to 

operationalize strategy. This framework was based primarily on one developed with VU 

(Mauntel et al., 2021), supplemented by student sample work from the MCR task (Wawro et al., 

2012; Wawro, Zandieh, et al., 2013), and further modified during the analysis process. Figures 2, 

3, and 4 outline the conceptual framework. 

Strategy Mauntel et al. Description Adaptations / Notes 

Guess and Check Player presses buttons while 

attending to how the vector 

equation changes or to how the 

geometric Predictive Path changes. 

Name changed from “Button 

Pushing” to “Guess and Check,” to 

also include trying random scalars 

in the MCR task. 

Quadrant-based 

Reasoning 

Player chooses a vector to match 

the signs/quadrant of the goal 

position, references the direction 

of the Predicted Path or a quadrant 

on the graph to make sense of the 

direction of a vector, or 

understands vectors as slopes. 

Slope-based strategies are the most 

common way this appears in the 

MCR task, as both the goal and 

given vectors have the same 

signs/quadrant. 

Focus on one 

Coordinate 

Player reduces the aim of the 

goal to one coordinate and 

attempts to reach that one 

coordinate. 

In MCR, this occurs when the 

participant focuses on the North or 

East direction, one at a time. 

Focus on one 

Vector 

Player focuses on getting as close 

to the goal as possible with one 

vector and then utilizes another 

vector to reach the goal and/or 

alternates between the two. 

In MCR, this occurs when the 

participant focuses on one of the 

modes of transport at a time. 

Figure 2. Conceptual framework, part 1. 

In past work with VU, Mauntel et al. (2021) used an iterative approach which sorted the 

strategies players used into four categories: Button-Pushing, Quadrant-based Reasoning, Focus 

on one Coordinate, and Focus on one Vector (see Figure 2). Additionally, each strategy 

participants used was classified as either Numeric or Geometric (see Figure 3), depending on 

whether the participant was relying on the numeric data (like the vector equation) or visual data 

(such as the predictive path) to solve the problem. 

Strategy Type Descriptors for Strategy Type 

Numeric Using arithmetic to solve or check a possible solution 

Referring to the vector equation (VU) or numeric values of vectors/goal 

Algebraic Setting up a system of equations 

Creating an equation for a line 

Creating symbols for unknowns 

Geometric Interpreting graphical information 

Drawing vectors or lines on a graph 

Using the Predictive Path (VU) 
Figure 3. Conceptual framework, part 2. 
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Our review of student sample work for the MCR task (from Wawro et al., 2012 and Wawro, 

Zandieh, et al., 2013) lead to three adjustments to the framework. As a minor change, we 

renamed “Button-Pushing” to “Guess and Check.” More substantially, we noticed that algebraic 

solution strategies – strategies involving written equations with unknowns or variables – were 

more prominent in the MCR student sample work than in the VU research. To address this, we 

first added a fifth strategy: “System of Equations,” (see Figure 4), to specifically categorize the 

use of a system of linear equations. Second, Algebraic strategies were separated out from 

Numeric and Geometric as a third category for any strategy where the participant employed an 

algebraic equation or expression to attempt to solve the problem (see Figure 3). 

Strategy Description Basis for Addition 

System of 

Equations 

Player creates a system of 

equations with two unknowns and 

then solves it to solve the problem. 

Review of MCR student sample 

work (Wawro, Zandieh, et al., 

2013). 

Linearly 

Independent Vector 

Selection 

Player chooses two vectors based 

on which pairs of vectors are 

scalar multiples of each other. 

Strategy observed during analysis 

that did not fit into existing 

conceptual framework. 
Figure 4. Conceptual framework, part 3 (new strategies). 

Finally, the conceptual framework was further revised during the analysis process. In 

particular, an additional novel solution strategy for VU of “Linearly Independent Vector 

Selection” was noted. This strategy will be described and explored in the findings section. 

Methods 

Data Collection 

The participants for this study were five students recruited from a third-semester calculus 

course at a large public university in the southwestern United States. All five students who 

indicated interest in the study participated in task-based interviews. For the purposes of this 

study, no demographic data were collected. As such, all participants will be referred to with the 

gender-neutral pronoun ‘they’ and pseudonyms generated from a list of gender-neutral names 

(Van Fleet & Atwater, 1997). Participants were asked if they had ever taken a college-level 

linear algebra course, and only one participant (Chris) said they had. 

Interviews were conducted via Zoom due to the COVID-19 pandemic. The components of 

these interviews focused on in the analysis presented here consisted of two approximately 30-

minute task portions for each of the MCR and VU tasks. In these interviews, the interviewer 

primarily described the tasks to be completed and did not typically interrupt the participant’s 

solving process, unless they had not spoken for a long time or were nearing the end of the 

allotted time. The order of the task portions varied from interview to interview. Figure 5 lists the 

participants by pseudonym and shows the order they completed the two tasks in. 

Participant Rikaine Pat Terry Auren Chris 

First Task VU VU MCR MCR MCR 

Second Task MCR MCR VU VU VU 
Figure 5. Participants and task order. 

Data Analysis 

The conceptual framework outlined earlier in this paper was applied as a codebook. The two 

authors developed the conceptual framework over a sequence of meetings, settling on the 
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approach as described above. Then, the lead author coded the transcript by identifying each time 

a participant applied or attempted to apply one of the strategies outlined in that framework. 

Further, a student’s strategy was stratified based on whether they were applying Numeric, 

Algebraic, or Geometric versions of that strategy. Once identified, the strategies used by each 

participant were collected together and reviewed for accuracy and clarity before identifying 

which strategies best characterized the participant’s solving process for each respective task. For 

MCR, this meant identifying which strategy was ultimately used to arrive at a solution, if any. 

For VU, where participants completed multiple levels, this meant identifying which strategy was 

used most frequently to arrive at solutions.   

Findings 

Our findings are oriented around our two research questions. Given space limitations, the 

first subsection addresses the first research question by summarizing the strategies students 

deployed in the MCR task and VU. The second subsection focuses on the novel strategy of 

Linearly Independent Vector Selection, as previous literature (Mauntel et al., 2021; Wawro et al., 

2012) showcases detailed examples of the other strategies. Then, the two subsequent subsections 

address the second research question, by articulating two notable patterns apparent in the 

strategies used: the relative prevalence of Algebraic, Geometric, and Numeric strategies and the 

repetition of strategies across the tasks. 

RQ 1 – Overall Distribution of Strategies 

 To begin to address RQ 1, we use Figure 6 to visually provide a summary of the diverse set 

of strategies that were used by the sample of participants. Within each box, an A, G, or N 

represents that the participant used an Algebraic, Geometric, or Numeric instantiation of that 

strategy, respectively. Bolded letters indicate the strategies that best characterized their 

performance on that task as defined in the Data Analysis section above.  

Participant Rikaine Pat Terry Auren Chris 

Task VU MCR VU MCR MCR VU MCR VU MCR VU 

Guess and Check G N G   G     

Quadrant-based 

Reasoning 

G, N G, N   A, N G, N  N, G   

Focus on one 

Coordinate 

  G, N N   N   N, G 

Focus on one Vector G, N N N  N      

System of Equations    A   A  A A 

Linearly Independent 

Vector Selection 

N  N     N  N 

Figure 6. Summary of strategies used by each participant 

RQ 1 - Linearly Independent Vector Selection 

As mentioned in the conceptual framework, a novel strategy for VU was observed in the 

analysis process. In four of the interviews, participants chose vectors based on the observation 

that some of the vectors were scalar multiples of each other. This strategy is perhaps best 

summarized by Chris’s explanation [the vectors referred to are in square brackets]: 

Chris: So what I'm thinking is that we can, uh, look for. First, identify any same vectors, any 

vectors that are linearly dependent, and I can already tell that the top right one [<-1, 5>] 

here and the bottom left one [<-2, 10>] here are linearly dependent, so they're the same 
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vector, and then the also the other ones, the top left [<1, 1>] and bottom right [<-9, -9>] 

are linearly dependent so they're the same vector so that means that I can just use these 

top two as those are the only truly independent vectors available to me. 

As Chris was the only participant who had taken linear algebra previously, they were the 

only participant to describe this strategy in terms of linear independence. Other participants 

typically only noted that pairs of vectors were scalar multiples of each other, such as in this 

excerpt from Rikaine: 

Rikaine: Um and then, since these are, since these point in the same direction, I'm only really 

considering this one [<-3, -1>]. Just because I can scale it up to <-9, -3> if I need to. 

This strategy is only implementable in VU (notice it is only present in VU columns, bottom 

row of Figure 6), as MCR has only two choices for modes of transport. Another notable aspect of 

this strategy was that, in two of the four cases where participants made use of this fact, this only 

occurred after additional interviewer questioning led them to observe that there were always 

pairs of vectors which were scalar multiples of each other. Thus, only one player (Rikaine) made 

an observation and selected vectors in this way without prior prompting or prior linear algebra 

experience. 

RQ 2 - Algebraic, Geometric, and Numeric Strategies 

Across participants, Geometric and Numeric instantiations of strategies were both common 

for VU (see the VU columns on Figure 6). Often, Geometric thinking was more apparent when 

the level had the Predictive Path feature. Only Chris used an Algebraic solution in VU. After 

completing the first level using a Focus on One Coordinate Strategy, and toying around with 

strategies in the second level, Chris reluctantly decided to pursue an Algebraic solution: 

Chris: Ehhh, I wanted to avoid the algebra, but I think I'm going to have to use the algebra 

[laughs]. Going back to the method, okay setting up a two-by-two matrix. 

They made this choice after having already solved the MCR task using a system of equations 

and an augmented matrix and having previously taken linear algebra at the college level.  

On the other hand, MCR was mostly solved with Algebraic strategies, with Rikaine solving it 

primarily Numerically and Terry being unable to complete the task in the time allotted. This is 

not to say that Geometric thinking did not appear at all in solving the task – all of the participants 

drew a graph at some point. Some did so to set up their coordinate system and/or to visualize the 

problem, while a few did so after interviewer prompting to illustrate their solution. In these 

cases, however, drawing the graph was not directly linked to any of the solution strategies in our 

conceptual framework, and participants did not use these graphs as tools throughout the problem 

solving process.  

RQ 2 - Repetition of Strategies 

Most of the participants would at least attempt the same strategy in both the MCR task and 

VU. This can be seen by comparing the MCR and VU columns for each participant in Figure 6. 

For example, in the following excerpts, Pat attempts to apply the Focus on one Coordinate 

strategy first in VU and then in MCR: 

Pat [During VU]: How to get to -7 with my x.…That [mousing over <-1, 3>] will at least get 

me to negative seven x. 

Pat [During MCR]: I wonder if it's better to get to 64 first. So if it's 32 hours by magic carpet, 

that's the point (32, 64). Which would arrive me at the y, the y, the y value of his house. 

In each case, Pat attempts to match one of the coordinates first. However, while they carried 

this strategy through to completion with VU, they ultimately chose to solve the MCR task with a 
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System of Equations. The only participant who did not at least attempt the same broad strategy 

across both environments was Auren. They relatively quickly settled on using a System of 

Equations on the MCR task, which they completed first. When they played VU, they did not ever 

consider this strategy, preferring instead to use Quadrant-based Reasoning. 

Discussion 

The findings above reflect the different affordances for students that VU and the MCR task 

offer. The fact that participants tended to try the same strategy for both tasks but did not tend to 

complete both tasks with the same strategy particularly supports this conclusion. This suggests 

that the two tasks are different enough that students may decide a strategy that worked in VU is 

not the best strategy for the MCR task, thus engaging them in different ways of thinking. 

Two clear ways VU differs from the MCR task are in the offloading of computation and the 

limited magnitude of goal positions. Because the vector equation at the top of VU automatically 

updates whenever you change a scalar, it offloads computational work. The addition of the 

Predictive Path in some levels offloads even more work, as it allows the player to see both the 

Numeric value of the result and the path it takes on the coordinate plane to get there. In addition, 

goal positions have their x and y coordinates each somewhere between -20 and 20. This means 

that the goal position is relatively small in magnitude, particularly when compared to the goal 

position of the MCR task, (107, 64). These differences in features may be related to the 

differences in how students use Algebraic, Numeric, and Geometric thinking across the two 

tasks. Because the MCR task involves working with larger numbers, and because all 

computation and graphing is left to the student, students may be more inclined to think 

algebraically to avoid having to do a lot of computations or draw a precise graph. Conversely, 

because VU handles many computations for the player, asks the player to work with smaller 

numbers, and shows the player information on an already-made graph, it can be easier to engage 

in Numeric and Geometric thinking while solving this task. While each individual task may 

better support different kinds of student thinking, using them in conjunction with one another 

may support students using all three of these kinds of thinking. 

Another difference is that players have a surplus of vectors to choose from in VU, with the 

four vectors available consisting of two pairs of vectors that are scalar multiples of each other. 

Thus, students not only have choice in what vectors they use, they also may be able to make 

observations about linear independence and dependence through playing levels of the game. We 

saw this with the strategy of Linearly Independent Vector Selection. In comparison, the first task 

in the MCR unit only includes two linearly independent vectors. However, the rest of the MCR 

unit does lead students toward considerations of linear independence and dependence. In 

addition, simply having students play VU may not automatically lead to students having any 

insight about linear independence. We can see this in the fact that three of the students who used 

this strategy only did so after additional interviewer questions. This suggests an important 

caveat: it is not just the design but also the implementation of the tasks that matters. Instructors 

who subtly or not-so-subtly prompt students to look closer at the vectors that are available to 

them may be able to scaffold these kinds of observations for students. 
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Students’ Written Homework Responses using Digital Games in Inquiry-Oriented Linear 

Algebra 

 

 Zac Bettersworth Kaki Smith Michelle Zandieh 
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In this report, we characterize seven of twenty-five students’ responses to a single written 

homework assignment from the Spring 2021 academic semester. The homework was designed to 

incorporate the Vector Unknown 2D digital game to investigate how students answered 

questions about span and linear independence after playing various levels of the game. We 

present our modification of the roles and characteristics framework of Zandieh et al. (2019), our 

identification of students’ grammatical use of game language and math language, as well as the 

results of analyzing students’ homework responses using our framework. 

Keywords: Linear Algebra, Inquiry-Oriented Instruction, Game-Based Learning 

The teaching and learning of linear algebra are important due to their prevalence in many 

STEM disciplines. One of the goals of our team was to develop a sequence of game-based 

written homework assignments that paralleled the course progression of the Inquiry-Oriented 

Linear Algebra (IOLA) curriculum (Wawro, Zandieh, et al., 2013) for use in any linear algebra 

classroom. Here we build on past research stemming from the IOLA curriculum that uses 

Realistic Mathematics Education (RME) constructs to inform the design of curricular materials 

by iterating research, design, and implementation (Gravemeijer, 1999; Wawro, Rasmussen, et al., 

2012). 

 
Figure 1.  Two screenshots of the Vector Unknown game for Level 3 (left) and Level 4 (right). 

Vector Unknown (VU) introduces novice linear algebra learners to beginning topics such as 

linear combinations of vectors and span. Players move a bunny through a level to collect baskets 

and keys by dragging vectors and setting scalar values to create linear combination equations as 

seen in Figure 1. VU draws heavily on the use of the travel metaphor that is leveraged in the 

IOLA curriculum during the Magic Carpet Ride (MCR) task sequence (Plaxco & Wawro, 2015; 

Wawro et al., 2012). We extend the use of VU by augmenting its instructional use with a set of 

homework assignments. Since this was our first attempt at designing this set of game-based 

homework, we wanted to understand how our students thought about span and linear 

(in)dependence after playing several levels of VU. To accomplish our goal, we analyzed 

students’ responses and gameplay screenshots from their second written homework assignment.  

Research question:  How did students use the Vector Unknown 2D game in their responses to 

questions about span and linear independence in their written homework? 
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Background Literature and Theoretical Perspective 

Stewart, Andrews-Larsen, and Zandieh (2019) provided a thorough overview of the current 

state of the research literature on the teaching and learning of Linear Algebra ideas. Stewart and 

colleagues synthesized 54 research articles across various themes, including span and linear 

(in)dependence, that are relevant concepts within most Linear Algebra curricula. We use the 

literature review of Stewart et al. to inform our own. 

Span and Linear (In)dependence 

Plaxco and Wawro (2015) determined that travel is a consistent metaphor that students use to 

reason about span in the context of the IOLA curriculum. Adiredja and Zandieh investigated 

students’ everyday examples of basis using an anti-deficit perspective (Adiredja & Zandieh, 

2017; 2020). Extending their initial framework for students' example generation, Zandieh et al. 

(2019) determined that travel was a ubiquitous metaphor for the notion of basis even though the 

students had never encountered the IOLA curriculum. There have been several studies that 

analyzed how students think about linear (in)dependence:  Ertekin et al. (2010) discussed student 

thinking about linear independence and dependence in geometric contexts, Hannah et al. (2013; 

2016) and Stewart and Thompson (2010) made connections between students’ embodied ways of 

reasoning about linear independence and dependence even when the students were unable to 

produce a formal definition. Rasmussen et al. (2015) analyzed video data to investigate students’ 

progressive mathematization of examples of linearly (in)dependent vectors in ℝ2 and ℝ3.  

Most relevant to our work is a similar study by Dogan-Dunlap (2010) who analyzed students’ 

homework responses with an online module to learn more about the various ways students think 

about linear (in)dependence. When using the geometric web module, students’ responses were 

characterized by Dogan-Dunlap across 17 categories, 11 of which were geometric. It could be 

the case that using manipulatives and educational video games support students in forming 

geometric interpretations of span and linear (in)dependence. However, no study has considered 

how students think about span and linear independence by analyzing students’ written homework 

responses after playing a research-designed video game.  

Game-Based Learning 

The research team that developed the game VU incorporated Game-based learning (GBL) 

research as a lens to better understand the instructional affordances and limitations of using video 

games for teaching mathematical ideas (Coleman & Money, 2020; Gresalfi & Barnes, 2016). 

There has not been a lot of research leveraging games within higher-level mathematics courses. 

As such, our research adds to the burgeoning area of GBL within the IOLA curriculum (Mauntel 

et al., 2021). Digital Game-Based Learning (DGBL) has gained popularity in the K-12 literature 

over the past 20 years, “...DGBL in mathematics education can be regarded as the use of digital 

games within the context of learning mathematics,” (Byun & Joung, 2018, p. 114). Other 

researchers within the IOLA research group have investigated the development of students’ 

gameplay strategies using VU (Mauntel, Levine, et al., 2020; Mauntel et al., 2021). We agree 

that playing a well-designed video game does not imply students are mathematizing anything, 

“...a young child counting blocks, may...be experiencing mathematical play; whereas a middle 

school student who is being forced to play a very well-designed mathematics game in the 

classroom may not,” (Williams-Pierce, 2019, p. 592). We view our design of written homework 

as a structured set of questions intended to support students in forming and testing conjectures 

about the game to engage in mathematical play while playing VU.  
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Roles and Characteristics of Basis Vectors Framework 

We view the framework of Zandieh, Adiredja, and Knapp (2019) as viable to analyze the 

spontaneous game examples given by students in their written homework. Zandieh et al. built 

upon their previous framework of roles and characteristics codes to understand how students 

thought about basis through everyday example generation. Zandieh and colleagues used roles 

codes to describe the role that a set of basis vectors has relative to the ambient vector space. 

Zandieh and colleagues’ characteristics codes described important conditions of a set of vectors. 

We did not explicitly ask students to generate examples using VU on their written homework. 

However, students’ spontaneous use of game examples included descriptions of the roles and 

characteristics of the list of vectors given to the player in VU. We later elaborate on our 

alteration of the roles and characteristics of basis vectors framework of Zandieh, Adiredja, and 

Knapp (2019). 

Methods 

We designed a single written homework assignment to be used in the third author’s IOLA 

class during the Fall 2020 semester. After reviewing student responses and meeting weekly, we 

refined the single homework assignment and wrote four new assignments during the Spring 2021 

semester. Out of the forty-two students enrolled in the third author’s IOLA class during Spring 

2021, we collected the written homework responses of about twenty-five students (not every 

student completed each assignment). We analyzed the responses of seven out of the twenty-five 

students that submitted the second homework assignment due to their use of spontaneous game 

examples from VU in their response to the first question pictured in Fig. 2:  Adrian (chose not to 

identify), Kieran (chose not to identify), Brooks (White man), Michael (White man), Jing 

(Asian/Asian American man), Tanner (White man), and Aahan (Asian/Asian American man).  

The second homework was written with two mathematical concepts in mind:  span and linear 

(in)dependence. In both the first and second written homework assignment, we explicitly used 

the word span, though we did not explicitly mention linear (in)dependence in either assignment. 

Students had encountered the IOLA lessons covering both ideas (Magic Carpet Task and Return 

to Home Task) by the time they received the second written homework assignment. Students 

were asked to play Levels 3, 4, and 5 on the hard difficulty of VU multiple times. Level 3 of VU 

includes four game objects (collect three virtual keys then travel to the location of the lock), 

Level 4 includes three collinear baskets where the line passes through the origin, and Level 5 

includes three collinear baskets where the line of the baskets does not pass through the origin. 

 
Figure 2. Statement of the problems Q1 and Q2 from the second written homework 

We conducted our first pass at data analysis of the second homework by open-coding every 

student’s responses to each question to characterize the nature of the data and identify trends and 

themes (Strauss & Corbin, 1990). During this initial pass, we noted some students appeared to 

make connections between their understanding of span, linear independence and the explanations 

of their gameplay. While there were some selected response questions in the homework, we 

focused on the free response questions to better characterize students’ connections. The 
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framework of Zandieh et al. (2019) proved useful once we determined the subset of seven  

students who provided explanations using gameplay examples. To focus on how the students 

were using the game to reason about Linear Algebra concepts, we used the code game language 

to focus on pieces of the data where this might occur. An excerpt was originally coded as game 

language if the excerpt mentioned the student’s actual gameplay, mechanics of the game, 

features of the game, or limitations of the game. For example, Adrian discussed increasing the 

distance traveled by the bunny in game language as opposed to saying something about 

increasing the value of the scalar multiple of said vector:   

“Therefore, it would likely only affect the first movement by increasing the distance 

traveled by the bunny in those two directions,” -Adrian.  

After determining the seven students that used game language to respond to Level 3 Question 

5 (Q1), we used our modified framework of Zandieh et al. (2019) to code the seven students’ 

responses to Q1 and Level 4 and 5 Question 7 (Q2) using our span and independence codes 

framework pictured in Figure 3. We will now focus our discussion primarily on the responses of 

the seven students who used game language in their responses to Q1.  

Findings 

Our findings include (1) students’ mixed use of game and math language when responding to 

Q1 and Q2, (2) our modification of the Zandieh et al. (2019) basis framework, and (3) the results 

of using our frameworks to analyze students' responses to Q1 and Q2. In Figure 3, we present 

our span and independence framework. For each code, a portion of a students’ response is given 

as an example to the reader. In Figure 4, we present the results of coding each student's response 

to Q1 and Q2 using our modified framework. In the column for students’ responses to Q2, we 

separate the codes using semicolons if the student broke their response into paragraphs or 

sections. 

Students’ use of Game Language and Math Language After we determined some students 

responded to the homework using spontaneous examples from their gameplay, we wanted to 

know how some students used game examples in their open-ended homework responses to Q1 

(25 responses) and Q2 (19 responses). We created various lists of words that would fall under 

game language usage (e.g. “bunny”, “baskets”, “route”) and math language usage (e.g. “span”, 

“plane”, “magnitude”). We added a mixed language category for words that could be considered 

relevant to the game, but weren’t always used to refer to one of the elements of the game (e.g. 

“vector”, “line”, “scalar”). We coded the second homework assignment itself and every students’ 

responses to Q1 and Q2 at a word-for-word grain of analysis using our lists. We wanted to know 

if any students used game language when responding to Q1. We thought it would be interesting 

if a student responded primarily in game language to Q1, which was phrased primarily in mixed 

and math language. While many students' responses to Q1 involved math and mixed language 

use (69 instances of math language across 23 responses; 86 instances of mixed language across 

22 responses), our seven research subjects were the only ones who responded to Q1 using game 

language. Out of the twenty-five responses to Q1, there were only 18 instances of game language 

across 7 out of the 25 responses. The data presented here is from the written responses to Q1 and 

Q2 of these seven students. 

The Span and Independence Framework Zandieh et al. (2019) used roles codes to 

describe students’ examples relative to how the basis vectors relate to the ambient vector space. 

In our modification of their framework, we instead use span codes to characterize students’ 

descriptions of how vectors or objects relate to the span of said vector set. Further, Zandieh and 

colleagues used characteristics codes to describe students’ examples based on the conditions that 
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a set of basis vectors has. We instead use independence codes to characterize students’ 

descriptions of the conditions of a set of vectors or objects. We view our use of span and 

independence codes as highly overlapping with the use of roles and characteristics codes. We 

present a description of the span and independence codes in Figure 3 with some short examples. 

Figure 3 is altered from the framework used by Zandieh et al. (2019) with the addition of our 

own restricting code, modification of three codes, and exclusion of two codes. There are some 

codes in Figure 3 whose names have been changed to better describe our data (i.e., restricting, 

redundancy, and sameness). If we did not find evidence of a particular code in our students’ 

written responses, we did not include it in Figure 3 (i.e., systematic and structuring). 

 
Figure 3. Table altered from Zandieh et al. (2019) 

Results from Span and Independence Coding We used our modified span and 

independence codes as a codebook to produce the set of codes for each student’s response to Q1 

and Q2 as shown in Figure 4. Looking across columns it can be shown that Q1 and Q2 elicited 

different sorts of responses from our research subjects. For example, there are far more uses of 

the essential code for Q2 than Q1. Looking across the rows of Figure 4, it can be seen that 

students emphasized different aspects of the roles or characteristics of the set of travel vectors 

provided in Levels 3 through 5 in VU. 

 
Figure 4. The results of coding students’ responses to Q1 and Q2 
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To demonstrate how we distinguished between students’ responses using game language, 

consider the following portion of Adrian’s response. For clarity, game language will be 

italicized, math language will be underlined, and mixed language will be both italicized and 

underlined.  

“Therefore, in order to reach all of the goals, the bunny needed to use a vector to get into 

position before using a second vector to follow the linear path towards each of the goals,” 

-Adrian.  

This excerpt was chosen to show a response that primarily used game language. Adrian 

claimed that an additional vector was needed from the perspective of the bunny, which was an 

indicator of game language. Further, to reach the goals (i.e., the baskets), Adrian claimed the 

bunny needed to first “get into position” to collect the baskets in Level 5. This need to “get into 

position” was related to the setup for Level 5 of VU (i.e., the line of the baskets did not pass 

through the origin).  

To demonstrate how we used our span and independence codes, consider the following 

portion of Jing’s response. For clarity, each indication of a span or independence code will be 

bolded. We coded Jing’s response as Trav, Ess, Gen: 

“In level 5, I need to reach (Trav) the point of the line and that will need an extra vector 

(Ess) to make it happen, and it will form (Gen) a plane,” -Jing.  

This excerpt was chosen to show a common pairing of codes, essential and traveling as well 

as a response given primarily in math language. The reader may note the similarity in this 

portion of Adrian and Jing’s responses to Q2 about their Level 5 gameplay in that both excerpts 

consist of an essential and traveling pairing of codes.  

Discussion and Conclusion 

We begin our discussion by first comparing students’ span and independence codes across 

their responses to Q1 and Q2, pictured in Figure 4. We will also discuss trends in pairings of 

codes that emerged in students’ responses similarly to the work of Zandieh et al. (2019).  

In Figure 4, we found that we had assigned more students the generating code in Q2 than Q1. 

It may be the case that asking students to compare the span of their vector list in Level 4 and 

Level 5 led to more examples indicative of creating and forming lines and planes. This makes 

sense based on the way we asked Q1. Our emphasis was on having students mentally compare 

the span of their vector list in Level 3 and then comparing that to the span of a new vector list 

with one fewer vector. Students were assigned the redundancy code more times in their 

responses to Q1 than Q2. Since students were thinking about whether the span of their initial 

vector set was different than the span of the new vector set (with one fewer vector), this may 

have contributed to students’ responses being characteristic of having extraneous objects in their 

imagined vector set. We see far fewer sameness and redundancy codes in general across 

students’ responses to Q2, which also makes some sense. Instead of being asked about the effects 

of adding or removing a vector from a particular set, students were instead asked about whether 

the span of the set of vectors they used to win the level was a line (Level 4) or a plane (Level 5).  

The essential and traveling code pairing was the most common pairing in students' responses 

to the Q2 which asked the students to compare Level 4 and 5. The major difference in these two 

levels is whether the baskets lie along a line that goes through the origin (Level 4) or not (Level 

5). In the essential/traveling pairing, students were describing the need for an extra vector to “get 

to” the line or “detour” to the line containing the baskets in Level 5. The inclusion of the “offset” 

vector in Level 5 changed the span of the set of vectors needed to win Level 4 from a line to a 

plane (five out of the seven correctly answered this question). Students' use of gameplay 
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language to compare Levels 4 and 5 may be indicative of the students’ explicating an intuitive 

need for an offset vector, while still working towards more formal mathematization.  

It is interesting that many students’ intuitive notion about traveling on the offset vector, as 

indicated by the prevalence of the essential and traveling code pairing, did not appear to translate 

to more formal mathematization when writing the parametric equation for the line of the baskets 

in Level 5. It may be that thinking about “traveling to the line of the baskets” is a useful travel 

metaphor to support students’ in transitioning towards more formal ways of reasoning. For 

example, we view the need to first travel to the line of baskets before collecting them as an 

informal way of reasoning that foreshadows a transition towards symbolizing the parametric 

vector equation for the line of the baskets in Level 5. Students were asked to write the vector 

equation for the line of the baskets on their homework, but only Michael, out of our seven 

research subjects, produced an equation of the form we had in mind (i.e., [
𝑥
𝑦] = [

3
2
] + 𝑎 [

1
2
]).  

 Our results add to the body of knowledge about student thinking about span and linear 

(in)dependence in the context of the IOLA curriculum. Specifically, our contribution is through 

incorporating the use of a research-designed game and written homework assignments to support 

students in thinking about the notions of span and linear independence while playing the game. 

The results of this study demonstrate the ability of the VU game, when accompanied with a 

written homework assignment, to evoke different ways of thinking about span and linear 

independence in an experientially real context. We see this as an extension of some of the other 

work using VU in the context of IOLA (Mauntel et al., 2021).  

Further, some students adopted the perspective of the bunny when responding to the 

homework questions. Students adopting the perspective of the bunny seems to be related to 

Serbin, Wawro, and Storms’ notions of physics-centered and physicist-centered grammatical 

constructions (Serbin, Wawro, & Storms, 2021). For example, a student may give an explanation 

that includes a description of a person within the span of a set of vectors (physicist-centered). We 

conjecture that students’ use of game language may be connected to physicist-centered language, 

and math language use may be extremely similar to the notion of physics-centered grammar. 

Future work may investigate the nature of students’ use of game language in conjunction with 

students’ use of “bunny-centered” language when discussing their responses to the written 

homework.  

Since we collected all five written homework assignments as data from every student in the 

third author’s IOLA classroom during the Spring 2021 semester, we intend to expand our current 

analysis across all five homework assignments. Further, we intend to use the results of this study 

to motivate further revision of the game-based written homework assignments in the context of 

the IOLA curriculum. 

Limitations and Acknowledgements 

We acknowledge that this data was collected from a single IOLA course at a large University 

in the United States. This likely impacted the data we collected. The hope would be to eventually 

scale these homework assignments to more institutions using the IOLA curriculum as motivation 

to incorporate the Vector Unknown 2D and 3D game into their classroom.  

This material is based upon work supported by the United States National Science 

Foundation under Grant Numbers NSF DUE-1712524. Any opinions, findings, and conclusions 

or recommendations expressed in this material are those of the authors and do not necessarily 

reflect the views of the National Science Foundation.  
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In this paper, we present an empirical study examining challenges undergraduate mathematics 

students (N=73) encounter when engaging in programming-based mathematics inquiry projects, 

and how they handle these challenges. Results suggest that a majority of students find the 

programming or the programming of mathematics the most challenging aspect of their 

engagement, for different reasons. Also, with more experience engaging in such projects, it 

seems students may become more able to handle their challenges in an independent manner 

(e.g., through reviewing concepts, persevering, or planning). 

Keywords: Computing; Math Inquiry; Challenges; Student Learning; Instrumental Genesis. 

There has been a growing interest in studying and implementing innovative approaches in 

undergraduate mathematics, such as inquiry-based mathematics education (Artigue & Blomhøj, 

2013; Laursen & Rasmussen, 2019), in which students are invited to engage in the practices of 

professional mathematicians. There is also a recent push to integrate computer programming – or 

more broadly, computational thinking – in different subject areas and at all levels of education 

(Guzdial, 2019; Wiebe et al., 2020; Wing, 2014); though the potential of integrating 

programming in mathematics learning has been known for a long time (diSessa, 2018; Papert, 

1980), including at the undergraduate level (e.g., Leron & Dubinsky, 1995; Wilensky, 1995). In 

particular, programming can support a certain inquiry-based approach, where students engage in 

computational practices used by some professional mathematicians (Weintrop et al., 2016). 

Some undergraduate mathematics curricula have integrated programming in this sense. For 

example, at Carroll College in the United States, mathematics majors use programming as a 

problem-solving tool throughout their mandatory coursework (calculus, linear algebra, 

modelling, abstract algebra, etc.) and may eventually apply their programming skills in senior 

projects or theses (Cline et al., 2020). Another example, in the Canadian context, is a sequence of 

three courses called Mathematics Integrated with Computers and Applications (MICA), which 

have been implemented at Brock University since 2001. Throughout these courses, students 

engage in a sequence of 14 projects (including end-of-course projects on student selected topics), 

in which they design, program, and use interactive computer environments to investigate 

mathematics concepts, conjectures, theorems, or real-world situations (Buteau et al., 2015).  

In their recent “Call for Research that Explores Relationships between Computing and 

Mathematical Thinking and Activity,” to the international RUME community, Lockwood and 

Mørken (2021) argue that “serious consideration of machine-based computing [including 

programming] is largely absent from much of our research in undergraduate mathematics 

education” (p. 2). They suggest that much more needs to be investigated, “including identifying 

and exploring potential benefits, affordances, challenges, and problematic issues” (ibid.). They 
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also point out that the various approaches to integrating computing in university mathematics 

classrooms should provide opportunities for research. In our 5-year research study, we address 

the above gap, using the opportunity provided by the natural MICA environment. In particular, 

we examine the teaching and learning of using programming for engaging in pure or applied 

mathematical inquiry. As part of our study, we seek to better understand the challenges students 

face during their learning, which we see as potentially providing insights for implementation.  

In this paper, we present some initial findings addressing the following research questions: What 

challenges do undergraduate mathematics students encounter when engaging in programming-

based mathematics inquiry projects? How do students explain their challenges? How do they 

handle their challenges? Are there any differences among different demographics of students?  

Theoretical Framework 

In our work, we frame students’ engagement in programming-based mathematics inquiry 

projects using a development-process model (dp-model, Figure 1) proposed by Buteau and 

Muller (2010). According to the model, students’ engagement involves different steps, which 

arise in a dynamic, non-linear fashion. For example, at Step 3, students design and program an 

“object” (or interactive environment) they will use for their inquiry, and this may occur in a 

cyclic manner with Step 4 (verification and validation of the programmed math). This model was 

developed through an analysis of MICA projects, a literature review (Marshall & Buteau, 2014), 

and analyses of student data (Buteau, Gueudet, et al. 2019). It has also been argued to align with 

the programming-based practices mathematicians use to conduct research – i.e., inquiry (Buteau, 

Gueudet, et al. 2019; based on Broley, 2015). Balt and Buteau (2020) provide a 5-minute video 

illustrating the model in the context of two selected pure and applied student inquiry projects. 

 
Figure 1. A model of students’ engagement in mathematics inquiry projects (Buteau, Gueudet, et al., 2019, p. 6). 

We further frame students’ learning in the above model using the instrumental approach 

(Rabardel, 1995, 2002), whereby programming is an artefact (a human product) that may be 

transformed into a meaningful instrument (e.g., for conducting mathematical inquiry). This 

transformation – called instrumental genesis – involves the development of schemes (Vergnaud, 

1998), including stable strategies (and principles underlying strategies) that enable the student to 

effectively achieve a goal (e.g., articulating a mathematical process in a programming language, 

as part of step 3 in the dp-model; Buteau, Gueudet, et al., 2019). In our case, a student’s 
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instrumental genesis involves the development of a web of schemes (Buteau et al., 2020), i.e., 

interrelated schemes found at different steps of the dp-model. 

Instrumental genesis is a complex process that can be challenging for students (Laborde, 

2002). In our research, we have been documenting individual students’ instrumental geneses 

through the sequence of inquiry projects offered in the MICA courses mentioned above, 

including mentioning some challenges that arose for those few individuals, in certain projects 

(Buteau, Gueudet, et al., 2019; Buteau, Muller, et al., 2019; Gueudet et al., 2020). In this paper, 

we move away from this in-depth approach and move to a wider student population to examine, 

more systematically, challenges (i.e., aspects of students’ engagement that appear to cause the 

most issues, in terms of schemes, steps from the dp-model, or more general elements), and how 

students mostly handle these challenges (i.e., to move their mathematical inquiry forward). 

Methods 

As mentioned above, we work in the context of a sequence of three programming-based 

mathematics courses, MICA I-II-III, offered at Brock University, which engage mathematics 

majors and future mathematics teachers in 14 inquiry mathematics projects. Our study is part of a 

larger five-year naturalistic (i.e., not design-based) research aiming at understanding how 

students learn to use programming for authentic mathematical investigations, if and how their 

use is sustained over time, and how instructors support that learning. 

As part of Years 2-4 of this research, all MICA students were invited to respond to an online 

questionnaire (~12-15 minutes long) at the end of their course (MICA I, II, or III). Participation 

was voluntary. Table 1 shows some relevant demographic information for the 73 participants. 

The questionnaire contained different sections: demographics; confidence in programming (for 

mathematics investigations); usefulness of programming; etc. In this paper, we focus on the 

questions asking ‘what’ students found most challenging in MICA projects, ‘why’, and ‘how’ 

they mostly handled it. Participants provided short written responses to each question. 

Table 1. Information about participants that will be used in this paper.   

Demographics     

Gender 

Female 

Male 

Total 

MICA I 

25 

14 

39 

MICA II 

14 

7 

21 

MICA III 

9 

4 

13 

Total 

48 

25 

73 

 

Each ‘what’, ‘why’, and ‘how’ response was coded, first individually (among 2-5 coders), 

and then through consolidation (which led to lists of ‘codes’). Codes for the ‘what’ question were 

first grouped into ‘themes’. Since each participant’s responses to the ‘why’ and ‘how’ questions 

elaborated on their ‘what’ response, these codes were sorted first into groups by the ‘what’ 

themes, and then codes in each group were looked at and grouped into themes. This thematic 

regrouping was consolidated by 2 coders. Finally, we created different graphical representations 

of the frequency distribution of the results, including in relation to different demographic groups. 

We then interpreted our results using the theoretical frame elaborated in the previous section.  

Since participation was voluntary, we cannot claim that our sample is representative of all 

MICA students. This is a limitation of our study. 
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Results 

We present selected results in four sections aligning with our four research questions.  

What students find most challenging  

Our analysis led to eight themes, with distribution across participants given in Figure 2.  

  
Figure 2. What participants (N=73) found most challenging about the MICA inquiry projects.  

The part of the programming-based mathematics inquiry that most participants found most 

challenging was coding (e.g., “anything that requires a loop, an array, or long segments of 

code”), followed by coding mathematical processes, including translating mathematics to code 

(e.g., “making the computer do the math”). Both of these relate to students’ (engagement with 

the) activity in steps 3-4 of the dp-model (i.e., the programming cycle). The other most 

challenging parts were mentioned in smaller proportion (at most 10%). Some are related to the 

programming cycle, such as graphing and graphics1 (e.g., “getting graphs and picture boxes to 

do things”) and debugging (e.g., “overcoming a roadblock or mistake in the coding”), making the 

issues at the programming cycle the most dominant ones (78% in total). All other challenges 

appear to relate to more general aspects of students’ engagement (i.e., not necessarily related to a 

specific step in the dp-model): the mathematics (e.g., “understanding the math components”), 

starting or completing the inquiry projects (e.g., “at the beginning and setting up the program”), 

expectations for evaluation (e.g., “understanding what the professor expects”), and other 

responses such as “the imaginative process.”  

When reviewing participants’ responses to both the ‘what’ and ‘why’ questions, we find that 

some of the latter challenges may be related to several steps in the dp-model. For example, the 

student mentioning the imaginative process explained: “I've always struggled with feeling 

confident in my own ideas ... coming up with my own conjecture …[was] the hardest for me,” 

which we associate to step 1. Another student in the “other” theme specified: “I had a hard time 

understanding the content of the course in terms of how to apply my program to the questions 

asked of me,” which we associate to step 5. And a student included in “math” said: “I found the 

written reports to be the most challenging … it just seemed to require more in depth thinking, 

rather than just knowing the math and programming it,” which we associate to steps 6-7.  

Why students find ‘coding’ and ‘coding of mathematical processes’ to be most challenging  

We now consider the reasons behind the two greatest challenges reported by the highest 

proportions of participants. Our analysis of 46 participants’ responses led to 11 themes, which 

can be categorized according to 4 different aspects of instrumental genesis. 

The most dominant reason (32.6%) was struggling with knowing what to do while coding, or 

starting or getting stuck with coding (e.g., “I find it difficult to start as sometimes I don’t know 

how to approach the math in a programming sense”). We infer that these students were 

 
1 Programming graphs in VB.Net requires coding a change of coordinate system. 
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struggling to mobilize or develop certain schemes (e.g., for articulating a math process in the 

programming language). Another reason, struggling with making efficient code (6.5%), also 

points to struggling to develop a certain scheme (e.g., “It’s one thing to get the code to do what 

you want, it’s another to get it to do that as efficiently as possible”). Thus, 39.1% of participants 

seem to suggest the development of certain schemes as causing the ‘coding (math)’ challenge. 

Some reasons (with proportions totaling 36.9%) relate more to the nature of instrumental 

genesis: a process that takes time, effort, and confidence. This includes coding (math) is new 

(15.2%, the second most common reason), needing more guidance (10.9%, e.g., “I am expected 

to know commands and what to write with only being taught the basics”), not being confident in 

coding (6.5%, e.g., “I am not totally confident as a programmer”), and needing more time (4.3%, 

e.g., “It’s a hard concept to understand in a short amount of time”).  

Two reasons (totaling 19.5%) point to the nature of the artefact (in this case, programming). 

This includes the third most common reason, coding is finicky or picky (13%, e.g., “one small 

thing can throw the whole code off”) and struggling to understand how a program works (6.5%, 

e.g., “I really struggle to visualize how the program handles these codes and tend not to 

understand … how it is getting to the answer”). 

Finally, two reasons (totaling 8.6%) concern the nature of the mathematics: finding it difficult 

to think computationally (4.3%, e.g., “It generally takes a difficult path to go through the math 

and make it work”) and struggling with coding complicated or brand-new math (4.3%, e.g., 

“some of the math is complicated enough on paper let alone telling a computer how to do it”).  

How students mostly handle what they find to be most challenging 

Looking at how all 73 participants said they handled their most challenging part of their 

inquiry projects, 9 themes were found (summarized in Figure 3, left).  

53.4% of participants indicated seeking help from the instructor, teaching assistants (TAs), 

and/or peers (e.g., “Asking as many questions, and getting as much help from the TA/Instructor 

as possible”; “I speak with peers and the professor in order to get on the right track”). 

Some other strategies (with proportions totaling 35.6%) include ways of independently 

gaining the knowledge required to address the challenge: researching beyond my lecture 

material (e.g., “Using the textbook and online sources to self-teach”), reviewing my (previous) 

lecture material (e.g., “sit down with my lecture notes and review them”), and seeking a deeper 

understanding (e.g., “just trying to understand the topics more deeply”).  

Two other strategies (totaling 21.9%) are associated with taking the time needed to adapt or 

develop one’s schemes for the given situation: persevering (e.g., “Just testing new ideas until one 

works”) and taking my time (e.g., “I took things one step at a time”).  

One strategy is specific to ‘coding (math)’ (4.1%): planning before coding (e.g., “trying to 

structure out some sort of design before writing programs”), which we infer as students 

developing part of a scheme for articulating a (math) process in the programming language. 

A very small proportion (1.4%) indicated having no strategy (e.g., “I haven’t [handled it]”). 

There were also 28.8% of other strategies mentioned, such as “I’ve been handling it by 

staying on top of my academics.” Many of these could be connected through a larger category of 

working through it on my own, as could most of the themes in Figure 3, left (excluding seeking 

help and no strategy). We thus regrouped students according to their ability to work 

independently on programming-based mathematics inquiry, as summarized in Figure 3, right: 

32.9% of students mostly just seek help from others, 38.4% mostly just work through it on their 

own, 23.3% do both, and 5.5% mostly just struggle and/or have no strategy. We interpret 
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students using a strategy including working through it on their own (61.7%) as suggesting that 

they may be “further along” in their instrumental genesis or more able to facilitate it themselves.  

 

    
Figure 3. How participants (N=73) mostly handled their most challenging part of the MICA inquiry projects.  

Some demographic comparisons in the ‘what’ and the ‘how’ 

Finally, we present some results considering different demographic categories: year of study 

(MICA I vs. ‘upper MICA,’ i.e., MICA II or III) and gender (female vs. male). 

When comparing MICA I and upper MICA participants, we found no clear difference in 

what was found to be the most challenging part of the inquiry projects. As for the way they 

mostly handled challenges, a greater proportion of MICA I participants indicated solely seeking 

help (38.5% vs. 26.5%), while a greater proportion of upper MICA participants indicated solely 

working through it on their own (47.1% vs. 30.8%); and a similar proportion of MICA I and 

upper MICA participants indicated utilizing both strategies. This may suggest that upper MICA 

students are more comfortable working independently in programming-based mathematics 

inquiry projects and they may be further along in their instrumental genesis. 

There also seems to be no clear difference between what females and males find most 

challenging about MICA inquiry projects, except maybe for a slightly larger proportion of 

females pointing to the coding of mathematics (21% vs. 8%). Female and male participants also 

reported similar strategies for handling their most challenging part, in terms of solely working 

through it on their own or seeking help, though female students appear to do both slightly more 

(27% vs. 16%) and male students may be more likely to have no strategy (12% vs 2%). 

Discussion 

With this paper, we seek to answer Lockwood and Mørken’s (2021) call for research by 

starting to examine the challenges students face when computing (including programming) is 

integrated in undergraduate math education, specifically in the context of mathematics inquiry.  

In our study, student participants indicated in greatest proportion (~3/4) that the most 

challenging part of their inquiry is related to what we call “the programming cycle,” which 

involves the design and creation of a program for the purposes of the inquiry, including the 

intertwined processes of translating mathematical processes into algorithms and validating the 

programmed mathematics. This aligns with work in computing education that has documented 

the many difficulties and misconceptions that novice programmers may have (Qian & Lehman, 

2017): e.g., “their lack of well-established strategies and patterns often leads to various 

challenges in planning, writing, and debugging programs” (p. 6). The participants in our study 

pointed to different factors that may be contributing to their “coding (math)” challenge: not only 

the inadequacy of their current patterns of doing (which we framed in terms of schemes), but 

also the nature of the process required to develop such patterns (e.g., it takes time; Laborde, 

2002). Participants also pointed to the nature of programming as a tool and the mathematics 
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involved in their programming-based mathematics inquiry. It is possible that the “newness” of 

this experience is underlying participants’ responses, in which case we may expect different 

results in the future if students start learning programming in STEM subjects from a young age 

(cf. Wiebe et al., 2020). We note, nevertheless, that students gaining fluency in programming 

need not imply their fluency in using programming to conduct mathematical inquiry (Buteau et 

al., 2019). Moreover, the latter will always be inherently challenging: “the inquiry process 

develops as interplay between known and unknown in situations where some individual or group 

of individuals is faced with a challenge” (Artigue & Blomhøj, 2013, p. 798-799, our emphasis).  

Work in computing education emphasizes that challenges may inhibit students’ ability to 

learn and make progress (Qian & Lehman, 2017). In contrast, our study found that just because a 

student finds something “most challenging” does not mean that they struggle: participants 

described several strategies for handling their challenges, with only a few suggesting that they 

had no strategy. The high proportion of students indicating that they “seek help” aligns with 

principles of inquiry-based mathematics education. Laursen and Rasmussen (2019) identify four 

pillars of such an approach, which highlight the importance of students collaboratively 

processing mathematical ideas and instructors facilitating students’ thinking in equitable manners 

(e.g., encouraging students to explain their ideas and ask for others’ explanations and help). 

Importantly, this also aligns with how most professional mathematicians do their work: i.e., in 

cooperation, collaboration, or consultation with one another (e.g., Bass, 2011; Burton, 2004). 

This said, our study also found that students seem to develop more independent strategies as they 

progress in the MICA courses. We conjecture that students may be learning when to collaborate 

and when to work on their own. One limitation of the current study is that we did not distinguish 

between “seeking help” and “collaboration.” Moreover, we only considered how students mostly 

face their most challenging part of their inquiry. Looking more into students’ interactions with 

peers, instructors, and other resources could be an interesting direction for future work. 

In their call for research, Lockwood and Mørken (2021) mention equity issues as one of four 

key research foci for the RUME community investigating computing, concluding that a potential 

downside to integrating computing in undergraduate mathematics is that it could perpetuate 

inequities in certain populations. Indeed, research in computing education has highlighted the 

greater challenges typically faced by female undergraduates (e.g., Margolis & Fisher, 2003). The 

small differences we observed among female and male participants seem to be promising and is 

consistent with some of our past work (Buteau et al., 2014). It is possible that this is connected to 

the inquiry approach taken in MICA courses. For instance, Laursen and Rasmussen (2019) 

indicate that “current studies show that inquiry classrooms can level the playing field for women 

… and argue why this may occur … but also show that this is not automatic” (p. 138). Looking 

further into which aspects of the MICA environment may support equitable outcomes could be 

another pertinent direction for future work.  

Overall, our study seems to suggest that the teaching approach in the MICA courses may 

positively support students in learning to engage in programming-based mathematics inquiry. To 

think about implications for teaching, we need to examine more closely the teaching that the 

students actually receive. In particular, there is the question of what instructors can do to best 

support their students in handling their challenges.  
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In this naturalistic study, we examine students’ learning as they engage in programming for 

mathematics investigations through a project-based approach. We focus on undergraduate 

mathematics students’ (N=41) engagement in a sequence of 14 programming-based math 

investigation projects, with data primarily collected through online questionnaires. Results 

suggest that students learn the most when they engage in projects they are passionate about. 

Results also provide empirical evidence supporting the effectiveness of a project-based approach 

by demonstrating the potential richness of students’ learning in projects (e.g., learning general 

ways of doing and succeeding, in addition to specific mathematical knowledge).  

Keywords: project-based learning, computing, student learning, mathematics investigation, 

operational and predicative knowledge 

There are different approaches to integrating programming – or more broadly, computing –  

in undergraduate mathematics education, including: as a required skill (e.g., a computer science 

course requirement), within specific courses (e.g., modeling, numerical analysis), or through a 

more integrated approach (e.g., throughout a program or in a sequence of specially-designed 

courses). For instance, a survey of 46 mathematics departments in the U.K. found that 89% of 

undergraduate mathematics programs teach programming to all students, most commonly in 

numerical analysis or statistics (Sangwin & O’Toole, 2017). In comparison, at Manchester 

Metropolitan University in the U.K. (Lynch, 2020), University of Oslo in Norway (Malthe-

Sørenssen et al., 2015), and Carroll College in the United States (Cline et al., 2020), 

programming is integrated across the undergraduate mathematics curriculum as a learning and/or 

problem-solving tool. In the Canadian context, Brock University’s Department of Mathematics 

and Statistics has integrated programming since 2001 in a sequence of three specially designed 

project-based courses called Mathematics Integrated with Computers and Applications (MICA) 

I, II, and III (Buteau, Muller, & Ralph, 2015).   

In a recent “Call for Research that Explores Relationships between Computing and 

Mathematical Thinking and Activity in RUME,” Lockwood and Mørken (2021) suggest that 

different approaches provide “opportunities for systematically studying different ways for [the] 

integration [of computing] to occur” (p. 6). They point out, in particular: “there are an increasing 

number of examples of meaningfully-integrated programs across the world, and the RUME 

community can explore what kinds of programs are effective and why” (ibid., our emphasis). 

Four potential research foci are identified by the researchers, one of which is teaching. On page 7 

of the call, potential research questions are proposed, including (our emphasis):  

1. How should computing be introduced and taught in postsecondary mathematics 

classrooms and how might we design effective tasks and curricular materials to 

integrate computing into postsecondary mathematics classrooms? 

2. What are effective (or ineffective) program, department, and institution-level models 

for integrating computing into mathematics classrooms? 
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The study we present is connected to the above call for research and potential questions. 

We focus on the effectiveness of a particular kind of task and program model: those that are 

situated within or based on projects. There are some studies reporting on the effectiveness of 

project-based learning (PBL) in post-secondary STEM courses (Ralph, 2015; e.g., in chemistry 

courses that incorporate the use of computerized models, Barak & Dori, 2005). Nevertheless, a 

literature review on PBL in K-20 mathematics education (Jacques, 2017) highlights a lack of 

research and mixed results on the topic, concluding that “we cannot say at this time if PBL is or 

is not an effective approach” (p. 431).  

In our 5-year research, we are interested in examining the effectiveness of teaching and 

learning environments such as in the MICA courses mentioned above. These courses use a PBL 

approach, engaging math majors and future math teachers in a sequence of 14 programming-

based mathematics investigation projects (see Table 1 in Buteau, Muller, & Ralph, 2015 for 

examples of the 14 projects). Previous work has reported on the potential effectiveness of this 

sequence, based on task analyses and reflections from a few students (cf. Buteau et al., 2016). In 

this paper, we further investigate the (comparative) effectiveness of the MICA projects, as 

reported by a larger group (N=41) of students, based on their responses to a questionnaire.  

Theoretical Framework 

The origins of PBL can be traced to first century philosophers such as Aristotle, who 

believed that humans mainly learn by doing. More recently, theorists connected to the 

establishment of PBL (e.g., John Dewey) were inspired by an apparent gap between what 

students learn in school and the skills and attitudes they need to succeed in a constantly changing 

world. Building on Dewey’s work, Kilpatrick (1921) defined a “project” as any unit of 

experience dominated by a purpose, which guides its process and drives its attainment. Other 

researchers have since provided a more elaborated definition, suggesting that projects should: (a) 

include complex tasks based on challenging questions or problems that involve students in 

design, problem-solving, decision making, or investigative activities; (b) give students the 

opportunity to work relatively autonomously over extended periods of time; and (c) culminate in 

realistic products or presentations (Jones, et al., 1997; Thomas, et al.,1999). Several other 

defining features of PBL can be found in the literature: e.g., (d) authentic content and 

assessment; and (e) teacher facilitation but not direction (Moursund, 1999). 

The constructionist paradigm (Papert & Harel, 1991) embodies a particular kind of PBL 

approach in which students consciously and actively engage in constructing (e.g., through 

programming) tangible and shareable objects. Resnick’s (2014) “4 P’s” – projects, peers, 

passion, and play – describe some of the key instructional elements that can support an effective 

constructionist approach. He argues, for instance, that “when people work on projects they care 

about [i.e., that they are passionate about], they work longer and harder, persist in the face of 

challenges, and learn more in the process” (ibid., p. 1).  

Though not explicitly intended, the MICA courses have been found to be intrinsically 

constructionist (Buteau, Muller, & Marshall, 2015). Also, the courses align with the features of 

PBL described above: MICA “projects” involve students in using programming for authentic 

pure and applied mathematics investigations ((a)/(d)); which are worked on autonomously, that 

is, facilitated rather than directed by instructors ((b)/(e)); and which culminate in useful computer 

environments and realistic project reports (c). Recall that the sequence of 14 MICA projects 

occurs over 3 courses: MICA I (Projects 1-4), MICA II (Projects 5-9), and MICA III (Projects 

10-14). It is important to note that the last project in each course differs from the rest in that 

students can select a topic that interests them (all other projects concern topics that are specified 
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by the instructor of the course). For instance, mathematics majors may decide to construct a 

program for investigating a problem or an area of research they find interesting; in a similar vein, 

mathematics teacher candidates may decide to program a “learning object” (Muller et al., 2009), 

i.e., a step-by-step guided learning of a school math concept, which may be relevant to their 

future profession (see Brock University, n.d., for some example projects). Inspired by Resnick 

(2014), we call these end-of-term projects “passion projects.” 

In this paper, we look at the “effectiveness” of projects in a PBL approach in terms of 

“student learning.” Since our work focuses on a certain kind of PBL – where students are 

learning to use a particular digital tool (a programming language) – we further frame “student 

learning” using the notion of instrumental genesis (Guin et al., 2005; as described in Buteau et 

al., 2019). In mathematics education, instrumental genesis has been conceptualized as a complex 

process involving the intertwinement of learning techniques for using a digital tool and learning 

specific mathematics concepts (Artigue, 2002). For instance, the second MICA project in the 

sequence prompts students to implement an RSA algorithm to encode and decode messages. 

Students typically learn how to use functions and modules in order to program the algorithm, and 

they also learn the specific mathematics concepts underlying RSA encryption (e.g., modular 

arithmetic, Euclid’s algorithm for finding the greatest common divisor, finding powers and 

inverses in Zn, …). To elaborate further on these two kinds of learning, Vergnaud (2009) offers a 

conceptualization of knowledge that distinguishes between operational knowledge (which 

provides means to do and succeed) and predicative knowledge (which consists of means to 

express ideas in words or symbols). Although both types of knowledge may be involved in PBL, 

early proponents of the approach seemed to be trying to shift from the focus of math education 

on predicative knowledge, to also include an appropriate emphasis on operational knowledge.  

In light of the above theoretical framework, we pose two research questions:  

1. What kind of programming-based math investigation projects are most effective? 

2. In what ways are they effective (e.g., what kind of knowledge is learned)? 

In this paper, we address these questions from the student’s point of view.  

Methodology  

The study we present is part of a larger 5-year (2017-22) iterative design research focusing 

on the learning and teaching of programming for authentic pure and applied math investigations. 

This is a naturalistic research contextualized in the MICA courses, which are semester-long 

mathematics courses including 2-hour lectures and 2-hour labs each week. Part of the research 

closely follows some MICA students over the MICA I, II, and III courses, using individual semi-

structured interviews related to their engagement in each of the 14 programming-based 

mathematics projects (P1, …, P14), as well as their lab reflections and project reports. To 

complement this in-depth study of individual students’ learning, in each MICA course students 

are invited to voluntarily participate in pre and post anonymous1 questionnaires.  

The questionnaire data has been collected so far in Years 2-4 of the research. Questions in 

the pre-questionnaire differ from those in the post- since the latter invites students to reflect on 

their learning during the course. The questionnaires feature several sections, such as participants’ 

demographics and participants’ perceptions of: the importance/usefulness of digital technology 

(including programming), their own knowledge/confidence level in programming, what it means 

to learn/do math, and the course (the assignments, the teaching, and their learning).  

 
1 Students who participate in the in-depth study are not anonymous. 
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This paper focuses on a post-questionnaire question that contains two parts. In the first part, 

participants are asked to indicate which project they learned the most from, from all the projects 

in the MICA courses they had taken (for instance, a MICA II participant could select one project 

from either MICA I or II, i.e., from among P1 to P9). In the second part, participants are then 

asked to select a reason for the project they chose. Options are provided and participants can 

choose more than one option if they wish. The possible options are: (a) I learned a lot of new 

math; (b) I learned a real-world math application that really speaks to me; (c) I completed it all 

by myself without help; (d) It was challenging but I finally understood it; (e) I had to use new 

programming concepts or skills; (f) I discovered something I did not expect; and (g) Other.  

41 students responded to the above question (24 from MICA I, 5 from MICA II, 12 from 

MICA III), which is not necessarily representative of the entire MICA student population (a 

limitation of our study). Responses were analysed using comparative bar charts and frequency 

tables. The first part of the questionnaire question was key to answering our first research 

question: When a participant indicated the project they learned the most from, we interpreted this 

as the “most effective” project from that participant’s point of view, and we reflected on the 

kinds of projects that were selected. This reflection was further supported by the second part of 

the questionnaire question (students’ reasons for their selected project), which was also key to 

answering our second research question (concerning the ways in which the projects are 

effective). As part of our analysis, we regrouped the above reasons into two categories based on 

whether they were indicative of learning predicative or operational knowledge (as defined in our 

Theoretical Framework). In the predicative knowledge category, we include (a), (b), and (f), 

which we see as reflecting project-specific learning of math concepts. In the operational 

knowledge category, we include (c), (d), and (e), which we see as reflecting learning of more 

general ways of doing and succeeding in using programming for math investigation. We note 

that each of the “Other” responses were reviewed to determine if they could be categorized as 

any of (a)-(f) (in which case they were recategorized and frequencies were adjusted accordingly).     

Results and Discussion 

We organize our results and discussion according to our two research questions.  

The Most Effective Projects   

Table 1 shows which programming-based mathematics investigation projects from among 

the sequence of 14 that participants selected as the ones they learned the most from. Note that we 

distinguish what we called “passion projects” with the notation “PP.”   

Table 1. The projects participants said they learned the most from. 

Course 

MICA I 

MICA II 

MICA III 

Total 

P1 

1 

0 

0 

1 

P2 

10 

0 

1 

11 

P3 

5 

0 

0 

5 

PP4 

8 

1 

2 

11 

P5 

- 

0 

0 

0 

P6 

- 

0 

0 

0 

P7 

- 

0 

0 

0 

P8 

- 

1 

1 

2 

PP9 

- 

3 

2 

5 

P10 

- 

- 

0 

0 

P11 

- 

- 

1 

1 

P12 

- 

- 

0 

0 

P13 

- 

- 

1 

1 

PP14 

- 

- 

4 

4 

We observe that students selected a variety of projects. Some concern pure mathematics (P1: 

conjectures about primes or hailstone sequences, P3: a discrete dynamical system, or P11: 

simulations related to Bertrand’s paradox), while others concern applied mathematics (P2: RSA 

encryption, P8: battle simulations, or P13: randomness of DNA sequences). Some have a higher 

ceiling in terms of potential for discovery and investigation (e.g., P1, where students are invited 
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to choose or formulate a mathematical conjecture to explore, vs. P2, where students apply the 

RSA method to encrypt and decrypt messages). Some projects also differ in the degree to which 

they are scaffolded by instructors (e.g., P2, where students are guided through some steps to 

construct their program, vs. PPs, where students must determine the design and use of their 

programs). Finally, the projects chosen by participants show up at different moments in the 

sequence (e.g., a MICA III participant selected P2, which occurs towards the beginning of the 

sequence; another selected P13, which occurs towards the end).  

Among the projects that were selected, nearly half (20/41) were PPs, in which students 

choose the topic of their investigations. This provides empirical evidence in support of certain 

constructionist claims: e.g., that students learn best when they are working on projects that are 

meaningful to them (Papert, 1980), i.e., on topics that they are passionate about (Resnick, 2014). 

We also note that about half of the participants who selected PPs indicated their passion project 

from MICA I, evidencing the low-floor-high-ceiling affordance of programming for mathematics 

learning (Gadanidis, 2017): already in their first year, with minimal programming background, 

these students said that they engaged in meaningful learning in such a project.   

When looking at MICA I participants only, P2 was the most selected (41.7%), even over the 

MICA I final project (PP4; 33.3%). At first, this seems to be a rather surprising result, for 

example, due to P2’s lower ceiling in terms of potential for discovery and investigation (Buteau 

et al., 2018), especially when compared to PPs. We discuss this result more in the next section.  

The Ways in Which the Projects are Effective 

In selecting the reasons for the project they learned the most from, participants had the option 

to select more than one reason. Figure 1 shows the number of reasons selected by participants 

(left) and the percentage of participants who selected the different possible reasons (right). 

    
Figure 1. Number of reasons selected (left) and percentages of participants (N=41) selecting each reason (right). 

A high percentage of participants (78%) selected at least 3 reasons. This highlights the 

richness of the students’ learning experiences in their chosen projects. 

“I had to use new programming concepts or skills” was selected by the highest percentage of 

students (80.5%). This shows that as students engage in these projects, they typically encounter 

avenues where in addition to applying their prior knowledge in programming, they also have to 

use new knowledge to create their program and complete their projects. Further, as seen in 

Figure 1 (right), at least half of participants selected that they persevered in the face of 

challenges (65.9%), learned a real-world math application that spoke to them (61.0%), learned 

lots of new math (56.1%), or completed the projects by themselves without help (53.7%). Also, 

close to half (43.9%) said they discovered something they did not expect. We argue that the 

prevalence of these different reasons, as well as the selection of multiple reasons mentioned 

above, provides evidence in support of the effectiveness of a PBL approach. 
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Only 2 students (4.9%) gave “Other” reasons for why they benefitted the most from the 

projects they chose (both of which were PPs). One student said, in addition to (a), (b), and (d): “I 

was paired with a cool partner and we worked well together.” The other, who had designed and 

programmed a learning object, said, in addition to (c) and (e): “How to create a lesson plan 

which incorporates programming to teach mathematics to grade 9 students.” These responses are 

linked to two characteristics of effective constructionist learning, as highlighted by Resnick 

(2014): the former to “peers” and the latter to “passion.” It is notable that these two participants 

felt the need to specify these additional reasons for the effectiveness of their chosen projects.  

As mentioned above, PPs and P2 were the most commonly selected projects by the 

participants. Participants’ reasons for selecting these are depicted in Figure 2.  

    
Figure 2. Percentages of participants who selected each reason for PPs (left; N=20) and P2 (right; N=11). 

When just looking at PPs (Figure 2, left), we note that only two responses were selected by at 

least 50% of participants: “I had to use new programming concepts and skills” (75%) and “It was 

challenging but I finally understood it” (50%). In the case of PPs, students select their 

mathematics topic, which can naturally lead to new demanding needs in terms of the 

programming (as opposed to just using the programming learned during prior MICA projects). 

These results suggest that students’ learning experiences in PPs may be more pointed. 

In comparison, 5 reasons were selected by at least 50% of participants who chose P2, 

suggesting that P2 provides an opportunity for students to experience multiple facets of learning. 

This is likely linked to the position of P2 in the sequence of 14 MICA projects. For most 

students, P2 is the first project where they must program a more elaborate mathematical process, 

in addition to using new programming concepts and skills. This represents a steep learning curve 

for students: overcoming it, possibly almost all by themselves, would constitute a major 

accomplishment. The fact that students indicate learning a real-world application that speaks to 

them is not surprising: P2 concerns RSA encryption, a topic that relates to the digital world in 

which the students live. Interestingly, the other reason (“I discovered something I did not 

expect”) was selected by less than 30% of participants, which seems to indicate that the low 

ceiling for discovery in P2 (as speculated in Buteau et al., 2018) is reflected in students’ 

perceptions. We also point out that students coming from high school may not be used to 

investigating conjectures: therefore, after a more unsettling experience with P1, students may 

feel more comfortable with a more directed project like P2, where they can follow instructions 

and easily see the progress of their engagement. Anecdotally speaking, we have heard many 

other students state that P2 was a particularly memorable project.  

Operational and predicative knowledge. In this subsection, we report on the kind of 

knowledge students indicated they learned in their chosen projects, based on our regrouping of 

reasons discussed in the Methodology. Table 2 summarizes the results.  
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Table 2. The kind of knowledge students learned in their chosen projects. 

Projects 

All 

PP 

P2 

Operational & Predicative 

30 

13 

9 

Only Operational 

8 

5 

2 

Only Predicative 

3 

2 

0 

It appears that over 70% of participants learned both operational and predicative knowledge 

in the project they learned the most from. This reflects the different kinds of knowledge required 

in using programming for mathematics like mathematicians do (Broley, 2015). Also, over 90% 

of participants indicated learning operational knowledge. This aligns with proponents of PBL 

(e.g., Kilpatrick, 1921), who talk about the approach as an attempt to engage students in learning 

the general processes and attitudes involved in (mathematical) problem solving, in addition to 

learning specific (math) content. One could wonder about the 7.3% of participants who indicated 

learning solely predicative knowledge in the project they learned the most from. We note that 

these three participants were future math teachers. Two selected PPs, which could have been a 

learning object connected to their future career. If they did it in pairs, it is possible that the 

participant did not lead the coding of the object, and thus did not feel as though they gained 

operational knowledge.   

Results for P2 in Table 2 align with the above results. In comparison, Table 2 offers a 

different perspective on the richness of learning experiences in PPs. Despite only a few reasons 

being identified by high percentages of participants (Figure 1), Table 2 suggests that many (65%) 

gained both operational and predicative knowledge.  

Conclusion  

In this paper, we answered Lockwood and Mørken’s (2021) call for research by exploring the 

effectiveness of one approach to integrating computing in undergraduate mathematics: namely, 

PBL, as defined by general work in education (e.g., Jones, et al., 1997; Moursund, 1999; 

Thomas, et al.,1999) and the constructionist paradigm (e.g., Papert, 1980; Resnick, 2014). One 

main contribution of our study is that it addresses the gap of empirical evidence related to the 

effectiveness of such an approach (e.g., reporting on the different kinds of learning that may 

occur in programming-based mathematics investigation projects).    

Our study was based on student (N=41) responses to an online questionnaire and was 

exploratory in nature. The theoretical framework and results inspire us to refine our 

questionnaire: in particular, to rework the reasons that students can choose to explain the project 

they learned the most from. There seem to be some reasons that could be revised (e.g., ‘I learned 

a real-world math application that really spoke to me’ could be divided into ‘I learned a real-

world math application’ and ‘I learned something that really spoke to me’). There also seems to 

be other reasons that are important to include (e.g., ‘I worked with others’). As part of our larger 

5-year research, we also have interview data, which could support us in digging deeper into the 

effectiveness of these projects and the types of learning that are involved (e.g., the more pointed 

yet significant learning that may be happening in passion projects, the rich learning in P2, or the 

combined learning of operational and predicative knowledge across the project sequence).  
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Formative Assessment in a Gateway Quantitative Reasoning Course 
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Quantitative reasoning is an individual’s ability to understand quantitative information in 

context, represent and model such information, solve real-world problems using mathematical 

and statistical knowledge, and communicate ideas using quantitative arguments. Using formative 

assessment practices in a QR course allows students to develop their QR competencies and 

demonstrate their learning. In this study, we explored whether and to what extent Quantitative 

Reasoning instructors implement formative assessment and examined their experiences and 

perceptions of using formative assessment. Herein we report on the formative assessment 

practices of six instructors who taught Quantitative Reasoning courses at public universities and 

public community colleges in Ohio during spring 2020. We analyzed the instructor’s course 

syllabus and conducted a semistructured interview with each instructor. The results show that 

the instructors exhibited various formative assessment practices with a wide range of weights.  

Keywords: Quantitative reasoning, formative assessment, projects, student presentations, 

feedback.  

Quantitative reasoning (QR) is an individual’s ability to understand and use numbers in 

context. It is associated with a person’s critical understanding of quantitative information and 

sense-making in context (Elrod, 2014; Meyer & Dwyer, 2005; Wilder, 2012). Central to QR is 

the ability to think deeply and critically about real-world phenomena and link them to relevant 

mathematics and statistics, as suggested by Figure 1 (Foley & Wachira, 2021). 

 
Figure 1. A model of student engagement in Quantitative Reasoning. 

An introductory postsecondary (i.e., gateway) QR course aims to prepare students to solve 

problems in everyday and professional contexts. It includes some nontraditional mathematical 

goals, like thinking critically about quantitative information and contexts, collaborating with 

peers to solve real-world problems, and communicating orally and in writing using quantitative 

arguments (Mathematical Association of America [MAA], 1996; Stump, 2017). Policy 

documents and professional opinions suggest that instructors should use teaching and assessment 

approaches that support students to build QR competencies such as interpretation, representation, 

calculation, analysis/synthesis, assumptions, and communication (American Association of 

Colleges and Universities [AAC&U], 2009; Boersma et al., 2011).  

Assessment in a mathematics course has no value if it does not measure appropriate goals 

(Steen, 1997). Lutsky (2008) and the MAA (1996) recommend that QR assessments include 

projects involving real-world tasks and student presentations; these assessments provide 

opportunities for students to solve problems and construct associated knowledge and skills. 

Learning via such assessments can provide constructivist and collaborative opportunities for 
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students, with which they can lead themselves and their peers toward academic and non-

academic success (Harwood, 2018; Thomas, 2000; Virtue & Hinnant-Crawford, 2019). Unlike 

traditional assessments—such as quizzes, tests, and exams—these recommended assessment 

strategies for QR may provide valid measures of the desired QR student learning outcomes of 

interpretation, representation, calculation, analysis/synthesis, assumptions, and communication. 

However, a problem exists in that not all instructors of gateway mathematics are familiar 

with the sort of recommended assessments that use authentic situations and tasks to measure 

students’ QR skills. Many instructors are still unclear about the most appropriate practices for 

assessing students’ learning in a QR course (Wallace et al., 2009). Most of the assessments used 

to measure students’ QR skills are traditional summative examinations or even multiple-choice 

tests administered on a computer (Boersma et al., 2011; Roohr et al., 2014). However, such 

practices do not match the suggestions for periodic and continuous assessments and feedback 

practices aligned to the desired student learning outcomes, suggested by the National Research 

Council (NRC, 2001) and Tunstall (2019). Thus, a major challenge in implementing gateway QR 

courses is aligning learning goals and assessments (Bae et al., 2019; Shavelson, 2008). 

Compared to course development and instruction, fewer research studies and policy 

documents discuss the assessment of students’ learning in a QR course (Madison, 2014; 

Sikorskii et al., 2011; Wright & Howard, 2015). Existing research publications that discuss 

assessment practices in such a course mainly focus on ensuring the reliability and validity of 

tests (Boersma et al., 2011; Taylor, 2009). Ward et al. (2011) found that (a) QR assessment 

practices vary widely across the institutions, (b) the majority of QR assessment initiatives were 

conducted at small universities and colleges, and (c) midsize and large universities generally 

lacked such empirical research on assessment of gateway QR courses.  

Formative Assessment  

Formative assessment is the diagnostic use of assessment during ongoing instruction (Boston, 

2002). A key aspect of such assessment is timely feedback to instructors and students about their 

current practices to make immediate changes to improve student learning. Formative assessment 

is something instructors do with and for students to advance student learning (Heritage, 2010). 

Moreover, it informs instructors about the effectiveness of their current practices to use this 

information as needed to support student learning (Black et al., 2003; Ogange et al., 2018). 

Spector et al. (2016) explained that a formative assessment emphasizes forming judgments about 

students’ progress, affecting the subsequent flow of instruction and learning. The NRC (2001) 

described a subsequent modification of teaching to promote student learning as the purpose for 

any formative assessment. Therefore, improved instructor and student practices are the chief 

aims of a formative assessment (Spiller, 2009). 

Formative assessment is a lever for a paradigm shift in pedagogical practices and the 

effective delivery of instruction (Ogange et al., 2018). In addition to promoting student learning, 

it promotes democratic practices by valuing student thinking, putting forward their ideas, and 

challenging others’ reasoning. Therefore, it is one of the effective methods of encouraging 

student engagement and achievement (Spector et al., 2016).  

After their extensive research project, Black et al. (2003) reported four central formative 

assessment practices: questioning, feedback, formative use of summative tests, and peer- and 

assessment by students. Questioning is a process in which instructors pose questions to an 

individual student or a group of students, listen to their responses, and continue by either 

providing appropriate feedback or probing follow-up questions. Feedback consists of 

information about students’ current levels of achievement and suggestions for improvement. 
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Formative use of summative tests can take several forms, including the use of student responses 

on tests to change instruction in the subsequent unit. Peer- and self-assessment are the practices 

in which students assess their peers and their own learning to determine whether the learning 

aligns with the course goals and develop reflective understanding; these practices give students 

the power to evaluate self and others’ knowledge, make appropriate decisions, and enhance 

individual and interpersonal learning (Noonan & Duncan, 2005).  

Formative Assessment and QR Learning 

It is difficult to assess the QR competencies of interpretation, representation, calculation, 

analysis/synthesis, assumptions, and communication using only traditional summative quizzes, 

tests, and exams. Moreover, these high-level skills are new to most college freshmen, and they 

need support and feedback to develop these QR competencies. Hence, formative assessment is a 

natural fit for a gateway QR course. Sundre (2003) stresses linking and implementing QR 

assessment and instruction simultaneously, explaining that such practices enhance QR teaching 

quality. Moreover, Shavelson (2008), Spector et al. (2016), and Wilder (2012) suggest using 

formative approaches such as regular and periodic assessment accompanied by detailed feedback 

to enhance student engagement in QR activities and their consequent achievement. In addition, 

such practices improve the instructor’s choice of learning activities. Reflecting on the 

information obtained through such assessments, QR instructors can determine students’ needs 

and attitudes in time to make the necessary adjustments to provide learning experiences for 

students that address course goals (MAA, 1996).  

Students’ collaboration and communication are common characteristics of QR learning and 

formative assessment. Consistent with QR student learning outcomes, several formative 

assessment practices, like peer-and self-assessment, require students to work together to solve 

real-world tasks and develop abilities to work together as they need in their everyday life. In 

addition, such formative practices even involve students sharing their thinking and ideas in oral 

and written forms, arguing with evaluative arguments, and providing appropriate feedback to 

improve their mutual learning. Also, a formative assessment constitutes frequent dialogues 

between instructors and students and among students, which can help teachers and students 

articulate the course goals, address issues related to measuring students’ communication skills, 

and reduce other challenges they face during QR assessment (Boersma et al., 2011). Moreover, 

formative assessment practices influence students’ beliefs and motivations toward understanding 

and building their explaining, interpreting, and reasoning (MAA, 2018; Spector et al., 2016).  

The purpose of this study was to explore instructors’ preparedness and practices of using 

formative assessment in undergraduate-level Quantitative Reasoning courses. We examined the 

instructors’ preparedness before they started teaching QR for the first time and their preparation 

before each class. Similarly, we explored their formative assessment practices by collecting and 

analyzing data about the nature, types, and frequencies of assessments and how they use such 

assignments to improve student learning. The findings of this study will be significant to novice 

and experienced instructors in planning, contextualizing, and implementing formative 

assessment in their QR teaching and enriching their student learning. Also, these results 

contribute to narrowing the research gap in the field with the ability to be transferable to other 

mathematics courses of equivalent level and in similar settings.  

Data Collection 

We employed a multiple case study design in this investigation. We defined our cases as the 

instructors who taught at least a QR course in the public community colleges and universities 
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and their regional campuses in Ohio during the Spring of 2020. Then we employed purposeful 

selection to recruit 6 QR instructors (3 male and 3 female) teaching at least one section of QR at 

two public universities and three public community colleges in Ohio (2 participants taught at the 

same community college). Among the 6 instructors, 5 instructors taught the Ohio Department of 

Higher Education (ODHE) (2015) approved QR course that their QR course was transferable 

across other institutions in Ohio. The instructors had a wide range of experience teaching 

undergraduate-level mathematics between 9 and 30 years. Their experiences in QR ranged 

between one semester and three years. Also, one instructor worked as a QR coordinator at her 

institution during data collection, while another instructor had experience developing a QR 

course in his past institution.  

The first author (Budhathoki) collected data by analyzing QR course syllabi and conducting 

semistructured qualitative virtual interviews with the instructors. In advance of each interview, 

he studied the instructor’s course syllabus to explore their plans to implement the project(s) 

during the semester, know the weights provided to such project(s) to determine student grades, 

and prepare a guide for the interview. He used the findings of the syllabus analysis to supplement 

as well as to triangulate the assessment practices shared by the instructors. The interviews with 

the instructors focused on investigating the instructors’ rationales for choosing their assessments 

and the ways they implement the assessments. Budhathoki even focused on confirming whether 

and to what extent the instructor implemented assessments differently than stated in the syllabus.  

We employed the cross-case analysis to examine themes to explore commonalities and 

differences in the instructors’ actions, activities, and processes assessment implementation 

(Cruzes et al., 2015; Stake, 2006). For this, we first analyzed each instructor’s project practices 

separately and then organized their assessment practices into six categories: (a) student projects 

and oral presentations; (b) attendance, participation, and student collaboration; (c) homework 

and other written assignments; (d) quizzes and in-class assignments; (e) periodic tests and 

exams; and (f) final exam. Among these six categories, we considered the first two categories of 

assessments—projects and oral presentations; and attendance, participation, and collaboration—

to be innovative practices as these assessments are not typical to an undergraduate-level 

mathematics course. For this, we relied on the fact that instructors mostly use quizzes, tests, and 

exams in other similar-level mathematics courses. We grouped the last four categories—

homework and written assignments, quizzes and in-class assignments, periodic tests, and final 

exams—to be traditional approaches to assessing student learning. These assessments have been 

typical in undergraduate mathematics courses in the United States for many decades. Then, we 

categorized the instructors into two groups: (a) Group A consisted of the instructors who 

provided more than 40% weights to innovative assessments, and (b) Group B consisted of the 

instructors who provided lesser weights to innovative assessments. Then, we sought literal 

replication by comparing formative assessment implementation of the instructors of the same 

group and theoretical replication by comparing that of instructors across the groups (Yin, 2018).  

Findings and Discussion 

We discovered a great deal of variation across the instructors’ approaches to assessing 

student learning and assigning grades. On average, the instructors gave 32.3% of the student 

grades through these two innovative types of assessments and set 67.6% of the student course 

grade the traditional these types of evaluations. Table 1 shows the frequency and average 

weights of different categories of assessments used by the instructors.  
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Table 1. Assessment Frequency & Weights Used by All 6 Instructors 

Similarly, Table 2 shows each instructor’s weights to each assessment category. Four 

(3males, 1 female) among the 6 instructors relied on traditional approaches to determine student 

learning and assign grades. These 4 instructors assigned 70–85% of student grades, with an 

average of 77.75%, through traditional assessments, mainly periodic tests, and final exams. On 

average, they assigned more than half of the student grades, 56.2%, through these assessment 

categories. Despite the prominent callouts for enhancing and assessing QR students’ learning by 

allowing them to work on authentic projects to solve real-world problems using their 

mathematics and statistics knowledge, the four instructors slightly emphasized projects and 

students’ oral presentations. Each instructor just employed one project during the semester, and 

on average, they assigned only 8.5% student grades through projects and oral presentations. It 

seems like these 4 instructors included projects as their assessment to meet the ODHE (2015) 

requirements. These instructors argued that students do not have enough confidence in math to 

do projects and make presentations. Only 1 of these 4 instructors had student presentations as 

part of their projects. They gave reasons for that, including time consumption and students’ 

readiness. Instructor 1 explained his reason for not having student presentations by saying, “my 

students’ confidence level in terms of their perception of their level and ability in mathematics is 

very low. And then, you compound public speaking on top of it, which is again something they 

don’t feel very confident about.” 

Table 2. Weights to Various Assessment Categories Provided by All 6 Instructors 

On the contrary, the other 2 instructors (both female) substantially employed innovative 

assessments to measure student learning and assign grades. In Table 2, we have represented these 

2 instructors as Instructor 5 and Instructor 6, who allocated 52.5% of student grades through 

innovative assessments. Both the instructors emphasized their projects and oral presentations 

among their assessment categories. Both of these 2 instructors employed three projects during 

the spring of 2020 to assign 40–45% student grades. After projects and oral presentations, both 

of these instructors gave more weight to quizzes and in-class assignments, which they employed 

Assessment Categories 

Number of 

Instructors 

Number per 

Category 

Weight 

Range 

Average 

Weight 

Projects & oral presentations 6 1–3 4–45% 19.8% 

Attendance, participation, & collaboration 6 N/A 5–20% 12.5% 

Homework & written assignments 6 4–10 10–20% 17.3% 

Quizzes & in-class assignments 4 2–10 7–30% 10.3% 

Periodic tests 4 2–3 30–60% 26.7% 

Final exam 4 1 10–25% 13.3% 

Assessment Categories   Instructors    

 1 2 3 4 5 6 

Projects & oral presentations 10% 10% 10% 4% 45% 40% 

Attendance, participation, & collaboration 15% 20% 5% 15% 15% 5% 

Homework & written assignments 20% 20% 18% 16% 20% 10% 

Quizzes & in-class assignments 5% 0% 7% 0% 20% 30% 

Periodic tests 30% 30% 60% 40% 0% 0% 

Final exam 20% 20% 0% 25% 0% 15% 
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almost every weekend to collect information about student learning. These instructors used the 

information from their quizzes and in-class assignments to make instructional decisions about 

whether they needed to discuss the concept further, clarify students’ misconceptions, and 

rediscuss the significant ideas. For example, Instructor 6 explained the purpose of her chapter 

quizzes, “see how they understand the material in general.” She also further explained that it is 

her chapter quizzes from where she gets information about student knowledge and provides 

feedback after then. Likewise, Instructor 5 mentioned that she used her quizzes and in-class 

assignments to check if the students had understood the content and, if not, rediscuss the 

material. She said, “If there are lots of questions or people having trouble with a certain idea, 

stopping and saying, let’s clarify what the issue is and how can we fix it.” She also mentioned 

reteaching and reevaluating if found. On average, they assigned 25% of student grades through 

quizzes and in-class assignments, which contributed to 25% of students’ grades on average.  

There was also a great deal of variation among the instructors’ approaches to assess student 

learning and assign grades. Specifically, there were variations between the assessments 

employed by the instructors of the two different groups. The six instructors had three out of six 

assessment categories in common. However, for the discussion and analysis, we collapsed the 

last three assessment categories used above—(d) quizzes and in-class assignments; (e) periodic 

tests; and (f) the final exam—into the single category (d) quizzes, tests, and final exam in Figure 

2. That resulted in two categories in both the traditional group and the innovative group of 

assessments. Figure 2 shows the comparison of average weights that the instructors from the two 

groups assigned to different categories.  

 
Figure 2. Comparison of Average Weights Assigned by Traditional and Innovative Instructors to Different 

Categories of Assessments’ 

The 6 instructors had varying practices of and perceptions about giving feedback to students. 

Though all 6 instructors claimed to provide feedback on student work, they primarily relied on 

written feedback indicating mistakes in student work, suggesting alternative ideas, and 

sometimes writing positive remarks for outstanding jobs. Even some instructors in the traditional 

group claimed that they provided feedback by posting solutions of homework and tests in their 

learning management system. All 6 instructors did not systematically practice giving oral 

feedback on student work. Nevertheless, the 2 instructors in the innovative give mentioned 

giving oral comments after student presentations but admitted that they still need to work much 

on their oral feedback practices. Also, only the 2 instructors in the innovative group and 1 

instructor in the traditional group had some basic peer-assessment activities. All 6 instructors 

undermined the learning opportunities that students can get by evaluating their and peers’ work. 

In addition, only the instructors in the innovative group let students redo their work by 

0% 20% 40% 60%

Projects & Presentations

Attendance, Participation, &
Collaboration

Homework & Written Assignments

Quizzes, tests, & final exam

Traditional Instructors Innovative Instructors
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incorporating instructors’ feedback. Likewise, only two instructors in the innovative group 

believed that providing feedback and allowing students to improve their work after receiving 

feedback helped students improve their performance and enhance their understanding. However, 

one of the instructors from the traditional group argued that feedback was helpful only for some 

students and only during some early weeks of the semester. Similarly, the instructors did not 

have similar perceptions about giving feedback. 

The instructors had variations within the categories that were common to them. In Table 2, it 

is evident that they had only three common categories: (a) projects and oral presentations and (b) 

attendance, participation, and collaboration. They varied mainly in their frequency of a particular 

category, nature of student engagement, and afterward activities. For example, despite the project 

being common, some instructors required students to collect data and solve real-world situations. 

In contrast, some other instructors made students solve the worksheet’s problems. Such 

variations remained both across and within the traditional assessment group and innovative 

assessment group. Variations in the implementation provided different learning opportunities for 

their students. 

Conclusion 

This study concluded that the instructors had a lot of variation in their categories of 

assessments and the ways they implemented their assessments. Though all six instructors had 

two innovative assessments in common—(a) projects and presentations and (b) attendance, 

participation, and collaboration—the variations in their implementations provided varying 

learning opportunities to students. Seeing altogether, the instructors primarily relied on 

traditional assessments such as homework, quizzes, and exams, with 67.6% of the weight going 

to these assessments to determine student grades.  

Not all instructors implement their assessments to identify student learning gaps, improve 

their instructional practices, and provide support to enhance student learning. Despite loud 

callouts for student collaboration and communication in a QR course, the instructors did not 

orchestrate adequate opportunities for students to learn by working together and sharing ideas. 

Likewise, lacking communicative options limited students to develop evaluative arguments using 

quantitative information critical thinking. Providing students with oral feedback is valuable and 

powerful (Michael-Chrysanthou & Gagatsis, 2014). However, not all instructors had positive 

perceptions about giving feedback and giving opportunities for students to redo their work by 

incorporating instructor feedback. 

Instructors’ practices were imbalanced regarding student attendance, participation, and 

collaboration assessment. All six instructors used this category, but surprisingly the instructors in 

the traditional group provided more weight to this category than their counterparts in the 

innovative group. However, none of the six instructors had clear rubrics to assess these student 

learning attributes, and they primarily relied on their subjective evaluation. 

Suggestions for Future Research 

This study was conducted over a short period, including a reasonably small number of 

instructors. Plus, the instructor represented only a few higher education institutions. Thus, we 

strongly emphasize some future studies in this issue, including more instructors representing 

other institutions, and collecting data through other means, such as class observations. Reports 

from such a study may help policymakers and novice and experienced QR instructors 

successfully implement projects to develop students’ QR competencies and support students for 

their academic and non-academic successes.  
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Comparing STEM Majors, Practicing and Prospective Secondary Teachers’ Feedback on 

Mathematical Arguments: Towards Validating MKT-Proof 

 

 Rebecca Butler Orly Buchbinder Sharon McCrone 

University of New Hampshire University of New Hampshire  University of New Hampshire  

Mathematical Knowledge for Teaching Proof (MKT-P) has been recognized as an important 

component of fostering student engagement with mathematical reasoning and proof. This study 

is one component of a larger study aimed at exploring the nature of MKT-P. The present study 

examines qualitative differences in feedback given by STEM majors, in-service and pre-service 

secondary mathematics teachers on hypothetical students’ arguments. The results explicate key 

distinctions in the feedback provided by these groups, indicating that this is a learnable skill. 

Feedback is cast as a component of MKT-P, making the results of this study significant empirical 

support for the construct of MKT-P as a type of knowledge that is unique to teachers.   

Keywords: Secondary Teachers, Mathematical Knowledge for Teaching Proof, Feedback 

Calls for students to experience deeper engagement with mathematical proof and reasoning 

across a variety of levels have been long standing (Nardi & Knuth, 2017; NGA & CCSSO, 2010; 

NCTM, 2009, 2014; Stylianides, Stylianides, & Weber, 2017). In order for this aim to be 

realized, mathematics teachers must be equipped with a substantial knowledge, both subject 

matter and pedagogical. The present study is part of a larger, NSF-funded research project, 

which studied how Mathematical Knowledge for Teaching Proof (MKT-P) of prospective 

secondary teachers (PSTs) evolves as a result of participating in a specially designed capstone 

course Mathematical Reasoning and Proving for Secondary Teachers (Buchbinder & McCrone, 

2020). The course design and the assessment instruments draw on the MKT-P theoretical 

framework proposed by Buchbinder & McCrone (2020), which we describe below.  At the same 

time, the project seeks to understand the nature of (MKT-P) empirically; specifically, whether 

this knowledge is unique to teachers and if it is learnable. To explore these questions, we 

compared the performance of STEM majors, in-service teachers, and prospective secondary 

teachers on an instrument designed to assess MKT-P (Buchbinder & McCrone, 2021). This 

examination of groups with distinct mathematical and pedagogical backgrounds aims to draw out 

the ways in which MKT-P is unique to teachers. Distinctions in performance of the practicing 

teachers with respect to individuals with little teaching experience or extensive theoretical 

knowledge of teaching, but strong knowledge of proof-specific subject matter, could reveal the 

components of MKT-P, which are unique to teachers (Krauss, Baumert, & Blum, 2008).  

The study reported herein analyzes a particular aspect of the MKT-P - the ability to provide 

instructional feedback on student mathematical work. A set of items on the MKT-P instrument 

asked participants to provide hypothetical students with feedback on their mathematical 

arguments. This feedback was quantitively assessed in the larger study through a coding scheme 

concerned with correctness and mathematical richness of responses (Buchbinder, McCrone & 

Capozzoli, Butler, in preparation). As we coded these responses, we noticed significant 

qualitative differences between the feedback provided by the three groups, which could not be 

captured by the existing scheme. The current study provides in-depth exploration of the 

differences that caught our attention in the larger study. The research questions are: 

1) How does the feedback to a hypothetical student on mathematical arguments compare 

across three groups of participants: practicing teachers, STEM majors, and PSTs.   
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2) How does the feedback of PSTs change before and after participation in the capstone 

course?  

Background and Literature Review 

In this study, providing feedback on students’ arguments is taken as one practice specific to 

Mathematical Knowledge for Teaching Proof (MKT-P). Inspired by research on the notion of 

MKT-P (e.g., Corleis, Schwarz, Kaiser, & Leung, 2008; Lessig, 2016; Lin et al., 2011; Steele & 

Rogers 2012; Stylianides 2011), Buchbinder and McCrone (2020) proposed an MKT-P 

framework, which consist of three domains: knowledge of the logical aspects of proof (KLAP), 

knowledge of content and students (KCS-P), and knowledge of content and teaching (KCT-P). 

KLAP encompasses subject matter knowledge related to the mathematical content of proof, such 

as knowledge of definitions, proof types, and proof validity. KCS-P describes knowledge about 

student perceptions of various proof related concepts including knowledge of common 

difficulties or misconceptions. KCT-P is knowledge of pedagogical praxis specific to facilitating 

student engagement with reasoning and proof and encompasses such skills as design of 

classroom activities, the making of instructional moves, and the ability to provide students with 

productive feedback on their proof related activities.  

Feedback is commonly described as “information provided by an agent (e.g., teacher, peer, 

book, parent, self, experience) regarding aspects of one's performance or understanding” (Hattie 

& Timperley, 2007, p.81). Extensive research across populations and disciplines has explored the 

ways in which various characteristics of feedback are related to student achievement (e.g., 

length, timing, positive or negative nature, and format) (Shute, 2008). Recent work in 

mathematics education builds on these established relationships between feedback and student 

learning by focusing on feedback as a teaching practice.  

Kastberg et al. (2016) found that mathematics PSTs tend to center their feedback on the 

performance of the task, processes involved in completing the task, and personal evaluations 

with more attention to correct than incorrect responses. This finding is echoed by Crespo (2002) 

who found that PSTs tended to focus their feedback on the process and correctness of student 

responses, with PSTs supplying students with correct solutions in the case of incorrect responses 

and issuing praise in the case of correct responses. Over the course of a mathematics methods 

course, Crespo (2002) found that PSTs shifted the focus of their praise toward the process 

students used to obtain their answers and shifted the focus of their critiques toward probing 

student processes via questions and offering guidance toward correct solutions. These shifts are 

also evidenced by Santos & Pinto (2010) who tracked the changes in written feedback given to 

secondary students by a single teacher over the first two years of her teaching. They found that 

the focus of her feedback shifted away from the task and toward the student, errors were 

corrected less often, symbolic feedback was given less often, the nature shifted from stating facts 

toward leading clues, and length of feedback increased. Bleiler et. al. (2014) analyzed feedback 

given by PSTs on sample student proof strategies, finding that PSTs tend to critique student work 

for use of specific cases over general mathematical representations. Overall, the literature 

indicates that feedback is a practice which teachers develop over time with this development 

centered on shifts from product to process and from telling to guiding. This supports our 

assumption that providing feedback on student mathematical arguments is a particular task of 

teaching specific to classroom situations involving reasoning and proof; in other words, an 

element of MKT-P. Comparing feedback across groups with comparable mathematical 

knowledge but different pedagogical background can provide empirical support for this 

assumption and illuminate the nature of MKT-P.    
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Methods 

Participants and the Study Setting 

Three groups of participants were involved in this study; 17 in-service secondary 

mathematics teachers, 22 university STEM students, and nine PSTs involved in the capstone 

course Mathematical Reasoning and Proof for Secondary Teachers. The in-service mathematics 

teachers (11 female and 6 male) had teaching experience ranging between 2 to 25 years (�̅� = 

12.18, SD = 8.26). The teachers were recruited via presentations given at departmental meetings 

and were compensated for their participation with a $35 ex gratia payment.  

The STEM majors and PSTs came from the same 4-year university. The STEM students, 

mostly computer science and mathematics, second year majors, were enrolled in a mandatory 

mathematical proof course. The course instructors reviewed the MKT-P questionnaire and 

confirmed that the students should have all the relevant proof knowledge included in it. The 

students who volunteered to participate in the study received a small extra credit in the course.  

All but one of the PSTs enrolled in the capstone course were in their final year of their 

secondary mathematics education program, so they had completed the majority of their 

mathematical coursework, including the same Mathematical Proof course as the STEM majors, 

as well as two courses specific to mathematics pedagogy. While these latter courses did require 

some classroom observations, the participants had no personal experience with teaching.  

The capstone course (taught by the second author of this paper) intended to enhance PSTs’ 

MKT-P by helping the PSTs to connect their university-level knowledge of mathematical 

reasoning and proof with secondary school teaching (Buchbinder, McCrone, 2018; 2020). The 

course was comprised of four modules, each devoted to a particular proof theme: (1) direct proof 

and argument evaluation, (2) conditional statements, (3) role of examples in proving and (4) 

indirect reasoning. In each module, the PSTs refreshed their subject matter knowledge of the 

proof theme and subsequently examined common student (mis)conceptions of the topic. Next, 

they applied this knowledge by planning and teaching a lesson on that proof theme at a local 

school. They recorded their lessons using 360 video cameras and wrote a reflection report on 

their teaching (Buchbinder, Brisard, Butler, McCrone, in press).    

Instruments 

The MKT-P questionnaire contained 29 items designed to evoke participants’ knowledge in 

each of the three domains of MKT-P. Ten questions were devoted to measuring KLAP, eleven to 

KCS-P, and eight to KCT-P. The content of the questions spanned the four proof-themes of the 

capstone course (direct proof, conditional statements, role of examples in proving, and indirect 

reasoning) framed across a range of topics in the secondary curriculum: number and operations, 

geometry, algebra and functions. The KCT-P items, which are the focus of this study, consisted 

of two parts: identifying errors in a sample student’s argument and providing feedback to the 

student, with attention to both the strong and weak points of their work (Figure 1). This type of 

question requires participants to translate their proof-specific mathematical knowledge into the 

pedagogical practice of communicating with a student in a way that is productive for their 

learning. Hence these questions are appropriate for assessing KCT-P. By examining KCT-P 

items qualitatively, we hoped to detail the differences among the groups of participants, which 

we noticed in the larger study.    
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Figure 1: Sample KCT-P item 

Data Collection and Analytic Techniques 

The same MKT-P instrument was administered to all three groups. The in-service teachers 

were given two weeks to complete the questionnaire in an on-line format. The STEM majors 

completed the paper-and-pencil questionnaire near the end of the course. The questionnaire took 

1.5 – 2 hours to complete. The PSTs completed the MKT-P questionnaire twice; at the beginning 

of the course (as an ungraded assignment) and at the end of the course as a final exam.  

The feedback provided by participants on KCT-P items was first analyzed for mathematical 

correctness and pedagogical depth, e.g., whether a student receiving this feedback would be able 

to improve their mathematical work. Through this analysis, detailed in Buchbinder et. al. (in 

preparation), we noticed stark differences in the three groups’ feedback, which our coding 

scheme was not capturing. Consequently, we re-coded all data using a newly devised a coding 

scheme, along four dimensions. First, we counted the sheer amount of words in the feedback. 

Second, we analyzed the perspective - to whom the participants addressed their responses. 

Addressing a student directly (e.g., “you are on the right track”) was coded as 1, using the 

collective “we” (e.g., “think what we are trying to show”) was coded as 2, and referring to the 

student in the third person, was coded as 3. The third dimension was the presence of questions in 

the feedback. Lastly, since participants were asked to highlight both positive and negative 

aspects of the student’s work, we analyzed the content of the feedback for complimentary and 

critical feedback. We used open coding and the constant comparative method (Strauss & Corbin, 

1994) to identify recurring themes (Table 1). The unit of analysis was the appearance of a code 

in a given response, so occasionally multiple codes were assigned to a given response. Two 

researchers coded the data individually with initial Kappa agreement of 0.67 (moderate) for 

compliments and 0.53 (weak) for critiques. All disagreements were discussed and reconciled. 
Table 1. Coding scheme for the content of the feedback   

Code and Description Examples 

Empty 

Providing feedback which is devoid of 

substance beyond recognition of correctness 

Compliment: Good proof 

Critique: Not proven enough 

General Mathematical Comment  

A general statement about the mathematics 

of the student’s work or describing work in a 

neutral manner 

Compliment: Strength: showed multiple examples 

showing its true 

Critique: An example does not prove so a 

counterexample is needed. 

Student Mathematical Work 

An explicit connection to the student’s work 

is made in the feedback 

Compliment: Molly had a great idea to show how the 

fractions add together to make a new fraction and used 

the closure property to argue details about the integers. 
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Critique: Nicole only uses one example to argue that 

the statement is true. 

Student Understanding 

Feedback gauges what the student knows or 

does not know 

Compliment: You show your strong understanding of 

what a rational number is and how to use variables to 

generalize a situation. 

Critique: Calvin lacks an understanding in conjecture 

which is good to know for the teacher. 

Mathematical Value 

Centered on some mathematical value 

(brevity/clarity), mathematical writing, or 

argument structure 

Compliment: I like that the student attempted to use 

algebra in a general case to prove it 

Critique: Try to write it more in the 3rd person 

Directing Solution 

The participant tells the student how to 

correct their work, either through suggestion 

or direct explanation 

Compliment: N/A 

Critique: Nicole needs to use variables to show that the 

statement holds true for all rational numbers 

Results 

Although the number of words in the feedback does not give insight to its substance, it gives 

a broad sense of the participant’s willingness to take seriously the hypothetical student and the 

mathematics of the problem. The groups showed notable differences in the mean number of 

words, with teachers averaging 37.43 words per response and STEM majors averaging 27.18 

words per response. The PSTs’-Pre1 feedback was initially closer to the length of the STEM 

majors’, averaging 29.33 words per response; however, PSTs-Post surpassed the teachers 

averaging 48.69 words per response. This gain could be attributed to the high-stakes nature of 

the post-questionnaire, but it is nevertheless a valuable indication of engagement. 

The groups also differed with respect to perspective in which they framed their responses. 

The teachers had an average perspective rating of 1.87 while the STEM majors had an average 

rating of 2.29. This means that teachers more often framed their feedback as an address to the 

student while STEM majors tended to talk about the student or to the collective. The PSTs-Pre 

aligned with the STEM majors, with an average rating of 2.54, which slightly lowered upon their 

second attempt to an average of 2.17 (for PSTs-Post). This shift indicates that PSTs began to 

address students directly in their feedback more often, but still less frequently as the teachers.  

Participant’s responses were also analyzed for the presence of questions, although these only 

appeared in about 25% of the data: across all groups, only 74 responses contained some form of 

question. Of these, 13 (17.6%) were generated by STEM majors and 37 (50%) by teachers, 

meaning that teachers tended to pose questions to the hypothetical students more frequently than 

the STEM majors did. The PSTs-Pre posed 9 questions as a group, and 15 questions on the Post, 

representing 12.2% and 20.2% of all questions in the data set respectively. Yet again, the PSTs-

Pre performance on the questionnaire resembles that of the STEM majors, while the PSTs-Post 

performance shifted toward the teachers’ performance.  

Whenever possible, the content of the feedback was analyzed for the presence of 

compliments and /or critiques on student arguments. Complimentary feedback appeared in 62% 

of STEM majors’ responses, 64% of teachers’ responses, 73% of the PSTs’-Pre, and 91% of the 

PSTs’-Post responses. Figure 2 shows the frequency of each compliment type (detailed in Table 

1) as a proportion of the complimentary feedback from each group to facilitate cross-group 

comparison. 

 
1 For ease of communication, we refer to the pre-course data as “PSTs-Pre” and the post-course data as “PSTs-Post” 
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Figure 2: Distribution of compliment types by group (in percent of total complimentary feedback in each group) 

Figure 2 shows that the only category for which all groups displayed similar proportions 

(within 5% of one another) is that of general mathematical principles. Among the notable 

differences between the groups is the drop in empty compliments of PSTs-Pre to PSTs-Post. 

While all other groups had similar proportions of empty praises (within 7%), PSTs-Post gave 

such feedback less frequently, with only 9% of their compliments considered empty. PSTs-Post 

also showed a large drop (17%) in complimenting student mathematical work, while 

dramatically increasing their complements of student understanding (2% to 27%). Both teachers 

and STEM majors showed low rates of such feedback (5% and 8% respectively) making this 

category a distinguishing feature of the PSTs’-Post complimentary feedback. PSTs also slightly 

increased their compliments of mathematical values from 28% to 36%. While PSTs-Pre were 

closer to the teachers on this category (25%), the PSTs-Post fell between the teachers and the 

STEM majors (44%).  

Feedback of a critical nature was more frequent than complimentary feedback for both 

STEM majors and teachers, appearing in 86% of STEM majors’ responses, 84% of teacher 

responses. 68% of PSTs-Pre and 89% of PSTs-Post feedback contained some sort of critique.  

 
Figure 3: Distribution of critique types by group (in percent out of total critical feedback in each group) 

Figure 3 shows the distribution of critical feedback categories for each group in percent of 

total critical feedback in each group. Compared to Figure 2, each group provided empty critiques 

less often than empty compliments, with such critiques being entirely absent for PSTs-Post. This 
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indicates that the critiques provided by all groups are substantive and contain more information 

regarding the nuances of student’s arguments. The types of critiques vary by group. Notably, 

PSTs increased their critiques of student mathematical work and directing solutions. PSTs-Post 

decreased their focus on general mathematical principles and mathematical values compared to 

PSTs-Pre. This indicates shifts toward specific aspects of existing student work and revisionary 

work rather than making general comments. The increase in directing solutions and decrease in 

mathematical values mark a shift toward the critique profile of the teachers while the decrease in 

general mathematical principles marks a shift toward the critique profile of the STEM majors.  

Discussion 

The two research questions of this study asked about qualitative differences in the feedback 

given by the groups and changes in PSTs feedback before and after the capstone course. 

Significant differences were found through these comparisons. Teachers tended to provide longer 

feedback, address the student directly, and frequently posed questions. STEM majors tended to 

write shorter responses in the third person. Content wise, teachers’ feedback tended to focus on 

the particularities of student work while STEM majors focused on the mathematical conventions 

and qualities of mathematical writing. Considered holistically, the feedback provided by the 

PSTs-Pre is qualitatively close to that of the STEM majors, while PSTs-Post feedback is 

qualitatively close to that of the teachers. This is primarily evident in the shift toward longer 

feedback addressed to the student and inclusion of questions. It is also evident in the shift of 

critical feedback toward directing solutions and away from critiquing mathematical values.  

These shifts in the PSTs feedback are consistent with the existing literature exploring PST 

feedback. PSTs in this study tended to provide complimentary feedback frequently, concurring 

with Kastberg et al. (2016) and Crespo (2002) that PSTs tend to focus on the correctness of 

responses. This study also echoes the trend in which PSTs write longer feedback focused on 

processes as they gain experience teaching (Santos & Pinto, 2010). The literature is furthered by 

this study as it compares the work of PSTs to both experienced teachers and STEM majors, 

revealing aspects of feedback specific to teachers and providing insight to their development.  

While limited by small sample sized and the high-stakes nature of the PSTs post assessment, 

the results of this study elucidate MKT-P as a construct; namely, these qualitative distinctions 

contribute to the empirical validation of this theoretical construct. By drawing out the differences 

in feedback provided by groups with varying mathematical and pedagogical backgrounds, this 

study illustrates that there is an underlying difference in the MKT-P of these groups, thereby 

lending credibility to the construct as something which is both unique to teachers and learnable.  

This connection of feedback to MKT-P also carries implications for teacher education. While 

the course that the PSTs of this study were enrolled in was not specifically aimed at cultivating 

specific feedback practices, changes in PST feedback were evidenced after taking this course. 

These changes along with the substantial differences in teachers’ and STEM majors’ feedback 

indicate that giving feedback is a learnable practice. By consciously attending to the 

development of MKT-P in PSTs, teacher preparation programs can better equip their participants 

to evaluate student work regarding proof and communicate their thoughts about this work back 

to the student in meaningful ways. 
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This paper explores how one mathematics major, Amelia, perceived and used a diverse set of 

resources to address specific challenges and learn mathematics through three semesters of 

proof-based course work. Drawing on data from interviews, homework logs, and classroom 

observations, we trace how shifts in her available resources shaped the actions she took to 

maintain personally meaningful mathematical reasoning and learning.  Specifically, we highlight 

the ways that available resources shaped her mathematical agency and autonomy, as we have 

defined these constructs. These results have implications for further investigation of the 

resources available to support students’ transition to competent proof work.  

Keywords: transition to proof, resource use, student agency, student autonomy, authority 

In the U.S. context, the transition in collegiate mathematics from computationally-focused 

introductory coursework to proof-intensive upper-level coursework substantially changes what is 

expected of students and their mathematical work—both their reasoning and written products 

Moore, 1994; Holton, 2001; Winsløw et al, 2018). The shift from being a consumer of 

mathematical algorithms and arguments to a producer or author of mathematical proofs is a 

nontrivial one, both in how one sees oneself and how one understands the nature of the discipline 

of mathematics (Selden, 2012). Such an epistemological shift has implications for what students 

believe about the role of instruction, the kinds of experiences and resources that mathematics 

class should provide them with, and the ways that they should organize their learning activity, 

both in class and out of class (Brousseau, 1997). For students who were previously successful in 

computational mathematics course, upper-division proof-based courses can be quite jarring as 

they grapple with how to adapt their prior ways of effectively studying and learning mathematics 

to the new requirements of proof-intensive mathematics courses. The broad aims of our research 

project are to better understand how undergraduate students construe the opportunities to engage 

in mathematical reasoning, both in and outside of their mathematics courses, and how these 

opportunities support (or not) their development as capable sense-makers and proof writers.  

In this paper, we focus on a particular issue that is intertwined in the experience of 

undergraduate students: the role of external resources in students’ developing reasoning 

processes. One way to see students’ productive entry into proof work is that in the face of 

challenges, they consult with perceived mathematical authorities (teachers, texts, internet 

resources, peers) as appropriate and needed, while retaining their own central role in developing 

arguments and writing proofs. This paper explores how one mathematics major, Amelia, 

perceived and used external resources (social, material, and digital) to learn mathematics through 

three semesters of proof-based course work. We trace how shifts in her available resources 
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shaped the actions she took relative to her mathematical reasoning and learning in her courses.  

Building upon prior work, we characterize the interplay between opportunities for sense-making 

and students’ actions in terms of agency, autonomy, and authority.  

Conceptual Framing 

We understand agency as the self-defined space of action that students perceive in any given 

situation—a space where actors see some actions as possible/permitted and others as risky, 

costly, or even impossible. In conceptualizing agency, we follow Ahearn (2001) in linguistic 

anthropology, Bourdieu and Wacquant (1992) in sociology, Calabrese-Barton & Tan (2010) in 

education in not separating students’ actions from the larger social and institutional structures 

that afford and constrain them. That is, we understand agency, not in terms of students’ actions 

per se, but as their felt capacity to take action in the contexts where they do mathematical work, 

in or out of the classroom. Conceptualizing agency in this way is consistent with our orientation 

to understand how students experience the transition to proof, by centering their judgments and 

sense of what is possible.  
 

Mathematical Agency: The felt capacity to take action in the face of challenges related 

to mathematical work. This capacity is jointly shaped by contextual norms and resources 

in specific courses and students’ narratives about their views of mathematics, their future 

in it, their learning processes, their selves relative to authorities.  
 

Students see mathematical authority as residing in their instructors and the solutions they 

provide, some of their peers, textbooks, and internet sites. 

In analyzing the actions that students take, we have been informed by Piaget’s notion of 

intellectual autonomy (Piaget & Inhelder, 1969) where an important facet of an action is whether 

it is deemed sensible and owned by the actor (intellectually autonomous action) or whether she is 

dependent on some external authority to validate the action. We depart from Piaget’s perspective 

in our focus on the more or less autonomous character of actions, not individual students. 
 

Mathematical Autonomy: A quality of actions, that reflects the student’s active 

resistance to endorsing, following, or replicating the reasoning of mathematical 

authorities (e.g., texts, internet sources, instructors, peers), without engaging in sufficient 

sense-making to make that reasoning their own. 
 

Specifically, we see students’ acting more autonomously when they use resources judiciously 

and locally to resolve specific snags or obstacles in reasoning. That is, our view of more 

autonomous mathematical actions is not that they preclude students’ engagement of resources, 

but that their use is bounded and subject to the overall goal of making personal sense of 

mathematics. Acting autonomously precludes the abdication of control for one’s reasoning to 

another. 

Grounded in these definitions we pursue the following research question: How do students 

exercise mathematical agency and display mathematical autonomy in the transition to 

mathematical proof and subsequent proof-based mathematics courses? 

Methods 

We observed classroom activity for two semesters of a multi-section introduction to proof 

course (ITP) and recruited student participants from multiple sections. During that semester, 

participants completed a baseline interview early in the semester, weekly homework logs, and a 

task-based interview later in the semester. The baseline interview focused on understanding their 

24th Annual Conference on Research in Undergraduate Mathematics Education 101



experience in mathematics prior to the ITP course and in its early weeks. One of the foci of the 

later task-based interview was to understand their view of the course, its challenges, and their 

learning in it. After completing the ITP course, we conducted interviews at the end of each of 

their subsequent proof-intensive mathematics courses.  

We applied our conceptualization of agency and autonomy to these data sources for a small 

number of our participants, by coding for: challenges, actions taken, and felt capacity, while 

attending to the opportunities for action provided by courses and the resources that students 

engaged. During this process, one student’s data, Amelia, appeared to shed light on how 

students’ agency can change and in turn how that agency, as felt capacity to act, affects the 

autonomy of their actions. We analyzed Amelia’s experience across her mathematics courses 

with respect to her work both in and out of class.  Memos were constructed of patterns that 

occurred across time or distinct changes in her agency and autonomy. This work led to a pattern 

of resources being a key part in her narrative with respect to autonomy and agency both within 

and outside of the classroom. These were then used to begin to understand how STEM majors 

exercise agency and display autonomy during mathematical reasoning processes in their ITP and 

subsequent courses.  

Amelia’s Transition to Proof Work 

Amelia was a junior mathematics major who ultimately planned to become a high school 

mathematics teacher. We began working with Amelia during her ITP course. She came to her 

major late after switching from another field and was working through her mathematics degree 

requirements to finish in four years, so that her fifth year would focus on student teaching. 

Amelia took four proof-based courses after her ITP course and in that time, her university shifted 

from in-person to online instruction in response to the COVID pandemic, as depicted in Figure 1. 

Our analysis focuses on two distinct portions of her transition to proof work: finding and using 

out of class resources and searching for resources to compensate for lectures she found 

unproductive.  

 
Figure 1. The progression of Amelia’s mathematics proof-based courses from Fall 2019 to Fall 2020. The figure 

denotes when classes switched online (mid-semester), an important contextual shift, via the green arrows. 

In her data corpus, we located four main types of resources: people, notes, solution keys, and 

the university’s mathematics learning center (MLC), that she used across the observed semesters. 

We highlight that notes appear within both parts of our analysis; hers were initially produced in 

class (as most students do), but Amelia also adapted note-taking as an out of class activity. In 

each of the following sections, we summarize the narrative she relayed to us relative to 

opportunities and resources, and then discuss how these informed our analysis of students’ 

agency and autonomy in challenging proof work. In Amelia’s transition to proof-based 

mathematics, shifts in her sense and use of resources were especially apparent.  
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Finding and Using Out of Class Resources 

Amelia’s father, an engineer, was a central resource in her mathematical experience prior to 

her entry intro proof work. During her calculus courses Amelia would call him for help such as 

writing out the mathematics or explaining different topics. This dynamic began to shift in her 

ITP course. Initially he hedged his aid by stating he could not “help [her] with any of the fancy 

words, but this is how you do it” and expressed that he would not have succeeded in the ITP 

course since he generally cared more about the answer than the process that produced it. As the 

class progressed, she still reached out and he helped form negations or contrapositives, but 

ultimately, he remarked that he had ‘overestimated’ his abilities. Her father could no longer be 

her ‘trump card’ in mathematics. Despite the ITP experience, she reached out during abstract 

algebra I, but to no avail, as she had surpassed him in mathematics.  

Once Amelia recognized that she had exceeded her father’s expertise in mathematics, she 

began to explore other helpful out of class resources. She visited the MLC as one potential 

source; she logged in her (minimal) required hours, but overall found the resource of limited 

value relative to her homework practice. 

Amelia: Sometimes it was just because I was like, busy and the only time I could go is on 

Wednesdays. And then like other times, it was I was understanding it. I didn't need to go. 

And then sometimes I just was too lazy to go.  

Interviewer: Was it also too early because you, like you said you started homework Tuesday, 

Wednesday. So you sometimes started homework later than that?  

Amelia: Yeah. So sometimes I like hadn't gotten around [to going] because I didn't want to 

go if I didn't have questions that I was going in with. Like I wanted to have like started 

the homework and found a spot where I got stuck or like a problem that wasn't in the 

notes or something like that. 

Further, Amelia stated she was more likely to seek out help when she felt confident; when 

she was not confident in her approach proof tasks, she would put away her work and did not 

share it. But her central resource was her notes. When she worked on homework, her approach 

was to, “go through my notes. Because usually it's something that's in the notes recently. And I 

use my notes on my homework. I never do homework without… I don't think I'd get through it if 

I did it without the notes.” Amelia did not describe her note-taking process, so we don’t know 

her own sense of that process or how close to the instructor’s written presentation they were. 

Once Amelia completed her ITP course, the MLC was no longer available as it was not 

staffed for more advanced courses. Due to this change and others, she expressed frustration over 

lack of resources to her father: 

I was talking to my dad about this that it makes me feel like now I'm like alone on an 

island of like just, because the only other person I can ask about like, but it's just, she's 

not in my [abstract algebra I] class. She's not taking that right now. So it's like that class I 

feel like yes, I have gotten my contact information of other people, but there's no like 

MLC to go to or like, I don't really want to go to his office hours…That does not help me. 

Amelia also reached out to a peer from her ITP course in a different section, but this possible 

resource was not fruitful as the two sections covered different topics. Ultimately, she was able to 

get the number of another student in her section, and she would text him sparingly if she was 

stuck on a part of a problem. During this course, the instructor provided solutions for homework 

and practice exams, and she used them to compare against her work and for exam review.   

She started her abstract algebra II course not knowing anyone, but by the end of the semester 

she had made a friend. They were taking in multiple courses together and “would kind of 
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compare notes on homework, and if [they] were struggling on a problem or something”. When 

they collaborated, their typical questions were, ‘Did you do this homework problem? I'm really 

confused on it. Or something like that, and then either we both be confused… or, Yeah, I did that 

one. Here's how I did it. Or like, I used this theorem, or whatever.’ Despite establishing this 

productive relationship with her peer, Amelia was frustrated by the lack of solutions for tasks on 

practice exams and review sheets. The instructor never uploaded solutions, which deviated from 

her prior courses, and she remarked that “If I am going to practice this, how do I know that I am 

getting it right? Because I don’t want to practice it wrong.” She appreciated prior instructors who 

uploaded them so she could compare her work, but she had now lost access to this out of class 

resource.  

Interpretation Relative to Agency and Autonomy 

Amelia’s transition to proof-based mathematics was oriented by the fact that she worked 

through her high school and early collegiate courses with a strong mathematical authority: her 

father. But during her ITP course and after, he could no longer serve as a mathematical authority 

and social resource; Amelia faced the fact that she surpassed him in mathematics. This was dual 

loss: he was both someone whom she could comfortably interact with about mathematics and 

was also able to declare whether she is right or wrong. This loss of a resource resulted in a 

decrement to her agency, as she no longer has the same felt capacity. In her previous courses, she 

did not always call her father but knew that she could call him if she was stuck or was uncertain. 

In response to this loss, she worked to find resources where she could comfortably discuss 

mathematics, but also indicated that she felt more comfortable when an authority (e.g., an 

instructor’s solution key) validated her reasoning and written work.  

With respect to solution keys, she remained engaged in her sense making process and 

completed problem sets by herself, a pattern of actions we see as substantially autonomous. 

Although her deference to the solution keys for judging whether her solutions were ‘right’ or not 

suggested a pattern of less autonomous action. We see a similar pattern in her views and use of 

the MLC. One reason why she found it less beneficial than she hoped was that she wanted to 

work through problems and hit “stuck points” before turning to the MLC—paralleling her work 

with her father. This response to the resource of the MLC shows her resistance to replicating the 

thought processes of others. Instead, she wanted to engage in her own sense making and use 

resources judicially to resolve stuck-points in her own reasoning—an indication of substantial 

autonomy in her actions. Amelia sought out others to discuss the mathematics throughout her 

transition, and one of her highest points of frustration was when she felt that she was “alone on 

an island.” She reached out to peers in her sections, some of whom she knew were other sections. 

Although some of these attempts to secure social resources were not fruitful, she was successful 

with some, particularly in abstract algebra II. Overall, she tried to make decisions and take 

actions that maintained her level of agency by locating and using a variety of resources. Some 

actions were more autonomous than others, but overall, she retained, rather than abdicated, her 

control over her reasoning in her proof-based courses.  

Responding to the Increasing Barrenness of Lecture  

Amelia attended and actively engaged in her ITP course by asking questions of her peers 

during group work and of her instructor during segments of lecture. During one observed class 

session, the class worked on a problem where the TA gave a hint, but after working on the 

problem Amelia called the TA over because she did not understand a part of the resulting proof. 

As they worked together, they realized the hint’s algebra was incorrect. Amelia explained the 
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problem to the class so her peers could also fix their algebra. Overall, she engaged in lectures 

with questions, discussed possible solutions with her peers, and remained focused on making her 

own sense during class.  

Reflecting on abstract algebra I course, Amelia relayed she no longer asked questions in 

class, partially because the instructor “never left a space for questions to be asked.” She added, 

I feel like maybe it's because I just didn't feel as comfortable [asking questions], because 

when people did ask questions, they would ask a question I would have too, but I 

wouldn't feel satisfied by the response. Like it didn't help much. So then it kind of was 

like, Why should I ask my own questions? 

Her dissatisfaction with the instructor’s responses to questions was one reason why she 

became more broadly unsatisfied by the lectures. Lectures were almost “word for word from the 

notes,” so she “didn't really get much more from [the instructor]” than reading his notes, other 

than having someone audibly read them. Dissatisfaction and loss of motivation led her to decide 

to not synchronously attend lectures (after the shift to online instruction), as she judged this was 

not a productive use of her time. She continued this pattern of work for the duration of the 

semester, taking her own notes rather than attending lecture, although she reported that she fell 

behind towards the end.  

In her proof-based geometry class, she listened during lecture rather than copying everything 

down. Her instructor posted her notes online, allowing Amelia to take notes on them at a later 

time and then use them as a resource for her homework. She did not take notes during class in 

her abstract algebra II course. 

But I wouldn't really take many notes during lecture, because a lot of them were very, 

very similar, to the same examples to what were in the book, is what I started to notice 

kind of like a couple of weeks in… I would more listen and then copy the notes from the 

textbook and then use those to help me on the homework So, it kind of felt like... it didn't 

feel like I was on my own and I was teaching myself, but I was doing those things outside 

of class, instead of having group discussion, or doing things in groups. 

Amelia did attend the synchronous lectures in that course, even when they were not very 

helpful, because they kept her on track. She noted that if she treated it like an asynchronous 

course and viewed the lecture later, she would fall behind. In both the geometry and algebra 

classes she did not ask questions, feeling that the instructor wanted to just move ahead with the 

content. This dissuaded her from asking, even though upon reflection she felt she should have.  

Interpretation Relative to Agency and Autonomy 

In Amelia’s responses to her courses, we see that she adapted to the interactive emptiness of 

lecture, in a manner roughly paralleling her adjustment to the loss of her father as a mathematical 

authority. Specifically, her change in question asking in classes subsequent to her ITP course 

highlights a key portion of the relationship between agency and autonomy. In her ITP course, she 

felt that questions were not only encouraged but were ultimately helpful for her mathematical 

understanding. She reported positive experiences in how her questions were received and 

answered, both with regards to instructors and peers, allowing her to make effective sense during 

class. Her comfort with question asking was highlighted in her narrative of not taking a hint at 

face value even though it was provided by the TA, a mathematical authority. She had the felt 

capacity to engage in the classroom, and more specifically engage in her personal sensemaking 

since she had opportunities that aided her in this process. In later classes, her felt dissatisfaction 

with answers to her questions indicated her continuing focus on personal sensemaking. If she had 

simply written out the lecture notes during class without processing the meaning or challenging 
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the validity, this practice would indicate less autonomy. Instead, she interacted with the material 

enough to realize that she needed a different explanation, as she did not have a personal 

understanding of the topic, leading her to look for other resources.  

When reflecting on question-asking in her abstract algebra II, she noted that she should have 

asked questions. It was not that she did not have questions, rather she felt the space during 

lecture did not permit this action. Her felt capacity thereby constrained the potential autonomy of 

her actions. She looked for alternate pathways and support but found even the lectures 

themselves unhelpful. She exercised her agency by producing and using her notes on her own 

time, and these became a reliable resource for completing homework and studying—while also 

seeking productive interactions outside of class. For Amelia, this process of notetaking felt more 

as if she were having a mathematical discussion, paralleling her search for resources other than 

her father, with whom she could have these discussions. Her engagement with the textbook and 

the process of creating her notes substituted in part for the opportunities provided by her prior 

ITP groupwork. Even though Amelia had not necessarily started with the same felt capacity that 

she was accustomed to, or was critical for her mathematics learning process, she worked to find 

other substitutions for her in-class experience thereby increasing her agency. 

Conclusion and Future Work 

We have used this case of an undergraduate major’s transition to proof-based mathematics to 

illustrate the importance of longitudinal inquiry to understand such transitions and the central 

role of activity outside of the classroom in them. Conceptually, we have shown how analytic 

attention to course opportunities (or their absence) and different types of resources can be used to 

characterize changes in students’ mathematical agency and autonomy. Our focus on agency, 

autonomy, and authority allows insight into how students experience the transition to proof-

intensive mathematics courses and why their experiences play out the way they do, something 

that tracking grades, subsequent course taking, and major/minor completion cannot explain.  

The particularities of the case are evident. Many students’ transition to proof will not be 

oriented by the presence and retreat of a mathematical authority like Amelia’s father. Further, 

Amelia’s notetaking became a productive practice and resulted in a resource for her where it 

might not for others. But even in its particularity the case suggests ways to support students in 

addressing similar challenges in their proof-based coursework at many universities. In 

identifying these possibilities, we draw on the experience of other project participants, majors 

and minors whose transitions to proof-based mathematics have shown similar patterns to 

Amelia’s experience as well as clear differences. One design option simply takes seriously the 

felt barrenness of lecture and to experiment with openings for interaction. Dissatisfaction with 

lecture as unproductive for learning is not isolated to Amelia as literature questions the modality 

of lecture both with respect to students’ learning and their experiences (Freeman et al., 2014; 

Laursen et al., 2014, Lew et al., 2016, Prince, 2004). Another design consideration not only 

encourages collaboration but allots some classroom time for students to find peers for productive 

work outside the classroom. More generally, it may well be productive to devote class time to a 

discussion of the range of resources and how to use them—to support rather than undermine 

students’ mathematically autonomous action.  
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Challenges in Mentoring Mathematical Biology Model Construction: Quantification and Context 
 

Carlos William Castillo-Garsow 
Eastern Washington University 

The researcher observed a group of undergraduate students and faculty mentors collaborating in 
the development of a model for a student chosen topic in epidemiology. Results suggest that both 
students and mentors struggled with key understandings necessary to develop the model. 
Students struggled with conceiving of their compartment model as relating quantities, and 
mentors struggled with tracking and attending to the biological constraints of the problem the 
students chose. 

Keywords: Ordinary differential equations, mathematical modeling, model construction, student-
led projects, quantification 

Choosing quantities and their relationships is a critical part of successfully approaching a  
mathematical model. Equations and graphs in word problem and modeling contexts represent 
relationships between quantities and their rates of change. However, the notion of quantity 
receives little focus in the teaching school mathematics (Smith & Thompson, 2007; Thompson, 
2008, 2011). Thompson describes quantification as the process of conceptualizing of an attribute 
of an object as having a measure. Understanding how students and mathematicians imagine and 
interpret quantities is critical to understanding the process of model development. 

Research in mathematical modeling and quantification typically focuses on students working 
pre-chosen tasks (Bliss et. al., 2006; Gravemijer, 1994; Goldin, 1997; Lesh & Doerr, 2003; 
Thompson, 2011; Steffe and Thompson 2000). Sometimes these tasks are quite open, and 
students go through cycles of model development; however, in assigning a task to students, there 
are constraints placed on students as part of intentionally guiding the students' conceptual 
development (ibid). It has been argued in the past that these constraints limit students' 
experiences in developing their own research questions (Castillo-Garsow, 2014; Castillo-Garsow 
& Castillo-Chavez, 2015). Furthermore, pre-chosen tasks place teachers or teacher-researchers in 
a dominant role where the teacher has an opportunity to learn and know everything there is to 
know about the problem. So these pre-chosen tasks rarely highlight difficulties in modeling or 
mentoring modeling that a teacher would experience. 

For example, Camacho et al. (2003) found that choosing one's own project and research 
question creates situations in which students take the lead in researching topics far outside a 
mentors' area of expertise, essentially reducing the mentor to a role of consultant rather than 
leader. Mentors provide mathematical expertise, guiding students by suggesting appropriate tools 
and techniques. However, students take the lead in these projects, providing the background that 
defines the problem from subject area research and personal experience (Castillo-Garsow & 
Castillo-Chavez, 2015). These role reversals in which students are the experts are important 
sources of motivation and self-efficacy. Choosing a topic that mentors know less about allow 
students to participate and contribute in ways other than mathematical performance (Rubel, 
2017), which is an area in which students cannot compete with mentors (Camacho et. al 2003; 
Castillo-Garsow & Castillo-Chavez, 2015). 

This perspective creates a dichotomy of two ways in which difficulties with quantification 
can occur: understanding the background context but having difficulty mathematizing, or having 
an expert understanding of the mathematical tools for modeling, but having difficulty 
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understanding and connecting those tools to the background context due to inexperience with the 
context itself. Quantification research typically focuses on the former, but rarely focuses on the 
latter. This study focuses on both. As students and mentors interacted with each other, this paper 
identifies challenges that arose in quantification for both students and mentors as they 
collaborated to construct a model in a student-led project. 

Methods 
This study occurred in the fifth week of an eight-week summer REU in mathematical 

biology. Prior to this study, the students had taken a three-and-a-half-week course consisting of 
lecture, computer lab work, and textbook exercises in dynamical systems. Following this course 
work, students self-recruited into groups of three to five, and chose a topic of interest. During the 
fifth week, students made daily presentations on their topic to a panel of faculty and graduate 
mentors who provided feedback. In the final three weeks of the program, students completed the 
analysis of their model and wrote a technical report on their project. Four groups of students 
chose to participate in the study, and this a case study from one of those groups. Analysis of the 
other groups can be found elsewhere (Castillo-Garsow, 2021, 2022). 

The group of students in this study was formed of five undergraduate students who chose to 
construct a model for controlling a disease that can be treated but not cured. The students 
working on this project eventually developed their work into a published journal article, the 
citation for which is omitted for privacy. The students made six presentations over six days to a 
panel of faculty and graduate mentors who provided feedback to the students. Each proposal 
presentation was video and audio recorded, and the audio recordings were transcribed. 
Transcripts were open coded (Corbin & Strauss, 2014), and from that coding, themes emerged 
that identified and explained the primary areas of conflict between mentors and students. The 
results here are a case study of those transcripts, focusing on creating a narrative of those 
conflicts (Flyvbjerg, 2006). The purpose of this case study is to identify challenges than mentors 
and students may encounter while collaborating on a student-led applied mathematics project, 
both to inform mentors and to inspire future research. 

Results 
The groups’ research question was focusing on the cost effectiveness of treating individuals 

with mild symptoms of a disease, compared to the current practice of only treating patients in the 
severe symptom stage. These mild symptoms occurred in many different diseases, meaning that 
treating individuals with mild symptoms would result in treating many individuals who did not 
have the disease of interest with medication for the wrong disease. The students proposed 
studying this question with a system of ordinary differential equations (ODE model). 

Student Challenge: Quantity vs. Category 
In the students’ first attempt at constructing a disease model (Figure 1), the students 

classified individuals only by their symptoms.  The category I1 therefore contained both 
individuals who had the disease of study, and individuals who had the same symptoms of a 
difference disease. Students imagined that individuals who did not have the disease of study 
would return to S, while individuals who did have the disease of study would progress to I2 or L. 
Describing this model, a student said: “After presenting mild symptoms, those mild symptoms 
go away, then they go back to the susceptible class. Only those who have [the disease] proceed 
to a progression to the severe symptoms, which are only for [the disease]." 
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Figure 1: A simplified flow diagram of the disease group’s first model. Box S represents susceptibles, I1 represents 
individuals with mild disease symptoms from several diseases.. I2 represents individuals with severe symptoms 

unique to the disease of study. L represents asymptomatic individuals. 

However, in an ODE model, these variables only track a number of individuals. I1 would 
necessarily be a numerical quantity of a number of individuals with mild symptoms, meaning 
that information about who does or does not really have the disease of study could not be stored 
in this information structure. Students may have made this mistake because they were imagining 
tracking individuals moving through the categories S, I1, I2, and L; rather than imagining S, I1, I2, 
and L as simple numbers of people. In other words, the students were not conceiving of S, I1, I2, 
and L as the values of quantities that could be measured (Thompson, 2011). 

 

Figure 2. Students’ second model, showing an F compartment for individuals falsely diagnosed with the disease of 
study. The students’ fourth and fifth models also had a similar compartment forming a closed loop with S.  

Mentors provided feedback on this model informing them that they needed a separate 
compartment for individuals who did not have the disease “I think you're going to need a 
separate class for those people” (day 3) and “There's no way to do this without a separate 
compartment” (day 3). But at this time, mentors did not explain that tracking individuals was not 
possible in an ODE, or that S, I1, I2, and L were numbers. Students responded by creating a 
compartment F for individuals falsely diagnosed with the disease of study (Figure 2), but this 
was changed again in the third version (Figure 3). 

In the students’ third version of the model (Figure 3), they repeated their categorization 
mistake with a new compartment. Here students imagined that all individuals exhibiting 
symptoms would receive the same treatment, so all treated individuals were placed in a single 
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compartment. Again, the students imagined that from this compartment, individuals who did not 
have the disease of study would return to S, and individuals who did have the disease would 
advance to L, and that the model would somehow keep track of which individuals were which. 
This resulted in a model with a path from susceptible to asymptomatically infected passing only 
through treatment – implying that it was possible for treatment itself to cause infection. This 
time, mentors addressed problems with tracking individuals. As one mentor put it: 

 
You can't do that because if a person who doesn't have the illness and a person who does 
have the illness, and they go to the same thing. What you're doing after that is you're 
saying, both people who don't have it and do have it can now become [asymptomatic].  
(Mentor, day 5) 

 

Figure 3. A simplified flow diagram of the disease group’s third model, with an added T compartment for treated 
individuals. Dashed lines represent individuals moving into treatment. Dotted lines represent individuals moving out 

of treatment. 

 
Another perspective here is that students may have been adopting the point of view of a 

physician-observer, rather than the point of view of the disease itself. Students wanted to lump 
all the mild symptoms into a single category because all mild symptoms look alike. Similarly, 
they wanted to lump all treated individuals together because they all were receiving the same 
treatment. However, from the point of view of the disease, individuals in these categories had 
very different diseases, and therefore needed to be tracked separately. In either case, I1 and T did 
not represent numerical quantities. 

Mentoring Challenge: Dynamics over the research question.  
Because students were tracking the cost-effectiveness of treatments that had a risk of being 

wasted on individuals with another disease, the students needed a way to track the number of 
falsely diagnosed individuals. These falsely diagnosed individuals would add to the cost without 
controlling the disease. The students included a compartment, F, for this in their second, fourth, 
and fifth models (Figure 2).  
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This F compartment was isolated from the rest of the model in that the variable F did not 
appear in equations for I1, I2, or L. Because this compartment did not affect disease dynamics, 
mentors objected to its inclusion as unnecessary, and frequently forgot that the compartment was 
needed to answer the research question of cost. Examples include: “If you only consider 
dynamics, F compartment does nothing” (day 3) and “You asked the question how to treat early 
treatment for [the disease]. That part [F] has nothing to do with [the disease]. Why do you have 
to include this here?” (day 6). 

Mentoring Challenge: Testing vs. diagnosis 
 In the disease model, a key component of the cost was the risk of treating other diseases. 

This risk was increased because no available test that could distinguish mild symptoms of this 
disease from mild symptoms of other diseases. The tests that did exist could only be used during 
severe symptoms, when testing was unnecessary because the symptoms were characteristic. The 
students frequently stated that there was no test, or that testing was only possible in the I2 severe 
stage. However, mentors frequently assumed that there was testing or screening occurring in I1. 
See the following excerpt from day 3: 

 
Student: The current test that we have now, there is no way to test if you have [the] disease. 

There's absolutely no way. The only way you test it if you go here [I2] and you have a 
lesion here to take samples 

Mentor: The cost of this testing, and the patient, the I1. The same test? 
Student: There's no testing for I1 in that. 
 
Confusion about testing continued through day 5, where mentors continued to ask questions 

and suggest changes to the model that involved “testing” or “screening” individuals in I1. For 
example, on day 5, suggesting changes to the third model (Figure 3) by incorporating screening: 
“So then you screen that [S] and once you screen that you put it here [I1], [you] do not go here 
[T].” At least some of the confusion arose from students frequently referring to falsely diagnosed 
individuals as a “false positive,” suggesting the presence of a test. 

Discussion 
Previous research from the project showed that mentoring had the most impact on students’ 

decisions when the mentors focused on asking questions about the biological background, and 
making suggestions about the mathematics (Castillo-Garsow, 2021). That result is consistent 
with perspectives found in literature on these student-led projects, which describe students as 
having topic context expertise, while mentors have mathematical expertise (Camacho et al, 2013; 
Castillo-Garsow & Castillo-Chavez, 2015). Effective mentoring of a student-led project involves 
respecting the respective expertise of both students and mentors. This project shows an alternate 
perspective on the same phenomenon. Here, the challenges in model development arose from 
students struggling to adopt a mathematical perspective on the problem, while mentors struggled 
to understand the biological context.  

The students in this project had a strong understanding of the biology, but had difficulty 
communicating that understanding to the mentors. The mentors had difficulty with setting aside 
their preconceived ideas of what the biology of this disease would be and imagined that testing 
and treatment occurred in ways that they were more familiar with. Mentors also struggled to 
attend to contextual concerns – such as cost – over mathematical concerns, such as the dynamical 
behavior of the model itself. 
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The students also struggled with quantification. They imagined the modeling process as the 
story of individuals moving through categories, and/or the perspectives of observers of those 
individuals.  However, writing a mathematical model requires imagining not just individuals, but 
also numbers of individuals. The students’ repeated difficulties in making the transition from 
category to quantity resulted in errors in the base structure of the model and the corresponding 
mathematical equations. Mentors initially responded by only correcting the surface level 
mistake. It was only after the mistake was repeated in a new way that mentors addressed the 
foundations of ODE model construction with students, specifically the principle that individuals 
did not have histories that could be tracked through compartments. Here the necessary mentoring 
expertise was in mathematics in understanding the assumptions and limitations of an ODE 
model, but also in pedagogical content knowledge by forming a model of the students’ 
interpretation of the model and addressing individual tracking.   

Conclusion 
The results here add to the literature on student-led projects in mathematical biology 

modeling. The results of this paper suggest that the reversal of roles described in previous 
literature (Camacho et al. 2013; Castillo-Garsow & Castillo-Chavez, 2015) is not only sufficient 
for a successful project (Castillo-Garsow, 2021), but also necessary. In this example, difficulties 
in model construction came from participants operating outside of their areas of expertise. 
Students struggled with mathematical concepts, and mentors struggled with biological concepts. 
However, this struggle outside of ones area of expertise should not be avoided. Rather it was 
mutual teaching between students and mentors that enabled the participants to collaborate and 
develop a successful model that was eventually published. 

The results of this research also suggest that more research is needed in the ways that 
mathematicians come to understand or struggle to understand scientific concepts as part of 
mathematical quantification. Quantification research cannot only address the mathematization of 
well understood scientific contexts, but must also explore how a developing understanding of the 
context influences the conceptualization of quantities and the development of quantitative 
relationships. In particular, further study of mathematics experts developing models of 
unfamiliar scientific problems would greatly add to our understanding of quantification. 
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Challenges in Mentoring Mathematical Biology Model Construction: Mechanisms and Listening 
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The researcher observed the project proposal week of an undergraduate research program in 
applied mathematics, where students took the lead in choosing a topic and developing their own 
research question. Results from the stories of two of the groups suggest that students struggled 
with identifying mechanisms that would inform the development of their research question and 
model, while mentors struggled with allowing students to direct the project and presentations. 

Keywords: Mathematical biology, mathematical modeling, mechanism, research question, 
student-led project 

Mathematics as it is taught in secondary and post-secondary classes differs greatly from 
mathematics as it is practiced by professionals (Lewis & Powell, 2017). Mathematics as it is 
taught in undergraduate classes is also divorced from the immediate needs of partner disciplines 
in the sciences, humanities, and social sciences (Ganter & Barker, 2004; Ganter & Haver, 2011). 
Reports from industry and professional societies repeatedly emphasize the importance of 
professional skills in communication, collaboration, problem solving, mathematical modeling, 
and creativity on top of a solid foundation of procedural skills and coherent mathematical 
understandings (Bliss et. al., 2016; Casner-Lotto & Barrington, 2006; Ganter & Barker, 2004; 
Ganter & Haver, 2011). 

The skill of interest to this report is a skill for STEM and non-STEM described 
undergraduate mathematics classes described by Bliss et. al. (2016) as "Distilling a large ill-
defined problem into a tractable question," which I will simply call "developing a research 
question." Smith, Haarer, and Confrey (1997) found that graduate students in applied 
mathematics struggle with developing research questions and mathematical models that are too 
applied and mathematically intractable, or are too mathematical with little application.  

Camacho, Kribs-Zaleta, and Wirkus (2003) found that choosing one's own project and 
research question creates situations in which students' take the lead in researching topics far 
outside a mentors' area of expertise, essentially reducing the mentor to a role of consultant rather 
than leader. And these unique situations create opportunities to identify key components of soft-
skills such as developing a research question. Encouraging students to follow their interests and 
positioning students as experts is also an equity directed practice that engages students with high 
level questions where students can participate and succeed in more ways than just performance, 
and students are engaged in contexts that connect with and respect their own experiences 
(Aguirre, 2013; Castillo-Garsow & Castillo-Chavez 2020; Goffney et al, 2018; Rubel, 2017).  

This study follows two groups of undergraduate students who developed a topic of their own 
interest into a research question and accompanying mathematical model. Because the students in 
this project work in close collaboration with both graduate and undergraduate mentors, we have 
an opportunity to see how mathematicians at different stages of their career view the task of 
developing a research question and accompanying model. The purpose of this paper is to identify 
challenges than mentors and students may encounter while collaborating on a student led applied 
mathematics project, both to inform mentors and to inspire future research. 

These two groups were selected for discussion due to a common theme in the results. A 
recurring idea that students encountered in constructing their projects was mechanisms. Although 
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the meaning of “mechanism” remains debated in the scientific community (Craver & Taber, 
2015; Hunt et al., 2018), the term mechanism comes from the idea of describing the function of a 
machine that would replicate a hypothesized scientific process (Craver & Taber, 2015). For our 
purposes, a mechanism is an interaction between biological parts that could explain an observed 
behavior, and is precise enough to suggest a mathematical relationship. 

Methods 
This study occurred in the fifth week of an eight-week summer research experience for 

undergraduates (REU) in mathematical biology. Prior to this study, the students had taken a 
three-and-a-half-week course consisting of lecture, computer lab work, and textbook exercises in 
dynamical systems. Following this course work, students self-recruited into groups of three to 
five, and chose a topic of interest. During the fifth week, students made daily presentations on 
their topic to a panel of faculty and graduate mentors who provided feedback. In the final three 
weeks of the program, students completed the analysis of their model and wrote a technical 
report on their project. Four groups of students chose to participate in the study, and this a case 
study from two of those groups. Analysis of the other groups can be found elsewhere (Castillo-
Garsow, 2021, 2022). 

The two groups in this study were formed of four undergraduate students each. One group 
wanted to study the relationship between eating disorders and the menstrual cycle (menstrual 
group). The other group was interested in developing a spatial simulation of tumor growth 
(tumor group). Both groups completed a technical report that was reviewed by the mentors. 
Neither group has published their research in a peer-reviewed journal by the time this paper was 
written. Both groups presented over six days to a panel of faculty and graduate mentors who 
provided feedback to the students. The menstrual group presented once per day. The tumor group 
gave seven presentations over the six days, with two presentations on day five.  Each 
presentation was video and audio recorded, and the recordings were transcribed. Transcripts 
were open coded (Corbin & Strauss, 2014), and themes emerged that identified and explained the 
primary areas of conflict in goals between mentors and students. The results here are a case study 
of those transcripts, focusing on creating a narrative of those conflicts (Flyvbjerg, 2006).  

Results 

Menstrual Cycle Model 
The menstrual group was interested in studying the interactions between eating disorders and 

disruptions to the menstrual cycle. They identified a mediating hormone: leptin, that affected 
both appetite and the secretion of hormones related to the menstrual cycle (Figure 1). However, 
the group’s final model did not include any leptin or eating disorders, focusing only on modeling 
the menstrual cycle.  

Mentoring Challenge: Following the students’ lead. Students in this group were extremely 
consistent about their interests and research question. Their research question changed very little 
over the six day period, from “Tracking eating disorders through hormonal irregularities in the 
menstrual cycle” (day 1) to “what is leptin's effect on the induction of the menstrual cycle?” (day 
6). However, mentors expressed concern that this research question would lead to a model 
complex enough to have interesting dynamics: “You cut from [leptin] because that only can 
impact to the forward. You do not have anything feedback.” (day 2). Eventually, mentors simply 
forbade students to work on leptin and appetite. “This is your model, only focus on this one, no 
leptin yet… then, if there is time, you go adding the leptin.” (day 6).  
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Figure 1. Leptin influences both eating habits and the release of hormones involved in the menstrual cycle.  

This problem occurred because the students struggled to explain the mechanisms and 
relationships that they were interested in when describing their research question. Fundamentally 
their biological context had two feedback cycles: a cycle in which eating habits and leptin 
influence each other, and the cycle of hormones that regulate menstruation (Figure 1). What 
students were interested in studying was really the dynamics of eating disorders (Figure 2). 

 

Figure 2. Representations of the part of the problem that held the students’ interest. 

The mentors had three objections. First was that there were other regulatory processes that 
influenced the hormones FSH and LH (Figure 1), and that made isolating these hormones from 
the entire menstrual cycle difficult. Second is that students focused early on leptin early on, and 
simplified their message to “We're studying the effect of leptin on the induction of the menstrual 
cycle.” This created in the mentors an understanding that students were interested in studying a 
problem more like Figure 3. This led to the last objection: In both Figures 1 and 3, the effect of 
Leptin is only feed-forward. There was no obvious impact of the menstrual cycle on leptin 
production, meaning that leptin could be reduced to a simple input function in a menstrual cycle 
model, and didn’t need to be studied dynamically.  
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Additionally, with the students found and presented prior modeling research on the menstrual 
cycle, and mentors, encouraged the students to dive deeper into these models, giving the project 
a greater and greater appearance of being about the menstrual cycle over time. The mentors did 
also make recommendations for prior modeling research on leptin, but as the mentors focused 
more and more on menstruation, opportunities to present leptin research didn’t occur. 

The students could likely have completed a successful project studying only the leptin cycle 
that would have been more in line with their interests. However, due to the problems in 
communication, the mentors steered the group towards a successful project studying only the 
menstrual cycle. 

 

Figure 3. A depiction of a mentor’s understanding of the menstrual cycle group’s problem.  

Student Challenge: Behavior vs. Mechanism. The menstrual group’s communication 
difficulties were exacerbated by their confusion over biological behavior and mechanism. 
Students would answer questions about mechanisms with answers about biological behaviors. 
See this excerpt from day 2: 

 
Mentor The levels of FHS and LH, how do they change? 
Student: Here's a phase here called the follicular phase and that's where there's follicles that 

the FSH-- when the secretion of FSH happens, they create follicles that create granules 
that create the LH. Once the LH is there, these two hormones are able to mature the 
whole egg for release into the fallopian tube. 

 
In this excerpt, the mentor is asking about mechanisms: asking the students to explain 

interactions that cause concentrations of FSH and LH to go up and down, or impact the rates at 
which these concentrations go up and down.  The student responds not with an explanation of 
how FSH and LH change (a mechanism), but instead with an explanation of what FSH and LH 
do, how they impact the body (a behavior). 

The idea of a mechanisms as a biological interaction that defines mathematical expressions is 
a relatively nuanced idea, and at least one mentor found it unsurprising that students struggled 
with this idea: 
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Student: Can I ask a question? You're saying we're not understanding what is the mechanism. 
Honestly, I don't know what exactly that means in terms of mathematics I'm not sure 
what that means. Can you explain that to me? 

Mentor: This is a very beautiful question that you're asking actually many of us are 
understanding in a different way also. That's why it will help you when you will draw 
that flowchart. We will precisely say, "Oh this is what we mean by saying mechanics." 
[The mentors] are using words like feedback which is almost the same thing as 
mechanism. Some people use different words for the same concept.  

 
With feedback, students improved at describing mechanisms, “Estrogen at low 

concentrations has a decreasing effect on LH. The higher concentrations of estrogen, LH seems 
to have this peak at higher concentrations of estrogen” (day 3); however, they continued to 
struggle with this distinction and described biological behaviors when mechanisms were asked 
for: “FSH is entered through the ovaries through the capillaries.” (day 3). 

The Tumor Model 
Student Challenge: Finding a research question. The tumor group was interested in 

simulating the growth of a tumor in the lungs using a spatial model. However, with this focus on 
methodology, the students in the group struggled to find a research question. Over seven 
presentations and five days, the group proposed several different research questions, including 
studying the effect of a treatment strategy, studying attacks between cells, studying competition 
between cells for nutrients or space, or studying the internal processes of a cancerous cell in the 
lung. Finally with the encouragement of mentors who provide prior modeling research, the 
students settled on studying a tumor’s chemical defense against the immune system. What 
remained largely consistent for the group was the choice of topic: tumor growth in the lungs, and 
the choice of methodology: a two dimensional spatial simulation. The students were a group with 
a chosen topic and methodology in search of a problem. 

Student Challenge: Mechanism vs. model. Part of the reason for the students’ difficulty in 
identifying a research question was that they struggled to understand the biology in terms of 
mechanisms of interaction. In contrast with the menstrual cycle group, which described 
biological behaviors instead of mechanisms, the tumor model frequently described abstract 
modeling concepts instead of mechanisms. 

The core of the tumor model’s struggle was defining the concept of “fitness” in terms of 
mechanisms. The group wanted to explore a hypothesis that cells could sense the fitness of 
neighboring cells and induce apoptosis in neighboring cells that were less fit. However, the 
group struggled with explaining mechanisms that would determine which cells would win in an 
interaction cells. The could not identify what process a cell was sensing in a neighboring cell, 
how that process was being sensed, or what determined whether an attempt to induce apoptosis 
would be successful.  

Definitions of fitness given by the students included “an ability of the cell to thrive in a given 
environment” (day 1),  the growth rate of a cell (day 2), a change in the equilibrium of the tissue 
(day 2), “how normal the cell is” (day 2), “the length of a cell’s cycle” (day 2), “the rate of 
protein synthesis” (day 2), and the number of cells that a cell divided into (day 2). Several of 
these ideas, such as “ability of a cell to thrive” or “how normal a cell” is were based on abstract 
concepts that a modeler might define a measure for, but that a cell would not be able to sense. 
Others, such as the number of cells a cell divided into, required access to information that the 
cell could not react to for the fitness sensing hypothesis, because the replication would have 

24th Annual Conference on Research in Undergraduate Mathematics Education 119



already completed. Some of these ideas, such as the rate of protein synthesis, provided potential 
explanations for what a neighboring cell might be sensing, but students did not follow up on 
these ideas. Students also answered questions about this fitness sensing process with modeling 
rules and assumptions, such as: “We wanted to do a spatial model using a grid… If the neighbor 
cells will have more fitness, it would be able to occupy their space.” (day 2).  

One complete mechanistic explanation that the students provided was that a cell would sense 
a nearby cell’s preparation to divide and release a toxin, and that tumor cells were more fit 
because they were resistant to the toxin. However, this explanation was not consistent with the 
hypothesis that neighboring cells sensed “fitness,” as the fitness mechanism occurred after the 
cell released its toxin, instead of the toxin being released in response to what the cell sensed. 

Ultimately students abandoned the fitness sensing hypothesis, and instead built their research 
question on a previously published model for the interaction between the immune system an 
tumor growth, focusing on the ability of tumor cells to inhibit the maturation of immune cells by 
releasing a chemical. The students retained the interest in spatial models and cancer modeling by 
focusing on the local effects of the chemical release on interactions between tumor cell and 
immune cell pairs. 

Mentor Challenge: Letting students explain at their own pace. Once the students settled 
on a research question, they developed a spatial continuous time Markov-chain model to 
simulate the tumor growth. However, the students were not familiar with this terminology, and 
instead explained the model as a cellular automaton.  “We're going to model this with a 
stochastic cellular automata where our events are going to be discreet and the time of the 
transmission between the pair of events is going to be continuous.” (day 5 presentation 1). The 
students had an outline in mind, where they would introduce the idea of a stochastic cellular 
automata, then random time between events, the list of possible events, examples of these events, 
and then finally introduce equations for how the probabilities of events were calculated. 
However, the students were quickly thrown off script. 

One mentor focused on the idea of cellular automaton and imagined a simulation driven by 
simple rules, similar to Conway’s Game of Life. This mentor expected a slide of rules that would 
be explained all at once. The students felt their simulation was much more complex, and wanted 
to explain rules and interactions one at a time. This created in mentors the impression that 
students did not understand the rules that governed their simulation: “Please go learn about 
Conway's Game of Life and then this will make it much clearer” (day 5 presentation 1), “If T 
encounters this condition it does this. If T encounters this condition, you do this. You have to 
work all this out otherwise you're not going to be able to do it.” (day 5 presentation 1). The 
students were called back for a second presentation on the same day. 

In the second presentation, the students maintained a similar structure. Introducing the 
random time between events before moving to a list of events. “We consider continuous-time 
Poisson process, the events on the wheel and the waiting time between events are continuous, 
distributed as exponential” (day 5, presentation 2). The main difference in the presentation was 
that as one student discussed each event on their slides, another student wrote the equation for 
the probability of the event on the whiteboard. Mentors were much more receptive in this second 
presentation, offering direct feedback on the equations and identifying the methodology as a 
“standard continuous time Markov chain” (day 5, presentation 2). In total, the first presentation 
lasted almost 42 minutes, while the second presentation was completed in under 10 minutes. 

One factor that may have contributed to the mentors’ responses to the first presentation is 
concern about time. Mentors had previously expressed concern about the short time frame left to 
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complete the project “Remember you have three weeks” (day 4), and this presentation on day 5 
was supposed to be the second to last presentation, meaning the mentors had only one more 
opportunity to review the students’ model as a whole group. The time pressure may have 
contributed to the mentors’ anxiety about students not having a model or not presenting the 
model efficiently, leading mentors to take more control of the presentation than was helpful. 

Discussion 
Both groups of students struggled to understand the modeling concept of a mechanism. The 

menstrual cycle group identified biological behaviors – such as the maturation of a follicle, or the 
release of a hormone – rather than identifying causes of those behaviors. They also struggled 
with identifying mathematical quantities such as the concentration of a hormone, describing 
instead qualitative behaviors.  The tumor group also struggled with identifying mechanisms, 
although rather than focus on biological behaviors, the tumor group identified abstract constructs 
such as fitness, and struggled with connecting those modeling concepts to biological behaviors 
such as sensing the concentration of a particular protein. 

While the students struggled with identifying mechanisms, the mentors struggled with letting 
students take charge. In the case of the menstrual group, concerns about the potential for the 
project to generate interesting dynamics caused mentors to encourage students to move away 
from their interest in eating disorders to focus more on the menstrual cycle. In the case of the 
tumor group, taking charge of the research question was necessary. The students’ focus was 
primarily on methodology (a spatial simulation of cancer), and they struggled with identifying a 
problem that would match that methodology while providing innovative insights. Where mentors 
struggled with the tumor group was letting students take control of the presentation and present 
the tumor model in a way that made sense to the students. This may have been due to anxiety 
about the remaining time, or difficulty trusting in the students’ ability to construct a model.  

These anxieties are not unique to faculty. For example, Smith et. al. (2021) found that pre-
service teachers of mathematics also struggled with anxiety related to trusting students with open 
ended projects: concerns that students would be capable of completing the project, and anxiety 
about letting go of control of the classroom. Similarly, the mentors felt anxiety about the tumor 
group’s ability to construct a model in the one day remaining and took control of the presentation 
on day 5. In the menstrual group, anxiety about student’s ability to construct an interesting model 
also led mentors to take some control away from the group, but in a more subtle way. 

Although neither group completed the project that the students initially envisioned, both 
groups successfully completed a project related to their initial idea. And the students in both 
groups expressed satisfaction and pride in their projects when they were complete. 

Conclusion 
The students in this study had stated interests in topics, and the mentors were concerned with 

ensuring that students could complete a scientifically significant project within the time limit. In 
both cases, students struggled to explain the mechanisms of their projects to mentors, and this led 
mentors to take more control over the direction of the projects. Understanding and identifying 
mechanisms is a key challenge in mathematical biology (Reed, 2004), and scientists continue to 
debate the precise meaning of the term (Craver & Taber, 2015; Hunt et al., 2018). More research 
is needed in the area of how scientists, mathematicians, engineers, and students understand 
mechanisms differently.  
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The topic of inverse is one of the most ubiquitous and important in the K-16 mathematics 
curriculum. We observe that the literature base on inverses is substantial yet context-specific and 
therefore compartmentalized. In other words, though much research examines students’ 
reasoning with inverses within algebraic contexts, it is currently unclear what might be involved 
in productively reasoning with inverses across algebraic contexts. To address this issue, we 
employed a theory-building methodology for systematic, standalone literature reviews to develop 
a conceptual analysis for inverses across contexts. Our findings include the explicit description 
and illustration of three cross-context ways of thinking about inverse: inverse as an undoing, 
inverse as a manipulation of the original element, and inverse as a coordination of the binary 
operation, identity, and set.  
 
Keywords: inverses, ways of thinking, conceptual analysis, standalone literature review 
 

Introduction 
 Few topics are as ubiquitous throughout the K-16 mathematics curriculum – and, indeed, in 
mathematics itself – as inverses. Inverses are initially treated at the elementary level in the 
context of basic arithmetic operations (in the form of subtraction/additive inverses and 
division/multiplicative inverses) and eventually manifest in a variety of forms at the secondary 
level as students engage with the real numbers, functions, and matrices. Undergraduate 
mathematics majors encounter inverse across a broad spectrum of additional contexts, such as 
modular arithmetic and symmetries of planar polygons. Students’ activity with inverses has 
generally been well-documented, yet much of what is known concerns only to how students 
reason within specific contexts and thus in its current form provides limited insight into how 
students might reason with inverses across algebraic contexts. Thus, in this study we seek 
answers to the following research question: what ways of thinking are necessary for reasoning 
productively with inverses across contexts?  To answer this question, in this study we bring 
coherence to the extensive (yet largely context-specific and, hence, disconnected) literature base 
on inverses by employing a theory-building methodology for systematic, standalone literature 
reviews (Wolfswinkel et al., 2011). The theory we develop takes the form of a conceptual 
analysis (Thompson, 2008) in which we explicitly describe and illustrate three cross-context 
ways of thinking about inverse: inverse as an undoing, inverse as a manipulation of the original 
element, and inverse as a coordination of the binary operation, identity, and set.  
 

Background 
 Fink (2014) characterized a standalone literature review as a “systematic, explicit, and 
reproducible method for identifying, evaluating, and synthesizing the existing body of completed 
and recorded work produced by researchers, scholars, and practitioners” (p. 3). The word 
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standalone is used to distinguish such reviews from those found in typical research articles, 
which usually do not explicate their inclusion criteria or offer a substantial enough contribution 
without being paired with the study for which they provide context. Standalone literature 
reviews, on the other hand, provide explicit search parameters and inclusion criteria, clear 
descriptions of the analytical techniques, and produce a substantial contribution to the field 
without collecting any new primary data. The nature of these contributions can vary: while such 
reviews are often conducted to establish a certain threshold of evidence in favor of a particular 
policy, strategy, or intervention, they can also serve as a means by which to build theory – that is, 
to develop “a framework for positioning [future] research endeavors” (Okoli, 2015, p. 3). 
Wolfswinkel and colleagues (2011) argued that such an approach can help researchers to “extract 
the full theoretical value out of a well-chosen set of published articles” (p. 2).  
 Before proceeding, we note that the kinds of research questions we are asking are often 
associated with methodologies that involve direct interactions with students, such as task-based 
clinical interviews (e.g. Goldin, 2000) and teaching experiments (e.g. Steffe & Thompson, 
2000). This raises a natural question: why answer these questions by conducting a systematic, 
standalone literature review instead of these more conventional methodologies?  First, we 
propose that the full theoretical value of the inverses literature is currently not being realized: 
inverses are ubiquitous in the literature, yet nearly all of this literature focuses on students’ 
reasoning within particular algebraic contexts and thus there is no coherent, overarching 
theoretical perspective for analyzing students’ reasoning with inverses across algebraic contexts. 
Conducting a standalone literature review therefore offers a rich opportunity to “extract the full 
theoretical value” from the context-specific inverses literature to develop a coherent cross-
context theory. Second, the kind of theory we aim to develop in this study (e.g. a cross-context 
conceptual analysis of inverse) is an essential tool that informs the conduct of teaching 
experiments and task-based interviews, yet, as we have noted, no such theory currently exists. 
Thus, we see the development of a conceptual analysis using a standalone literature review 
methodology as a precursor to – and not a replacement of – more conventional methodologies 
involving direct interactions with students. 
  

Theoretical Perspective 
Conceptual Analysis 
 The theory that we develop will take the form of a conceptual analysis. A conceptual 
analysis is an explicit description of “what students might understand when they know a 
particular idea in various ways” (Thompson, 2008, p. 57). The conceptual analysis we develop in 
this paper explicitly describes ways of thinking “that might be propitious for students’ 
mathematical learning” (Thompson, 2008, p. 60). Specifically, we are interested in identifying 
and explicating ways of thinking about inverse that can support productive reasoning with 
inverse across algebraic contexts. A conceptual analysis can also serve as an integral component 
of what diSessa and Cobb (2004) call a domain-specific instructional theory, informing the 
selection of productive ways of thinking targeted in learning trajectories and also providing a 
mechanism with which to analyze and build upon students’ thinking along that trajectory (e.g. 
Simon & Tzur, 2004).  
 
Ways of Understanding and Ways of Thinking 
 We view students’ reasoning in terms of Harel’s (2008) ways of understanding and ways of 
thinking. These constructs afford a way to distinguish between and characterize students’ 
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mathematical thinking at various levels. Ways of understanding are the cognitive products of a 
mental act – that is, the explanations, descriptions, and procedures that one utilizes in response to 
a specific scenario. Ways of thinking, on the other hand, are broader perspectives and habits of 
mind that can be utilized to reason about a variety of scenarios and tasks. These can be inferred 
by identifying “common cognitive characteristics among [a] multitude of products of each act” 
(Harel, 2008, p. 497). That is, researchers infer ways of thinking by examining the common 
characteristics that manifest amongst students’ ways of understanding. Though Harel did not set 
a specific number of times in which one must observe such common characteristics, we infer 
from his use of ‘multitude of products’ that such characteristics should be observed across at 
least two ways of understanding in at least two different contexts.   
 These constructs provide a clear, tractable way to characterize and illuminate key elements of 
students’ reasoning about inverses. As ways of understanding are the explanations, descriptions, 
and procedures that one uses in specific scenarios, we therefore consider the explanations, 
descriptions, and procedures that a person associates with inverse within a specific algebraic 
context to comprise that person’s ways of understanding inverse. A way of thinking about 
inverse is therefore inherently more general (and not specific to a single context) because it 
involves common elements observed in students’ ways of understanding in a multitude of 
algebraic contexts. In this way, ways of understanding characterize elements of students’ 
reasoning about inverses within an algebraic contexts while ways of thinking provide the desired 
insight into what is involved in reasoning productively with inverses across algebraic contexts.  
 The current study involves analyzing the descriptions, explanations, and procedures related 
to inverse exhibited in published research articles across the K-16 mathematics curriculum. 
Typically, ways of thinking and ways of understanding are constructs used to explain the 
mathematical activity of an individual – a way of thinking is characterized by patterns in that 
individual’s reasoning. The current study, however, involves identifying commonalities 
exhibited across the ways of understanding of multiple (perhaps many) individuals. To resolve 
this issue, we employ Thompson’s (2002) notion of an epistemic student, which is a mental 
depiction of a hypothetical student that a researcher develops in order to explain her 
mathematical activity. Thompson (2002) notes that “images of this type allow us to propose 
ways of thinking that are not specific to any one person” (p. 195). Thus, in order to thematically 
organize and identify common characteristics amongst the ways of understanding inverse that 
appear in the literature, we do so by imagining that these ways of understanding were exhibited 
by a particular epistemic student.   
 

Methods 
 We follow Wolfswinkel and colleagues’ (2011) 5-stage process for conducting standalone, 
theory-building literature reviews. Our procedures are summarized in Table 1.  
 
Table 1. Summary of data collection and analysis procedures and results 

Stage General descriptions outlined by 
Wolfswinkel and colleagues (2011) Summary of procedures 

D
at

a 
 

co
lle

ct
io

n 1 Define the search parameters and 
outlets 

Google scholar search for “inverse” in 7 
high-quality mathematics education journals 

2 Search for relevant articles using the 
procedures outlined in Stage 1 

Executing the search parameters yielded 895 
potentially relevant articles 
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3 Select relevant papers that resulted 
from the search in Stage 2 

We included articles in which “inverse” was 
mentioned (a) on at least 30% of the pages in 
the article, and (b) at least 10 times total. We 
excluded articles in which “inverse” was 
used primarily in the context of logic, 
functional variation, and probability. This 
resulted in 53 relevant articles. 

D
at

a 
 a

na
ly

si
s  4 

Analyze the papers that are selected 
in Stage 3 in order to develop a 
theory 

Conducted a thematic analysis (Braun & 
Clarke, 2006) of all 53 papers in the sample 
to identify, describe, and illustrate ways of 
thinking about inverse 

5 Present the categories of the theory 
that emerged in Stage 4 

Related the cross-context ways of thinking 
and associated themes to research questions 
and selected vivid excerpts to illustrate these 
ideas in the paper 

 
 In Stage 1 (Define), we used Google Scholar’s “advanced search” feature to search for the 
word “inverse” in each of the 7 journals that were consistently rated as being of “high” or “very 
high” quality by both of the most recent assessments of journal quality (Toerner & Arzarello, 
2012; Williams & Leatham, 2017): Journal for Research in Mathematics Education, 
Educational Studies in Mathematics, ZDM, Journal of Mathematical Behavior, Journal of 
Mathematics Teacher Education, For the Learning of Mathematics, and Mathematical Thinking 
and Learning. Stage 2 (Search) produced a list of 895 potentially relevant articles. In Stage 3 
(select), we selected papers in which (a) the percentage of pages in the article containing the 
word “inverse” is at least 30%, and (b) the word “inverse” is mentioned at least 10 times. These 
criteria narrowed the list to 61 articles. We then recorded the algebraic context(s) in which 
inverses were discussed for each, removing in the process 8 articles invoking a meaning of 
inverse that we deemed irrelevant for our purposes (e.g. the inverse of a conditional statement in 
logic, inverse variation of quantities, and inverse probabilities). Our final sample of 53 articles is 
listed in a special section (‘Bibliography of the 53 Articles in Our Sample’) after the references.  
 For Stage 4 (Analyze) and Stage 5 (Present), we used thematic analysis (Braun & Clarke, 
2006) to analyze of all 53 papers in the sample. Thematic analysis aims to develop theory by 
“systematically identifying, organizing, and offering insight into patterns of meaning (themes) 
across a data set” (Braun & Clarke, 2006, p. 57). This aligned with the overarching goal of our 
literature review: to develop a coherent, unifying theory that shines light on themes related to 
students’ reasoning with inverses that are present but perhaps obscured due to the context-
specific and fragmented nature of the inverses literature. It also aligned with our theoretical 
perspective: common themes observed across ways of understanding within particular contexts 
would emerge as the definitive characteristics of the desired cross-context ways of thinking 
about inverse.  

Results 
Inverse as an Undoing 
 Inverse as an undoing is a way of thinking about inverses in which “inverse is associated 
with an operation that cancels the previous operation and ‘returns to the starting point’” (Zazkis 
& Kontorovich, 2016, p. 107). We highlight two definitive characteristics: 
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§ Characteristic U1: inverse is viewed as an operation (or a sequence of operations)  
§ Characteristic U2: the operation (or sequence of operations) is applied to undo or cancel 

the effects of the original operation 
 
The following excerpts illustrate various ways of understanding exhibited by students that we 
associate with inverse as an undoing within particular contexts (specified via the set and relevant 
binary operation): 
 

§ Real numbers: “The unknown was multiplied by 4 and then 17 was added. I can undo it 
by first subtracting 17 and then dividing by 4, thus the unknown is 15” (Selter et al., 
2012, p. 403). 

§ Functions: “If I were to put 5 into 𝑓(𝑥) I would get 8, I would then show them that if I 
put 8 in 𝑓!"(𝑥) then I would get the number I started with originally” (Weber et al., 
2020, p. 14). 

§ Linear transformations: “You’re pretty much transforming [the vector] into something 
else, and the inverse really just transforming to, or transforming it back to what it 
originally was” (Bagley, Rasmussen, & Zandieh, 2015, p. 40). 

§ Symmetries of regular polygons: “Jessica: Because any time you go clockwise and then 
counterclockwise, you're just going back to your spot. The same spot that you started 
with. Sandra: That’s a good observation. … you’re going to end up with nothing. So 
they’re all just canceling, these four moves are just basically canceling each other out” 
(Larsen, 2009, p. 124).  
 

Inverse as an undoing is compatible with the notion of inversion, a construct from the K-8 
literature that involves “recognizing that adding and then subtracting the same number (or vice 
versa) leaves any initial number unchanged” (Baroody & Lai, 2007, p. 131). For example, “a 
child might induce that adding 1 to any (small) collection can be undone by taking 1 away” (p. 
132). Notice that this description focuses on the relationship between the operations of addition 
and subtraction (Characteristic U1) and, specifically, how addition “can be undone” by 
subtraction (Characteristic U2).  
 
Inverse as a Manipulation of the Original Element 
 Inverse as a manipulation of the original element is a way of thinking in which inverse is 
associated with a procedure by which a given element can be manipulated into its inverse 
element. This way of thinking is consistent with the observations of researchers that some 
students might understand inverse exclusively in terms of the application of inverse procedures 
(e.g. Paoletti et al., 2018; Wasserman, 2017). We identified two definitive characteristics: 
 

§ Characteristic M1: inverse is viewed as an element; 
§ Characteristic M2: inverse is associated with a procedure by which a given element is 

manipulated into its inverse element.   
 

Examples of ways of understanding that we associated with this way of thinking are included 
below; selected illustrations that we associated with this procedure are shown in Table 2. 
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§ Real numbers: Additive inverses can be found via “a unary function requiring a single 
input (the ‘opposite of x’ denoted by -x)” (McGowen & Tall, 2013, p. 529) – this 
function involves multiplying the original element by -1.  

§ Real numbers: “‘flipping’ the numerator and denominator of a fraction creates an inverse 
element to an original fraction” (Zazkis & Mamolo, 2011, p. 12). 

§ Functions: “We rewrite the […] relation which represents the inverse function of the 
given function, as 𝑦	 = 	 (𝑥 − 3)/2, by which we mean switching the variable x with the 
variable y in the equation which was found, after solving it in terms of y” (Pinto & 
Schubring, 2018, p. 901). 

 
Table 2: Illustrations of procedures associated with inverse as a manipulation 

Matrices (multiplication) Complex numbers 
(addition) 

Modular arithmetic (addition 
mod 99) 

 
(Kazunga & Bansilal, 2020, p. 

349) 
 

(McGowen & Tall, 
2013, p. 530) 

 

 
(Simpson & Stehlikova, 2006, 

p. 359) 

 
Inverse as a Coordination of the Binary Operation, Identity, and Set 
 Inverse as a coordination of the binary operation, identity, and set is a way of thinking in 
which inverse is viewed as a relationship between a pair of elements of the set in question, the 
relevant binary operation, and the relevant identity element – specifically, that the combination 
of an element and its inverse element via the relevant binary operation yields the relevant 
identity element. We define it via the following three characteristics: 
 

§ Characteristic C1 (binary operation): inverse is viewed in terms of as relationship 
between elements and their image with respect to the relevant binary operation 

§ Characteristic C2 (identity): involves an explicit awareness that the two elements that 
combine (with the relevant binary operation) to yield the identity element are inverses if 
and only if their combination yields the relevant identity element  

§ Characteristic C3 (set): attends to the fact that both an element and its inverse element 
are elements of the set in question 
 

The following excerpts are representative of ways of understanding exhibited by students that we 
associate with inverse as a coordination (see also Table 3, which includes images of students’ 
inscriptions that illustrate similar ways of understanding):  
 

§ Real numbers (addition): “So we need to actually add 8 in order to do that. […] when you 
have a number and its additive inverse. When you add those together we get the additive 
identity zero. So we actually created a zero pair here” (Clay, Silverman, Fisher, 2012, p. 
769). 

§ Functions (composition): “If you’re composing functions and you compose the function 
with its inverse, […] it produces the identity function. So you plug in ‘a’ to that 
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composition, then you get out ‘a’. So we know that functions are a group (pause) and the 
identity function serves as the identity for that group, composition being the binary 
operation” (Wasserman, 2017, p. 189). 

 
Table 3: Illustrations of student inscriptions associated with inverse as a coordination 

Matrices Symmetries of regular polygons Modular arithmetic 
(modulo 99) 

 
(Bagley et al., 2015, p. 42)  

(Larsen, 2009, p. 125) 

 
(Simpson & 

Stehlikova, 2006, p. 
359) 

 
Consider, for example, the excerpt above concerning the compositional inverse of a function. 
Characteristic C1 is readily observable, as the student explicitly mentions composition several 
times (e.g. “composing functions”, “composing the function with its inverse,” “composition 
being the binary operation”). The same is true for Characteristic C2, as the student explicitly 
identifies that a function composed with its inverse function “produces the identity function.” 
Characteristic C3 is observable but perhaps less explicit: the student refers to “composing 
functions,” suggesting that, when he refers to composing “the function with its inverse,” he is 
aware that the inverse is also a function (and therefore a member of the same set).  

 
Discussion 

 The primary contribution of this study is the conceptual analysis of inverse, which provides 
detailed descriptions of three ways of thinking about inverse: inverse as an undoing, inverse as a 
manipulation of the original element, and inverse as a coordination of the binary operation, 
identity, and set. The fact that it can be used to describe the nature of students’ reasoning about 
inverses across contexts makes it – to our knowledge – the only one of its kind in the literature. 
In addition to venturing ways of thinking that can support productive reasoning with inverses, we 
note that this framework takes a key step towards bringing coherence to the inverses literature. 
Though space constraints have prevented us from exploring these ways of thinking in greater 
detail, here we shall simply note our primary claim: all three of these ways of thinking play a key 
role in supporting productive reasoning with inverses across algebraic contexts. Though this 
claim (which, we acknowledge, is not directly addressed in this short report) is supported by the 
literature, the theoretical nature of its derivation leaves two possibilities for empirical refinement 
and extension. The first is simply testing (and perhaps refining) this claim using methodologies 
that involve direct interactions with students. The second involves investigating how students 
might be supported in developing these three ways of thinking using, for example, the teaching 
experiment methodology.  
 We would also like to call attention to the standalone literature review methodology and its 
value. In the current study, this methodology enabled us to unearth valuable insights about the 
nature of reasoning about inverses that were indeed already documented in the literature (in some 
cases very well so) but were far from being widely recognized. More generally, we suspect that 
the inverses literature is not unique in being fractured and compartmentalized.  We therefore see 
the methodology we employed in this study as a mechanism that researchers can use to combat 
this issue, particularly in cognitive research as a means of developing an initial conceptual 
analysis prior to conducting task-based interview or teaching experiments.  
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Observing Intellectual Need in Online Instructional Tasks 
 
 Douglas L. Corey Aaron Weinberg Michael Tallman 
 Brigham Young University Ithaca College Oklahoma State University 

The idea of intellectual need, which proposes that learning is the result of students wrestling with 
a problem that is unsolvable by their current knowledge, has been used in instructional design 
for many years. However, prior research has not described a way to empirically determine 
whether, and to what extent, students’ experience intellectual need. In this paper, we present a 
methodology to identify students’ intellectual need and also report the results of a study that 
investigated students’ reactions to intellectual need-provoking tasks in first-semester calculus 
classes. 

Keywords: Intellectual Need, Instructional Videos, Flipped Pedagogy 
 

Problem solving has long been viewed as both an essential source and product of 
mathematical learning. However, Fuller, Rabin, and Harel (2011) characterize much of students’ 
engagement with mathematics as “problem-free” in the sense that the mathematical “problems” 
students encounter can ordinarily be completed by applying skills and understandings previously 
developed, and thus are better characterized as “exercises.” In contrast, “problem-laden” activity 
originates in and is sustained by students’ construction of a problem in such a way that they (1) 
recognize their current knowledge structures as insufficient to solve the problem, and (2) 
construct an image of the understandings that would enable them to progress towards a solution. 
To address this issue, Harel (1998) proposed the necessity principle: “For students to learn what 
we intend to teach them, they must have a need for it, where ‘need’ refers to intellectual need” 
(p. 501). Although the construct of intellectual need has been widely applied in instructional 
design (e.g., Harel, 2013b; Koichu, 2012; Caglayan, 2015; Foster & de Villers, 2015) and 
analysis (e.g., Rabin, Fuller, & Harel, 2013; Zazkis & Kontorovich, 2016), prior research has not 
developed methods for empirically identifying students’ experiences of intellectual need. 

The goal of this paper is to explore the possibility of explicitly identifying students’ self-
reported experiences of intellectual need and to examine related factors that might be associated 
with these experiences. In addition, we seek to explore the relationships between students’ 
experiences of intellectual need and their learning from instructional videos that were designed 
to present solutions to intellectual need-provoking [IN-P] tasks and to explicate the 
understandings and ways of reasoning required to construct these solutions. 

Theoretical Framework 
The concept of intellectual need is situated within an elaborate theoretical framework called 

DNR-based instruction in mathematics (Harel, 2008a) and is informed by two key theoretical 
premises: the Knowing Premise and the Knowing-Knowledge Linkage Premise. The Knowing 
Premise states, “Knowing is a developmental process that proceeds through a continual tension 
between assimilation and accommodation, directed toward a (temporary) equilibrium” (Harel, 
2008b, p. 894).  Relatedly, the Knowing-Knowledge Linkage Premise states, “Any piece of 
knowledge humans know is an outcome of their resolution of a problematic situation” (Harel, 
2008b, p. 894). The Knowing and Knowing-Knowledge premises derive from Piaget’s (1971) 
genetic epistemology and von Glasersfeld’s (1995) radical constructivism.  
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Informed by the Knowing and Knowing-Knowledge Linkage Premises, Harel (2013b) 
describes intellectual need as the perceived need to resolve “a perturbational state resulting from 
an individual’s encounter with a situation that is incompatible with, or presents a problem that is 
unsolvable by, his or her current knowledge” (p. 122). This perturbation is rooted in the 
individual’s experience within the discipline and is based on “the learner’s discernment of how 
and why a particular piece of knowledge came to be” (Harel, 2013a, p. 8). 

Intellectual need is distinct from psychological need, which is the motivation a student 
experiences to initially engage in the process of solving a problem (Harel, 2008). Harel (2013b) 
suggests that psychological need is often linked to students’ perceived obligation to participate in 
school, to increase social or economic status, or to advance societal goals. In particular, a 
student’s perception of how interesting or enjoyable they find the context could influence their 
motivation for engaging and persevering in solving the problem.  

There is little discussion in the research literature of what might constitute evidence for 
students’ experiences of intellectual need. In most research, claims of students experiencing 
intellectual need have been associated with students’ expressions or activity that indicates 
puzzlement or curiosity. However, the data-collection protocols used in these studies did not 
appear to explicitly interrogate students’ experiences of these psychological states or the 
assimilations that occasioned them. 

For this study, we operationalize intellectual need by using the colloquial ideas of 
puzzlement and curiosity. That is, we can ask students whether they felt curious or were left 
wondering about something as they engaged in a task or problem context. We also distinguish 
these feelings vis-a-vis the intellectual content of the task from the student’s interest in the 
underlying context—that is, an aspect of their psychological need for engaging in the task. 

Research Questions 
The goal of our study is to identify instances in which students experience intellectual need 

and some factors that are related to this experience, as well as their learning from the associated 
instructional videos. Thus, our research questions are: 

1. How much variation of students’ intellectual need is there between video sets (i.e., 
collections of instructional videos, pre/post-video questions, and related material for 
topics in first-semester calculus)? 

2. Are different instructors associated with different rates of students’ intellectual need? 
3. Does trying an intellectual need-provoking [IN-P] task and/or watching a student 

problem-solving video lead to a higher rate of intellectual need?  
4. Does a student’s mathematical background knowledge predict their experience of 

intellectual need?  
5. Is there a relationship between psychological need and intellectual need? 
6. Is there a relationship between students’ intellectual need and their learning from the 

associated collection of instructional videos? 

Methodology 
Our methodology addresses three issues: First, we needed a way to potentially provoke 

students’ intellectual need. Second, we needed a way to adapt these provocations to an online 
environment. Third, we needed a way to identify students’ experiences of intellectual need. 
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Provoking Intellectual Need: Task Construction 
We needed to engage students in tasks that had the potential to provoke intellectual need. For 

each mathematical topic we investigated we examined the epistemology of the underlying 
concepts and procedures, the curriculum in which the concepts were embedded, and the research 
literature about the likely background knowledge of the students who would be enrolled in the 
class. Then, we collaboratively designed a problem for which the target concept was required to 
arrive at a solution and that provided an opportunity for a student to experience a perturbational 
state while working on the task or watching the associated student problem-solving video 
(described below). We also endeavored to situate the problem within a context that, we felt, 
might be interesting to the student population. 

Adapting to an Online Environment: Student Problem-Solving Videos 
We hypothesized that simply viewing and trying to solve a task might not lead a student to 

experience perturbation. In particular, we thought it might be possible for students to not realize 
that their initial way of thinking about a problem might be inadequate. Thus, we sought a way to 
help students identify shortcomings in their solution methods or reasoning about the tasks. To do 
this, we designed a “student problem-solving video” to accompany each IN-P task. In each 
video, a pair of actors posed as calculus students and attempted to solve the task. These videos 
were loosely scripted so that the actors demonstrated a variety of compelling ways of thinking 
about the task and concept that incorporated common student (mis)conceptions about the 
concept. The videos were presented to the students after they had attempted the IN-P task. 

Identifying Intellectual and Psychological Need 
After interrogating the concept of intellectual need, we felt that the terms “curiosity” and 

“wonder” were closely related descriptors. After attempting the IN-P task and watching the 
student problem-solving video, the students were asked the following two questions: 

1. The task you just worked on dealt with the context of [context—e.g., “the speed of a 
baseball”]. In your honest opinion, how interesting/enjoyable was this context? 

2. When you were working on this task, were there any parts where you genuinely were 
curious or were left wondering about something? If so, please state them in the box 
below; if not, please leave the box empty. 

The first question was designed to enable students to self-identify an experience of 
psychological need; the second question was designed to enable students to self-identify an 
experience of intellectual need. Throughout the results, when we refer to a student experiencing 
an intellectual or psychological need, we mean that they responded “yes” to the corresponding 
question above. 

Materials, Participants & Methods 

Materials 
 We designed a set of 1-3 instructional videos for each of 30 target concepts in 

introductory calculus; each set of videos included a solution to one of the IN-P tasks and some 
additional explanation of the underlying concept. We also created a collection of multiple-choice 
and computational problems to be solved prior to and after watching the instructional videos, an 
IN-P task, and a student problem-solving video. For each video set, each student was randomly 
assigned to either try the IN-P task or not and to see the student problem-solving video or not. 
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Participants 
The participants in the study were 2,733 students who were enrolled in first-semester 

calculus classes at one of 18 universities during the fall, 2018 and spring, 2019 semesters. The 
universities included both public and private institutions, ranging in size from just over 3,000 to 
over 35,000 students, from all regions of the United States and one institution in Indonesia. The 
institutions included small, private colleges through large, research-focused universities. 

One member of the research team was the calculus course coordinator at their institution (a 
large, public university in the South-Central United States; we will refer to this as the 
Coordinated Institution) and incorporated a subset of the video sets into the curriculum during 
both the fall, 2018 and spring, 2019 semesters, for a total of 15 instructors coordinated sections. 
The other 18 instructors (33 instructors total) were voluntarily participating in the project 
research, and each selected a subset of the video sets to incorporate into their curriculum.   

Statistical Design 
We coded students as experiencing intellectual need if they responded “yes” to the question 

described in the methodology and experiencing psychological need if they indicated they found 
the context “somewhat” or “very” interesting. We measured students’ background knowledge by 
the percent of pre-video questions they answered correctly, and coded students as having learned 
from the instructional videos if their score on the post-video questions was higher than on the 
pre-video questions. 

Due to the nested and cross-nested nature of our data, we used Hierarchical Linear Models 
(Raudenbush & Bryk, 2002) to perform our statistical analysis. We use two models to answer 
our research questions: one with intellectual need as the outcome, and one indicating growth 
from pre-video questions to post-video questions as an outcome. Since both of our outcome 
variables were measured as a 1 or 0, the regression at the lowest level is a GLM model using 
logistic regression. The predictor variables in our models included whether or not the student 
saw the IN-P task; whether the IN-P task was computationally focused or not; the student’s score 
on the pre-video questions, the number of the video set in the semester, whether a student watch 
the student problem-solving video; whether or not the student was at the large, coordinated 
institution; and, for the learning model, the student’s response to the intellectual need question. 
Due to space constraints, we report results for only a subset of these variables. The models were 
run with about 26,000 online lessons, 1550 students, 25 instructors, 14 institutions, on 30 topics. 
This data set was smaller than the original dataset due to missing data, or small number of 
students in some classes/institutions. 

Results 

Unconditional Model for Intellectual Need 
We ran unconditional mixed models to understand the variation at the student, instructor, and 

video set levels. We found that a typical student working on a typical video set from a typical 
instructor would experience an intellectual need in 4.5% of the video sets. However, different 
students have different rates at which they report experiencing an intellectual need: students 1 
standard deviation less than the mean only report experiencing an intellectual need on 1.3% of 
the video sets and students 1 SD above the mean report it at 14.5%. There is similarly large 
variation between instructors (1.4% to 13.5%), and this increases to (0.4% to 35%) for two 
standard deviations. This means that some teachers rarely have average students (in a typical 
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lesson) who report experiencing an intellectual need, while at the other end, some teachers have 
average students reporting an intellectual need on about a third of the video sets. 

 Because most institutions in our data set are represented by a single instructor, it is 
difficult to tease apart variation due to instructor and variation due to institution, curriculum, or 
pedagogy. To address this, we ran an unconditional model using only the data of the coordinated 
institution and found that the standard deviation at the instructor level was only 10% less than at 
the other institutions. The variation across video sets is less than between teachers or between 
students in a class, but the two standard-deviation range is 2% to 9.6%. This shows that some 
lessons are nearly 5 times more likely to generate an intellectual need than others. At the 
coordinated institution, the standard deviation across video sets was 20% lower. 

Conditional Model for Intellectual Need 
The results of the conditional mixed model with intellectual need as an outcome are 

displayed in Table 1. The asterisks indicate the level of statistical significance (i.e., * designates 
the result was significant at the p=0.05 level; ** indicates significance at the p=0.01 level; and 
*** at the p=0.001 level). The coefficients are given in log-odds. The percentages for the 
coefficients are marginal percentages given a unit increase in the variable from the model 
intercept, with all other variables equal to zero. The percentages are not additive like in a linear 
regression model, and the effect of a variable could be larger or smaller than the listed 
percentage depending on the values of other variables.  

 
Variable IN Outcome Coefficient Marginal Percentages 
Intercept -2.12*** 10.7% 
IN-P Task (IT) -0.294*** -2.5% 
Problem-Solving Video (V) -0.553*** -4.2% 
IT*V 0.532*** 6.3% 
Psychological Need 0.382** 4.3% 
Pre-Test Score 0.768** 9.9% per SD 
Lesson Order -0.044*** -0.4% per lesson 
Coordinated Institution -1.35*** -7.7% 

Table 1. Results of the conditional mixed model for intellectual need. 
We summarize these results below: 
● Both the effects of trying the IN-P task and watching the video are, individually, 

negative. However, the effects are not additive, and there is a significant interaction term 
between the two predictors. Thus, students who both saw the IN-P task and the student 
problem-solving video were more likely to report experiencing an intellectual need than 
students that only saw the video. 

● Typical students are about 40% more likely to report a self-reported IN if they report 
experiencing a psychological need.  

● Students with above average pre-video achievement scores (1 SD above average), are 
almost twice as likely to report having an intellectual need.  

● The rate at which students reported having an intellectual need decreased, on average, 
across the semester. Lessons near the beginning of the semester had a rate of 16.9%, 
while lessons near the end had an average rate of 6.9%, for students with zeros on all 
other variables.  
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Models for Learning 
 The unconditional Learning model shows that a typical student would improve from their 

pre-video to post-video score on 42.4% of the typical video sets. The conditional model for 
Learning shows that there is a significant positive association between experiencing intellectual 
need and learning. Typical students show evidence of learning on about 7% more lessons if they 
experience an intellectual need, an increase of about 23% (from the average/intercept of 29.9% 
up to 36.8% of lessons) over students that do not experience an intellectual need. 
 

Discussion 

Methodological Contributions 
One significant contribution of this study is the methods and methodology to empirically 

identify students’ experiences of intellectual need. This included developing tasks to provoke 
intellectual need, videos related to each task to help students recognize the need, and survey 
questions—administered at the point where we thought students might be experiencing 
disequilibrium—to enable students to report feelings of psychological and intellectual need. 

There are several potential shortcomings of the methodology. We don’t know whether 
“curiosity” and “wonderment” are the most appropriate terms to identify intellectual need, and 
students’ self-identification might be inaccurate. Students might have been reluctant to respond 
affirmatively to the intellectual need question because doing so would require them to write 
additional information, this is supported by the significance of the Lesson Order predictor. 
Finally, we don’t know the extent to which intellectual need can be provoked by a single task, 
even when the task is accompanied with a student problem-solving video. Instructor interaction 
and intervention might be essential to moving students into a state of disequilibrium, and our 
methods might have been insufficient to actually provoke genuine intellectual need. 

Factors that Affect Intellectual Need 
Overall, there was a relatively low rate of students reporting an experience of intellectual 

need. However, instructors—and, implicitly, the ways they incorporate the video sets into their 
instruction—are associated with different rates of intellectual need. Taken together, the results 
suggest that the instructor variation in our model is due mainly to differences in instructors, 
rather than other institutional factors. Thus, there is a complex interaction between pedagogy, 
curriculum, and students’ interaction with the out-of-class learning materials, and this interaction 
needs to be studied in more detail. 

Students were much more likely to experience intellectual need in response to some video 
sets than others. This means that some mathematical topics, tasks, or problem-solving videos 
were more effective at helping students experience and identify a state of disequilibrium. The 
relationship between video set content and intellectual need warrants further investigation. 

There was a significant relationship between students’ experiencing intellectual and 
psychological need. One explanation for this result is that there is a significant cognitive or 
emotional overlap between the two types of need, and that it is important to consider problem 
context when constructing an IN-P task. Alternatively, it could be that there is an overlap 
between our operationalizations of the two concepts, making it difficult for students to accurately 
distinguish between them. 

Students who had more extensive background knowledge for a task were more likely to 
experience an intellectual need than other students. One explanation for this result is that 
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students need a certain level of knowledge about the background mathematical concepts to 
engage in the IN-P task in the intended way. Alternatively, students might need the background 
knowledge to identify their experience as one of intellectual need. Both explanations suggest that 
IN-P tasks need to be carefully tailored to particular student knowledge and characteristics in 
order to provoke intellectual need. 

Beyond the students’ own background knowledge and other characteristics, it appears that 
the ways in which we structure the video-watching process can impact the students’ experience 
of intellectual need. Students who (only) tried the IN-P task or (only) watched the student 
problem-solving video were less likely to experience intellectual need. However, for students 
who watched the problem-solving video, those who also tried IN-P task were more likely to 
experience intellectual need. This result suggests that merely provoking intellectual need is not a 
straightforward process, and that it would be useful for educators to have a framework to support 
the design and implementation of IN-P tasks. 

Relationship between Intellectual Need and Learning 
There is an association between a student experiencing intellectual need and demonstrating 

learning from the instructional videos. This result aligns well with the theory of intellectual need, 
which posits this relationship between need and learning. However, our measures of learning 
were relatively unsophisticated, and it is possible that we didn’t accurately assess the depth or 
sophistication of students’ learning. Furthermore, learning is often intended to take place over an 
extended period of time, rather than across a handful of short instructional videos, so we might 
not have adequately measured the intended constructs. 

Conclusion 
This study makes a significant methodological contribution to the design and evaluation of 

learning environments and materials. Our methodology and methods provide a first step into 
empirically identifying students’ experiences of intellectual need and connecting those 
experiences to their learning. Our results also shed light on some of the factors that might impact 
students’ experiences of intellectual need and how these factors influence learning. The 
relationship between intellectual need, learning, structuring the students’ experience of the video 
sets, the students’ background knowledge, and the instructor’s pedagogy is complex. Taken 
together, these results highlight the importance of continuing to study intellectual need and to 
create a framework for helping instructors design and implement intellectual need-provoking 
tasks. 
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This study focuses on novice Mathematics Graduate Student Instructors (MGSIs), defined as 

graduate students who are full instructors of record for the first time. In this semester-long 

qualitative multiple-case study, researchers examined three MGSIs’ goals for student learning 

with respect to their teaching decisions and planning. Findings indicated four dominant goals 

that were expressed in their first semesters within the classroom. This study found that novice 

MGSIs are capable of reflecting on and discussing their goals for student learning. 

Understanding how MGSIs build on these goals can provide useful avenues for professional 

development of early-career instructors. 

Keywords: Teaching Assistants, Graduate Student Instructors, Goals for Student Learning, 

Professional Development, Teacher Education 

Graduate students are often involved in teaching undergraduates through a variety of roles 

including grading, leading labs, facilitating discussion groups, recitation sessions, or serving as 

instructors of record. Although graduate students can have many teaching-related 

responsibilities, 35% teach their own classes as instructor of record (Belnap & Allred, 2009). 

This can equate to 17% to 21% of mathematics courses at doctoral institutions (Blair, Kirkman, 

& Maxwell, 2013), which influences a significant number of undergraduate students nationally. 

Many graduate students will continue teaching as they aspire to careers in higher education and 

accept positions in educational settings (Golbeck, Barr, & Rose, 2016). This study focuses on 

mathematics graduate student instructors (MGSIs). A MGSI is a mathematics graduate student 

who is serving as full instructor of record for an undergraduate mathematics course, meaning 

they are responsible for presenting the material, assessing student learning, and assigning final 

course grades. MGSIs are commonly assigned to teach mathematics service courses (non-

mathematics major dominated courses), despite being students themselves, having limited 

teaching experiences, and limited access to professional development (Speer, Gutmann & 

Murphy, 2005; Deshler, Hauk, & Speer, 2015; Ellis, 2014). They face challenges when learning 

to teach that include balancing teaching with their own coursework or research, awareness of low 

status of teaching at a research university, difficulties getting and interpreting feedback, working 

with undergraduates who bring negative mathematical experiences to their classrooms, and 

anxiety in dealing with these challenges (Hauk et al, 2009). There is little research from the 

MGSI perspective to assist with the design of supports to help MGSIs develop as instructors, and 

little is known about how MGSIs experience learning to teach or implement teaching methods 

(Belnap & Allred, 2009).  

MGSIs’ teaching practices are important as calls for changing instruction in higher education 

settings have been growing (CBMS, 2016; PCAST, 2012). Saxe & Braddy (2015) summarized 

the recommendations as calls to “move away from the use of traditional lecture as the sole 

instructional delivery method in undergraduate mathematics courses” and to “seek to more 

actively engage students than we have in the past” (p.19). These calls for improving instruction 

have been grounded in research on improving student learning, which suggests teaching methods 

(such as active learning) can improve undergraduate STEM students’ learning opportunities and 
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help decrease failure rates (Freeman et al., 2014). However, studies related to collegiate 

instructors teaching practices are limited (Speer, Smith & Horvath, 2010).  

To address this research gap, a larger semester-long study explored how MGSIs understand 

their teaching and their efforts to incorporate active learning methods when teaching an 

undergraduate course for the first time, by examining reasons they gave for making pedagogical 

decisions and identifying their perceived challenges1. It aimed to understand MGSIs’ planning, 

conceptualized as a “set of basic psychological processes in which a person visualizes the future, 

inventories means and ends, and constructs a framework to guide his or her future actions” 

(Clark & Peterson, 1986, p.260). The larger study sought to address the research question: 

During their first semester teaching a new undergraduate mathematics course, how do MGSIs 

plan (design and reflect) and implement their plans, with a focus on their goals for student 

learning? To address this broad question, four sub-questions were created. Due to space 

limitations, this paper focuses on findings to only the first sub-question: What goals do MGSIs 

aim to achieve for student learning?  

Theoretical Framework 

Schoenfeld’s goal-oriented decision-making theory informed the design of this study. The 

theory’s main claim is that “people’s decision making in well-practiced, knowledge-intensive 

domains can be fully characterized as a function of their orientations, resources, and goals” 

(Schoenfeld, 2011a, p.182). According to this theory, an individual’s orientations (beliefs, 

dispositions, tastes, and preferences) help shape their goals, which are “the things that people 

consciously or unconsciously set out to achieve” (Schoenfeld, 2011b, p.459). Resources, which 

include teacher’s knowledge, skills and physical materials, are used to achieve goals. Teachers 

often have multiple, different levels of goals operating at the same time. Goals can be broad 

overarching content or social goals, or they can be specific to a lesson or problem. When goals 

are overarching, they are a key aspect of curriculum design (Wiggins & McTighe, 2005) and are 

described in various standards (NCTM, 2000; NCTM, 2014; Blair, 2006). In this study, goals 

were defined as “a complex mixture of academic aims: factual, conceptual, procedural, 

dispositional, and expert-performance-based” (Wiggins & McTighe, 2005, p.58) as this best 

aligned with how MGSIs discussed their aims when designing and reflecting on their curriculum 

and instruction.  

Methods 

Methodological Approach 

This study used a qualitative multiple-case study methodology, defined as “an empirical 

method that investigates a contemporary phenomenon (the “case”) in depth and within its real-

world context, especially when the boundaries between phenomenon and context may not be 

clearly evident” (Yin, 2018, p.15). Case study was appropriate for these research questions 

because the study looked at understanding MGSIs’ thinking and decision making about teaching 

in the context of actual classroom experiences and could provide a more complete picture of 

MGSIs’ planning and interactive teaching throughout a full semester. The research design 

provided ample reflection time and space for MGSIs to describe their goals and decisions. The 

site, course, timeframe, and participants themselves defined the bounds of this case (Yin, 2018). 

This case is comprised of MGSIs teaching precalculus, an undergraduate service course in the 

 
1 Supported by the University of South Carolina SPARC Grant (2020-2021) 
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mathematics department, as part of their teaching assistantship during fall 2019 at a large 

research university in the southeastern part of the United States. 

Participants 

All MGSIs teaching precalculus in fall 2019 were invited to participate in this study. Three 

male MGSIs in their early twenties who were in their second year of graduate school volunteered 

to participate and were given pseudonyms. Chen was an international graduate student and the 

other two, Willie and Patrick, were domestic graduate students. All were enrolled in a one-credit, 

year-long pedagogy course and were supported by peer mentors. Focusing on novice or less 

experienced instructors is important as universities continually use new MGSIs to provide 

instruction to undergraduates. 

Data Collection 

This study followed three MGSIs through their first semester of teaching precalculus. MGSIs 

were interviewed at the beginning of the semester to understand their prior teaching experiences 

and beliefs about teaching and student learning. They were asked to select three lessons 

throughout the semester, roughly one each month, where they planned to seek student 

engagement. These lessons were observed and video-recorded, lesson plans were collected, and 

the lessons were followed by a semi-structured interview (50-100 minutes) that explored the 

MGSIs’ goals for student learning, planning and lesson design, and perceived challenges. Other 

forms of data included weekly journal entries (responding to 3-6 prompts), participant 

observations from a methods course for MGSIs, their course assignments, and interviews with 

their peer mentors. At the end of the semester, MGSIs participated in a focus group seeking to 

gain insight into their overall perspective on teaching the course for student learning. 

Data Analysis 

Dramaturgical coding which “attunes the researcher to the qualities, perspectives, and drives 

of the participant” (Saldaña, 2016, p.146) and is useful for exploring underlying psychological 

constructs was chosen as the coding scheme. Saldaña (2016) describes six types of codes that can 

be used for dramaturgical coding: objectives, conflicts, tactics, attitudes, emotions, and subtexts. 

Analysis of a pilot study suggested the emotion and subtext codes were not useful for answering 

the research questions, thus they were omitted from later analysis. Dramaturgical coding 

identified objectives defined as motives in the form of action verbs. In this study, objectives 

often referred to what the MGSI wanted students to know, be or do, although instructor 

objectives were also identified. To answer the research question, goals of MGSIs were identified 

through thematic coding of the objective codes. Conflicts or obstacles confronted by the 

participant-actor that prevent them from achieving the objective were coded to allow for analysis 

of the obstacles or challenges MGSIs perceived in their planning or teaching. Tactics or 

strategies used by the participant-actor to deal with conflicts and obstacles and to achieve 

objectives provided insight into elements of lesson design and classroom practices MGSIs 

selected and utilized in their classrooms. Finally, attitudes of the participant-actor towards 

setting, others, and the conflict included much of the MGSIs orientations about teaching and 

learning. A fifth category called influences was added to capture references to external 

influences on MGSIs planning.  

Memos were written during data collection and throughout data analysis (Saldaña, 2016) to 

document the data collection and analysis process, reflect on interviews, note connections and 

questions, contemplate next steps in the research process, and summarize discussions between 
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authors. All interviews were transcribed using Temi, a transcription software program, and 

cleaned by the first author. Seven data sources were coded for each MGSI: their semester-long 

journal, three lesson interviews, the background interview, and two written assignments from a 

pedagogy course. All coding was done in Dedoose and coding proceeded one MGSI at a time so 

that each instructor could be studied individually before making comparisons across cases. 

Codes were hierarchical; each code was placed under the dramaturgical categories of objectives, 

tactics, conflicts, attitudes, or influences (level 1). Objective codes included categories for 

student learning, students, and teachers (level 2). These goals were also coded at more detail 

(level 3) and sometimes used in vivo codes (Saldaña, 2016), such as “recognize and use 

appropriate tools”. Code mapping (Saldaña, 2016), a technique to organize data and improve 

trustworthiness of findings during analysis, was employed after coding the first piece of data 

(Chen’s journal), and again after coding the data from each MGSI. Quotes from categories at 

levels 2 and 3 were reviewed to confirm quotes described the same concept. The codes were 

listed, compared, and organized into categories by rearranging or combining similar codes. The 

codes were then condensed into themes. Generating themes was not a linear process; rather it 

involved sorting and comparing codes and considering how categories related to one another. As 

MGSIs expressed many common goals for student learning, findings are reported only through 

cross-case analysis. The first researcher coded and discussed codes and themes with the second 

researcher to reach agreement on all codes and themes. 

Findings 

Although MGSIs work towards many types of goals over a semester, the themes presented 

below were the most salient goals that MGSIs discussed while preparing for and reflecting on 

teaching precalculus. These goals related to what MGSIs aim to help students learn and were 

shared among all MGSIs in this study. MGSIs shared goals for student learning centered on 

student reasoning, understanding and sense making, developing productive dispositions as 

learners of mathematics (NRC, 2001), and procedural skills. However, what Saldaña (2016) 

termed the super objective, “the overall or ultimate goal of the participant” (p.148), focused on 

preparing students for their future. As each goal was expressed by all MGSIs, their data is 

presented together to illustrate the pervasiveness of the goal throughout the data set and among 

MGSIs. Analysis identified four goals for student learning as the most prominent goals in three 

novice MGSIs’ planning. Table 1 summarizes the findings of this study. 

 
Table 1: Summary of Goals and Aspects of the Goals 

 

 Goals Aspects of Goals 

Goal 1: Prepare Students for 

their Future 

(1) Coursework; (2) STEM Careers; (3) Personal Study Skills 

Goal 2: Develop Reasoning, 

Sense Making and 

Understanding 

(1) Understanding Why: Deriving or Proving; (2) Sense Making and 

Developing Intuition; (3) Applying or Connecting Concepts, Facts or 

Procedures 

Goal 3: Develop Productive 

Dispositions 

(1) Enjoy Mathematics and/or Precalculus Class; (2) Build Self-

efficacy; (3) View Mathematics as Useful; (4) Willing to Persevere 

Goal 4: Develop Procedural 

Skills 

(1) Content Skills to Solve Standard Problems; (2) Recognize and Use 

Appropriate Tools; (3) Know or Memorize Facts 
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Goal 1: Prepare Students for their Future 

MGSIs frequently spoke about preparing their students for the future, which primarily related 

to future coursework or career-related skills. All journals contained multiple references and 

similar phrases to Patrick’s journal, where he stated, “my main goal is to prepare these students 

for calculus,” and all MGSIs directly identified this goal in their background interviews. This 

goal was continuously shared throughout the semester as the clear overarching goal MGSIs held 

relative to their students. In addition, MGSIs also kept in mind their students’ STEM career 

aspirations. MGSIs’ desires to prepare their students included both seeking to help students 

achieve their career goals and be competent workers in their STEM fields. As Willie remarked 

during the focus group, “we are trying to prepare them for their life,” and knowing precalculus 

material will be important for students to obtain and keep their jobs. MGSIs noted the 

importance of their students correctly using mathematics in their future careers for projects that 

can have real life consequences. As Willie stated, “These kind of kids [STEM majors], they need 

to know it…[because] in the future, they are going to be using this” in their careers. 

Another way in which MGSIs spoke of preparing students was in developing personal work 

habits and study skills. Less frequently mentioned than the career focused types of preparation, 

this category included learning how to learn, taking ownership of the learning process, and 

feeling personal satisfaction or pride in hard work, which are transferable to learning in areas 

outside of mathematics. Chen shared in the focus group how students’ experiences of studying 

precalculus were important for undergraduates in ways beyond the mathematical content. He 

explained,  

It's not just like they have to know the material for calculus, but they still have to know 

how to learn the material… It's not just like math is math. Like you also need to learn the 

skill for learning like new knowledge. 

Some of the focus on preparing students may be due to the course they were assigned to 

teach. For these MGSIs, the precalculus course was the prerequisite for calculus. Teaching 

precalculus thus became about student preparation and MGSIs’ desire for their students to be 

prepared and successful in their future coursework.  

Goal 2: Help Students Develop Mathematical Reasoning, Sense Making and Understanding 

The most frequently coded objective for student learning related to students’ mathematical 

reasoning abilities. MGSIs described this goal in many ways, including wanting students to 

conceptually understand or make sense of mathematics, to apply and connect concepts or ideas, 

to derive, prove, generalize or conjecture about formulas or theorems, and develop intuition. 

MGSIs discussed these ideas in a connected, overlapping manner. MGSIs frequently discussed 

wanting students to understand why theorems or formulas were true. Willie had designed a 

discovery jigsaw activity about quadratic functions. He explained in the interview,  

They all knew the quadratic formula. So my goal was to not explicitly say, you’re finding 

the quadratic formula. It was for them to derive and say, oh look, it’s the quadratic 

formula! [And have] the epiphany, the whoa! Like what you do when you get a proof and 

you spent forever doing and then you finally get there.  

He reiterated during another interview, “Figuring out where it comes from, I think is pretty 

important because it gives you that more conceptual knowledge. You found it! Now you know 

how to do it again instead of me telling you how to find it.” MGSIs were aiming to provide 

opportunities for students to develop mathematical understanding and reasoning skills. 

MGSIs also aimed for students to understand and make meaning of mathematical definitions 

and terms. Chen reflected on his lesson about asymptotes, recalling “I hope they can relate that 
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[where the function is undefined] to the vertical asymptote and the graph and where the problem 

happened.” MGSIs often expressed a desire for their students to be able to apply previous 

material to the current lesson, to apply current concepts in the future, and to connect 

mathematical concepts. In another interview, Chen described how he asked students to make 

connections between the unit circle and the graphs of sine and cosine functions. “If they have to 

produce this graph, hopefully they can try to recall, to use this unit circle to graph. Again, it's a 

connection.” Connecting the unit circle to the graph of a trigonometric function reflects Chen’s 

aim to help students build connections between mathematics concepts. 

Part of encouraging students to make sense of ideas seemed to relate to helping develop what 

MGSIs sometimes called students’ intuition or their ability to think mathematically or creatively. 

In an interview, Patrick’s reflected on what he wanted students to learn from working together to 

verify trigonometric identities. He discussed how students need to develop “that intuition of 

where to go or what to do next” and hoped that allowing students to work together in groups 

would help them build intuition. These quotes illustrate various ways in which MGSIs shared 

goals for students to develop understanding of mathematical ideas, make sense of mathematics 

and reason mathematically. 

Goal 3: Help Students Develop Productive Dispositions 

All MGSIs expressed affective goals for their students related to how students viewed 

themselves as learners of mathematics and how they understand the field of mathematics. This 

category included MGSIs’ goals for students to enjoy and take interest in mathematics or their 

precalculus course, to build students self-efficacy, for students to appreciate the usefulness of 

mathematics, and develop a willingness to work on problems and persevere in solving them.  

MGSIs wanted their students to hold positive views towards mathematics. As Willie stated in 

the focus group, “That’s something I want to hear. Someone was like, yeah, I think I enjoy math 

now.” In an interview, Patrick also explained he incorporated a jigsaw activity because “math is 

not just supposed to be something that you have to do. Math is not supposed to be a chore. So 

maybe these types of activities will make them more interested in or motivated [to learn 

mathematics]”. Building students’ self-efficacy was also a consistent goal for Patrick who stated 

in the background interview,  

One goal I might have is to sort of change that opinion of some students. You’re not bad 

at math. Math is just a skill. As you practice it, like any other skill, you’re going to get 

better at it. 

Through their teaching, MGSIs hoped to improve students’ attitudes towards mathematics and 

build their confidence in their ability to learn and do mathematics. 

Additionally, MGSIs wanted their students to recognize ways mathematics contributes to 

daily life and be willing to persevere when solving problems. Chen wrote in his journal, “I hope 

to tell my students why they need to learn math...I hope my students appreciate the use of 

mathematics more.” MGSIs also understood that for students to solve mathematical problems, 

they must be willing to try different ideas and not become discouraged or give up when the first 

idea is not successful. During the focus group, Chen discussed helping students develop 

perseverance. He explained, “I want to show them that it’s okay to be wrong, like it’s fine. Just 

use another ratio or another number, because the idea of trying is really helpful…especially 

when they haven’t seen the pattern yet.” The manner in which MGSIs discussed their goals to 

build students’ confidence and desires for students to enjoy mathematics, hold positive views of 

mathematics, and be willing to persevere, aligns well with the notion of developing productive 

dispositions meaning “the tendency to see sense in mathematics, to perceive it as both useful and 
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worthwhile, to believe that steady effort in learning mathematics pays off, and to see oneself as 

an effective learner and doer of mathematics” (NRC, 2001, p.131). 

Goal 4: Help Students Develop Procedural Skills 

Finally, MGSIs also aimed to develop their students’ ability to execute various mathematical 

procedures. Common for mathematics courses at this level, MGSIs stated much of the course 

includes objectives for students to solve, compute, manipulate or simplify, which often amount 

to replicating or following procedures. As Chen stated in an interview, 

It's like by the end of the day, the goal for the lecture is for them to be able to solve [a 

triangle] using the law of sine. They don't have to actually know where it comes from. It 

would help with their intuition, but it doesn't like align with the goal that I want to reach 

[that students can solve triangles]. 

All MGSIs at some point described procedural skills as tools and stated in interviews their goal 

for students to “recognize and use appropriate tools.” Willie explained in an interview that he 

wanted students to see completing the square as much as possible “because it’s a good tool. 

You’ll see it all the time and they definitely see it in calculus.” MGSIs did not only want students 

to be able to execute procedures but also apply them appropriately. 

Discussion 

Goals were central to the theory, data collection and analysis in this study. A pilot study 

analysis suggested MGSIs thought about student learning as well as their own hopes and aims to 

facilitate learning. Schoenfeld (2011a) suggests teachers pursue multiple goals at different levels 

or sizes and those goals can be conscious or unconscious. Some goals, such as the super 

objective of preparing students for their future, were clear and conscious in all MGSIs’ minds 

from the start to the end of the study. Other goals emerged or were discussed and identified more 

clearly as the semester progressed. MGSIs’ awareness of and ability to speak about some goals 

increased throughout the semester. Findings described overarching cognitive or affective goals as 

they best explained MGSIs’ planning on a larger scale and related to reasons MGSIs gave for 

planning or teaching decisions. All goals described in this paper became conscious goals at some 

point during the study and were confirmed by participants who reviewed a draft of the study’s 

findings. These goals were remarkably consistent across the multiple cases of MGSIs, thus may 

provide a fertile starting point for professional development to support new MGSIs (Ellis, 2014). 

This study illustrates new avenues of filling in the aforementioned research gap around 

MGSIs’ goals for student learning. Although Schoenfeld’s theoretical framework (2011a) asserts 

goals are shaped by orientations, it does not discuss the formation of goals. This study’s use of 

dramaturgical analysis found that some MGSIs’ goals for student learning were molded and 

shaped by their early impressions of teaching. For example, knowing their students needed to 

complete the calculus sequence, put added pressure on MGSIs as they recognized the importance 

of the course for their students’ future success (Goal 1). This weaving of goals for student 

learning and lesson designs calls for the novice MGSI’s voice when generating thoughtful, 

meaningful, and MGSI-centered professional development.  
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In this paper we use multiple statistical approaches, including classical test theory (CTT), item 
response theory (IRT), and principal component analysis (PCA) to understand item behaviours, 
scale properties, and dimensionality of a developing multiple choice assessment of mathematical 
modeling competencies designed for tertiary STEM majors. We share analyses and inferences, 
making recommendations for the field in pursuing such assessments. 

Keywords: mathematical modeling, assessments, differential equations 

Mathematical modeling is an important skill for students at all levels of mathematics, in part 
because it can be a vehicle for learning further mathematics and partly because of the capacity of 
real world problems to motivate students to pursue and persist in STEM fields. As scholarly and 
pedagogical interest increases in teaching with (or through) mathematical modeling, so increase 
stakeholder interests in assessing growth in modeling skills. Many assessments for mathematical 
modeling knowledge and skills have been independently created, however the majority serve a 
local need and are based on ad hoc constructions or small-scale studies of student work (Frejd, 
2013). At the same time, there have been increasing calls for instruments in mathematics 
education research to undergo evidence-based validity assessments (see, for example Melhuish 
& Hicks, 2019). The rationale is that documenting properties of tests and test-takers can aid the 
field in synthesizing, and thus building upon an abundance of research results. Within this 
context, we have been developing an assessment for evaluating interventions that aim to improve 
tertiary students’ modeling skills. To facilitate scholarship in this area, the instrument is intended 
to support research designs based in a pre/post measurement paradigm. Thus, the project goal has 
been to develop two parallel forms of an assessment appropriate to targeting modeling skills of 
tertiary students. The purpose of the present study was to learn about the psychometric properties 
of the items and the scales. We ask and answer the research question: What are the psychometric 
properties of the instrument and do the items behave as intended?    

Conceptual and Assessment Frameworks 
We adopt a synthesis of instrument development frameworks (2014) as a set of validity 

criteria advanced as part of the Validity Evidence for Measurement in Mathematics Education 
project. Melhuish and Hicks (2019) recently applied the standards to concept inventories in 
mathematics education, demonstrating the approach to be viable for research assessments. They 
make a case that validity of an instrument should reflect empirical evidence to support its (1) 
content validity, (2) response process validity, (3) relations to other measures, and (4) internal 
structure. Content validity is established through expert evaluations and literature-informed item 
development. Seeking evidence of response process validity ensures that both items and 
distractors tap into students’ reasoning patterns. Typically, evidence for response process validity 
is sought through direct student feedback on the items. Checking relations to other measures can 
mean calibrating the instrument against other assessments of the same content or instruments 
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assessing distinct constructs. Finally, internal structure validity involves checks on 
dimensionality, internal consistency, and other psychometric properties for the items and scale. 
These evidence-based validity criteria guide our instrument development process. In this paper, 
we briefly summarize development and validity efforts for criteria (1)-(3) which are published 
elsewhere (Czocher et al., 2020; Czocher et al., 2021) and report on (4).  

Integral to establishing content validity, operationalized here as construct validity, we adopt a 
cognitive view of mathematical modeling as a process consisting in multiple inter-related, 
idiosyncratic phases (Blum & Leiß, 2007; Kaiser, 2017). We define modeling as the process of 
rendering a non-mathematical problem about a real-world phenomenon of interest as a well-
posed mathematical problem to be solved. The process involves modeling competencies like 
understanding (specifying a problem), structuring (identifying relevant and irrelevant factors), 
mathematizing (articulating mathematical relations among quantities), working mathematically 
(solving), interpreting and validating (checking the model represents the situation and addresses 
the real-world problem). We developed a pool of 118 multiple choice questions (MCQs) 
belonging to 9 real-world scenarios based in research reports on students’ thinking during 
modeling and pedagogical materials. We sought scenarios that treated issues prevalent in society, 
involved situations in the sciences where differential equations might be used, or were suggested 
by informal interviews with STEM professors. Mathematics content ranged from arithmetic to 
algebra, to calculus, and to systems of ordinary differential equations. We chose a multiple-
choice format to facilitate creating two parallel forms that could support pre/post-test research 
designs intending to measure gains in competencies. Across multiple rounds of field testing, we 
solicited feedback from an expert panel of mathematicians and mathematics educators as to the 
accuracy of the mathematical content and the extent to which items targeted intended 
competencies. We implemented revisions, culling items that failed to be correct or sensible.  

To establish response process validity (Czocher et al., 2020; Czocher et al., 2021), we carried 
out three rounds of field testing: feasibility, difficulty and distractors, and discrimination. In the 
feasibility round, we solicited feedback on the items from a group of 12 STEM undergraduates, 
asking them to evaluate the items, scenarios, and response options for authenticity, sensibility, 
and rationale for selecting distractors. In the difficulty round, we administered the 63 most 
promising items on two forms to 35 and 43 STEM undergraduates, respectively. We kept items 
with difficulty 0.20 < 𝑝𝑝 < 0.70 and restructured or culled items that did not perform well. We 
also analysed distractor efficacy, ensuring that each distractor was selected by at least 5% of 
respondents. In the discrimination round, 30 remaining items were sorted onto two forms and 
administered to a sample of 25 secondary and 289 post-secondary students participating in an 
international modeling challenge focusing on applying differential equations (see below for 
details). The mean item difficulties were 𝑝𝑝 = 0.39 and 𝑝𝑝 = 0.41 for the two forms. An 
independent sample 𝑡𝑡-test (𝑡𝑡 = −0.811,𝑑𝑑𝑑𝑑 = 144,𝑝𝑝 = 0.419) confirmed no significant 
difference in mean score across the forms and Levene’s test (𝐹𝐹 = 0.412,𝑝𝑝 = 0.522) confirmed 
equal variances. A set of point-biserial correlations were computed to identify high- and low-
discriminating items. We estimated reliability of the two forms using Revelle’s Omega Total 
(𝜔𝜔𝑇𝑇) as a measure of internal consistency, which is appropriate where multiple dimensions (e.g., 
mathematics content, modeling context, target competence, reading comprehension, item format, 
native English proficiency) contribute to predicting the construct of interest and when individual 
items measure the latent construct with differing degrees of precision (Raykov, 1997; Revelle & 
Zinbarg, 2008). The two forms had 𝜔𝜔𝑇𝑇 = 0.67 and 𝜔𝜔𝑇𝑇 = 0.63, respectively, approaching 
acceptable estimate of reliability 0.7.  
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To study relations to other measures, we investigated correlations between the instruments 
measure of modeling competencies and a related instrument’s measure of self-efficacy to carry 
out those competencies (Czocher et al., 2021). In the spirit of Hackett and Betz (1989) and 
(Bandura, 2006), the Modeling Self-Efficacy (MSE) instrument uses a 0-100 rating scale to 
measure an “individual’s perceived capacity to carry out the interrelated activities that make up 
mathematical modeling” ((Czocher et al., 2019, p. 13). Of the 314 students who took the MCQ in 
the discrimination round, 144 also took the MSE. For these students, we found that modeling 
self-efficacy was a highly significant predictor of modeling competency, as measured by these 
two instruments. We interpret the strong positive association between modeling competency and 
modeling self-efficacy as evidence of relation validity; since we expect a positive correlation 
between mathematics self-efficacy and performance. 

We report on efforts to equate two parallel forms and investigate internal structure validity. 
To this end, we conducted a round of testing two forms using Rasch analysis. We selected Rasch 
analysis because it produces item difficulty estimates and person ability scores, allowing 
examination of the scale along both item and ability variables. Non-identical forms can then be 
equated by anchoring the difficulties of common items to the same values on a common scale.  
Rasch analysis produces Wright maps which can be interpreted to explain participants’ test 
scores score in the context of the questions that appear on our instrument (Boone, 2016) 

Methods 
Based on results from previous rounds of testing, we constructed two forms, Ruby and 

Sapphire, each with 20 items and with 11 of those items common to the two forms. Construction 
used Classical Test Theory to balance the total (anticipated) difficulty of the forms and content 
coverage in terms of competencies targeted. In total, each form had 3 understanding, 5 
structuring, 5 mathematizing, 2 interpreting, and 5 validating items. The expected mean item 
difficulties for Ruby and Sapphire were 𝑝𝑝 = 0.472 and Sapphire 𝑝𝑝 = 0.475, respectively. We 
administered the forms to a sample of secondary and post-secondary STEM students 
participating in an international mathematical modeling challenge focusing on using differential 
equations to solve real-world problems. The challenge took place remotely during the COVID-
19 pandemic at the end of Autumn 2020 semester, depressing participation in the data collection. 
In total, 89 students responded to the items (see Table 1 for demographics), and some response 
sets were incomplete (detailed below). Additionally, >90% reported typically earning B’s or 
higher in both their mathematics and major classes. 

 
Table 1 Participant demographics 
Male 64% Science 21.3% Diff Eq 81.8% 
Female 33.7% Mathematics 46.1% No Diff Eq 18.2% 
Non-binary 2.3% Engineering 25.8%   
  Other 6.7%   

 
We first performed a classical item analysis to check that all items had positive item-total 

correlations. Item difficulties were calibrated for each form using a Rasch model. Item and 
person fit statistics and residuals were calculated to check model-fit assumptions and conduct 
dimensionality analysis, respectively. We identified items with fit statistics outside of the 0.5 to 
1.5 range or exhibiting appreciable item-pair residual correlations (Yen’s 𝑄𝑄3 > 0.2). Item-pairs 
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with higher residual correlations were examined for patterns in their relationships. We excluded 
mis-fitting items and persons and re-calibrated the remaining dataset to the Rasch model. Due to 
small subgroup size (e.g., type of school, major) a Differential Item Functioning (DIF) analysis 
to assess potential bias was not feasible.  

 
Given all of the assumptions below, which equation best 
models growth for a population? 
1. The birth rate is proportional to the population. 
2. There are sufficient resources for the population to thrive. 
3. Members die of unnatural causes, like murders. 
4. Unnatural deaths are proportional to the number of two-

party interactions. 
5. 𝑘𝑘1 and 𝑘𝑘2 are proportionality constants. 
  

Figure 1 Sample multiple-choice item for mathematizing (choosing a representation) 

Results and Interpretation of Rasch Analysis 
On Ruby, between 29 to 38 students responded to each item.  Ten students were flagged as 

having response patterns that did not fit model expectations – they had too many missing 
responses. One item had a large outfit and distractor options with positive item-total correlations. 
Given the messy response pattern, we excluded the item from further analysis. Ruby was then re-
calibrated. Two further items exhibited large outfit values (close to 3) but were kept because the 
test length would be short for the number of respondents. The Rasch item reliability score was 
0.88 (Adj. SD = 0.63) and the person reliability score was 0.63 (Adj. SD = 1.39). We examined 
the pairwise correlation of item residuals (Yen’s 𝑄𝑄3) and a Principal Component Analysis (PCA) 
of standardized residuals. Both suggested underlying multidimensionality. Multiple item pairs 
had residual correlations > 0.20 and the first factor had eigenvalue 𝜆𝜆 = 3.05.  

On Sapphire, between 32 and 41 students responded to each item. We scored two items using 
a partial credit scale because these items had stems phrased to select an optimal choice. 
However, most students chose a mathematically correct choice that was not optimal for modeling 
(Haines et al., 2000). We discuss implications for future test forms below. Most items showed 
satisfactory fit statistics. One item (Sapphire Item 7, validating) had an outfit value of 1.74 and 
another (Sapphire Item 5, simplifying) was underfitting (outfit 0.66, infit 0.73). Because the test 
is short, underfitting items were kept. After recalibration, one common item (Ruby Item 15, 
simplifying) was removed from just the Sapphire test. Although it performed well on Ruby form, 
it had high outfit on Sapphire and its residuals were highly correlated with another item’s 
(Sapphire Item 6, simplifying).  

Excluding the two problematic items, a recalibration of the Sapphire test produced a Rasch 
item reliability score 0.88 (Adjusted SD = 1.22) and the person reliability estimate of 0.64 
(Adjusted SD = 0.89). Since Sapphire had a larger person reliability estimate, we used it as the 
anchor form during equating. The Sapphire item-pair correlations and PCA of residuals indicated 
less concern about multidimensionality than on Ruby form. The two forms were recalibrated 
from the 10 remaining common items (excluding Ruby Item 15) and anchored to Sapphire’s final 
calibration values. Thus, all Ruby and Sapphire item difficulties could be placed on a common 
scale. As is customary in mathematics education, we report the Cronbach’s alpha as well, for 
Ruby, 𝛼𝛼 = 0.91 and for Sapphire 𝛼𝛼 = 0.85. 
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Table 2 contains the breakdown of each item on the final version of both tests with the 
competency they target, the context, and the difficulty. The Wright Maps (item-person map) 
shown in Figure 1 order the ability of the students who took the tests on the left side and the 
difficulty of the questions on the right side. The left side of the Wright map shows the 
distribution density of the test takers compared to the item difficulty on the right (high scoring 
test takers are distributed as positive logits and low scoring as negative). Outside of items 9, 10, 
and 11, the distribution of the difficulty of the items is good. Items Sapphire 9, Ruby 9, Sapphire 
10, and Ruby 10 show high difficulty relative to the ability distribution. Both questions focus on 
the competency of interpreting in two different contexts (disease and recycling). Item 11 on 
Ruby and Sapphire which focused on understanding with the context of a wastewater tank, had 
the lowest difficulty across both tests. Understanding tasks varied in difficulty across the 
different problems, with Ruby Item 1 being difficulty and Ruby and Sapphire Item 12 having a 
small negative difficulty (-0.75). Items about mathematizing (excluding Ruby Item 2), 
simplifying, and validating had difficulty levels clustered around an ability level of 0.   

 
Table 2 Rasch model difficulties (δ) for Ruby (R) and Sapphire (S) forms.  
Item #, R Item #, S 𝛿𝛿, R 𝛿𝛿, S Competency Context 

1  1.81  understanding Decay 
2  -2.17  mathematizing Disease 
3  -0.31  mathematizing Population 
4  0.32  simplifying Recycling 
5  -0.06  simplifying Wastewater Tank 
6  1.09  simplifying Wastewater Tank 
7  -2.36  validating Carrying Capacity 
8  -0.94  validating Wastewater Tank 
9 9 2.57 2.57 interpreting Disease 
10 10 2.06 0.98 interpreting Recycling 
11 11 -3.35 -3.35 understanding Wastewater Tank 
12 12 -0.75 -0.75 understanding Disease 
13 13 -0.36 -0.36 mathematizing Wastewater Tank 
14 14 0.87 0.87 mathematizing Recycling 
15  0.67  simplifying Recycling 
16 15 -0.98 -0.98 simplifying Haines & Crouch* 
17 16 -0.21 -0.21 validating Wastewater Tank 
18 17 0.53 0.53 validating Wastewater Tank 
19 18 0.67 0.67 validating Wastewater Tank 
 1  0.32 understanding Recycling 
 2  1.08 mathematizing Wastewater Tank 
 3  -1.56 mathematizing Carrying Capacity 
 4  -1.13 simplifying Recycling 
 5  0.24 simplifying Wastewater Tank 
 6  0.32 simplifying Recycling 
 7  -0.2 validating Carrying Capacity 
 8  -0.11 validating Disease 

*Item Ruby 16 is from (Haines et al., 2000) and asks students select variables needed to model the time for 
passengers to safely exit an aircraft. 
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We conducted a Principal Component Analysis (PCA) on the responses for the final forms to 

investigate any empirically evident dimensionality. The first Ruby component (19.3% of 
explained variance) contained items 2, 5, 6, 8, 11, 13, 17, 18, 19. These are all but one from the 
Wastewater Tank context and as a set possess a wide range of difficulties. The items comprise 
four of the five competencies (4 validating, 2 mathematizing, 2 simplifying, 1 understanding). 
The second Ruby component (16.8% of explained variance) contained items 9, 10, 12, 13, 15, 
two of which (9, 10) were the difficult interpreting items. The first Sapphire component (15.8% 
of the explained variance) includes items 3, 4, 5, 9, 12, 16, from many contexts (2 Disease, 2 
Wastewater Tank, 1 Recycling, 1 Carrying Capacity) and competencies (1 each validating, 
understanding, interpreting, and mathematizing, 2 simplifying). The second Sapphire component 
(15.6% of the explained variance) included items 2, 14, 17 – 2 mathematizing and 1 validating. 
Two were Wastewater Tank context and one was from Recycling

   
Figure 1 Final anchored Wright (item-person) maps for Ruby (left) and Sapphire (right), ordered by item number.  

Discussion and Conclusions 
Based on our psychometric analyses, we have created two parallel forms targeting modeling 

competencies appropriate for tertiary students of advanced mathematics. On the calibrated scale, 
most items had difficulties |𝛿𝛿| < 1, and the Wright map showed a good difficulty distribution, 
suggesting that the scales are balanced. The easiest items (𝛿𝛿 < −1.5) had a clearly correct 
answer and could be addressed using test taking strategies to rule out distractors. Items 9 and 10, 
the most difficult (𝛿𝛿 > 1.5), were both interpreting items and had lengthy response options 
requiring comparison among the options. We hypothesize that a higher cognitive load may 
contribute to their difficulty, besides the modeling competence. 

The low person-ability reliability likely reflects a small sample of test takers, with diverse 
characteristics, and a relatively short test. It may also show that the test items were not well 
“targeted” to the ability-levels of students in the sample. We are not pessimistic about this 
interpretation since we administered the forms as a pre-test to an intervention where students 
would have the opportunity to practice these skills. Thus, it is sensible that their ability levels 
would be low, as measured by this instrument. Though administering the forms online permitted 
us to reach a larger sample from a small population, we note the instrument may be challenging 
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to respond to via mobile platforms and that, because of COVID-19, completing yet another 
assignment may have been laborious. 

Empirically, the forms did not reveal dimensionality according to a priori constructs like 
mathematical content, modeling context, or modeling competency. It is possible that 
competencies or contexts may form dimensions, but the sample of students was so diverse in 
terms of their personal characteristics and prior knowledge that the instrument could not detect it. 
Instead, given the relatively low person reliability (due to large standard error), it is possible that 
dimensions may include aspects of guessing, English comprehension, test fatigue, or that items 
may require judgment rather than offering a clear correct answer. One notable exception was that 
the PCA on responses revealed all the Wastewater Tank problems loading to Ruby Component 1 
and it also was strongly present on Sapphire Component 2. We also suspect that other constructs, 
such as facility with quantitative reasoning, may play a role. In any case, since the breadth of 
competencies was well-represented on the extracted components, we infer that no one item type 
is responsible for all the variance. Instead, variance is pleasantly distributed among item types. 

Our approach to designing the MCQs is atomistic (Blomhøj & Jensen, 2003), targeting each 
item toward a competency. This approach facilitated the multiple-choice format but carries 
limitations in its capacity to assess modeling as a composition of those competencies. More 
testing is necessary to explore suitability as a measure of individual students’ modeling capacity. 
Future rounds can also examine patterns in item difficulty according to competency or reliance 
on other latent constructs like quantitative reasoning.  We have provided an evidence-based 
validity evaluation of the internal structure of the parallel forms to evaluate pedagogical 
innovations. This effort is integral in moving towards a valid and reliable instrument for 
measuring growth in modeling skills of tertiary students, and more broadly towards establishing 
a shared empirical basis for interpreting results of studies of student’s modelling across 
education levels. 
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Advanced Students’ Actions for Operationalizing Quantification in Analysis 
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This study identifies seven categories of student meanings for quantification evoked in the course 
of reasoning about and proving a theorem in functional analysis. By observing how two 
graduate students flexibly foregrounded and backgrounded the variation in different quantities 
within a proving task, we identify ways that quantification operates in proof-oriented reasoning. 
We call these quantification operationalizations or quantops. While some of these quantops 
mirror findings from prior studies of reasoning about quantified statements, our framework 
introduces new aspects of reasoning about quantification. Also, we observe that each quantop 
has two forms: one that backgrounds quantification and one that foregrounds it. Backgrounding 
appeared highly important for managing the myriad of quantities constituent to the task.   
 
Keywords: quantification, analysis, proof 

 
Learning advanced undergraduate mathematics requires fluency in the use of quantifiers, 

often multiple nested quantifiers, in the same definition or theorem. Like many matters of logic, 
prior research shows why these ways of reasoning pose challenges to student success in proof- 
based courses (e.g., Epp, 2003). Unfortunately, we have comparatively fewer insights about 
successful reasoning and learning. Some recent studies have worked to remedy this limitation 
regarding research on quantification. Sellers, Roh, and Parr (2021) characterized undergraduates’ 
quantification actions for quantified variables. Vroom (2020) documented how students 
developed and distinguished different multiply-quantified relationships to express a concept that 
they sought to define. This investigation builds on productive aspects of those studies by 1) 
documenting students’ quantification actions for multiply quantified relationships as those 
students 2) sought to express, relate, and justify highly complex relationships.  

In particular, we analyze a series of task-based interviews with graduate students taking a 
functional analysis course to identify their meanings for multiply quantified relationships and 
their habits for notating and proving about such relationships. These students had years of 
experience learning proof-based mathematics and working with multiply quantified 
relationships, so we seek to learn from their expertise. We document the actions they took during 
problem solving and proving to reason about quantification relationships in the Arzela-Ascoli 
Theorem and its proof. We call these quantification operationalizations or quantops. We use the 
term operationalization in part because we observe that the definitions and proofs featured in 
these interviews involve an impressive number of quantified objects1 such that reasoners must 
find ways to manage working memory to imagine the definition of the concepts and the lines of 
inference for proving implications between them. We extend the insights of prior studies (e.g., 

 
1 The Arzela-Ascoli Theorem can be stated “A subset 𝑆 of 𝐶([𝑎, 𝑏], ℝ)(sup) is equicontinuous and bounded if and 
only if it is totally bounded,” but if we substitute the definitions of those terms, which one must coordinate to 
understand the theorem or write a proof, it would appear as the following: “∀𝑆 ⊆ 𝐶([𝑎, 𝑏], ℝ)(sup), [∀𝑓 ∈ 𝑆, ∀𝜀 >
0, ∃𝛿 > 0 ∋ |𝑥 − 𝑡| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑡)| < 𝜀] ∧ [∃𝑀 > 0 ∋ ∀𝑓 ∈ 𝑆, |𝑓(𝑥)| < 𝑀] ⟺ [∀𝐴 ⊆ 𝑆, ∀𝜀 >
0, ∃{𝑎!, 𝑎"…𝑎#} ⊆ 𝐴 ∋ ∀𝑓 ∈ 𝐴, ∃𝑖 ∈ {1, 2, …𝑛} ∋ ∀𝑥 ∈ [𝑎, 𝑏], |𝑓(𝑥) − 𝑎$(𝑥)| < 𝜀].” We present the second 
rendering to emphasize that proving this theorem is a rich opportunity to understand how students conceptualize and 
operationalize quantification.   
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Durand-Guerrier & Arsac, 2005; Roh & Lee, 2011) especially by documenting how students 
make meaning of quantification beyond syntactic structure (the order of quantifiers in a claim).   

Prior literature on reasoning about quantification 
In this section we review mathematics education literature on reasoning about quantified 

variables and multiply quantified statements.  

To which and how many values do variables refer? 
The key function of a quantifier in mathematics is to specify for which and how many values 

of a variable does a statement need to hold to be a true statement. The truth value of a statement 
like “x is even” or “𝑥 = 2 ∙ 𝑘” depends on the value(s) of the variable(s). If we want to claim 
such a statement is true for all relevant values of the variables, we use universal quantfication 
(often expressed “for all”). If we only require at least one value to make the statement true, we 
use existential quantification (often expressed “there exists”). These two types of quantification 
are the most common in mathematics and in prior research. As Sellers et al. (2021) and Vroom 
(2020) point out, students may also reason about what is conventionally called unique existence 
in which a condition must be true for one value of the variable and false for all others.  

Sellers et al. (2021) developed a framework of five meanings undergraduate students 
exhibited for quantified variables when interpreting statements and deciding their truth values. 
The first three meanings correspond to the way mathematicians use existential quantification, 
unique existential quantification, and universal quantification. The fourth meaning describes 
when students take terms like “any” to mean they can choose one or a few values, which entails 
variability but not universality. The fifth meaning describes when students showed no evidence 
of perceiving the variable as varying, typically by picking a single value. This framework 
provides a rich starting point for understanding quantification as a mental construction that 
students enact while reasoning about mathematical statements or problems.  

Using quantification to interpret multiply quantified statements 
Many studies begin by presenting students with quantified statements to interpret and 

determine their truth value (e.g., Dubinsky & Yiparaki, 2000; Dawkins & Roh, 2020; Roh & 
Lee, 2011, Sellers et al., 2021). Most such studies use multiply quantified statements, which 
introduce the complexity of understanding how the two variables take on values in tandem and 
how they vary together or independently. Such studies tend to focus on the relationship between 
syntax (the grammatical form of the statement) and semantics (how the statement refers to 
objects and construes meaning). Durand-Guerrier and Arsac (2005) explored the dependence 
rule that a variable quantified second (in the syntax) generally depends upon the variable 
quantified before it. Roh and Lee (2011) emphasized the independence rule that the variable 
quantified first must remain independent of the variable(s) quantified thereafter. The order of 
quantifiers is thus accorded great significance in how mathematicians use such statements.  

Using quantification to express and reason about mathematical concepts 
Students draw upon quantification to construct and express meaning, in addition to simply 

reading quantified statements (Vroom, 2020). Apart from mere syntax, students gave meaning to 
multiple quantification by constructing relationships among various quantities sequentially in 
order to express a known concept. Dubinsky, Elterman, and Gong (1988) similarly contrasted 
negating the entire meaning of quantified statements (e.g., failing to be “continuous”) from 
negating layers of quantification.  
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Methods and Theoretical Framing 
The student data presented in this report was taken from a larger study that explored 

students’ understandings of metric space results in function space contexts. The goals of the 
study were to learn about how students connected function spaces and general metric spaces and 
how students drew upon prior understandings of analysis concepts in proof construction. We 
report on data from two students’ paired, task-based clinical interviews (Hunting, 1997). The 
sessions were video recorded, with both students working together on a whiteboard to carry out 
the interview tasks and responding to prompts from the researchers present.  

We recruited these two students, whom we call Adisa and Fenfang, based on initial 
interviews. The primary purpose of these interviews was to observe students’ mathematical 
activity to make inferences about their in-the-moment understandings and their mental resources 
for engaging in proof (Clement, 2000; Thompson, 2008). Accordingly, we held no other criteria 
for selection or paring beyond our anticipation that we could observe and interpret sufficient 
mathematical activity and utterances from the pairs to make inferences about their thinking from 
interpretive and conceptual analyses (Clement, 2000; Thompson, 2008). 

We report on episodes taken from the third and fourth 90-minute interviews with Adisa and 
Fenfang. In these interviews, we asked the students to attempt proofs of both directions of the 
Arzelá-Ascoli theorem: “A subset of C0([a, b],R) is bounded and equicontinuous if and only if it 
is totally bounded in the sup metric.” The students had attempted the proofs of both directions on 
a take-home exam prior to the interviews. Fitting for a take-home exam, this is a highly 
challenging and complex proving task. Unlike many task-based interviews, students had worked 
on it before the study. Our focus in this analysis was not on Adisa and Fenfang’s success or lack 
thereof in producing complete proofs, but rather to understand their ways of reasoning with and 
about quantification in the process of proof construction. Their exams show that neither had 
produced a complete proof, suggesting there was still rich proof production to capture in the 
interviews, which took place some time later. As we noted before, this theorem relates concepts 
rich in quantification. Our analysis focused both on their reasoning about quantification and that 
reasoning’s interaction with their problem-solving process more generally. Further, since they 
had already attempted to prove this version of the Arzelá-Ascoli theorem, we were confident that 
their familiarity with the equicontinuity, boundedness, and total boundedness definitions would 
allow them to begin the task of proving without onerous development of each concept.  

We approached our study through a Radical Constructivist (von Glasersfeld, 1995) lens, 
which in this case meant we interpreted students’ meanings as schemes to which they assimilate 
features of goal-oriented activity. We sought to elaborate the specific schemes supporting their 
reasoning involving quantification. The interviewers frequently asked students to explain and 
justify arguments they made, describe how they understood the ideas they were utilizing, and 
how they understood any visual representations they made. In accordance with Thompson 
(2008), the initial goal of our data analysis was to build second-order models of the students’ 
understandings and their ways and means of operating. Interviewers posed questions to test 
hypotheses about student thinking, not to foster particular understandings. Once initial models 
were built of the students’ reasoning, we observed commonality across the ways that the students 
were operationalizing variation and pair-wise relationships. We then returned to the data to 
engage in interpretive analysis (Clement, 2000) with a particular focus on generating new 
theoretical models of students’ reasoning with multiply-quantified statements.  

Our initial models described ways that Adisa and Fenfang reasoned about (or backgrounded) 
the variation in and interrelationships among the quantities in the proofs. As noted above, we call 
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these actions quantification operationalizations because they simultaneously give meaning to the 
quantification and provide ways of using the quantification for proof construction. We attended 
to the ways the quantops helped Adisa and Fenfang reason about these highly complex proofs, 
helped us explain their lines of reasoning, and often entailed actions and counteractions by which 
quantification could be backgrounded and foregrounded as needed. By iteratively analyzing the 
students’ quantification actions and developing our analytic descriptions of each quantop, we 
refined a list of quantops 1) that could account for the range of student reasoning across the data 
and 2) in which each quantop occurred multiple times across the interviews.  

Results 
We present our results in two sections. First, we present and define the seven quantops. Then, 

we present illustrative data from the students’ work on the Arzelá-Ascoli theorem.  
 
Defining the quantops 

We identified seven categories of quantops, each with a foregrounding and backgrounding 
aspect. These two aspects were important for managing the complexity of the statements and 
relationships being reasoned about. Table 1 presents all seven of the quantops. There are two 
forms of each quantop: one that backgrounds the quantification to allow the prover to reason 
about other matters and another that foregrounds the quantification as the focus of reasoning.  

Table 1. The foregrounding and backgrounding forms of the seven quantops.  
Quantop Foregrounding Backgrounding 

Variation quantop Imagining variation in a quantity Fixing an otherwise variable quantity 
Unitizing quantop Unpacking variation within some unit Encapsulating variation in some way 
Dependence quantop Constructing relationships of 

dependence or invariance 
Quantifying two variables with no identified 
relationship between their variation 

Cardinality quantop Making inferences about a variable by 
explicitly referencing the cardinality of 
its possible values  

Making inferences about a variable based on 
implicit imagery or acknowledging possible 
alternatives in the cardinality of variation 

Notational quantop Explicitly linking notation to some 
aspect of an object’s quantification 
status 

Making inferences about a variable based on 
implicit assumptions about notation or an 
image of suppressed notation  

Existential quantop Warranting existence by stipulation or 
construction 

Assuming existence to allow further proof 
activity 

Inference quantop Tracking a line of inference as quantities 
vary 

Constructing lines of inference within other 
quantification backgrounding actions 

 
Variation Quantop: Fixing a quantity that varies/ imagining variation in a quantity. 

Universal quantification is frequently operationalized by reasoning about a fixed, but arbitrary 
element of the set (often expressed by the word “let”). This means imagining fixing a quantity 
with the awareness that it could otherwise vary. The complement action to fixing a quantity is 
intentionally imagining variation in the quantity. It is worth noting that imagining variation can 
happen in different ways such as imagining continuous variation of a number, imagining iterative 
variation in some countable set, or imagining variation through elliptical reasoning about a few 
representatives. The intentional variation may need to be coordinated with any reasoning 
previously performed on the fixed quantity, which often involves some of the other quantops.  

Unitizing Quantop: Unitizing an object that involves variation. This quantification action 
occurs when the reasoner has some means by which they can encapsulate variation via some 
representation or property that allows them to reason about a range of values at once. For 

24th Annual Conference on Research in Undergraduate Mathematics Education 163



instance, the graph of a function can be understood to represent the range of values of the input 
and output. A neighborhood stands for all of the values of the variable bounded within the 
neighborhood. Graphical representations in particular provide tools for unitizing variation. This 
allows an association of numerical bounds (|𝑓(𝑥) − 𝑓(𝑡)| < 𝜀) with spatial regions (e.g., inside 
𝜀-tubes on a graph). The use of neighborhoods to encapsulate a range of values is essential to the 
interface between topological and metrical interpretations of analysis.  

Dependence Quantop: Dependent covariation and independent invariance. In an each-
to-some pairwise relationship, one quantity may be understood to depend on the other. 
Accordingly, varying one quantity results in the dependent quantity varying with it, hence the 
two co-vary. In a one-to-every pairwise relationship, variation in one quantity does not require 
variation in the other. The other quantity remains invariant, and hence is considered independent. 
Constructing relationships of independence/dependence or co-variation/invariance are an 
essential quantop for reasoning about pairwise relationships, and other quantops are often 
employed toward this end.  

Cardinality Quantop: Attending to the cardinality of a quantity’s range of values. This 
quantop is important for imagining variation and reasoning about dependence/independence. An 
invariant quantity takes on exactly one value. A covariant quantity takes on the same cardinality 
of values as the quantity with which it varies (or at least no larger a cardinality). A quantity that 
varies finitely affords certain actions such as taking a maximum. A quantity that varies countably 
may be reasoned and proved about iteratively. A quantity that varies uncountably must be 
reasoned about without taking maximums or assuming a “next” choice.  

Notational Quantop: Notating features of quantification. A number of notational tools 
and conventions are used to maintain a record of the quantops performed to aide reasoning about 
the range of relevant objects and their quantificational status. When two quantities co-vary, they 
are often notated with the same subscript or one serves as a subscript for the other (e.g., 𝑓! and 𝜀!, 
𝛿"). When a quantity is independent (cardinality of 1), it may be notated using *, lack of a 
subscript (implying lack of variation or dependence), or some other marker of uniqueness. If a 
quantity varies countably (including finitely), they are often indexed by the natural numbers to 
express the cardinality of variation. Mathematical concepts are sometimes named to indicate a 
particular quantification structure; the adjective “uniform” in analysis often means that a 
relationship holds independent of the variation in another quantity. However, neither dependence 
nor variation are always notated. When a proof operates fully by universal generalization, an 
arbitrary value stands for all possible values without further notation (such as “Let 𝜀 > 0”).  

Existential Quantop: Warranting existential quantification. Proofs of existentially 
quantified claims require that provers warrant the existence of an object meeting the stated 
requirements. The two primary ways of warranting existence in a direct proof are by construction 
or by stipulation. One warrants existence by construction when you show how the quantity could 
be produced from other quantities (e.g., 𝜀 = #

$
 or 𝑀∗ = max{𝑀!}	!&'( ). One warrants existence by 

stipulation when a definition guarantees that something exists. For instance, if we know a 
function is bounded we can stipulate that 𝑀 exists such that ∀𝑥, |𝑓(𝑥)| ≤ 𝑀 (this is sometimes 
called existential instantiation). The complement action to warranting existence is to assume 
existence. We observed several times when students assumed that some quantity existed to 
elaborate a line of inference before later returning to warrant that claim. This backgrounds the 
need to warrant existence to allow progress on the proof.  

Inference Quantop: Imagining a line of inference under variation. Proofs entail 
inferences and constructions performed on quantities within some imagined quantification 
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structure. These lines of inference become nested within other quantops such as fixing or varying 
certain quantities, which often means the whole line of inference must be analyzed under 
variation. If a quantity is constructed from another that is temporarily fixed (e.g., 𝛿 =
min ="

)
, 1?), then varying the first quantity may result in varying the newly constructed one. This 

induces a relationship of dependence. If one wants to justify a relationship of independence, the 
reasoner must attend to why the construction of one quantity remains invariant while other 
quantities are allowed to vary (e.g., the maximum or supremum of a set does not vary as the 
values in the set vary).  

Examples from student data: Proving totally bounded implies bounded 
We limit our data presentation to Adisa and Fenfang’s initial orientation to the concepts since 

it highlights many of the quantops and is easier to describe succinctly as compared to the 
extended proof production that followed. They began their work with the statement of the 
Arzela-Ascoli theorem written on the board as “A subset 𝑆 of 𝐶([𝑎, 𝑏], ℝ) (sup) is 
equicontinuous and bounded iff it is totally bounded.” Since we aim to link the imagery of the 
various quantops to students’ goal-oriented activity, we organize this description by the apparent 
goals the students were pursuing throughout the task-based interviews. 

Goal 1: To recall and write the definition of equicontinuous. Fenfang began writing a 
definition of equicontinuity as “∀𝜀 > 0, ∀𝑛 ∈ ℕ, ∃𝛿 > 0, s.t. if |𝑥 − 𝑡| < 𝛿, |𝑓((𝑥) − 𝑓((𝑡)| <
𝜀.” Adisa asked if this was “uniform” or “pointwise.” Fenfang explained why this was “uniform” 
in two ways. First, she said that a pointwise meaning would have “∀𝑥” at the beginning. Then, 
she explained that for pointwise “we fix one 𝑥 [tracing a vertical line with her hands] and then 
we have… epsilon and delta.” They agreed this expressed “uniform equicontinuous” while Adisa 
wrote the definition of “point-wise equicontinuous” as “∀𝑥, ∀𝜀 > 0, ∃𝛿 > 0	|𝑓((𝑥) − 𝑓((𝑡)| <
𝜀, |𝑥 − 𝑡| < 𝛿. ∀𝑛.” Adisa explained the difference saying, “For every 𝑥, there is a 𝛿 that you 
pick such that this will cause [points to the inequality on 𝑓 values].”  

We observe two quantops in this quick interchange. Fenfang fluidly shifted from moving the 
quantification expression “∀𝑥” to the front of the definition and imagining fixing that quantity 
before introducing the others (variation quantop). They recognized that this meant the 𝛿 that 
followed depended on the choice of 𝑥 (dependence quantop). While they expressed this in 
writing using syntactic order, they did not completely rely on order to express quantification 
relationships. In the process of writing their definitions, both wrote the final predicate 
“|𝑓((𝑥) − 𝑓((𝑡)| < 𝜀” before they wrote other quantification expressions. Adisa reversed the 
common syntax by writing the conditions on 𝑥, 𝑡,	and 𝑛 after the predicate inequality. Fenfang 
used conditional “if, then” structure to quantify 𝑥 and 𝑡, which is common for the nested 
universals in analysis definitions (a backgrounding variation quantop). We thus observe that their 
ways of constructing and expressing pairwise relations were more robust and varied than mere 
syntactic order, which remained true throughout the interviews.  

Goal 2: To recall and write the definition of bounded. Adisa then questioned whether 
“bounded” meant “one 𝑀 for all of them or one 𝑀 for each one.” The interviewer asked the 
students to explain the difference. Adisa initially said it “boils down to the same” suggesting the 
two were equivalent. To explain this, Adisa began exploring whether he could prove one from 
the other. He wrote the definition, “∃𝑀 > 0 s.t. |𝑓(𝑥)| < 𝑀	∀𝑓 ∈ ℰ.” He then wondered aloud 
about the cardinality of ℰ. He explained that if this set were finite and “I could always take the 
max of all of them and use that as the 𝑀 for every one of them.” He later expressed this writing, 
“𝑀 = max{𝑀', 𝑀*, … ,𝑀(}.” Alternatively, he explained that when ℰ is infinite, this would not 
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be possible since you would have to take the supremum of the bounds (which may not be finite). 
He thus decided that the definition must mean “one 𝑀 that bounds all the 𝑓’s in the subset.”  

We observe that Adisa used implication between the two possible meanings of bounded to 
decide what was the correct definition. First, he used dependence and cardinality quantops to 
interpret how the conditions were different. It seems he implicitly assumed that having one 𝑀 
implied having a bound for each (one 𝑀 is a stronger condition) and thus focused on proving the 
converse implication. Within the condition “one 𝑀 for each,” he imagined 𝑀 varying as 𝑓 varied 
so that finitely many functions meant finitely many bounds (variation and dependence quantops). 
He expressed the maximum of these bounds by constructing the universal bound with no 
subscript as the maximum of the set of varying bounds with natural number subscripts 
(notational quantop). He then considered the available inferences on the set of bounds (inference 
quantop). Since an infinite set of bounds would not always be bounded above, he decided that 
having many 𝑀’s did not imply having one 𝑀 and that the definition was the stronger condition.    

Goal 3: To recall and write the definition of totally bounded. Adisa had written on the 
board “∀𝜀 > 0	𝐴 ⊂ 𝑀	∃ finite covering by 𝜀-ngbhds” as a definition for a totally bounded set M. 
He elaborated using a diagram of a square, which represented the set 𝐴. He said if you fix 𝜀 = 1, 
then there would be a finite set of neighborhoods that cover 𝐴. He represented this by drawing 
circles on the square that covered most of its area. He then elaborated his written definition with 
the set {𝑎', … , 𝑎+} explaining “every member of 𝐴 will be in one of these 𝜀-neighborhoods, 
centered at one of those.” As Fenfang explained her interpretation of the diagram by putting 𝑎! at 
the center of each circle, Adisa also wrote “Let 𝜀 = 𝜀+ . 		{𝑀"(𝑎!)}!&'+ .” Both students were 
working to elaborate that the 𝑎! were centers of epsilon neighborhoods with radius 𝜀.  

In this discussion, the students constructed a complex each-to-some relationship in which 
each of the (infinitely many) functions was in some one of the (finitely many) neighborhoods, 
which involves the cardinality and dependence quantops. However, the specific functions in the 
neighborhoods were nowhere represented on the board except as locations in the square. This 
reflects the idea that the cover means that neighborhoods stand for the range of values within 
them (unitizing quantop). The neighborhoods themselves represented covariation of three 
entities: center, radius, and set. Adisa began discussing only the radius and centers before he 
noted that each center represented a whole neighborhood, which he then notated using 𝑀"(𝑎!) 
(dependence quantop). Both students felt the need to recognize the various moving parts even 
while they clearly linked them as compound units that covaried. This helps explain why Adisa, 
after initially fixing 𝜀=1 (variation quantop) later wrote “𝜀 = 𝜀+” to show that the radius did not 
vary with the neighborhood (dependence and notation quantops).  

 
Conclusion 

In this paper, we set forth seven categories of quantops that capture the complex ways two 
graduate students managed the high number of quantities involved in the Arzelá-Ascoli theorem 
and the relationships between them. These categories contribute to the literature by identifying 
new aspects of how quantification is enacted in reasoning about analysis proof tasks. 
Furthermore, we note the interplay between foregrounding and backgrounding quantification to 
manage the cognitive load of the tasks. Due to space concerns our data presentation was limited 
to a largely illustrative function. However, we anticipate that future reports and studies can 
continue this work to characterize how quantification is enacted in reasoning. A natural future 
step is to explore how learners can develop these highly complex skills for proof production.  

24th Annual Conference on Research in Undergraduate Mathematics Education 166



References 
Clement, J. (2000). Analysis of clinical interviews: foundations and model viability. In A. E. 

Kelly, & R. Lesh (Eds.), Handbook of research data design in mathematics and science 
education (pp. 547–589). Mahwah, NJ: Lawrence Erlbaum Associates. 

Dawkins, P. C. & Roh, K. H. (2020). Assessing the influence of syntax, semantics, and 
pragmatics in student interpretation of multiply quantified statements in mathematics. 
International Journal of Research in Undergraduate Mathematics Education, 6(1), 1-22. 

Dubinsky, E. & Yiparaki, O. (2000). On student understanding of AE and EA quantification. 
Research in Collegiate Mathematics Education, IV, 239–289. 

Dubinsky, E., Elterman, F., & Gong, C. (1988). The student's construction of quantification. For 
the Learning of Mathematics, 8(2), 44–51. 

Durand-Guerrier, V. & Arsac, G. (2005). An epistemological and didactic study of a specific 
calculus reasoning rule. Educational Studies in Mathematics, 60(2), 149–172. 

Epp, S. (2003). The role of logic in teaching proof. The American Mathematical Monthly, 110, 
886–899.  

Hunting, R. P. (1997). Clinical interview methods in mathematics education research and 
practice. The Journal of Mathematical Behavior, 16(2), 145-165. 

Pugh, C.C. (2015). Real Mathematical Analysis. Switzerland: Springer International Publishing.  
Roh, K. & Lee, Y. (2011). The Mayan activity: a way of teaching multiple quantifications in 

logical contexts. PRIMUS, 21, 1–14. 
Sellers, M. E., Roh, K. H., & Parr, E. D. (2021). Student Quantifications as Meanings for 

Quantified Variables in Complex Mathematical Statements. The Journal of Mathematical 
Behavior, 61, 100802. 

Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the 
foundations of mathematics education. In Proceedings of the annual meeting of the 
International Group for the Psychology of Mathematics Education (Vol. 1, pp. 31-49). PME. 

Von Glasersfeld, E. (1995). Radical constructivism: a way of knowing and learning. London: 
Falmer Press.  

Vroom, K. (2020). Guided Reinvention as a Context for Investigating Students’ Thinking about 
Mathematical Language and for Supporting Students in Gaining Fluency (Doctoral 
dissertation, Portland State University). 

 

24th Annual Conference on Research in Undergraduate Mathematics Education 167



A Symbolizing Activity for Constructing Personal Expressions and its Impact on a Student’s 

Understanding of the Sequence of Partial Sums 
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This paper reports the results from a set of exploratory teaching interviews designed to engage 

students in reasoning about partial sums and constructing individualized algebraic expressions 

(called personal expressions) to describe their meanings for partial sums. Our analysis focused 

on one particular student, Emily, who constructed two sets of personal expressions to describe 

her conceptions for partials sums as (a) a process and (b) the result of an additive process, one 

novel and one based on her image of summation notation. We conjecture that investigating 

individual students’ purposes for creating personal expressions and how these expressions 

evolve will provide greater insight into how students use mathematical notations and their 

meanings for particular mathematical topics such as infinite series.  

Keywords: Infinite series, symbolization, exploratory teaching interview, calculus, summation 

symbol  

Introduction and Literature Review 

Mathematicians and students use semiotic representations such as graphs, algebraic notation, 

formal statements, and diagrams ubiquitously to convey their images for mathematical concepts. 

Algebraic notations are often privileged in teaching calculus topics such as infinite series 

(González-Martín et al., 2011) and constitute a focal point of students’ reading of mathematical 

proof (Shepherd & van de Sande, 2014). Algebraic expressions such as summation notation and 

limit notation can be difficult for students to interpret because expressions often convey dual 

meanings, such as a dynamic process (i.e., additive process, limit process) or the result of this 

process (i.e., sum, limit value), and students must determine which meaning is appropriate in a 

given context (Gray & Tall, 1994; Güçler, 2013; Kidron, 2002; Martínez-Planell et al., 2012). 

Gray and Tall (1994) claimed that professional mathematicians’ ability to reason about 

mathematical concepts successfully comes from flexibly using notations to describe either a 

process or the result of the process. Although cognitive theories related to students’ construction 

of stable concepts from processes abound in the literature (e.g., Dubinsky, 1991; Glasersfeld, 

1995; Sfard, 1991), there has been little research on the algebraic expressions that students create 

in correspondence with this cognitive transition (e.g., Tillema, 2010).  

This paper constitutes the results from one portion of a more extensive study designed to 

investigate undergraduate students’ symbolizing activities related to infinite series. In 

mathematics, the symbolic expression ∑ 𝑎𝑛
∞
𝑛=1  for an infinite series indicates (1) the process of 

summing consecutive terms of an infinite sequence (𝑎𝑛) and (2) the metaphorical “result” of this 

process. The method to establish whether an infinite series converges and the value to which it 

converges is to determine the limit of the corresponding sequence of partial sums, typically 

denoted using the expression ∑ 𝑎𝑖
𝑛
𝑖=1 . To construct the sequence of partial sums, the student must 

abstract the process of computing individual partial sums into a cognitive entity that can be 

coordinated with an index to order the partial sums into a sequence.  

The conventional algebraic notation for denoting the general term of the sequence of partial 

sums is summation notation, i.e., ∑ 𝑎𝑖
𝑛
𝑖=1 . Some researchers have reported the potentially 

problematic nature of the indices of the notation (i.e., i’s in ai; Katz, 1986) and how students’ 
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meanings for the indices can affect their ability to interpret or expand summation notation 

(Strand et al., 2012; Strand & Larsen, 2013). However, there is scant research on how students 

impute their various meanings for partial sums to algebraic expressions or the ways in which 

these expressions change as the student’s conceptions of partial sums evolve. Consequently, this 

paper will describe the evolution of one students’ algebraic expressions for individual partial 

sums as she transitioned from considering the process of computing individual partial sums to 

envisioning arbitrary partial sums as a concept. The research questions addressed by this study 

are: (1) what purposes do students have for constructing and utilizing symbolic expressions for 

partial sums? and (2) how do students’ constructed expressions evolve as a student moves from 

considering partial sums as a process to a result?  

Theoretical Perspective 

In this paper, we adopt a radical constructivist ontological perspective on algebraic 

expressions. Glasersfeld (1995), who initiated radical constructivism, proposed the following 

definition for symbol: “a word will be considered a symbol, only when it brings forth in the user 

an abstracted re-presentation” (p.99). In this context, a re-presentation is an abstracted 

component of an individual’s previous experience that she posits in her mind’s eye to 

metaphorically re-experience the situation. From this standpoint, an algebraic expression itself 

becomes a symbol (to a student) only when she imputes a component of her previous experience 

(e.g., relationship, process, concept) to the expression.  

We will use the term personal expression to denote an algebraic expression that a student has 

created and to which, in the researcher’s mind, the student has imputed a re-presentation. We 

will call the basic unit of an expression an inscription, which we define as a written mark utilized 

by an author to succinctly describe a property, action, or relationship that the author has 

envisioned. A student may adopt a conventional notation to construct a personal expression or 

create a unique and novel expression. However, we will only call an expression a personal 

expression if it appears, to the researcher, that the student has “something to say through [it]” 

(Thompson & Sfard, 1994, p. 6). 

There are several “things” that students say through their personal expressions. For example, 

Gray and Tall (1994) identified three meanings that a student can impute to an expression: (a) a 

process or mathematical operation such as adding consecutive integers, (b) a concept such as the 

sum of the first ten positive integers, or (c) a dualistic meaning encompassing both the process 

and the concept such that either may be called upon at will. Gray and Tall (1994) used the term 

procept to identify the third meaning, a personal expression that a student employs fluidly to re-

present either a process or a concept (according to her needs). In the results section of this paper, 

we report a student’s construction of a set of personal expressions that she initially utilizes to re-

present a process (meaning “a”) and her subsequent construction of a new personal expression to 

re-present a proceptual meaning for partial sums (meaning “c”). 

Methodology 

The data for this study consisted of four 90-minute individual exploratory teaching 

interviews (Castillo-Garsow, 2010; Moore, 2010; Sellers, 2020) conducted during the Summer 

2021 session at a large public university in the Southwestern United States. This paper focuses 

on the first two interviews, which entailed tasks related to the sequence of partial sums. The 

student participants were enrolled in a second-semester calculus course and completed the unit 

on sequences and series between the two interviews. Due to the pandemic, the interview was 
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conducted remotely, and student work was recorded on a collaborative whiteboard application. 

The first author served as the teacher-researcher, and the second author served as the witness. 

The task sequence was based loosely on a three-phase approach described by Radford 

(2000). In the first phase, the students described how they might determine individual partial 

sums from a set of five infinite series presented in expanded form (e.g., 1 +
1

2
+

1

4
+⋯). In the 

second phase, the teacher-researcher prompted the students to reflect on their actions during 

Phase I and construct a written rule for determining an arbitrary partial sum. In the final phase, 

the teacher-researcher introduced the concept of a personal expression, asked the students to 

construct personal expressions to denote an arbitrary partial sum, and describe their meaning of 

partial sums, the sequence of partial sums, and infinite series through their expressions. 

Results 

This section focuses on one student, Emily, and her journey to construct a personal 

expression that she could use to re-present her image for partial sums. Emily was a chemical 

engineering student who had just finished her freshman year and took second-semester calculus 

during the Summer 2021 session. We focused our analysis of Emily’s interviews on (a) 

describing the purposes that Emily had for constructing her written rule and personal expressions 

to describe partial sums and (b) examining the evolution of her personal expressions throughout 

the interviews. In the following subsections, we discuss Emily’s actions and personal expressions 

during each of the three phases of tasks, focusing mainly on her construction of expressions to 

describe a process for computing a partial sum and adopting a holistic view on partial sums. 

Phase I and Phase II: Reasoning about Partial Sums and Developing a Written Rule 

During the Phase I task, Emily developed a four-step process to determine the value of an 

arbitrary partial sum. These steps included (a) examining the initial terms in the series to develop 

a recursive or explicit pattern to generate additional summands, (b) test the potential pattern on 

all known values in the series, (c) use the pattern to generate all terms in the series until the 

desired term (e.g., 37th summand), and (d) add the terms together to compute the partial sum. In 

the Phase II task, Emily constructed a written note to reflect these four steps (see Figure 1). Her 

purpose for constructing this note was to describe the process of computing a partial sum in 

clear, distinct steps, as evidenced in the transcript below: 

Interviewer: Go ahead and explain to me your rule, your written note. 

Emily: Ok, so first, um. Well, first, before, when I was thinking about how, like, what steps I 

would do [to determine a partial sum], I could not describe a way that I would tell 

someone it, because. I’m a visual learner, and I would have to show, I would have to 

have a sequence (Emily used sequence and series interchangeably) in front of me to show 

them like, “Ok, this is what you do.” So, I was like, Ok, so I’m going to change it and I’m 

going to put it like an instruction manual. Um, so, in that tense, the first step is to…  

In this episode, Emily was unsure how to describe her thinking in written form until she decided 

to create an ordered set of instructions delineating her method to determine an arbitrary partial 

sum. After Emily decided that the purpose of her written rule was (to her) to depict a process, she 

quickly and efficiently wrote the four-step written note shown in Figure 1. In this regard, we 

conjectured that Emily could leverage her describe-a-process purpose for developing her written 

rule to construct a personal expression through which she could re-present to herself this process. 
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Phase III, Purpose 1: Developing a Personal Expression to Describe a Process 

During the Phase III task in the first interview, we presented Emily with a video clip 

describing the meaning of personal expressions and providing examples of constructing personal 

expressions (the video clip may be viewed at https://youtu.be/PdKkhZVPulA). After the video 

clip, we asked her to create a personal expression for an arbitrary partial sum and record any 

inscriptions that she created in a glossary. Emily’s written rule, personal expressions, and 

glossary are contained in Figure 1.  

 
Emily’s written note: 

  

In order to find the sum of any number of terms in a series, follow 

these steps:  

 1) Compare the first and second terms in the series. Meaning look 

at these first two terms and think about how they connect to 

each other. Ex: 1 > 2 (Explain how you can get from 1 to 2 and 

usually you will find the pattern to the whole sequence 

quickly. 

 2) Once you think that you have figured out the pattern. Use it on 

the rest of the sequence. If it works out with all of your terms 

then you have found the pattern correctly. If not return to step 

1 and repeat until correct.  

3) After you have found the correct pattern for the sequence. All 

you have to do is apply it until you reach the term you wish to 

calculate.   

4) Now you have calculated the correct number of terms needed. 

Lastly, you will take all of your solutions and add them up to 

find the sum of your number of terms.   

Then CONGRATs you have found the sum of the number of 

terms.  

 

Emily’s Personal Expressions  
 

 
 

 
Figure 1. A comparison of Emily’s written rule, personal expressions, and glossary  

In Emily’s personal expression, the order of the summands of the series is designated by 

capital English letters. Emily used her “connection” inscription to indicate a relationship between 

consecutive summands in the series and her quantification of this “pattern” with the letter 𝑥. 

Emily’s use of these two inscriptions closely corresponded with Step 1 of her written rule, such 

that Emily could re-present the first step in her written note through line (1) of her personal 

expressions. Emily’s introduction of her fourth inscription in the glossary, ?=, functioned as a 

testing operator through which Emily could re-present the second step of her written note—

testing subsequent pairs of summands to determine whether pattern 𝑥 holds for all summands. 

Emily utilized her fifth inscription, similar in appearance to ≺, to re-present the process of 

generating the first 𝑛 summands of the series by repeatedly applying the pattern 𝑥 to consecutive 

terms. Finally, Emily introduced a sixth inscription, 𝑍, through which she could designate the 

value of the 𝑛th summand to re-present the partial sum generated by computing the sum of the 
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terms. Although Emily’s personal expressions more closely resemble a form of shorthand than a 

conventional mathematical expression, her personal expressions fulfilled the purpose that Emily 

proposed when she initially constructed her written note: to serve as a symbolic medium through 

which she could re-present her process for computing individual partial sums. After Emily 

successfully created the personal expressions to re-present her instruction manual for 

determining individual partial sums in the first interview, we decided to challenge Emily’s 

thinking in the second interview by asking her to describe individual partial sums and the infinite 

series itself with her expressions in the second interview. 

Phase III, Purpose 2: Developing a Personal Expression to Describe a Procept 

In the second interview, Emily utilized her personal expressions from the first interview to 

describe the sum for any number of terms in a series. When the teacher-researcher asked Emily 

to use her personal expression to describe the “entire series,” she immediately stated that she 

would need to create a new inscription. After creating and rejecting a novel inscription, Emily 

proposed using a variation of conventional summation notation, Σ𝑥, to convey a “holistic view” 

of a partial sum, as evidenced in the following transcript: 

Interviewer: Why did you pick this inscription [Σx ] for representing the entire series? 

Emily: I used it because, so, I know it is used in, like, you know, like, official math symbols, 

and it’s used quite a lot, at least in calculus it’s used a lot. And, I do not think I 100% 

really understand the importance, or maybe the, um, symbolism that this little thing 

(indicates sigma, Σ) does. But I do know that it’s used to represent a holistic view of 

something. And so, that’s the closest symbol I can think of. All my symbols were going 

to look something like that, the ones I was thinking of before I made it. So, I do like the 

holistic view of what it means no matter, whenever it is used, it always means, like, all of 

something. So that’s why I choose it. 

At this moment, we claim that Emily’s purpose for constructing a personal expression 

changed from a describe-a-process purpose to an adopt-a-holistic-view purpose that resulted in 

constructing a personal expression to re-present both the additive process of computing a partial 

sum and the result of the process. We further claim that Emily’s “holistic” personal expression 

functioned as a procept through which she could fluidly consider either the process of generating 

summands and adding them together or the resultant sum. The transcript below indicates this 

fluidity in re-presentations that Emily imputed to her “holistic” expression, which she employed 

to describe specific partial sums for individual series (see Figure 2).  

 

 

 
Figure 2: Emily’s personal expression for a “holistic” view of a partial sum 

Emily: So 1 + 1 = 2, right? So, if you have this (1 + 1) equals to Q (writes 𝑄 = 1 + 1 = 2), 

then Q equals not only 1 + 1, but it always equals 2. Does that make sense? So, yes, in 

the inscription (∑
1

7𝑛

6
1 ) when you say what it equals, it would equal all of these written out 
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(indicates 
1

7
+

1

14
+

1

21
+

1

28
+

1

35
+

1

42
). But when you add them together, it also equals 

that (indicates ∑
1

7𝑛

6
1 ) . 

Emily’s new personal expression through which she re-presented partial sums became a 

powerful tool for her to describe partial sums, infinite series, and components of infinite series 

throughout the remainder of the second interview. However, Emily also continued to use her 

original shorthand personal expressions (see Figure 1) to describe computing individual partial 

sums in the series task following the introduction of her “holistic” personal expression. For 

example, after Emily constructed instantiations of both types of personal expressions to describe 

(a) the process of computing any partial sum (using expressions in Figure 1) and (b) the partial 

sum itself (using expressions in Figure 2), the interviewer asked Emily whether her personal 

expression for an arbitrary partial sum, ∑ 𝑥𝑛1  (part “b”), could be used to compute any partial sum 

(part “a”). The transcript below details Emily’s response, which indicates that she was beginning 

to consider that her “holistic” personal expression might subsume her original personal 

expressions that functioned as shorthand for her written rule: 

Emily: Yeah, you could because, like I said before, as long as this top 𝑛 does not equal 

infinity, 𝑥, or you know whatever, this (indicates ∑ 𝑥𝑛1 ) equals this (indicates 
1

3
+

1

8
+

1

13
+

1

7
+

1

35
+⋯)… But, um, so this, the “holistic” inscription that I made equals the 

1

3
+

1

8
+

1

13
+

1

7
. So, yes, as long as 𝑛 is not infinity in the way that I’ve written it, um, this 

whole thing (indicates ∑ 𝑥𝑛1 ) can answer number 1 [part “a”] and number 2 [part “b”].  

For the remainder of the interview, Emily utilized only her “holistic” personal expression, Σ1
𝑛𝑥, 

to describe partial sums and series. However, the remainder of the tasks were related to 

describing infinite series or partial sums as results, so we do not have clear evidence that Emily 

would not have utilized her original shorthand personal expressions to describe computing 

individual partial sums. This experience indicates that even though Emily created an expression 

through which she could re-present a proceptual view of partial sums, the “holistic” expression 

might not have entirely subsumed her original shorthand expressions. Instead, Emily’s two types 

of personal expressions likely evolved to fulfill two separate (to her) purposes: re-presenting the 

process of computing a partial sum and re-presenting the result of this process. 

We acknowledge that because Emily participated in an accelerated sequences and series unit 

in the week between the first and second interview, it is likely that summation notation was more 

readily available to her in the second interview than the first. However, we make two points 

about Emily’s use of summation notation to clarify that her exposure to summation notation in 

her course did not unduly affect her construction of personal expressions. First, Emily persisted 

in using her original personal expressions in both interviews to re-present the process of 

computing a partial sum, including after the portion of the interview where she created her 

“holistic” personal expression, Σ1
𝑛𝑥. It appeared that only when Emily’s purpose for constructing 

a personal expression changed from a describe-a-process purpose to adopt-a-holistic-view 

purpose did the need for summation notation arise. Second, Emily initially stated that she did not 

want to use summation notation but settled on this convention after realizing that her image of 

what summation notation conveyed (i.e., a holistic entity) aligned with her purpose for 

constructing a personal expression. 
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Conclusion and Discussion 

The research questions for this paper addressed (a) the purposes for which students construct 

personal expressions and (b) how these personal expressions evolve as students’ thinking 

changes about partial sums. We have shown the example of one student, Emily, who created two 

distinct sets of personal expressions—one entirely novel, the second borrowed from 

convention—to re-present to herself the process of computing partial sums and the resulting 

partial sums. We have further indicated that neither of Emily’s personal expressions seemed to 

wholly subsume, even as her purpose for creating the expressions changed from re-presenting a 

process to re-presenting a result. At one point near the end of the Phase III tasks, Emily claimed 

that (to her) her personal expression resembling summation notation could be used to answer the 

questions that she had previously utilized her process-oriented personal expressions to answer. 

However, there is insufficient data to conclude whether she believed her “holistic” personal 

expression could wholly replace her initial instruction-based shorthand personal inscriptions. 

It is worthwhile to note that conventional mathematical symbols all began as personal 

expressions for individual mathematicians. For example, suppose that a theoretical 

mathematician spends several months considering a hitherto unreported topic within a particular 

branch of abstract mathematics. During this research, the mathematician identifies a novel 

process or concept that she would like to report to the mathematical community formally. In 

order to both name this mathematical idea and distinguish it from others, the mathematician 

proposes a new mathematical symbol—or a variation of an existing symbol—to indicate this 

idea. In other words, the mathematician constructs a personal expression to re-present to herself 

the mathematical idea that she has constructed. After the publication of the mathematician’s 

work, other scholars might adopt and utilize the newly-constructed symbol in their own work. 

Over time, the symbol might evolve into a convention with a “normative meaning” assigned by 

the mathematics community. Mathematicians and instructors might then utilize the conventional 

expression for decades, or even centuries, to convey this “normative meaning” in their practice. 

However, the conventional expression would not exist without the work of the original 

mathematician, who considered an idea that was (to them) unique and constructed a personal 

expression to which they could re-present their meaning for their novel idea. 

We acknowledge that research on communication and symbolization between individuals is 

essential and helpful to further understanding social dynamics and education at the group level. 

In this paper, we step even further and move the discussion on symbolization to the realm of 

individual student cognition. Exploring students’ creation of personal expressions is a novel 

approach that does not focus on the power of semiotic representations to foster communication 

between individuals and groups. Instead, the focus is on an individual’s designation of a semiotic 

device as an instrument through which she can re-present her meanings to herself (a prerequisite 

to effective communication with others). In this regard, personal expressions almost always 

make sense to students, both from a semantic and syntactic perspective, because students create 

or adapt them to re-present their specific meanings. Research investigating students’ personal 

expressions, students’ purposes in creating personal expressions, and how students’ personal 

expressions evolve and interrelate can better identify the various meanings that students impute 

to their expressions. Individuals construct their own meaning, and by studying students’ 

construction and utilization of personal expressions, we can potentially gain deeper insight into 

how students use symbolic notations and their meanings for mathematical topics such as infinite 

series. 
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Confronting Abstraction: An Analysis of Mathematicians’ Concept Images and Definitions 

 

Kyle Flanagan 

Virginia Tech 

Mathematicians frequently engage in mathematics involving highly formal and abstract 

concepts. These concepts are often challenging or impossible to accurately visualize. However, 

mathematicians are still successful at answering new, difficult mathematical problems, despite 

confronting this obstacle of mathematical abstraction. This study attempts to understand how 

mathematicians think about and understand abstract mathematical concepts. Tall and Vinner’s 

(1981) notion of concept image and definition are used to model and analyze the understanding 

of these mathematical concepts. One research mathematician participated in an individual Zoom 

interview, where both interview questions were answered, and a mathematical task was 

completed. Analysis provided evidence that for abstract mathematical concepts, a large portion 

of a mathematician’s evoked concept image consists of informal and visual examples. These 

examples are supplemented with important formal definitions and properties from one’s concept 

image. Implications for the teaching of undergraduate and graduate mathematics are discussed. 

Keywords: Abstract algebra, Concept image, Mathematical abstraction, Research mathematician 

Introduction 

In academic settings, mathematicians frequently engage in solving difficult mathematical 

problems. For these mathematicians, and in particular those who study pure mathematics, these 

problems often involve highly formal and abstract concepts. With the introduction of more recent 

mathematical theories, such as category theory, much of the newest, most cutting-edge 

mathematical research is teeming with exceedingly abstract terminology, definitions, theorems, 

and proofs. One research area in which the extent of the abstraction can be clearly acknowledged 

is in the broad field of abstract algebra, which includes some subfields such as algebraic 

geometry and commutative algebra. A major challenge in understanding abstract, formal 

mathematics is that as the abstraction grows, the ability to accurately visualize the mathematics 

frequently becomes more challenging. In contrast, much of primary and secondary school 

mathematics consists of concepts that can be, at least somewhat, visualized. Simple algebraic 

concepts like functions can be visualized in the Cartesian plane, geometric objects are easily 

sketched on paper, and core calculus concepts, such as differentiation and integration, can be 

visualized through rate of change and area under a curve. This is not to question the difficulty of 

learning these mathematical concepts, but it illuminates a new obstacle that mathematicians 

encounter when studying mathematics. However, despite the abstraction of formal mathematics, 

mathematicians continue to be successful at solving problems and publishing new results. Thus, 

it is worth investigating how mathematicians think about abstract mathematical concepts. 

In mathematics education, the research of mathematicians’ mathematical practices is largely 

uncharted territory. Moreover, there is even further scarcity in the literature on how 

mathematicians think about and understand mathematics. One mathematical practice that has 

been closely studied is how mathematicians interact with proofs, such as their reading, writing, 

and evaluation of them (e.g., Mejía-Ramos & Weber, 2014; Weber, 2008; Weber & Mejía-

Ramos, 2011, 2013). Leone Burton (1999) conducted an interview-based study of seventy 

research mathematicians about how they “come to know” mathematics. Though this study is 
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insightful, her emphasis was on their mathematical practices and how they engaged in 

mathematical communities of practice, not on modeling the mathematicians’ thinking. 

Furthermore, mathematicians are valuable members of the broad mathematical community. 

They instruct and mentor undergraduate students, and they are responsible for the presentation of 

much of the advanced mathematics that these students will encounter. In addition, some of these 

students will go on to teach mathematics in primary and secondary schools. Thus, understanding 

how mathematicians think about and understand mathematics could provide valuable insight into 

mathematicians’ teaching practices and why they are successful or not. Moreover, this could then 

also have far-reaching benefits for the undergraduate and graduate students who are taught by 

these mathematicians. Lastly, mathematicians are excellent at understanding highly abstract 

concepts. Working to understand and model their mathematical thinking may be advantageous in 

learning how to help and instruct students to develop this same level of understanding.    

Literature Review 

The term “abstract” in mathematics is often used to describe formal mathematics because 

formal, or pure, mathematics is centered on the use of generalized definitions, concepts, and 

symbolism. I will define abstraction to be the process of generalizing a concept, phenomenon, or 

observation by extracting the underlying properties or structures, without reference to the 

particular instances that they came from. In formal mathematics, abstraction serves a pivotal role 

because it allows mathematicians to solve the general case of a problem, rather than just a 

specific scenario. As an individual continues to learn new mathematics in a specific field, it is 

likely that the mathematical concepts may become more abstract. Dienes (1961) describes this 

notion as follows: “When we say ‘more abstract’, we mean that more, seemingly rather different, 

situations may be described at the same time… Getting more abstract then means extending the 

field of applicability” (p. 293). Moreover, Hiebert and Lefevre (1986) use the term “abstract” to 

refer to the degree to which a unit of knowledge is tied to specific contexts (pp. 4-5). 

To be successful, mathematicians need to be proficient at understanding and utilizing abstract 

concepts, and potentially also, constructing new abstract concepts. This raises the question of 

how are mathematicians able to successfully work with abstraction in mathematics? More 

specifically, how do mathematicians understand and think about mathematics that they cannot 

accurately visualize? One thread of research that begins to address this question is on how 

mathematicians leverage the use of examples to explore and prove conjectures (Lockwood, Ellis, 

& Lynch 2016; Lynch & Lockwood 2019). Constructing examples for an abstract concept allows 

for a way to connect the unfamiliar mathematical concept to a familiar concept that is already 

known or understood. Lynch & Lockwood (2019), when comparing the use of example between 

mathematicians and students, observed that “mathematicians were much more explicitly attuned 

to the logical structure of conjectures and how examples fit into those structures” (p. 337). 

Though this observation is in the specific context of mathematical proof, it demonstrates that for 

mathematicians, examples and the formal concepts they exemplify are deeply intertwined. 

Vinner and Dreyfus (1989) also state that, “The student’s image [of a mathematical concept] is a 

result of his or her experience with examples and nonexamples of the concept” (p. 356). It could 

then be assumed that mathematicians’ understanding of a concept is, at least partially, structured 

by, and reliant on, insightful examples that illustrate the properties of that concept. 

Theoretical Framework 

The theoretical constructs of concept image and concept definition (Tall & Vinner, 1981) 

have been used in a variety of contexts. Tall and Vinner define the concept definition to be “a 
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form of words used to specify that concept” (p. 152). This concept definition can vary over time, 

and different definitions can be used in varying contexts. Furthermore, this definition can differ 

from the formal concept definition that is generally accepted by the mathematical community at 

large. The more complex construct is that of the concept image, which Tall and Vinner define as 

“the total cognitive structure that is associated with the concept, which includes all the mental 

pictures and associated properties and processes” (p. 152). In particular, the concept image not 

only consists of visual imagery. Vinner (1991) states that an individual’s concept image “can be 

a visual representation of the concept in the case the concept has visual representations; it also 

can be a collection of impressions or experiences” (p. 68). A person’s concept image will likely 

change over time, and at any given moment, a portion of a person’s concept image may be used 

and become activated, which Tall and Vinner (1981) define as the evoked concept image. 

Moreover, two different components of one’s concept image or definition may be in conflict 

with one another, which can lead to any number of negative responses. Tall and Vinner refer to 

this notion as a potential conflict factor (p. 153). Research related to concept image and 

definition frequently focuses on content from high-school or undergraduate mathematics courses, 

such as calculus, linear algebra, or abstract algebra (e.g., Melhuish et al, 2020; Rösken & Rolka, 

2007; Wawro, Sweeney, & Rabin, 2011). I am unaware of there being any research utilizing 

concept image and definition to study mathematical content beyond the undergraduate level. 

Methods 

 Research questions 

On the basis of the aforementioned background and framework, I examined mathematicians’ 

concept images and definitions for various graduate-level abstract algebra concepts. These 

concept images and definitions are then used to analyze how mathematicians think about and 

understand abstract mathematics. The following two research questions are central to this study: 

1. How much of a mathematician’s concept image for an abstract mathematical concept 

is composed of visual components and images? 

2. What other components of mathematicians’ concept images of abstract mathematical 

concepts are evoked when engaging in mathematical thought and activity? 

Design of the study 

The participant in this study was one male mathematics professor at a large public university 

in the southeastern United States. The participant (Luke) is an assistant professor with research 

interests in various topics in abstract algebra. He was contacted and asked to participate based off 

of his personal background and experience in mathematical research relating to abstract algebra. 

The data for the study was collected through an individual interview, where interview questions 

were answered, and Luke engaged in a mathematical task.  

The participant first participated in one 15-minute Zoom meeting where he was asked about 

his mathematical background and understanding of certain algebraic concepts. The answers 

provided during this meeting informed which mathematical task was given during the interview. 

No data was collected during this preliminary meeting. Luke later participated in one 45-minute 

individual, semi-structured Zoom interview, which was recorded for more-detailed analysis. The 

interview started with questions pertaining to how he thinks about modules, tensor products, and 

direct limits, which are abstract concepts commonly used in algebra. These interview questions 

were designed to help begin delineating his concept images and definitions for these three 

mathematical concepts. Motivation for the phrasing of the questions was taken from how 
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Melhuish et al. (2020) articulated their questions about concept definitions of homomorphism 

and function. For example, two of the interview questions were: 

1. How would you define what a module is? 

2. What other mathematical concepts, objects, or ideas do modules make you think 

about? 

Interview questions mentioning the word “example” were purposely excluded from the 

interview, in order to ensure that he was not influenced into sharing examples, but any examples 

he shared would be an unbiased part of his evoked concept image. Afterward, he was given the 

following mathematical task, asking him to compute the direct limit of a particular direct system 

of modules. The task was chosen because it was a problem that he had likely never encountered. 

 
Figure 1. Mathematical task from the interview, asking Luke to compute a specific direct limit of modules. 

The participant utilized tablet screen-sharing to display his work while completing the task. 

The participant was encouraged to also communicate verbally what he was doing and thinking. 

The task took about 20 minutes, and all written work was collected after the interview to assist in 

the data analysis. After the task was completed, interview questions pertaining to how the 

participant thinks about and approaches mathematical abstraction were asked. This provided an 

opportunity to collect data tailored more directly to the broad research questions, while also 

allowing him the opportunity to reflect on the task he had just completed. Following the 

interview, the interview data was transcribed and analyzed. The analysis process focused on 

identifying key components of the participant’s concept images and definitions, as well as 

identifying how he approached and understood mathematically abstract concepts. Recurring 

components were noted and used for more guided analysis. 

Results 

From the analysis, I found that Luke’s evoked concept images for modules, tensor products, 

and direct limits primarily consisted of examples and visual images, as well as some relevant 

formal mathematical properties. Pertinent results from the interview are discussed below. 

Furthermore, results are also presented on how he spoke about mathematical abstraction and how 

he confronted it. Lastly, Luke was unable to complete the mathematical task during the allotted 

time of the interview, and some possible reasons for this are discussed below. It should be noted 

that not every part of the interview, relevant to the research study, is mentioned and discussed. 

Examples and visual images 

When asked about modules, Luke commonly spoke using simple, visual examples. For 

example, he often referenced vector spaces when discussing modules. In particular, consider the 

following interaction: 

Interviewer: How would you define what a module is? 

Luke: It would probably depend on who I’m talking to, but to a student who has already done 

linear algebra, I would say that a module is just like a vector space, except the scalars 

come from a ring rather than a field. 

Even though a vector space is a well-behaved, special case of a module, the core properties 

of this structure can be visualized through images evoked by the concept of vector spaces. Vector 
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spaces also resurfaced in the interview when asked to define what a tensor product is. After Luke 

discussed the process of finding a basis for a tensor product of free modules, he states: 

If you’re just doing vector spaces, every module is free, and you can work with it this 

way. But it’s not always good to pick a basis. We like to work independent of basis, so 

there is a very abstract way to think about tensor products. 

Interestingly, despite the fact that the tensor product of vector spaces provides a way for 

Luke to better comprehend tensor products, he acknowledges that there are limitations to this 

restricted understanding. This acknowledgement of an imprecise, but helpful, correspondence 

between simplified, visual descriptions and formal mathematical properties reoccurred 

throughout the interview. For instance, he described tensor products as “in a sense like 

multiplying the two modules.” 

Later in the interview, when asked to define what a direct limit is, Luke immediately stated, 

“The simplest possible case of a direct limit is when you have an increasing union.” Luke never 

addressed the formal definition in his discussion of direct limits but chose to primarily provide 

examples to describe the structure. As we will see later in the discussion, it is likely that this was 

because he was not certain about his formal concept definition of the direct limit. 

Formal mathematical properties 

There were multiple instances where the participant called on formal mathematical properties 

or definitions when answering questions about these mathematical concepts. Some of the 

examples he provided in the discussion were highly abstract and connected with his specific area 

of research. However, this was significantly less prevalent than his providing of simple, visual 

examples and informal descriptions. The first instance of referencing formal mathematical 

properties is when Luke referred to how he would define what a module is to a class. He 

mentioned, “If I was teaching a class, I would say that a module is an abelian group together with 

a map from 𝑅 ×  𝑀 →  𝑀 where you have the distributive property and the associative property. 

So, I would just write all those nuts and bolts out.” 

Predominantly, Luke mentioned formal mathematical concepts and properties when asked to 

reference other related mathematical concepts and ideas. One example of this came during the 

discussion of direct limits: 

Interviewer: What other mathematical concepts, objects, or ideas do direct limits make you 

think about? 

Luke: Definitely one of the biggest ones is what’s called the stalk of a sheaf. And another 

instance of this is when you talk about, it’s the same concept actually, germs of 

holomorphic functions…Let’s just talk complex analysis. 

Immediately following this, Luke proceeded to elaborate on many of the details related to the 

concept of “stalk of a sheaf”, using a variety of formal terminology from complex analysis and 

category theory, such as “contravariance.” Another observation is that as the major concepts 

(module, tensor product, direct limit) became more abstract or complex, Luke tended to answer 

questions with more informal language and examples. This is interesting because as mathematics 

becomes more abstract, the formal definitions and properties become that much more important. 

However, it is possible that he relied on simpler, more visual components of his concept images 

to effectively understand and communicate his thoughts about abstract mathematics.  

Confronting mathematical abstraction  

After completing the task, Luke answered more general questions pertaining to abstraction in 

mathematics. When asked what he does when encountering new mathematical concepts or 
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problems he does not know how to solve, without hesitation he said that one has to do examples. 

Additionally, he made comments about using strategies such as relating it to something known, 

understanding the object’s properties, and trying to simplify the object. This is evidence that one 

method of confronting abstraction is to relate the new concept to simpler components of other 

related concept images. When asked about concepts he cannot accurately visualize he stated: 

Interviewer: How do you understand and work with mathematics that you cannot accurately 

visualize? 

Luke: You have to have a way to write it down and work with the objects, and if I can’t 

visualize it, I have to focus symbolically on how can I represent this object, and what 

manipulations can I do to it. 

Luke stated that when he cannot visualize the concept, he has to resort to symbolic 

manipulation. Even though a visual understanding may not exist for the concept, a formal, 

symbolic understanding can exist and still be successful in working with the concept. Finally, 

Luke ended his interview with sharing an informative comment about mathematical abstraction. 

He asserted, “I think abstraction is useful, extremely useful for, as a lens to view things through 

and to see general properties. But it always has to be balanced with examples… I don’t see much 

value in abstraction just for abstraction’s sake. There has to be a rich class of examples that it 

applies to.” These “rich classes of examples” provide a way to support the formal and abstract 

components of one’s concept image. 

Potential conflict factors and mathematical problem solving 

While working on the mathematical task, Luke did not complete the problem in the allotted 

time. The primary reason for this appeared to be that he conflated properties of direct limits and 

inverse (or projective) limits. Prior to the task, Luke remarked, “For the dual notion, the 

projective limit, I actually know more.” Even though he demonstrated that his concept image for 

the direct limit was full of coherent examples and informal properties, it is likely that he is more 

familiar with using inverse limits in his own mathematical work. He later repeated this comment 

while working on the task. When starting the task, Luke began writing down some of the 

transition maps between modules in the directed system. Luke stated that he wanted to “use the 

universal mapping property”, but he applied the universal mapping property of the inverse limit 

instead of the direct limit. He expressed concern that he may have the property backwards. 

Here we can see that two different components of his concept image for direct limits were at 

conflict, which led to a conflict factor. Since his formal concept definition is at odds with another 

part of his concept image, this led to cognitive conflict when working through the problem. Luke 

eventually made a guess for the answer, despite using an incorrect definition. However, after 

working to verify his prediction, he concludes that his prediction cannot be correct. In particular, 

Luke constructs a homomorphism to help check his prediction, but he realizes that the map is not 

compatible with the original transition maps he wrote. Nonetheless, after the interview, Luke 

sent me an email later that day with the correct answer to the problem, providing further 

evidence that the formal definition was a conflict factor in this situation. 

Discussion 

The notion of concept image and definition have been utilized to a great extent to try to 

model mathematical thinking and understanding for secondary school students and 

undergraduates (e.g., Melhuish et al, 2020; Rösken & Rolka, 2007; Wawro, Sweeney, & Rabin, 

2011). However, I was unable to find any instances where this framework was used to study 

graduate students or mathematicians. I utilized concept image and definition to try to model their 
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thinking in the context of understanding how they confront abstraction. The primary goal of this 

study was to determine, for a specific abstract mathematical concept, how much of the concept 

image consists of visual components, and what other aspects are prevalent in that concept image. 

The analysis shows that mathematicians’ concept images may be heavily comprised of visual 

components, examples, and informal descriptions. However, these visual and informal 

components are supplemented by relevant formal mathematical properties and definitions. This 

agrees with Lynch and Lockwood (2019), who state that mathematicians are well-accustomed to 

how examples fit into logical structures. I note that this study consisted of only one male 

mathematician with research focusing on abstract algebra, and the mathematical concepts that 

were analyzed were all algebraic structures. In order to further support these conclusions, it 

would be valuable to conduct similar studies interviewing more mathematicians, also with a 

more mathematically diverse group of individuals. 

The analysis also demonstrates that Luke’s main response to confronting mathematical 

abstraction and new mathematical problems is to work through examples. For example, when 

discussing direct limits, Luke mentions: 

Some people are just really good at seeing an abstract definition and getting it. I really 

think the examples have to be right there to sort of get a feeling for it… I would lean on 

examples to understand what the concept is about. 

Thus, in order for Luke to develop a coherent concept image for an abstract mathematical 

concept, the concept image needs to also consist of relevant, supportive examples. This supports 

the claim by Vinner and Dreyfus (1989) that, “The student’s image is a result of his or her 

experience with examples and nonexamples of the concept” (p. 356). A major implication of this 

analysis is that it highlights the value of integrating supportive examples and visual mathematics 

into one’s concept image for an abstract mathematical concept. More specifically, it could be 

beneficial to guide students into this process of integrating examples and visual images when 

learning new mathematical concepts. Moreover, teachers should provide opportunities for 

students to not only see relevant examples, but also successfully integrate them into their concept 

images by understanding their value and relationship to the concept. Lynch and Lockwood 

(2019) came to a similar conclusion about example-related activity in proof, “An implication of 

this is that it may be beneficial to provide students with experiences of seeing and constructing 

powerful examples that give insight into a conjecture or a proof” (p. 337). 

The task in this study was specifically chosen to represent a concept that was familiar to the 

participant, but he was uncomfortable working with it. This would provide opportunities to 

analyze how mathematicians think and work in contexts where they must actively struggle with 

the mathematical problem. Though he did not complete the task during the interview, the 

analysis illuminates the value of the formal concept definition in the overall concept image for an 

abstract mathematical concept. The non-task interview analysis demonstrated the importance of 

having well-chosen, supportive examples and visual images in one’s concept image, but the task 

showed that the formal properties can be equally valuable in doing mathematics. Luke was able 

to provide well-chosen examples of direct limits in the interview, but this was not enough for 

him to overcome the conflict factor with the formal concept definition. In future studies, it could 

be valuable to see what mathematicians’ evoked concept images are in the case where the task 

was completely solved. Furthermore, analyzing mathematicians’ thinking through different 

mathematical tasks could provide further support for these conclusions. 
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The Teaching of Proof-Based Mathematics Courses 
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We survey and synthesize the literature from 2000 to the present about the teaching of proof-
based undergraduate mathematics courses and find that the field has learned a great deal about 
what instruction looks like and why mathematicians teach the way that they do. We identified 
112 papers that explored teaching via surveys, interviews, or observations. We report the 
findings in three broad categories; (1) what occurs in class, (2) the beliefs, knowledge, and 
rationales that shape instruction, and (3) the relationship between teaching and learning.  

Keywords: Teaching, Lecture, Non-Lecture, Literature Review 

In undergraduate mathematics education, there are a number of compelling reasons that 
researchers should explore mathematicians’ beliefs, goals, and practices around teaching and 
learning. First, if we, as a research community, want to better explain the ways that student’ 
mathematical behaviors, understandings, and beliefs, then it is useful to examine how they were 
taught. An understanding of mathematical instruction can provide us with a lens to analyze 
students’ mathematical knowledge and behavior and provide explanatory accounts for how those 
behaviors arose. Second, mathematicians are successful learners of mathematics and have a large 
body of practical teaching experience and expertise, especially in terms of advanced 
undergraduate proof-based mathematics. Hence, studying their insights and practices can provide 
a rich source of insight into both students’ reasoning and behavior in proof-based mathematics 
(Alcock, 2010). Third, as Alcock (2010) and Larsen (2017) noted, mathematicians have amassed 
a large body of expertise on many aspects of pedagogy, including how students reason 
mathematically and how students can be movtivated. 

Based on their literature review published in 2010, Speer, Smith, and Horvarth observed that 
there was a noticeable gap in the undergraduate mathematics education literature. Although there 
was a large and growing body of literature on undergraduate students’ understanding of 
mathematical concepts, there was little research on how they were taught. Without knowing how 
undergraduate mathematics were taught, we do not know why students develop the (often 
problematic) understandings that they do. Further, without knowing how mathematicians 
typically teach, mathematics educators may find it challenging to identify aspects of their 
instruction that are problematic or to suggest areas for improvement. In the last decade, the 
situation certainly has changed in the context of advanced mathematics courses. We have 
undertaken a literature review as a sequel to Speer, Smith, and Horvarth’s (2010) influential 
review of research on university mathematicians’ teaching practices. In their review, Speer et al. 
(2010) accurately documented the dearth of empirical research into mathematicians’ teaching 
practices. Since the publication of this review, mathematics educators have answered Speer et 
al.’s call, so much so, that the field needs a clear picture of what we know and what questions 
continue to need additional research. Since the Speer et al. (2010) review, there has been 
substantial work exploring mathematicians’ beliefs, goals, and practices in a variety of areas, 
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especially in advanced undergraduate mathematics courses. This growth in research necessitates 
a sharper focus to the literature review. In the following study, we set the goal of synthesizing 
the different papers in the area of proof-based mathematics and summarizing what we, the field, 
know and outline future directions for research. That is, the purpose of this article is to 
synthesize the growing research literature on mathematicians’ pedagogy when teaching advanced 
mathematics courses.  

Methods 

Corpus Search and Selection 
We did an initial search of Ebsco Education, Ebsco ERIC, and Scopus for papers published 

since 2000 in 16 journals that focus on mathematics (and science) education. We also added 
papers (including conference proceedings) found in citations and books if we knew of them. We 
acknowledge that there might have been papers published in more general journals that we might 
have missed as a result. We searched on language in both the abstract and title using Boolean 
‘or’ and ‘and’ to attempt to find all possible relevant papers. This initial search resulted in 774 
potential papers. At that point, a member of the research team read the title, abstract, and, as 
needed, the methods section of the paper to determine whether papers are ‘relevant’ to our goals 
of describing the teaching of proof-based undergraduate mathematics courses. Meaning, from the 
pool of papers, we excluded those that were about undergraduate mathematics teaching, but not 
proof-based courses, were not about mathematics, or not related to what happens inside the 
classroom.. If a paper included exploration of both proof-based and other undergraduate courses 
we kept it in the corpus. This parsing left 112 studies that explore issues of teaching of proof-
based undergraduate mathematics in the corpus. 

Analysis Scheme 
For each of the 112 papers in the remaining corpus, two members of the research team read 

each. We first parsed them as either empirical or not. For the empirical papers, we then noted 
where the study was carried out, the course content. We also coded a study an intervention if the 
authors of the paper attempted to directly influence the way that the class was taught, either by 
having a member of the research team teach the course or by working with the instructor to 
change his or her instruction. A study was coded as observational if the research team merely 
observed some aspect of the instruction or the beliefs of the instructor, without trying to change 
his or her teaching. We also drew on the study’s characterization of the classrooms as either 
lecture or ‘not-lecture.’ For interview studies where this was not made explicit, we assumed 
lecture based on the relative frequency of lecture as found in large-scale surveys (Johnson, et al, 
2019). We described the means by which the data was collected (e.g., interview, observation, 
survey) and number of participants. Where both professors and students were participants, we 
noted each and further distinguished between professors and Graduate Teaching Assistants. 
Finally, we described the main claims of each article and how those claims were warranted. 
Because we wanted to focus on instruction, we developed three broad categories of reporting for 
each of lecture and non-lecture pedagogies and synthesized results within those categories. 
Those categories are (1) what occurs in class, (2) the beliefs, knowledge, and rationales that 
shape instruction, and (3) the relationship between instructor actions and student learning. 
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Results 

Lecture 
Most advanced mathematics courses continue to be taught by lecture and practices 

share many commonalities. The evidence for this claim comes from two sources. First, 
Johnson, Keller, and Fukawa-Connelly (2018) and Johnson, Keller, Peterson, and Fukawa-
Connelly (2019) administered surveys to 219 algebraists from the United States who had 
recently taught an abstract algebra course, where the participants were solicited from a range of 
universities, including Ph.D granting institutions to institutions only offering a bachelors degree. 
Among those at research universities, Johnson et al (2018) found that 85 percent of their 
respondents claimed that they taught via lecture. When considering all universities, they found 
that 83% of the respondents reported using lecture at least one quarter of the time. These findings 
are largely consistent with mathematics educators who have observed mathematics teaching. 
Artemeva and Fox (2011) observed 50 mathematicians teaching both calculus courses and 
advanced mathematics courses in seven different countries. Fukawa-Connelly, Weber, and 
Mejía-Ramos (2017) summarized the teaching practices of 11 mathematicians teaching a variety 
of advanced mathematics courses in the United States.  

Commonalities in lecture practice. There are significant commonalities across countries and 
universities within the United States. Artemeva and Fox (2011) observed 50 mathematics 
teachers teaching university mathematics courses in seven countries, at the calculus and 
advanced mathematics level. What struck these scholars were the commonalities across all the 
lessons they observed. Artameva and Fox found that these teachers collectively engaged in a 
genre of teaching that they called “chalk talk”. Chalk talk consists of lecturing where (a) the 
lecturer writes mathematical results as inscriptions on the blackboard; (b) the lecturer would 
concurrently provides a running commentary in which she verbalizes what was being written and 
her thought processes as she was doing this mathematics (i.e., modeling the “doing” of the 
mathematics that was written); and (c) the lecturer occasionally stops to offer meta-commentary, 
reflecting more globally on what was written. They also claimed that questioning is a very 
common practice among lecturers. 

By analyzing 11 individual lecturers in different mathematical classes, Fukawa-Connelly et 
al. (2017) corroborated Artameva and Fox’s claim that mathematics courses were taught in the 
genre of “chalk talk” lectures. Fukawa-Connelly et al. further documented that mathematicians 
made seven mathematical contributions. Fukawa-Connelly et al found the following 
contributions: definitions, theorems, and proofs (which the authors labeled as “formal 
mathematics”) and methods/heuristics, informal representations, modeling mathematical 
behavior, and examples (which the authors called “informal mathematics”). Their main findings 
were the following: There were many informal mathematical contributions in the mathematics 
lectures. The formal mathematical contributions were nearly always written on the blackboard. 
With the exception of examples, the informal mathematics was only said orally and rarely 
written down.  

Why do mathematicians continue to lecture? It is natural then to wonder why 
mathematicians continue to lecture, especially considering mathematics educators’ frequent 
contention that lecturing in advanced mathematics leads to poor learning outcomes (e.g. Leron & 
Dubinsky, 1995). The answer to this question is surely multifaceted (Fukawa-Connelly et al., 
2016), but the simplest answer is that mathematicians teach via lecture because they believe 
lecture is the best way to teach. This finding is warranted by the writings of professional 
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mathematicians (Krantz, 2015; Pritchard, 2010, 2016; Wu, 1999), surveys with mathematicians 
(Fukawa-Connelly et al.,  2016), and interviews with mathematicians (Woods & Weber, 2020). 

The practice of lecture varies and the variation can generally be explained by 
differences in professors’ beliefs, goals, and rationales.  Pinto (2019) described two 
mathematicians, Yoav and Amit, implementing the same lesson plan in a real analysis course. 
The formal content of the lessons was the same: both mathematicians introduced the formal 
definition of the derivative, stated a theorem about derivatives (differentiability implies 
continuity), and showed several examples and applications. However, Pinto argued that their 
lectures were markedly different. For instance, in elaborating on the formal definition of 
derivative, Yoav looked at each term in the definition of the derivative and then offered a precise 
definition of each term. In contrast, Amit used visual and metaphorical imagery to give an 
informal account of what the derivative meant, describing the derivative in terms of “cones”, 
“swings”, and “traps”. Yoav and Amit further presented different narratives of how students 
should make sense of definitions when they encounter them.  

Weber (2004) described similar variance in real analysis lectures. Weber presented a case 
study of a single mathematician, Dr. T, and illustrated how Dr. T’s lecturing style changed over 
the course of the semester. A theme across both studies is that mathematicians may emphasize 
different types of “informal content” (in the sense of Fukawa-Connelly et al., 2017) in their 
lectures, which lead to different lecturing styles, even when the formal content remains the same 
(Pinto, 2019). The key point that we wish to draw from Pinto’s and Weber’s studies is that 
mathematicians’ different beliefs about how mathematics is done and what students need to do, 
and their related pedagogical goals, can exert a strong influence on their pedagogical actions. In 
short, Mathematicians’ beliefs and goals can explain variance in their pedagogy. This depth of 
thought about teaching is also illustrated and warranted by numerous interview studies.  

Researchers have also observed substantial variation in how mathematicians engaged 
students in mathematical activity during their lectures. In their survey, Johnson et al. (2019) 
found that many mathematicians who lectured frequently professed to use some non-lecture-
based student-centered activities in their classes some of the time, such as having students work 
collaboratively to solve a problem. Dawkins (2012, 2014) and Fukawa-Connelly (2012a) 
presented case studies of highly interactive classrooms along with analyses of the classroom 
norms that encouraged student participation. Alcock (2018) described techniques that she used in 
her own lectures to engage students, such as asking them to explain the meanings of concepts to 
a peer. The key point here is that while most lectures in advanced mathematics are largely 
teacher-centered where the students are passive, there are some lectures that seem to be at least 
somewhat interactive. The existence of lectures in which students are somewhat active is 
important. Alcock (2018), Braun et al. (2017), and Dawkins and Weber (in press) argued that 
mathematicians need not radically overhaul their teaching to improve it. Finding ways to 
improve lectures rather than replace them is an avenue for future research in undergraduate 
mathematics education. 

There is little research on how lecturers’ actions influences students’ learning. The 
extant research illustrates one mechanism by which students may fail to learn from lectures. 
Students may fail to recognize the purpose of a lecture, which can lead them to ignore aspects of 
a lecture that are considered most important (e.g., Lew et al., 2016) or to misinterpret what the 
professor is asserting (Krupnik et al. 2018). However, while the preceding research illustrates 
how this may occur, the fact that there were only two studies with a limited number of 
participants naturally leads us to question the generalizability and robustness of these findings. 
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Non-Lecture 
In some ways, the literature on the teaching of more student-centered or inquiry classes has 

quite a different focus with the research questions, methods, and claims about instruction in 
lecture classes. Notably, this literature base is dominated by intervention studies and also 
includes a few small scale case studies of exceptional teaching. This focus makes sense as lecture 
is the primary mode of instruction and thus more active classrooms can be seen as counter to the 
norm and often occurring via intentional change. Out of 39 papers that reported on interventions 
to teaching, 23 described any of the work of teaching rather than focusing on task sequences or 
student outcomes. Those 23 papers studied 125 total classrooms (some lecture for comparison) 
or professors with 46 classrooms actually observed. Eleven of those papers studied a single 
classroom and only four studies included more than 10 classes or professors. We also note there 
were studies (e.g., Laursen, et al., 2014) covered a broad array of undergraduate mathematics 
classes (including, but not limited, to proof-based mathematics), but did not distinguish between 
the courses and thus are not included in these counts. In this section, we broadly attend to the 
complement of the prior section: non-lecture courses broadly defined those that include students 
being actively involved in generating disciplinary ideas. 

The Literature on Active Learning is Dominated by the “Inquiry” Paradigms. As 
recently discussed in Laursen and Rasmussen (2019), much of the reform in advanced 
undergraduate courses stem from either Inquiry Based Learning or Inquiry Oriented Instruction. 
In Laursen and Rasmussen’s theoretical paper they sought to operationalize such instruction as 
hinging on common underlying principles related to “student engagement in meaningful 
mathematics, student collaboration for sensemaking, instructor inquiry into student thinking, and 
equitable instructional practice to include all in rigorous mathematical learning and mathematical 
identity-building” (p. 129). Further, Kuster et al. (2019) and Hayward et al. (2016) have 
developed and use observational measures that incorporate specific rubrics that operationalize 
and serve to measure inquiry-oriented and inquiry-based teaching practice, respectively.  

In contrast to the lecture literature base, we do not know much about how non-lecture unfolds 
in classrooms that are not associated with a researcher intervention. In the literature, there are 
only a handful of case studies about such instruction (e.g., Dawkins, et al., 2019; Fukawa-
Connelly, 2012b; Ticknor, 2012). While the Johnson, et al. (2018) survey discussed above points 
to 85% of abstract algebra instructors self-report lecturing, that leaves 15% of instructors 
teaching in more active manner. We argue that there is still a substantial amount to learn about 
non-lecture instruction observationally. The Johnson, et al. survey found that self-identified non-
lecturers were not using the researcher-designed materials that have been the primary focus of 
research in this area point to a mismatch between actual practice most research.  

Non-lecture instructional practice is varied, even by different teachers using the same 
curriculum. This variation can generally be explained by differences in beliefs, goals, and 
knowledge. Much like the case of lecture above, student-centered instruction is similarly not a 
monolith, and instructors’ beliefs and knowledge shape their instruction. Two large-scale studies 
point to this Kuster et al.’s (2019) study of instructors implementing inquiry-oriented curricula 
and Laursen et al.’s (2014) study on inquiry-based instruction. In one sense, we can see 
commonalities across classes including more time that is student-centered, less instructor 
authority, and more formative feedback than in lecture courses. On the other end, the reported 
standard-deviations and range of rubric scores point to differences. For example, in Kuster et 
al.’s (2019) analysis of 13 instructors implementing the same inquiry-oriented abstract algebra 
lesson, the degree to which teachers engage students in each other’s reasoning which ranged 
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from a score of 1.5 to a score of 4.5 (on a 5-point) scale. Thus, even within a relatively 
constrained setting, teaching practice can have substantial range. 

Differences in practice has been tied to several sources including: tensions in managing 
coverage concerns; beliefs and values about mathematical practice; and challenges involved in 
incorporating students’ thinking in genuine and productive ways. In some ways, teaching 
practice becomes more complex in classrooms where students are generating ideas -- ideas that 
may be unexpected. For example, Johnson and Larsen. (2013) illustrated ways that a 
mathematician implementing inquiry-oriented abstract algebra can be supported by common 
content knowledge, but may be constrained by a lack of pedagogical content when listening to 
interpret students and progress the lesson based on their ideas. Andrews-Larson et al. (2019) 
found that inquiry oriented linear algebra instructors increased their pedagogical knowledge and 
are better able use student ideas with support and repeated use of the curriculum.  

Mesa et al. (2019) and Johnson et al. (2013) provided insight into instructors' views and 
beliefs when implementing mandated inquiry-based learning linear algebra and a voluntary 
inquiry-oriented abstract algebra, respectively. In both cases, there was discussion of the tension 
between coverage and active learning.  This is an idea echoed in surveys of why instructors do 
not lecture (Johnson, et al., 2017) and amongst those who design interventions such as 
Nwabueze (2004) who suggested an interactive approach to abstract algebra would not allow for 
covering the full material.  Johnson et al.’s study of three mathematicians implementing inquiry-
oriented curriculum similarly pointed to general pacing tensions, but like in Mesa’s study the 
instructors' individual beliefs shaped their concern and management of such a tension. One 
mathematician valued content goals as the primary outcome of the course and therefore was most 
concerned with coverage; one mathematician saw disciplinary activity as the primary goal of the 
course and was not concerned about coverage; while the third occupied a middle ground 
emphasizing the importance of “student opportunity to interact with math on their own terms” (p. 
751)  in order for students to learn. The hierarchy of goals and values is consistent with other 
studies of instructors who select an inquiry approach, such as in Dawkins et al. (2019) where the 
instructor stated their goals for an inquiry-based real analysis course was focused on student 
creation of mathematics and overcoming challenges. In general, beliefs and goals mediate 
instruction; however, these studies are few and are situated in particular intervention settings.  

There are cautiously positive results related to student learning and non-lecture 
interventions. Unlike the general results about lecture, non-lecture interventions have generally 
pointed towards positive (or in some cases mixed) results linking teacher practice and student 
learning. There are two large-scale studies that warrant this result: Laursen et al. (2014) and 
Johnson, et al. (2021).  Laursen et al. found that students in inquiry-based learning classes (some 
proof-based) reported greater learning gains than those in lecture. They also found that IBL 
courses seemed to have a positive impact on womens’ confidence and interest. Johnson, et al. 
provided a more mixed result finding that students in inquiry-oriented abstract algebra courses 
scored just as well on a content assessment, but it was only the men in these classes that saw 
estimated test scores higher than lecture sections. Smaller intervention studies have found 
positive links such as between modeling reform teaching and pre-service teachers’ view on the 
nature of discourse in mathematics classes (Blanton, 2002), and questioning and discussion 
practices supporting students in more authentic activity norms and taking responsibility for 
knowledge (Fukawa-Connelly, 2005). Further, a great deal of literature illustrates productive 
ways that students engage in proof activity within intervention contexts; although the details of 
instructor practice is often left underspecified (e.g., Larsen & Zandieh, 2008; Yee, et al., 2018). 
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Discussion 
Based	on	the	24	published	papers,	we	have	a	strong	understanding	of	what	goes	on	

in	lectures	in	advanced	mathematics.	With regard to lecturing, we have good evidence that 
most mathematicians teach by lecture and they do so because they believe that it is the best 
way to teach. We also know that most lectures consist of the mathematician writing the official 
mathematics on the blackboard, while offering a running commentary about the informal 
meaning of the mathematics and metacommentary about the nature of doing mathematics 
orally. While mathematics lectures show some uniformity, there is also variance in what 
informal mathematics that the mathematicians choose to emphasize and how they use 
student-centered activities (if they use them at all). Finally, we know that mathematicians can 
offer sophisticated rationales for their instructional choices. However,	much	of	the	research	
examining	other	phenomena	tends	to	involve	conducting	case	studies	or	exploratory	
analysis,	with	the	output	being	“frameworks.”	Unfortunately,	these	frameworks	have	not	
been	applied	in	future	research.	One	consequence	of	research	into	how	mathematicians	
lecture	is	that	the	most	basic	suggestions	for	how	to	improve	instruction—such	as	not	
being	overly	formal,	offering	explanatory	proofs,	and	explaining	the	reasoning	and	
motivation	behind	definitions,	theorems,	and	proofs—is	not	likely	to	be	helpful.	
Mathematicians	already	do	these	things. What we know little about is how the instructional 
actions the professors' take influence student learning and why the apparently sophisticated 
and nuanced thought that goes into lecturing has not produced more promising learning 
outcomes. Indeed, we do not yet have good evidence that changes to lecturing influences 
learning at all. More research in this area is needed. 

The literature on non-lecture includes 39 papers, 23 of which included any study of 
classroom activities while 16 focused on task-sequences and/or student outcomes. Most of the 
papers about non-lecture report on mathematics-educator developed curricula in the RME or IO 
traditions. This is, even though the data suggests that the majority of non-lecture classes rely on 
instructor-developed curricula. With interventionalist studies, we have obained a rich 
understanding of how task sequences and classroom environments affects and improves 
students' practices and understandings. We are still developing our understanding of 
productive teaching practices in these environments, as well as the challenges that instructors 
face when using student-centered curricula. More research in this area is needed. 

An understudied area is what mathematicians who do not lecture choose to do in their 
classrooms. There are many studies of how mathematicians or mathematics education 
researchers behave when teaching with inquiry-oriented curricula developed by mathematics 
educators. However, the mathematicians who use such material is scant (cite your survey 
showing that this is so). There are far more mathematicians who do not use lecture, but also 
are not influenced by mathematics education research (cite your survey showing this). This is a 
sizeable population that has received little attention, but could produce interesting findings 
about how mathematicians change their practice and what they are willing to do.  
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Characterizing Undergraduate students’ Problem Posing Products and Processes in an 

Introductory Business Mathematics Course 

 

Joash M. Geteregechi 

Ithaca College 

 

This study investigated the nature of students’ problem posing products and processes and the 

potential for using these products and processes to assess students’ level of learning. First, the 

kinds of modifications made to existing problems are examined followed by the impact of these 

modifications on the students’ solution strategies. I argue that by examining the students’ 

solution strategies alongside the strategies that they encounter in class, we can gain insights into 

the students’ understanding of the concepts learned. Furthermore, posed problems that are 

unsolvable but consistent and coherent can be used as a launchpad into new topics and ideas in 

mathematics. 

 

Keywords: Problem Posing, near transfer, far transfer, Coherence, Consistence 

  

Although many researchers have consistently documented the benefits of engaging students 

in mathematical problem posing (PP), many students, especially at college level, experience PP 

less often than they do problem solving (Lavy, 2015, Silver et al., 1996). This is despite some 

researchers (e.g., Mestre, 2002) asserting that PP could be cognitively more engaging than 

problem solving (PS). Much research into why PP has not been adopted as widely as PS agree 

that the main reason behind this is the limited knowledge about students’ cognitive processes 

when they are engaged in PP (Cai et al., 2015). Specifically, there is need for the field to 

understand how undergraduate students pose mathematical problems and if PP is a skill that can 

be taught and learned (Crespo & Sinclair, 2008). Furthermore, the question of how PP can be 

used to assess students’ learning in mathematics is still less explored. In calling for more 

research into PP, Cai and Huang (2013) noted that: 

Little is known about the cognitive processes involved when students generate their own 

problems and therefore about the ways problem posing can be used as an assessment tool. 

Furthermore, little research has been done to identify instructional strategies that can 

effectively promote productive problem posing or even to determine whether engaging 

students in problem-posing activities is an effective pedagogical strategy. (p. 58). 

To understand the cognitive processes involved when students engage in PP, it is necessary 

to first understand the nature of the student-posed problems (SPPs) in relation to the problems 

that they meet as part of their learning (class problems). This consideration is important since 

much of PP literature (e.g., Cai & Cifarelli, 2005; English, 1998) suggests that problem 

modification is one of the ways through which students pose problems. Thus, an examination of 

the aspects of class problems (CPs) that students modify and how they do so is important in 

understanding the students’ cognitive processes in PP. Furthermore, to be able to use PP in 

assessment of learning, an important consideration would be whether or not students recognize 

the consequences of their modifications on the solution processes. To address these issues, this 

study sought to answer the following questions: 

 

1. What kinds of modifications do undergraduate students make on class problems in order 

to generate their own problems? 
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2. How can these modifications and their consequences on solutions be used to gain insights 

into the students’ level of learning? 

 

Background and Theoretical Framework 

Role of Problem Posing in students’ mathematics education 

There is consensus among most studies that PP is an important skill that should be included 

in the mathematics curriculum at all levels of schooling (Bonotto, 2013). Some of the benefits of 

PP that these studies have documented include better problem solving skills (Cai & Hwang, 

2003), higher creativity in mathematics (Voica & Singer, 2013), and increased motivation 

towards learning mathematics (Akay & Boz, 2010). Despite these benefits, however, PP has not 

been made a prominent part in mathematics curricular (Lu & Wang, 2006). 

 

Defining Problem Posing 

Problem posing has been conceptualized in various ways in the mathematics education 

literature. For example, Silver (1997) pointed out that PP and PS are naturally intertwined, and 

that PP occurs at various phases when someone is engaged in PS. For example, before-solution 

PP happens when one rephrases or breaks down a problem in order to understand what is 

required while during-solution PP serves the purpose of checking one’s progress in PS as a way 

to monitor their PS process. On the other hand, post-solution PP happens after the PS process is 

complete and serves the purpose of reflecting on one’s solution process to check if the final 

answer(s) makes sense. Silver’s (1997) view of PP implies that PP happens spontaneously as 

long one is involved in PS. 

Stoyanova and Ellerton (1996) on the other hand view PP in terms of the conditions under 

which it occurs. They offer three categories of PP including free, structured, or semi structured. 

In free PP someone is asked to create a problem without being given any specific conditions or a 

starting problem. One can write any problem drawn from any content in mathematics. In 

structured PP, one is given a starting problem and is asked to make modifications to come up 

with a new problem. Semi-structured PP, on the other hand, provides a limited set of conditions 

such as a topic or context that must be adhered to. 

Brown and Walter (1990b) suggested a PP strategy known as the “What-If-Not?” strategy. In 

this strategy, one comes with a new problem by altering the givens of an existing problem. This 

strategy is similar to Stoyanova and Ellerton’s (1996) structured PP but focuses mainly on the 

constraints in a problem. I argue that there are other modifications besides changing the 

constraints of a given problem that students may use. For example, a student may add new 

parameters to a problem that could create a need for a change of other aspects of the problem. 

Thus, the current study is based on Ellerton and Stoyanova’s (1996) notion of semi structured PP 

and an expanded form of Brown and Walter’s “what if not” strategy. 

 

Analytic Framework 

Voica and Silver (2013) developed a framework for analyzing mathematical problems in 

terms of their textual elements and the relationships between the elements. According to the 

framework, a mathematical problem includes some or all of the following elements: a 

background theme, parameters, data, operating schemes, and constraints. As an illustration of 

these elements, consider the following problem posed by one of the participants called Zive (all 

names are pseudonyms). 
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Marco can get a $ 50, 000 loan from one of two banks. The first charges 7%(12) and the 

second charges 7.05%(2). If he thinks he will pay off the loan in five years, which bank 

offers a better deal?  

The background theme of a problem is what the problem is about or the context in which the 

problem is based. Zive’s problem above is about an individual (Marco) making financial 

decisions. To provide more detail to the background theme, a mathematical problem needs 

parameters. In the case of Zive’s problem, the parameters are bank interest rates, loan periods, 

and the loan limit. For the problem to make sense, these parameters need to be associated with 

data. The data in the problem include 7.05% (2), 7%(12), and $ 50, 000. Operating schemes are 

the actions suggested in the problem such as a comparison of the rates for the two banks. Finally, 

constraints are ways to preserve certain relationships in the problem structure by imposing 

restrictions on the other elements. An example of a constraint in the above problem is that Marco 

can get the loan form only one of two banks. The interest rates and the associates compounding 

periods can also be interpreted as constraints on the data. Furthermore, the loan amount cannot 

exceed $50,000. If someone modifies the data by changing the $50 000 value to $55 000, the 

resulting problem is considered a new problem even though the overall structure of the solution 

could remain unaltered. Various modifications to existing problems have various impacts. For 

the purposes of this study, modification is not limited to changing the data, rather it can include 

extending the problem by adding data or even adding more elements not in the starting problem. 

If one adds a third bank, for example, that charges simple interest, that is an extension of the 

problem. A problem that provides its elements in a correlated manner with no ambiguities is said 

to be coherent whether it is solvable or not. On the other hand, a problem for which a certain 

mathematical model can be assumed, has at least one solution (or a proof that there is none) and 

for which the data are not contradictory is said to be consistent. Zive’s problem above is an 

example of a coherent and consistent problem. It is possible for a problem to be coherent but 

inconsistent and vice versa. 

In this study, I used Voica and Silver’s framework to characterize the SPPs and compared 

them with CPs to determine the kinds of modifications that students made. If the modifications 

made to a problem significantly impacted the structure of the starting CPs, then, I called such 

problems far transfer problems. Similarly, modifications that resulted in little impact on the 

overall structure of the problem (e.g., changing the data values only) were labelled near transfer 

problems (Pelca & Voica, 2011). To gain deeper insights into students’ understanding of the 

learned material, I compared the solutions that the students had encountered in class with the 

solutions that they presented in their SPPs. If a student was able to adapt a class solution in such 

a way that they were able to use it on a far transfer problem, then, that served as an indicator of 

deeper learning. I made a similar determination whenever a student used a novel strategy (not 

used in class) on any near transfer problems. 

 

Method 

Participants and Setting 

I gathered data from 16 undergraduate students enrolled in a mathematics course on financial 

mathematics during the fall semester of 2020. There were three chapters covered in the course 

namely, simple interest, compound interest, and annuities. The students completed a 

comprehensive problem posing assignment (PPA) towards the end of the semester that required 

them to pose at least one problem from each of the chapters covered. In this PPA, students were 

asked to state the starting CP that they used to pose their own problems, explain their posing 
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processes and then solve the problems. Students’ written artifacts were the main data sources for 

this study. There were also one on one meetings with some of the students via zoom during 

which they clarified their work and explained their solutions. 

The main data sources for the study included written artifacts in form of students’ posed 

problems alongside explanations and solutions. The PPA was graded based on three-point 

criteria involving creativity, solvability, and complexity. This rubric was made clear to the 

students. They were free to use any CPs as starting points as long as they indicated so as part of 

their PP process explanation. Problems that greatly resembled class problems scored low on 

creativity than those that did not. Similarly, problems that were linguistically well articulated and 

provided clear context scored high on complexity. Problems that required use of more operations 

or concepts from multiple sections also scored high on complexity. One received maximum 

credit on solvability if their problem had at least one solution and an attempt at finding such 

solutions was made. 

 

Analytic Procedures 

The data analysis was conducted in three phases. In the first phase, my colleagues and I 

independently coded the SPPs using codes derived from Voica and Singer’s (2013) framework 

and determined the relationships between the elements. Following this, we classified each SPP 

into one of four categories namely category A (coherent and consistent), category B (coherent 

but inconsistent), category C (consistent but incoherent), and category D (incoherent and 

inconsistent). We later met to compare our coding/classification and the inter-rater agreement for 

this part turned out to be 96%. 

In the second phase of analysis, we compared the SPPs with the corresponding CPs to 

determine if they were far or near transfer problems. To do this, we examined the modifications 

made to various elements of the CPs and the impact of such modifications on the solutions to the 

CPs. Modifications to a CP were regarded significant if they called for a different a solution 

strategy or a modification of the solutions presented in the CP. Significant modifications resulted 

in far transfer problems while insignificant ones resulted in near transfer problems. In some 

cases, students used completely different strategies from the ones presented in CPs. In such 

cases, the problems were considered far transfer even if they only reflected minor modifications 

on CPs. This is because the students viewed them in different perspectives. 

 

Results 

First, I present the findings related to the first research question, addressing the kinds of 

modifications that students made on CPs during their PP processes. To provide context on how 

the findings were generated, we provide an illustration of elements in one CP (Figure 1) and how 

a student made modifications on the CP to generate their own SPP (Figure 2). 
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Figure 1. Sample CP from chapter 1 

 

This CP is situated in the context of credit cards (background theme) with two main 

parameters namely credit card balance and interest rate. The corresponding data for these 

parameters are $3,345.59 and 21.95% respectively. The $300 repayment amount is a constraint 

that sets up the problem question (the new balance). Based on this CP, Cegra posed and solved 

the problem in Figure 2.  

 

 
Figure 2. Cegra’s problem from chapter 1 

 

An examination of Cegra’s problem shows that it keeps most elements and the overall 

structure of the CP (Figure 1) on which it was based. The background theme, the parameters, and 

the operating schemes (finding the new balance) are all unchanged. Her modifications only 

targeted the data (i.e., she changed $3,345.59 to $ 350.6 and 21.95% to 23.99%). Although 

Cegra’s problem is a lot similar to the CP, we still found it to be both consistent and coherent 

(category A) since all elements are well correlated and the problem has a solution. All SPPs were 

classified in an analogous manner. The results are presented in Table 1. 
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Table 1. Classification of SPPs by Modified Elements and whether or not they were Category A 

 

Modified element in a CP # of problems 

(n=46) 

# of Category A 

problems (n=30) 

Background theme only 2 3 

Data only 15 13 

Constraints only 8 6 

Operating schemes only 3 1 

Multiple elements 18 7 

 

Table 1 shows that most students (39.1%) made modifications to multiple elements in the 

CPs. Of the 18 SPPs that had multi-element modifications, however, only 7 (38.9%) were 

category A problems. The next most represented group were problems that had modifications on 

the data only (32.6%). These problems involved changing certain numbers but keeping 

everything else about the problem. Interestingly, most of these problems (86.7%) turned out to 

be category A problems. 

Regarding the second research question, we found that a majority of category A SPPs (80%) 

were near transfer problems. The accompanying solutions to these near transfer problems were 

also strikingly similar to the CP solutions that the students had encountered. Of the 7 category A 

far transfer problems, 5 (71.4%) came from problems that had multi-element modifications. 

Table 2 provides a summary of the problem transfer alongside the modifications that the students 

made on CPs. 

 

Table 2. Problem Transfer vs Modified Element 

 

Modified Element 

Problem 

Transfer  

Background 

theme only 

Data Only Constraints 

only 

Operating 

Schemes only 

Multiple 

elements 

Far 0 1 1 0 5 

Near 3 12 6 1 2 

 

Although we expected far transfer problems to have solutions that were different from ones 

in CPs, we found a couple of cases where students attempted to use the strategies used in CPs 

without any modifications. We concluded that such students did not have a deeper understanding 

of the concepts learned. Nevertheless, there were a few students who posed far transfer problems 

and modified the CP strategies in a manner that reflected a deeper understanding of the concepts 

learned. Rano’s problem (see Figure 3), for example, is based on the earlier CP (see Figure 1). 

Her modifications involved expanding the background theme to include two loan scenarios and 

adding more parameters/data. These modifications also made it necessary that she change the 

operating schemes in the problems. An examination of her solution strategy to this problem 

shows awareness of the impact of such modifications. This awareness resulted in relevant 

modification on the solution strategy presented in the CP. For example, she used algebraic 

manipulations involving an unknown value (A) representing the amount owed on the car and 

used it to solve the problem. It should be noted that there was no CP of this kind or that required 

the solution strategy implemented by Rano. Therefore, Rano’s problem can be considered a far 

transfer problem and her solution as evidence of deeper learning.  
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Figure 3. Rano’s Problem from Chapter 1 

 

Discussion 

The findings of this study show that when students are asked to pose their own problems by 

modifying existing ones, they tend to focus more on multiple elements as opposed to single 

elements. When doing this, however, they tend to end up with inconsistent and/or incoherent 

problems. Nevertheless, these problems provide students with opportunities to use existing 

strategies in new ways and hence a possibility for new knowledge. If the goal is simply to pose 

more consistent and coherent problems, the findings of this study suggest that modifying single 

elements (especially data) is the most successful strategy. It should be noted that doing this also 

results in solutions that are highly related to the already encountered solutions and hence less 

room for creativity. The findings of this study also suggest that if we are to understand the depth 

of student learning in a certain topic, far transfer problems are more superior. This is because 

they challenge the students to modify already learned strategies so as to use them in novel 

settings. 

Finally, I note that even when students are unable to solve their far transfer problems, they 

still gain from attempting such solutions. Instructors can leverage the difficulties arising from 

such situations to help students delve into new topics if the posed problems require so. 
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Connecting STEM Retention to Student Affect in Pathways Mathematics Courses 
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We investigate how particular dimensions of student affect (e.g., sense of community, 

mathematical identity) relate to student retention in STEM in the context of active learning 

college algebra and precalculus classrooms. We developed and implemented a survey with 

Likert-style questions informed by four known dimensions of student affect and used exploratory 

factor analysis to identify five distinct factors actually being measured in the survey. These 

include student perceptions of their instructor’s actions, mathematical identity, confidence, and 

feelings of belonging. We report on statistically and practically significant relationships between 

student affect and two indicators of continuation in STEM: (a) their expected grade in the 

course; and (b) their status as a STEM major. These results contribute to our growing 

understanding of how student affect may impact STEM retention.  

Keywords: active learning, student affect, STEM retention 

Student retention has long been a focus of STEM education research, particularly within the 

context of introductory mathematics courses at universities in the United States. Much attention 

has been focused on single-variable calculus, but courses which prepare students to take calculus 

(e.g., college algebra, precalculus) are also high enrollment gateway courses which many 

students must pass through on their way to a STEM major. However, students starting in 

precalculus at the university level are less likely to complete a STEM major than students who 

start in calculus (Bowen et al., 2019; Krause et al., 2015; Wilkins et al., 2021; Van Dyken & 

Benson, 2019). Some proposed reasons for precalculus courses reducing student retention in 

STEM include poor quality of instruction (Olson & Riordan, 2012; Seymour & Hewitt, 1997) 

and departments not allowing students to take introductory engineering courses without 

precalculus (Van Dyken et al., 2015). We posit that another reason is student affect in their 

introductory mathematics courses. 

In this paper, we define student affect in the general psychological sense, as any expression 

of the student’s feelings or emotions. We use exploratory factor analysis to examine dimensions 

of student affect relative to students’ ability to complete a STEM degree (i.e., they have to pass 

STEM classes and be a STEM major) to answer the following question: How does student affect 

(e.g., sense of community, mathematical identity) relate to students’ major and expected grade in 

online college algebra and precalculus courses taught using active learning principles? 

Literature Review and Framing 

Our framework is comprised of the four dimensions of student affect we intended to measure 

when we initially designed our survey. We define each of the four dimensions to convey what 

we had in mind when we decided which items aligned with a particular dimension.   

Four Affective Dimensions 

The research team chose four affective dimensions - mathematical caring, sense of 

community, sense of inclusion, and mathematical identity - to investigate student affect in 

relation to students’ major and expected grade in active learning Pathways college algebra and 

precalculus courses. Note that these items are not wholly independent of one another. For 
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instance, students’ sense of inclusion in the classroom may impact their perception of the 

mathematical caring relationship between themselves and their instructor, or the development of 

their mathematical identity.  

Mathematical caring. Hackenberg (2010) defined mathematical caring relations (MCR) as 

“a quality of interaction between a student and a teacher that conjoins affective and cognitive 

realms in the process of aiming for mathematical learning” (p. 237). Hackenberg argued that if 

students are continually asked questions they are not prepared to answer, they may leave the 

classroom with negative perceptions of their experiences which may ultimately impede the 

learning process. As such, MCR provide an important connection between cognitive and 

affective impacts on students’ perception of their instructor’s actions within the classroom.   

Sense of community. We operationalize students’ sense of community using Strike’s (2004) 

four C’s of community: coherence, cohesion, care, and contact. Strike argued that schools must 

have a shared vision, care about initiating students into this vision, and have structural features 

that facilitate this care in order to establish a sense of community. A key aspect of community to 

LeChausseur (2014) is social space, which includes “people and their relationships; assets and 

liabilities; rules, regulatory bodies, and punishments; opportunity structures; the diffusion of 

power; and connections to other communities” (p. 307). Not only must school administrators and 

teachers construct a shared vision and give students the opportunity to align with that vision, but 

the students must choose to align with these structures while forming relationships with one 

another. Taken together, Strike and LeChasseur’s definitions of community account for both the 

structures and the interpersonal relations needed to develop a sense of community. 

Sense of inclusion. Roos (2019) conducted an extensive literature review to investigate how 

the notion of inclusion was leveraged in mathematics education studies on both a societal level 

and a classroom level. Within the classroom level, some studies use inclusion to refer to 

participation in the classroom and some refer to inclusion in relation to exclusion. We use 

inclusion to refer to students’ sense of being included in the classroom as it is related to their 

participation: participating in the classroom discourse and contributing to group work.  

Mathematical identity. Cribbs et al. (2015) defined mathematical identity as “how students 

see themselves in relation to mathematics based on their perceptions and navigations of everyday 

experiences with mathematics” (p. 1049). In this paper, Cribbs et al. found that students’ 

perceptions of themselves (in terms of interest in mathematics, recognition of mathematical 

ability, and competence/performance with mathematics) had both direct and indirect impacts on 

students’ mathematical identity. The link between students’ mathematical identity and their self-

perceived performance in their math class informs our investigation into mathematical identity. 

Methodology 

Curricular Context  

The students in our study were enrolled in courses taught using the Pathways precalculus 

curriculum. This research-based and conceptually-driven curriculum has been implemented and 

refined over the past few decades at multiple colleges and universities. The pedagogical goals of 

Pathways have been to support students’ meaning making (Clark et al., 2008) and construction of 

conceptual understandings for constant rate of change, exponential growth, and trigonometric 

functions (Carlson et al., 2015; Kuper & Carlson, 2020; Moore, 2014). The conceptual emphasis 

of the course is highlighted by structured task sequences designed for group work. At the 

university where these data were collected, instructors are encouraged to attend a weekly 

teaching seminar focused on the mathematical and pedagogical goals of Pathways. Since student 
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thinking is the emphasis of the pedagogical approach of Pathways, most Pathways courses tend 

to de-emphasize lectures. Many of the modules and investigations are accompanied with 

dynamic applets and instructional videos to support students’ repeated reasoning about the 

relevant course topics. In such a class, student-student interaction and discussions of their own 

mathematical thinking may impact student affect differently than in a didactic lecture setting.   

Participants and Data Collection 

The survey was conducted at a large research university in the U.S. toward the end of the Fall 

2020 semester. The participants of the surveys were enrolled in College Algebra (CA) and 

Precalculus (PC) classes. Both courses were taught using the research-based Pathways 

Precalculus curriculum, though CA introduces fewer topics. The survey was distributed and 

completed electronically using the online survey platform Qualtrics (2021). Instructors 

distributed the survey to their students, and many instructors offered extra credit to their students 

for taking the survey, in accordance with approved procedures from the university’s institutional 

review board. A total of 193 students agreed to participate in the study and responded to the 

survey questions. Data was collected from two sections of CA taught by the same instructor 

(n=106), and seven sections of PC taught by seven different instructors (n=87). These data were 

collected during the COVID-19 pandemic, and all the classes used either online or hybrid (online 

and in-person) instruction. The courses were taught in a synchronous virtual format using an 

online video conferencing software.  

Survey Instrument 

The survey was designed to understand student experiences inside and outside of the 

mathematics classroom relative to four primary constructs: mathematical caring, sense of 

community, sense of inclusion, and mathematical identity. The survey questions and design were 

informed by both literature on each construct and former published surveys (Apkarian et al., 

2019; Carlson et al. , 1999; Code et al., 2016; Walter et al., 2016). The survey consists of 55 

Likert items asking students to indicate the extent to which they agree with given statements on a 

four-point scale: 1 (Disagree), 2 (Slightly Disagree), 3 (Slightly Agree), or 4 (Agree). The survey 

also consisted of demographic and contextual questions, including asking for student major 

(STEM, not STEM, or unsure), type of course (PC or CA), and expected grade in course (A(±), 

B(±), C(±), D, E, or other).  

New Likert items were written for our survey when previously validated instruments did not 

adequately or directly attend to these constructs. All items were reviewed by the project team to 

ensure face validity, and items were organized into groups based on the focal aspect of the 

question (i.e., instructor, classmates, self) as opposed to being grouped by theoretical constructs. 

This was intended to reduce cognitive fatigue on the part of participants. A web-based version 

was then created in Qualtrics (2021) for distribution.  

Analysis 

Analysis was conducted on de-identified survey data (aliases were used for instructors), and 

free response answers (which sometimes named students, GTAs, or instructors) were kept 

separately from these multiple-choice data. The underlying constructs driving students’ 

responses to the Likert items were first identified using exploratory factor analysis (EFA), and 

the resulting factors were used to create composite scales; these scale scores were then tested 

against other student responses using analysis of variance (ANOVA) testing, and main effects 

were investigated using Tukey’s HSD post hoc test. EFA is a multivariate statistical method for 
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identifying relationships between measured variables (here, responses to each individual Likert 

item). Instead of depending on the four a priori constructs we intended to measure, we used EFA 

on student responses to detect underlying constructs which were salient to students (these factors 

are described in the results section). Composite scale scores were calculated as the average of 

students’ responses to each item in the detected factor. As response options ranged from 1 

(disagree) to 4 (agree), a composite score of 2.5 can be interpreted as “neutral” with respect to 

the factor; scores below 2.5 indicate disagreement while those above indicate agreement. We 

tested for relationships between composite factor scores and (a) major (three levels); and (b) 

expected grade (six levels). This was done using ANOVA, while Tukey’s HSD post hoc test was 

used to interpret the results of the ANOVA. Analyses were performed in R (R Core Team, 

2021). These tests were performed in the aggregate and disaggregated by enrolled course.  

Results 

Factor Analysis Results 

Comparison of multiple models using EFA established that a seven-factor model was satisfactory 

(RMSEA = 0.043; Tucker Lewis = 0.871). Two of the resulting factors consisted of fewer than 

four items and did not have face validity; these were not included in the subsequent analysis. 

Descriptions of the five retained factors and sample items from the clusters are presented in 

Table 1. While not entirely aligned with the initially targeted dimensions, these five factors do 

capture aspects of student affect.  

 
Table 1. Descriptions of and examples for the five factors determined through EFA. 

Factor Description Item Examples 

Factor 1 

Items about the instructor 

(their role, actions, 

orientation); related to 

mathematical caring. 

“My instructor tries hard to help students 

understand.” 

“My instructor cares about my learning.” 

Factor 2 

Items about students’ 

perception of their 

mathematical identity and 

abilities. 

“I am confident in my ability to verify the 

correctness of my answer.” 

“Thinking about mathematics makes me anxious.” 

Factor 3 

Items related to participation 

and belonging in the 

classroom community. 

“I am a valued member in this mathematics class.” 

“My classmates motivate me to try my best in 

class.” 

Factor 4 

Items related to students’ 

orientation towards a 

sensemaking approach when 

doing math, and their 

instructor’s encouragement, 

expectation, or facilitation of 

such approach. 

“When making sense of a mathematics word 

problem, I represent the situation with a drawing.” 

“My instructor expects us to explain the thinking 

we used to determine our answer.” 

Factor 5 

Items about students’ 

insecurity or discomfort with 

their own mathematical 

ability. 

“The course moves so fast that I don’t have time to 

understand ideas well.” 

“I do not like to share my thinking during class.” 
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We used composite scores for each participant in each factor and investigated distributions of 

data based on these composite scores. Specifically, we used ANOVA and Tukey’s HSD post hoc 

test to look for relationships between factor scores and the variables (a) students’ expected grade 

in the class (GradeExpected, possible responses: A(±), B(±), C(±), D, E, Other), and (b) students’ 

enrollment in a STEM major (MajorSTEM, possible responses: Yes, No, Unsure). Based on the 

results of a chi-square test for independence (χ = 11.98, p > 0.10), the variables GradeExpected 

and MajorSTEM were determined to be independent. 

The average factor scores for each response of GradeExpected and MajorSTEM in the full 

data set is provided in Table 2. No students reported expecting an E or “other” grade in the 

course, so those items have been omitted from the table. 

 
Table 2. Average factor scores based on GradeExpected or MajorSTEM items in full data set. 

Variable Item Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

GradeExpected 

A(±) 3.72 3.12 2.67 3.47 1.65 

B(±) 3.61 2.91 2.55 3.28 1.88 

C(±) 3.55 2.32 2.41 3.16 2.16 

D 3.03 1.60 1.92 2.63 2.44 

MajorSTEM 

Yes 3.61 3.01 2.64 3.40 1.87 

No 3.63 2.77 2.56 3.25 1.79 

Unsure 3.67 2.72 2.36 3.33 1.99 

ANOVA and Tukey’s HSD Post Hoc Test Results 

A collection of ANOVA models was used to determine the effects of ExpectedGrade and 

MajorSTEM on each factor. The full data was examined, as well as data for the CA and PC 

courses individually. GradeExpected was determined to be a main effect (p<0.05) on (a) the full 

data for Factors 1, 2, 4, and 5; (b) the CA data for Factors 2 and 4; and (c) the PC data for 

Factors 1, 2, 4, and 5. MajorSTEM was determined to be a main effect on (a) the full data for 

Factor 2; (b) the CA data for Factor 3; and (c) the PC data for Factor 2.  

We then used Tukey’s HSD post hoc test to look at the differences between particular 

MajorSTEM and ExpectedGrade responses for the relationships that appeared significant in the 

initial ANOVA. We omit discussion of expected grade comparisons involving those expecting to 

receive a D, as there were only 5 such students. A difference of 0.5 corresponds to a difference 

of half a scale-point on the agree/disagree response scale; we further omit discussion of these 

results as their practical significance cannot be established. Thus, we restrict further discussion to 

two main findings: (a) differences in Factor 2 scores between students expecting an A-grade and 

those expecting a C-grade; (b) differences in Factor 3 scores between students intending to major 

in STEM and those who reported being unsure if they would major in STEM or not (Table 3). 

 
Table 3. Noteworthy differences in factor responses based on ExpectedGrade or MajorSTEM. 

Factor ExpectedGrade Difference MajorSTEM Difference 

Factor 2 Full Data, C(±) - A(±), diff = -0.80 *** N/A 

Factor 3 N/A CA, Yes - Unsure, diff = 0.58 * 

Note. Three pieces of information are given for each difference: where the data comes from 

(Full Data, CA = College Algebra Data, PC = Precalculus Data), which items are being 

compared, and the statistical significance of the difference (* = p<0.05, ** = p<0.01, *** = 

p<0.001). 
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Discussion 

We briefly discuss the results of the exploratory factor analysis in comparison to the affective 

dimensions initially targeted. We then discuss the two findings above, difference in average 

Factor 2 scores based on ExpectedGrade and difference in average Factor 3 scores based on 

MajorSTEM. These two findings support the notion that student affect is related to a students’ 

ability to remain in STEM. 

Factor Analysis 

The survey was constructed with four dimensions of student affect in mind: mathematical 

caring, sense of community, sense of inclusion, and mathematical identity; exploratory factor 

analysis instead identified five robust factors. While not identical to the original design, these 

factors are not unrelated to the original affective dimensions. In particular, Factors 1, 2, and 3 

primarily aligned with the constructs of mathematics caring, mathematical identity, and sense of 

community, respectively.  

Firstly, Factor 1 closely aligned with the construct of mathematical caring. Many of the items 

in Factor 1 were similar to the example items provide in Table 1, in that they asked about 

students’ perceptions of their instructor’s actions and motivations. These affective student 

perceptions form the basis for Hackenberger’s (2010) mathematical caring relationships. 

Secondly, Factor 2 closely aligned with the construct of students’ mathematical identity. The 

examples in Table 1 show items related to students’ recognition of their mathematical ability and 

their interest in math, two factors associated with mathematical identity (Cribbs et al., 2015). 

Other items in Factor 2 were related to Cribbs et al.’s constructs of recognition, interest, and 

competence/performance. Lastly, Factor 3 closely aligned with the construct of sense of 

community. As shown in Table 1, the items in Factor 3 primarily focused on students’ 

relationships to other in their class, an important aspect of LeChasseur’s (2015) social space. The 

remaining factors incorporated some items from these three constructs, as well as the construct 

of sense of inclusion.  

Factor 2 Discussion 

We interpret Factor 2 as a measure of students’ mathematical identity. The Tukey’s HSD 

post hoc test showed a difference of -0.80 in average Factor 2 scores between students expecting 

a C(±) in the course (M = 2.32) and students expecting an A(±) in the course (M = 3.12), for all 

students (CA and PC combined). This practical significance, along with the statistical 

significance of this result (p < 0.001), implies that the students that responded to this survey who 

expect a C(±) in their Pathways College Algebra or Precalculus course on average report a 

weaker mathematical identity than students who expect an A(±). In particular, C-expecting 

students have an average score below 2.5, implying they generally disagree with statements that 

align with positive mathematical identity, while A-expecting students have an average score 

above 2.5. 

We acknowledge that expected grade is not a comprehensive measure of a students’ self-

perception in their classroom, but it does provide some insight into how students either (a) view 

their ability to do math in their classroom, or (b) view their teachers’ perception of their 

mathematical ability. In either case, this finding weakly supports the finding by Cribbs et al. 

(2015) that there is a connection between mathematical identity and self-perception. We 

conjecture that having a more robust understanding of how a student connects their expected 

grade in the course to their self-perceived mathematical ability may provide more insight into 

how a student develops their mathematical identity. 
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Factor 3 Discussion 

We interpret Factor 3 as a measure of students’ sense of community. The Tukey’s HSD post 

hoc test showed a difference of 0.58 in average Factor 3 scores between students who were 

definitively STEM majors (M = 2.79) and students who were unsure if they were or were going 

to be STEM majors (M = 2.21), for students enrolled in the College Algebra course. This is a 

small, but still meaningful, practical difference which is also statistically significant (p<0.05). 

That is, student respondents who are sure of their status as STEM majors on average report a 

greater sense of community in their classroom than students who are unsure about their status as 

STEM majors.  

We note that there was not a statistically significant difference in Factor 3 scores between 

students who identified as STEM majors and those who identified as non-STEM majors. This 

suggests that the uncertainty of students who responded “Unsure” is an important factor in this 

difference. This result complicates the finding by Rainey et al. (2018) that students who report a 

greater sense of belonging are more likely to persist in STEM. Perhaps the students who are 

unsure of their status as STEM majors might consider sense of belonging as a bigger factor than 

others in deciding to stay in STEM. 

Conclusion 

We have shown that in the context of a research-based undergraduate active learning 

mathematics curriculum, there is a connection between (a) students’ mathematical identity and 

their expected grade in the course, and (b) students’ sense of community and their major. More 

generally, our data support the notion that students’ affective needs are related to their potential 

to complete a STEM degree. Our study shows a correlation though, not a causation. Future work 

needs to be done in examining the complexities of these relationships and leads to further 

questions: How are these factors related to one another? Do students who report higher affect 

according to our survey graduate with STEM degrees at higher rates? We believe that by 

answering these questions, we will be better equipped to attract, support, and retain STEM 

majors.  

Further directions for this work include a redesign of the survey items to better align with the 

factors that were discovered. In particular, the survey items designed to elucidate students’ sense 

of inclusion in the classroom should be reexamined and rewritten. Further, to better understand 

the transferability and validity of our EFA model, more data from other institutions 

implementing the Pathways innovation should be gathered. This is especially important given 

that these data were recorded during the COVID-19 pandemic, where instructional practices 

were constantly changing and adapting.   
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Digital technologies including graphing software and applets are frequently included in 

mathematics curricula as resources for supporting students’ learning and performance (Swidan, 

2019; Thompson, Byerley, & Hatfield, 2013). Research has shown that teachers’ conception of 

didactic objects is largely influenced by their mathematical meanings (Thompson, 2002; 2008; 

Guy, 2021). As such it seems reasonable that there is a relationship between teachers’ 

mathematical meanings for teaching (MMT) and their conception of and intended use of an 

applet. This report presents results that demonstrate how a graduate student instructor’s (GSIs) 

MMT influence her conception of and intended use of an applet. Moreover, we illustrate how a 

teacher’s use of an applet can lead to advances in her MMT. 

Keywords: Applets, Didactic Objects, Quantitative Reasoning, Mathematical Meanings 

As technology advances, new and emerging technology is being regularly adopted to support 

both teachers and students in the teaching and learning of mathematics (Pope, 2013). Current 

research has documented that teachers play a critical role in the integration process of technology 

in curricula (e.g., Artigue, Drijvers, Lagrange, Mariotti & Ruthven, 2009; Drijvers, Doorman, 

Boon, Reed, & Gravemeijer, 2010; Daher, 2009). As one example, teachers are using applets – 

interactive computer-based objects – to support students in visualizing attributes of specific 

mathematical ideas (Gadanidis, Gadanidis, & Schindler, 2003). The dynamic abilities of an 

applet can promote discussions that focus on quantities and their relationships within a problem 

context as they vary in tandem (Moore, 2009). Cobb, Boufi, McClain, and Whitenack (1997) 

referred to these discussions as reflective discourse. A teacher strives to engage in reflective 

mathematical discourse when implementing an applet as a didactic object. 

Thompson defines didactic object as “a thing to talk about’ that is designed with the intention 

of supporting reflective mathematical discourse” (Thompson, 2002, p. 198). An object is not 

considered didactic until the teacher conceptualizes an image of a conversation designed to 

support students in constructing coherent mathematical meanings. A teacher’s conceptualization 

of a didactic object largely depends on the instructor’s didactic model. A didactic model is “a 

scheme of meanings, actions, and interpretations that constitute the instructor’s or instructional 

designer’s image of all that needs to be understood for someone to make sense of the didactic 

object in the way he or she intends” (ibid, p. 212). A teacher’s didactic model is thus largely 

dependent on her MMT, and therefore may be different from the instructional designers of the 

applet.  

Thompson (2016) described a teacher’s mathematical meanings for teaching (MMT) as her 

images of the mathematics she teaches and intends students to have. As such a teacher’s MMT 

encompass her meanings for the idea together with the teacher’s (1) image of epistemic students, 

(2) image of how to support students in developing similar meanings, and (3) an image of 

activities to support students’ construction of these meanings (Silverman & Thompson, 2008). 

Although researchers have used applets as didactic objects to support students’ learning of 

mathematics (Moore, 2009; Guy, 2020), few have investigated the relationship between teachers’ 
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MMT and their use of applets. This report addresses the following question: In what ways does  

teachers’ MMT influence their conception of and intended use of an applet while teaching? 

Theoretical Perspective 
Prior research has identified quantitative reasoning (Thompson, 1990, 2011) as a foundational 

way of thinking for supporting students’ understandings and teachers’ instruction of angle measure 
and trigonometric functions (Moore, 2010, 2014; Hertel & Cullen, 2011; Tallman, 2015; Tallman & 

Frank, 2018; Rocha & Carlson, 2020; Rocha, 2021). An individual engages in quantitative reasoning 

when she conceptualizes a situation in terms of quantities and quantitative relationships (Thompson, 

1990). A quantity is an attribute of an object that one imagines measuring. When someone has 

conceived of three quantities, two of which determines the third, they have conceived of a 

quantitative relationship.  

A productive meaning for sine function involves quantitative (Thompson, 2011) and 

covariational reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). Covariational reasoning entails 

the coordination of changes in two quantities’ values while attending to those changes as the 

quantities vary simultaneously. Specifically, sine function relates the measure of an angle swept out 
from the 3 o’clock position to the vertical length of the point on the terminal ray of the angle 

(terminal point) measured from the center of the circle. Moore (2012, 2014) found that is productive 

to measure an angle’s “openness” (i.e., the length of arc from the initial ray to the terminal ray) by 

determining the fraction of the circle’s circumference that is subtended by the angle. Meaning “for 

the measure of the angle to be independent of the size of this circle, the subtended arc must be 

measured in a unit whose magnitude is proportional to the magnitude of the subtended arc and the 

circumference of the circle that contains it” (Tallman & Frank, 2018, p. 5).  
The value of sine can be determined by leveraging relative size reasoning in comparing the 

length of the terminal point’s vertical distance from the center of the circle to length of the circle’s 
radius. One of the benefits of conceptualizing sine function in terms of the radius’s length is that “the 

values convey numerical measures for every circle all at once because regardless of the circle, one 

obtains equivalent numerical values when the quantities are measured relative to that circle’s radius” 

(Moore, 2014, p. 13). Similarly, other trigonometric functions require one to formalize a relationship 

between the covariation of angle measure and a ratio of lengths (see Figure 1).  

 
Figure 1: A connection between unit circle trigonometry and right triangle trigonometry. 

The Fan Blade (FB)-Applet (Figure 2) was designed to promote quantitative meaning for 

sine if engaged in an instructional conversation that focuses on the directed vertical distance for a 

given angle measure for various radius lengths. For instance, for an angle measure of 0.79 

radians (or 45 degrees), one may increase and decrease the radius (point D) of the circle which 

produces various arc-lengths and vertical distance measured in feet. But, in radius lengths (radii), 
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the measure of the directed vertical distance measured in radii is the same numerical value as the 

vertical distance of the terminal point from the center of any circle rotated at 0.79 radians is 

constantly proportional to the length of the radius. This meaning for sine function is especially 

productive for students who view the unit circle as a basis for any circle context, in which they 

rotate 0.79 radians, view the vertical length of the terminal point to be sin(0.79) ≈ 0.71 radius 

lengths, then multiply the radius of the circle in the given context (e.g. a propeller blade with a 

length of 3 feet) to the value of sin(0.79) to produce the accurate y-coordinate of the fan blade’s 

vertical position from the center of the circle (i.e. 3 ∙ sin(0.79) ≈ 3 ∙ 0.71 ≈ 2.12 feet). 

Methodology 

The purpose of this study is twofold (1) to investigate teachers’ meanings for sine 

function and (2) to investigate how teachers’ meanings for sine function influence their 

conception of and intended use of an applet. To accomplish this goal, we interviewed an 

instructor who was in her second-year teaching precalculus with a research-based Pathways 

curriculum (Carlson, Oehrtman, & Moore, 2018) at a large public university in the southwest 

United States. During the interview, the instructor was asked to respond to two tasks (shown in 

Table 1) designed to reveal her meanings for sine function. The GSI was also presented with an 

applet designed to support instructors’ teaching of sine function. The instructor was then asked to 

think aloud as she interacted with the applet and its features. The first author then posed 

questions to the instructor to gain insight into her perception of the applet including the 

mathematical ideas and understandings the applet could support and if/how the instructor 

intended to use the applet while teaching. The first author analyzed the clinical interview using 

Simon’s (2019) three phases of analysis to form a second-order model (Steffe & Thompson, 

2000) of the GSI’s thinking and meanings for sine function.  

 

Table 1. Tasks posed to instructors during the clinical interview. 

Task 1 

 

Task 2 Let’s say you were lesson planning and prepping to present this problem (below) in class to your 

students. Jamie is a pilot for Beta Airlines. He noticed that there was a piece of gum stuck at the tip of 

one of the propeller’s fan blade. The length of each fan blade from the center of the propeller is 3 feet. 

Jamie rotates the fan blade with the gum attached in a counterclockwise (CCW) direction from the 6 

o'clock position. Create a graph that shows how the gum’s vertical length from the horizontal diameter 

varies with the angle swept out by the gum’s fan blade as it rotates CCW from the 6 o'clock position. 
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Results 

We share the following results from a GSI’s interview that entail her responses and 

interactions with Task 1, Task 2, and the FB-Applet included in a research-based Precalculus 

curriculum (Carlson, Oehrtman, & Moore, 2018). We first highlight the GSI’s meanings for sine 

function. We follow this with a description of the GSI’s goal(s) for supporting students in 

developing coherent meanings for sine function. This includes a description of the GSI’s image 

of a productive meaning for sine function and the questions she intends to pose to students while 

using an applet in class. We conclude with a description of the GSI’s interaction with applet and 

the meanings for sine function she expressed while interacting with the applet. 

 
Figure 2: Fan Blade (FB)-Applet  

Kendra’s Meaning for Sine Function 
When responding to task 1, Kendra immediately identified the red graph (see Table 1) as the 

correct graph of sine function. She then expressed that the phrase “how far the gum traveled” 

(included in task prompt) is a description of a rotation from the 6 o’clock position. Following this she 

labeled the red graph’s horizontal axis as angle measure and the vertical axis as the vertical distance 
from the center of the fan blade (see Figure 3). When Kendra was asked how she intended to support 

students in identifying the correct graph in the first task, she expressed that she wanted students to 

compare changes in the vertical distance of the terminal point over equal-sized intervals of the 

domain. Specifically, Kendra expressed that in the fourth quadrant (see Figure 3), she wanted her 

students to focus on the amount of change in the vertical distance of the gum for “equal changes of 

radians” in the counterclockwise direction (CCW). Although Kendra expressed that she wanted her 

students to coordinate changes in the vertical distances of the gum with changes of radians, she did 

not make explicit how one could measure the vertical distance of the gum from the horizontal 

diameter. 

 

 

Figure 3: Applet 1 - Angle Measure 
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When Kendra was asked to describe the meanings for sine that she wanted students to 

have she expressed that she wanted students to think of the sine as a function machine that 

relates the terminal point’s vertical length from the horizontal diameter (the output) to an angle 

of rotation from the 3 o’clock position (the input). Kendra further expressed that she could 

determine the vertical distance of the terminal point above the horizontal diameter by comparing 

the relative size of the vertical length of the gum’s position to the length of the radius (Excerpt 

1). As one example, Kendra explained that if the gum’s terminal point was along a circle’s 

circumference (indicated by blue point in Figure 2), then one can estimate the vertical length 

(solid vertical blue line) to be 0.9 or 90% of the radius’s length (the dashed vertical blue line on 

vertical diameter). 

Excerpt 1 

Kendra: So if my terminal point is here [draws the blue point], I’m going to be measuring this 

length [draws the blue vertical line from the blue terminal point to the horizontal 

diameter] in comparison to my entire radius [draws dashed line to represent the radius] so 

that [the solid blue line] will never be bigger than my one radius length so we'll be taking 

basically a proportion of that radius length. So, how many times as large that vertical 

length is compared to the length of my radius. Maybe, this one [references the solid 

vertical line] is point nine. So, your output for the sine function without adjusting it will 

be between negative one and one every time because it can't go beyond one because 

you'd be outside the circle.” 

Kendra explained that by measuring the vertical length in units of the radius, she hoped students 

would recognize that the output of sine function must range between -1 and 1 units of the radius. 

She further explained that no matter the size of the circle, the vertical length of a terminal point 

along a circle’s circumference whose rays are centered at the center of the circle will be 

proportional to the size of the circle’s radius.  

Excerpt 2 

Kendra: To find the vertical distance of that terminal point above the horizontal diameter, in 

terms of radius’s length [i.e. from units of radius lengths to feet]. Then we can multiply 

by the radius’s length [i.e. 3 feet] to get it in terms of the units that the radius length is 

measured in. Because if I have an output of one and I multiply by 3 …I'm going to get 3, 

so my radius length of 3 feet that value three is 3 times as large as the radius length itself 

being one. And if I know that my vertical distance is 0.9 times as large as the radius 

length, then, if I multiply that by 3, that's going to tell me how many feet it would 

measure. 
Excerpts 1 and 2 show Kendra’s conceptualization of both radius lengths and feet as an appropriate 
unit of measurement for the gum’s vertical distance from the ray’s terminal point to the center of the 

circle. Moreover, it appears as though Kendra’s meaning for sine function is grounded in quantitative 

reasoning as she identified an attribute to measure (vertical distance of the terminal point above the 

center of the circle), a unit of measure (radius length or units of the radius (i.e. feet)), and a process to 

measure the vertical distance (determining the relative size of the vertical distance to the radius 

length) (Tallman & Frank, 2018). 

  

Kendra’s Expressed Meaning for Sine through Fan Blade Applet  
The start of Kendra’s interaction with the FB Applet entailed animating the applet, searching for 

what points on the circle she could move, and the meaning of the information displayed on the right 

side of the panel (Figure 2). The first thing Kendra discussed was her interest in varying the length of 

the radius (i.e. dragging point D horizontally to the right which varied the size of the circle). As she 
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did this, she began to describe the affordances of being able to vary the length of the radius (see 

Excerpt 3). 

Excerpt 3 

Kendra: The affordance of this is that I can change the size which can adjust my output when 

it's in terms of feet, but I like that [moves her mouse to circle  in the bottom right corner of 

the FB applet]…I like this m times AC is always going to stay 0.93 matter what size right 

because it doesn't matter what size the circle is if we're talking about in terms of radius 

length. 

Following this, Kendra expressed her appreciation for the designer in choosing to not include 

the term “sine function” on the applet as she imagined having an initial conversation with her 

students about the quantitative relationships between the arc-length, the radius, and the vertical 

position of the gum as they vary in tandem prior to defining sine function explicitly in her lesson. 

Kendra then described the affordance of the applet’s dynamic capabilities – the ability to 

physically rotate the gum’s position along the circumference of the circle could support a 

conversation with students about the quantities involved in the problem and how they vary 

together. This was important as this aligned with her initial goal of supporting students’ imagery 

of two quantities covarying. While interacting with the applet, Kendra also expressed that she 

felt it was important to have a fruitful discussion with her students about the applet’s capabilities 

and to observe their reactions. Moreover, Kendra anticipated that students would have 

difficulties constructing the meaning she intends to convey from the applet in the absence of her 

(the teacher’s) support based on prior experiences from teaching this idea.  

Once Kendra seemed comfortable using the applet and all its features, we asked her to 

describe if and how she would use the applet in class to support students in constructing the 

meaning for sine that she had described previously. Kendra explained that she would first 

animate the applet and ask students “what all is changing or staying the same”. Kendra expressed 

that she wanted to animate the applet to allow students to “silently internalize [the] animation 

and develop their own understanding for what's there or maybe start thinking about what they 

don't understand.” Kendra then expressed that her students might notice that “there are multiple 

things changing at the same time”, which would then provide an opportunity for a conversation 

on the “need for breaking down” each mathematical notation (see Figure 2) and how it relates to 

the image shown in the applet. She stated the following: 

“When I vary the size of this propeller, which values are changing, and which values are 

staying the same. That's definitely something I want to point out, because you can clearly see 

the arc length is changing the length of the radius is changing, vertical length is changing in 

feet, but it's staying the same with radii when in terms of the radius, that kind of re-

emphasizes that if we measure something in radius length it doesn't matter, the size of the 

circle, so when we start multiplying it [vertical length in radii] by a number to get an output 

in feet, that is really dependent upon on a circle’s size and a specific context. Whereas the 

regular sine function is just talking about in general, any circle. And we can relate that 

vertical length to the radius’s size and that's always going to remain proportional, no matter 

how big or small that circle is. That's definitely something I’d want to emphasize with this 

one.” 

It is important to note that while expressing her image for how she intends to use the applet to 

support an instructional conversation, Kendra continuously dragged point D and varied the 

length of the radius. She later stated that without the applet, she did not think she would be able 

to support students in recognizing the proportional relationship between the vertical distance of 

the terminal point above the horizontal diameter and the radius of the circle as one could 
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demonstrate with the applet. To further explain, Kendra described that the feature at the bottom 

of the applet that states 𝑚𝐴𝐶̅̅ ̅̅ , which is the length of the vertical distance measured in units of the 

radius, continuously staying the same as she varies the radius length, and the size of the circle is 

a form imagery that she believes displays a productive way of seeing the proportionality of the 

vertical length to the radius length. Lastly, Kendra also expressed that the applet could be used to 

support conversations about (1) other applied trigonometric problems and (2) the construction of 

the sine graph. 
Discussion and Conclusion 

The results of this study illustrate a teacher’s MMT sine function and how her MMT sine 

function influenced her conception of and intended use of an applet while teaching. During the 

clinical interview, Kendra expressed a meaning for sine function grounded in quantitative 

reasoning. Namely, Kendra, described sine as a function “machine” that relates the vertical 

distance of a terminal point above the center of a circle and the measure of an angle swept out as 

they vary in tandem. Kendra also expressed that the value of sine represents how many times as 

large the vertical distance of the terminal point is to the radius of the circle, no matter the size of 

the circle. Her meaning for sine function supported her conception of the applet’s features 

including the varying radius, angle measure, and vertical distance within a problem context of a 

fan blade. It is important to note that Kendra’s image for supporting her students in 

conceptualizing how various quantities within the problem context vary in tandem through an 

instructional conversation (see Thompson 2002 for a more detailed description) was prevalent as 

she conceived of ways in which the applet could be implemented during those discussions. 

Specifically, Kendra expressed that she wanted to support students in developing an 

understanding of sine that encompassed a proportional relationship between the terminal ray’s 

vertical position from the center of the circle to the length radius. She stated that the use of the 

applet’s ability to vary the circle’s radius as the vertical length of the terminal point from the 

center measured in radius lengths stayed constant aligned with her goal for in supporting students 

in conceptualizing this proportional relationship. 

 From our findings we hope to interview more instructors to further investigate in what ways 

teachers’ MMT influence their conception of and intended use of an applet while teaching. 

Future research should investigate teachers’ use of applets and how it may support their 

development of images of teaching practices to advance students’ learning. More concretely, we 

hypothesize that a teacher’s MMT influences their conception of an applet and its features, and 

conversely, a teacher’s use of an applet enriches their MMT to include new images of effective 

teaching practices (e.g., ways to use an applet’s features to support students’ covariational 

reasoning). It is important for researchers and professional development leaders to be aware of 

the relationship between teachers’ MMT, their conception of and intended use of an applet, and 

how they implement the applet within the classroom to advance students’ mathematical 

understandings. In additional studies, we hope to investigate the interactions of four graduate 

student instructors’ MMT for sine function and their conception of and intended use of an 

applet(s) over multiple sessions while exploring teachers’ experiences of using the applet(s) in a 

classroom. 
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Making math meaningful for all students is a consistent expectation held by students and a 

fundamental requirement of teaching for equity. Yet little is known about what makes instructors 

self-efficacious in helping students find meaning in the mathematics they study. This paper 

presents results from interviews with four college math instructors during the 2019 spring 

academic year. The instructors taught several different courses and described having 

significantly different senses of self efficacy for making math meaningful. A characteristic of 

those instructors who had strong senses of self-efficacy was notable background experiences 

with marginalization. Through analysis of these interviews we present evidence showing how 

these background experiences supported self efficacy in addressing meaningfulness questions in 

classroom instruction. 

 

Keywords: Meaningfulness of Mathematics, Teacher Self-efficacy, Teaching Self-efficacy, 

Marginalization 

 

Students in mathematics courses have often voiced complaints to the effect of “when is this 

ever going to be useful?” (Gough, 1998). We interpret this question and others like it, such as 

‘why are we learning this?’, ‘why should we care?’ as students asking for the purpose, 

usefulness, relevance, and/or meaningfulness of what they are learning. Under the assumption 

that these terms are closely related, if not synonymous in an instructor’s and students' eyes, we 

group these questions under an umbrella term we call the ‘meaningfulness question(s).’ Such 

questions put an onus on instructors to make mathematics meaningful to their students, 

especially marginalized students who are documented as receiving mixed messages about the 

importance of mathematics in their lives (Martin, 2000).   

Some instructors, however, may not feel confident in their ability to meet this challenge. 

Although little is known about mathematics teaching self-efficacy in higher education, K-12 

mathematics teachers differ in their feelings of self-efficacy for teaching mathematics. 

Furthermore, these differences impact their practice in domains such as their use of high-quality 

instructional practices (Depaepe & König, 2018) and their willingness to experiment with new 

approaches (Evers, Brouwers, & Tomic, 2002; Ghaith & Yaghi, 1997). It is, thus, worth 

exploring what differences might exist in instructor self-efficacy for the more specific domain of 

making mathematics meaningful. 

This kind of work has not been a priority in the field thus far. Research on K-12 teacher self-

efficacy, such as the studies cited in the previous paragraph, focus on the broader construct of 

mathematics teacher self-efficacy (Xenofontos and Andrews, 2020). There has been little 

explorational work of other, more fine-grained aspects of teacher self-efficacy (Xenofontos and 

Andrews 2020). Thus, there is a need for qualitative work that investigates more specific 

components of teacher self-efficacy in mathematics such as self-efficacy in making mathematics 

meaningful for students. Given the lack of research on mathematics teacher self-efficacy in 

higher education, work in higher education is especially important. In this study we explore this 
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issue by investigating the research question, What makes undergraduate instructors’ self-

efficacious with respect to making mathematics meaningful for all students? 

 

Theoretical Framework 

How then can instructors think of the terms ‘meaning’ and ‘meaningful’? Drawing on 

Brownell (1947) and social theory, Chowdhury (2021) describes four types of responses to 

students' meaningfulness questions which derive from different ways to construe the term 

‘meaning’ in mathematics. Brownell (1947) initially talks about the meaning of mathematics as 

referring to the understandings required to grasp a concept mathematically, e.g., the meaning of 

arithmetic requires understanding whole numbers, fractions, operations. By contrast, the meaning 

for mathematics entails understanding mathematics’ significance for non-mathematical purposes, 

e.g., applications to life beyond the classroom or even skills for test performance. 

These two conceptions focus on how an individual understands meaning. An individual 

makes sense of concepts mathematically by understanding requisite concepts (of) or values 

mathematics for its everyday applicability (for). However, some may focus on neither, instead 

focusing on preparing to be a functioning member of the mathematics community or society 

more broadly (e.g., critical citizenship). For these reasons, Chowdhury (2021) expands the prior 

by drawing on social theory, specifically aspects of Wenger’s (1998) framework. Wenger holds 

“Practice is about meaning as an experience of everyday life” (p. 52, emphasis added). 

Synthesizing these and Wenger (1998) more generally, Chowdhury interprets Wenger as saying 

that meaning is how one engages in the everyday experiences of a specific community. Thus, 

individuals can become competent members of the mathematics community by learning how to 

engage in the everyday practices of mathematicians or individuals can learn how to engage in 

practices that enable them to function in non-mathematics communities. Chowdhury proposes 

that instructors’ goals could be oriented towards having students learn practices of either kind, 

but also mathematical understanding or personal relevance as Brownell originally outlined, as 

shown in Figure 1 below. 

 

  

 

Figure 1. Four Orientations of Mathematical Meaning as a Model of Instructors’ Goals. 
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Thus, Chowdhury (2021) outlines four categories, or orientations, for responses instructors 

could have to students' meaningfulness questions. The individual meaning of mathematics 

(iMoM) refers to meaning as conceptual understanding of mathematical ideas while the social 

meaning of mathematics (sMoM) refers to engaging in the practices of the mathematics 

community. The individual meaning for mathematics (iMfM) refers to the relevance of 

mathematics to non-mathematical things in an individual’s life while the social meaning for 

mathematics (sMoM) refers to engaging in practices transferable to non-mathematics 

communities. Chowdhury uses the four resulting orientations on meaning to categorize 

instructors' goals, where some of those goals could be instructors’ responses to students' 

meaningfulness questions. 

 

Methods 

The data in this study is from a larger multiple case study of four instructors teaching during 

the 2019 spring term at a Western U.S. university (Chowdhury, 2021).  Each of the instructors 

taught a different course. Archy (he/him) taught quantitative literacy for non-STEM majors. 

Jordan (she/her) taught introductory statistics for health science and business majors. Benjamin 

(he/him) taught calculus III for STEM majors. Natalie (she/her) taught mathematics for teachers 

to preservice teachers. Jordan, Benjamin and Natalie all had substantial prior experience teaching 

their courses. Archy was teaching his course for the first time. 

The data used in this study were interviews, class observations, collected homework, notes, 

and email correspondence. Chowdhury interviewed each instructor three times throughout the 

term. The first interview focused on an instructor's background and course goals. The second and 

third interviews followed Speer’s (2005) video clip interviews: Chowdhury brought clips he 

suspected may have implications for an instructor’s goals and asked the instructor what they did, 

their goals in the moment and how those goals related to the goals the instructor voiced in the 

first interview. Interviews were transcribed and analyzed following Braun and Clarke’s (2006) 

approach to thematic analysis. For the analysis, Chowdhury assigned initial codes regarding 

goals, beliefs, instructor background, and concerns. He then looked over the codes to find 

broader themes and create thematic maps to see how coded experiences, beliefs, and meaning 

orientations were organized.  

 

Findings 

In the following sections, we will first pose representative examples of instructional goals as 

evidence of the different meaning orientations as answers to students’ potential meaningfulness 

questions. We will then highlight one way that this distinction in meaning orientations for goals 

can matter: instructors can have differing senses of teaching self-efficacy to meet goals with 

different orientations. We will then posit a possible explanation for why this difference in 

teaching self-efficacy exists (experiences of marginalization). 

 

Instructor’s Goals 

Instructors had goals spanning all four meaning orientations that they posed in response to 

students’ meaningfulness questions. In terms of goals we classified as iMoM- and sMoM-

oriented, instructors had goals around building conceptual understanding and doing mathematics 

that they posed in response to the meaningfulness question. Natalie had students engage in 

reconstructing mathematical knowledge to convey that “there aren't all these different individual 

concepts to learn. that there's bigger ideas.” Natalie was having preservice teachers reconstruct 
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mathematical knowledge to see that there are bigger connected ideas (this reasoning being the 

justification for the iMoM-orientation). Archy stated, “you can just enjoy it [math] the way you 

enjoy playing basketball. It's just like, basketball's meaningless too, but it's fun.” In trying to 

convey this fun then, Archy devoted a section of his class to covering sequences and series. 

There, he wanted students to go through and see how there was a “sweet connection” between 

sequences of partial sums to the sum of the first n integers. The aspect of showing “sweet 

connections” focused on drawing connections (iMoM-oriented) while the focus on having 

students do mathematics the way one plays basketball focused on engaging in the practices of 

mathematicians (sMoM-oriented), and Archy connected these to being meaningful in their own 

right. Benjamin’s main goals consisted of conveying two overarching “storylines” (sequences 

and series and preparing for calculus in 3D), and he talked about how he fell back on these goals 

in response to meaningfulness questions. He stated, “what I end up focusing on more, is simply 

that this subject [mathematics] is fascinating, … it doesn't have to have anything to do with the 

people around you, that it can just be its own safe haven.” In all the prior examples, a focus on 

having students understand mathematical concepts and how they connect to other mathematical 

concepts (iMoM-oriented) or on doing mathematics (sMoM-oriented) were posed in response to 

students’ meaningfulness questions. 

In terms of goals we classified as iMfM- and sMfM-oriented, instructors had goals around 

building community engagement and personal relevance that they posed in response to the 

meaningfulness question. For example, Benjamin had personal relevance goals of building 

students’ algebra skills by picking algebraically complicated problems because “maybe they'll 

have spent this much extra time being forced to do hard algebra that that will be a skill that they 

can carry on and actually utilize in their lives.” Similarly, Archy devoted a section of his class to 

personal finance. Generally, these personal relevance goals instructors connected to students’ 

meaningfulness questions focused on promoting competencies for students’ individual use 

outside any commitment to the discipline of mathematics (i.e., iMfM-oriented goals). On 

community engagement, Jordan talked about bringing in articles on how statistics were used 

because “they may not use this specific statistic in their life going forward, but… we hope that 

they become more educated consumers and not get fooled by statistics… understand that that 

statistic was manipulated by a politician.” Similarly, Archy had a section on data collection so 

that his students could critically evaluate claims propagated throughout society. Here, Jordan and 

Archy are focused on getting students to learn how to function as critically informed citizens in a 

democratic society. Natalie talked about how “the whole point is to teach them [preservice 

teachers] useful math…‘Why are we doing it this way? Why aren't you just telling us [how] to 

do it?’ One of my answers would be, you know, this is how people learn.” The point here was 

that having the preservice teachers understand math in this way will enable the future teachers to 

teach their students math effectively (which is sMfM-oriented). In all of these, instructors 

focused on preparing students to function in (non-mathematics) professional communities or 

society more broadly and positioned this work as meaningful. The focus on community 

engagement signals an sMfM-orientation. 

 

Why Might Orientations Matter? 

So why do the orientations matter? We found while no instructors described self efficacy 

concerns relating to i/sMoM-oriented goals, there was a stark contrast in self efficacy in meeting 

goals with i/sMfM-orientations that broke down along background (childhood experiences, 

gendered experiences in mathematics, etc.). We note that the absence of voiced concerns about 
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i/sMoM-oriented goals does not establish that all the instructors had high levels of self-efficacy 

when attending to those goals, but we find it significant that no concerns were stated relating to 

i/sMoM-oriented goals while some concerns were stated relating to i/sMfM-oriented goals. 

Benjamin and Archy expressed discomfort attending to some i/sMfM-oriented goals. For 

instance, Benjamin commented, “how can we get more people of African American heritage to 

take math classes and be successful in math classes, and how can we make math relevant to 

them? I don't have an answer for that question.” Benjamin noted the importance of i/sMfM-

oriented goals because of racial inequalities. We took Benjamin’s view of math as “relevant” as 

either iMfM- or sMfM-compatible since he went on to talk about cultural relevance, and it was 

not clear if this meant relevant to an individual (iMfM-oriented) or relevant to functioning in the 

African American community (sMfM-oriented). As a result of his discomfort in the last quote he 

noted, “but what I end up focusing on more, is simply that this subject [mathematics] is 

fascinating, … it doesn't have to have anything to do with the people around you, that it can just 

be its own safe haven.” Since Benjamin did not feel he had the resources to attend to i/sMfM-

oriented goals that could be important for students from marginalized populations, he focused on 

i/sMoM goals. Archy described similar difficulties when he stated, “my concern is that like I 

don't have any material for this course and that like I'm just making it all up.” He later went on to 

say “I've never done anything useful...if I had examples on point, then I would be able to 

definitely hit the, the more personal side of how is this gonna effect you, like either via society or 

directly.” Like Benjamin, Archy noted preparation struggles to meet i/sMfM-oriented goals. 

By contrast, the Natalie and Jordan felt comfortable implementing i/sMfM-oriented goals. 

Natalie highlighted how mathematics connects to other topics so that the preservice teachers can 

more effectively do their job. She stated, “I care about them [preservice teachers] engaging our 

students and that's [connecting to other topics] a way to engage.” Here she demonstrated 

personal relevance and community engagement goals, which we previously discussed as 

generally being i/sMfM-oriented. Jordan highlighted how statistics play into other fields and 

broader culture. She stated, “I always, on the last day, emphasize to them that they may not use 

this specific statistic in their life going forward but … we hope that they become more educated 

consumers and not get fooled by statistics.” Here she demonstrated the community engagement 

goal, which we previously discussed as generally being sMfM-oriented.  

 

Possible Explanation of Difference in Self-Efficacy 

One possible explanation of this contrast in self efficacy is a difference in the instructors’ 

historical mathematical identities, specifically experiences of marginalization amongst the 

women and lack thereof amongst the men. Benjamin always had a curiosity around mathematics 

and had his interests supported. He noted that in the fifth grade, “my teacher saw that I just had a 

knack for mathematics and …  allowed me to do both the 5th and 6th grade math together. … 

and after that I was always a year ahead.” Archy stated, “some component of my identity is… 

you know how people are. They're like, ‘that's a math person.’ And I'm like, well I guess I am.” 

Those around both men recognized and supported their mathematical interest. By contrast, 

Jordan grew up struggling to learn mathematics in her childhood and later in a patriarchal college 

environment devaluing women. For example, she noted, “I took an engineering course, ... and 

then I sit down and he [the professor] announced to the whole class, 'yeah we actually have a girl 

in here. Don't worry, she won't be here by the end.'” She further stated, “it [patriarchal college 

environment] pissed me off in a lot of ways and I wanted to change those views … I still am up 

against sexism constantly in my committees and in the work I do.” While Natalie was supported 

24th Annual Conference on Research in Undergraduate Mathematics Education 224



in her success in mathematics, she struggled to integrate that success into her identity. She 

recalled, “my mom remembers me being horrified to have to go up and get this math award….I 

was definitely not excited to be recognized.” Natalie had further experience with mathematical 

marginalization when she taught historically marginalized students as part of a teacher 

certification program centered around issues of access and equity.  

Thus, all of the instructors described a need to focus on i/sMfM-oriented goals of personal 

relevance and/or civic community engagement, sometimes because of how societal inequalities 

have kept underserved minorities and women from achieving in STEM. However, there was a 

noteworthy demarcation in translating these realizations into practice.  The men with historical 

identities rooted in mathematics expressed discomfort attending to these i/sMfM-oriented goals, 

while the women, who had more contentious historical identities associated with mathematics, 

felt confident attending to these goals.  

How might we explain this contrast in self-efficacy? While we don’t have evidence of a 

mechanism for iMfM-oriented goals, we suspect that, with respect to sMfM-oriented goals, the 

experiences of marginalization amongst the women may have been a motivational resource. The 

women went out of their way to find how mathematics is meaningful for life in various 

professions or society more broadly. Jordan was observed pulling up and discussing various 

research articles using different statistics. When asked why she did this, she stated,  

I think the point of this is, just this course in general is just to give them a taste of what 

they may see in a research article or in the media or maybe they're setting up their own 

surveys … I have about six different articles I'm going to show them that kind of use the 

things that we've been using throughout the quarter, like where they might see a p-value 

in a research article. There's one on a replication of a study. So it was a study that was 

never able to be replicated. And then there's another story I cite where the data was faked. 

In this example, it’s notable that Jordan goes out of her way to find ways in which statistics is 

applied to various fields, but more specifically how to be critical of studies (which related to her 

community engagement, sMfM-oriented goals). As was mentioned before, Natalie similarly 

showed how mathematics plays into other fields (e.g., geology) because it would help preservice 

teachers draw in their students, thus enabling the preservice teachers to function in their 

profession (sMfM-oriented). In contrast, Benjamin demonstrated less motivation to improve his 

ability to address sMfM-oriented goals,  

We don't have to have applications for students to appreciate what it [math] is ... really, 

the breadth of where this could be used is well beyond my understanding and my 

knowledge. People come up and show me things that-, where math is used, all the time, 

that I've never seen before and I'm always fascinated [by]. I'm like, 'that's so cool. I wish I 

had the time and energy to go and like study that specific thing more.' 

Benjamin laments the personal knowledge gaps that inhibit his self efficacy, but does not make 

filling these gaps a priority.  

There is a clear contrast between Benjamin who admits to not having the expansive 

knowledge to attend to some sMfM-oriented goals, and the women who go out of their way to 

attend to such goals. By having experiences of marginalization, the woman perhaps saw a greater 

need to push themselves to become knowledgeable of how to draw these connections to other 

professions. This need could have been motivated by their own learning needs, which was in fact 

the case with Jordan, or the learning needs of others, as Natalie may have realized as a result of 

teaching in underserved communities. The example above only applies to sMfM-oriented goals 

of community engagement; we do not know if a similar dynamic holds for iMfM-oriented goals. 
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Conclusions and Implications 

We found that, for this group of instructors, attending to different meaning orientations 

(Chowdhury, 2021) provided a useful lens and possible explanation for understanding 

differences in self-efficacy in making mathematics meaningful for students. None of the 

instructors expressed self-efficacy concerns with respect to i/sMoM-oriented goals, while two of 

the four instructors expressed concerns with respect to i/sMfM-oriented goals. The instructors 

who were more comfortable addressing students’ potential i/sMfM-oriented questions were those 

with contentious historical mathematical identities and experience with marginalization, while 

those with self-efficacy concerns in this area had positive identity-shaping experiences in 

mathematics during their childhood. For the case of sMfM-oriented goals, our analysis suggests 

that these experiences with marginalization acted as a motivational resource.  

Thus, a characteristic that would traditionally be thought of as a deficit, marginalization in 

the instructors’ experience, could be a resource for instructors to meet the needs of marginalized 

students. This finding builds on previous work demonstrating the effectiveness of K-12 teachers 

of color in working with students of color (McKinney de Royston et. al., 2021; Milner, 2006). In 

addition to shared racialized experiences, shared experiences of marginalization could support 

instructor success in making mathematics meaningful to students. This finding also builds on 

previous work suggesting that normative identities and mathematical abilities may alienate 

marginalized students from teachers who emphasize i/sMoM-oriented goals (Mayes-Tang, 2019, 

Martin, 2003). Students with meaningfulness questions may make stronger emotional and 

intellectual connections with instructors who have and demonstrate a deeper understanding of the 

marginalization that informs their queries. 

One question in our work is the role of gender. We posited that background experiences with 

marginalization in mathematics could explain the difference in self efficacy to meet i/sMfM-

oriented goals, but it is worth noting that this difference in experience also fell along gender 

lines. It may be that gendered experiences, instead of solely experiences with marginalization in 

mathematics, could explain the difference in self-efficacy. Or even that both gendered 

experiences and marginalization intersect to impact instructors’ sense of self efficacy to answer 

the meaningfulness question in various ways. Another limitation to our work is Archy’s lack of 

experience teaching math for liberal arts; he might develop more examples as he teaches his 

class, and build his sense of teaching self-efficacy in attending to various meanings, regardless of 

his lack of experience with marginalization. 

The surprising finding, that a historically consistent and strong mathematical identity could 

be a liability in instructor self-efficacy with addressing students’ meaningfulness questions, is 

worth further exploration. If it is indeed a broader phenomenon, it has important implications for 

instructors and teacher educators. For instructors with mathematical backgrounds similar to 

Archy and Benjamin, this finding suggests value in consulting with their peers who may have a 

stronger understanding of how to bring meaning to the mathematics they teach. For teacher 

educators, this finding suggests that understanding pre-service teachers’ historical mathematical 

identities is a valuable undertaking that could have important implications for individual pre-

service teacher needs in teacher preparation. If the field of math education can address these 

issues and, thus, better attend to instructor’s feelings of self-efficacy in making mathematics 

meaningful for all students, a future where all students see meaning of and for mathematics in 

their classes could be within reach. 
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Differential Impacts on NSTEM Graduation: Exploring a Multi-Institutional Database 
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Calculus is a quintessential “gatekeeper” course to degrees in the natural sciences, technology, 
engineering, and mathematics (NSTEM). However, first-year courses in chemistry or physics, for 
example, can also impact an institution’s ability to retain high-quality students in the NSTEM 
pipeline. For women and underrepresented students, these courses may be particularly 
impactful. Using the Multiple-Institution Database for Investigating Engineering Longitudinal 
Development (MIDFIELD), we investigated the role of sex and race/ethnicity on graduating with 
a NSTEM degree while controlling for prior academic experience and students’ first experiences 
with NSTEM courses. This project highlights the utility of and need for databases such as 
MIDFIELD. We estimate the probabilities of students from various sexes and races/ethnicities of 
obtaining a NSTEM degree as they intended when starting college. 

Keywords: Differential Outcomes, Race/Ethnicity, Gender/Sex, STEM, Graduation  

The American job market is poised for an 8% increase in science, technology, engineering, 
and mathematics (STEM) careers during the 2019-2029 decade, over twice the growth expected 
for all careers (Zilberman & Ice, 2021). While this is a fantastic opportunity, there are serious 
hurdles to filling those positions. For instance, we struggle to retain students in the STEM 
pipeline (Pell, 1996). Indeed, only about half of students who begin college seeking a degree in 
STEM will attain such a degree within six years (Ehrenberg, 2010). Ellis, et al. (2016) reported 
that after taking calculus the odds of a woman switching out of a STEM major are 1.5 times 
those of a comparable man. This hemorrhaging is not exclusive to women as race matters, too. 
Asai (2020) reported that students classified as science PEERS—persons excluded because of 
their ethnicity or race—are over-represented at the start of pursing STEM degrees but leave at a 
much higher rate than non-PEERs.  

While numerous studies have explored factors contributing to differential outcomes for 
women and other under-represented students, they tend to coalesce around topics such as 
academic preparedness and course grades (Ehrenberg, 2010), and student persistence/confidence 
(Ellis et al., 2016; Harris et al., 2020; Riegle-Crumb et al., 2019). Academic performance in 
gateway courses, such as calculus, plays a central role in such studies. 

Within this landscape, we sought to address two research questions. First, we explore 
differential outcomes by sex and race on graduating with a degree in the Natural Sciences, 
Technology, Engineering, or Mathematics/Statistics (NSTEM), accounting for their academic 
preparedness as well as their performance in initial NSTEM courses. Second, we look at the 
probability of a student attaining such a degree.  

An important aspect of our work is a narrowing of the National Science Foundation’s 
definition of STEM (National Science Foundation & National Center for Science and 
Engineering Statistics, 2013). Specifically, we restrict to the natural sciences (e.g., physics, 
chemistry, biology, etc.), instead of all sciences. Thus, the primary difference between NSTEM 
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and STEM is that we have excluded the social sciences (e.g., psychology and sociology) as well 
as the health sciences (e.g., kinesiology, nursing). 

Methods 
To explore our research questions, we drew upon the Multiple-Institutions Database for 

Investigating Engineering Longitudinal Development (MIDFIELD; Ohland & Long, 2016). 
Currently consisting of 20 partner institutions with engineering programs from across the United 
States, the database consists of all student records (not just engineering students) who attended 
each institution as reported by their respective registrars. The oldest records stretch from 1988 all 
the way to 2018. While there are more than 1.7 million student records in MIDFIELD, we have 
restricted our attention to students who began college between 2005 and 2012, inclusive, 
following them to 2018 (N = 225,944). This time window allowed us to look through the six 
years after each student started to see if they graduated and with what degrees as well as having 
consistent ACT and SAT scores (avoiding significant changes in how these scores get 
calculated). Additionally, this time frame situates the data after Chen (2013) while overlapping 
with MAA’s national calculus student (see Ellis et al., 2016) and many of the studies reported in 
Talking about Leaving Revisited (Seymour & Hunter, 2019). 

Given the size of our restricted sample, we used a 70%-30% train/test split for our logistic 
regression model fitting, stratifying along sex and race/ethnicity. We wish to emphasize that 
there are important distinctions between sex and gender. While the database uses “sex”, there is 
ambiguity as to whether this attribute refers to sex or gender. In our models we will use the term 
sex for reproducibility purposes. We controlled for past academic preparation through students’ 
high school GPA (Galla et al., 2019) as well as standardized tests (ACT and SAT). We used 
ACT composite scores and a concordance table (ACT & College Board, 2009) to convert SAT 
scores to ACT composite when ACT was missing. In addition to variables for sex and race, we 
also included variables for students’ intent to get a NSTEM degree as well as the number of Ds, 
Fs, and withdrawals (“W”s) students received in NSTEM courses in their first term (semester or 
quarter).  

To account for the multiple/simultaneous inference problem, we have two inference families. 
The first are the regression coefficients for the multiple logistic model, which we have controlled 
using a False Coverage-Statement Rate method for selective interval construction (Benjamini & 
Yekutieli, 2005) at 5%. This method strikes a balance between frequentist and Bayesian 
approaches while directly dealing with the selection of important terms in fitting a regression 
model. Our second family consists of the probability estimates for student profiles using Šidák’s 
method to control the familywise Type I error rate at 5%. 

Population 
There are 12 participating institutions who provided student records for our selected time 

frame. However, we dropped one institution when that institution’s reported student 
demographics substantially departed from their publicly available demographics. This left 11 
institutions varying from a small, private liberal arts college to public R1 and R2 universities.  

Of the 225,944 students (with complete information) in our sample, approximately 13.4% 
(n = 30,368) graduated within six years of beginning at their institution with at least one degree 
in a NSTEM field. Table 1 provides the breakdown of the sample by race and sex. Given the 
racial demographics in U.S. higher education as a whole, it is unsurprising that the sample is 
majority white.  
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Table 1. Student Demographics—Race and Sex. 

Race White Asian Black Hispanic/Latinx Native American Total 

Male 101,076  
(44.73%) 

6028  
(2.67%) 

5,427 
(2.4%) 

8,160 
(3.61%) 

1,259 
(0.56%) 

121,950 
(53.97%) 

Female 85,871 
(38.01%) 

4,180 
(1.85%) 

5,291 
(2.34%) 

7,328 
(3.24%) 

1,324 
(0.59%) 

103,994 
(46.03%) 

Total 186,947 
(82.74%) 

10,208 
(4.52%) 

10,718 
(4.74%) 

15,488 
(6.85%) 

2,583 
(1.14%) 

225,944 
(100%) 

 
Students’ ACT composite scores varied from a 3 to 36, with a sample arithmetic mean (SAM) 

value of 24.46 (standard deviation [SD] value of 4.02) and a sample median value of 24 (median 
absolute deviation [MAD] value of 4.45). Their high school GPAs varied from 1.0 to 5.0, values 
for the SAM and sample median of 3.36 and 3.4, respectively. The values for the SD and MAD 
are 0.57 and 0.58, respectively. We calculated the number of Ds, Fs, and Ws each student 
received in their first term for core NSTEM courses (mathematics/statistics, chemistry, 
technology, biology, and physics). The number of DFWs went from a low of 0 to a high of 7 
courses. Approximately 83% of the students had no DFW’s in NSTEM courses in their first 
term, another ~13% had only one DFW, while the remaining 4% had two or more DFWs. 

Of the students in our sample, approximately 60% (n = 135,387) did not intend to get a 
NSTEM degree at the onset of their college experience while 40% (n = 90,557) did. Nearly 6% 
of the total students (n = 13,384) switched into NSTEM programs and 14% of students 
(n = 31,708) switched out of NSTEM programs. 

Results 
We present our results in two parts. First, we present information about the multiple logistic 

regression model and then share results of student profiles. The first part allows us to examine 
the general impacts of various factors on students attaining a NSTEM degree while the second 
provides a more interpretable look at the model through profiles of students. In both cases, the 
response attribute of our model is a student’s attainment of a NSTEM degree within six years of 
starting at their MIDFIELD participating institution.  

Model 
Our multiple logistic regression model consists of two covariates (ACT composite score, 

high school GPA), three factors (sex, race, and no NSTEM intent), as well as a potential 
mediator, the number of NSTEM DFWs in the student’s first term. We included several 
interaction terms (sex and race, NSTEM DFW count by race, NSTEM DFW count by sex) in the 
model as well. The estimates provided below come from the 70% split of the data. To check the 
model’s fit, we used a receiver operating characteristic (ROC) plot and the area under the curve 
(AUC; Bowers & Zhou, 2019) shown in Figure 1. The ROC curve and the AUC of 0.841 taken 
together indicate that our model explains the data well.  
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Figure 1. ROC Curve of Fitted Model on Testing Data Set 

Table 2. Odds Ratios from Logistic Regression Model 

Term 
Estimate  

(Std. Error) 
95% Adjusted  
Conf. Interval 

Odds of White, Male, NSTEM Intending, Student with 0 
ACT, 0 GPA, and 0 DFWs (Intercept)  0.046 (0.078) (0.040, 0.53) 

High School GPA 2.173 (0.017) (2.105, 2.44) 
No NSTEM Intent 0.070 (0.019) (0.068, 0.73) 
NSTEM DFW Count 0.589 (0.024) (0.563, 0.616) 
Female  0.751 (0.020) (0.724, 0.780) 
Hispanic/Latinx  0.720 (0.051) (0.655, 0.792) 
Black  0.652 (0.074) (0.568, 0.749) 
ACT Composite Score  1.008 (0.002) (1.003, 1.012) 
Black and NSTEM DFW Count  0.769 (0.102) (0.636, 0.930) 
Native American  0.741 (0.131) (0.581, 0.945) 
Female and Hispanic/Latinx  1.180 (0.075) (1.027, 1.356) 
Female and Asian  1.184 (0.077) (1.027, 1.366) 
Female and Black  1.160 (0.102) Non-significant 
Asian  0.933 (0.048) Non-significant 
Asian and NSTEM DFW Count  1.109 (0.074) Non-significant 
Native American and NSTEM DFW Count  0.905 (0.186) Non-significant 
Female and Native American  0.902 (0.193) Non-significant 
Female and NSTEM DFW Count  1.013 (0.039) Non-significant 
Hispanic/Latinx and NSTEM DFW Count 1.004 (0.076) Non-significant 
Note: Based on n = 158,156 observations (~70% split). 

 
Table 2 presents the point estimates from our resulting logistic regression model. We’ve 

transformed the regression coefficients from log odds to odds ratios except for the intercept. This 
term’s estimate represents the odds of the reference class attaining a NSTEM degree vs not; that 
is, a white, male student who intends to get a NSTEM degree with a high school GPA of 0, an 
ACT Composite score of 0, and no NSTEM DFWs in their first term. All remaining estimates 
are odds ratios. We’ve reported adjusted confidence intervals for those terms which are selected 
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as significant following the Benjamini-Hochberg procedure in conjunction with the Benjamini-
Yekutieli procedure for a false coverage statement of 5% (i.e., the probability of constructing an 
interval which does not cover the true value is no more than 5%; Benjamini & Yekutieli, 2005). 

From Table 2, we notice several things. First, consistent with Galla, et al. (2019) a student’s 
high school GPA is a much stronger predictor of attaining a NSTEM degree than their ACT 
composite score. Second, holding all other factors constant, a woman student’s odds of attaining 
a NSTEM degree are only 0.751 times as large as a similar man student’s. This is consistent with 
Ellis, et al.’s (2016) finding that women students were 1.5 times as likely to switch as 
comparable men students. Our estimate is equivalent to an estimate of 1.33 in Ellis et al.’s 
framing. Third, while the number of DFWs in NSTEM courses matter in attaining a NSTEM 
degree, race and sex are still conditionally associated with NSTEM degree attainment above and 
beyond DFW counts.  

Student Profiles 
While the logistic model can offer some insights, odds ratios are not very intuitive, especially 

when you wish to vary multiple factors and covariates simultaneously. However, we can use the 
model to estimate the probability of various students attaining a NSTEM degree within six years. 
For our profiles of NSTEM degree intending students, we used a fixed high school GPA of 3.5 
and ACT composite score of 26 as these are consistent with the values of the SAM and sample 
median of NSTEM intending students in our sample. The resulting profiles (varying race, sex, 
and number of NSTEM DFWs in the first term) appear in Table 3. 
 
Table 3. Predicted Probabilities of Attaining NSTEM Degree 

  Number of NSTEM DFWs 
Race Sex 0 1 2 
White Female 0.388 (0.375, 0.401) 0.274 (0.254, 0.295) 0.184 (0.154, 0.214) 
Asian Female 0.412 (0.366, 0.458) 0.317 (0.259, 0.374) 0.234 (0.151, 0.318) 
Black Female 0.324 (0.273, 0.376) 0.180 (0.131, 0.230) 0.092 (0.041, 0.142) 
Hispanic/Latinx Female 0.350 (0.310, 0.390) 0.244 (0.196, 0.292) 0.162 (0.099, 0.225) 
Native American Female 0.298 (0.199, 0.396) 0.186 (0.088, 0.284) 0.110 (0, 0.221) 
White Male 0.458 (0.447, 0.469) 0.332 (0.315, 0.349) 0.226 (0.201, 0.252) 
Asian Male 0.441 (0.404, 0.477) 0.340 (0.286, 0.393) 0.251 (0.169, 0.334) 
Black Male 0.355 (0.302, 0.408) 0.200 (0.144, 0.255) 0.101 (0.044, 0.159) 
Hispanic/Latinx Male 0.378 (0.341, 0.415) 0.264 (0.216, 0.312) 0.175 (0.110, 0.241) 
Native American Male 0.385 (0.288, 0.482) 0.250 (0.134, 0.366) 0.151 (0.006, 0.296) 
Table values are the predicted probabilities with 95% Šidák corrected confidence intervals. 

 
The predicted probabilities in Table 3 paint a stark picture: not even the advantaged white 

males who intended to get a NSTEM degree when they started college reach the status of a fair 
coin flip for attaining a NSTEM degree. Across the board, women students are less likely than 
men students of the same race to attain an NSTEM degree (odds ratios: White students—0.75, 
Asian—0.89, Black—0.87, Hispanic/Latinx—0.89, Native American—0.68).  

The number of DFWs in NSTEM courses do not affect students equally. White and Asian 
men students who have at least one DFW in NSTEM courses in the first term have a higher 
probability of attaining a NSTEM degree than Black and Native American women students who 
don’t have any DFWs. Black and Native American women and Black men with 2 DFWs in their 
first term will obtain a NSTEM degree no more than 11% of the time. However, for White and 
Asian men as well as Asian women with the same number of DFWs will get NSTEM degree 
more than 20% of the time.  
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Discussion 
This study leveraged a large, multi-institutional database (i.e., big data) to explore factors 

contributing to differential outcomes in NSTEM degree attainment. However, there are several 
important limitations to this work. 

Limitations 
An important limitation is that our models are not causal in nature. Our work might best be 

viewed through the lens of exploratory data analysis (Behrens, 1997) and is observational in 
nature. Further, our sample does not constitute a random sample of students or institutions. 
Institutions self-select to participate in the MIDFIELD program and students self-select 
universities. The sheer size of our sample brings benefits that small, random samples do not. As 
comparisons, Chen (2013) used a sample of 13,400 students, Ellis, et al. (2016) used 2,266 
students, and Riegle-Crumb, et al. (2019) used a high of 4,828 students for some of their models. 
The size of our 70% training set (n = 158,156) is nearly 12, 70, and 33 times as large as the 
aforementioned sample sizes, respectively. While large sample sizes are not a replacement for 
random sampling (e.g., there is still the existence of bias in big data), they do come with the risk 
of making Type I errors based off the sample size and not any actual effect from the 
factors/predictors. We have guarded against this by using a training/test split and adjustments for 
multiple comparisons. While the previous work is important and contributes to our collective 
understandings of (N)STEM disparities, the prior three studies did not account for multiple 
comparisons (or, if they did, made no mention of it); a weakness we sought to overcome. 

This large sample size would not have been possible without the MIDFIELD data. However, 
such a database comes with its own limitations. Participating institutions use their own 
idiosyncratic methods for coding student data. While the data stewards do what they can, using 
such a large-scale database does require considerable time in cleaning/processing the data. For 
example, within the race attribute of students we encountered two categories which we omitted 
from our analysis: Other/Unknown and International. These two categories are too vague for 
interpretable use of even though there might be important effects related to underrepresented 
minorities within them. (A similar Other/Unknown category appeared for sex.) Second, high 
school GPAs exist on at least two scales: 4.0 and 5.0. It is unclear whether institutions converted 
all GPAs to the same scale before sending their data to MIDFIED. After much internal 
discussion, we opted to work with GPAs as reported.  

A final limitation we wish to mention relates to both the database and our response attribute 
(attaining a NSTEM degree within six years from the institution they started at). While using six 
years is a ubiquitous practice, perhaps future work could re-examine such a limit. More 
importantly though is that the MIDFIELD database is constrained by what registrars can report 
in anonymized ways. Other longitudinal studies make use of student self-report data collection 
methods which allow for knowing whether the student did graduate (up to study attrition). For 
our data, once a student leaves a MIDFIELD participating institution, they effectively vanish as 
registrars are not going/able to track such a student outside of that institution. A NSTEM 
intending student could start at a participating institution but then transfer to a non-participating 
one and still graduate with a NSTEM degree. In terms of a generalizable model, such a student 
would be ultimately misclassified as not attaining a NSTEM degree. However, from the 
institutional level perspective, they are not misclassified. This is an important limitation of the 
current work. We see such an issue as an opportunity for the development of databases such as 
MIDFIELD as well as push for better data collection/standardization and sharing. 
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Key Points 
Our present work highlights the utility of large, multi-institutional databases for modeling 

issues in education, especially as related to issues of diversity, equity, and inclusion. When 
working at a single institutional level, the number of students in a demographic category might 
be 0 at worst and small number at best. This often leads researchers to collapse many categories 
together and/or forgo intersectional analyses of overlapping traits (e.g., race and sex). For 
example, at one of the institutions included in this study, there were only two black female 
students who began college between 2005 and 2012. Using the MIDFIELD database allowed us 
to overcome these issues. 

Our resulting model, while observational, is in alignment with the results of several other 
studies (e.g., Chen, 2013; Ellis et al., 2016; Riegle-Crumb et al., 2019; Seymour & Hunter, 
2019). Our work also expands the prior work not only by using MIDFIELD data, but also 
moving away from the typical notion of gateway/gatekeeper courses (e.g., calculus). Rather than 
exclusively looking at students’ grades in just Calculus I, we looked at students’ grades in all the 
NSTEM courses they took in their first term. Not only does this bring in the potential of 
gatekeepers directly in computer science, engineering, physics, chemistry, and biology, this 
expands the mathematics/statistics side to include courses such as college algebra and pre-
calculus. This expansion allows us to better capture the impact of students’ first experiences in 
college/university NSTEM courses, especially given that higher proportions of under-represented 
minority students often begin in developmental/remedial math courses (Chen, 2016). Our results 
suggest that we can’t just focus single mindedly on addressing issues in Calculus I; we need to 
take a broader view of the experiences of our NSTEM intending students.  

Our model also highlights the effects of sex and race which are not attributable to course 
grades. We take this to signal that those efforts focusing on academic support for women and 
under-represented minority students might only see marginal gains. We believe that for 
successful transformations, institutions must consider students holistically as well as critically 
examining and addressing their own systemic biases. The probabilities of attaining a NSTEM 
degree for various student profiles provides a useful tool for institutions. Using their own data, 
institutions can calculate the proportions of various student profiles that attain a NSTEM degree 
and then compare those proportions to the values in Table 3. While a blunt instrument, such 
comparisons can be eye-opening to institutional leaders/administrators, bringing the issue of 
differential impacts of NSTEM degree attainment home. 

A final note we wish to make is that our results appear to be in line with Galla, et al. (2019) 
for the usefulness of standardized test scores in predicting the attainment of a NSTEM degree. 
While not a focus of this work, our results raise new questions for exploration and continued 
calls to question whether the benefits of using standardized tests such as ACT/SAT outweigh 
their (historical) systemic, racial problems (Rosales & Walker, 2021). 

Researchers have documented differential outcomes within the (N)STEM pipeline for many 
years. Our work affirms and expands the previous research in this important arena by using a 
large, multi-institutional database. However, this work is but a first step. We need to take the 
knowledge from studies such as this and begin working towards meaningful changes at multiple 
levels (class, department, institutional, societal) to fully tap into the creativity and talent which 
leave the (N)STEM pipeline. 
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We explore productive struggle as a disciplinary practice in the context of undergraduate 
summer research. In contrast to the classroom, students and professors collectively engage in 
productive struggle, providing a rich context to study how professors model and support students 
in appropriating the nuances of this practice. Results elevate a particular sub-practice of 
productive struggle, that of naming, which the summer research group used to jointly clarify and 
negotiate their differing understandings. We identify the different components of naming and 
discuss how they support collective productive struggle (CPS). While naming is a mathematical 
practice familiar to most mathematicians, taking the lens of CPS to analyze this process elevated 
the important role that discourse and other social mechanisms have in perseverance. Comparing 
different instances of naming, we document how such a process supported the group in 
grappling with both conceptual and symbolic ideas and ultimately establishing a unified 
understanding.  

 
Productive struggle has been identified as a key component of learning mathematics with 

understanding (Hiebert & Grouws, 2007). To make sense of the mathematical structure of 
problems presented as well as the underlying mathematical concepts, students must be given 
opportunities to explore and navigate situations where the path forward is not immediately 
apparent (NCTM, 2014). Such authentic experiences promote deeper, more flexible reasoning 
and problem solving skills. Students develop the ability to draw on their own resources to resolve 
problematic situations rather than resorting to the authority of others. Moreover, engaging in 
productive struggle fosters in students a positive attitude about learning and a confidence in their 
own self-efficacy as learners (Jackson & Lambert, 2010; Hassi & Laursen, 2015). This results in 
an increase in student empowerment, as students are able to see their own role in generating 
mathematical insight instead of viewing mathematics as a discipline that only involves the 
application of procedures and the ideas of others.  

To date, most studies have focused on the instructional methods and environments that 
teachers use to foster and support productive struggle. Researchers have explored and 
documented how teachers navigate the natural tension that exists between maintaining cognitive 
demand and simultaneously encouraging students to engage in productive struggle. For example, 
several studies have highlighted the type of questioning that supports productive struggle (e.g. 
Freeburn & Arbaugh, 2017). Warshauer (2014), offering a more comprehensive framework, 
characterized different types of struggle and offered up a continuum of possible teacher 
responses that vary in the level of cognitive demand they support. This detailed study illustrated 
the situatedness of productive struggle and how it differs depending on the students, the task, and 
the norms of the classroom. Notably, when these situational factors overwhelmed students, 
teachers responded with direct guidance, often telling students what to do and lowering the 
complexity of the mathematical task. 

 

24th Annual Conference on Research in Undergraduate Mathematics Education 237



Productive Struggle in the Context of Undergraduate Research 
      In contrast to previous work, we chose to explore productive struggle in the context of 
undergraduate research. Such engaged learning programs have become increasingly popular in 
undergraduate institutions. However, these programs create an experience of productive struggle 
for students that differs from the typical instructional setting. In a classroom, the teacher is 
already familiar with the solution method and must judiciously decide when and how to offer 
support to students (NCTM, 2014). In a mathematics research setting, the path forward and even 
the ultimate destination are often unclear to both the students and the professors. As such, instead 
of being tasked to create an environment that supports productive struggle for the class, the 
professors themselves experience struggle along with the students. Consequently, in an 
undergraduate research setting, productive struggle arises naturally and manifests itself as a 
quintessential disciplinary practice which professors engage in firsthand, modeling how they 
react and overcome the challenges presented. This type of authentic participation in productive 
struggle highlights how summer research takes place in a community of practice (Wenger, 
1998). In contrast to a classroom, understanding of productive struggle in a research setting 
occurs as the group works together towards a common goal. Students appropriate the norms and 
strategies associated with productive struggle as they interact with the professors, grappling 
together with how to productively move forward.  

 
Research Question 

Leveraging this context, we endeavored to understand how such a community collectively 
engages in the disciplinary practice of productive struggle. Specifically, we explored the research 
question: How does the practice of collective productive struggle manifest itself in an 
undergraduate mathematics research setting?  
 

Theoretical Framework  
An individual’s willingness to engage in productive struggle is usually viewed as a personal 

disposition, denoted by a tendency to embrace struggle or an appreciation that struggle is a key 
component of learning (e.g. NCTM, 2014). For example, DiNapoli (2018) offered a detailed 
characterization of productive struggle, distinguishing it from other character traits such as grit 
and persistence. He maintained that productive struggle, like perseverance, is characterized by 
the flexibility to switch tactics and improvise to accommodate in-the-moment challenges. 
Moreover, he analyzed productive struggle through the lens of the individual, choosing not to 
incorporate the contextual features that shape how individuals respond to adversity.  

No doubt the community and its norms provide resources from which we draw on to 
persevere. As Warshauer (2014) noted, the nature of student struggles seemed related to the 
sociomathematical norms that were in place in the different classrooms she studied. This finding 
suggests that the sociocultural practices established in the classroom, which impact and mediate 
students’ learning behaviors (Yackel & Cobb, 1996), should be expanded to include productive 
struggle. 

Collective Productive Struggle 
In contrast to the individual perspective, Sengupta-Irving and Agarwal (2017) conceptualized 

productive struggle as a collective enterprise in a middle school classroom setting. They 
documented the interplay between group members, illustrating how the collective group 
supported each other in engaging in productive struggle. Students problem-solved independently, 
but repeatedly reconvened, to share ideas and draw upon their collective thinking to move 
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forward together. Taking such a collective lens, they documented the teacher’s impact on 
groups’ collective engagement in struggle. Expanding on Vygotsky’s notion of Zone of Proximal 
Development (ZPD), they leveraged the “collaborative ZPD” (Goos, Galbraith, & Renshaw, 
2002) to emphasize that benefits of interaction are bi-directional between all members of a 
community. A collaborative community does not simply expand the problem-solving ability of 
the novices, but that of the entire group.  

As student research takes place in a community of practice, we adopt a collective view of 
productive struggle. By taking a broader view of productive struggle, we aimed to explore the 
environmental and social resources that summer research groups draw upon and use to support 
each other in productive struggle. 
 
Naming 

Our exploration within a collective research context elevated one particular sub-practice, 
which we refer to as naming. Naming involves group members initiating a conversation to 
negotiate and define a mathematical idea that has collectively emerged as significant, but that has 
not been explicitly discussed. As Hewitt (2007) wrote in describing his theory of symbolic 
interactionism, names are linguistic symbols that are social in nature. They draw their meaning 
from a community adopting them and using them in a consistent way. Symbols transform 
abstract ideas into concrete entities, giving rise to a new form of social interaction and enabling 
the transference of ideas (Hewitt, 2007). As such, in the context of mathematical research, the act 
of naming not only supports the group in communicating their divergent ideas with each other, it 
serves to establish a new mathematical idea, embedding the dense often divergent thinking into a 
single symbol or name. Moreover, names serve as a repository of those ideas that have proven 
important for a particular community (Hewitt, 2007). The process of naming signals to a research 
community a productive idea, focusing their attention and creating a newly created tool to use 
moving forward.  

Methods 
This study takes place during a summer research program in a mathematics department at a 

small liberal arts university. This program supports a wide range of projects in pure and applied 
math and the groups involved vary in size, experience, and community norms. After observing 
multiple small research groups, we focused our analysis on one group that was attempting to 
determine the minimal number of time steps required to move a fixed number of objects along 
the edges of a directed graph. This group consisted of two students, a female rising junior, 
Allison, and a male rising senior, Bobby, as well as a female and male professor, Dr. Alister and 
Dr. Brown, respectively. We focused our analysis on this group because the students and 
professors were highly collaborative in their approach. Not only did they discuss their work 
aloud, they used a large white board to record their collective ideas and support their 
interactions. Such public communication, both verbal and written, allowed us to observe their 
collective thinking. Moreover, from the very first observations, it was clear the group had 
established strong norms, where they listened and built off each other’s ideas, providing a rich 
context to explore their mutual engagement in productive struggle. 

Data was collected over the last three weeks of an eight-week, daily summer research project. 
To understand how the group collectively engaged in productive struggle, we observed and 
filmed the research group working together each day, two hours with all four group members and 
two hours with the students only. To understand how the group collectively engaged in 
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productive struggle, we identified specific moments when the group worked together to 
overcome a challenge that emerged.  
 

Analysis 
One significant moment emerged through this process in which the two students and two 

faculty members collectively grappled with naming and defining a particular concept that had 
emerged. Three members of our research team reviewed this instance and met to discuss 
observations and to identify salient moments within the instance that seemed to support the 
group in productively moving forward. We then returned to the data to look for other cases of 
naming. Taking this lens, two other instances were identified. To understand the different 
components of naming and their apparent purposes for the group, we compared these three 
instances looking for commonalities and differences. Contrasting these moments enabled us to 
identify several significant markers in the collective naming process (see Table 1), as well as two 
distinct classes of naming instances (conceptual naming and symbolic naming). This analysis 
resulted in a framework for classifying critical stages in the naming process that highlights the 
manner in which naming--a common practice in mathematical research--supports collective 
productive struggle. We describe this framework in detail in the results section that follows. 
 

Table 1. Stages in the naming process and their presence in naming exemplars 

Stages  LMC W  C-1-2 
1. Elevation of the concept ✓ ✓  ✓ 
2. Negotiation    

• Establishment of collective definition ✓ ✓  
 

• Discussion of importance  ✓ 
 

✓ 
• Discussion and choice of name  ✓ ✓ ✓ 

3. Adoption of name  ✓ 
  

 
Results 

 The first interaction consisted of the research group naming what they called a “leftmost 
minimal cut” (LMC). This was an example of conceptual naming and was the most robust 
exchange of the three instances. Notably, it was the only interaction in which group members 
engaged in all stages of the framework (see Table 1) and the only one in which all group 
members participated. The second interaction focused on the concept which the researchers 
referred to as “waits” (W). This interaction involved only the two students and illustrated their 
appropriation of the practice. While similar to LMC, the W interaction exhibits evidence of only 
parts of the naming framework. The final interaction, which we call C-1-2, is the only example 
of what we identified as symbolic naming. While this example differs from the other two 
instances in both representation and substance, it is similar in that it involves the group attaching 
a single name to a fundamental notion or in this case a reoccurring algebraic expression.  

In all of these instances, the group possessed what we call a preliminary collective 
understanding. One researcher’s understanding of a notion that is central to the mathematical 
exploration of the group may not always completely coincide with the understanding of another 
researcher within the same group. We thus view the preliminary collective understanding as the 
intersection of the individual conceptualizations of the idea being named.  
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The first stage of the naming process is marked by an assertion and shared understanding that 
the idea being named is central to the mathematical exploration; evidence of this stage often 
includes repeated references to the concept during conversation or problem solving. In the LMC 
interaction, we can see the idea first introduced when Dr. Alister interjected, “You know, I 
wonder if there’s something to that.” Shortly afterwards, Dr. Brown elevated the same idea, 
stating, “The beauty of the minimal cut, though, is…” and “[the] important thing [is], whether or 
not [a minimal cut] occurs, you know?” In all of these examples, various group members 
interjected in an attempt to focus the attention of the group on a concept they saw as central to 
the mathematical investigation with which they were engaged. At this point in the process, group 
members possessed different conceptualizations and ways of reasoning about the idea at hand. 
While the repeated inclusion of the idea elevated the concept, the individual group members’ 
understanding of the concept remained mainly implicit. In fact, Stage 1 results in the (often 
diverging) individual conceptualizations being made public. Notably, all three instances of 
naming we analyzed contain evidence of this stage. As such, this initial stage appears essential to 
the naming process; without it, there is no motivation for the group to engage further in naming 
the concept, as the concept is not sufficiently elevated to warrant a name.  

Stage 2 is characterized by a collective negotiation of the concept. We identified several 
components that support this process: establishment of collective definition, discussion of 
importance, and discussion and choice of name. This negotiation process can be quite disjointed 
as the meandering discussion in the LMC interaction exemplifies. At the beginning of this stage 
the different members of the group attempted to come up with an initial collective definition. Dr. 
Brown revoiced his understanding of Dr. Alister’s interpretation, saying “Just so I understand 
what you’re saying [...],” and Dr. Alister’s reply with the question, “What’s the definition of 
minimal?” These different interjections illustrate the group’s attempt to arrive at consensus. The 
negotiation ultimately arrived at the following exchange, where it is clear that the group had 
come to an initial agreement about the concept being defined:  

Dr. Alister: I am changing the definition[...] 
Dr. Brown: No don’t change the definition, come up with a new definition 
Dr. Alister: This is a new definition that I don’t have the terminology for yet 
Bobby: Can we call it a minimal ideal cut, maybe?  
Dr. Alister: Why is it ideal?  
Bobby: Because it is as far back as we can do it and that’s how you really define it. 
Dr. Alister: Ok [...] be careful because ideal means something else in algebra 
Bobby: Ah ok nevermind 
Dr. Brown: So let’s just be clear, so minimal [...] 
Dr. Alister: What about a quasi-min? Or pseudo-min?  
Dr. Brown: Let me ask you this question though, if you have a minimal cut, why could that 
ever be bad?  

 
This interaction also included a second part of the negotiation stage, discussion of 

importance. During this component of the negotiation phase, participants discussed what makes 
the concept central to the mathematical exploration and in doing so, identified the key aspects of 
the concept that they believed should be reflected in the name. Dr. Brown’s questioning of the 
importance of this concept at the end of this exchange illustrates this reflection.  

The exchange above also illustrates a third part of the negotiation stage: discussion and 
choice of name in which members of the group propose various names and collectively consider 
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the affordances, drawbacks, and implications of each name. As the exchange above illustrates, a 
critical part of this stage is the group intentionally selecting a name which they believe conveys 
important information about the mathematical idea they are discussing and avoids a name that 
could potentially be misleading. After the negotiation above, the group finally arrived at the 
name of “leftmost minimal cut” as we see in the following, which occurred shortly after the 
previous exchange.   

Allison: So are we just saying `find one and …’ 
Dr. Alister: Well [Bobby] is suggesting that because of the special properties of these graphs, 
that maybe if you find one, you can adapt it [...] so in some sense you achieve a ... 
Dr. Brown: ...Leftmost cut... 
Dr. Alister: ...A leftmost minimal cut 
 
We highlight that the negotiation stage is inherently fragmented as the discussion can 

meander among various tangential ideas with different components occurring simultaneously or 
out of order. For example, at the end of the exchange above involving the choice of name, Dr. 
Brown brought the group back to a discussion about the importance of the concept by asking 
them to think about whether this particular type of cut is really important to the exploration. This 
comment encouraged the other researchers in the group to question the significance of the 
particular type of minimal cut they were attempting to define, even after they had begun 
proposing names.  

Finally, Stage 3 is an ongoing stage marked by the adoption of the chosen name by all group 
members. Following the LMC interaction, the name “leftmost minimal cut” was employed by all 
group members whenever the notion was being discussed. However, as the following exchange 
later the same morning illustrates, the group was still working to internalize the name and 
concept.  

Dr. Brown: If you had minimal cuts and you had a notion of a…  
Dr. Alister: ...Leftmost minimal? 
Dr. Brown: ...Leftmost or topmost, does that solve the problem?  

Notice that Dr. Alister used the name established earlier, leftmost minimal cut, despite the fact 
that the group was examining a graph that was oriented differently than their previously 
examined graphs, and thus the notion of “leftmost” was in fact “topmost.” However, all group 
members tacitly accepted the name “leftmost,” even though it did not reflect the more general 
case they were discussing. It seemed that since all group members were fully involved in the 
earlier LMC interaction, the name “leftmost minimal cut” did not lead to any discrepancies or 
confusion despite the name failing to accurately represent the notion being considered. Such 
acceptance suggests that the earlier discussion around the meaning and importance had 
established a strong, collective understanding of the concept. 

It is also noteworthy that a group can engage in the naming process without engaging in all 
of the stages. For example, in the W interaction, Allison and Bobby did not discuss the 
importance of the name (Stage 3) nor collectively adopt the name (Stage 5). In the exchange 
below we see in Allison’s first comment that the group was engaging in Stage 1 and began the 
negotiation. Bobby also participated in the negotiation process, by suggesting names.  

Allison: Should we say, like, stretch or, like, add... how can we explain adding those loops?  
Bobby: I’ve been thinking of them as w-a-i-t, waits but you could also think of them...  
Allison: I think it’s so funny because we have so many different meanings for so many 
different words 
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Bobby: yeah add stalling, I guess, or wait 
 

However, the establishment of a collective definition was strikingly less intentional in this 
interaction than in the LMC interaction. The two students discussed the name, but while the 
potential for misunderstanding was acknowledged (“I think it’s so funny because we have so 
many different meanings for so many different words”), it was never resolved. This interaction 
also did not reach the “adoption of name” stage: Bobby continued to use the name he proposed 
(waits), despite Allison’s apparent confusion about the name he was using. Ultimately, both 
referred to the same concept using different names (Bobby using the word waits while Allison 
used the word pauses), even within the same presentation to researchers outside of the 
group. Though the negotiation stage was not as robust in this instance (missing the discussion of 
importance) and the group failed to engage in the adoption of a name, the interaction still 
supported productive struggle by indicating Bobby’s understanding of the concept given his 
name suggestions, and displaying a potential misunderstanding. 

Similarly, the C-1-2 interaction is missing some stages, but still supports productive struggle. 
Specifically, the C-1-2 interaction did not include an explicit discussion of the importance of the 
concept being named, nor did it include an adoption of the name by group members; the 
conclusion by the participants in the interaction was that the concept was not fundamental to the 
mathematical exploration and this symbolic naming was only motivated by a need to save space 
on the board (Bobby says, “we can name it, sure, but we’re gonna get rid of it in just a second,” 
to which Allison replies, “well we’re just running out of space.”) The discussion and choice of 
name in the C-1-2 interaction is also less substantial than in the LMC interaction, possibly 
precisely because it is an example of symbolic naming, which seems to require less discussion of 
implications associated with possible names.  
 

Discussion 
Naming is a mathematical practice familiar to most mathematicians. As demonstrated by the 

various exchanges of the research group, the act of naming signals the perceived importance of a 
concept, brings to light possible divergent understandings among group member, and results in 
an expansion of their collective understanding. This work sheds light on the process of naming 
by decomposing the practice and identifying constituent parts. Such analysis highlights the 
critical role that discourse and other social mechanisms play in collective problem solving and in 
supporting perseverance.  

While it is notable that the students found value in this naming practice and adopted it to 
support their problem solving in the one case we analyzed in which they worked independently, 
our investigation revealed they omitted stages that were present in the interactions involving the 
professors. We suggest that the disciplinary practice of naming and the understanding of its 
importance and effectiveness was not fully established in the mathematical problem-solving 
toolkits of the students. Notably, the student researchers each continued to refer to the notion 
using their own preferred nomenclature, even using their own preferred terms within the same 
presentation to other researchers in the program outside of their research group. We propose that 
the missing stages help to establish a common understanding of the concept. This supports our 
claim that these stages are critical in supporting group progress and we encourage other research 
groups to use this framework to guide their work in engaging in collective productive struggle. 
We suggest that professors endeavor to demonstrate and instill the practice of naming in their 
students, conscious of the need for a robust discussion for the naming to be an effective tool. 

24th Annual Conference on Research in Undergraduate Mathematics Education 243



References 
Freeburn, B., & Arbaugh, F. (2017). Supporting productive struggle with communication moves. 

The Mathematics Teacher, 111(3), 176-181. 
Goos, M., Galbraith, P., & Renshaw, P. (2002). Socially mediated metacognition: Creating 

collaborative zones of proximal development in small group problem solving. Educational 
studies in Mathematics, 49(2), 193-223. 

Hassi, M. L., & Laursen, S. L. (2015). Transformative learning: Personal empowerment in learning 
mathematics. Journal of Transformative Education, 13(4), 316-340. 

Hewitt, J. P. (2007). Self and Society: Boston, USA: Allyn and Bacon. 
Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ 

learning. Second handbook of research on mathematics teaching and learning, 1(1), 371-404. 
Jackson, R. R., & Lambert, C. (2010). How to Support Struggling Students. Mastering the Principles 

of Great Teaching series. ASCD. 1703 North Beauregard Street, Alexandria, VA 22311-1714. 
National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematics 

success for all. Reston, VA: National Council of Teachers of Mathematics. 
Sengupta-Irving, T., & Agarwal, P. (2017). Conceptualizing perseverance in problem solving as 

collective enterprise. Mathematical Thinking and Learning, 19(2), 115-138. 
Warshauer, H. K. (2015). Productive struggle in middle school mathematics classrooms. Journal of 

Mathematics Teacher Education, 18(4), 375-400. 
Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge: 

Cambridge University Press. 
Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in 

mathematics. Journal for research in mathematics education, 27(4), 458-477. 
 

24th Annual Conference on Research in Undergraduate Mathematics Education 244



How Students Learn Math Best: Tutors’ Beliefs about Themselves Versus Their Tutees 

 

 Sloan Hill-Lindsay Anne M. Ho 

 San Diego State University University of Tennessee 

 

 Mary E. Pilgrim Erica R. Miller 

 San Diego State University Virginia Commonwealth University 

Undergraduate and graduate tutors play an important role for students who utilize math tutoring 

centers. Here we draw on our previous work on our modified version of the Teacher Beliefs 

Interview (TBI) protocol by Luft and Roehrig (2007) to assess mathematics tutor beliefs (Pilgrim 

et al., 2020). While validating item wording through cognitive interviews, we noted tutors had 

different beliefs for how their students learn math best compared to how the tutors themselves 

learn math best. This paper investigates this difference and describes the process, coding, and 

results of this qualitative data as well as implications for tutor professional development 

programs. 

Keywords: Tutors, Belief, Practice, Professional Development 

Of 105 higher education institutions surveyed in 2015, 102 indicated that they had a tutoring 

center—of these, 87% had undergraduate tutors and 33% had graduate tutors (Johnson & 

Hanson, 2015). In another study specifically on higher education mathematics centers, 96% of 

the 75 centers utilized undergraduate tutors and 65% used graduate tutors, some of whom also 

had instructional responsibilities as graduate teaching assistants (Mills et al., 2020). Both studies 

show that undergraduate and graduate tutors are commonly involved in providing academic 

support to undergraduate students. Their work in tutoring centers can impact academic outcomes 

such as tutees’ final course grades, persistence, retention, understanding, and academic 

confidence (Colver & Fry, 2016; Kostecki & Bers, 2008; Rasmussen et al., 2014). However, 

tutors’ personal views and biases influence how they perceive their tutees, which can then affect 

their approaches to tutoring including session goals and instructional decisions.  

In one study by Derry and Potts (1998), tutors were shown to use adaptive modifications to 

tutoring sessions in terms of content, pedagogy, and complexity based on their categorizations of 

tutees. This study’s tutoring context was different from the current study in that three of the five 

tutors were assisting tutees with a computer-based instructional system, and only four out of the 

five tutors were tutoring math. Derry and Potts also utilized Kelly’s (1955) personal construct 

theory to identify constructs that the individual tutors used to think about tutoring sessions. In 

this context, constructs can be thought of as “major components or elements” that tutors use to 

distinguish tutees (p. 70). Overall, the two main constructs or types of classification had to do 

with motivation and intellectual ability. 

Having an adaptive tutoring style can be desirable, but it could be also problematic if a tutor 

is incorrectly categorizing a tutee or making poor tutoring decisions. Because of this, 

understanding tutor beliefs and designing tutor professional development are important for the 

success of a tutoring center. In particular, tutors’ reflection on and awareness of their own beliefs 

and biases can initiate reform to their pedagogical practices (Nardi et al., 2005). 

To improve tutor professional development, we first need a way to measure beliefs. Our tutor 

beliefs research group has modified the Teacher Beliefs Interview (TBI) protocol (Luft & 

Roehrig, 2007), a semi-structured interview protocol designed to “explore the beliefs of 
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beginning secondary science teachers” (p. 38), in order to create an open ended survey 

instrument that assesses the beliefs of undergraduate and graduate tutors. Our goal with the 

modified TBI is to assess changes in tutor beliefs over time as a result of experience and 

professional development. In our pilot study, we utilized seven TBI open-response items, and we 

coded the data in a way similar to Luft and Roehrig but adapted for the tutoring context (Pilgrim 

et al., 2020). Responses were coded on a spectrum (Figure 1) that ranged from instructive (i.e., 

more traditional approaches to instruction) to adaptive (i.e., more closely aligned with reform 

methods of instruction). During this process, we found that some tutor responses contained 

excerpts that spanned across the codes including ones that are not adjacent on the spectrum. This 

highlights the complexity of responses for general tutor beliefs. We will provide detailed 

examples in the next two sections. 

 

 

 
Figure 1. Codes for the qualitative responses. 

Before deploying our modified TBI questions to tutors at higher education institutions across 

the United States, we wanted to assess the validity of our items through cognitive interviews 

(Desimone & Carlson Le Floch, 2004). For this article, we focus on the question of how students 

(including tutors) learn math best, which is a component of our larger project’s research 

question: what are the mathematical beliefs and practices of graduate and undergraduate tutors? 

In the next sections, we describe the cognitive interview process, details of coding, findings, and 

implications about tutor professional development. 

Methods 

We conducted two rounds of three cognitive interviews (i.e. six interviews total) to test the 

validity of the TBI item wording. This allowed us to ensure that participants were interpreting 

questions with consistency and were considering similar contexts while responding to the items 

(Desimone & Carlson Le Floch, 2004). The first three participants who voluntarily responded to 

a recruitment email were part of the first round of interviews and the next three individuals who 

responded were part of the second round of interviews. All interviews were conducted over 

Zoom. They started with participants reading the TBI items and then verbalizing their streams of 

consciousness while interpreting the questions, recalling relevant experiences, and determining 

their answers. Before the interviews, we predicted where item wordings may be problematic, and 

we preemptively created follow up questions addressing these concerns. However, spontaneous 

follow up questions were additionally asked when the interviewer wanted clarification or 

elaboration on a previous response (Betty, 2004). These interviews were recorded and 

transcribed for later analysis.  

After the first round of interviews, we made a modification when the transcripts indicated 

participants were not interpreting and answering the questions as intended or with similar 

contexts in mind. The modified item wordings were then used in the second round of cognitive 

interviews. All participants attended the same urban, public research institution. Tutors 2, 3 and 4 

were undergraduate tutors who regularly worked in the campus math tutoring center and who led 

precalculus review sessions. Tutors 1, 5 and 6 were graduate students who worked in the campus 
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math tutoring center in addition to holding office hours for college algebra or precalculus. For 

simplicity, we refer to both graduate and undergraduate tutors when we say tutors. 

One of the items on our modified TBI was, “How do students learn math best?” (Our 

modification of the original TBI merely replaced “science” with “math”). We were initially 

concerned that some respondents may interpret the group “students” to include themselves since 

they were current undergraduate or graduate students. We thought that some might also restrict 

“students” to the group of students they tutor, thereby excluding themselves. Because these two 

interpretations could influence the way respondents were answering the question, it could 

influence the validity of claims based on responses to this TBI item. Therefore, in the first round 

of cognitive interviews, we asked the follow up question, “Did you include yourself in the group 

‘students’ when originally answering this question?” In this case, all three participants answered, 

“no,” so we further asked if their answer would change if they did include themselves. When all 

three of these participants did change their response, we decided to modify the protocol. In the 

second round of cognitive interviews, we first asked, “How do students learn math best?” and 

immediately followed with, “How do you learn math best?” In both rounds of interviews, there 

was a qualitative difference between the tutors’ responses to the two questions, so we 

investigated this further using the coding scheme previously developed in Pilgrim et al. (2020).  

In addition to the aforementioned spectrum, we further describe the details of the codes here. 

The instructive (red solid pattern) code was applied to responses that primarily focused on doing 

practice problems and mimicking instruction. In contrast, the adaptive (blue polka dot pattern) 

code was applied to responses that involved transferring knowledge to new problems and making 

conceptual connections. Transitional (yellow zig zag pattern) was in between, with such 

responses being characterized by engaging in mathematics in various ways (e.g., in groups) and 

going beyond pattern matching or following a recipe to solve problems. Example responses for 

each of instructive, transitional, and adaptive can be found in Pilgrim et al. (2020). Some 

responses could not be strictly coded as instructive, transitional, or adaptive. At times, responses 

constituted a blend (orange horizontal stripe pattern or green vertical stripe pattern) of these 

categories. Here is one example: “Student[s] learn math best by doing. Some examples of this 

include group work and homework.” This was coded as a blend of instructive and transitional 

(orange horizontal line pattern) because while there is an aspect of working problems in the 

response, there is also an awareness that students learn through collaborative group work.  

However, there were challenges in applying single codes to some responses, especially 

lengthy ones. At times, parts of responses encompassed both instructive and adaptive codes, so 

averaging to transitional did not seem appropriate for the entire excerpt. Thus, for this analysis, 

we applied multiple codes to responses by pinpointing specific portions of the answers. This was 

more appropriate for the cognitive interview data given the longer descriptions and because 

respondents changed their answers when asked about different contexts. 

Findings 

In both rounds of the cognitive interviews, we noted a difference in tutor descriptions of their 

tutees’ learning in comparison to their own.  

Differences in Belief Spectrums 

In some cases, the baseline methods for learning mathematics were the same, but the tutors 

described additional methods for learning when talking about themselves (see Table 1). For 

instance, Tutor 6 believed that tutees learn math best “by seeing examples and then repeating it 
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themselves,” an idea that Tutor 5 also expressed. When describing their own learning, Tutor 5 

agreed that “do[ing] a bunch of problems” was still helpful, but they also added that “working 

collaboratively with others” or asking questions “to fill in the gaps” was helpful too. Tutors 1 

and 4 had a more instructive response for the tutees but a wide range of instructional, 

transitional, and adaptive descriptions for themselves. Tutor 4, for example, gave a broad range 

of ways to learn for themselves by suggesting that the best ways to learn are to work on practice 

problems, to check answers, to “understand why it’s happening,” and to utilize multiple problem-

solving methods. In another case, the descriptions of the tutee and tutor learning methods were 

on completely different ends of the spectrum. For instance, Tutor 2 had an instructive description 

for the tutees and an adaptive description for the tutors. When asked to describe the learning of 

tutees, Tutor 2 brought up how “students who don’t like math or aren’t confident [in] their 

mathematical abilities do best when they do a lot of practice.” Yet, when describing their own 

learning, Tutor 2 preferred to reflect about the problem, “break the problem into pieces,” and “try 

a different way” as needed. Tutor 3 also had very different responses for tutees versus tutors, but 

in their case, they primarily described how they were “anti-homework” for their tutees since 

“bad practice” only leads to students “not understanding it.” Since Tutor 3 answered in the 

negative, we coded their response as not-red/solid pattern and not-orange/horizontal-stripes, but 

this did not necessarily mean that they had transitional or responsive answers. 

 
Table 1. Summary of cognitive interview codes. 

Tutor  “How do students learn math best?” “How do you learn math best?” 

1 

2 

3 

4 

5 

6 

  

 
Not-  Not-  

 
 
 

     

 
 

    

  

  

Tutors Categorize Mathematics Learners into Various Groups 

We noted tutors making various, explicit comparisons of two different groups during the six 

cognitive interviews.  

Mathematics Course Level. Sometimes the tutors categorized students into lower level 

versus upper level courses or undergraduate versus graduate courses. Tutor 1 even described the 

changes in their own learning when comparing their personal experiences in high school, 

undergraduate work, and graduate studies. In their case, they found that study groups were useful 

in graduate school “because everyone has a different perspective.” Tutor 1 did not explicitly 

generalize to all high school and undergraduate students, but they implied that their own 

experience with groups was not truly collaborative prior to graduate school, so they did not think 

it was a particularly helpful resource for their tutees. On the other hand, “working 

independently” on problems is a reliable method of learning math for Tutor 1 across all 

categorizations. Interestingly, Tutor 1 also referred to how they think “the whole entire 

curriculum is based on tests” for the tutees. Because they perceived their tutees’ classes to be 

problem- and test-oriented, then it made sense to Tutor 1 that doing problems was the best way 

to learn in those courses. Tutor 4 did not refer to the curriculum but also echoed Tutor 1’s 

thoughts by saying that doing practice problems “doesn’t necessarily give you the same ability to 
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differentiate and use a different method, but, at the very least you can still get the result that 

you’re looking for.” This implies that Tutor 4 also thinks the answer is more important than the 

process for the tutees’ coursework. 

Types of Learners. Some of the tutors also categorized students into types of learners. For 

example, both Tutors 1 and 3 mentioned “visual” or “auditory” learners without any prompting 

from the interviewer. Tutor 3 used these types of learners to talk about their tutoring decisions. 

They sought to be “super flexible” tutors—if a tutee did not appear to be one type of learner (e.g. 

“visual learner”), then they would “switch to something else.” Tutor 1 also mentioned these 

categorizations of learners in the context of types of courses. Tutor 1 believed that many people 

were visual learners, but that the subject of abstract algebra was “pretty auditory,” so “being able 

to articulate math in a high level” is another level of understanding as it is “more like telling a 

story and how all the pieces come together.” In addition, Tutors 2 and 3 also discussed “creative” 

versus “logical” thinkers. Tutor 2 described themselves as always having been “a logical thinker 

versus a creative thinker.” They associated their logical thinking with their mathematical 

thinking, and for them, it was their logical thinking that differentiated them from their tutees. In 

fact, Tutor 2 even said that math learning is “a lot more different for [the tutor] and [their] 

precalc students.” Tutor 3 also mentioned creativity but in a very different way than that of Tutor 

2. Tutor 3 said that many of their tutees “feel bad about themselves” when facing math courses 

and that they “can’t be creative” when they are “terrified of failing.” Rather than contrasting 

creativity with logic, Tutor 3 seemed to value creativity in math problem-solving but believed 

that affective factors held their tutees back from learning math in the best way possible. 

Discussion 

Although their responses varied on the coding spectrum, the cognitive interview process 

indicated that our questions about tutor beliefs were consistently interpreted across tutors. In the 

case of the questions about how students learn math best, tutors had a range of responses from 

adaptive to instructive, and their answers were different for themselves versus tutees. For 

multiple tutors, categorizing tutees by math course or by perception on type of learner was 

important for how the tutors adapted their tutoring sessions. 

Our findings are similar to those of Derry and Potts (1998), whose study indicated that 

experienced tutors largely classified students by motivation level and intellectual ability for the 

purpose of adapting their tutoring sessions. These categories are different from the ones we 

observed with our tutors, but there are overlaps in the tutors’ decision-making. For instance, 

Tutor JS in Derry and Potts’ study would give more “direct verbal instructions” with “weaker 

students,” which would be coded as instructive for us. On the other hand, Tutor JS would have 

“discussions of theory” with “stronger students” and would allow “higher ability students” to 

lead the tutor sessions tasks, which is a more transitional (or possibly a blend of transitional and 

adaptive) response in our coding scheme. This seems to parallel our Tutor 1’s remarks about 

higher levels of understanding for students in upper level math classes. Additionally, Derry and 

Potts’ Tutor PM “emphasized the goals of independence, understanding, self-evaluation, and 

enjoyment for all students [...] little direct instruction was given by Tutor PM. Rather, content 

was conveyed by discussions that employed the conceptual language of mathematics” (p. 83). 

We would code this excerpt as a more transitional or even adaptive response. Lastly, for three 

out of the five tutors in the Derry and Potts study, “motivational/affective considerations were 

reported as more important than judgments of cognitive ability” (p. 95). Although the reasons 

behind this were not further explored, this is related to our cognitive interview comments from 

Tutors 1 and 4 about problem- and test-oriented courses. In our case, these two tutors implicitly 
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suggested that tutees’ motivations were affected by an instructive course structure. Because of 

this, the tutors also chose instructive methods in their tutoring sessions to match the course’s 

instructive style. 

For some of our tutors, authentic mathematical practices (such as understanding connections 

between concepts, being able to utilize a variety of methods to solve problems, and working 

collaboratively in a group) only became necessary for students in upper division or graduate 

courses. Tutor 1 explicitly indicated that they formed this distinction by examining how 

undergraduate courses are structured and because of the types of mathematical activities 

necessary to succeed on assessments. Tutor 1 expressed awareness that many lower division 

courses merely require students to memorize equations and procedures for solving problems, and 

that this type of “curriculum is kind of controlling how you teach it.” This distinction between 

lower and upper division undergraduate mathematics courses is not unfounded, as seen in studies 

on assessments. Multiple studies have found that lower level assessments largely focus on 

applying procedures and utilizing algorithmic reasoning, while upper level assessments had more 

emphasis on higher order skills such as evaluating or creative reasoning (Mac an Bhaird et al., 

2017; Maciejewski & Merchant, 2016). 

It also seems likely that tutees themselves are aware of the requirements for success in lower 

division undergraduate mathematics courses. This may explain why Tutor 6 said, “I feel like 

very few students actually care about the why.” Maciejewski and Merchant (2016) found that 

non-expert conceptions of mathematics correlated with superficial, procedural approaches to 

studying. Furthermore, they found that those conceptions and procedures could result in 

obtaining a desired course grade in lower level courses but not in higher level courses. On the 

other hand, expert conceptions of mathematics correlated with deep approaches to studying, 

which they found to increase the chances to succeed in upper level courses. Additionally, Code 

and colleagues (2016) found that students moved away from expert-like orientations about 

mathematics after taking a semester or year of an introductory undergraduate mathematics 

course, but they reported more expert-like orientations after taking a specialized mathematics 

course. The implication here is that students who are successful using superficial approaches in 

lower level courses will likely underperform in upper level courses if they are not supported in 

changing their studying approaches or their beliefs about mathematics.  

There is a tension that exists between what tutors experience as students, what they perceive 

to be important, and what they may be taught during training and professional development 

activities. While student-centered approaches to tutoring are recommended by mathematics 

education research and emphasized in tutor training and professional development, institutional 

practices can often still reflect teacher-centered instructional practices (Carlson & Rasmussen, 

2008; Stains et al., 2018). It may be that these practices are pressuring tutors to engage with 

students in ways counter to the recommendations from mathematics education literature. 

Alternatively, it could be that instructors’ reformed practices have not been clearly 

communicated to the tutors, or that tutors’ roles haven’t been updated to match these practices.  

In any case, tutors will likely have varied beliefs and practices reflected in their tutoring, and 

we advocate for training activities to meet tutors where they are, allowing for differentiation in 

their professional development process. If a tutor’s initial beliefs are aligned with more 

instructive approaches, then activities to support their growth to a more transitional approach 

may be more appropriate than adaptive activities, as such tutors may not be ready for this shift. 

Additionally, tutors may think that some adaptive approaches are only fit for certain tutees, so 

unpacking these complex beliefs and potential biases can better train tutors to foster more 
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adaptive approaches for all students. Furthermore, we recommend that those running tutor 

professional development explicitly examine their own tutors’ beliefs. It may be that tutors have 

a limited view of the curriculum, so their beliefs are misaligned with those of the instructors. In 

this case, professional development activities to align tutor and instructor beliefs may be 

appropriate. It may also be that tutor beliefs and practices are appropriately reflecting 

departmental differences between lower division and upper division courses. In this case, it may 

be appropriate for a department to reevaluate the course structures and assessments to ensure that 

best practices are available to all students. 
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Oral Assessment in University Mathematics: The Role and Variations of Follow-up Questions 
 

 Nicole Engelke Infante Nurul Schraeder Ben Davies 
University of Nebraska at Omaha West Virginia University University College London, UK 

We investigate how four assessors conducted a virtual oral assessment for an Introduction to 
Proof course when minimal direction was given. Our qualitative analysis of assessors’ behavior 
showed that most, but not all students were asked follow-up questions during their oral 
assessment. When the assessor engaged students in follow-up questions, we identified four 
purposes of these questions: to seek details of the thought process, to fill gaps in a student’s 
presentation, to provide the student access to the problem, and to foster deeper learning. 
Although the assessors had been given minimal guidance on how to follow-up with students 
during the assessment, there were several instances of assessors asking similar questions. Our 
findings culminate in suggestions for others wanting to use oral assessments with multiple 
assessors.  

Keywords: Oral assessment, online education, reasoning and proof, technology in assessment 

Creating assessments of student knowledge is a critical part of course design. Romagnano 
(2001) argued that designing an objective mathematical assessment is an impossible task. 
However, instructors can include a variety of assessments to provide multiple perspectives of 
their students’ knowledge and capabilities (Iannone & Simpson, 2012). By having multiple 
sources of evidence, instructors are more likely to produce a more accurate picture of students’ 
knowledge and understanding (Romagnano, 2001). While written modes of mathematics 
assessment are dominant in the English-speaking world, it is well-documented that varied 
assessment practices add valuable and arguably necessary insights into students’ understanding 
(Iannone & Simpson, 2012). Implementing less-familiar assessments in your classroom comes 
with advantages and disadvantages to both students and the teacher. In this paper, we will 
evaluate our implementation of a less-familiar assessment in U.S. higher education mathematics 
classrooms: oral assessment. 

Background 
Oral assessment allows an instructor to have a constructive dialog with students. In this 

alternative to written exams, students can express their knowledge in a variety of ways, and the 
assessor can ask clarifying questions when needed. Studies have shown several positive aspects 
of oral assessment, such as helping students develop communication skills (Iannone & Simpson, 
2015), being more authentic (Iannone & Simpson, 2015), and being more inclusive (Huxham et 
al., 2012). For instructors, oral assessment allows them to rephrase a question so that a student 
can demonstrate more knowledge than may have been evident from a written response (Huxham 
et al., 2012). For students, providing a verbal explanation may generate deeper understandings of 
material (Iannone & Simpson, 2015).  Additionally, cheating on an oral assessment is much 
harder than on a written assessment (Huxham et al., 2012; Joughin, 1998). This last benefit is 
particularly pertinent given the widespread use of virtual instruction and assessment due to the 
global pandemic. As is demonstrated by the data we present, oral assessments are highly 
adaptable to the virtual environment with minimal disruption in the implementation and integrity 
of the assessment. 
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There are potential drawbacks to oral assessment with overwhelming workload, fairness, and 
anxiety among them. Oral assessment requires more time to proceed, especially when the class is 
large. The workload issue could be minimized by conducting a group oral assessment or using 
multiple assessors. The issue of fairness can arise from the absence of anonymization, variations 
in students’ experiences, and difficulties with post hoc moderation by assessors not present in 
real time. These issues around fairness were addressed by Iannone and Simpson (2015). Students 
in their study were concerned about fairness because different assessors would ask different 
follow-up questions when working on the same problem. Lastly, students’ stress and anxiety 
were more likely to be high because of unfamiliarity with oral assessment (Akimov & Malin, 
2020). The data presented here were from a practice quiz that was one of several low-stakes 
opportunities for students to experience oral assessment throughout the semester. 

This exploratory investigation considers the practicalities of this implementation in terms of 
grading and variation in students’ experiences when a virtual setting was used, and limited 
direction was provided to each assessor. This led us to the following research questions: 

1. How consistent are assessment ratings when using a minimally directed oral assessment 
protocol in an introduction to proof course?  

2. How consistent is a post hoc assessment of the same student population?  
3. What are the purposes of follow-up questions that students are asked in an oral 

assessment? What are the differences and similarities in these follow-up questions? 

Methods 

Participants 
Twenty-five of 29 students enrolled in an introduction to proof class at a large, research 

focused university in the United States agreed to participate. One student was excluded from data 
analysis because she misunderstood the instructions and prepared for the wrong assessment. The 
four assessors were all experts in mathematics education with graduate-level backgrounds in 
pure mathematics: an associate professor who was also the course instructor, a post-doctoral 
scholar, and two doctoral students. Depending on their mathematics course history, students’ 
may have been familiar with any subset of the assessors as all were instructors of mathematics 
courses (including the calculus sequence prerequisites) at the institution. All data were 
anonymized using pseudonyms prior to data analysis. 

Procedure 
This oral assessment under consideration here is a ‘practice quiz’ conducted in week 4, one 

week before their first low-stakes oral assessment that counted toward their course grade. One 
week ahead of this quiz, students were provided with a set of problems that they would be asked 
to talk about and to which they could prepare solutions in advance. Each problem on the quiz had 
multiple parts, and assessors had the freedom to ask students to present any or all parts. This 
study focuses on the second question of the quiz, presented in Figure 1. This item was chosen as 
it had the smallest number of parts and was the only item that all assessors used all parts for their 
assessment with every student.  

Before assessing students individually, all assessors met to discuss some general rules such 
as ethical considerations and options for which problems to ask during the assessment. For 
example, the first problem on the assessment had four parts covering the set definitions for 
subset, powerset, union, and intersection. It was discussed that in the interest of time, students 
need not be required to answer all four parts. Rather, the assessor could ask them to explain their 
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reasoning for part one that focused on unions, and then ask them how the answer changes if the 
union were changed to an intersection. It was discussed that if a student was stumped, then it was 
ok to restate the problem or give hints to help the student make progress. If substantial hints were 
needed, then the student should receive a score of growing or not yet (rather than success) with 
encouragement and suggestions for future studying. This discussion included how to start the 
assessment (brief introductions) and how to handle incorrect responses. 
 

Figure 1: Quiz problem 2 

The practice quiz was conducted through one-on-one video meetings that lasted 
approximately 30 minutes. Students shared their prepared responses using the website 
scratchwork.io; a whiteboard application that allows collaboration with others in real-time. This 
platform let students display pictures or pdf files, which was important for this study because the 
students were allowed to prepare their answers and could display and present their responses 
from those files if they wished. 

The course instructor provided all assessors a three-point rubric: success, growing, and not 
yet that was used to give students immediate feedback on their responses. This was the rubric 
that would be used to assess their responses on all quizzes throughout the semester. Raw, 
anonymized grading data and rubrics are available at [redacted]. 
Analysis 

Each member of the research team conducted about one-fourth of the oral assessments. After 
all data was collected, each member of the research team watched the recordings of the other 
assessments and scored them independently. An inter-rater reliability analysis revealed that 
reliability between assessors was very high; there was disagreement between assessors on only 
two items. This high level of agreement suggests that students’ course grades would not be 
substantially different regardless of who conducted their oral assessment. Numeric or categorical 
ratings are a small part of the oral assessment picture. To better understand how students’ 
experiences may differ in this setting, we conducted a qualitative analysis of the recordings.    

We used an inductive thematic analysis approach in which the codes and themes were driven 
by the data itself without any pre-existing codes (Braun & Clarke, 2012). The qualitative data 
came from the 24 video recordings of each one-on-one oral assessment meeting. After watching 
all videos and choosing to focus on question 2, the relevant parts of the videos were transcribed 
using online resources (e.g., zoom transcript) and edited as needed. Transcript excerpts presented 
here have been lightly edited for readability. Each member of the team wrote notes on what they 
observed during the initial video viewing, such as who assessed which questions and 
characteristics of follow-up questions. We observed that different assessors asked different 
follow-up questions and sometimes no follow-up questions. We then proceeded with a more 
detailed analysis of the transcripts, focusing on how each assessor used followed up questions. 
This analysis led to the identification of two broad categories and three sub-categories of follow-
up questions, and the roles they play in oral assessment. 
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Results 

Purposes of Follow-up Questions 
It is natural that assessors would ask different follow-up questions during an oral assessment, 

especially given the minimal guidance provided. In Table 1, we summarize the types of follow-
up questions asked by each assessor. We noticed that some question types were asked by 
multiple assessors despite no guidance on this. For example, both Paige and Sandy asked 
questions about how the definition of Cartesian product was applied in the given context, but 
Nancy and Barb did not. There were follow-up questions that were only asked by one assessor, 
such as Barb asking about the size of a Cartesian product in general terms. 

We first distinguished two broad categories for follow-up questions: directly related to the 
problem and not directly related to the problem. We found that questions that were directly 
related to the problem had three main purposes: probing details, filling gaps, and bridging access 
for students in need. Meanwhile, only Barb asked questions that were not directly related to the 
problem, such as ‘what is the size of 𝐴𝐴 × 𝐵𝐵 in a general sense?’ or ‘is 𝐴𝐴 × 𝐵𝐵 = 𝐵𝐵 × 𝐴𝐴?’ We 
observed that these types of follow-up questions played a role in fostering learning.  
 
Table 1. Follow-up questions identified among assessors 

 Part (a) Part (b) 
Paige - No follow-up 

- How Cartesian product works 
- Did not assess 

Nancy - How to get elements of each set 
- Elicitation of missing element(s) 

- The length of radii of the circles 
- Inclusion/exclusion boundary 

Sandy - How elements of sets were attained 
- How Cartesian product works  

- Inclusion/exclusion boundary 
- How they got the circular shape 

Barb - Clarification of terminology 
- Elicitation of missing element(s) 
- Size of 𝐴𝐴 × 𝐵𝐵 in general sense 
- Whether 𝐴𝐴 × 𝐵𝐵 = 𝐵𝐵 × 𝐴𝐴   

- Inclusion/exclusion boundary 
- How they got the circular shape. 
- Identify length of radii of the circles 
- Slight modification of the problem to a new 

problem 

Probing details   
Oral assessment provides an opportunity for an interaction between assessor and student in 

which the assessor may ask questions to probe the student’s knowledge and reasoning. We found 
that some assessors sought details in students’ reasoning even after students presented a 
complete answer to the problem.  

When following up on part (a), some assessors asked for details on students’ thought 
processes for obtaining the Cartesian product, such as “how did you get this set as your Cartesian 
product?” (Sandy to D2) or “So, how did you end up getting those, those ordered pairs?  What 
was your thinking there?” (Paige to A6). In another instance, Nancy asked C6 how she obtained 
the elements for one of the sets in the Cartesian product, “how did you figure that out?”  

For part (b), some students explained the why the boundary would be solid or dashed without 
being prompted. When the student did not address why they had drawn the boundary as they did, 
we noticed that all assessors asked further questions about the boundary. The questions were 
often, “why was the boundary included/excluded/solid/dashed?”  
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Follow-up questions that seek additional details are likely asked to ensure that students can 
speak and reason knowledgeably about what they are presenting. This was especially important 
because the students could use any resources to prepare their answer ahead of time. Furthermore, 
we found that the questioning provided opportunities for students to recognize errors and 
misconceptions. In the following excerpt, we observe how the probing question from Sandy let 
D1 recognize her misconception. 

D1: All right, so since it's between one and nine, I just kind of saw that it was, if you took 
one and one, that would be one. So, I know it’s at least here, here. And then the largest 
part is nine, so three squared plus three squared is nine. 

 
Figure 2: Diagram drawn by D1 

Sandy: Hold on, you said three squared plus three squared equals nine? 
D1: I did not mean to say [mumbling]. I think I screwed up somewhere in my thoughts. [long 

pause]. All right. Hold on. 
Sandy: Take your time. 
D1: I feel like it still is a washer with a radius with the inner circle being a radius of one. And 

I think that at the end that it's a radius of three still. I just didn't understand exactly how… 
Based on her drawing (Figure 2), we can infer that D1 knew what the shape of the graph 

looks like, but her explanation for how she obtained that did not follow. Although the correct 
result was presented, it may have been obtained through memorization, help from someone else, 
or the use of graphing software. If this were a written assessment, this issue might go undetected 
by both student and teacher while the teacher thought the student had mastery of the problem. 

Filling gaps  
We identified filling gaps in a student’s presentation as another role of follow-up questions. 

For instance, two students missed the element -√2 when listing the elements of the factor set for 
problem 2(a). Barb and Nancy asked questions in hopes of eliciting the missing element. The 
initial questions were broad and moved towards being more explicit when the student continued 
to struggle. In the transcript excerpt below between Barb and B2, the student quickly realized 
that something in their solution needed to be addressed when Barb expressed a qualm about the 
presentation.  

Barb: So, I agree with everything you said. Except we have one small qualm. It is about the 
first set. So, you’ve told me that we’re looking for all real numbers x such that x squared 
equals two. 

B2: Oh, wait… 
Barb: Can you think of any other numbers that might be in that set? 
B2: So, this … [writes negative root two on the scratchwork board] 

From this excerpt, we observed that a brief prompt from Barb caused B2 to realize that she was 
missing something. However, filling the gap was not always easy. Another case shows that the 
student needed more explicit direction. 

Nancy: So, the square root of 2 definitely makes that true. Is there any other real number that 
also makes that true? 
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C2: Something square root…I don’t think so… 
Nancy: What about negative square root of two? 
C2: Yeah… (smiling) 

In both situations, we observed that through follow-up questions, the assessors led the students to 
think and help them realize that something had been missed. 

Bridging Access to Knowledge  
Students who cannot access problems, such as those who do not know a certain definition or 

those who do not understand what is being asked, might become discouraged and would most 
likely receive a low score on a written assessment. However, we found that oral assessment 
could help those students by providing some “help” without losing the integrity of an 
assessment. Let us look at the following excerpt in which Nancy was providing a bridge for C6 
to access problem 2a. 

C6: I wasn’t like entirely sure when we have um... like for example when it says x squared 
equals to 2 and then the Cartesian product of absolute value of x equals 2. I don’t 
understand how you would do that. 

Nancy: So that’s telling you the two sets of your Cartesian product. So, that first one, that 
means x is a real number such that x squared is equal to 2. So, what value of x makes x 
squared equal to 2? that are real numbers? 

C6: Um… negative square root of 2 and square root of 2. 
This reiteration of the problem seemed to be a big help to C6. She was able to proceed with the 
rest of this problem on her own. Note that Nancy did not provide a hint to the problem, but she 
just restated the set notation in language that was more accessible to the student. 

Fostering Learning   
Across our data set, Barb was the only assessor to ask follow-up questions that were not 

directly related to the problem. These questions were mostly in the form of a modification of the 
actual problem or a generalization of some aspect of the problem. It appears these questions were 
asked to encourage deeper student reflection and learning. For instance, after students presented 
their answers for part 2(a) correctly, Barb asked about the order of 𝐴𝐴 × 𝐵𝐵 in general. In the 
transcript excerpt below, Barb asks about the size of a generic Cartesian product of sets. 

Barb: So, if I told you that the size of a set, some random set A was four, and the size of a 
different set B was five, and I asked you how big was A cross B?  or the Cartesian 
product of A and B, without knowing what the elements were, would you be able to 
know how big that set is? 

When assessing part b, follow-up questions included modifications of the problem, such as 
changing the inequality into a strict inequality. For instance, Barb followed B1’s explanation for 
2(b) with, “say we took away the less than or equal to, and we made that just less than. What 
does the picture look like now?”  On another occasion when following-up on part b, Barb 
modified the universal set to ℝ3. 

Discussion 
Using multiple assessors resulted in different experiences among students. During our 

quizzes, some students experienced no follow-up questions while other students received follow-
up questions that were beyond the problem they were presenting. Although the students had 
different experiences, scoring was highly consistent among assessors. Hence, we conclude that 
students’ grades would not be negatively affected regardless of who their assessor was. The 
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differences in student experience were related to the nature of the follow-up questions they 
received. Each of these contribute to answering our research questions.  

In answer to our first two research questions, we found that the assessors in our study were 
surprisingly consistent in their ratings of student performance, even when assessing student 
knowledge after the fact. Although our sample was small, we have evidence supporting Iannone 
and Simpson’s (2015) claim regarding the feasibility and consistency of post hoc moderation of 
oral assessments in undergraduate mathematics. 

In answer to our third research question, we identified four purposes for asking follow-up 
questions: seeking details, filling gaps, building a bridge for students to access problems, and 
fostering learning. There were often similarities to the questions asked by assessors. As noted, all 
four assessors asked follow-up questions about how the boundaries of the circles were decided to 
be solid or dashed. Three of the assessors asked questions related to the equation of the circle and 
how the radius of the circle was determined. The questions that were similar across assessors 
were the ones that sought details and filled gaps.    

Questions that sought details or asked for additional information to fill gaps allowed the 
student to demonstrate the depth of their knowledge. When students found themselves unable to 
proceed, questions that created bridges to knowledge allowed the students to extend their 
learning by making connections between their ideas and their representations. Follow-up 
questions that fostered deeper learning asked a student to make a generalization or modification 
of some aspect of the problem. Each type of follow-up question provided a path for students to 
reflect and learn more, which is the ultimate goal of education. 

We conclude that in preparing to administer an oral assessment, many follow-up questions 
could be prepared in advance. This aligns with Joughin’s (2012) advice to have prepared probing 
questions to help provide uniformity and consistency in both grading and students’ experiences. 
To prepare these questions for a mathematics setting, we recommend writing questions for each 
problem that: 1) probe for detail and fill gaps by asking for explanations on key ideas/concepts, 
2) bridge access to knowledge by anticipating trouble spots and scaffolding hints, and 3) foster 
reflection and deeper learning by extending ideas beyond what was initially asked. We 
acknowledge that it is impossible to prepare for all possible scenarios in team preparation, but an 
extensive list of possibilities should improve the experience and consistency. It is encouraging 
that even with the minimal guidance our assessors had, the scoring of students was highly 
consistent. This consistency was likely due, in part, to using an assessment scheme that was quite 
coarse.  

We believe that our implementation of a virtual oral assessment was a successful endeavor 
considering its novelty in undergraduate mathematics classrooms in the United States, and we 
have learned much from this experience. Student evaluations of the course were very positive, 
with one student writing, “I was pleasantly surprised by how much I preferred the oral quizzes to 
normal quizzes. It allowed me to really think about difficult questions beforehand, and I often 
had breakthroughs in the middle of the quizzes.” The most promising benefits to students when 
incorporating oral assessments into assessment practices are the opportunities to demonstrate 
their knowledge using modalities beyond writing and to deepen their learning by engaging in 
authentic mathematical conversations. When used as part of varied assessment practices, the 
focus of classroom activities will shift away from merely trying to accumulate enough points for 
a given grade to one in which students are working toward richer mathematical knowledge. 
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Conceptions of active learning held by undergraduate mathematics instructors participating in a 
statewide faculty development project 

 
 Josiah Ireland Allison Dorko John Paul Cook 
 Oklahoma State University Oklahoma State University Oklahoma State University 
 
 Michael Tallman Michael Oehrtman William Jaco 
 Oklahoma State University Oklahoma State University Oklahoma State University 
 
We explore the perceptions about “active learning” among college and university mathematics 
faculty involved in early stages of the Mathematical Inquiry Project (MIP), which supports long-
term collaboration across mathematics departments at the 27 public institutions of higher 
education in the state of Oklahoma. Our analysis indicates that faculty beliefs about active 
learning varied widely across individuals and significantly differed from the MIP 
characterization, even though participants believed their conceptions to be aligned. We 
document changes in participants’ beliefs as a result of participation in the MIP that faculty 
attributed to engagement in rich mathematical tasks, conversations with other participants, 
small group discussions of research literature, and conversations with project team members. 
Participants also reported enacting their conceptions of active learning in their classrooms more 
often as a result of their involvement in the professional development.  

Keywords: Community of Practice, Inquiry-Based Learning, Entry-Level Math, Active Learning, 
Professional Development 

Introduction and Background 
The Mathematical Inquiry Project (MIP) is a statewide collaboration among mathematics 

departments at the 27 public institutions of higher education in Oklahoma to foster sustainable, 
large-scale reforms to improve instruction in entry-level mathematics courses. To promote 
awareness of and attention to the mathematical, epistemological, and affective considerations in 
instructional design, the MIP is guided by definition of mathematical learning through inquiry 
that entails three interdependent components: (a) engaging students in active learning, (2) 
incorporating meaningful applications, and (3) supporting students’ development of broader 
academic success skills. These components are defined as follows: 

Students engage in active learning when they work to solve a problem whose resolution 
requires them to select, perform, and evaluate actions whose structures are equivalent to 
the structures of the concepts to be learned. 

Applications are meaningfully incorporated in a mathematics class to the extent that they 
support students in identifying mathematical relationships, making and justifying claims, 
and generalizing across contexts to extract common mathematical structure. 

Academic success skills foster students’ construction of their identity as learners in ways that 
enable productive engagement in their education and the associated academic 
community. 

The MIP aims to foster instructors’ professional growth by fostering a community of practice 
(Wenger, 1998) in which participants engage in a joint enterprise to design, disseminate, and 
implement instructional resources, as well as develop as leaders within the community’s 
emerging view of expertise. In this report, we focus on faculty perceptions of active learning.  

In the summers of 2019-2021, the MIP led five multi-day initiation workshops during which 
Oklahoma mathematics faculty identified key priorities for courses in the four state pathways—
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functions and modeling, college algebra/precalculus, quantitative reasoning, and Calculus I—as 
well as on academic success skills across all courses. Participants engaged in readings, 
presentations, and small- and whole-group discussions about the three components of inquiry, 
their dependence on conceptual analyses (Thompson, 2008), and their implications for 
constructing hypothetical learning trajectories (Simon & Tzur, 2004). The purpose of the 
initiation workshops was threefold: (a) to initiate a statewide community of practice, (b) to build 
the capacity for faculty to design and implement instructional materials that support learning 
through inquiry, and (c) to identify the key conceptual threads in these entry-level courses for 
future instructional design collaborations. Following the workshops, the MIP participants were 
encouraged to join Collaborative Research and Development Teams (CoRDs) comprised of 
groups of 2-5 faculty tasked with developing, testing, and refining an instructional module 
related to one of the conceptual threads identified in an initiation workshop. Later stages of the 
MIP will involve broadening the community of practice through disseminating resources via the 
MIP website, regional workshops, and peer mentoring. 

 Research on faculty professional development highlights that change strategies should seek 
to alter individual’s beliefs as opposed to enacting top-down policy to impact teaching or 
disseminating “effective” curricular resources (Henderson et al., 2011). This demonstrates the 
importance of characterizing faculty’s conceptions of mathematical learning through inquiry and 
describing how particular professional development experiences contributed to their evolution. 
Furthermore, by adopting communities of practice as a model of faculty change, the project 
forgoes attempting to directly impact participants’ conceptions of inquiry-oriented mathematics 
instruction, leaving that to emerge as part of the community’s shared priorities. As such, we 
sought to evaluate participants’ conceptions of active learning after having participated in one or 
more of the MIP initiation workshops. Specifically, we were interested in the extent to which 
participants’ conceptions of active learning aligned with the MIP’s definition and what project 
activities facilitated any changes in these conceptions. We consider the following research 
questions: 

1. What are participants’ conceptions of active learning, and to what extent do they align 
with the MIP’s definition of active learning? 

2. What aspects of the MIP influenced participants’ conceptions of active learning? 
We expect our exploration of these research questions to inform how we might operationalize the 
general mechanisms of individual learning through social engagement articulated by Wenger 
(1998) to influence the conceptions of active learning held by mathematics faculty at different 
stages of participation in a statewide professional development project.  

 
Theoretical Framing 

The MIP seeks to effect changes in the cultural practices of mathematics instructors by 
cultivating a community of practice that enables professional growth through individual 
participation. A community of practice is a social entity in which individuals negotiate meaning 
through their mutual engagement in a joint enterprise around a shared repertoire of reified 
artifacts (Wenger, 1998). Each stage of the MIP seeks to engage mathematics faculty in 
experiences that require their negotiation of meaning around the MIP’s three components of 
inquiry.  

The purpose of this research study is to explore how individuals experience their 
involvement in the MIP community of practice as they negotiate meaning through their 
engagement with other members and through their interaction with the community’s established 
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set of reified artifacts. Through an individual’s interactions with other members of the 
community and its reified artifacts, they become increasingly cognizant of the knowledge base 
and skillset required to participate competently within the community. A central goal of the MIP 
is to cultivate a community of mathematics faculty that, through their participation in the 
community’s activities, negotiate a notion of competence reflecting the three components of the 
MIP’s definition of mathematical learning through inquiry. Characterizing participants’ initial 
and developing conceptions of the three components of inquiry is essential to this effort as these 
characterizations can inform the MIP Team’s participation in the community and allow for the 
strategic introduction of reified artifacts into the community’s activities. 

 
Methods 

We conducted semi-structured interviews over Zoom with 15 MIP participants in spring 
2021. The interviews were audio recorded and transcribed for use in analysis. The interview 
questions included the following: 
1. Please describe your image of active learning in entry-level college math courses. 

a. Why is this important for entry-level math courses? 
b. Can you describe a specific example of active learning in an entry-level math course, 
yours or someone else’s? 
c. What made this example effective? What could have been better? 
d. Has your participation in the MIP activities changed your thinking about active learning? 
How?  

2. Here is the MIP’s definition of active learning. [Participants were presented with the 
definition].  
a. Are there parts of this that you think are important but haven’t discussed yet? 
b. Do you particularly agree or disagree with emphasizing any aspect of the MIP definition 
for improving instruction in entry-level college mathematics? 

We employed the constant comparative method (Strauss & Corbin, 1994) to identify themes in 
the data. One author read all the transcripts, highlighting words and phrases that characterized 
participants’ images of active learning. When a new word or phrase was added to the list, the 
author reread all previous transcripts seeking instances of that word or phrase. This generated a 
list of 30 items. The author then grouped similar items into themes and described them using the 
words/phrases from the list (Table 1), resulting in a list of open codes. The author then re-coded 
the transcripts using the working descriptions of the codes, and then refined these descriptions 
until they captured all highlighted words from the first reading. We note that that these codes are 
not mutually exclusive; for instance, if a participant discussed motivating students with real-
world examples, that was coded as both ‘real world examples’ and ‘affective.’ Similarly, a 
participant suggesting enacting active learning with a class discussion was coded both a ‘format 
in which learning would take place’ because it described the plan for the lesson, and as ‘nature of 
student engagement’ because students would be interacting with other people.  
 

Results 
Our analysis suggests that participants’ conceptions of active learning focused on three major 

themes: the class setup, the mathematical content of a lesson, and the affective facets and 
benefits of active learning. 
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 Table 1. Emergent themes 

Theme Sub-theme(s) Description 

Class 
setup 

Nature of student 
engagement 

Participant describes a way students might be 
involved, such as answering questions, 
interacting with other students, a class 
discussion, exploring, group work, students 
giving presentations 

Format in which the 
learning will take 
place 

The participant describes something that 
could be thought of as lesson planning, like 
group work, class discussion, guided work, 
scaffolding information, using manipulatives, 
using Desmos or a graphing calculator, doing 
projects 

Content Problem solving Participant mentions “problems” or “problem 
solving” without explicitly identifying that it 
is a novel task  

Problematic situations Participant mentions engaging students in a 
productive struggle and/or in situations that 
are problems (not exercises), or describes 
students selecting, applying, and evaluating 
tools or actions  

Understanding Participant describes that active learning 
should help students understand or know 
rather than memorize 

Real-world examples Participant mentions that active learning 
should entail real world examples 

Affective n/a Participant describes active learning in terms 
of its implications for, or dependence on, 
students’ interests, motivation, perseverance, 
mindset, anxiety, etc.  

 
Regarding class setup, all participants mentioned that they associated active learning with 

particular instructional formats, such as collaborative group work or a class discussion. This 
demonstrated participants’ attention to ways students might interact with each other or with 
mathematical tools (e.g., graphing calculator or dynamic visualization software) and the class 
structure (e.g., scaffolding information instead of lecturing, making a class like a lab or 
workshop). Jack, who attended one workshop and was on one CoRD, described his class: 

I incorporate a lot of collaborative project learning.... I like to use a lot of manipulatives. I 
have a limit of how much I want to actually speak to them in a formal setting and having 
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them actually do things while I'm there as a mentor is a lot more helpful ... the more I can 
make my class like a lab, the better I am at really letting active learning [happen]. 

Most participants provided both examples of active learning that foregrounded the structure of 
students’ mathematical activity and its relation to their conceptual development and an example 
that foregrounded students’ participation without attention to how the activity might support 
students’ construction of particular mathematical meanings. For example, Reagan, who had 
attended two workshops and was on a CoRD, said in response to interview Question 1b, 

In the college algebra class when we talk about the function rate of change and like a 
main concept at the beginning.... I designed the pre class activity for students to work on 
[review] problems.... I also let a student to come up with examples. So I give problems, I 
give applications and let them come up with what kind of additional related example in 
the real life they can come up with.... so like in the rate of change when we talk about 
constant rate, normally we start with talking about the distance and the time.... some of 
students will come up with... go to the grocery store and you buy the grocery and it to sell 
by the pound, what is the unit price? That is also a constant rate.  

Reagan did not connect her example of students working on review to a specific conception of 
rate of change that she intends students to construct. We consider this portion of Reagan’s 
statement to be more aligned with a colloquial meaning of active learning because, although she 
referenced a mathematical topic (rate of change), she did not specifically attend to how the 
problems in question might elicit actions that reflect the multiplicative structure of a function’s 
constant (if linear) or average rate of change. Instead, Reagan considered the example she 
proposed to be an instance of active learning because students were working on problems 
(instead of observing her work on these problems in lecture). On the other hand, she related 
students production of an example of average rate of change to the underlying structure of 
corresponding changes in quantities’ measures such as changes in “distance and time” and the 
proportional relationship between a grocery item and its weight and cost. Her attention to aspects 
of the specific conceptual structure of rate of change in this activity indicates the potential for the 
students to select actions whose structures are equivalent to the concept to be learned.  

All participants acknowledged the affective requirements and affordances of engaging in 
active learning. Actively engaging in meaningful applications of mathematics both requires and 
fosters academic success skills (e.g. mathematics self-efficacy, growth mindsets, persistence in 
problem solving). Adam and Eden’s comments are representative of those coded under this 
theme. Adam had worked on a CoRD, and Eden had attended three workshops and was 
participating on a CoRD at the time of the interview.   

Adam: I think [active learning] is important [because] students who engage with math tend to 
have better perception of it. ... I think it allows the students to gain a sense of autonomy 
and, um, confidence in math that they may not be accustomed to.  

Eden: it's self-efficacy, the whole thing and that goes into the academic success skills, but I 
mean it's building, especially for students that are going to need to take math past that 
entry level, it's, you’re, you’re, you're creating if you like your own machine, you're, 
you're starting at the entry level and getting them used to this idea. So, as they progress 
through their math courses, they will be more successful.  

Both Adam and Eden discuss the affective benefits of active learning: Adam’s response focused 
on students’ developing a sense of autonomy, potentially increasing their mathematical 
confidence, and Eden’s remarks highlight the importance of mathematical persistence. 
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 Affective affordances and requirements of active learning were not part of the MIP’s 
definition of active learning, but do appear in the MIP definition of academic success skills. The 
MIP three components of inquiry are interdependent, and we agree that active learning can both 
require particular affective states (e.g., a willingness to engage in productive struggle) and afford 
particular affective states (e.g., foster increased willingness to engage in productive struggle). 
The MIP had explicitly stated affective affordances and requirements only in the definition of 
academic success skills. That participant talked about affective affordances and requirements in 
active learning indicates negotiating meaning in the community of practice. Specifically, 
participants seemed to favor a definition of active learning that incorporates the affective 
affordances and requirements of active learning explicitly.  

The participants also reported that various aspects of their engagement in the MIP influenced 
their conceptions of active learning. Generally, participants cited specific examples of rich tasks, 
conversations with other participants, small group discussions of research literature, and 
conversations with project team members. For example, Ellison, who attended one workshop and 
was on a CoRD, felt the problem-solving literature she read for her CoRD had influenced her 
thinking that an important part of active learning was not to give the answer too soon. Gemma, 
who attended one workshop, said  

 I really liked those types of problems that we did as samples... something that gets you to 
think outside of the box on math and not have to be like... sitting there doing x’s and y’s 
and whatever. Thinking about real life and how can I connect this and then you know 
problem solving 

The sample problem Gemma referred to were generated by the MIP team. The goal of the 
problems was to model a conceptual analysis, hypothetical learning trajectory, and how those 
informed the design of tasks that operationalize the three MIP components of mathematical 
inquiry. We take Gemma’s statement about the problems making students to “think outside of 
the box” and “problem solving” as possibly indicative that she attended to the tasks as 
problematic situations.  
 

Discussion 
We developed the MIP definition of active learning to foreground the implications of the 

nature of students’ activity for their construction of particular mathematical meanings and to 
serve as a guide for the project design of engaging faculty in a community of practice. While we 
expect to see some change of participant’s goals, values, and beliefs that might make aspects of 
the MIP definition more meaningful to them, we equally expect the community to develop its 
own priorities and standards. We present our characterization of participants’ goals, values, and 
beliefs about active learning to inform subsequent project activities in ways that will better 
support participants to (a) understand the nature of their conceptual learning goals; (b) act in 
ways that foster those goals in their instruction; and (c) reinforce the development of the 
community of practice toward similar sensitivities. 

While participants universally described general formats in which students might be 
participate in class (e.g., group work, class discussions, and projects), they often did not attend to 
the nature of students’ engagement with carefully designed mathematical tasks that deliberately 
support abstraction of underlying mathematical structure. We note that many of these 
perceptions were internally consistent, based on individualized implicit learning theories and 
prior experience, and thus highly stable. However, it is important to the PD project to know that 
participants’ definitions of active learning did not explicitly attend to students’ selecting, 
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performing, and evaluating specific mental actions, because we view the ‘active’ in ‘active 
learning’ as mental activity, and hence propose that focusing on the nature of the mathematical 
tasks (as opposed to whether they will be done in groups, or in back-and-forth question-and-
answers between the class and instructor) is critical in effective instruction. In short, there is 
some misalignment with participants’ definitions and the MIPs in regard to how each views what 
‘active’ means in active learning.  

The organic evolution of a normative conception of competence within a community of 
practice—which reflects the current and developing conceptions of those participating in it—
restricts the range of possible interventions that seek to influence how participants conceptualize 
both the practice in which they engage and the nature of competence this engagement requires. 
Participation in the community is the mechanism of individual identity transformation (i.e., 
learning), and is directed towards the normative conception of competence implicitly negotiated 
by the community through its pursuit of a joint enterprise. A principal affordance of becoming 
aware of one’s own conceptions of learning is that it positions an instructor to purposefully 
develop and implement instructional sequences that are consistent with it (Tallman, 2021).  We 
view a central priority for the project to be fostering the community of practice to (a) make these 
goals, values, and beliefs explicit; (b) create the intellectual need for critical reflection on them; 
and (c) provide opportunities to develop, implement, evaluate, and refine new strategies based on 
the MIP characterization of inquiry. Based on our analysis, we recommend the following forms 
of interventions that might support the refinement of participants’ conceptions of active learning 
through their engagement in the MIP community of practice: 

• opportunities to engage in instructional design with community-recognized experts to 
foster the MIP components of inquiry  

• opportunities to critically evaluate curricular artifacts that reflect explicit 
operationalization of the MIP components of inquiry  

• feedback from peers that suggest concrete ways to modify their proposed instructional 
materials to support more effective implementation of the MIP components of inquiry 

• guided reflection on results of pilot lessons and refinement to improve implementation of 
the MIP components of inquiry 

 
Future research   
 One direction for our future research is to include additional data sources. For example, 
recordings of participants teaching or artifacts from their class materials could lend additional 
insight into participants’ conceptions of active learning and the extent to which they align with 
the MIP’s definition. An analysis of such data would provide more robust findings by allowing 
us to describe how participants enact their conceptions of active learning.  
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A Characterization of an Undergraduate Mathematics Instructor’s Conception of Learning 
Through Mathematical Inquiry 
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This research report focuses on documenting the conceptions of and relationships between three 
interrelated components of mathematical learning through inquiry (active learning, meaningful 
applications, and academic success skills) demonstrated by an experienced mathematician 
throughout a series of semi-structured clinical interviews concurrent with the participant’s 
engagement in a large-scale professional development initiative. Our analysis revealed that the 
participant demonstrated stable and coherent conceptions of the three components of 
mathematical learning through inquiry that were generally resistant to intervention. We reflect 
on the implications of our analysis for influencing the conceptions of inquiry-oriented instruction 
held by undergraduate mathematics faculty.  

Keywords: Active Learning, Mathematical Inquiry, Professional Development, Teacher 
Knowledge, Case Study 

Introduction 
Researchers, professional organizations, and policymakers have emphasized a need for 

instructors to attend to meaningful student engagement in mathematics classes (CBMS, 2016; 
Freeman et al., 2014; Kober, 2015; NRC, 2012; NSTC, CSE, 2013; PCAST, 2012; Saxe & 
Braddy, 2015). Instruction with higher levels of student interaction enhances problem-solving 
skills (Prince 2004), demonstrates greater conceptual gains (Freeman et al., 2014; Hake, 1998; 
Svinicki, 2011), and improves retention of information (Dirks, 2011; Prince, 2004; Sokoloff & 
Thornton, 1997). Although a preponderance of evidence indicates the benefits of active learning, 
many mathematics instructors struggle to effectively engage students in active learning 
experiences. Active learning strategies realize their potential when an instructor operates with an 
explicit understanding of how the actions in which students engage might engender the cognitive 
mechanisms necessary to construct productive meanings for targeted mathematical ideas 
(Tallman, 2021). Unfortunately, undergraduate mathematics instructors are rarely afforded the 
opportunity to construct this essential component of pedagogical content knowledge.  

Perceptions that mathematics lacks relevance to one’s interests and goals is a common 
deterrent to engaging in active learning. Students with this perspective tend not to appreciate the 
broader skills they can acquire by studying mathematics. Modeling real-world problems with 
mathematical tools can provide students with greater opportunities to understand course content 
and its relevance (Frykholm & Glasson, 2005; Jacobs, 1989; Koirala & Bowman, 2003; Pyke & 
Lynch, 2005). However, due to a need to cover a broad range of topics, the techniques in entry-
level undergraduate mathematics courses are rarely taught in the context of real-world situations. 
Additionally, even when applied contexts are incorporated into instruction, students often 
struggle to notice similarities in mathematical structure that would allow them to apply content 
learned in other contexts (Gick & Holyoak, 1983; Lobato & Siebert, 2002). These observations 
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establish a need for instructors to incorporate relevant applications into mathematics courses for 
the purpose of both promoting students’ positive affect and engaging them in active learning. 

Students’ conceptions about the origin of mathematical intelligence and the skillset they 
attribute to being proficient at mathematics have additional implications for their capacity to 
engage in active learning. Fortunately, students’ mindsets are not immutable psychological traits, 
and specific supports can enable them to reconceptualize what it means to become proficient at 
mathematics (Middleton, Tallman, Hatfield, & Davis, 2015). Tallman and Uscanga (2020) 
specified the types of support instructors might provide to foster the positive affect necessary for 
students to meaningfully engage in active learning. These scholars also cautioned against the 
ineffectiveness of common efforts to foster students’ productive affective engagement in 
mathematics by reducing these efforts to a list of pedagogical prescriptions without consideration 
for the mathematical conceptions they are supposed to support. 

Taken together, the literature summarized above demonstrates that designing instruction to 
effectively engage students in active learning is a complicated task for which undergraduate 
mathematics instructors often receive insufficient preparation, and are thus generally 
underprepared. To address this need, we designed the Mathematical Inquiry Project (MIP) to 
support mathematics faculty at all 27 public institutions of higher education in Oklahoma to 
engage students in learning through inquiry in entry-level mathematics courses. More broadly, 
the MIP complements principles of organizational change with social learning theory to foster 
effective, scalable, and sustainable cultural shifts in mathematical learning through inquiry 
defined in terms of active learning, meaningful applications, and academic success skills.  

This research report focuses on documenting one MIP participant’s conception of these three 
interrelated components of mathematical learning through inquiry. In particular, we explored the 
following research questions: (1) What conceptions of the three elements of mathematical inquiry 
and their mutual influence are held by an MIP participant? (2) To what extent do these 
conceptions align with the definitions proposed by the MIP? 

Theoretical Background 

Active Learning 
At the level of student engagement, the MIP synthesizes constructivist, neo-constructivist, 

and social-constructivist perspectives, in which conceptual structure is consistently characterized 
as abstracted from reflection on the structure of one’s actions to resolve a problem (diSessa, 
1982; Gravemeijer, Cobb, Bowers, & Whitenack, 2000; Hickman, 1990; von Glasersfeld, 1995; 
Piaget, 1970, 1980). The MIP operationalizes this perspective through emphasizing processes 
that focus students’ attention to the nature of a problem, selection of appropriate mathematical 
tools, application of those tools, and attention to the reciprocal influences of the tool both applied 
to, and evaluated against, the problem. The MIP definition of active learning is: 

Students engage in active learning when they work to resolve a problematic situation 
whose resolution requires them to select, perform, and evaluate actions whose structures 
are equivalent to the structures of the concepts to be learned.  

Designing this level of student engagement first requires an instructor to become cognizant of the 
targeted concept’s conceptual structure (Tallman & Frank, 2020), and then to purposefully 
inquire into students’ mathematical thinking by listening, interpreting, and respond to the 
interplay between intuitive and informal ways of reasoning students express. 
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Meaningful Applications 
The MIP leverages educational theory and empirical research that offers insight into how 

relevant applications might effectively support active learning. One of the most immediate 
features of our emphasis on applications is that mathematical representations refer to real-world 
objects and quantities that can be described and imagined to support intuitive reasoning, which is 
often not elicited when students only encounter abstract representations. This concrete reasoning 
enables students to engage in mental constructions that can subsequently be represented 
abstractly by variables, expressions, diagrams, and graphs. The MIP definition of meaningful 
incorporation of applications is: 

Applications are meaningfully incorporated in a mathematics class to the extent that they 
support students in identifying mathematical relationships, making and justifying claims, 
and generalizing across contexts to extract common mathematical structure. 

Ultimately, for applications to be used effectively, they must foster students’ engagement in the 
mental activity on which they will later reflect to construct targeted understandings of particular 
mathematical concepts. Additionally, the phrase “generalizing across contexts” should be 
interpreted within the domain of mathematics and not across other academic disciplines. 

Academic Success Skills 
Students’ active learning is initiated and sustained by components of their affect. The MIP 

leverages research about growth versus fixed mindsets, the nature of memory and expertise, the 
integration of academic and social communities, academic identity, stereotype threat, and study 
skills to equip instructors with the tools to support students active learning of mathematics. We 
express this amalgam of affective qualities, dispositions, and states as academic success skills, 
which the MIP defines as follows: 

Academic success skills foster students’ construction of their identities as learners in 
ways that enable productive engagement in their education and the associated academic 
community. 

Methods 
The lead author conducted 11 semi-structured clinical interviews (Clement, 2000; Hunting, 

1997) with an experienced professor of mathematics (Robert) from a small, liberal arts university 
in the Southern United States. The focus of these clinical interviews was to elicit products of 
Robert’s conception of the three components of mathematical inquiry defined by the MIP and to 
explore their relation to Robert’s values, beliefs, and commitments, and instructional goals.  

Our data analysis was guided by grounded theory procedures (Corbin & Strauss, 1990; 
Strauss & Corbin, 2007). The lead author first identified segments of interviews during which 
Roberts’ remarks captured the essence of his conception of one of the three components of 
mathematical inquiry, or the relationships between them. This initial analysis enabled us to 
become sensitive to not only what Robert said but also how he expressed it. From these segments 
of data, the lead author abstracted Robert’s expressed ideas into larger codes and categories (an 
application of axial coding) and later combined and related these codes and categories into more 
general clusters, often through several iterations, resulting in a stable set of final themes. 
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Results 

Active Learning 
Robert participated in four interviews during which he responded to a series of questions 

specifically related to active learning (Interviews 1, 2, 6, and 10). During the first interview, 
Robert described active learning as synonymous with genuine mathematical engagement, which 
occurs when students solve non-routine problems for which they cannot uncritically apply a 
rehearsed procedure. At the beginning of the second interview, Robert proposed the following 
definition of active learning: 

Students are engaging in active learning when they are asked to engage with a problem 
themselves (as opposed to passively observing an instructor solve the problem). 

As this definition suggests, Robert’s conception of active learning foregrounds the idea of 
student engagement. This definition does not explicitly address the relationship between the 
mental actions in which students engage and the cognitive structures they might be expected to 
construct for the targeted concept of a lesson. Towards the end of Interview 2, Robert requested 
to revise his original definition. His only modification was to replace the word “engage” with 
“struggle and wrestle.” This modification, as well as Robert’s comments throughout Interview 2, 
revealed his perspective that an essential feature of active learning is that it entails students 
making strategic decisions in the service of overcoming some sort of struggle. Robert considered 
such strategic and impasse-driven decision-making to be an essential feature of genuine 
mathematical activity, and thus active learning. 

Robert’s emphasis on decision-making as a feature of active learning was apparent during a 
discussion of what might distinguish a student who is engaged in active learning from one who is 
not. Addressing this question, Robert explained that students “have to be asked to think critically 
about the problem. They have to make some decisions. They have to make some determinations. 
So, decision making would be- for me would be the, the, the line.” These decisions, Robert 
clarified, need to be “strong” decisions, and he provided an example from calculus of students 
struggling to determine whether to apply the method of u-substitution instead of integration-by-
parts. A few minutes later, Robert concluded: “As long as they’re actively, they’re, they’re trying 
hard, they’re struggling with it, if there’s maybe, maybe the defining line should be there has to 
be a, a level of struggle with a problem.” This comment reinforces the claim that Robert 
considered students’ experiencing struggle to be the essential criterion of active learning. There 
was no evidence in Robert’s responses to suggest that he conceived students’ struggle as a 
precondition for engaging in the cognitive activity necessary to construct specific meanings for 
targeted concepts. Generally, Robert gave no indication throughout the series of interviews that 
his conception of active learning related to an instructor’s goals for students’ mathematical 
learning. Instead, Robert’s characterizations of the features and requirements of active learning 
were dominated by his expectation that students’ activity should reflect a mathematician’s 
experiences while engaged with a challenging problem. Indeed, Robert’s introspection on his 
own mathematical activity consistently appeared to be the source of the various features of active 
learning he proposed. 

Meaningful Applications 
The lead author conducted four interviews with Robert during which he responded to 

questions specifically related to meaningful applications (Interviews 1, 3, 7, and 9). Robert 
proposed the following definition of meaningful applications at the beginning of Interview 3: 
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Applications are meaningfully incorporated in a mathematics class when problems are 
presented that piques student interest and highlights a key concept (or some key 
concepts) of the lesson. 

There are two fundamental components of Robert’s definition: stimulating student interest and 
highlighting a key concept of the lesson. 

When Robert was asked to interpret the MIP definition for meaningful applications in 
Interview 1, he recognized that this definition was useful for instructors, but “from a student 
view, meaningful application would be something that, just a problem that they’re, that engages 
them, intrigues them, has to be some kind, spark some kind of interest.” One way that a problem 
might intrigue students is if it relates to them personally or is an applied, real-world problem that 
enables students to appreciate the applicability of the mathematics they are learning. When asked 
about his interpretation of the word “meaningful” in the third interview, Robert stated that 
meaningful is something that “interests me” and has a “hook” to promote interest.  

Robert’s interpretation of the word meaningful arose from a student perspective (e.g., piques 
students’ interest) as well as an instructor’s perspective (highlights a key concept). Robert stated 
that another interpretation for the word “highlights” is demonstrates: “Demonstrates is (pause), it 
brings to (pause), it shows the, shows the usefulness of these concepts. It demonstrates why, why 
we’re doing what we’re doing.” Robert offered an illustration for how an instructor might 
highlight or demonstrate the usefulness of a concept: 

If I can come with an application, a problem that forces you, really encourages you to use 
one over the other, that’s a meaningful application, right. If I, if I try to teach you a shell 
method, right, usually a shell after the washer method, right, but if I give you a problem 
where I, where students can just as, just as easily solve it using the washer method, then 
what’s the point, right? 
Robert echoed a similar sentiment later in the interview, stating that if he were teaching the 

shell method he would “steer away” from problems that can be solved equally easy using either 
the shell method or the washer method (unless he wanted to highlight that sometimes either 
approach is appropriate). 

Academic Success Skills 
The lead author conducted three interviews with Robert during which he responded to 

questions specifically related to academic success skills (Interviews 1, 4, and 8). At the 
beginning of Interview 4, Robert constructed his definition: 

Academic Success Skills are behaviors/actions that help people/students succeed 
academically (i.e., in their studies/research). Examples include: detailed note taking, a 
sense of curiosity, the grit/determination to tackle/solve a problem—from several 
approaches if necessary, and to think critically. 
Robert’s conception of academic success skills centered around thinking critically and 

exercising grit and tenacity to persist in satisfying curiosity. According to Robert, thinking 
critically entails making “deliberate decisions” and operating intentionally when solving 
problems as opposed to using a particular technique because peers used it, the book encouraged 
it, or it proved useful in another context. Critical thinking is a key facet of the academic success 
skills Robert values most: 

For me, the most important academic success skill is being engaged, and being, uh, 
curious, and being, and just really getting, getting down and really exploring the concept, 
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right, having the grit, uh, and tenacity to, to, work on the problem. I, that to me, that, for 
me, hands down, that’s the most important.  

Robert’s latter statement offers insight into how he might develop tasks to support students’ 
academic success skills. He expects that the affective qualities he values in students can be 
reinforced by engaging them in tasks that elicit productive struggle, and encouraging them to 
reflect on their attempts to solve the problem.  

While students may be able to enhance their determination from engaging in tasks that 
facilitate productive struggle, the interviewer asked Robert if the ways in which an instructor 
teaches a specific mathematical topic can promote students’ curiosity, tenacity, or grit. Robert’s 
response emphasized how instructors’ actions can be problematic for promoting these affective 
characteristics, stating that making math “mechanical” makes it become artificial and tedious. 

Throughout the series of interviews, Robert frequently described active learning as dependent 
upon students’ curiosity and tenacity. The interview data consistently indicated that Robert’s 
conception of active learning was closely connected to his image of mathematical problem 
solving and the curiosity and tenacity that initiates and sustains it. Robert reasoned that curiosity 
and tenacity are essential to active learning since the former is both the origin of genuine 
mathematical problems and the affective state that compels a student to want to solve a problem. 
Additionally, Robert expressed that tenacity is required to persevere through the struggle 
inevitably encountered when reasoning about a novel problem. He explained that curiosity and 
tenacity is “what made me successful in my schooling,” again revealing Robert’s reflection on 
his mathematical activity to infer essential features of active learning and their relation to 
students’ affect.  

Robert clarified his image of the relationship between active learning and students’ academic 
success skills during Interview 2: 

My style of teaching is for students to struggle with a problem, understand why that 
problem is hard and why that problem is interesting, then I will come back around and 
show them a way that is easier. Then they can learn to appreciate the new knowledge that 
I am trying to teach them.  

This excerpt suggests that Robert considered active learning in terms of students’ 
engagement in the precise activity that results in their experiencing an intellectual need for 
the mathematical content that he will eventually present to them. Robert’s comments indicate 
that he valued this type of activity because it can ultimately position students to more intently 
and purposefully absorb the mathematical meanings, skills, and strategies he communicates. 
That is, active learning makes students more receptive to perceiving the mathematics that 
Robert conveys and/or demonstrates. This conception of the relationship between active 
learning and students’ affect stands in contrast to the MIP definition of active learning, which 
views students’ activity as the experiential basis of their knowledge construction through 
abstraction. The excerpt above reveals Robert’s expectation that the insight, method, or 
strategy required to solve a problem should ultimately be provided by the instructor, rather 
than constructed by the students through their mathematical activity. 

Summarizing Robert’s conception of the relationship between meaningful applications and 
active learning, he described meaningful applications as providing contexts that can stimulate 
students’ curiosity and then require them to be tenacious and perseverant to solve a contextual 
problem. There was no evidence in Robert’s remarks to suggest that he interpreted “meaningful” 
as a reference to the meanings an instructor expects their students to construct. 
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Discussion and Implications 
Robert’ conception of active learning centered around student engagement in thinking 

critically, making decisions, and wrestling with problems. According to Robert, active learning 
can occur in many forms, and the distinction between students who are engaged in active 
learning and those who are not depends on students making decisions and struggling to solve 
non-routine problems. A primary feature of Robert’s conception of meaningful applications 
includes a context that cultivates students’ interest. Robert also explained that a meaningful 
application should also highlight the key concept of the lesson, which could involve 
demonstrating the usefulness of a particular technique (e.g., disc vs. shell method in calculus). 
Robert’s conception of academic success skills focused on students acting on their curiosity with 
grit, determination, tenacity, and critical thinking skills to solve a novel problem.  

While Robert claimed that his conceptions of the three components of inquiry had been 
influenced through his involvement in MIP activities, his comments throughout the series of 
clinical interviews demonstrated that he underemphasized and perhaps undervalued the 
importance of designing tasks that promote students’ construction of particular mathematical 
meanings. Additionally, Robert’s remarks revealed his inattention to the nature and development 
of students’ conceptions. 

A fundamental distinction between Robert’s conception of active learning compared to the 
MIP definition is that Robert considered struggle, effort, and strategic decision-making as 
sufficient criteria for engaging in active learning, independent of the meanings he expected 
students to construct. Similarly, Robert conceptualized the incorporation of meaningful 
applications as having primary implications for students’ affective engagement, specifically 
motivation and interest. In his own practice, Robert explained that he motivates students by 
providing interesting contexts or by demonstrating the usefulness of a particular problem-solving 
approach.  

Notably, Robert’s comments throughout the series of interviews highlight a fundamental 
epistemological distinction: that he underemphasized, devalued, or was inattentive to the 
instructor’s role in designing tasks informed by conducting a conceptual analysis (Thompson, 
2008) for the purpose of enabling students to progress through a hypothetical learning trajectory 
(Simon & Tzur, 2004). While promoting students’ affective qualities is important, particularly 
related to academic success skills, the MIP definition is centered around supporting students’ 
construction of operative mathematical schemes by identifying and clarifying the nature of the 
mental actions and conceptual operations required to construct an understanding of a 
mathematical idea in a particular way.  

Importantly, this discussion is neither intended to diminish nor devalue features of Robert’s 
instructional design or pedagogical practices, nor to criticize his interpretation of three elements 
of inquiry proposed by the MIP. Rather, we offer these distinctions to highlight the potential for 
Robert’s conceptions to be extended and refined to include attention to epistemological 
considerations of students’ mathematical learning. Our results suggest that intensive measures 
are required to disrupt and modify Robert’s established, stable, and coherent conceptions of the 
three components of mathematical inquiry.  
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In Fall 2020 we collected 1,064 responses to a survey asking instructors of first-year math and 
science courses questions about their attitudes, beliefs, and views of diversity, inclusion, and 
equity. Here we provide descriptive analyses on three aspects of the survey: items aimed at 
instructors’ views of certain factors that might contribute to disproportionate representation of 
different race-gender groups in STEM; items that asked participants about their views on 
strategies for addressing race-gender disparities in STEM; and items about respondent’s 
personal experiences with discriminatory behavior. About two-thirds of respondents recognize 
that systematic advantages are afforded to white men in STEM and an overwhelming majority 
agree that they have a personal responsibility to address inequities. However, we also found 
stronger support among participants for passive actions than more active ones and a sizable 
proportion of these instructors also believe that different race-gender groups have different 
interest levels in science and mathematics.  

Keywords: postsecondary STEM, instructor beliefs, DEI attitudes 

It is well known that the demographic landscape of science, technology, engineering, and 
mathematics (STEM) professionals in the USA does not reflect that of the population. This 
inequity is the product of individual actions as well as systemic barriers. The road to a STEM 
degree starts in first-year mathematics, chemistry, and physics courses. These courses frequently 
serve to “weed out” potential STEM majors and disproportionately affects students from 
marginalized populations (Seymour & Hewitt, 1997; Seymour & Hunter, 2019). Black and 
Latinx students who begin in STEM are most likely to switch majors or leave college altogether, 
a phenomenon not seen in other majors (Riegle-Crumb et al., 2019); Black women, among all 
women entering STEM majors, are the most likely to choose physics, engineering, math, and 
computer science fields, yet attrition rates are also the highest among Black women (Ma & Liu, 
2017). These disparate attrition rates are not due to innate characteristics of the students, but 
rather to features of the societal, institutional, and classroom environments they must navigate.  

The lack of diversity, equity, and inclusion (DEI) in STEM is a function of systemic issues, 
which require systemic change to address. Individual actions by members of the system are 
required to make these changes. Postsecondary STEM instructors have access to several levels of 
higher education and disciplinary systems, including: hiring and promotion, research, mentoring, 
campus and society DEI initiatives, and, of course, teaching. Their beliefs and attitudes in 
relation to DEI issues and initiatives shape their ability and willingness to agitate for change. It is 
difficult to create effective change towards DEI without understanding these beliefs and 
attitudes. To that end, we administered a survey in Fall 2020 and received 1,064 responses 
describing respondents’ professional identity and context, assumptions about the experiences of 
eight race-gender groups in STEM, their beliefs about (and engagement with) efforts to increase 
diversity in their fields, and their departmental and personal experiences with discrimination.  
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Guiding Theories & Relevant Literature 
In line with our personal beliefs and the tenets of critical theories, we hold that STEM is not 

a neutral field with respect to personal identities or circumstance; higher education trades on a 
myth of meritocracy in which access and success are controlled by greater social structural 
inequalities that are reflected in postsecondary institutions (Liu, 2011). Thus, our goals of 
improving postsecondary STEM education to better engage, support, and serve students must 
include efforts to remove barriers to access and to shift the wider culture toward equity and 
inclusion. Institutional culture determines the implementation and enactment of policies, and so 
we must consider various stakeholders in these institutions and their potential role in upholding 
or dismantling the status quo (Reinholz & Apkarian, 2018; Schein, 2010). Instructors are key 
members of the STEM higher education ecosystem, as they exist at the intersection of their 
institution, department, discipline, and classrooms; they are broadly the most important actors in 
the creation, evolution, and enforcement of “the culture” (Kezar, 2014; Reinholz & Apkarian, 
2018). Shifting culture (practices, policies, and attitudes) toward a more desirable state requires 
documenting the current state and identifying appropriate levers and fulcra for various types of 
change (Henderson & White, 2019). It is in this avenue which our work is relevant – we have 
documented instructor beliefs about DEI issues and initiatives in STEM (and postsecondary 
STEM education), and are engaged in an ongoing analysis of how opinions may have shifted 
during the year 2020, which saw interruptions from the COVID-19 pandemic as well as highly 
publicized demonstrations for racial justice. 

An intersectional lens is critical when considering issues related to DEI. For example, Asian 
people are overrepresented and women are underrepresented in STEM compared to the US 
population, which obscures the situation of Asian women (Castro & Collins, 2021). While Asian 
men are well-represented in academic STEM environments, they face discrimination and stigma 
(Shah, 2019). Studies of women students’ interactions in STEM courses reveal stark differences 
in white and non-white women’s perceptions of belonging and instructor care, as well as 
decisions to continue in STEM (Rainey et al., 2018, 2019). Elementary and high school students 
of Mexican descent are often tracked toward vocations, as opposed to college, and are pushed 
out of the educational pipeline at high rates which vary by gender, citizenship status, and family 
income (Covarrubias, 2011). It is clear that many people experience barriers in STEM education 
and careers based on their gender and race. These barriers must be addressed as a matter of moral 
justice, and to fill the “missing millions” who are needed in the science and engineering 
workforce (National Science Board, 2020). 
 

Data and Methods 
The data collected for this paper consists of survey responses from a national sample of 

postsecondary STEM instructors who had already participated in a larger survey related to 
STEM instructional practices. The larger survey targeted postsecondary instructors teaching 
introductory STEM courses at two-year colleges, four-year colleges, and universities in the 
United States. Data collection for that project was conducted in Spring 2019, and the final 
sample consisted of 3,769 respondents who were primary instructors of a general chemistry, 
single-variable calculus, or introductory quantitative physics course in the 2017-18 or 2018-19 
academic year. At the end of the initial survey, participants were asked if we could contact them 
for a follow-up survey focused on diversity, equity, and inclusion in STEM. Of the 3,769 who 
completed the primary survey, 2,229 indicated a willingness to be contacted for this follow-up. 
In Fall 2020, all 2,229 were sent invitations for this follow-up, and we received 1,064 usable 
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responses. Of these 1,064 participants, 387 taught first-year (General) Chemistry, 305 taught 
first-year Mathematics (Calculus), and 372 taught first-year Physics.  

Here we focus on three aspects of the DEI survey: items aimed at instructors’ views of 
certain factors that might contribute to disproportionate representation of different race-gender 
groups in STEM, which provide insights into how faculty might explain the relative over- and 
under-representation of different identity groups; items that asked participants about their views 
on strategies for addressing race-gender disparities in STEM, such as affirmative action style 
hiring policies and diversity statements; and items about respondent’s personal experiences with 
discriminatory behavior. Here we provide descriptive analysis of the survey responses.   

This sample is not random and is not representative. However, we have enough information 
to conjecture about the direction in which this bias might skew our results. First, self-selection 
bias was introduced through the voluntary nature of participation. Our sample includes people 
willing to participate in education research, and who were willing to receive a survey about 
diversity, equity, and inclusion issues in STEM, and who then completed that survey. This 
suggests that our participants are more likely to be aware of, and possibly supportive of, ongoing 
DEI work in STEM than a truly random sample of STEM faculty. This group may, through their 
increased awareness, be even more susceptible to social desirability bias. This second form of 
bias refers to a tendency for survey-takers to provide answers which they think will be viewed 
positively by others. Broadly speaking, this means that our results likely portray STEM 
instructors as more aware of DEI issues and engaged with DEI initiatives than the true 
population. 

Results 

Perceptions of Reasons for Disparities  
Four survey questions captured instructors’ views of certain factors that might contribute to 

disproportionate representation of different race-gender groups in STEM, suggesting how faculty 
might explain the relative over- and under-representation of different identity groups. The first, 
and broadest, of these asked whether STEM culture affords an overall advantage or disadvantage 
to members of eight race-gender groups. Responses to this item are displayed in Figure 1.  

White men were the only group that a majority of respondents identified as having a 
systematic advantage in STEM; Black women, Hispanic/Latinx women, Black men, and 
Hispanic/Latinx men were perceived by the majority of respondents as having an overall 
disadvantage in STEM; the majority of respondents perceive that Asian men, White women, and 
Asian women have neither an advantage or disadvantage. These perceptions have some relation 
to the actual representation of these race-gender groups in STEM: white men receive the largest 
share of chemistry and physical science BA/BS degrees, PhD’s, and faculty positions; Asian men 
are the most over-represented compared to their share of the US population at all levels of 
STEM; Black and Hispanic/Latinx men and women combined make up less than 10% of STEM 
faculty while accounting for 30% of the US population. We note that these responses suggest 
that participants view Black and Hispanic/Latinx men and women’s disadvantagement similarly, 
but distinguish between men and women among white and Asian groups; this reflects the broader 
understanding of how racism and sexism intersect in STEM (Castro & Collins, 2021). 

The next questions were prefaced with the statement that “more than half of the PhDs 
awarded in 2017 in mathematics and the physical sciences were received by white men.” Again, 
we asked participants to consider three possible factors contributing to disparities in 
representation (aptitude, interest, and opportunities) for different race-gender groups; this time 
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the question specifically asked about phenomena relative to the dominant group. Participants’ 
responses are summarized in Figure 2.  
 

 
Fig 1. Percentage of respondents reporting that each race-gender group receives a net disadvantage (red, left), 

neutral (gray, center), or net advantage (blue, right). N=1015 

Historically, claims of differential aptitude for mathematics, science, and learning have been 
used to defend discriminatory policies including segregation and eugenics (Tucker, 2007). These 
claims have, of course, been refuted, and over 90% of our respondents indicated that members of 
each race-gender group have equal aptitude for science and mathematics as compared to white 
men. The other 6-8%, however, are not distributed evenly across groups. The higher ratings of 
Asian men and women’s aptitude for STEM conforms to damaging stereotypes (Shah, 2019; 
Trytten et al., 2012); the lower ratings for Black and Hispanic/Latinx men and women conform 
to unfounded racist and sexist tropes. The presence of these beliefs, even among a few, may 
hamper efforts to diversify our fields; self-selection and social desirability bias likely mean that 
there are more in the general instructor population who think aptitude is inherently related to race 
and/or gender than our respondents reported on this survey. 
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Figure 2. Percent of respondents reporting that, as compared to white men, each race-gender group have less 

(red/left), equal (gray/center), or more (blue/right) (A) aptitude for; (B) interest in; (C) opportunities to do [your 
field]. Groups are ordered based on survey responses; arrows indicate changes in group order from one graph to 

the next. N=1015.  

Interest in the field is another justification for unequal representation in STEM (Estrada et al., 
2016). We see evidence that many STEM faculty believe that interest in science and 
mathematics varies across race-gender groups. Many instructors (40%) of introductory courses 
believe that Black women have less interest in their STEM field than white men. Regardless of 
where this belief comes from, it is indicative of a significant bias that may play out in a variety of 
ways that impact students. For example, who is more likely to be seen as a “good fit” for a lab 
opportunity; who receives what kind of mentoring. Believing that certain types of students are 
“simply not interested” in STEM shifts the locus of responsibility onto the students, and away 
from inequitable practices and policies. 

Conversations about diversity and equity often also include the topics of access, or 
opportunities to experience and participate. A large majority (66-74%) of first-year instructors 
report a perception that Black and Latinx women and Black and Latinx men have less 
opportunity than White men; just over 40% report the same for Asian and White women. A 
substantial majority (66%) report that Asian men have equal opportunity as compared to White 
men. This apparent recognition of systemic disparities in opportunity is heartening as it relates to 
unpacking the myths of meritocracy which pervade higher education (Liu, 2011). However, 
additional investigation is needed to understand how this impacts instructors’ interactions with 
their students and their willingness to support or engage with initiatives aimed at redressing 
disparities. It may contribute to perceptions that individuals from underrepresented groups are 
less prepared to succeed; or that outreach to certain populations is a priority; or that fault lies 
with pre-college experiences; or that affirmative action-style policies should be implemented. 

Mechanisms for Addressing Disparities 
With a general consensus that some race-gender groups are systemically (dis)advantaged, 

and that opportunities and interest - but not aptitude - are unevenly distributed, we asked 
participants about strategies for addressing race-gender disparities in STEM. A heartening 86% 
report efforts to diversify STEM are beneficial for their field (12% had no opinion; 2% said such 
efforts are detrimental); this is likely inflated by self-selection and social desirability biases. 
When asked about specific types of initiatives (Figure 3), we find a similarly high proportion of 
instructors support “diversity, equity, and inclusion statements” by their professional societies, 
institutions, and departments; a smaller majority support affirmative action-style policies for 
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faculty hiring and student admissions. These results are a positive indicator of support for efforts 
to diversify the field, but the lower levels of support for more direct actions need further 
investigation. DEI statements are passive acts, which may not have a direct impact on instructors 
or DEI; policies related to student admissions and hiring are more active and have direct impacts 
on the communities. The latter has also been shown to have a concrete and lasting impact on 
diversity (Bowen & Bok, 1998; Murrell & Jones, 1996), though equity and inclusion do not 
automatically follow from presence. Understanding what impacts instructors’ support, or 
hesitancy, will contribute to building STEM faculty buy-in for evidence-based strategies for 
change.  
 

 
Figure 3. Percentage of respondents indicating that they do not support (red, left), do (or would) support (green, 

center), or have no opinion (gray, far right) five existing models of DEI initiatives. N=1055, 1054, 1058, 1058, 1057 

Personal Experiences with Discriminatory Behaviors  
Lastly, our survey asked respondents about their personal experiences with 

discriminatory behavior. In general, the majority of our respondents reported that they believe 
their own departments are pretty welcoming, with nearly 70% reporting that they believe their 
department is either “very welcoming” or “welcoming” to people of different identities, and only 
about 6% reporting that they believe their department is “hostile” or “very hostile” (with the 
remaining respondents reporting “neither hostile nor welcoming”).  

However, a significant proportion of respondents also reported witnessing discriminatory 
behaviors in a professional setting in their field in the last 3 years: 53% of chemists, 39% of 
mathematicians, and 45% of physicists. Of those who reported witnessing such behaviors, 66% 
of chemists, 68% of mathematicians, and 72% of physicists reported intervening and/or speaking 
up, in the moment or after the fact. Taken together, nearly half of the respondents recently 
witnessed discriminatory behaviors in a professional setting and, of those, about a third abstained 
from intervening. We anticipate that responses to this question are particularly likely to be 
impacted by social desirability bias, suggesting that the true number of people in this sample who 
have intervened or spoken up about discrimination they have witnessed is lower than reported; 
self-selection bias suggests that recognizing and responding to discrimination is likely less 
frequent among the general population. We also note that intervening or speaking up about 
discrimination carries different risks for different people, so that refraining from speaking out 
may in some cases be an act of self-preservation. 
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The question about discriminatory behavior “in a professional setting” could refer to contexts 
outside a participant’s own departmental context (e.g., research conference), but raises questions 
about what threshold these instructors might use to consider their department “hostile.” Nearly 
half of our participants report witnessing discriminatory behavior, and yet 94% report that their 
department is not hostile toward people of different identities. Perhaps the presence of 
individuals who commit discriminatory acts is not considered sufficient to categorize the 
department as a whole as hostile; alternatively, these behaviors are only occurring (or being 
perceived as occurring) outside their home department.  

Conclusion 
Undoing systems of marginalization (e.g., racism, sexism, ableism, elitism) requires systemic 

change through cultural transformation. In the distributed systems of STEM higher education, 
change can come about best when a critical mass of constituents recognizes existing inequities, 
believe change is necessary, and act in concert to change systemic structures. Our results provide 
room for cautious optimism about the potential for future progress. There are at least 688 
instructors in American postsecondary institutions who recognize that systematic advantages are 
afforded to white men in STEM. Furthermore, an overwhelming majority of our respondents 
(92% of chemists; 89.7% of mathematicians; 90.8% of physicists) agree that they have a 
personal responsibility to address inequities. While these 1064 survey respondents represent a 
small fraction of the profession, and may be unrepresentative of the professoriate as a whole, this 
is still a significant number of first-year math and science instructors who indicate a personal 
responsibility to address inequity. While we see this number as cause to be hopeful, many 
questions remain that need to be investigated as new DEI initiatives are designed and 
implemented.  

In our survey, we found that support is stronger among our participants for passive actions 
(statements) than more active ones (admissions/hiring practices) but whether this support is 
based on practical convenience and/or beliefs about the impacts of these practices is unknown. 
Instructors believe that different race-gender groups have different interest levels in science and 
mathematics - but we don’t yet know if this is viewed as a cause or a result of disproportionate 
representation. It is also unknown how this perception impacts instructional practice, mentoring 
relationships, or hiring decisions. Based on our findings here, and questions raised but not 
answers, thus we argue that future research is needed to document these DEI beliefs more widely 
and more specifically, including (a) ways in which they impact teaching, hiring, and mentoring; 
(b) variation across ranks and status; (c) variation by identity group; (d) where they come from; 
(e) how to change these views in individuals. Answering these questions, among many others, 
can inform research-based interventions aimed at engaging STEM faculty in more equitable 
practices and structures.  
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For mathematics departments across the United States, everything changed in March 2020 as 
institutions rapidly moved their instructional delivery model to a model based on remote 
instruction. This study investigates how four institutions leveraged organizational structures and 
initiatives to cope with these changes. The findings suggest that the four institutions studied had 
solid foundations for implementing active learning in their various entry level mathematics 
classes. Their plans involved different pedagogical, coordination, and communication practices. 
In light of the strain that the pandemic placed on these efforts, some were found to be more 
robust and able to leverage digital resources to continue to make progress to their goals for 
active learning implementation than others. Departments would do well to consider their range 
of preparedness and the robustness of their efforts to directly impact instruction in Precalculus 
through Calculus 2 (P2C2) courses and the related coordination and communication. 

Keywords: Precalculus through calculus 2 (P2C2); Organizational structures; Active learning; 
challenges; COVID-19 pandemic 

Amongst the challenges present in STEM education, one of the most significant may be the 
percentage of students receiving grades of D, F, or Withdraw (W) in mathematics courses. 
Nationally, between 20% and 30% of students receive a D, F, or W in courses ranging from 
Precalculus through Calculus 2 (P2C2; Apkarian & Kirin, 2017; Bressoud, 2015). Several large-
scale efforts have aimed to better understand this problem and work toward reducing DFW rates 
(Bressoud, 2015; Rasmussen, Apkarian, Hagman, Johnson, Larsen, Bressoud & Progress through 
Calculus team, 2019; Ström, Webb, Voigt, & Funk, 2021). These studies have found and studied 
institutions that have had great success reforming courses and reducing DFW rates using a 
variety of tools (Bressoud & Rasmussen, 2015; Smith, Voigt, Ström, Webb, & Martin, 2021). 
Most studies have focused on changes that were made at a course, department, or institutional 
level where individuals or groups of individuals were working to reform instructional methods, 
student placement, leadership, or department culture. However, in these studies the external 
environment remained relatively static.  

Everything changed in March of 2020 when institutions across the United States shifted their 
instructional model in response to a rapidly changing environment as the world responded to a 
pandemic (Sahu, 2020). The recent pandemic provided a unique opportunity to consider the 
impact of significant alterations in external conditions on P2C2 instruction. This study aims to 
better understand how departments responded to a radical environmental change and the 
perceived effectiveness of those responses. Specifically, this study aims to answer the following 
research questions: How did the COVID pandemic impact mathematics departments working to 
include active learning in their P2C2 classes? What organizational structures and initiatives 
were leveraged in order to make progress toward more active P2C2 practices and to cope with 
the challenges of the global pandemic? 

24th Annual Conference on Research in Undergraduate Mathematics Education 287



Theoretical Framework 
The theory that was used as a lens for the study came from Weisbord’s Six-Box Model 

(1976), which has been used in previous case study research for qualitative analysis of P2C2 
courses offered by math departments (Moore-Russo, Kornelson, Savic & Andrews, 2021). To 
better understand how math departments responded to a rapidly shifting environment, we found 
it useful to analyze how they operated as organizations. Each of the six boxes describes a 
dimension that should be considered when studying how organizations function. In the first box, 
purpose, are the goals, objectives, missions, and perspectives of the organization. The second 
box, structure, refers to how work is facilitated or divided in an organization. The third is 
relationships, which deals with how organizational members are connecting and their 
interpersonal interactions. It includes how members behave, communicate with, and regard one 
another. The fourth box is rewards, which includes both formal and informal incentives that 
motivate (or demotivate) individuals. The fifth box is mechanisms, which are the “procedures, 
policies, meetings, systems, committees, …that facilitate concerted efforts” (Weisbord, 1976, p. 
443). It is important to note that in this box the systems, resources, and policies that are available 
or used to help people plan, budget, and carry out their work as well as coordinate with others 
may “actually help or hinder people in accomplishing their work” (Yousefi, & Sajadie, 2017). 
The sixth, and final box is leadership, which includes those who have power or influence over 
other organizational members or over the allocation of resources. The environment involves all 
external demands and pressures that impact (and are impacted) by the organization.  

Methods 
The four mathematics departments examined in this paper are drawn from a research project 

involving two dozen mathematics departments engaged in the implementing and sustaining 
active learning practices in the undergraduate calculus sequence. We loosely define active 
learning practices to be methods of instruction that acknowledge students should be engaged in 
the learning process through meaningful mathematical tasks, with peer-to-peer and student-to-
instructor collaborative processing of mathematical ideas, and instructor use of student thinking 
while fostering equity and inclusion (Laursen & Rasmussen, 2019; Strom, Webb, Voight & 
Funk, 2021). Each mathematics department completed a proposal that described their rationale 
for increasing the use of active learning, the strategies they were going to use to support changes 
in practice, and how improvement would be documented. Each mathematics department utilized 
a localized strategy that considered the degree of instructor buy-in, mathematics instruction, 
indicators of student success, and ways they might contribute to a Networked Improvement 
Community (NIC; Bryk et al., 2015) of mathematics faculty and benefit from participating in the 
NIC.  

Mathematics departments participated in the NIC in two groups: a first group received 
funding in fall 2018 to support the work outlined in their proposal; a second group was invited in 
spring 2020 to participate in the NIC but without funding to enact their proposed work. Any 
funding received by the second group was provided by state or campus sources, and not the 
research project. Both groups participated in and contributed to the NIC, but participation was 
staggered by about 18 months. Pertinent to this paper: the second group, from which the four 
cases in this study are drawn, joined in spring 2020 right as the COVID pandemic caused nearly 
all university instruction to move to remote and online instruction. For this paper, we selected 
four mathematics departments from the second NIC group after a preliminary analysis using the 
six-box model. The four departments were selected because they varied in size and geographic 
locations, and represented a broad range of experiences in the shift to remote instruction: from 
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pre-pandemic changes to a flipped instructions with robust administrative support and 
departmental buy-in facilitating the transition to remote instruction to significant disruption and 
retrenchment of previous change efforts. In a P2C2 context, these departments’ experiences 
reflect larger trends surveyed in undergraduate mathematics programs (Kirkman, Blair & Barr, 
2022).  

For the four mathematics departments analyzed and discussed in this paper, we interviewed 
mathematics tenure-track faculty, teaching faculty, graduate student instructors, and campus and 
department administrators between summer and fall 2020. This group of interviewees also 
included those who co-authored the local proposal for active learning. Each of these interviews 
was conducted using a common protocol and included questions pertinent to the role of the 
interviewee in the proposed work. Since the data collection for these four cases occurred after the 
onset of the pandemic, we also asked questions about how the pandemic influenced classroom 
practices and department policies. These specific questions from the interview protocol included: 
 

• In what ways have active learning efforts been impacted by the COVID disruptions? 
• How successfully has the mathematics department handled the shift to remote 

instruction for precalculus and calculus classes?  
• What factors have been important in helping make this transition? 
• What has the department learned from online instruction that may be used for 

precalculus and calculus instruction in the future? 
 

Interviews were conducted virtually using video conference software. These virtual meetings 
were recorded and transcribed. After the transcriptions were cleaned for accuracy, teams of 
researchers collaborated in the analysis of interviews for themes that emerged from the 
interviews. The original proposal from each institution was also used as a data source that 
documented both the rationale for the proposed work and expectations for progress over the short 
term. The qualitative analysis of these interviews contributed to summary reports that were sent 
to the project lead for each mathematics department to confirm and correct how the research 
team described goals, progress and recommendations from the data sources which included 
interviews with mathematics instructors, graduate students, and department and campus 
administrators. In this paper, using the six-box model we used these data sources and summary 
reports as the basis for our analysis of how each of four mathematics departments responded to 
rapid changes in the environment. 

Weisbord’s (1976) model was used to construct cases for four mathematics departments 
using each of the six constructs. Similarities and differences in these organizational constructs 
were identified and related to descriptions of departmental responses to the pandemic. Thick 
descriptions for each case were also developed that included narrative descriptions of topics such 
as: use of course coordinators, professional development, conceptions of active learning, levers 
that were utilized, and challenges encountered. Themes and relationships between organizational 
constructs and responses to the pandemic were then summarized and reanalyzed for lessons that 
could be learned from departmental approaches and responses to the COVID pandemic. 

Findings 

The data set came from four different mathematics departments. All four departments are 
situated in public institutions with a Carnegie classification of a Doctoral University: High 
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Research Activity. Enrollments and institutional locations varied between institutions, as are 
described below. 

Mid-Size City Campus (MCC) 
MCC is a public university located in an urban location with a student population of 

approximately 15,000. At the outset of the study, the mathematics department at MCC undertook 
the goal of reforming instruction in P2C2 by including training for P2C2 instructors, focusing 
particularly on part-time instructors, the development of more shared materials for P2C2 courses, 
and the hiring and training of both graduate and undergraduate learning assistants for P2C2 
courses. Historically, tenure line faculty at MCC do not teach courses below calculus; instruction 
in these courses is relegated to adjunct faculty. The proposed mechanism for change was a 
bottom-up approach in which individual instructors make changes with the goal of reaching a 
critical mass that can eventually influence the faculty at large. In 2019, a new senior vice 
chancellor noted that math courses were a bottleneck for graduation and committed resources to 
the math department, particularly, the hiring of a Director of Quantitative Reasoning. The 
institution has established relationships with another institution that has an established active 
learning in mathematics (ALM) program; MCC leveraged that relationship to borrow and adapt 
materials that could be used in many of the P2C2 courses. Active learning is not an expectation 
for promotion/tenure. However, using innovative teaching methods is grounds for receiving a 
distinguished rating on teaching.    

The pandemic forced MCC to rethink a lot of things ranging from what ALM involved to 
departmental priorities. One instructor stated, “We just can’t do things, you know, engagement 
and active learning look very, very different. It’s almost non-existent to be honest, you know. You 
can’t let them be talking to each other close to each other.” However, another instructor argued 
that the move to remote classes forced instructors to reconsider lecture and the inability to 
“[cram] stuff down there in a lecture.” At MCC, it appears that some instructors felt like they 
were able to transition into ALM remotely while others felt unable to adapt ALM to remote 
instruction. The chair at MCC noted that the pandemic interrupted the department’s work, “We 
missed the last two full department meetings because there was just too much COVID stuff to 
deal with.” The chair continued to discuss how prior to COVID there were departmental level 
discussions of how Calculus could be changed, but “they got blown up because of COVID.” 
Nevertheless, the chair remarked that they had learned a lot through COVID and the experience 
would certainly change the teaching in the department. 

Large City Campus (LCC) 
LCC is a public, urban university of ~25,000 students. Prior to participation in the NIC, LCC 

engaged in an effort to improve STEM education and increase the flow of students to 
engineering majors. LCC’s upper administration made a key hire to oversee the courses leading 
to calculus; this director was given authority over hiring, firing, and the budget of all courses 
before Calculus. The director oversaw a cohort of five instructors who met regularly and were 
given release time to work on curriculum. Courses were redesigned to include evidence-based 
practices including active learning. The director created relationships with feedback loops with 
other “client” disciplines (e.g., Schools of Engineering and Business) as well as the Math 
Department Chair. He used data to study DFW rates in P2C2 courses as well as in other STEM 
courses that had math prerequisites. As a result of these efforts, DFW rates in courses leading to 
calculus dropped significantly and the number of students moving on to calculus grew 
substantially.  
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COVID forced classes to change to an online platform. The curricular innovations that had 
been adopted were mostly abandoned as instructors moved online, both in synchronous and 
asynchronous environments. Even when classes were allowed to return to in-person instruction, 
all students faced forward with six feet of separation. The tendency was to return to lecturing, 
and instructors who tried to engage students struggled. As one instructor said, “Remote 
[instruction] is very different from when we are in class.... Previously, the instructor circulated, 
students might go to board, but instructors weren’t really the person who drove things. The 
groups were. Remotely, I have not found a way to not be the leader of the activity. You can do 
the pregnant pause all you want, but there isn’t the communication between them [the students] 
that was so integral to the activities we were doing. There has to be a better way, but I haven’t 
found it, and I don’t think others in my area have either.” 

The feedback loops also faltered due to COVID. Rather than in-person meetings with rich 
discussion, most communication during this period was via email. Almost all communication 
flowed through the director in an overwhelming fashion. Communication between the director 
and the Math Department Chair and heads of the client disciplines fell away. The Chair reported 
that, “There is a lot of frustration. Everyone is tired.” The fatigue and frustration came out in the 
director’s interview. The director questioned the sustainability of what they had accomplished 
pre-COVID stating, “COVID has stalled us. COVID has set us backward….I’ve gotta figure out 
how to create an active learning environment online, and I don’t know where to begin on that.” 

Large Research Campus (LRC) 
LRC serves over 30,000 students. Their proposal to expand active learning focused 

specifically on the move from “large, coordinated lectures in Calculus I to a system of flipped 
classroom delivery of this vital course.” Faculty involved in the proposal argued that student 
success in the large lecture version of the course was mixed and that quality of instruction in the 
course needed attention. The vision was to move the course into the 21st century using active 
learning practices. 

The leadership for this effort was significant. A well-respected member of the mathematics 
faculty with an interest in student learning organized the move to flipped classrooms to create 
more opportunities for student discussions in classrooms (instead of lecturing). Campus 
leadership noticed these curricular and instructional developments in the mathematics 
department and described how infrastructure funds were made available to support the shift from 
large lecture stadium seating to classroom seating that supported group activities and peer 
interaction. Funding for the hiring of additional tenure line and teaching faculty was also 
allocated to the mathematics department, in response to these curricular and structural changes in 
the design and teaching of calculus. As new faculty were brought in, they took over as course 
coordinators which gave them authority to make structural changes in how communication 
between instructors was organized. Improved coordination allowed for better uniformity of 
topics, instructional materials, and assessment. More regular meetings to support this 
coordination improved communication between calculus instructors. 

The move to flipped classrooms motivated an investment in technology-enhanced instruction 
with video recordings that students could watch before attending in-person sessions. 
Coincidentally, this all occurred prior to the pandemic. In March 2020, when the transition to 
remote learning occurred, the move was relatively smooth according to most interviewees as 
materials were already online and instructors were more comfortable with using technology to 
support teaching and learning. The motivation of a key leader in the math department to craft a 
proposal for instructional innovation, the work of calculus instructors to convert course activities 
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to support a flipped classroom model, and the campus support for classrooms that support active 
learning all converged to support progress toward the goal to expand and sustain active learning. 
These factors allowed for synergistic processes to emerge amidst the pandemic. 

College Town Campus (CTC) 
CTC is a STEM-focused university with a student enrollment of ~6,000. Similar to the other 

institutions, CTC has both tenure-stream ladder-rank faculty and VITAL (i.e., visiting, 
instructional, TAs, adjunct, and lecturing) faculty. Prior to CTC’s participation in the NIC, its 
stated goal was to improve coordination within and between courses in their calculus sequence 
for a more uniform experience for both students and instructors. Every lower-division large 
enrollment course (with one exception) is coordinated with coordinators mainly drawn from the 
teaching faculty. Two of the common concerns among the teaching faculty were the lack of 
cohesion among P2C2 faculty and the lack of a unified vision on the role of coordination.     

Prior to COVID, the teaching faculty self-organized a departmental-based professional 
learning community (PLC) open to all faculty and offered during the fall and spring semesters. 
Participation was voluntary but incentivized with lunches funded by the department. The PLC 
served as a meeting ground to discuss teaching, active learning techniques, and readings from 
math education and scholarship in teaching and learning literature (e.g., MAA Instructional 
Practices Guide). However, the COVID pandemic and the switch to remote instruction put an 
abrupt halt to these meetings (at least during the fall semester) and funded lunches. One 
interviewee noted, “We haven’t tried it [having the PLC without lunches] yet. I don’t think we’ve 
had the bandwidth to do it [the PLC] this fall.” The lack of the PLC meeting was especially 
missed in creating a community amongst the VITAL faculty. One interviewee reported, “Some 
people might be missing, just the community piece and talking to someone.” The interviewees 
were split between waiting to bring back the PLC during the 2021-2022 academic year or during 
the 2020-2021 spring semester. In contrast, the department’s GTA Teaching Seminar, their PLC 
aimed at graduate student instructors offered as a regularly scheduled class, continued 
throughout fall 2020. In response to COVID, a teaching session on using Zoom features of 
breakout rooms and polling was added to the GTA Teaching Seminar. 

With the shift to remote and hybrid instruction, Calculus 1 at CTC was delivered in a flipped 
model with pre-recorded lectures students viewed before class and in-class activities. There was 
ambivalence expressed by one of the coordinators on continuing with the flipped model: “Oh, I 
mean it [the flipped model] certainly could [continue]. I think it could work but I don’t know that 
I want to do it that way.” However the coordinator liked the activities created for the flipped 
model and expressed interest in using these activities in a class model with more in-class lecture-
based delivery interspersed with activity-based days. 

Discussion  
In our case analysis several themes emerged with respect to how mathematics departments 

responded to a common change in environment imposed by COVID. Prior to the pandemic, each 
mathematics department proposed a plan to make progress toward a common purpose, namely 
increasing the use of active learning in P2C2 courses. As such, leadership articulated potential 
mechanisms for enacting change for the support, use, and expansion of active learning. 
Differences in the emerging development of structures and relationships, however, created a 
range of preparedness for managing a crisis that directly impacted instruction in P2C2 courses 
and the related coordination and communication of norms and practices.  
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Prior to the shift toward online and remote instruction, LRC had developed their coordination 
mechanisms using resources to change large lecture courses to flipped classroom models through 
a combination of lecture videos and revised instructional materials to support student discussions 
in small groups. We acknowledge that the timing of LRC’s campus initiatives (rewards) to hire 
coordinators and support curriculum development for flipped classrooms was serendipitous; 
nevertheless, regular meetings focused on course redesign helped LRC develop communication 
structures and relationships while providing resources for an unforeseen crisis. The pandemic 
motivated faculty at CTC to redesign courses using a flipped model, but urgency to develop and 
use that model under challenging conditions may have stigmatized use of flipped instruction 
when CTC returns to in person instruction.  

In the cases of MCC, LCC and CTC, communication was disrupted during the pandemic; 
professional development meetings were discontinued; and instructional resources that could be 
used in technology-intensive environments were underdeveloped. Many of the existing 
instructional and communication mechanisms faltered in online settings. Structures for 
promoting student engagement and creating a supportive instructional community that had 
worked while in-person often did not transfer to online platforms. Certainly, there was no way to 
predict the advantage of developing videos or tech-friendly tasks to support active learning prior 
to March 2020; however, the importance of developing robust communication norms and 
practices as mechanisms to maintain and advance structures and relationships when a 
department encounters challenges is noteworthy. When mathematics faculty are working toward 
a common purpose, there is a need for communication. When workload intensifies, the 
relationships that are supported by communication can create opportunities to share the load 
through the coordination and delegation of instructional resources, assessments, and ways to 
implement active learning in virtual environments. 
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Boosting Student Preparation in Flipped Multivariable Calculus with Low-Stakes, Daily Quizzes 
 
 Matthew T. Johnson Shelby R. Stanhope 
 United States Air Force Academy (USAFA) USAFA 

 Leann J. Ferguson Brandon M. Kim Rita E. Jerome 
 USAFA            USAFA USAFA 

Motivating students to watch pre-lesson videos to prepare for class is among the most significant 
challenges cited with flipped learning.  We demonstrate boosting student preparation by up to 
29% by implementing start-of-lesson quizzes.  This is shown through comparison of a flipped 
control group without the quizzes to flipped experimental groups including the quizzes.  Results 
indicate daily, low-stakes quizzes can also reduce failure/withdrawal rates and help maintain 
student motivation to prepare for class.  A marginal increase in performance was also noted for 
students in the experimental group in spite of their lower pre-test scores. Lastly, statistically 
significant correlations were found between student perceptions of the class and their video-
viewing habits, homework completion and graded event scores.   

Keywords: Flipped Learning, Low Stakes Quizzes, Daily Quizzes, Student Preparation, 
Multivariable Calculus 

Flipped learning has been implemented in numerous undergraduate mathematics courses 
with varying instructional activities leading to varying degrees of success.  The instructional 
activity showing the strongest positive effect on student learning appears to be conducting 
formative assessments during each lesson (Chung, Khe, & C., 2017).  This study follows with 
research questions asking:  

• How do low-stakes, daily quizzes affect students’: 
o Preparation?  
o Retention of motivation to prepare throughout the semester? 
o Failure/withdrawal rates? 
o Exam performance? 

• Does it matter whether the daily quizzes are at the start or end of the lesson?  
• How do student perceptions correlate with study habits and performance? 

Background 
The United States Air Force Academy (USAFA) has a goal of graduating over 50% STEM 

majors to better satisfy degree requirements of various career fields (NRC, 2010).  Multivariate 
calculus, or Math 243, is a required math class for most USAFA STEM majors, but has a 
historically high withdrawal/failure rate approaching 20%.  Failure rates for multivariate calculus 
at other universities are high as well, often in the 20-40% range (Caerols-Palmaa & Vogt-Geisse, 
2019; Groen, Coupland, Langtry, & Memar, 2015).  We therefore seek to reduce failure and 
withdrawal rates in Math 243 while continuing to uphold high academic standards.   

Benefits and Challenges of Flipped Learning 
USAFA recently changed Math 243 to a flipped modality, which we define for the purposes 

of this study as “a technology-enhanced pedagogy that delivers parts of the course materials 
through video resources before class, followed by the integrated use of assessments, mini-
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lectures, individual problem solving, and small-group learning activities inside the classroom” 
(Chung, Khe, & C., 2017).  This modality has been shown in other studies to decrease failure 
rates by 8-30% due to increased active learning and opportunities for targeted feedback and 
instruction (Clintondale High School, 2014; Cronhjort, Filipsson, & Weurlander, 2018; Petrillo, 
2016; Schroeder, McGivney-Burelle, & Xue, 2015). 

Aside from decreasing failure rates, flipped undergraduate mathematics courses have also 
been shown to increase student performance.  Seven recent studies of undergraduate integral and 
multivariate calculus classes examined the performance of students in flipped vs. traditional 
groups (Adams, 2016; Braun, Ritter, & Vasko, 2014; Kennedy, Beaudrie, Ernst, & St. Laurent, 
2015; Maciejewski, 2016; Petrillo, 2016; Schroeder, McGivney-Burelle, & Xue, 2015; Scott, 
Green, & Etheridge, 2016).  On average, the studies showed a performance improvement of 0.14 
standard deviations.   

Primary challenges were captured in a meta-analysis of 61 studies on flipped mathematics 
courses.  The challenge of student unpreparadness was found to be second only to the challenge 
of student unfamiliarity with flipped learning (Chung, Khe, & C., 2017).  The challenge of 
unpreparedness is where the benefits of start-of-lesson quizzes comes in.   

Benefits of Start-of-Lesson Quizzes 
Despite an average increase in performance shown for classes incorporating a flipped 

pedagogy, study results differ based on differing instructional activities implemented. For 
example, Figure 1 shows effect sizes for seven studies of flipped learning in undergraduate 
calculus, three of which incorporated start-of-lesson quizzes (shown in red), and four that did not 
(shown in blue). Notice that those without start-of-lesson quizzes do not see the same level of 
benefit as those that did. In fact, a meta-analysis including 22 flipped mathematics courses 
showed that including quizzes at the start of class sessions led to an average performance 
improvement of 0.57 standard deviations as compared to only 0.20 for those not including them 
(Chung, Khe, & C., 2017).  Incorporating start-of-lesson quizzes thus appears to be a 
distinguishing component towards increasing the effectiveness of flipped instruction.   

Figure 1.  Effect sizes of flipped calculus studies yielding an average mean improvement of 0.14 standard 
deviations.  Red/blue markers indicate studies that did/did-not incorporate start-of-lesson quizzes, respectively. 

Theoretical Perspective 
The theoretical benefits of low-stakes, daily quizzes include the five primary components 

listed below: 
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a) Motivation to prepare:  Assigning course points provides extrinsic motivation to 
come to class prepared, and is considered a best practice (Kennedy, Beaudrie, Ernst, 
& St. Laurent, 2015). 

b) Retrieval Practice:  Even no-stakes quizzes have been shown to increase learning 
from videos (Schacter & Szpunar, 2015) as the required recall process strengthens 
neural pathways to the required information.   

c) Targeted Feedback:  The quizzes provide the instructor with helpful feedback on 
where their students require additional instruction, allowing instructors to address 
misconceptions before they become entrenched.  This type of feedback has been 
identified as among the most powerful influences on learning and achievement 
(Hattie, 2007), and is a critical component of frequent low-stakes quizzing (Agarwal 
P. K., 2021) (Butler & Roediger, 2008).   

d) Activation of Prior Knowledge:  Quizzes at the start of class activate student 
knowledge, laying a solid foundation on which students can build their learning 
during class (Merill, 2002).   

e) Attendance:  Quizzes at the start of class have also been shown to improve attendance 
(McBride, 2015).  However, this can be separated out of this study since attendance is 
mandatory at USAFA.   

Student perceptions 
A complete picture of any intervention requires consideration of student perceptions as well 

as performance.  Studies on flipped instruction often assess both.  A recent literature review of 
flipped mathematics courses showed that of fifteen undergraduate calculus studies, ten reported 
generally positive and two reported generally negative student perceptions of the flipped vs. 
traditional methods (Kooistra, 2018).  The generally positive perceptions indicate students are 
typically amenable to the method.   

Novelty of Study 
Most of studies reviewed above compare the performance of an experimental, flipped group, 

to a control, traditional group.  This study is different in that both experimental and control 
groups are flipped.  This tighter control setting allows investigation into the effects of daily 
quizzes, including any differences between start-of-lesson and end-of-lesson quizzes.   Another 
important contribution of this study are the correlations examined between students’ perceptions, 
study habits and performance, which is largely absent in the literature on flipped learning.   

Methodology 
The difference in class structure between the groups is shown in Figure 2.  Before class, all 

groups have the opportunity to earn extra credit by answering a question based on the first video 
for each lesson.  This is recommended to motivate video watching and allow for student practice 
and self-checking (Chung, Khe, & C., 2017).   

Unlike the control group, experimental groups 1 and 2 would take a low-stakes quiz during 
class.  Experimental group 1 would take the quiz towards the end of class, while experimental 
group 2 would take the quiz at the start of class.  Both control and experimental groups would 
incorporate active learning exercises during class.  Experimental group 2 was unique in offering 
some class time for students to work on homework with peer and instructor assistance during 
class time.  The quizzes consisted of 3-5 short response and/or multiple choice questions based 
on the associated pre-lesson videos.  The quizzes were proctored within 5 minutes through 
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Microsoft Forms within Microsoft Teams.  This facilitated ease of viewing results to provide 
feedback, ease of grading, and allowed students the ability to review their performance and score 
on each problem.  Open-notes were allowed to encourage use of the notetaking documents 
provided to align with the pre-lesson videos.   

 
Figure 2.  Typical in and out-of-class processes for control and experimental sections. 

The control and experimental groups were tightly standardized with the same syllabus, 
course calendar, learning objectives, homework, midterm exams and final exam.  The only 
significant differences were with 75 out of 1000 course points and the in-class structure.  These 
75 points were allocated to two medium-stakes quizzes in the control group and to 30 start-of-
lesson quizzes in the experimental groups.  The two lowest quiz grades were automatically 
dropped for each student in the experimental group, as recommended to relieve student pressure 
(Agarwal & Bain, 2019).  

The pre-lesson videos were mostly created in prior semesters by various Math 243 instructors 
to align with course objectives and better establish the student-instructor connection.  Videos 
were typically broken up into 5-10 minute segments as recommended to enhance student 
engagement (Guo, Kim, & Rubin, 2014).  The videos were hosted on Echo360, which enabled 
tracking of video-watching habits for each student.   

Instructor equivalence was controlled for with two instructors teaching the experimental 
groups and five instructors teaching the control sections.  There were a total of 49 students in the 
experimental groups and 162 in the control group who finished the class.  Our primary findings 
are limited to 1st-year students who took integral calculus the previous semester, which 
eliminated 7/29 students from the experimental/control groups, respectively.   This reduced the 
sample size but allowed the students’ integral calculus final exam scores, taken just 3 weeks 
before the start of the semester, to be used as a ‘pre-test’ to control for student equivalence. 

Student perceptions were investigated through feedback collected using mid and end-of-
semester questionnaires.  Student names were associated with their responses in order to draw 
correlations between perceptions, habits and performance.  The questionnaires and analysis were 
handled in such a way as to guarantee the confidentiality of student responses in order to ensure 
transparency and reliability of feedback. 

Results 

Video Viewing  
The percentage of students in the control and experimental groups who viewed each of 121 

videos in the course can be seen in Figure 3.  Each column represents a video with the green, red 
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and grey bars representing the percentage of students who watched the video before the 
associated lesson, after the lesson, or did not watch it at all, respectively.   

 

 
Figure 3.  Video viewing percentages of students in the control and experimental groups.  Each column represents 

one of 121 videos in chronological order through the semester.   

The green trend lines in Figure 3 show the general decline of video viewing throughout the 
semester.  This is consistent with another multivariate calculus study on flipped learning showing 
a 30% decline in video viewing throughout the semester (Caerols-Palmaa & Vogt-Geisse, 2019).  
It is noteworthy, however, that viewership in the experimental group only declined by 10% as 
compared to a decline of greater than 20% in the control group.  It thus appears the start-of-
lesson quizzes motivate both increased and sustained pre-lesson preparation. 

 
Figure 4.  Total video viewing percentage (before or after associated lesson) by group and quintile, showing the 
lowest/highest percentage of video viewing amongst students in control/start-of-lesson-quiz groups, respectively. 
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There are noteworthy, periodic spikes in the control group data corresponding to the first 
video of each lesson.  These viewership spikes are due to both the control group instructors 
emphasizing the importance of watching the first video, and the motivation from extra credit for 
students who responded to the pre-lesson questions, which were based exclusively on content in 
the first video of each lesson.  

Students in the control, end-of-lesson quiz and start-of-lesson quiz groups watched a total of 
49.0%, 61.5% and 78.2% of the 121 videos, respectively, revealing a 29% boost from start-of-
lesson quizzes.  This can be seen from a different perspective in Figure 4.  It shows students with 
the start-of-lesson quizzes were most diligent in watching the videos before class, while the 
control group students were the least diligent.  Having the quiz at the start vs. the end of class 
likely led to greater motivation to prepare since having the quiz at the end of class might have led 
students to trust they could learn the pertinent quiz material during, instead of before, class.   

On the mid and end-of-semester feedback, only 9% and 0% disagreed with the statement 
“The daily quizzes increased my motivation to watch the pre-lesson videos”.  This confirms, 
along with the data above, the impact quizzes can have towards motivating student preparation. 

Student Performance 
Students in the experimental group slightly underperformed by 0.9% on the pre-test and 

overperformed by 0.3 and 0.5%, respectively, on the midterm exams and final exam.  Further 
detail can be seen in the whisker plot shown in Figure 5.    

 
Figure 5.  Performance comparison between control and experimental groups on their pre-test, midterm exams and 

final exam.  The mean is shown by the X, the median by the horizontal line, the lower and upper quartiles by the 
boxes, and the minimum and maximum by the whiskers.  

This slight performance improvement from including daily quizzes is perhaps not as 
pronounced as might be expected from Figure 1.  It should be noted, however, the control group 
in this study also had a flipped modality and implemented many excellent learning activities, 
such as hands-on and computer-aided 3D visualization techniques, computer-aided calculation 
tools, active learning exercises, field trips, and pre-lesson video questions.  The control group 
scores also got a slight boost from the late withdrawal of the seven students mentioned earlier.  

A performance comparison between the two experimental groups shows students with end-
of-lesson quizzes came in underperforming by 2.9% on the pre-test and slightly under and over 
performed by 0.5% and 0.5%, respectively, on their midterm exams and finals. The end-of-
lesson quizzes may have better motivated student attention during class, and the in-class 
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homework done with the start-of-lesson quiz group may have been counterproductive to the 
benefit they might have gained from completing their homework on their own outside of class.  

Withdrawal/Failure Rates 
Out of 235 students who started the class, 24 did not pass.  Two of these 24 students were in 

the experimental group and withdrew on the first day of class.  Four students in the control group 
failed the class, seven of them withdrew at some point after the first three weeks of class, and 
eleven withdrew within the first three weeks of class.  Given the expected withdrawal/failure rate 
of 13% in the control group, the single variable chi squared p value for a correlation between the 
experimental group having only two students who did not pass the class is 0.08, indicating a 
good likelihood the daily quizzes increased the odds of students successfully passing the class.   

In the mid and end-of-semester feedback, 88% and 93% of students, respectively, agreed 
with the statement “The daily quizzes helped keep me on pace in the course.”  Keeping students 
on pace may very well have contributed to their likelihood of successfully passing the course.   

Correlations between student perceptions, effort and performance 
Statistically significant correlations were found between student perceptions of the class and 

their video-viewing habits, homework completion and graded event scores, as shown in Table 1.  
Students’ opinion of the course was determined by their choice of six Likert scale responses to 
the question “Overall, this course is:”    

Table 1. Correlation between first and second items found using the Spearman rank correlation method. 

First Correlation Item  
overall course opinion 
overall course opinion 
overall course opinion 

Second Correlation Item 
video viewing percentage  

online homework completion 
average performance on midterm exams 

ρ value  
0.183 
0.144 
0.392 

p value  
0.038 
0.104 

4.29 ⋅ 10−6   

These correlations suggest students who buy into the flipped modality are more likely to 
adequately prepare for class, complete their assigned work, and perform better on exams. 

Conclusion 
The vast majority of prior studies on flipped learning compare the performance of an 

experimental, flipped group, to a control, traditional group.  This study is different in that both 
experimental and control groups are flipped, allowing us to zoom in on the effects of daily 
quizzes.  We find that proctoring low-stakes quizzes at the start of each lesson leads to a 
significant, 29% increase in students’ pre-class video viewing.  This confirms the theoretical 
benefit of daily quizzes that they increase student motivation to prepare.  The proposition that 
daily quizzes also reduce withdrawal/failure rates is supported with a p value of 0.08.  This can 
likely be attributed to the theoretical benefit of targeted feedback from daily quizzes, helping 
students keep pace in the class.  Lastly, while correlation analysis is largely absent in studies of 
flipped math courses, this study showed that positive perceptions of the course correlate with 
increased pre-class preparation and better exam performance.   
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As part of a more extensive study on transitioning active learning STEM recitations to the 
online setting, twenty mathematics instructors and course coordinators took part in a survey on 
transitioning their traditional in-person recitations to an online setting. Participants were 
asked to reflect on what elements from in-person recitations were retained and lost in the 
online setting, along with challenges and considerations for both students and instructors. The 
instructors taught coordinated recitation courses in the Pre-Calculus to Calculus II track for 
engineering and non-engineering students. Key themes that emerged from the surveys included 
sustaining collaboration, maintaining student engagement, and administering activities to keep 
students accountable. This article summarizes our findings and provides recommendations for 
future online recitation implementations.  

Keywords: Active learning, gateway courses, online recitations, course transformation  

In the broadest sense, active learning refers to classroom strategies that move away from 
instructor-centered lectures toward a learner-centered teaching model that focuses on learners’  
problem-solving and knowledge creation skills (Theobald et al., 2020). As instructors continue 
to explore active learning strategies in their fully online and hybrid courses, knowing which 
techniques and tools best enable active learning is necessary for determining the feasibility of 
implementing such tools in an online setting. This paper examines the rapid transition to online 
mathematics instruction due to the global impact of COVID-19. Specifically, we look at the 
transition from active learning face-to-face mathematics recitations to active learning online 
recitations from a faculty perspective. Our online implementations were done in response to 
“emergency remote teaching” (Hodges et al., 2020) with the anticipation that many sections 
would return to in-person sections over time. For the sections that will remain online in the 
future, we tried to extract the key findings that will support an online implementation of an 
active learning classroom environment. 

Review of the Literature  
Research in mathematics education demonstrates the effectiveness of active learning in 

student success (Hsu et al., 2008). In the “active learning” setting, the instructor takes on more of 
a facilitator role in helping students master targeted learning outcomes (Mayer, 2004). The 
benefits of active learning have been widely studied in many contexts and have a demonstrated 
history of students’ improved critical thinking and writing skills (Baepler et al., 2014; Bonwell 
& Eison, 1991; Freeman et al., 2014), stronger learning outcomes on posttests (Freeman et al., 
2014), lower overall course failure rates (Baepler et al., 2014; Reinholz, 2015), and stronger 
conceptual understanding of  targeted concepts (Hake, 1998). Active learning instructional 
strategies in STEM also have been advocated to promote better exam performance (Freeman et 
al., 2014), to focus on recruiting and retaining racially minoritized students (Dirks, 2006), to 
reduce the achievement gap (Haak et al., 2011; Seymour et al., 2019), to elevate racially 
minoritized student persistence (Estrada et al., 2017), to increase the success of female students 
(Laursen et al., 2014), and to enhance performance across multiple outcomes such as grades and 
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persistence (Kuh, 2008). Some of the most convincing support for active learning came from the 
Freeman et al. (2014) meta-analysis of 225 studies on active learning in the STEM fields. They 
concluded that in comparing active learning to traditional learning, students achieved an increase 
of 6% on examinations in active learning settings. In the following subsections, we relate active 
learning and recitation research to teaching active learning-based online recitations.  

Online Active Learning  
With the rapid shift to emergency online instruction due to the COVID-19 pandemic, 

instructors accustomed to implementing active learning activities in the face-to-face setting were 
forced to implement active learning in the online environment. Examples of active learning 
methods for the online setting used include activity-based frameworks, role-playing, problem-
based learning, and the jigsaw method (Amador & Mederer, 2013; Anderson & Tredway, 2009; 
Baker & Watson, 2014;  Lebaron & Miller, 2005). More recent studies in online active learning 
involve students creating their own content under the instructor’s guidance. Student-created 
videos in undergraduate  STEM courses (Campbell et al., 2020) and “viral videos” in marketing 
classes (Purinton & Burke, 2020) are two such more recent attempts at building online active 
learning opportunities that have led to students’ increased understanding of the course content.  

Collaborative learning through video tutorials and flipping the classroom also fall under the 
active learning umbrella. Flipping the classroom has been done for many years and has primarily 
been used in blended settings where students watch videos or read before coming to class to 
apply their knowledge to more complex problems once they arrive at the face-to-face class 
(Bergman & Sams, 2012). Many studies have touted increased learning gains, improved transfer 
of information, and positive student perceptions in flipped classrooms, particularly in 
undergraduate mathematics (Adams & Dove, 2018; Albalawi, 2019; Sun et al., 2018; 
Wasserman et al., 2017). Outside of specific instructional approaches, another study found that 
successful implementations of online active learning require strong interpersonal interactions 
and frequent and effective student-instructor interactions to foster a climate of active learning 
and academic achievement (Jaggars & Xu, 2016).  

 
STEM Recitations  

Recitation courses have a long-standing history of supplementing the lectures’ content by 
using smaller class sizes where active learning can be more easily implemented (Laursen et al.,  
2019). Recitations sometimes include hands-on components to encourage engagement and 
conceptual understanding (Etkina & Van Heuvelen, 2007). Some rely on computer simulations 
to provide near-life experiences with illustrated phenomena. Incorporating active learning and 
collaborative activities in recitation is rooted in the theory that collaboration involves the 
metacognitive activities of discussing goals and ideas that improve learning and retention  
(Bruffee, 1984; Hillocks, 1986). Indeed, studies have shown that setting up collaborative 
groups in recitations has led to students’ increased success in mathematics (Bonsangue, 1994; 
Herzig &  Kung, 2003; Springer et al., 1999), physics (McDermott et al., 1994), and chemistry 
(Gosser & Roth, 1998).   

In one such large-scale recitation study in Calculus 1 for STEM majors, Watt et al. (2014) 
implemented three different types of recitation sessions over six years, each of which had some 
variation of an active learning component. The most significant improvement in students’ 
learning outcomes was when students had to actively co-construct knowledge on Verbal, 
Graphical or Geometric, Numeric, and Algebraic (VGNA) concept activities in recitation. The 
VGNA activities allowed students to explore calculus problems together from various vantage 
points to develop a shared understanding of key calculus concepts. This form of active learning 
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used in an introductory undergraduate mathematics course improved students’ post-test results 
and increased retention and decreased DFW rates across the course. This study suggests that 
active learning opportunities in recitations lead to stronger learning outcomes for students.  

The aforementioned literature suggests that for active learning to occur in a recitation, the 
instructor must design purposeful activities and opportunities for students to engage more 
deeply with the content, with the instructor, and with one another. Achieving this in the online 
setting is a bigger challenge since novel ways to engage with the content, instructor, and peers 
must be developed and promoted. Our research project aims to bridge the literature on STEM 
recitations and active learning by analyzing the recitation course transformation process for 
Mathematics, the efforts to include active learning in the transformed courses, and the 
takeaways from the experience.   

 
Theoretical Framework  

Constructivist learning theory emphasizes that individuals learn through connecting new 
ideas and experiences to existing knowledge and experiences to form new or enhanced 
understanding (Bransford et al., 1999). Instructional strategies that include active learning foster 
the cognitive work recognized as vital for learning by constructivist learning theory. Active 
learning methods also habitually involve cooperative learning groups and peer interactions, 
similar to the recitation instructors’ breakout rooms in their online classrooms. As we aim to 
investigate the components of active learning preserved and modified in the process of 
transitioning recitations, we utilized the Teacher-Centered Systemic Reform (TCSR) Model 
(Woodbury & Gess-Newsome, 2002). The TCSR is an instructional model used in secondary 
and post-secondary contexts that views instructional reform at a systems level. It looks closely at 
how personal factors, teacher’s thinking, and contextual factors influence an individual’s 
instructional practices. Since many instructors came into the Fall 2020 semester having 
previously used active learning techniques in the in-person setting, it was important to us to see 
how their practices stayed the same or changed based on the new online context. 

The TCSR Model explains “personal factors” as the collection of past teaching experiences, 
past and present pedagogical training, and demographic profile. Of particular importance in this 
study is the extent of the instructors’ preparation to teach recitations in the online setting and 
their efforts to continue learning how to incorporate active learning into online instruction. The 
TCSR Model explains “teacher’s thinking” as the collection of the instructor’s knowledge and 
beliefs about learning, teaching, students, and content, sense of individual dissatisfaction with 
the teaching process, and teacher self-efficacy for implementing instructional strategies. Our 
study examines some of these aspects of teacher thinking, specifically in the context of active 
learning in the online setting. Last, the TCSR Model explains “contextual factors” as the broader 
picture of how the instructor is embedded within the classroom, department, school, and 
professional organization. The TCSR hypothesizes that the teacher’s thinking and contextual and 
personal factors impact instructional reform efforts. In our study, transitioning in-person active 
learning recitations to online active learning recitations can be viewed as a reform effort across 
gateway STEM courses, with instructional decisions impacted by teachers’ thinking and 
personal factors. 

 
Method  

This paper addresses the following research questions (RQ):   
RQ1: What elements of the recitations were retained in the transition to online teaching?  
RQ2: What elements of the recitations were lost as a result of the transition to online teaching? 
RQ3: What were the challenges faced and lessons learned during the abrupt transition to 
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online teaching?  
 
Study Participants and Data Collection 

In order to include all variants of the faculty observations that are relevant for our study  
(Yanow, 2000) and to ensure information-richness (Fossey et al., 2002), the mathematics 
faculty included four lecturers teaching the large lectures, 15 recitation instructors, and nine 
course coordinators of gateway courses as survey participants. Some faculty served in more 
than one capacity during the Fall 2020 semester. These faculty all taught or oversaw 
recitations in either Pre-Calculus, Calculus 1 (for the Engineering and for Life & Social 
Sciences tracks), and/or Calculus 2 (for the Engineering track). The small-class recitations 
were offered for 80 minutes once a week, which met in addition to two full 80-minute large-
class lectures twice a week. All but three respondents used Zoom as their recitation platform, 
whereas the remaining respondents used a comparable platform, Canvas’s BigBlueButton 
Conferences tool. An 18-question Qualtrics survey including the research questions was sent 
to faculty members during the last three weeks of the Fall 2020 semester. The open-ended 
and multiple-choice survey questions allowed participants to describe the setup of their 
online recitations’ setup and elaborate on class preparation, group work, learning activities, 
and assessments. Participants were asked to describe how they collaborated with their 
colleagues to execute the recitations. The survey concluded with a series of questions on 
elements of the recitations that were retained, lost, and modified due to the transition to 
online recitations.  

Analysis and Results 
 All responses were cleaned and coded using a semi-open coding scheme (Corbin & Strauss, 

2015) to look for themes across question responses. After several passes of semi-open coding, a 
frequency count was determined for all open codes. Codes were collapsed into larger categories, 
such as “accommodations,” “in-class activities,” “collaboration,” and “interpersonal 
interactions,” and “participation.” The following sections elaborate on the themes that emerged 
during our analysis process. 

 
Elements Retained Online  

Respondents enthusiastically agreed that they retained many traditional elements of an 
in-person recitation once it was transitioned online: quizzes, group problems, homework 
review by the instructor, example problems. One respondent commented that the online 
format seemed to allow more students “at the board” to work out problems, whereas three 
respondents indicated that it was challenging to ensure students completed the assigned 
tasks.  Respondents were asked if they continued to grade work completed during online 
recitations.  80% of respondents showed that they retained grading work as part of the 
recitation. Of the remaining 20% who did not require submitted work, one respondent shifted 
from assigning graded work to not assigning it online by citing the challenge of not being 
able to observe breakout rooms concurrently.   

 
Elements Lost Online  

Respondents interestingly shifted their responses from tangible items (worksheets, quizzes,  
etc.) to behaviors when describing components lost in the online transition. Sixty percent of the 
respondents described losing interpersonal interaction,  coaching opportunities, student 
interactions, and before/after class opportunities to ask the instructor a casual question. Twenty 
percent of respondents commented on losing group work once recitations moved online. The 
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remaining respondents took their face-to-face recitations and fully transitioned all elements to 
the online setting.  

 
Collaboration  

When asked about offering collaborative group work opportunities in the online setting, six 
respondents reported administering no collaborative group work, four of whom previously 
promoted collaborative group work in person as a form of active learning. Their reasons for the 
switch included lack of student participation in breakout rooms and the resulting independent 
work with unresponsive classmates. Some of the fourteen respondents who had online 
collaborative group work echoed the same difficulty of continuing collaborative learning in the 
online classroom. One instructor noted that the average student seemed to participate at the same 
level, whether in person or online, but the less involved students’ lack of participation was 
exacerbated in collaborative groups. Two instructors cited effective methods of ensuring 
collaboration, including self/peer evaluations and allowing students an opportunity to first enter 
their responses in the chatbox before working out the problem in a breakout room.  

 
Recitation Setup  

Almost all respondents described online recitations as being divided into three phases: a  
teacher-led “review” phase, followed by a student active learning phase, then a closure phase. 
The recitation instructor devotes about 10-30 minutes to summarize the week’s content, review 
sample problems, and answer questions in the review phase. In the active learning phase for 
about 30-50 minutes, instructors create learning opportunities such as online poll questions and 
breakout groups where students work on new problems. Finally, most respondents reported 
spending the last 20 minutes on an online recitation quiz to assess what students learned from 
the previous week’s content. Two respondents stated that to have a focused recitation 
introduction, they had students submit the homework review problems ahead of time.  

 
Challenges Faced  

Respondents indicated a wide variety of both controllable and uncontrollable challenges.  
The stability of internet connection, availability of power, and availability of pens and tablets 
were cited as challenges students faced when accessing and engaging in online recitations. 
Three respondents cited the authenticity of students’ work on assessments as proctoring 
methods and availability of answers on the Internet can influence students’ academic integrity. 
Another five respondents cited getting students motivated to participate as a significant 
challenge. One respondent noted learning various online technologies as a challenge faced by 
faculty.  
 
Lessons Learned  

The final question asked participants what they learned from the experience of transitioning 
their recitations online and what they think other recitation instructors should learn from their 
experiences. Two respondents discussed being accommodating. One respondent felt that being 
graceful with students and submission due dates helped foster stronger relationships, whereas 
the other respondent had a different perspective stating that, “lenient or inconsistent policies 
about tech issues and late assignments lead to students trying to abuse the system in the end of 
the  semester.” Another instructor suggested holding office hours on the same day as recitation, 
as office hour attendance typically seemed high when it was on the same day as recitation. One 
instructor discussed accessibility and building a structured learning management site containing 
recorded lectures. The remaining respondents shared ways to engage and involve students, such 
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as mandating the microphone over the chatbox, allowing an anonymous live discussion stream 
during class, having interactive slides that every student gets a copy of and that the instructor 
can monitor, virtual whiteboards, and using breakout rooms at least one time during every 
recitation.  
 

Discussion 
Although instructors were forced to move their recitations online due to the impact of the  

COVID-19 pandemic, our survey responses reflected many of the same elements and 
challenges instructors typically associate with in-person recitations. Some aspects of 
administering recitations online, including assessment, accessibility, and developing 
engagement and interpersonal connections, seemed to be amplified in the responses as areas 
needing more attention as online recitations continue to be developed.  Our participants 
described a typical online recitation structure similar to that of a face-to-face one but expressed 
concerns about ensuring engagement during the active learning phase. Many of these feelings 
can be tied back to teachers’ thinking and personal factors associated with many years of 
running in-person recitations in a tried and true, highly structured format (Woodbury & Gess-
Newsome, 2002). In the following paragraphs, we discuss recommended changes to 
instructional practices based on our findings. We consider both online and in-person 
implementations of active learning recitations, as both formats will be available in the future. 

 
Assessments 

Transitioning the mode of in-person assessments from weekly paper/pencil quizzes to online 
quizzes made the coordinators and the instructors aware of the availability of a new form of 
assessment. One of the main recitation components instructors hope to retain is to change in-
person, paper-based quizzes to online quizzes regardless of the recitation medium. The 
advantages of this change are three-fold: (1) allowing more dedicated class time for student-
student and student-instructor interaction, (2) providing accommodations to students by 
extending the time frame (about 12 hours to 24 hours) to take the online quizzes instead of the 
old practice of taking the quizzes in the last 15-20 minutes of class time, and (3) assessing 
students in the same format as their homework and midterm/final exams are administered. From 
a personnel management perspective, this also better repurposed full-time and part-time faculty 
members’ time to avoid traveling, printing, and copying assessments for large classes. During 
the pandemic, it also eased safety concerns of bringing students’ papers home and, as a result, 
saved faculty members time with the removal of some manual grading.  

 
Collaboration 

The challenge of managing online group work was mentioned by many of our respondents 
across multiple questions and was a significant obstacle for many instructors who wanted to 
replicate the in-person active learning environment online. Setting up group norms and 
expectations at the start of the semester is one critical step needed to facilitate effective group 
work regardless of the recitation medium. Instructors also found it essential to develop student-
student and student-instructor communications within the group setting. Since students also tend 
to be more isolated in online classes, the student-student interactions can be very limited in this 
environment. Keeping group sizes small, coupled with a low stakes graded assignment due 
shortly after recitation, could be a way to foster more engagement in online groups. Asking 
questions that cannot be solved by an online program or Google search can improve engagement 
and authenticity. This can be applied to both online and in-person recitations. 
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Engagement 
Moving into future iterations of online recitations that do not fall under the umbrella of 

emergency remote teaching, we realize one of the biggest concerns from faculty was student 
participation and engagement.  One possible solution to promote more active participation is to 
give all students an individual virtual whiteboard or one shared virtual whiteboard that the 
instructor can monitor. As many respondents noted, assigning a small grade for the classwork 
can also motivate students to be more active during recitation, provided there is a small window 
of time to submit the assignment after recitation. Small pre-class assignments and preparation 
of worksheet problems and solutions before recitation also seemed to help improve engagement 
in online recitations.  

 
Accessibility 

Across all questions, a theme of accessibility also emerged. Contextual factors play the most 
significant role here, as instructors have many resources available within and outside the 
department and organization to help students (Woodbury & Gess-Newsome, 2002). We propose 
having students participate in future online recitations through various means, including 
microphones, written text in the chatbox, and Google Form submissions. Some students may be 
more inclined to participate through written text, whereas others may prefer something oral or 
on video. Being accommodating and demonstrating clarity are also essential components of an 
accessible course. Students know what is expected of them, find what they need, and connect 
with their instructors. We recommend consistently providing explicit directions, organized 
Learning Management Systems (LMSs), and multiple ways of contacting the instructor (Piazza, 
e-mail, Discord) to accommodate students’ learning preferences.  
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Secondary-tertiary Transition and Undergraduate Tutoring:  

Novice Tutors Make Sense of their Teaching of First-Year Students 
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Drawing on the commognitive framework, we construe the secondary-tertiary transition 

(STT) as a distinctive thread of communication that pervades pedagogical discourses of 

various communities. Our interest rests with university tutors (or “teaching assistants”) in 

light of the emergent recognition of their impact on undergraduates’ mathematics learning. 

We aim to understand the role of STT-communication in tutors’ reflections on incidents that 

took place in their tutorials. Our participants were undergraduate students at the advanced 

stages of their mathematics degrees in a large New Zealand university and who enrolled in a 

mathematics education course. Throughout a semester, the participants led tutorial sessions 

for groups of first-year students and wrote reflections on noticeable mathematical incidents. 

In this paper, we focus on how STT-communication woven into tutors’ descriptions of 

classroom incidents and their sense-making of unexpected actions of their students. 

Keywords: commognition, pedagogical discourse, secondary-tertiary transition, teaching 

assistants, undergraduate tutoring 

Annie is a soon-to-be mathematics major and a novice tutor (or a “teaching assistant”) in 

a first-semester mathematics service course in a large New Zealand university. In one of the 

tutorials, her students were given 𝑓(𝑥) = 𝑥2 − 2 and asked to find 𝑓(2 − 𝑥). This is how 

Annie reflected on an incident that she noticed in her classroom: 

During the tutorial, I had more than three students asking me how to solve this 

question. I tried to explain it by telling them that function is like a factory. 2 − 𝑥 is the 

input and 𝑥2 − 2 is like a machine. This is what my maths teacher used as an example 

when he taught us the definition of functions in school. But they told me they didn’t 

understand it at all. […] After the tutorial I remembered the first time my maths 

teacher used the factory example and at that time I also didn’t understand it. But 

things are way more paced in school, I can’t imagine how hard it must be for a first-

year student to meet this idea for the first time. 

Putting the accuracy of Annie’s description of the incident aside, notice all the places where 

she referred to the secondary-tertiary transition (STT hereafter). On the face of it, it seems 

only reasonable for her to bring up STT. Indeed, Annie was aware that this was the first 

tertiary mathematics course that her students have taken, so why wouldn’t she comment on “a 

first-year student”? And it was not that long ago that Annie was in the same shoes as her 

students, which explains why she recalled her first encounter with “the factory example”. On 

the other hand, Annie worked with the same group of students throughout a whole semester, 

and yet, she did not acknowledge STT in all of her reflections on the incidents that occurred 

in her tutorials. This allows us to propose that weaving STT into her reflection was not an 

unavoidable necessity derived from how Annie communicates about pedagogy, but rather a 

deliberate move made as part of her sense-making of her teaching. 

In this investigation, we explore how the concept of STT finds its way into the reflection 

of university tutors who teach undergraduates in transition, the discursive characteristics of 

their communication on STT, and its roles in tutors’ sense-making of their teaching. The 

literature on the transition from school to university mathematics has been prolific (e.g., 

Gueudet, 2008; Holton, 2001; Thomas et al., 2015). Yet, to our knowledge, this is the first 

research attempt to consider students’ STT from the tutors’ perspective. Our participants are 
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undergraduates themselves. By working with a cohort that was experienced in mathematics 

learning and was making its first steps in teaching, we were hoping to gain access to vivid 

stories on STT and observe the impact of these stories on tutors’ emerging pedagogical 

thinking. 

Related research 

This investigation resides in the intersection of research on undergraduate tutoring and on 

teachers’ perspectives on STT. 

Undergraduate tutoring 

Over the last two decades, international research has become interested in undergraduate 

tutors – mostly students of mathematics who are employed by their respective departments to 

contribute to the instruction of specific undergraduate courses (e.g., Speer et al., 2005). 

Research indicates that the scope of tutors’ responsibilities can vary from one country to 

another (e.g., Oates et al., 2005; Yee et al., 2020), ranging from marking students’ 

assignments, through leading regular tutorial sessions, to solely teaching a whole course. This 

diversity can explain the lack of universal terminology for referring to this cohort (e.g., see 

Speer et al., 2005 for “teaching assistants”, Yee et al., 2020 for “graduate student instructors”, 

and Nardi et al., 2005 for “tutors”). Previous research in New Zealand context has used the 

term “tutors” (e.g., Oates et al., 2005) and we continue this tradition.  

In many educational contexts, tutor-student interactions constitute a significant course 

component, which positions the former as potentially having a considerable impact on the 

learning of the latter (e.g., Speer et al., 2005). In New Zealand, tutors are often in charge of 

planning and instruction of weekly sessions that the course students are expected to attend 

regularly throughout the semester. These tutorials bring together sub-sets of the course 

students (usually less than 50) and engage them with questions related to mathematics 

discussed earlier in a whole-course forum (often called “lectures”). 

Research into undergraduate tutors has explored a range of aspects. Given our interest in 

tutors’ sense-making of their teaching, we mention the Undergraduate Mathematics Teaching 

Project (e.g., Nardi et al., 2005). Through reflective interviews, the project aimed to unpack 

the complexities of tutors’ epistemologies, pedagogies, and craft knowledge. To avoid 

discussions on some general and dis-embedded levels, the project engaged its participants in 

reflections on specific incidents that took place in their tutorials. 

University teachers’ perspectives on STT 

Only a few studies tapped into university teachers’ perspectives on STT. Klymchuk et al. 

(2011) developed a short survey, which was answered by 63 university teachers from 24 

countries. One of the survey questions asked teachers to propose reasons for the gap between 

school and university mathematics. The researchers grouped the responses in categories, the 

most popular of which was “higher level of thinking at university mathematics”. Klymchuk et 

al. illustrate this category with quotes, in which the respondents criticize school mathematics 

instruction (e.g., “very mechanical and situational”) and emphasize its inadequacies in the 

context of university mathematics (“we expect more out of the students”). 

The views surveyed in Klymchuk et al. (2011) seem to go beyond individuals and recent 

times. Back at the third ICME in 1976, a study group brought together delegates from 15 

countries to discuss STT. In their report, STT is described as a problem, the three major 

aspects of which are: unavailability of “topics supposedly covered in the secondary 

curriculum […] when needed in later study” (Fey, 1977, p. 406), “[m]any students who […] 

are unable to see the relations between specific ideas” (ibid), and “students leaving secondary 

school [with] a narrow and formal approach to mathematics” (ibid, p. 407). Put in less 
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deficient terms, echoing perspectives can be found in the report of the London Mathematics 

Society (1995). 

We notice the connections between perspectives on STT and the actions taken by those in 

tertiary education. For instance, remedial courses are often presented as a “solution” to the 

“problem” of school graduates’ under-preparedness (e.g., Clark & Lovric, 2008; Fey, 1977; 

Klymchuk, et al., 2011). On the other hand, endorsing Sfard’s (2014) perspective on school 

and university mathematics as almost distinct disciplines, Pinto (2019) discusses pedagogies 

that university teachers can implement in their courses to “smoothen” the transition. 

Theoretical Framework 

We turn to the commognitive framework (Sfard, 2008) for theoretical foundations and 

analytical tools for our study. Being interested in rather nuanced aspects of tutors’ reflections, 

thinking, and self-making, we were hoping to capitalize on the framework that has been 

renowned for offering operationalizations for elusive constructs of this sort (e.g., Morgan, 

2020). In university mathematics education, commognition has been acknowledged for its 

capability to account for the complexity of this context (Nardi et al., 2014) and has been used 

to explore teaching (e.g., Kontorovich, 2021; Pinto, 2019). Furthermore, commognition “has 

been developed within the field of mathematics education and is designed to address the 

problems arising in this field” (Morgan, 2020, p. 226). As such, it provided us with a set of 

theoretically coherent tools to attend to issues of mathematics and its pedagogy. 

Commognition assumes that discourses underlie all aspects of human activity (both 

communicational and practical), dividing the society into partially overlapping discourse 

communities (Sfard, 2008). In the context of teaching, Heyd-Metzuyanim and Shabtay (2019) 

introduce the notion of pedagogical discourse as something that shapes and orients teachers 

“towards what to teach students, how to teach them, why certain teaching actions are more 

effective than others and, often not talked about but still very important, who can learn (or not 

learn)” (p. 543, italics in the original). The researchers discuss pedagogical discourses in 

relation to school teaching, but there seems to be no reason to confine the construct to a 

particular educational setting. Indeed, Viirman (2014) uses the same term and with a similar 

meaning to investigate communicational practices of university mathematics lecturers. Given 

that “the membership in the wider community of discourse is won through participation in 

communicational activities” (Sfard, 2008, p. 91), we consider university tutors as a 

community that participates in pedagogical discourse. 

When engaging with new discourse, a person is likely to find themselves in unfamiliar 

situations, in which they consider themselves bound to act. Lavie et al. (2019) explain one’s 

capability to perform in new circumstances with precedents – “past situations which she 

interprets as sufficiently similar to the present one to justify repeating what was done then, 

whether it was done by herself or by another person” (p. 160). For instance, novice teachers 

can draw on their learning experiences as precedents and replicate narratives and actions of 

their former teachers.  

In this investigation, we are focused on tutors’ sense-making rather than on their actual 

teaching. Then we build on Sfard’s (2020) approach to discourses as a special type of 

communication that “has been construed along history as a toolbox for constructing 

potentially useful accounts of different segments of reality” (p. 90). Discourses offer 

conventional building blocks (specifically, keywords, visual mediators, narratives, and 

routines) to construct such accounts, but they rarely predestinate individual choices. In other 

words, the selection of what to bring into a discursive existence and how to do so rests with 

the individual. This is especially the case when people come to capture in words “segments of 

reality” that unfold in a classroom. Such pedagogical accounts belong to the 

communicational sphere, which makes their objects discursive, i.e. arising through humans’ 
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keywords and narratives. For instance, when generating a pedagogical account, a teacher 

needs to decide how to refer to humans: by name (e.g., “Alex”), their assumed role (e.g., “a 

student”), gender (e.g., “the girl”), et cetera (cf. Dubbs, 2021). 

Deficit approaches have been recognized as a common characteristic of pedagogical 

accounts. Informed by the Critical Race Theory and sociopolitical perspectives, Adiredja and 

Zandieh (2020) describe deficit narratives as those that “focus on students’ academic and 

intellectual shortcomings and attribute them to deficiencies located in the students, their 

values, families, and/or cultures” (p. 240). We direct the readers to the previous section for 

examples of such narratives and to the work of Adiredja and colleagues for a comprehensive 

discussion and alternatives ways to construct pedagogical accounts.  

The Study 

In tune with the commognitive framework, we conceptualize STT as a thread of 

communication that can feature in pedagogical discourses through distinctive keywords and 

narratives pointing at the transition from the secondary to tertiary educational context. We 

use “thread” as a metaphor to highlight that this is only one fiber that occasionally weaves 

into the fabric of pedagogical discourses. To foreground the discursive nature of this 

conceptualization, we use the term STT-communication. Accordingly, the central question 

underpinning this investigation is “how does STT-communication manifest in tutors’ 

reflections on incidents that took place in their tutorials for first-year students?” 

Context and participants 

Our data comes from an undergraduate course in mathematics education (MathEd 

hereafter) offered in the mathematics department at a large New Zealand university. The 

course mostly attracts students in the second half of their mathematics majors who are 

interested in educational issues. In a collaborative and student-centered environment, the 

students engage with various aspects of university mathematics education (for additional 

course details see Oates et al., 2005). Mathematics tutoring of first-year students is the central 

activity of the course. 

All students in the MathEd course tutor in Preparation or Service mathematics courses. 

The former course can be construed as remedial mathematics and it is intended for students 

who qualified for university studies but do not have the standards that are necessary to 

succeed in first-year courses. The service course is a general entry course for non-

mathematics majors, usually students of commerce, life sciences, and social sciences. 

The novice tutors1 are adjacent to specific groups for the whole twelve-week semester 

and expected to co-lead, in pairs, ten 50-min long tutorial sessions. Nearly a week before 

each tutorial, the lecturers of the Preparation and Service courses publish sets of questions on 

which the course students are expected to work during the tutorial. In the preparation for each 

session, the tutors are expected to engage with the question sets, raise issues that could 

emerge, and develop strategies to address them. Overall, the expected role of a tutor role can 

be described in the words of Moore (1968, p. 18): 

The tutor is not a teacher in the usual sense: it is not his job to convey information. 

The student should find for himself the information. The teacher [sic] acts as a 

constructive critic, helping him to sort it out, to try it out sometimes, in the sense of 

exploring a possible avenue, rejecting one approach in favour of another. 

 

 
1 From here onwards, we use “tutors” to refer to students in the MathEd course in relation to their teaching in Preparation and 

Service courses. Those who attended the tutorial sessions as part of their enrolment in these courses are called “students”.  
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Data collection, corpus, and analysis 

As part of the individual MathEd coursework, the tutors were assigned to submit weekly 

500-word reflections on an incident that drew their attention in their tutorial session that week 

(cf. Nardi et al., 2005). The guidelines directed tutors to distinguish between their incident of 

choice and its interpretations. To enhance the potential usefulness of the reflection process, 

tutors were asked to formulate “take-outs” for their further teaching. 

Overall, we collected 363 reflections from 42 tutors over four semesters. To construct the 

data corpus, we scrutinized the reflections in search of STT-words, phrases, comments, and 

narratives. Eventually, our corpus consisted of 58 reflections generated by 38 tutors. We 

conceptualized each reflection as a snapshot of the tutor’s pedagogical discourse; a snapshot 

where the tutor was the one to initiative STT-communication. 

Our data analysis was informed by the commognitive distinction between 

“mathematizing” – narrating about mathematical objects and “subjectifying” – narrating 

about participants of mathematical discourse (Sfard, 2008). Focusing on the objects of STT-

instances, we distinguished between narratives about mathematics and its entities, courses the 

participants tutored, and people. The last category was especially diverse, and then we drew 

on Heyd-Metzuyanim and Sfard’s (2012) three levels of generality of subjectifying 

narratives. The levels distinguish between somebody’s performance of a particular action, a 

routine performance associated frequently or most of the time with a person, and inherent 

properties that identify a person in a particular manner. With this classification in mind, we 

arrived at the corresponding distinction between tutors’ descriptions of someone’s actions 

(e.g., “I tried to explain it by telling them”), descriptions of routines (e.g., “This is how our 

lecturer taught us”), and general narratives identifying people or “things in the world” (e.g., 

“When coming to uni many students struggle”). The level of detail that the participants 

provided in their reflections varied, and then we use “routine” in a rather general sense as 

actions that repeat themselves (see Lavie et al., 2019 for an alternative approach). To 

interpret the roles of STT-communication in tutors’ reflections, we approached each instance 

with such questions as “what does it do to the reflection?”, “what is its added value to the 

story the tutor tells?”, “how will this story change if the instance is deleted?”.  

Findings 

The analysis revealed a range of ways in which STT-communication manifested in tutors’ 

reflections. The manifestations were neither strictly distinct nor exclusive to each reflection. 

Indeed, a rare reflection contained STT-instances that were ascribed to a single category. Due 

to space limitations, we focus on two manifestations: describing tutorial incidents and making 

sense of students’ unexpected actions. 

Describing tutorial incidents 

The reflection guidelines explicitly asked the tutors to separate between their descriptions 

of an incident and its interpretations. Yet, theorizing, evaluations, and judgement found their 

ways into many incident descriptions. STT-communication often pervaded tutors’ 

descriptions, turning into a building block in tutors’ pedagogical accounts. 

Let us consider an excerpt from the reflection of Betty. She wrote: 

After visiting a few groups, it surprised me when I found out that there actually were 

a lot of [Preparation] students who were struggling with fractions. Most of them had 

some idea of what fractions are, but they had many misconceptions that they brought 

from school, they did not know how to multiply or add fractions, or find common 
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factors. […] Some students with richer background math knowledge did finish all 

tutorial questions”  

In this excerpt, Betty writes about her “Preparation students”, whom she identifies as “having 

some ideas” and “many misconceptions”. She points at “school” as a source of both. In turn, 

those students who completed the tutorial questions are identified through “richer background 

math knowledge”. Betty’s association of her students’ “math knowledge” with their previous 

school studies in not obvious. To recall, students come to the tutorial sessions less than a 

week after relevant mathematics has been discussed in lectures. Then, Preparation course 

appears as an alternative point of reference for addressing tutorial students’ successes and 

challenges. In other reflections, tutors referred to their students and their learning in relation 

to the university (e.g., “First-year students” and “students who are new to uni”). 

In the descriptions of the incidents, students were not the only ones that were identified in 

relation to STT. Some reflections depicted “mathematics”, “a topic”, or specific questions 

around which the incidents revolved with comments affiliating them with school or 

university. For instance, “to remind them of this concept from the school math I said […]”, 

“this tutorial was on vectors which is the first university math in this course”, “the students 

used a notation from high school and not proper math”. 

Making sense of students’ unexpected actions 

Many reflections contained descriptions of incidents, where actions (or lack thereof) of 

some tutorial students appeared as deviations from what the tutors expected, planned, or 

hoped for. This made room for tutors to account for this gap, which opened the door for STT-

communication. Specifically, two approaches emerged from the data analysis through which 

the tutors seem to make their peace with what students did: commonizing students’ actions 

through general STT-narratives and associating with the students through drawing on 

personal STT-narratives. Due to space limitations we illustrate both approaches with the 

presented excerpt from Annie’s reflection. 

Annie’s writing suggests that after explaining that “function is like a factory”, she was not 

content with the students telling her that they “didn’t understand it all”. Probably no teacher 

would evaluate this development as felicitous, including Annie who was invested in her 

tutoring. However, students “not understanding” appears differently if considered under the 

assumption that “a fist-year student […] meet[s] this idea for the first time”. Through the lens 

of this general STT-narrative, what looked special and unexpected becomes a logical 

derivation of a broader pedagogical “truth”. Indeed, if “the factory example” is “hard”, 

especially if encountered in a quickly paced first-year course, there seem to be little surprise 

in the fact that “more than three students” raise questions and repeatedly declare their “not 

understanding”. We use the term “commonization” to underscore that a tutor accounted for 

students’ actions through drawing on some general STT-narratives, through the lens of which 

these actions presented as less special and more expected. 

Another approach that we associate with Annie making sense of her students’ actions is 

providing a personal STT-narrative. Specifically, she writes that the first time she 

encountered “the factory example” she “also didn’t understand it”. Drawing parallels between 

what Annie presents as a recollection of her experience as a student and the actions of her 

tutorial students, illuminates the latter in a different light. Now that Annie has access to more 

than one precedent of what appears as a similar re-action of different people to what she 

describes as a similar situation, it makes sense to re-evaluate her students’ “not 

understanding”. Furthermore, Annie is one of these people, which provides her the 

opportunity to relate to students on a more personal level. Indeed, we read her sentence “I 

can’t imagine how hard it must be” as an exaggerated version of “I can understand how hard 

it must be because I was in a similar situation”. 
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Summary and Discussion 

In this study, we construed STT as a communicational thread that weaves into the 

pedagogical discourses of various communities and is endowed, by commognition, with the 

power to shape people’s thinking and actions. We focus on tutors’ community, whose impact 

on undergraduate students’ learning has been recognized (e.g., Ellis, 2014; Speer et al., 

2005). To our knowledge, this is the first study to consider tutors as actors in students’ STT. 

We explored STT-communication of novice undergraduate tutors in New Zealand as it 

emerged from their written reflections on incidents that took place in their tutorials. Given the 

diversity of educational systems worldwide and the specificity of our setting, we abstain from 

generalizing the obtained findings. Nevertheless, it is hard to ignore the similarity between 

some general STT-narratives that our tutors generated and existing research. For instance, 

similarly to the lecturers in Klymchuk et al. (2011), a portion of tutors’ narratives was de-

evaluative of students’ mathematics studies at school. On the other hand, there also were 

narratives acknowledging the difficulty of tertiary mathematics and transitioning into it. 

The two manifestations of STT-communication that we presented in this paper appear to 

play a role in tutors’ sense-making of their teaching. Mason (2002) acknowledges that it takes 

time and effort to learn to write teaching accounts that are free from theorizing, evaluation, 

and judgement. The first manifestation demonstrates that maintaining this separation between 

an incident and its interpretation can be not easy for beginning tutors. Metaphorically 

speaking, it can be said that STT was “in the air” in some incidents and constituted a segment 

of the tutor’s pedagogical reality; a segment that they could not leave behind when 

constructing their accounts (cf. Sfard, 2020). Further research is needed to establish whether 

this manifestation of STT-communication has been specific to our context and tutors or 

whether this kind of talk is typical to university teachers, working with students in transition. 

The second manifestation pertains to tutors accounting for students’ actions that deviated 

from tutors’ plans, expectations, and hopes. This is where general STT-narratives became 

handy as they commonized students’ actions by turning them from attention-drawing oddities 

into instantiations of broader patterns. Unfortunately, this commonization often drew on 

deficit narratives about students, their knowledge, and abilities. Furthermore, let us recall that 

these narratives emerged from reflections that the tutors submitted as part of coursework. 

This may suggest that they did not consider deficiency-based interpretations of students’ 

actions as an issue. In this case, these interpretations may be illustrative of the gap between 

novices to pedagogical discourse and the growing anti-deficit movement in the research 

community (e.g., Adiredja & Zandieh, 2020). In the school context, professional 

development appears as a conventional counter-measure to teachers’ deficit approaches (e.g., 

Anthony et al., 2018). We are not familiar with systematical efforts of this sort in the tertiary 

context in Australasia. This situation draws attention to colleges and universities in the US, 

where the development, evaluation, and scrutiny of professional development programs for 

tutors have been institutionalized (e.g., Speer et al., 2005; Yee et al., 2020).  

In their reflections, many tutors harked back to their time as students and shared their 

experiences through personal STT-narratives. They recalled situations that are similar to the 

focal incidents of their reflections and, having referred to their own personal struggles and 

difficulties, wrote that they “relate”, “understand”, and “empathize” with their students. We 

note that a sizeable portion of reflections in our data contained tutors’ personal STT-

narratives. This may result from the accessibility of these narratives to our tutors, who were 

in their students’ shoes not so long ago. Such accessibility may be out of reach to other 

tutoring cohorts, such as graduate students and research mathematicians, for whom STT is 

often a fading memory (cf. Speer et al., 2005). We then direct attention to what may be a 

characteristic attribute of tutors who are undergraduates themselves and invite future research 

to explore how personal STT-narratives can be leveraged in mentoring undergraduate tutors.  
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A Collective Case Study of Three GTAs Participating in the M-DISC Professional Development 

 

Valentin A. B. Küchle 

Michigan State University 

Three graduate teaching assistants (GTAs) took part in a one-semester teaching professional 

development (T-PD) based on the “Mathematics Discourse in Secondary Classrooms” (M-

DISC) (Herbel-Eisenmann et al., 2017) T-PD. This report presents a collective case study 

highlighting one finding per GTA to understand how their classroom discourse changed (i.e., 

whether it became more productive) and how the GTAs made sense of these changes. 

Keywords: Case Study, Graduate Teaching Assistants, M-DISC, Professional Development 

From the Progress through Calculus survey (Apkarian & Kirin, 2017) we know that U.S. 

institutions offering graduate degrees in mathematics do not necessarily offer their graduate 

teaching assistants (GTAs) any teaching professional development (T-PD). Where a GTA T-PD 

is offered, it is typically confined to GTAs’ first year of teaching as indicated by over 80% of 

responding institutions. The short duration of such T-PDs seems problematic given how much 

there is to learn about teaching and given that many GTAs find themselves in a stage of survival 

during their first year of teaching (Beisiegel et al., 2019). GTAs may be more receptive to topics 

beyond classroom management in later years of their teaching, when they find themselves in the 

stages of consolidation, renewal, or maturity (Beisiegel et al., 2019; Katz, 1972). 

To address the lack of support that mathematics GTAs receive beyond their first year of 

teaching, I adapted and offered the “Mathematics Discourse in Secondary Classrooms” (M-

DISC) (Herbel-Eisenmann et al., 2017) T-PD in spring 2021 to three GTAs who were: (a) 

teaching undergraduate mathematics, (b) no longer in their first year of teaching, and (c) at an 

institution offering only a first-year T-PD. The M-DISC T-PD covers a range of topics in service 

of two overarching foci: cultivating productive and powerful discourse in the classroom. As the 

M-DISC developers (Herbel-Eisenmann et al., 2017, p. xxxi) explain:  

We use “productive discourse” to mean “discourse that provides students with 

opportunities to make meaningful mathematical contributions toward particular 

mathematical learning goals” (Cirillo et al., 2014, p. 142) and “powerful discourse” to 

mean “discourse that positions students as people who are capable of making sense of 

mathematics and supports students’ developing identities in terms of status, smartness, 

and competence in mathematics class” (Cirillo et al., 2014, p. 142).  

 Beyond the practical goal of offering such a T-PD, I was interested in learning whether 

taking this T-PD was helpful for the participants and their students. For this report, I focus on 

how productive discourse was fostered by the participants over the course of the semester that 

they partook in the T-PD. In particular, the research questions I sought to answer were:  

1. How does the participants’ classroom discourse (as described by the usage of teacher 

discourse moves and dimensions of the EQUIP [Reinholz & Shah, 2018]) change over 

the course of the T-PD?  

2. How do participants make sense of these changes in their classroom discourse?  

To answer these questions, and given the small-scale implementation of this T-PD, I employ 

what Stake (1995) termed a collective case study approach. In this instance, this approach boils 

down to three instrumental case studies of graduate students participating in the M-DISC T-PD.  
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Brief Overview of the M-DISC T-PD  

The M-DISC seeks to help its participants cultivate productive and powerful discourse in 

their classrooms. To achieve these ends, the M-DISC materials draw on notions like discourse 

and register from systemic functional linguistics (Halliday, 1978; Pimm, 1987) and notions 

inspired by it (e.g., communication context), Chapin et al.’s productive talk moves (2003), and 

positioning theory (Harré & van Langehove, 1999). Structurally, the M-DISC T-PD consists of 

an introduction, five core “constellations,” and an action research capstone experience. The five 

core constellations are: (a) engaging students in mathematics classroom discourse, (b) teacher 

discourse moves and positioning, (c) planning for rich discourse, (d) setting up and gathering 

evidence of student work, and (e) concluding and contemplating evidence.  

Through correspondence with the first author of the M-DISC materials B. Herbel-Eisenmann 

(personal communication, November 22, 2020), I learned that: (a) the first three constellations 

are “the most substantial parts,” (b) constellations 4 and 5 provide opportunities to explore the 

ideas from constellations 1–3 in more depth rather than introduce new content, and (c) she has 

omitted constellations 4 and 5 in some past M-DISC implementations. Thus, when I offered the 

M-DISC in spring 2021, I implemented an abridged version of the M-DISC T-PD that omitted 

constellations 4 and 5. Further, as its name suggests, the M-DISC was originally designed with 

secondary classrooms in mind. Thus, where possible, I modified T-PD tasks to be more relevant 

to undergraduate mathematics without changing the purpose of a task (e.g., replacing a 

transcript, working on an abstract algebra problem, working with undergraduate mathematics 

texts). In the end, my implementation of the M-DISC T-PD consisted of thirteen weekly 2-hour 

meetings during one semester that were held via Zoom due to the coronavirus pandemic.  

Relevant Literature 

Since classroom discourse—when not a one-way street—is an exchange between teacher and 

students or students and students, I chose a two-pronged approach to studying the participants’ 

classroom discourse: one prong focusing more on students, the other more on the instructor.  

Discourse (Student Focus) 

To learn about the mathematical contributions that students were making in the participants’ 

classes, I drew on the dimensions of the “Equity QUantified In Participation” (EQUIP) tool: 

discourse type, student talk length, student talk type, teacher solicitation method, wait time, 

teacher solicitation type, and explicit evaluation (Reinholz & Shah, 2018). Although each of 

these dimensions has been linked to being relevant to issues of equity, each of these is also 

relevant to understanding how productive classroom discourse is.  

One dimension I wish to highlight, given its appearance in the Results section, is student talk 

type, which provides a window into understanding whether students are engaging in reasoning or 

only limited to supplying memorized facts and doing calculations. Reinholz and Shah (2018) 

drew on Braaten and Windschitl (2011)’s explanation tool to distinguish between what, how, 

why, and other student talk type. Braaten and Windschitl (2011)’s distinction, however, stems 

from differences in explanation in science education. The meaning ascribed to these terms in the 

context of mathematics discourse by Reinholz and Shah (2018) is not fully clear. Thus, for the 

purposes of this report, what statements are claims made by student without a rationale (e.g., “the 

answer is 12”), how statements focus on the process (e.g., “after adding x on both sides, you then 

need to divide by y”), and why statements are claims made by students with a rationale or 

providing the rationale to an already made statement.  
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Discourse (Instructor Focus) 

To learn more about the instructor’s discourse, and with the T-PD materials in mind, I draw 

on the teacher discourse moves (TDMs) discussed in the M-DISC materials (Herbel-Eisenmann 

et al., 2017) and various publications (e.g., Cirillo et al., 2014; Herbel-Eisenmann et al., 2013), 

which are based on Chapin’s productive talk moves (Chapin et al., 2003). The six TDMs are 

waiting, inviting student participation, revoicing, asking students to revoice, probing a student’s 

thinking, and creating opportunities to engage with another’s reasoning.  

Given their appearance in the Results section, I want to foreground waiting and probing a 

student’s thinking. As Rowe (1986) demonstrated, increasing the time a teacher waits after 

speaking (wait time 1) and after a student’s turn (wait time 2) can have remarkable effects on 

student participation, reasoning, confidence, and achievement. By probing a student’s thinking, 

the M-DISC developers mean “following up with an individual student’s solution, strategy, or 

question. The goal here is to have the student elaborate on or clarify his/her ideas” (Herbel-

Eisenmann et al., 2017, p. lvi).  

Method 

Participants 

Three doctoral students from a large public university in the Midwest participated in my 

implementation of the M-DISC T-PD: Alice, Finnegan, and Valeria (all pseudonyms). Alice and 

Finnegan were both mathematics doctoral students, whereas Valeria was a mathematics 

education doctoral student. I had never interacted with Alice and Finnegan before I contacted 

them to see if they would be interested in participating; Valeria was a friend. All three had 

multiple years of teaching experience, be it as teaching assistants at universities (Finnegan and 

Valeria) or schoolteachers (Alice [sic]). None received any compensation. 

Data Sources 

This study is part of a larger study, and the complete set of data sources consist of audio-

recordings of all participants’ classes, anonymized chat histories from the classes, three semi-

structured 60-minute interviews with each of the participants, video-recordings of all thirteen T-

PD meetings, and reflections written by me after every T-PD meeting. For the purposes of this 

report, I will be drawing on a subset of the classroom audio-recordings and anonymized chat 

histories, as well as the semi-structured interviews.  

Classroom audio-recordings & chat histories. All participants shared audio-recordings of 

their Zoom classes with me as well as anonymized chat histories that excluded the contents of 

private messages. Using the chat time stamps, I merged the chats with the classroom transcripts. 

For Alice and Finnegan, who each taught twice a week for 50–80 minutes, I decided to analyze 

nine classroom recordings: three from the start of the semester (after the syllabi had been 

discussed), three from the middle of the semester (after the TDMs had been introduced), and 

three from the end of the semester (before exam reviews). For Valeria, whose audio-recordings 

were typically around 60 minutes long and who taught only once a week, I decided to code all 

twelve classroom recordings. (Valeria taught two sections of the same course, but rather then 

code parts of both, I decided to code all of one section’s classroom recordings.) 

Semi-structured interviews. Each participant was interviewed before the start of the T-PD 

and semester, after 7–8 T-PD sessions in the latter half of the semester (after TDMs had been 

introduced), and 2–4 weeks after the end of the T-PD (i.e., 1–3 weeks after the end of the 
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semester). The first interview served as an opportunity to get to know each other, whereas the 

last two served to learn about the participants’ reflections on the T-PD and their teaching.  

Data Analysis 

To answer my first research question, that is, how does the participants’ classroom discourse 

change over the course of the semester, I picked nine classroom recordings from the beginning, 

middle, and end of semester for Alice and Finnegan and all twelve classroom recordings for one 

of Valeria’s sections. These were then coded along two sets of dimensions.  

EQUIP. Each classroom recording was coded along six of the seven EQUIP dimensions 

(i.e., discourse type, student talk length, student talk type, teacher solicitation type, teacher 

solicitation method, explicit evaluation). Wait time was not coded for but considered in a 

separate analysis. To align with the TDM of revoicing, I also coded whether a turn was revoiced.  

For the purposes of the EQUIP, a student’s turn is any number of student utterances that are 

not interrupted by another student (but possibly interrupted by a teacher). Since the EQUIP’s 

focus is on positioning, it makes sense to combine a student’s utterances, even when they are 

neither thematically nor temporally linked for it captures the lack of different speakers. Yet, 

since productive discourse was foregrounded for this part of my analysis, I modified the unit size 

to define a student turn as any number of student utterances that are linked topically either by 

responding to the same question or by elaborating on a previous utterance (even when 

interrupted by the teacher).   

TDMs. Each classroom observation was also coded with respect to five of the six TDMs. 

Again, waiting was omitted and analyzed for separately. In addition to TDMs, I also coded each 

instance of an instructor making a mathematical solicitation. Although the EQUIP includes a 

code for teacher solicitation type, it does so only in reference to a student turn. Thus, the 

EQUIP’s teacher solicitation type code does not cover no-response teacher solicitations, 

prompting me to code for teacher solicitations separately.  

The combination of coding for the EQUIP dimensions and the TDMs then provided data to 

answer my first research question regarding how the classroom discourse had changed. Combing 

carefully through the interviews after the EQUIP/TDM-analysis provided context for how the 

participants made sense of the discourse in their classrooms and served as triangulation for any 

impressions gained from looking at the EQUIP/TDM data.  

Results  

The richness of a case study is at odds with the severe length limitations of a conference 

proposal, and I am forced to paint with very broad strokes in this report. With each case serving 

as an instrumental case study, each participant’s case serves as an example of what it can mean 

to be a doctoral student partaking in the M-DISC T-PD and each case brought to light different 

issues. My goal, given the spatial limitations, is to focus on only one classroom discourse issue 

per participant and elaborate how the participants made sense of it. Before delving into the cases, 

I want to note that the participants’ teaching needs to be viewed in the context of the coronavirus 

pandemic; the challenges it brought about cannot be understated.  

Finnegan: Probing  

Finnegan was nearing the end of his mathematics Ph.D., and he loved teaching. The class he 

was teaching that semester was an algebra class with over 60 students. He frequently solicited 

mathematical input from his students, averaging almost 1 solicitation per minute (0.941) during 

the three observations at the start of the semester. Yet, as we can see from Table 1 under 
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“Student focus,” although students communicated mathematics frequently (note: non-

mathematical discourse is excluded from the counts), few student turns were why-type discourse 

at the start of the semester (CR1–CR3). 

Looking across the nine recordings, one can see that Finnegan embraced the TDM of probing 

a student’s thinking after it was introduced in the T-PD. As can be seen in Table 1 under 

“Instructor focus,” the number of probing interactions in classroom recordings 4–9 appears to 

have increased in comparison to CR 1–3. (Recall: CR4–CR6 are from the middle of the semester 

after the introduction of the TDMs and CR7–CR9 are from the end of the semester.) As he 

described in the mid-semester interview, he used to respond to a student’s contribution by 

“assuming that they got the right answer and then trying to put it in more mathematical terms” 

but was now trying to “dig deeper.” He also felt that students had responded well to probing.  

In the post-T-PD interview he provided more detail on how he liked to probe:  

I did actually find a lot of use in probing, when it’s like, “Well, why do you think this is 

true?” or, uh, like my, my prime example is, I was like we’re, we’re dealing with this, 

we’re dealing with this square root function and, “What does this plus c on the outside 

does [sic]?”, and somebody answers and like, “Okay, why do you think it does that?” and 

they draw the connections. So, I did find a lot of use in probing.  

As suggested by his remarks and as suggested in the T-PD, there are different ways of probing. 

The type that especially resonated with Finnegan is what I call deepening-probing in Table 1 and 

involves following up with a student’s answer to go deeper with the content of the original turn 

(e.g., “Why do you think that?”, “How did you get that?”). As suggested by the table, this was 

the main way in which Finnegan used probing. (The second most common way was asking 

students to clarify their turn—clarifying-probing. For example, “What do you mean by […]?”) 

Switching to the student perspective, one can see that most of the student turns that were 

why-talk were in response to probing interactions. (Included in this count are why-responses by 

students who were not addressed by the probing but chose to answer anyway.)  

 In summary, the TDM of probing a student’s thinking was taken up by Finnegan after it was 

introduced in the T-PD and it helped him create a classroom in which students had and seized 

more opportunities to reason—perhaps the most central discursive practice in mathematics.  

 
Table 1. Table showing parts of the instructor-focused and the student-focused coding of Finnegan’s recordings. 

Classroom Recording [# of min. spent 

together as a class] 

CR1 

[67] 

CR2 

[55] 

CR3 

[82] 

CR4 

[60] 

CR5 

[64] 

CR6 

[49] 

CR7 

[58] 

CR8 

[81] 

CR9 

[82] 

Instructor focus 

Probing (total) 

Deepening-Probing   

Solicitations (total)  

Solicitations (why)  

 

1 

0 

59 

0 

 

3 

1 

60 

1 

 

2 

2 

76 

1 

 

6 

3 

60 

3 

 

13 

9 

76 

7 

 

13 

12 

59 

7 

 

11 

8 

59 

6 

 

17 

9 

94 

9 

 

9 

6 

74 

2 

Student focus 

Student talk type (total) 

Student talk type (why) 

Student talk type (why) (post-probing) 

 

126 

0 

0 

 

89 

3 

1 

 

101 

3 

0 

 

58 

6 

3 

 

73 

7 

6 

 

54 

8 

5 

 

52 

6 

5 

 

101 

13 

11 

 

85 

4 

3 
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Valeria: Waiting 1 

Valeria was in the middle of her doctoral career and teaching a mathematics content course 

for preservice elementary teachers with around 30 students. She wanted teaching to be joyful and 

expressed at the beginning that she wanted her students to feel supported and comfortable asking 

questions. A main reason she shared for joining the T-PD was learning about positioning.  

Her concerns for positioning appear to have expressed themselves when she reflected on the 

TDMs in the mid-semester interview:  

I noticed that the things that I grab onto the most are things that I can do, or like, that rely 

more on what I’m doing than on what my students are doing. So, for example, wait times, 

I can do that. I can wait a little bit longer, and I can wait after my students, uhm, respond. 

And then for example, I can also revoice my students’ answers, so that I have been 

trying. I think it’s when it involves me asking someone else to do something when I’m 

like a little bit insecure of trying that out, because of the fear of how it, how they might 

respond. […] I think I have a very hard time, finding ways, to make people do things, 

without it sounding like I’m forcing them.  

This reflection paired with her observation (made during the T-PD and after listening to her own 

classroom recording) that she felt she did not wait long enough after asking a question led me to 

wonder about her implementation of wait time, particularly wait time 1. For the wait time 1 

analysis, I rounded the wait time after every teacher solicitation to the nearest second in two 

classroom recordings from the start and end of semester. As the left of Figure 1 (below) suggests, 

by the end of the semester, Valeria waited longer for student responses when soliciting questions 

or asking whether something made sense. (Note that the left-hand graph only includes 

solicitations that were not responded to by students.)   

Something the right side of Figure 1 suggests is that Valeria had success in getting students 

to respond to her questions, even if it meant waiting a very long time (particularly towards the 

end of the semester). (Note that the right-hand graph excludes wait times if students did not 

respond to the question. After also mapping the wait times after teacher questions that students 

did not respond to, I saw no striking patterns.)  

In summary, wait time 1 was a TDM Valeria already used at the start of the semester, but 

through the T-PD, she waited even longer for responses, particularly after asking for student 

questions. As aforementioned, analyzing her own classroom recording may have played a large 

part in that. With an eye towards productive discourse, it is unclear from looking at the coded 

EQUIP dimensions whether students engaged in more reasoning.  

Alice: Identifying Obstacles to Using TDMs  

Alice was also in the middle of her doctoral career and taught an algebra class with over 50 

students. She wanted her students to know that mathematics was about discovery and creativity. 

Although she tried out several TDMs and was a proponent of some of them (e.g., revoicing and 

wait time), I want to focus instead on why she found some TDMs more difficult to incorporate 

into her teaching as she was very articulate about this matter.  

As Beisiegel et al. (2019) had noted, GTAs can return to survival mode when teaching a new 

class. This appears to have been the case for Alice, who had multiple years of experience 

teaching high school mathematics but found herself both teaching this class for the first time and 

teaching synchronously online for the first time. She expressed being frustrated with herself 

because she had not implemented as much of the T-PD as she would have liked because she was 

feeling such pressure from covering the class’ content. She added that, “I feel like I’m focusing 

so much on just like trying to move the class forward that I’m not spending as much time as I 
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would like to on, uuh, creating like meaningful, group work and like meaningful experiences for 

students to interact with the material.” 

 
Figure 1. A two-part wait time 1 analysis. The left diagram focuses on wait time after asking students for questions 

whereas the right two diagrams are focused on wait time after posing questions to students. 

In addition to struggling to try out TDMs while teaching a new course in a new mode and 

suffering from time pressure, Alice noted in the mid-semester interview that some TDMs were 

just more natural to her: “Like the revoicing and probing and wait time I feel like, uhm, you 

know, kind of are, they, they kind of naturally happen.” Others, like asking students to revoice, 

was something she noted she did not naturally do. In short, the unnaturalness of some TDMs 

seemed to present a barrier to Alice to fully committing to them. Some TDMs were more natural 

but still posed problems: Alice struggled with implementing wait time 2 as she found it difficult 

to wait after a student’s response because she felt the need to reassure them.  

Finally, Zoom itself posed some challenges. Although she stated that all TDMs could have 

been used on Zoom, she felt that Zoom made using them more difficult—a sentiment also 

echoed by Finnegan who noted the struggles of interacting when many bodily cues are absent. 

In summary, Alice encountered and articulated several obstacles to implementing TDMs: 

feeling too much under time pressure to use novel TDMs, finding some TDMs unnatural, having 

her teaching style clash with a TDM (i.e., wait time 2), and teaching via Zoom.   

Discussion 

As seen through the cases of Alice, Finnegan, and Valeria, the M-DISC T-PD encouraged the 

participants to use at least a subset of the TDMs: (a) Finnegan grew fond of several TDMs, chief 

among them probing a student’s thinking, which helped him engage his students in more why-

type discourse, (b) Valeria liked wait time (and revoicing) and noted that some of the TDMs 

were more difficult to use for her because they required asking students to do things, and (c) 

Alice spoke about using revoicing, probing, and waiting. At the same time, all of them noted 

struggling to implement certain TDMs, and Alice’s case shone light on some of these challenges.  

With respect to making discourse more productive in the T-PD participants’ classrooms, the 

M-DISC demonstrated some modest success—although it remains to be seen whether the 

participants will continue using the TDMs. Yet, the modest success should also be interpreted 

taking into account that the participants were implementing the T-PD while teaching an ongoing 

class in which certain discursive norms may have already been established. Further, with the T-

PD focusing on productive and powerful discourse, the above tells at best half the story. 
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A Case Study of Abstract Algebra Learners’ Fluency for Quotient Groups towards Efficacy 

Research 
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Abstract: Abstract algebra education researchers continue to document that the quotient concept 

is difficult for undergraduates (Dubinsky et al., 1994; Melhuish et al., 2020). This proposal 

explores an undergraduate, a first-year graduate, and second year graduate student’s fluency as 

they work on a “collapsing structure” quotient task in Group Explorer across several registers: 

Cayley tables, formal-symbolic mappings, and Cayley to Schreier coset digraphs. In addition, it 

illustrates an avenue for extending a qualitative case study to a mixed efficacy study.  

Keywords: representational fluency, semiotics, quotient group, homomorphism 

Introduction and Literature Background 

A substantial amount of work and funds have been put forth over the past two decades to 

develop an inquiry-oriented (IO) curriculum for introductory group theory (Fukawa-Connelly, 

Johnson, Keller, 2016; Larsen, Johnson, & Bartlo, 2013). This curriculum is based on Guided 

Reinvention and Realistic Mathematics Education principles. Lockwood, Johnson, and Larsen 

(2013) described the IO curriculum, “Each unit begins with a reinvention phase in which 

students develop concepts based on their intuitions, informal strategies, and prior knowledge. 

The end product of the reinvention phase is a formal definition constructed by students and a 

collection of conjecture” (p. 777). These units are developed through Local Instructional Design 

Research which entails the creation of in-class activities, anticipation of how learners may 

interact with the instructor and activities, testing activities by conducting small-scale teaching 

experiments, data analysis, and refinement. According to a recent large-scale survey study that 

pooled from 200 institutions across the United States, the IO curriculum materials are not in wide 

use, in fact there is “almost no uptake” (Fukawa-Connelly, Johnson, and Keller, 2016, p. 280). A 

possible reason for apprehension or non-incorporation of IO curriculum materials could stem 

from a lack of sufficient evidence to either support or reject the efficacy of the IO group theory 

curriculum compared to other approaches.  

Recent advances are opening new doors for efficacy studies such as quantitative measures 

that characterize the instruction environment (IOIM; Kuster, Johnson, Rupnow, and Wilhelm, 

2019). However, aside from Johnson et al.  (2020), as study that compared IO and non-IO groups 

with respect to the Group Theory Concept Assessment (GTCA; Melhuish, 2019) and gender, no 

other large-scale efficacy studies that compared IO to other instruction with quantitative analysis 

were found.  

The purpose of this paper is to propose an avenue towards efficacy research that is restricted 

to a particular local instructional unit beginning with quotient group concept (Larsen & 

Lockwood, 2013). Rather than an overall assessment such as the GTCA, this research aims to 

develop additional local in-depth cognitive assessments for the quotient group concept. This 

paper illustrates a case study of three learners as they work on a quotient group task and a 

prototype methodology to assess their conceptual understanding, representational fluency, and 

flexibility for the quotient group concept.  The conceptual understanding dimension includes 

“conceptual metaphors”, language interpretation, and connections between concepts such as 

equivalence relations, normality, homomorphisms, quotient groups, and FTH (Melhuish et al., 
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2020; Rupnow, 2021; Lakoff & Nunez, 2000, p. 5). The theoretical framework section covers the 

representational fluency dimension. Flexibility refers to awareness of multiple solutions or the 

switching from an invalid to valid solution approach. These dimensions are not completely 

separable (Heinze, Star, & Verschaffel, 2009).  

Theoretical Framework: Representational Fluency 

Conversions and Pseudo-Semiotic Representations  

A conversion is a maneuver in which a learner generates a representation for a mathematical 

object in one register and translates it to another (Duval, 2017). The theoretical construct of a 

pseudo-semiotic representation is proposed in this paper out of a need to describe counter-

phenomenon of representational fluency observed in this study. A pseudo-semiotic 

representation is a sign, interpretation, and signified object triangle in which the signified object 

assigned to a sign-interpretation pair generated by the learner does not exists mathematically or 

is not accurately portrayed. The literature was revisited to find existing constructs that resembled 

the observed pseudo-semiotic phenomenon established by other researchers. A pseudo-semiotic 

representation could be thought of as a specialized instance that fell under the more general 

umbrella of pseudo-conceptual behavior proposed by Vinner (1997), hence the added qualifier 

“pseudo” to the semiotic representation construct proposed by Duval (2006). Vinner (1997) 

termed “pseudo-conceptual behavior to describe a behavior which might look like conceptual 

behavior, but which in fact is produced by mental processes which do not characterize 

conceptual behavior” (p. 100). Vinner admitted that this definition was not satisfactory and 

provided additional examples of what he meant by pseudo-conceptual processes. He explained 

that a more novice learner may gravitate towards these processes because they are “simpler, 

easier, and shorter” (p. 101). Moreover, novices “start looking for ways that will enable them to 

perform the task. These ways are not necessarily the way thought by the designers of the task 

when they decided to present it to the students. The task designers probably intended conceptual 

thought processes; the students came up with pseudo-conceptual processes…formed in a 

spontaneous way…and not necessarily taught to them by teachers or other agents. Sometimes 

they are natural cognitive reactions to certain cognitive stimuli. The students use them without 

going through any reflective procedure, control procedure or analysis of any kind” (Vinner, 

1997, p. 101).  

The concept image and concept definition distinction proposed by Tall and Vinner (1981) 

falls under the broad umbrella of pseudo-conceptual behavior in cases where there is conflict 

between the concept image and definition, however it does not detail differences between various 

modes of language production (Duval, 2017) or object-specific registers (Lajos, 2021; Ely, 

2017). Pseudo-conceptual behaviors that have been described through a semiotic lens includes 

“gesture and speech mismatch” (Goldin-Meadow, Alibali, & Church, 1993, p. 279). Gesture and 

speech are two modes of semiotic, language, production (Duval, 2017). This mismatch 

generalizes to the notion of conflicts between registers (i.e., modes of language production) for a 

specified concept.   

Participants and Settings 

Participants were recruited via purposive sampling using the condition that they had exposure 

to a first-semester undergraduate or graduate-level abstract algebra course. Three students, Max, 

Jenni, and Alex agreed to participate. They represented cases for three consecutive levels in the 

same mathematics program at a central R1 level research university in the United States. Max 

was a fourth-year undergraduate mathematics major in a first-semester introductory abstract 
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algebra course. Jenni was a first-year master’s in science (MS) student, she had completed the 

undergraduate introductory course the previous year. She did not have exposure to the graduate 

course yet. Alex was a second-year graduate student in the doctoral track program and had 

completed the graduate course. This sampling is characterized as “maximum variation” which 

“documents diverse variations of individuals” and “increases the likelihood that the findings will 

reflect differences or different perspectives” (Creswell & Poth, 2018, p. 159).  

Instrumentation and Data Collection 

Audio-video data and whiteboard work was collected through semi-structured task-based 

interviews. The interview task was designed to investigate the registers that students naturally 

used to support their reasoning about quotient groups, fluency in converting an initial natural 

response in one register to an alternate register, and flexibility switching strategies. A 

methodological tactic when Duvalian semiotic theory is used is to design conversion tasks in 

which the researcher fixes the order of the initial and target registers prior to data collection. For 

example, McGee and Moore-Russo (2015) phrased a calculus task in a way that directed the 

participant to go from a numerical to geometric register. Rather than creating tasks with apriori 

initial and target registers, the present study displayed stimuli for various registers, Cayley 

digraphs, tables, group presentations, and cycle graphs, and allowed the participant space to 

choose their initial register(s) and complete their responses before introducing switch prompts 

that directed them to various targets.  

The collapsing structure task prompt asked, “Is the quaternion group of order eight and the 

dihedral group of order eight isomorphic?” followed by “Is there some way that you can modify 

both the dihedral group and quaternion group by losing information or collapsing some structure 

so that the resultant modifications are isomorphic?” The collapsing structure task consisted of 

four major sub-tasks: determining if the dihedral group and quaternion group of order 8 were 

isomorphic or not, constructing a homomorphism or quotient from the dihedral group to an 

image group, repeating the previous sub-task for the quaternion group, and showing an 

isomorphism between the image groups. The “collapsing metaphor” refers to the identification of 

elements in a group to form cosets of equal size in which the cosets form a partition of the initial 

group (Melhuish et al., 2020; Rupnow, 2021).  The metaphor of losing information was intended 

to invoke the fact that a homomorphism loses specificity regarding the orders of elements. The 

researcher set up the collapsing structure task by arranging Group Explorer cards into piles as 

shown below in Figure 1.  

 
Figure 1. Collapsing Structure Task Display 

Participants also interacted directly with groups dynamically through the Group Explorer 

software. They had access to other digraph representations depending on a choice of generators. 

After these cards were presented, the researcher left it open to the participant to choose an initial 

register and noted the participant’s first natural response. If the participant’s natural first 

response consisted of predominantly visual intuitive responses, such as constructing a quotient 
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map in the digraph register, the researcher followed up with a switch prompt that asked the 

participant to translate their response using formal-symbolic language. If the participant provided 

a predominantly formal response that involved writing down cosets or maps using formal 

notation the researcher applied a switch prompt that asked them to translate what they did using 

the digraphs.   

Data Analysis: Four-Level Coding Framework for Fluency 

Notes contained the cues that students noticed or did not notice in certain registers, in what 

order were registers visited, ways in which representations were used either as a source to 

stimulate ideas or as a check, and conversions from initial registers entered to prompted registers. 

These notes were used to develop a chronological summary for how each participant’s approach 

to the task evolved. A comparison highlighted that the three participants invoked many 

interpretations of what losing information and collapsing structure meant to them within the 

context of the task. Several strategies that the participants explored were identified in the 

interview transcripts such as: work towards the Klein-four group, the cyclic group of order two, 

and the impossible strategy to obtain the cyclic group of order four. Participants also exhibited 

multiple sign-interpretation pairs for the same sign.  

This preparatory round of analysis led to the analytic coding framework in Figure 2. Level 1 

of this framework consists of collapsing interpretation themes. Level 2 displays strategies that a 

learner may enter. Level 3 denotes the registers that learner may use in unimodal sequential order 

or multiple registers used in parallel. Level 4 focuses on the finest units of analysis, learners’ 

sign-interpretation pairs within each of the registers and conversions between registers. 

 

 
Figure2.  Four-level analytic coding framework for quotient fluency 

Next, Audio-video files were imported into the Qualitative Data Analysis Software NVivo 

12. A hierarchical code book that mirrored the four-level analytic frame was also set up in 

NVivo as shown in Figure 3. The parent nodes: interpretations, strategies, registers, and sign-

interpretation pairs and conversions. Additional selected register codes, Cayley tables, digraphs, 

group presentations, etc., and open codes were created as sub-nodes under parent nodes. Open 

coding is the process of abstracting and labeling regularities or perhaps unique instances that are 

found after immersion in the data (Creswell & Poth, 2018).  After coding in NVivo, a summary 

list of codes across all participants was transferred into a table as depicted in Figure 3. 
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Figure3.  Coding in NVivo 12 

This table captured aspects of learners’ paths in Figure 2. Data was combed through a final time 

to systematically collect any pseudo-semiotic representations invoked by participants related to 

their homomorphism or quotient constructions. A pseudo-semiotic representation as a unit of 

analysis is given by Figure 4.  

 
Figure 4.  Pseudo-semiotic representation 

Results and Discussion  

There was a great deal of variability among Max, Jenni, and Alex with respect to their 

approach to the same task, what collapsing and ignoring information meant to them, their register 

use, and the sign-interpretation pairs that they produced.  

Collapsing, Losing, and Ignoring Structure Interpretation Themes and Strategies 

Several of Alex’s and Jenni’s interpretations of collapsing aligned with the mathematical 

process of constructing quotients. This included: combining or identifying elements into sets of 

elements, modding out by an equivalence relation, and partitioning. Max associated the 

collapsing metaphor with a homomorphism and “losing subgroups or space in the subgroups” 

but had not assimilated the quotient concept to his conceptions of a homorphism. The initial task 

prompt was rephrased for Max using the term homomorphism.   

In contrast to Alex, Max and Jenni combined interpretation themes in ways that conflicted 

with the actual mathematical object of a homomorphism. They both mixed the interpretations of 

getting rid of what was making the two groups different and keeping a subgroup that two groups 

have in common with a homomorphism. These interpretations manifested into attempts to carry 

out the impossible strategy, to obtain the cyclic group of order four. The mixing of general every 

day problem-solving processes, such as looking for perceptual commonalities and differences in 
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the group presentations, with the homomorphism concept led to an implicit assumption that a 

subgroup of a group would be an image of a homomorphism. However, the image of a 

homomorphism need not be a subgroup of the domain group. This thinking may have blocked 

Max and Jenni from entering the Klein-four strategy. During a follow-up interview, Jenni 

expressed an evolving awareness of this conflict and self-corrected stating that “if I quotient by a 

subgroup that is not just leaving me with a subgroup” of the starting group.  

Quotient Map Conversions for Valid Strategies 

Max did not enter a valid strategy to obtain a homomorphisms from the initial dihedral and 

quaternion groups to the cyclic group of order two or the Klein-four group. Jenni showed 

flexibility in moving away from the impossible strategy and to the valid strategy of constructing 

quotient maps from the initial groups to the cyclic group of order two. Alex produced solutions 

for both valid strategies and never mentioned the impossible strategy. Prior to the researchers 

switch prompts, Jenni and Alex gave valid solutions in a formal-symbolic register leveraging 

group presentations. Table 1 summarizes the quotient map conversion that Jenni and Alex made 

from their initial registers they went to on their own and the prompted digraph register in Table 

2. None of the participants performed quotient map constructions in a Cayley table register for 

valid strategies. Due to time constraints a Cayley table switch prompt was not applied.  

 

Table 1. Quotient map constructions prior to switch prompts 

Register/Strategy M J A 

Formal-symbolic leveraging group presentation from initial 

groups to cyclic group of order two 

None 𝐷4 ~⁄  

𝑄8 ~⁄  

𝐷4 𝑁⁄  

𝑄8 𝑁⁄  

Formal-symbolic leveraging group presentation from initial 

groups to Klein-four group 

None None 𝐷4 𝑁⁄  

𝑄8 𝑁⁄  

Cayley tables/cyclic group of order two None None None 

Cayley tables/Klein-four  None None None 

Digraphs/cyclic group of order two None None None 

Digraphs/Klein-four None None None 

 

Table 2. Quotient map constructions following digraph switch prompt 

Register/Strategy J A 

Digraphs/cyclic group order two 𝐷4 ~⁄  

𝑄8 ~⁄  

𝐷4 𝑁⁄  

𝑄8 𝑁⁄  

Digraphs/Klein-four None 𝐷4 𝑁⁄  

𝑄8 𝑁⁄  

 

Pseudo-Semiotic Representations 

Max could comfortably recall the formal definition of a homomorphism but produced several 

pseudo-semiotic representations of a homomorphism across multiple registers. The digraph 

register offered additional insights into Max’s difficulty with the homomorphism concept, as 

illustrated in Table 3. Rather than combining elements into sets of equal size and viewing these 

sets as elements, Max wanted to erase vertices and edges in the digraph to reduce visual 

complexity. Max did not mention cosets, partitions, or equivalence relations during the task. 

Connections between these more fundamental underlying concepts and the homomorphism 

concept were missing.  
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Max: Then I guess if I was going to describe what I did, I guess like take this inner piece [circles 

inner green cycle] and just pull it out and make it hang out by itself and this is a new group. 

And you don’t need to worry about the relationships between these guys or those guys, 

because those guys don’t exist anymore (Table 3, Interpretation 1).  

 

Max: …it’s just the cycles in between the inner and outer cube, or squares, are just more 

complicated. And so, I guess again, I just selected one of the, either top or bottom and took it 

off on its own. So, if you straighten it out to where the green box is facing down. So, on the 

top, the top square, there’s one four cycle between those elements. And then I just selected 

those, took them off by themselves. Then I don’t have to worry about what they do with the 

other things on the bottom, because I’m just looking at the top (Table 3, Interpretation 2).  

 

Table 3. Max’s pseudo-semiotic representations in a digraph register. 

Register Sign Interpretation Signified Object 

Digraph 

 

1 Homomorphism from dihedral 

group of order eight to cyclic 

group of order four 

Digraph 

 

2 Homomorphism from quaternion 

group to cyclic group of order 

four 

 

The incorporation of the digraph register made it apparent that Jenni’s difficulties and 

strengths related to a homomorphism were not the same as Max’s. Jenni related the term 

collapsing structure with the quotienting process of modding out by an equivalence relation and 

viewed sets of elements as elements in the image. She showed a strong understanding of 

underlying fundamental set-theoretic concepts related to the quotient concept. She consistently 

partitioned groups into equal size cosets in more formal-symbolic and digraph registers. She got 

hung up with how to make a partition of a group into a group and did not recall the necessary 

well definedness/normality condition. 

 

Jenni: My initial instinct when looking at it was that all of these connections [red arrows] were 

like s’s [flips] and so if you just get rid of the s’s you collapse these two points into a point 

and these two points into a point and so you end up with a square and that was along with my 

process to get to Z four.  

Concluding Remarks and Future Directions Towards Efficacy Research 

To work towards an efficacy study restricted to the quotient concept, qualitative themes led 

to a rubric for how qualitative data for the collapsing structure task could be transformed into 

quantitative data. The quantitative compression revealed that Max had low, Jenni moderate, and 

Alex had high fluency levels for the quotient concept. This will be discussed further during the 

talk along with two questions towards future mixed efficacy research. What are educators doing 

in practice to support undergraduate learners’ fluency for the quotient group concept? How can 

researchers determine if their interventions to provide support are working?  
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 The World in a State of Panic: Disaster Vulnerability and Digital Technology 
 in Emergency Remote Undergraduate Mathematics Courses 

 Melinda Lanius                                  Tiffany Frugé Jones                                Nicole Sullivant 
 Auburn University                       Sam Houston State University                   University of Arizona 

 For undergraduate students across the United States, 2020 was the year of learning alone, 
 together. Each experienced the COVID-19 pandemic and emergency measures in their own way, 
 with interruptions impacting all facets of life: social, political, economic, and educational. Our 
 study catalogues how the pandemic affected students’ experience(s) of learning math. We utilized 
 typed free responses - from 461 undergraduate students - to a set of five question prompts. “The 
 world in a state of panic” is the phrase one undergraduate used to describe the backdrop of 
 remote learning. Employing disaster vulnerability theory, a systems theoretic framework 
 borrowed from social work research, we coded for themes of vulnerability and capability within 
 our undergraduate mathematics ecosystem. Our findings indicate that the necessity of learning 
 through digital technology was the greatest source of disruption, with vulnerabilities occurring 
 in internet access, faculty digital literacy, digital content resources, and communication. 

 Keywords: COVID-19, Social Justice, Mathematics Education Systems, Digital Technology 

 Introduction 
 Although Spring 2020 teaching and learning donned the digital trappings of online education, 

 it is vital to not conflate the two. Education practices in Spring 2020 are most accurately 
 characterized as emergency remote learning: a temporary measure deployed during a time of 
 stress to protect students and teachers (Ray, 2020). For some students, the measures taken proved 
 to be beneficial; for other students, the abrupt but necessary changes were detrimental. Thus, the 
 global COVID-19 pandemic provided a unique stressor that allows us to newly assess the 
 strengths and weaknesses of our education systems, with a view towards correcting pre-existing 
 inequity and improving access for all as we build to a new normal. Because of mathematics’ 
 unique role in university education as a gatekeeper to degree and career options for individual 
 students (National Mathematics Advisory Panel, 2008), we focus our study on undergraduate 
 mathematics education. 

 Theoretical Framework 
 Disaster Vulnerability & Disaster Resiliency Theory (Zakour & Gillespie, 2013) is a subset 

 of system theory; it is primarily used in social work research to understand how and why 
 communities become disrupted and to document the extent of disruptions during a disaster. 
 While this framework is typically deployed in the context of natural disasters such as hurricanes 
 or tsunamis, the theory has been utilized in the context of higher education structure, particularly 
 around inclusive education and supporting students with disabilities (  Cedeño, Meza, & Majía, 
 2018;  Moriña, 2017  ). 

 Detecting disaster.  To justify our use of a disaster  vulnerability framework,  we need to 
 contextualize the COVID-19 pandemic as a “disaster”.  Most present-day academic definitions of 
 disaster focus on community-disruption fallout rather than the hazards causing the interruption 
 (Perry, 2018). A  disaster  is  a form of collective  stress with serious community-wide disruption of 
 social, economic, and environmental conditions (Zakour & Gillespie, 2013). Accordingly, the 
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 massive disruption and change in our work and education systems in 2020 constitutes a disaster. 
 A system is  vulnerable  if it has a reduced capacity  to adapt in a disaster.  Our research lens will 
 identify vulnerabilities in emergency remote undergraduate mathematics education, where some 
 students are resilient and others are injured by our systems. 

 Liability and capability.  Zakour and Gillespie (2013)  define a  liability  as a negative 
 characteristic causing reduced capacity. A positive characteristic that allows adaptation is called 
 a  capability  . A model of a disaster can include characteristics  of individuals, small 
 sub-communities, or nation-wide policies. Structural factors create vulnerability, which allows 
 hazards to trigger a disaster. The vulnerability existed before and may persist after the hazard 
 and, in fact, disasters exacerbate pre-existing social injustices (Le  Masson & Lovell, 2016). We 
 can utilize the process of identifying liabilities and capabilities to  characterize our collective 
 disaster experience  and to  foster community capabilities.  From here it is possible to build a more 
 inclusive and resilient normal. 

 Research Questions 
 Our study focuses on undergraduate student impressions of emergency remote math 

 instruction at the University of Arizona during the Spring 2020 semester. We considered the 
 following research questions: How did the experience of learning math in the context of a 
 post-secondary mathematics course change as a direct consequence of the pandemic? What 
 aspects of the experience did students view as harmful or beneficial to their learning? In the 
 presence of the novel COVID-19 hazard, what underlying sources of inequity were revealed in 
 our educational systems? 

 Methods 
 We conducted a survey in Summer 2020, hosted digitally  on Qualtrics. Following IRB 

 approval through the University of Arizona’s Human Subject Protection Program, we used a 
 Department of Mathematics email list to invite the 6,761 students who took an undergraduate 
 (100 - 400 level) mathematics course at the University of Arizona main campus in the previous 
 semester, with 461 students responding to five free response questions (see Figure 1). 

 Q1  After the transition to remote learning, how did aspects of life outside of school affect your 
 experiences in your math class? 

 Q2  After the transition to remote learning, what aspects of your math class hindered your learning? 

 Q3  After the transition to remote learning, what aspects of your math class supported your learning? 

 Q4  Congratulations, you successfully completed the Spring 2020 semester and overcame the 
 emergency transition to remote learning! Imagine that a friend asks for advice in an upcoming 
 remote learning math class. What advice would you give? 

 Q5  What advice would you give to the instructor of an upcoming remote learning math class? 

 Figure 1. Free response questions, summer 2020 survey 

 The qualitative data we analyze in this report is a subset of the data gathered in the surveys, 
 which also included a variety of quantitative measures. Because our free response questions were 
 novel, we presented a draft of the survey to four undergraduate students to assess survey 
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 language and structure. Each student participated in a 30 - 45 min individual interview conducted 
 by one-two researchers who asked the students to describe their interpretation of the questions 
 after reading the survey. In compensation for their time, each received a $20 gift card to an 
 online retailer (e.g. Amazon). 

 We utilized concept coding (Saldaña, 2016) to reveal themes of vulnerability and capability 
 in our data.  In our initial coding, we discovered  a distinct division between the topics students 
 discussed in relation to their emergency remote learning experience: aspects internal to their 
 math courses and aspects external to their math courses. Aspects inside their math courses 
 included interactions with the instructor or peers, the content, and technology used to create the 
 remote classroom. Outside their math courses, students were affected by the blurring of 
 boundaries between the microsystem, mesosystem, and exosystem (in the vein of 
 (Bronfenbrenner, 1979)). In this paper, we will focus on the themes that emerged internal to the 
 math courses. In future work, we will discuss our findings concerning external aspects that 
 affected their mathematics learning experience. 

 Results 
 One of the primary goals of disaster vulnerability theory is to document the structure of a 

 disaster, or how a hazard interacted with the system to cause community-wide disruption. 
 Although we developed our model after careful consideration of the particulars emerging from 
 our data, we present the model first because it informs how we present the underlying 
 vulnerabilities that emerged during coding. 

 Our Disaster Model 
 Because technology has become more ubiquitous in our society, especially in educational 

 settings, Kenneth Ruthven (2012) explains an updated version of the classic didactic triangle, see 
 Figure 2.  It is important that the didactic triangle be updated to a tetrahedron rather than a 
 quadrilateral, because in an in-person teaching and learning environment, technology is a choice; 
 learning can still occur without passing through the technology node. In other words, there is 
 teaching and learning of mathematics that is not mediated by some form of technology. This 
 updated model allows us to analyze multifaceted complexities, where the vertices, edges, and 
 faces each carry importance and meaning. For example, the leftmost face (digital technology - 
 learner - teacher)  addresses “content-independent pedagogical aspects” while the back face 
 (digital technology - learner - mathematical content) concerns “content-specific learning 
 pathways” (Prediger, Roesken-Winter, & Leuders, 2019, p. 411). 

 Figure 2. The classic didactic triangle and a modern didactical tetrahedron 
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 When the global pandemic hazard interacted with this educational structure, the classic 
 didactic face was excised from the modern didactic tetrahedron, triggering a disaster, shown in 
 Figure 3. For example, video conferences took the place of office hour conversations between 
 learner and teacher, digital whiteboards replaced chalk-boards, and 2-dimensional digital 
 representations approximated 3-dimensional demonstrations. While technology can be of great 
 value in the classroom, the tragedy was that unexpectedly  ,  all learning was mediated by 
 technology  . Our emergent themes are inseparable from  the digital backdrop in which they 
 occurred. 

 Figure 3. The excised didactic tetrahedron after the introduction of the COVID-19 hazard 

 A Summary of Vulnerability: The Gap Between Capability and Liability 
 We will discuss the most common points of capability and liability internal to the emergency 

 remote classroom: internet access & quality, faculty digital literacy, content resources, and 
 communication. Because the gap between capability and liability indicates vulnerabilities in our 
 system, our goal is to understand the broad range of experiences wherein some students did not 
 adapt to emergency remote instruction (see Figure 4).  In Table 5,  we provide a table with the 
 number of students who experienced each item as a capability and the number of students who 
 experienced it as a liability. 

 Internet quality & access.  Students described inadequate  internet as an obstacle to 
 participating in their courses. One student wrote,  “My internet connection is terrible at home, 
 leading to rushes or unfinished assignments.”  Some  students simply did not have the internet 
 available at their home because of their isolated location (such as on a reservation) or, while the 
 internet was available, it was too costly and they had to wait for COVID relief funds in order to 
 afford it. Students with quality internet celebrated how it improved their access to content and 
 digital resources that assisted in the learning process. One writer described,  “Having the internet 
 and other resources DURING class helped guide learning.” 

 Faculty digital literacy.  Sometimes faculty were not  effectively using the available 
 technology to convey course material, i.e. writing on a real-life chalkboard out of view of the 
 webcam. More frequently, students shared how their instructor did not know how to use a 
 program or the video conferencing software. One student wrote,  “My teacher did not know how 
 to use technology and had endless problems that resulted in no lectures some days… ”  When an 
 instructor was comfortable with their technology, students appreciated how their remote course 
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 felt just like an in-person course. One writes,  “Both of my professors were extremely flexible. I 
 especially appreciated their multiple formats of lecture notes and use of tablet technology to 
 annotate the screen live as they went through content.”  In fact, some faculty utilization of digital 
 technology allowed their students to learn better than they would have without these tools. 

 Digital course documentation.  Overwhelmingly, students  want video recordings of their 
 lectures to access later. One student expressed,  “being  able to record the lectures so i can go 
 back whenever i wanted if i needed help or forgot something was like a miracle happened.”  That 
 being said, other students warned that video recordings can hinder their learning process. For 
 example, a student wrote, “  Do live lectures instead  of recorded lectures because student will just 
 skip through recorded lectures and there’s less incentive to watch them  ,“ while another confided, 
 “  I also lost motivation to attend the Zoom lectures,  telling myself that I would watch the 
 recordings, but more times did not  .”  Other students  were frustrated with a lack of documentation 
 of their courses, or they found the quality to be poor. Sometimes a big delay in the posting of 
 lecture recordings left students without the necessary support to participate in their courses. 

 Figure 4. A gap indicates vulnerability in the system 

 Table 5. Capability and liability frequencies among the 461 participants. 

 Number of students for which it was a…  Capability  Liability 

 Internet Access & Quality  14 (  3%  )  74 (  16%  ) 

 Faculty Digital Literacy  43 (  9%  )  96 (  21%  ) 

 Internal Content Resources  192 (  42%  )  37 (  8%  ) 

 External Content Resources  36 (  8%  )  - 

 Communication with instructor  160 (  35%  )  120 (  26%  ) 

 Communication with peers  48 (  10%  )  96 (  21%  ) 

 Online communication.  Communication with the instructor  was extremely important to 
 students. Many expressed frustration that they could not interact in the way they had before the 
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 pandemic, for example,  “I think it was harder to ask questions online and explain where you are 
 going wrong because I couldn't actually show my teacher my work.”  Other students felt like they 
 could not reach their instructor, with one sharing,  “It became difficult to reach my teachers. They 
 didn't respond to emails and would quite often cancel their office hours.”  For some students, 
 online communication is much more comfortable than in person interactions. One participant 
 confided,  “ the general anxiety of in-class lectures  and having to stop a lecture to ask a question 
 in a giant room of 200+ people was eliminated with zoom questions. It was very easy to 
 communicate mid/post-lecture with my professor and ask questions.” 

 Roughly two thirds of students who mentioned communication with their peers in the remote 
 classroom discussed how much they missed the in-person experience and the limitations of 
 online engagement. One wrote, “  Breakout rooms for  group work don’t really work half the time, 
 no one likes to talk over zoom.”  For some students,  group work online created anxiety:  “It is 
 already stressful enough to work with strangers in person, but that is expected. Trying to work 
 with strangers online is even worse and ends up with no work getting done.”  On the other hand, 
 one third of students were satisfied with the online connections that they formed, with one 
 participant explaining,  “I was able to better connect  with the people online, as that I don't 
 particularly like in-person speaking, and could more effectively be a better classmate when 
 someone is stuck, and even make better friendships.” 

 Symptoms of Disaster 
 We also monitored responses for signs of negative outcomes after a disaster, such as fatalism 

 (  Zakour & Gillespie, 2013  ). Table 6 shows the number  of students exhibiting fatalism or erosion 
 of social trust.  One student wrote,  “quit school.  don’t even bother with online learning,”  while 
 another gave the advice  , “Mute your mic if you need  to cry.”  Some felt abandoned by their 
 instructor:  “My teacher gave up on my class when we  went online,”  while others felt abandoned 
 by their country:  “why care about a math test when  my country is letting thousands die?”  There 
 were several outpourings of anger at the university, the math department, or the instructor. 

 Table 6. Fatalism & erosion of social trust frequencies among the 461 participants. 

 Number of students exhibiting signs of… 

 Fatalism  47 (  10%  ) 

 Erosion of Social Trust  28 (  6%  ) 

 On the other hand, we also saw plentiful signs of students adapting to the emergency. A 
 student shared, “  I just want teachers to know they  are appreciated for their hard work during this 
 weird time in our lives  ,” and another wrote “  Stay  positive and keep doing what you are doing. We 
 appreciate everything you’ve done for us!  ” 

 Discussion and Conclusion 
 Internet infrastructure is a nation-wide level concern. This summer the National 

 Telecommunications and Information Administration (NTIA) released an interactive map that 
 shows the areas of the United States where citizens are not utilizing high-speed broadband 
 internet (McGill, 2021). When triggered by the COVID-19 hazard, this infrastructure liability led 
 to greater harm for certain students. As departments and individual teachers, we are not able to 
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 correct this vulnerability, but we can take measures to lessen the harm done to students by 
 adopting a position of grace and understanding. 

 Prior to 2020, there was a well-documented gap between the digital technologies available 
 and faculty utilization of these resources  (Bourrie,  Jones-Fermer, & Sankar, 2016). One primary 
 cause is lack of training and support at the university level. TopHat  surveyed 808 higher 
 education faculty and support staff in the United States and Canada and found that “40% and 
 38% of respondents who indicated that learning to use tools to teach synchronously and 
 asynchronously, respectively, has either been a small or non-existent part of the training they 
 received” (TopHat: Higher Ed, 2020). With the increased expectations on faculty to use digital 
 resources in the classroom, we hope to see universities invest more in support and training in 
 these technologies. 

 Increased documentation of what occurs during class has both the potential to increase access 
 to learning as well as to harm the learning process. From the lens of inclusive education (  Moriña, 
 2017)  or becoming a “student-ready-college” (McNair,  Albertine, Cooper, McDonald, & Major, 
 2016), recording class allows students with disabilities or students experiencing a challenge in 
 their personal life to still engage in education. However, increased documentation may lead to 
 students engaging in rote learning, rather than deeper comprehension of the subjects. In fact, 
 Lithner explains that this problem with memorizing over understanding predated the pandemic: 
 “  the gravity of the problem, as a main cause behind  learning difficulties, is not fully apprehended 
 by students, teachers, textbook writers, syllabus constructers, administrators, politicians, and 
 perhaps also among many researchers” (2008, p. 273). Further, prior to the pandemic, Muir 
 found that  online and in-person students utilized  online resources differently (2013). With the 
 blending of the online and face-to-face modes, further research is warranted into course 
 documentation that both supports inclusive education while also fostering relational 
 understanding over memorization. 

 The importance of communication in an effective emergency remote course is becoming 
 well-documented, see (  Lanius, Frugé Jones, Kao, Lazarus,  & Farrell, 2022  ), (Pagoto et al, 2021), 
 or (TopHat: COVID-19, 2020). This area is one where individual instructors can make an 
 impact, lessening the gap between capability and liability, removing a vulnerability in our 
 educational systems. It is unreasonable to expect a single instructor to reply to a massive volume 
 of student emails. However, by adopting more novel modes of communication, such as a digital 
 platform which allows students to ask questions in a class forum, instructors can find ways to 
 effectively and efficiently meet this student need. 

 Research limitations.  The primary limitation of our  data collection is that we administered it 
 through the internet, which poses a serious obstacle to documenting the experience of students 
 without internet access. We also may have a negative response bias, where students with a 
 negative experience with emergency remote learning might be more likely to respond. 

 Future directions.  We conducted a follow-up survey  in Summer 2021. We will complete an 
 analysis to see how our educational systems fared in a prolonged disaster state. In our 2020 data, 
 we see a potential for online education to decrease anxiety for some students. We will further 
 explore what aspects of the online environment can alleviate anxiety and how that might be 
 incorporated into the in-person classroom. Finally, with heightened documentation in classes, we 
 plan to explore how students are utilizing resources and the impact on their understanding. 
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Student Thinking in an Inquiry-Oriented Approach to Teaching Least Squares 
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 Arizona State University Virginia Tech Virginia Tech 
 
We present the results of a classroom teaching experiment for a recently designed unit for the 
Inquiry-Oriented Linear Algebra (IOLA) curriculum. The new unit addresses orthogonality and 
least squares using Realistic Mathematics Education design principles with the intent to 
implement the new unit in an IOI (Inquiry-Oriented Instruction)-style classroom. We present an 
analysis of students’ written responses to characterize how they thought about the notion of 
shortest distance, travel vectors, orthogonality, and dot product in the “Meeting Gauss” context.  

Keywords: Linear Algebra, Inquiry-Oriented Instruction, Least Squares Method 

Least squares in linear algebra is often introduced as a method for finding the “best possible 
solution” when solving a system of linear equations, a vector equation, or a matrix equation that 
has no exact solution. As part of a larger research project involving designing new linear algebra 
task sequences for classrooms implementing inquiry-oriented instruction (IOI), we designed a 
task sequence, the “Meeting Gauss” unit, that would facilitate student exploration in ℝ! of the 
notion of “best possible solution” and lead to the reinvention of the approximation equation 
𝐴"𝐴𝒙$ = 𝐴"𝒃, least squares solution 𝒙$, projection, and least squares error. In the Meeting Gauss 
task, students were asked if they could reach Gauss’ location using three transportation vectors. 
Students determined they could not reach Gauss and were tasked with finding a location that is 
closest to Gauss’ initial location. Gauss’ location is represented by a vector, 𝒈, in ℝ! located off 
the plane that is the span of the transportation vectors. The shortest distance Gauss could travel 
corresponds to the magnitude of the orthogonal vector pointing from Gauss’ location to the 
plane. We notate the shortest distance between Gauss and the meeting location as the length of 𝒆 
(error) to be minimized and the vector from the origin as 𝒑 (Figure 1). 

In this paper, we analyze two “snapshots” of student reasoning from the first and second day 
of a classroom teaching experiment (CTE) (Cobb, 2000) using students’ reflection writings as 
data. Our research question is: How do students interpret and use notions of shortest distance 
and travel vectors when learning least squares through an inquiry-oriented task in a linear 
algebra class? We investigate various ways students interpreted finding the “shortest distance” 
(i.e., how students determined which direction Gauss should travel so that his trip is the shortest 
possible distance). Further, we characterize students’ interpretations of the relationships (e.g., 
orthogonality, projection) that we perceive as important aspects for learning least squares.  

  
Figure 1. Meeting Gauss task setting in GeoGebra (Left) and Class instruction (Right) 
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Background Literature and Theoretical Framing 
There is little literature on the teaching or learning of least squares or closely related topics 

within the context of linear algebra. Turgut (2013) created a lesson in which students used 
Mathematica to solve least squares problems involving finding lines or curves of best fit. He 
reflected on how students’ use of these tasks incorporates Harel’s (2000) concreteness, necessity, 
and generalizability principles. Donevska-Todorova (2015) used Hillel’s (2000) three modes of 
description (arithmetic, geometric, and axiomatic) to explicate three definitions of dot product. 
Arithmetic referred to multiplying vector components and adding. Geometric referred to the 
cosine definition and the axiomatic definition was in terms of general properties. She also 
designed an applet to support students’ understanding of dot product of vectors in a dynamic 
geometry environment (DGE). Cooley et al. (2014) created a module for teaching dot product 
using the cosine of the angle between two vectors. Their task sequence focused on comparing 
frequency vectors to determine whether or not the same author wrote two different texts.  

Our instructional materials were designed to support students’ ideas and support instructors 
in facilitating conversations around students’ ideas. Students make mathematical progress as they 
participate in class and group discussion, ask questions, and explain their ideas. Instructors guide 
classroom activity by encouraging students to share their thoughts, asking their thinking about 
how and why they make decisions, and leveraging their ideas to move forward. Specifically, for 
developing our instructional sequence, we adopted the instructional design heuristics of Realistic 
Mathematics Education (RME) informed by Freudenthal (1991). When designing instructional 
task sequences, we leveraged the notion of guided reinvention to support students' transition 
towards more formal mathematics (Gravemeijer, 1999). From the students’ perspective they are 
not re-inventing anything, our intent with the least squares task sequence is to support students in 
advancing their mathematical activity through symbolizing, algorithmatizing, and defining 
(Rasmussen et al, 2005). We designed the “Meeting Gauss'' task in the least squares instructional 
sequence to be an experientially real starting point. This is similar to the Magic Carpet task in the 
first unit of the IOLA curriculum (Wawro et al., 2012; Wawro, Zandieh, et al., 2013). Students 
could engage in mathematical activity immediately, and their initial activity should constitute a 
basis for more formal mathematization. 

Rasmussen and Keene (2019) used a river journey metaphor to capture what many in the 
mathematics education research field know as hypothetical learning trajectories (Simon, 1995). 
We use the river journey metaphor intentionally to move away from the image of a learning 
trajectory as a singular path that a researcher hypothesizes as the only way to learn a particular 
idea. We agree with Rasmussen and Keene that the image of a learning trajectory as the only 
path to learn a mathematical idea is not representative of the learning process. Further, 
Rasmussen and Keene utilized the notion of waypoints (Corcoran, Mosher, & Rogat, 2009) from 
the learning progression literature as “islets” within their river journey metaphor, acknowledging 
that students may, or may not, visit each of the islets (waypoints) outlined in the river journey 
(learning progression). To be clear, Rasmussen and Keene’s waypoint journey for student 
reasoning about ODEs is a hypothetical research tool stemming from seven semester-long 
classroom teaching experiments and years of design-based research. The waypoint journey 
presented here is more of a “first journey down the river” in the context of a new task being used 
in an Inquiry-Oriented Linear Algebra (IOLA) classroom for the first time. 

Methodology and Research Setting 
This study is a part of a larger linear algebra curricular development project funded by the 

NSF. We conducted a classroom teaching experiment (CTE) to study the first implementation of 
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our instructional sequence and to study how students’ reasoning evolves throughout the task 
sequence (Cobb, 2000). The tasks implemented in the CTE used an experientially real situation 
designed to help students reinvent the least squares method. The CTE was conducted with STEM 
students in two Linear Algebra classes at a large public university of the Southeastern United 
States. Due to COVID-19, the course was taught synchronously online via Zoom. The course 
prerequisite a B or better in Calculus I or passing Calculus II. There were 33 students enrolled in 
one class and 38 students in the other. The CTE lasted four consecutive class days over the 
course of two weeks towards the end of semester. The fourth author was the course instructor 
and last author acted as a TA throughout the semester. The breakout group composition was kept 
as consistent as possible unless student absences necessitated the rearrangement of groups. In 
total, 22 students consented for their work to be used in research. 

Description of the Task 
The Meeting Gauss task begins with a callback to a previous IOLA task from earlier in the 

semester1. The vectors 𝒗𝟏, 𝒗𝟐 and 𝒗𝟑 are presented as three modes of transportation, Gauss lives 
at a location 𝒈 in 3D, and students are trying to determine where they can meet Gauss. The 
Meeting Gauss task is comprised of  two parts (Figure 2): (1) investigate if it is possible to reach 
Gauss at his specific location using the three modes of transportation, (2) explore the trips that 
you and Gauss should make given the fact that Gauss needs to meet you somewhere you can 
reach because his house (𝒈) is not reachable using the given modes of transportation (i.e., the 
travel vectors). 

 
Figure 2. Statement of the Meeting Gauss task 

On Day 1 of the CTE, students discussed their ideas related to Part 1 in breakout rooms. At 
the end of class, students were asked to write a reflection giving their initial thoughts, intuitions, 
or ideas for questions a)-d) of Part 2. On Day 2, the instructor began class by incorporating many 
of the students’ reflection writings into her mini-lecture. The instructor highlighted students’ 
reflections that incorporated Gauss’ shortest trip distance and the span of the travel vectors. In 
the first breakout session of Day 2, students used two previously created GeoGebra applets to 
further explore the second part of the Meeting Gauss task. Many of the breakout groups used the 
applets to obtain estimates for Part 2, questions a)-d). Afterwards, students were called back to 
the whole class session to share their ideas with other groups and to listen to a set of mini-
lectures about lengths of vectors and dot products. In addition to the given transportation vectors 
𝒗𝟏, 𝒗𝟐, 𝒗𝟑, and the Gauss vector 𝒈 from Part 1, the instructor defined the vector Gauss travels 

 
1 In particular, Task 3 from the “Magic Carpet Ride” unit, which introduced linear independence (Wawro et al., 
2012). 
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along as 𝒆 and the vector from the origin to the meeting point as 𝒑 (as pictured in Figure 1). In 
the second breakout session, students were tasked with using the given information and 
mathematical relationships developed during class (see Figure 3) to provide exact solutions to a)-
d). After Day 2, students wrote a reflection summarizing the progress either they or their group 
made in finding the exact answers for questions a)-d) along with something that was clear and 
something that they wondered about. 

  
 

Figure 3. The known information and mathematical relationships developed during class. 

Data Sources and Analytic Method 
Our data sources include classroom videos, breakout group videos, Jamboard pages, and 

students’ reflections. The whole class discussions and the breakout sessions were recorded via 
Zoom by the last two authors. The students used Jamboard to communicate and record their 
work in breakout rooms. Students’ reflection writings submitted after Day 1 and Day 2 of the 
CTE were our main data source. The first two authors watched the whole class discussions and 
breakout group videos to gain a sense of how class was organized. The first two authors 
reviewed the Jamboard pages to see how students expressed their mathematical ideas during the 
breakout discussion. Consenting students were given pseudonyms, and their reflection writings 
were deidentified and transcribed by the last author. The first two authors engaged in open 
coding (Strauss & Corbin, 1990) of all four days of student reflections. A code book was created 
from attending to both (1) student thinking and (2) their descriptions of their 
methods/symbolization. We used our set of 26 initial codes to analyze students’ Day 1 and Day 2 
reflections line by line in a spreadsheet. After our initial pass at coding students’ Day 1 and Day 
2 reflections we identified several categories that emerged within and across our codes. Figure 4 
displays our final categories and codes, which were agreed upon by the first three authors. Our 
process of creating an initial set of codes that identify trends within and across our data is 
consistent with an emergent coding method (Glaser & Strauss, 2017). 

Results 
Our findings can be thought of as two snapshots on the river journey. The first snapshot 

captured students’ reflections at the end of Day 1. From their reflections, students were 
beginning to recognize a number of features of the Meeting Gauss scenario and how those are 
related. Day 1 reflections are grouped into two themes: (1) shortest distance and (2) the location 
of the transportation vectors. Students wrote about shortest distance as (1) a point-to-point trip, 
(2) an orthogonal/perpendicular direction, and as (3) ways to find the distance including the 
distance formula, the Pythagorean theorem, and trial and error. The second snapshot captures 
students’ reflections at the end of Day 2. From their second reflection, students had moved down 
the river in various ways. We grouped their writing into (1) a more developed notion of the error 
vector, 𝒆, as perpendicular to the plane and transportation vectors, (2) the dot product as 
providing information about orthogonality and ways to calculate relationships between vectors, 
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and (3) the use of matrix multiplication and systems of linear equations (SLEs) to symbolize the 
relationships between the perpendicular vectors in ways that allow for finding the error vector.   

 
Figure 4. Overview of codes from students’ Day 1 and Day 2 of the CTE reflection writing.  

First Day of the CTE Snapshot Analysis 
On Day 1, most students used row reduction to conclude that Gauss is not reachable using 

the transportation vectors (see Figure 5). Some students included geometric explanations in their 
reflections including descriptions of how the span of the transportation vectors was a plane. 

 
Figure 5. A snippet of a group’s Jamboard from working on Part 1 of the Meeting Gauss task. 

Most students recognized that Gauss can travel around freely to meet the traveler, but the 
traveler’s movement is restricted to use of the given transportation vectors. We will now present 
examples from students’ reflections demonstrating our codes pictured in Figure 4. 

Interpretation of shortest distance. Our analysis revealed that students’ intuitive notions of 
Gauss’ shortest travel distance included ideas such as point-to-point distance and orthogonality. 
Ten students answered that they needed to determine the shortest distance between two points: 
Gauss’ location and the point on the plane closest to Gauss. For example, “We can minimize the 
distance from the point to a point,” (Cecil), and “Gauss should take the shortest distance from 
his point (-1, 1, 4) to the closest point on the plane our transportation modes cover,” (Iliana). 
Some of the students’ thinking of the point-to-point distance indicated that they would apply the 
distance formula or a calculus-based methods to minimize the distance. Five students noted that 
Gauss’s path is perpendicular to the plane. Some of those students also noted that the span of the 
travel vectors is the plane. For example, “If I had to imagine, Gauss would travel in a straight 
line orthogonal to the plane formed by the three vectors,” (Liam) and “…the vector he travels 
along should be perpendicular to the final mode of transportation’s vector” (Luka).  

Some students mentioned how they would calculate the shortest distance. We view each of 
the following methods used for measuring the shortest distance as related to point-to-point 
distance thinking:  distance formula, Pythagorean theorem, and trial and error. Three students 
explicitly mentioned that they would apply or did apply the distance formula. For example, “Not 
sure how to calculate distance, maybe plot the vectors and then use distance formula,”(Damien). 
Tuan did apply the distance formula “Distance: sqrt((-1-(-1))^2+(-1-(-2))^2+(-1-(-5))^2) = 

24th Annual Conference on Research in Undergraduate Mathematics Education 353



 

sqrt(0+1+16) = sqrt(17),” There were two students who mentioned they would use the 
Pythagorean theorem to find the shortest distance. For instance, “We could use pythagroas 
theorem to find the distance of the projection,” (Anton). 

Interpretation of transportation vectors. Our analysis further revealed that students 
thought about the transportation vectors in various ways. Some students tended explicitly to the 
notion of span such as vectors generate the plane or vectors generate a line. While 13 students 
mentioned the transportation vectors generate the plane, not every student explicitly mentioned 
where the plane came from. Other students explicitly used the terms span or linear combination 
in their descriptions. For example, “The way I am thinking about this is to locate a spot that is 
within the area that the 3 vectors span,” (Ani), “Since Gauss is getting to the plane that is the 
span of the three modes of transportation, a linear combination of the three vectors will get us 
there as well,” (Lureyna). Lureyna’s response tends specifically to both the idea that the span of 
the transportation vectors creates the plane, and the traveler must use those modes of 
transportation to reach the meeting point with Gauss.  

Second Day of the CTE Snapshot Analysis 
In the following three subsections, we briefly outline the various sections of the river that 

students went down in the second snapshot from Day 2 of the CTE. Each subsection corresponds 
to one of three groupings of students’ responses outlined in Figure 4. 

The ‘e’ (error) vector is orthogonal to the plane. Our analysis revealed that students’ 
description of orthogonality between the vector 𝒆 and the plane is multifaceted. We categorized 
their descriptions into two ways: (1) The 𝒆 vector is orthogonal to the plane, (2) The 𝒆 vector is 
orthogonal to the vectors that constitute the plane. For example, “...We knew that the line of 
travel from Gauss to the plane must be orthogonal to the plane...” (Bianca). From Bianca’s 
response, we see that she made a connection between the plane and the orthogonal path to said 
plane. On the other hand, some students stated the e vector is orthogonal all vectors parallel to 
the plane. For instance, “I know that e has to be orthogonal to p and v1, v2,” (Annalisa).  

  
Figure 6.  Lucia’s pictures from her CTE Day 2 reflection 

Dot product and orthogonality. After students returned from the first breakout group 
session, the instructor gave a set of mini-lectures deriving the lengths of vectors and defining dot 
product. Students’ written descriptions about how they thought about dot product was subtle and 
sometimes difficult to characterize. For example, Lucia stated (Figure 6, right), “The vectors p 
and e create vector g, from origin to Gauss, and the dot product of p and e is zero because they 
are perpendicular,”. Lucia seemed aware that orthogonality is related to dot product. She also 
mentioned “ We had tried to combine the statements p·e=0, e·v1=0, and e·v2=0 into one big 
equation, and I think you can eliminate the ||e|| from all sides, but the issue is that I do not know 
how to get the angles between the different vectors and such,” (Lucia). From Lucia’s complete 
response, it was possible to determine she was leveraging the cosine definition of the dot product 
in her thinking. Further, some students expressed the orthogonal relationship between the error 
vector (𝒆) into a system of dot product equations (Figure 7, left). Other students mentioned that 
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they knew they could use the dot product equations in some manner, but it was unclear if they 
were thinking about orthogonality. There were some students who seemed to try connecting dot 
product with the transportation vectors and the 𝒆 vector but were not comfortable with the 
transition towards a more formal mathematical expression. For example, “...looked at plugging 
in the v1 and v2 vectors into their dot product equations with e ...using the coefficients we found 
as a matrix, whose dot product with e was 0. This didn't make much sense to me...” (Iliana). 

Systems of equations and the matrix equation. Some students appeared to be moving 
towards formalizing the notion that the 𝒆 (error) vector was orthogonal to each travel vector to 
create a matrix equation 𝑨𝑻𝒆 = 𝟎 using their system of dot product equations. For example, 
“From the dot product of e and v1 and the dot product of 𝑒 and 𝑣2, we were able to create a 
matrix, [[111], [638]], which when multiplied by 𝑒 would equal 0... if two vectors are 
orthogonal, their dot product must be zero, which is very helpful...” (Lureyna) and “...we had the 
matrix 𝐴 that was 𝑣1, 𝑣2 times 𝑒	(𝑥	𝑦	𝑧) 	= 0…but didn’t know where to go from there...I know 
that e has to be orthogonal to 𝑝 and 𝑣1, 𝑣2,” (Annalisa). Other students, like Cecil (Figure 7, 
middle), expanded his dot product equations into a system of linear equations (SLE). Cecil used 
a SLE to write a matrix equation that we recognize as 𝑨𝑻𝒆 = 𝟎. We are unsure how Cecil 
thought about the result of his row reduction since he stopped after row reducing.  

  
Figure 7.  Min’s(Left), Cecil’s (Middle), Vaki’s (Right) written solution. 

Discussion 
In the first journey down the river of developing the least squares solution method, we see 

that some of the students leveraged their intuitive notions of shortest distance and the span of the 
transportation vectors towards a more formal symbolization using the dot product. Students 
traveled down the river in their own way, spending different amounts of time on each piece of 
the river journey as seen in the variety of answers within both snapshots. One takeaway is that 
the least squares river journey may require more time in more areas than others. Vaki was one of 
the only students to interpret 𝒙$ as the amounts to travel on each mode of transportation to meet 
Gauss. This meaning of 𝒙$ is what we as experts recognize as the least squares solution to the 
Meeting Gauss context. This paper is limited to an analysis of the first two days of the CTE. 
Future work may investigate students’ progress on the final two days in formalizing their 
thinking towards reinventing the least squares solution 𝒙$ = (𝐴"𝐴)'(𝐴"𝒃. On our next journey 
down the least squares river, we intend to reflect on where students ended at the end of each day 
of the CTE to inform future revisions of the Meeting Gauss context within the IOLA curriculum.  
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Learning to Teach Reasoning and Proof in an Online Setting: The Case of Nancy  
 

 Jinqing Liu Orly Buchbinder 
 University of New Hampshire University of New Hampshire 

Preparing prospective secondary teachers (PSTs) to teach mathematics with a focus on 
reasoning and proving is an important goal for teacher education programs. A capstone course, 
Mathematical Reasoning and Proving for Secondary Teachers, was designed to address this 
goal. One component of the course was a school-based experience in which the PSTs designed 
and taught four proof-oriented lessons in local schools, video recorded these lessons, and 
reflected on them. In this paper, we focus on one PST – Nancy, who took the course in Fall 2020 
during the pandemic, when the school-based experience moved online. We analyzed how 
Nancy’s Mathematical Knowledge for Teaching Proof (MKT-P) evolved through her attempts to 
teach proof online and through repeated cycles of reflection.     

Keywords: Reasoning and Proof, Prospective Secondary Teachers, Online Teaching, Reflection.  

Supporting prospective teachers developing skills needed to teach mathematical reasoning 
and proof is an important goal of mathematics teacher preparation (Association of Mathematics 
Teacher Educators, 2017). However, there is limited theoretical or practical knowledge on how 
to provide prospective teachers with such support (Stylianides, Stylianides, & Weber, 2017). To 
address this knowledge gap, Buchbinder and McCrone (2018, 2020) developed a capstone course 
Mathematical Reasoning and Proof for Secondary Teachers and studied the development of 
PSTs’ dispositions towards proof and Mathematical Knowledge for Teaching Proof (MKT-P), 
with a particular focus on the manifestations of MKT-P in classroom practices. Among other 
things, this involves an ability to plan and enact proof-oriented lessons.   

The breakout of the global pandemic and the schools’ pivoting to online teaching in 2020 put 
additional demands on PSTs who had to learn how to teach proof online “on the spot.” We report 
on a case study of one such PST, Nancy (a pseudonym), who successfully surmounted these 
challenges. Rather than choosing a “representative” case, by focusing on a successful and 
articulate PST like Nancy and studying her learning processes and strategies, we hoped to gain 
insights that could inform the mathematics education community (Seawright & Gerring, 2008). 

Theoretical Framing 

Mathematical Knowledge for Teaching Proof  
It has been suggested that in order to support students’ learning of reasoning and proof, 

teachers need a special type of knowledge: Mathematical Knowledge for Teaching Proof (MKT-
P). Several researchers (e.g., Lesseig, 2016; Stylianides, 2011; Steele & Rogers, 2012) proposed 
frameworks delineating the components of MKT-P and the relationships among them. Akin to 
Steele and Rogers’s (2012) approach, Buchbinder and McCrone (2020) conceptualized MKT-P 
beyond declarative knowledge captured by written tests to include related classroom practices. 
Their resulting framework comprised three facets: Knowledge of the Logical Aspects of Proof 
(KLAP), Knowledge of Content and Students (KCS-P), and Knowledge of Content and Teaching 
(KCT-P). Each knowledge facet has its corresponding classroom practices. In the context of 
mathematics classrooms, KLAP corresponds to the use of precise mathematical language and 
notation adjusted to students’ grade level, and the remediation of students' reasoning errors. 
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KCS-P corresponds to facilitating discussions that address students' common proof-related 
misconceptions and make proof concepts explicit. KCT-P corresponds to designing and enacting 
proof-oriented tasks. The three knowledge facets are interrelated, e.g., designing proof-related 
tasks (KCT-P) requires knowledge of students’ proof-related conceptions (KCS-P) and proof-
specific subject matter knowledge (KLAP). Distinctions between the MKT-P facets aided the 
design of learning experiences enhancing PSTs’ MKT-P and the design of MKT-P assessments 
both in written form and through lesson planning and enacting (Buchbinder & McCrone, 2021).   

Reflective Noticing 
Teachers advance their professional expertise by reflecting on teaching (Seidel et al., 2011), 

which, in turn, entails teachers noticing elements of classroom environments that are most likely 
to support student learning (Sherin, Jacobs & Philipp, 2011). Although many definitions of 
noticing exist, we follow Stockero’s (2021) definition of noticing as comprised of attending and 
interpreting. While noticing is often tacit, reflecting requires conscious engagement and 
processing. In this paper, we use the term reflective noticing to capture both of these processes. 

There are several types of reflection according to timing: reflection-in-action, which occurs 
during teaching; reflection-on-action, which occurs after teaching (McDuffie, 2004; Schön, 
1987), and reflection-for-action, which connects particular events to future actions (Jay & 
Johnson, 2002). Since merely descriptive, anecdotal, or non-critical accounts of teaching have 
little benefits for learning, researchers suggested that productive reflection entails attending to 
multiple aspects of classroom environments; interpreting, analyzing, and integrating them, and 
connecting them to theoretical principles, future actions, and past experiences (Moore-Russo & 
Wilsey, 2014). We take the last part of this definition - connecting to the past experiences –as yet 
another type of reflection: reflection-back.    

Although PSTs often do not have access to classrooms, whenever possible, PSTs should be 
encouraged to reflect on their teaching (Jacobs et al., 2010; van Es, 2011). Learning to notice and 
analyze classroom instruction has been shown to benefit PSTs’ professional development 
(Stockero, 2021). Similarly, Buchbinder et al. (2021) identified a variety of learning 
opportunities afforded by PSTs reflecting on their own teaching using 360° video technology.  

In this study, we examine an overarching question: “How did Nancy’s MKT-P evolve as a 
result of her planning, enacting, and reflecting on four proof-oriented lessons? We operationalize 
this question by examining: 

1. How did Nancy integrate reasoning and proof in her planned and enacted lessons?   
2. What did Nancy notice in the video recording of her lessons; how did she reflect on her 

lessons, and what learning was afforded by this?   

Methods 
This study is a part of the larger project that designed and studied the capstone course 

Mathematical Reasoning and Proving for Secondary Teachers (Buchbinder & McCrone, 
2020). The course includes four modules, each focusing on one proof theme: (1) direct proof and 
argument evaluation (DP); (2) conditional statements (CS), (3) quantification and the role of 
examples in proving (RE), and (4) indirect reasoning (IR). Each module includes activities to 
help PSTs crystalize their subject matter knowledge of a particular proof theme, connect that 
knowledge to students’ proof-related (mis)conceptions and to secondary curriculum, and apply 
that knowledge through a structured, school-based teaching experience. In this experience, the 
PSTs plan a 50-minute lesson on a particular proof theme, enact the lesson with a group of 
students from local schools, record the lesson using 360° cameras that capture both students and 
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the PST, and reflect on the lesson. This process repeats four times during a semester, once for 
each proof theme. In Fall 2020, due to the pandemic, the PSTs taught their lessons online, via 
Zoom. Otherwise, the structure of the course remained the same.   

The Case of Nancy 
Nancy was a senior mathematics education major in a high school certification track. Prior to 

taking the capstone course, Nancy completed a prerequisite course on Mathematical Proof, a 
proof-writing-intensive Geometry course, and one Mathematics Education course. Nancy was a 
straight-A student in both mathematical and educational coursework. She regularly tutored 
undergraduate students taking entry-level calculus courses at the university tutoring center but 
had no classroom teaching experience. Like other PSTs in the course, Nancy completed the pre-
and post- MKT-P questionnaire and Dispositions towards Proof survey (Buchbinder & McCrone, 
2021). Her high scores on the pre- instruments indicated strong mathematical knowledge and 
positive dispositions towards proof. In addition, Nancy was very articulate and active during the 
class discussions, making her a strong case to study (Seawright & Gerring, 2008).   

Nancy was placed in Ms. Meyer’s high school geometry classroom. Due to the pandemic, a 
yearly geometry course was condensed to one semester, and Ms. Mayer relied on Nancy to plan 
lessons closely aligned with her curriculum. Ms. Meyer taught the whole class via Zoom for 
about 30 minutes and then divided students into two groups: one group remained with her, while 
another group (6 – 7 students) learned with Nancy. Ms. Meyer determined the geometric topic of 
the lesson, while the capstone course schedule dictated the proof theme.   

Data Sources and Analytic Techniques 
Data sources include four of Nancy’s lesson plans, four Zoom video recordings of the 

lessons, and four reflection reports. To analyze planned and enacted lessons, we used analytic 
techniques developed in our prior research (Buchbinder & McCrone, 2020), outlined here 
briefly.  

We analyzed the lesson plans by first noting the percent of time planned for reasoning and 
proof integration. We also ranked each lesson plan on a three-point scale (high, medium, or low) 
on three dimensions: (1) the extent to which the plan focused on the intended proof theme, (2) 
the alignment between the objectives and the tasks, (3) how appropriate was the choice of 
technology for proof integration.   

The videos of the enacted lessons were analyzed using the Lesson Enactment Rubric 
(Buchbinder & McCrone, 2020), aligned with the MKT-P framework. The rubric has three 
dimensions: quality of proof-specific language (KLAP), making the proof theme explicit to 
students (KCS-P), and actions for promoting student engagement with proof (KCT-P). Each 
lesson was ranked on a three-point scale (high, medium, low) on each of these three dimensions.  

When completing the reflection reports, the PSTs watched the video on Canvas Learning 
Management System and used the commenting feature to write reflective comments for every 5-
minutes, about 8-9 total comments per lesson. Using open coding (Strauss & Corbin, 1994) in 
conjunction with the noticing literature (e.g., Stockero, 2021; van Es, 2011), we identified four 
main categories of noticing in Nancy’s comments. These are (1) instructional decisions, e.g., 
‘One teaching move that I liked during this lesson was creating a theme for the lesson.”; (2) 
student engagement, e.g., “I was impressed that one of the students was able to see that”; (3) 
technology, e.g., “I think the transition from the Prezi presentation to GeoGebra was pretty 
smooth,” and (4) time, e.g., “I felt pretty crunched for time.” We also coded whether Nancy 
reflected on-, for-, or back- on her teaching (see examples in the Results section).  
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Results  

Abbreviated Summaries of Nancy’s Proof-Oriented Lesson Plans  
Lesson 1. Direct proof and argument evaluation: Supplementary and Vertical angles. Initial 

group discussion: “what makes a good two-column proof”? Expected responses: generality, 
mathematical correctness, but can follow different paths. Teacher-led exploration of Vertical 
angles theorem using GeoGebra; first with specific angle values, followed by a generalization. 
Students contribute ideas as the teacher writes the proof.    

Lesson 2: Conditional statements: Isosceles and Equilateral Triangles. Introduction of a 
conditional statement and its converse and using mathematical examples (Prezi). Student-led 
exploration in GeoGebra of three conditional statements about triangles. For each statement, 
students first determine if it is true or false (if false, construct a counterexample), then write a 
converse and determine whether the converse is true or false. 

Lesson 3: Quantification and the role of examples: Triangle Similarity Theorems. 
Introduction of universal and existential statements; the role of examples in proving/disproving 
universal statements. A reminder of the three similarity theorems. Students work on one SSS 
similarity proof by typing their work on an individual slide in a shared Google Slides document. 
Next, students find counterexamples to three universal statements (e.g., All isosceles triangles 
are similar) and find confirming examples proving two existential statements (e.g., There exist 
two right triangles that are similar). 

Lesson 4: Indirect reasoning: Coordinate proofs. The lesson is structured as a game, “The 
Quadrilateral Detective,” where students use distance and slope formulas to determine what type 
of quadrilateral is given by a set of four coordinates. Next, students create two statements of the 
form “This quadrilateral cannot be ___, because otherwise ___,” e.g., “The quadrilateral cannot 
be a kite because otherwise it would have no pairs of parallel sides.” After one teacher-led 
example, students work individually; write their proofs on paper, take a picture and paste it into a 
shared Google Slides document. Indirect reasoning is defined during the lesson summary as “a 
type of reasoning that shows that something is impossible since it leads to a contradiction.” 

As the description above shows, Nancy succeeded in integrating each of the four proof 
themes with the mathematical topics requested by Ms. Meyer in creative and engaging ways. 
Each lesson had 3-4 objectives, all focused on reasoning and proof, e.g., “Students will come up 
with counterexamples to disprove mathematical statements,” and additional objectives related to 
student engagement in mathematical discussions. The tasks were closely aligned with the proof 
theme and with the mathematical content of the lesson. The lesson plans were written in a high 
level of detail. The percent of time planned for reasoning and proof in each lesson was above 
67%, while the rest of the time was devoted to icebreakers in the beginning of the lesson and exit 
tickets at the end. Nancy’s plans used a variety of technological tools: GeoGebra, Prezi, Google 
Slides to facilitate active student engagement.  

Nancy’s Enactment of the Four Proof-Oriented Lessons 
Nancy’s enacted lessons closely matched the planned ones in terms of content, but not the 

time. Nancy’s lessons were planned for 30 minutes, but since the students had no other class 
afterward, they stayed between 34 to 56 minutes, allowing Nancy to finish all the planned 
activities. Table 1 summarizes the analysis of the enacted lessons. Throughout the lessons, 
Nancy used precise mathematical language and proof-specific vocabulary to discuss proof 
themes with the students. She used appropriate visual, symbolic, and verbal methods to make the 
main concepts and key ideas of the proof themes explicit to students. The percent of lesson time 
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devoted to reasoning and proof was very high (above 80%), although the time devoted to the 
proof themes differed between the four lessons. The two proof themes: Role of Examples and 
Indirect Reasoning received much less class time and were less of the focal point of the lesson, 
which is consistent with the lesson plans. Nevertheless, Nancy still explicitly addressed these 
proof themes in her lessons. The first two enacted lessons - Direct Proof and Conditional 
Statements - were highly successful on almost all dimensions of the Lesson Enactment Rubric.   

Table 1. Analysis of Nancy’s Four Proof-oriented Enacted Lessons 
Dimension on the Lesson Enactment Rubric Lesson 
 1DP 2CS 3RE 4IR 
Quality of proof-specific language (KLAP) High High High Medium 
Explicating specific proof-theme (KCS-P)  High High Medium Medium 
Actions to promote student engagement (KCT-P ) Medium High High High 
Percent of time devoted to proof (KCT-P / KCS-P) 83% 84% 91% 82% 
Percent of time devoted to the proof theme  83% 84% 30% 25% 

Nancy’s Reflective Noticing on the Enacted Lessons  
Figure 1 shows the distribution of Nancy’s categories on noticing in percent of the total 

number of comments, which varied by lesson. In the first lesson, Nancy mainly reflected on how 
her instructional decisions affected student engagement. In lessons two and three, the focus of 
reflection shifted away from instructional decisions towards technology and time management. 
This was when Nancy started having students themselves interact with technology (GeoGebra, 
Google Slides) providing space for productive struggle and free exploration. By doing so, Nancy 
had less control over the time spent on each planned activity and thus encountered challenges in 
coordinating technology, content, and time. The Indirect Reasoning lesson was most challenging 
for Nancy to enact, as evident in the percent of reflective comments focused on her instruction.   

 

 
Figure 1. Distribution of Nancy’s categories of noticing across four lessons  

Table 2 shows the distribution of Nancy’s reflective comments along with the four categories 
of noticing and the three types of reflection: on, for and back.  
Table 2. Distribution of Nancy’s categories of noticing and types of reflection  
Categories of Noticing Reflection on  Reflection for Reflection back Total 
Instructional decisions 11 5 1 17 
Student Engagement 6 6 2 14 
Technology  6 4 1 11 
Time 5 2 2 9 
Total  28 17 6 51 
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Table 2 shows that the total number of Nancy’s reflections-on (only) was much larger than 
the number of reflections-for, which, in turn, was larger than the total number of reflections-
back. Most of Nancy’s reflections-on focused on her instructional decisions. When reflecting-for, 
Nancy focused almost exclusively on instruction, students, and technology; when reflecting-back 
Nancy attended to all four categories.  

The following excerpt illustrates the three types of reflection in Nancy’s comments. In lesson 
#1, Nancy attempted to develop a set of criteria for a “good” proof with the students.  

Nancy: What do you need [in order] to make our proof a good proof? 
S1: Uhm, you need a proof.  
Nancy: Yeah, so, we need a proof, right? So we need to be able to show that we can start 

with our given and then come up with our solution, right? So what are the parts are there 
in the proof? So we have two parts, right? So what are they to make up the two parts or 
the two columns?  

When reflecting-on this exchange while watching the video, Nancy wrote: “one student said 
that you need a proof, when asked what makes up a "good" proof. This wasn't exactly what I was 
looking for. It was too general, but I tried to guide her response and make it more specific”. 
Nancy followed by a comment reflecting-for the future: “What I should have done was ask the 
student directly and say something like "I like that idea, S1, what do you mean by that?" Then it 
would give her a chance to elaborate.” In lesson #2, Nancy had a chance to act on her intentions 
and reflect-back on her improvement. She wrote: “I asked them what bisecting means. This is 
important because I wanted to make sure that they understood what the conditional statement 
was saying. […] I liked this part is because I asked this question as a follow up to a student’s 
answer and that was something that I had mentioned wanting to work on after last time”.  

This progression shows how the three types of Nancy’s reflections played out to support her 
gradual improvement of responding to student inputs and leading discussions about proof. Figure 
2 shows the distribution of different types of Nancy’s reflections in each lesson.   

 

 
Figure 2. Distribution of Nancy’s types of reflection across four lessons 

Not surprisingly, the majority of Nancy’s reflective comments were on the particular lesson 
she taught. Nancy learned from the teaching experience by making decisions on how to improve 
her teaching (reflecting-for) and kept herself accountable for these changes by reflecting-back. 
These processes supported Nancy’s learning through reflecting on her own teaching practices.  

Discussion 
This paper examined the case of Nancy – a PSTs with a strong mathematical background and 

positive dispositions towards proof – as she progressed through a capstone course Mathematical 
Reasoning and Proof for Secondary Teachers. We attempted to trace how Nancy’s MKT-P 
classroom practices evolved throughout the teaching experience component of the course. In 
particular, we focused on Nancy’s ability to plan and enact proof-oriented lessons. Our analysis 
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revealed that Nancy integrated the four proof themes with the topics from a regular geometry 
curriculum using creative and engaging activities, as evidenced in the description of her lesson 
plans. This is a non-trivial accomplishment, especially since the choices of the mathematical 
topics and the proof themes were outside of Nancy’s control, and due to the shift online.   

The analysis above shows that the Role of Examples and Indirect Reasoning proof-themes 
were most challenging for Nancy to integrate into the lesson plans and to enact (Table 1). This 
outcome concurs with the results of the previous study (Buchbinder & McCrone, 2020). The fact 
that the Indirect Reasoning lesson occurs towards the end of the course is probably a contributing 
factor, especially when the natural end-of-semester fatigue is exacerbated by the pandemic.  

Not surprisingly, Nancy’s enacted lessons differed from the planned ones (Stein, Remillard 
& Smith, 2007). When judging the enacted lessons, it is important to note that Nancy’s 
educational coursework did not prepare her to teach online – she had to come up with teaching 
strategies and technological tools that were new to her and to the students. This willingness to 
take pedagogical risks makes Nancy’s teaching performance even more impressive.  

While reflecting on the video of her lessons, Nancy noticed four main aspects: instructional 
moves, student engagement, timing, and technology. The first three categories of noticing are 
consistent with those of Sherin and van Es (2005) and Stockero (2021). Nancy’s focus on 
technology is understandable due to the unusual and unfamiliar circumstances of online teaching. 
As Nancy became more comfortable with the students and her own teaching, she tried new 
teaching approaches, e.g., having students explore conjectures in GeoGebra and naturally 
encountered new challenges, causing her noticing to shift towards technology and time.  

Further examination revealed that Nancy used three types of reflections: on a particular 
lesson, for future practice, and back to past lessons. Collectively, these three types of reflection 
are characteristic of productive reflection (Jay & Johnson, 2002; Moore-Russo & Wilsey, 2014). 
Indeed, Nancy went through repeated cycles of identifying areas for improvement (reflect-on), 
devising a course of action (reflect-for), and checking her progress with respect to previous 
lessons (reflecting-back) (Figure 2). Developing purposeful and explicit reflective practices 
allowed Nancy to leverage her challenges into learning opportunities (Tekkumru-Kisa et al., 
2020) and helped her to learn how to learn from teaching (Hiebert, Morris, & Glass, 2003).  

Interpreting Nancy’s teaching performance in terms of the MKT-P framework suggests that 
her areas of strength were the quality of proof-oriented language (KLAP) and actions for 
promoting student engagement (KCT) (Table 1). The areas of improvement, which Nancy 
reflected –on, for, and back were facilitating discussions (KCS) and using productive teaching 
moves (KCT), as evidenced in the data excerpt. 

Nancy’s case serves as a “proof of existence” that it is possible to support PSTs learning 
teach reasoning and proof through a structured educational experience of the kind provided by 
the capstone course described above. Nancy’s challenges are not unique and sometimes are even 
more pronounced with less advanced PSTs (Buchbinder and McCrone, 2020). What we found 
unique and enlightening is how Nancy addressed those challenges and how her reflective 
practices seem to support her professional growth. Teacher educators can model and promote the 
use of such reflective practices to support PSTs’ professional growth in other teacher preparation 
programs. 
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We discuss results of a second research cycle on student understanding of the differential 

calculus of functions of two variables, focusing on the role that slope plays in a meaningful 

understanding of plane, tangent plane, total differential, and directional derivative. Results 

compare the performance of students in a section that used research-based activities and a 

corresponding pedagogical strategy, to that of students in a regular section. We show how 

students using the research-based activities were able to construct slope as an object they could 

build upon in order to understand other important notions of the differential calculus, while 

students in the regular section showed the same understandings of slope in the differential 

calculus as reported in previous studies. 

Keywords: functions of two-variables, APOS, slope, differential calculus, multivariable calculus 

Multivariable calculus is important to model different phenomena in science, mathematics, 

engineering, and other fields. However, its teaching and learning has not been as fully explored 

as that of one-variable functions (Martínez-Planell & Trigueros, 2021). In particular, there are 

relatively few publications dealing with the didactics of its differential calculus (e.g., Weber, 

2015; Bajracharya et al., 2019; Moreno-Arotzena et al., 2020). Martínez-Planell, Trigueros, and 

McGee (2015, 2017) and Trigueros, Martínez-Planell, and McGee (2018) presented the results of 

a first cycle of research on student understanding of the differential calculus of two-variable 

functions. In these studies, they used an idea of Tall (1992) to emphasize the local linearity of 

differentiable two-variable functions. Martínez-Planell et al. (2015) started with a model of 

mental constructions (genetic decomposition) that builds upon the notion of slope in 3D, to 

describe how students may construct the idea of vertical change on a plane (see Figure 1). Then, 

this idea was used in the model to describe how students might construct the point-slopes 

equation of a plane, tangent plane, total differential, and directional derivatives. The model was 

tested with student interviews and results of the study led to refining the genetic decomposition 

and designing pedagogical activities to help student do the revised proposed constructions. A 

second research cycle was then undertaken to test the refined genetic decomposition. Here we 

report some of its results. Our research question is: what is the effect of a research-based activity 

set on student understanding of slope and the differential calculus of two-variable functions? 

Theoretical Framework 

We use Action-Process-Object-Schema (APOS) theory (Arnon et al., 2014). In APOS an 

Action is a transformation of a mathematical object that the individual perceives as external. This 

perception results from its relative isolation from other mathematical knowledge of the 

individual, who, as a consequence, will not be able to justify the Action. An Action could be the 

rigid application of a procedure, which may have been memorized. When an Action is repeated 

and the individual reflects on the Action, it might be interiorized into a Process. A Process is 

perceived as internal and this allows the individual to omit steps, anticipate results, and thus 

generate dynamical imagery of the Process, without having to explicitly perform it. The 

individual will also be able to justify the Process. When the individual is able to think of the 
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Process as a whole in itself, the Process is encapsulated into an Object and the individual is able 

to do Actions on it. A Schema is a coherent collection of Actions, Processes, Objects, and other 

previously constructed Schemas dealing with a specific mathematical notion.  

The progression from Action, to Process, and then to Object conceptions, may appear as a 

dialectical progression where students may appear to go back and forth between stages, as they 

assimilate new problem situations to their existing Schemas, or accommodate the Schemas to 

deal with new problem situations. Hence, in order to classify an individual’s conception of a 

mathematical notion, one needs to consider the individual’s overall tendency on different 

problem situations involving the concept. A model proposed in terms of the structures and 

mechanisms of APOS of how a student may construct a particular mathematical notion is called 

a genetic decomposition (GD). A didactic strategy frequently used in APOS studies and the 

implementation of APOS-based activities is the ACE cycle (work in small groups of students, 

class discussion, and exercises for home). This strategy foments reflection, necessary for the 

construction of Processes and Objects. 

 
Figure 1. Vertical change on a plane  ∆𝑧 = 𝑚𝑥∆𝑥 + 𝑚𝑦∆𝑦. 

Methodology 

In this study we used research-based activities resulting from a previous research cycle 

(Martínez-Planell et al., 2015) together with the ACE didactical strategy in a section (APOS 

section) taught by one of the researchers, while another section (regular section) taught by an 

experienced professor, not one of the researchers, used mainly lectures with the usual textbook 

exercises. Eleven students from each section volunteered to participate in post-semester semi-

structured interviews, designed to test the GD. All students used the same textbook and had the 

same instructor (the professor of the regular section) in their previous calculus course. 

Participating students from both sections were chosen so that their grades in the previous 

calculus course were comparable. Each student interview had two parts, approximately of one 

hour each, conducted in different days. Interviews were transcribed, translated to English, 

individually analyzed by the researchers, discussed as a group, and differences were negotiated. 

The interviews were analyzed in terms of the constructions proposed in the GD. They were also 

graded as an aid in the search for patterns. 

Results on Slopes in 3D 

Students in the APOS section showed they had constructed a more robust understanding of 

slope in three-dimensional space than students in the regular section. Indeed, eight of the 11 
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students in the APOS section gave evidence of having constructed an Object conception of slope 

while only one of the 11 students in the regular section gave such evidence. Student A7 showed 

to have an Object conception of slope and exemplifies the typical response pattern of students in 

the APOS section as it regards slope. He was an average student in the sense that he had the 6th 

highest score in the interview (of 11 students) in the APOS section and the seventh highest grade 

in the previous calculus course among the 11 students in the same section. A7 could generalize a 

geometric conceptualization of slope (Moore-Russo, Conner, & Rugg, 2011) to 3D to find the 

slope of the line in bold in Figure 2: 

The slope of this line is 𝑚𝑥. On the line in bold the vertical change is 3, from 2 to 5, and 

the horizontal change is 1, from 1 to 2, so its slope is 𝑚𝑥 = ∆𝑧/∆𝑥 … which is 3.  

Similarly, A7 was able to compute the slope in the y direction of the plane given in Figure2.  

 
Figure 2. Plane for finding slopes in the x and y directions and vertical change for ∆𝑥 = 4 and ∆𝑦 = 5. 

A7 also used the notion of slope to deal with problems related to vertical change on a plane, 

the equation of a plane, partial derivatives, directional derivatives, tangent plane, and total 

differential. This shows he had established significant connections between his notion of slope 

and other studied mathematical objects. When A7 was asked to find how much the z coordinate 

changes if, starting at any point on the plane, ∆𝑥 = 4 and ∆𝑦 = 5 [see Figure 2] he replied: 

We know 𝑚𝑥 is 3, and 3 = ∆𝑧/∆𝑥 , since ∆x is 4 so we have ∆z as 3×4 which is 12. We 

know also 𝑚𝑦  is 1, and 1 = ∆𝑧/∆y so this vertical change which is in the y direction is 

umm ∆𝑧 = 1 × 5 which is 5. So, the z coordinates increase as 12 plus 5 which is 17. 

So, his construction of vertical change on a plane was based on his doing Actions on slope. 

In the case of partial derivative, A7 used slope to interpret geometrically partial derivatives and 

find their sign from the graph of the function. He also used it to approximate a partial derivative 

given a tabular representation or a contour diagram of the function. By being able to consider 

slope as independent of representation, this student gave evidence of his construction of a 

Process conception of slope. For example, when asked to find the sign of 𝜕𝑓/𝜕𝑦(3.5,0) given 

the graph of the function in Figure 3, he said: 
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In 𝜕𝑓/𝜕𝑦(3.5,0)  we know that the x coordinate is fixed at 3.5, so I have the point here, 

now I draw the tangent line to the surface in the y direction, we can see this line is an 

increasing line so its slope is positive and it means the sign of 𝜕𝑓/𝜕𝑦(3.5,0) is positive. 

When dealing with directional derivatives, A7 could decide the sign of 𝐷〈−2,1〉𝑓(4,0) with the 

function given by the graph in Figure 3, as he did for partial derivatives. 

 
Figure 3. Surface for sign of partial derivative and A7’s work 

In another problem, he was given the graph in Figure 4, and told to suppose that point P 

moves towards point Q at a constant speed along the curve that joints them, then he was asked 

how may the graph of  𝐷〈1,−1〉𝑓(𝑃) look as a function of time. His response shows that he could 

generate the dynamical imagery necessary to answer the question. His responses demonstrated 

the construction of a Process conception of directional derivative and his possibility to consider 

the slope Process as a whole, which is consistent with an Object conception of slope. 

 
Figure 4. Directional derivative as P moves towards Q 

Student A7: I have to draw the graph of the directional derivative respect to time. I first check 

the points umm they move from 𝑃 to 𝑄. So, I have my points umm now I check the 

direction vector for the directional derivative umm it’s the vector < 1, −1 > so I check 

the tangent slopes at different point in this fixed direction. 

Interviewer: Okay, draw 𝐷. 

Student A7: First the slopes are negative umm so the graph of 𝐷 is negative at this interval 

then slopes are negative and more negative so the graph of 𝐷 is decreasing until may be 

here. Then the slopes are going and going to 0 and somewhere between 𝑃 and 𝑄 the 

tangent line in the given direction has slope 0 so the graph of 𝐷 goes to be increasing and 

cuts the time axis.  

Interviewer: Okay, continue to the point 𝑄 and draw your graph completely. 

Student A7: After 0 umm the slopes are positive because the tangent lines in the given 

direction are increasing so the graph of 𝐷 at this interval is increasing. 

24th Annual Conference on Research in Undergraduate Mathematics Education 369



So, we may say that A7 demonstrated the encapsulation of slope when he acted on it in order 

to construct directional derivative. He also used slopes as a tool to relate vertical change on a 

plane, tangent plane, and total differential: 

Student A7: [Given the graph of the tangent plane in Figure 5, he was asked about what he 

could say of the change in the value of the function, if x increases 0.02 units and y 

decreases 0.02 units] I first have to find 𝑚𝑥 and 𝑚𝑦 umm 𝑚𝑥 is ∆𝑧/∆𝑥 using this line in 

the 𝑥 direction it’s 
1−0

2−1
 which is 1. To find 𝑚𝑦 I use this line umm on this line z is from 0 

to 3 and y is from 2 to 4 so 𝑚𝑦 is 
3−0

3−2
 which is 3 

Interviewer: Ok, continue 

Student A7: Here we have 𝑑𝑥 = 0.02 and 𝑑𝑦 = −0.02. We know also the formula 𝑑𝑧 =

𝑚𝑥𝑑𝑥 + 𝑚𝑦𝑑𝑦 which gives us the change in the 𝑧 coordinates or the change in 𝑓(𝑥, 𝑦). 

[Note that he talks about “change in z”, that is, vertical change on a plane, relating it to 

notation he next uses for the total differential] By plugging the changes in this formula, 

we have 𝑑𝑧 = 1(0.02) + 3(−0.02) so 𝑑𝑧 is 0.02-0.06 which is −0.04  

Student A7: [In the next problem, when asked for the total differential] I know the formula 

for the total differential is 𝑑𝑓 = 𝑚𝑥𝑑𝑥 + 𝑚𝑦𝑑𝑦 so it’s 𝑑𝑓 = 1(𝑑𝑥) + 3(𝑑𝑦) and this is 

equal to 𝑑𝑓 = 𝑑𝑥 + 3𝑑𝑦. 

 
Figure 5. Tangent plane to the graph of a differentiable function 𝑧 = 𝑓(𝑥, 𝑦) at a point (1,2,0). 

When examining A7’s overall tendency when working in different problem situations 

involving the notion of slope, we noted that he referred to slope when using or discussing partial 

derivative, directional derivative, the equation of a plane, tangent plane, and total differential. He 

also seemed to think of slope in different representations. Further, he was able to use slope in his 

sense making and problem solving. As we found evidence showing that he was performing 

Actions on slope as an Object, we concluded that he had constructed an Object conception of 

slope which he used to construct his understanding of other concepts involved in the differential 

calculus of functions of two variables. 

It is interesting to compare, in general, the behavior of students in the APOS and regular 

sections as it concerns slope. Five of the 11 students in the regular section showed not to have 

constructed the notion of slope in 3D, while all 11 students in the APOS section showed they 

had. The average score on four interview problems directly dealing with slope, was 95% for 
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students in the APOS section, while for students in the regular section it was 53%. Given that the 

students in both sections had obtained comparable grades in their previous calculus course, 

where both groups had the same professor, one may consider that the emphasis on geometric 

interpretation given to the development of the two-variable function differential calculus in the 

APOS section helped those students to develop a more robust understanding of slope. In order to 

have a wider perspective, it was considered as worthwhile to compare the number of times that 

students acted on slope (i.e., used slope and explicitly referred to it either verbally or 

symbolically) when solving the interview problems. Results are shown in Table 1. 
 

Table 1: Number of actions on slope per student and section 

Section/student 1 2 3 4 5 6 7 8 9 10 11 Total 

APOS 14 16 15 12 12 10 15 14 5 7 5 125 

Regular 9 0 4 7 2 4 4 0 0 0 0 30 

 

It is clear from the table’s data that students in the APOS section acted in a fundamentally 

different way with regards to slope when constructing their understanding of the differential 

calculus of two-variable functions when compared to students in the regular section. The 

students in the regular section who did not construct slope in 3D responded similarly as students 

R5 and R9:  

Student R5: [Figure 2] I don’t know how to find the slope of a line in 3D. For a line in 3D 

umm its points are like (𝑥, 𝑦, 𝑧) and have three components. I have never learned how to 

find the slope of a line in 3D. 

Student R9: [Figure 2] The formula for the slope is 
∆𝑦

∆𝑥
 and it’s equal to 

𝑦2−𝑦1

𝑥2−𝑥1
. I need two 

points to find the slope, a point here like 𝐴(1,2) and umm the other one here 𝐵(2,2) . So, 

the slope will be 𝑚 =
2−2

2−1
  which is 0. 

Note that R5 had not reconstructed slope in the new three-dimensional context of two-

variable functions. As shown by Moore-Russo et al. (2011) and McGee et al. (2015), this needs 

to be explicitly considered in class. Also, note that R9 unsuccessfully tried to directly generalize 

the formula for slope without doing a needed reconstruction. More interesting is to consider the 

case of R2, a regular section student who did construct slope in 3D, but seemed not to recur to it 

while solving problems. She was the second highest scoring student in the regular section in 

terms of her course score in the previous calculus course, and the third in terms of the interview 

instrument.  

When asked to compute the slope of the line in bold in Figure 2, she initially showed some 

doubts but was eventually able to generalize slope to 3D: 

It’s a line in 3𝐷 umm I don’t know how to compute the slope of a line in 3𝐷 because we 

have three variables 𝑥, 𝑦, and 𝑧 in 3𝐷. Let me to find two points on the line in bold. We 

have the points (1,2,2) and (2,2,5) on the line, I have to check how their coordinates 

change. The 𝑦 coordinate is fixed at 2 in both points, the 𝑥 coordinate change from 1 to 2, 

and the 𝑧 coordinate change from 0 to 3. So, I ignore 𝑦 in my computation, and I use the 

formula 
𝑧2−𝑧1

𝑥2−𝑥1
, by plugging in the formula I have 

5−2

2−1
 which is 3 as the slope. 

It has been observed that in a 3D context, students may be aware of rates of change in the x 

and y directions but not know how to combine them to obtain a rate of change in another 

direction (Yerushalmy, 1997; Weber, 2015). The following excerpts exemplify this observation 

and also show that R2 has yet to relate slope in 3D to directional derivative: 
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I am thinking how we can find the slope of a line in 3𝐷 if all the three coordinates 𝑥, 𝑦, 

and 𝑧 change from first point to the second point. I have no idea for finding the slope of 

such points because in these cases the formulas 
𝑧2−𝑧1

𝑥2−𝑥1
 and 

𝑧2−𝑧1

𝑦2−𝑦1
 don’t work…  

[Later, when asked to determine the sign of a directional derivative given the graph of the 

function in Figure 3] The problem is we don’t have the expression of 𝑧 = 𝑓(𝑥, 𝑦) and I 

don’t know what directional derivative means on the surface. 

When asked for vertical change on a plane given the graph of the plane in Figure2 and ∆𝑥 =
4 and ∆𝑦 = 5, she did not use a simple argument based on slope like student A7, but rather used 

the more cumbersome procedure of computing the point-normal equation of the plane and then 

plugging in values. She did the same thing when given the graph of the tangent plane at a point 

(Figure 5), she had to approximate the change in the value of the function in a neighborhood of 

the point.  When asked to approximate a partial derivative given a tabular representation of a 

function, she said “I need to find an algebraic expression of 𝑥 and 𝑦 such that these 9 points 

satisfy it”.  In problems dealing with the graphical interpretation of second order partial 

derivatives she said: “The problem here umm is that we are in 3D and actually we have three 

variables 𝑥, 𝑦, and 𝑧 umm and we don’t have any equation. The graph of 𝑓 is very complex and 

it’s impossible to guess an algebraic equation for it”. These problems could be done by reflecting 

on the graphical meaning of slope at given point in a given direction in 3D, as the points move. 

That is, the problems required to consider the Process of slope as an Object to do Actions on it. 

So, R2 showed she was able to solve some problems doing more complex computations than 

those involved in finding vertical change on a plane, while also showing her relying in algebraic 

rather than geometric reasoning for important ideas of the differential calculus. According to 

Duval (2006), it is important to distinguish a mathematical object from its specific 

representations. R2’s dependence on algebraic representations all along the interview showed she 

still needed to construct geometrical representations to avoid such confusion.  It seemed she 

needed more opportunities to think of slope and to apply it in a way that would enable her to 

fully understand ideas of the differential calculus of functions of two variables. 

Conclusion 

The results of this study indicate that students who used APOS-based activity sets with the 

ACE didactic strategy, developed a meaningful understanding of slope, that contributed to 

construct different differential calculus concepts for two-variable functions. For the most part, 

these students related slope to different important notions like, partial and directional derivatives, 

equation of a plane, tangent plane, and total differential. Students in the regular section showed 

the same kind of behavior that has been documented in the literature (McGee & Moore-Russo, 

2015; Martínez-Planell et al., 2015, 2017; Trigueros et al., 2018; Weber, 2015). That is, for the 

most part, they showed dependence on algebraic representations in order to do computations, 

instead of comparing different representations. They also seemed to have constructed isolated 

notions of the differential calculus, resulting in the use of memorized algebraic calculations.  

The study also shows the potential of APOS theory to foster students’ deeper understanding 

of the differential calculus of two-variable functions and their possibility to relate the concepts 

involved in it. It also shows that through the use of research cycles as practiced in this theory it is 

possible to progressively improve the design of tasks to be used by students and, in this way, 

contribute to improving student understanding. Our future research activities include examining 

the data for students’ construction of Processes of partial and directional derivatives, and the 

differential calculus Schema for functions of two variables. 

24th Annual Conference on Research in Undergraduate Mathematics Education 372



References 

Arnon, I., Cottrill, J., Dubinsky, E., Oktac ̧, A., Roa Fuentes, S., Trigueros, M., et al. (2014). 

APOS Theory: a framework for research and curriculum development in mathematics 

education. New York: Springer Verlag. 

Bajracharya, R. R., Emigh, P. J., & Manogue, C. A. (2019). Students’ strategies for solving a 

multirepresentational partial derivative problem in thermodynamics. Physical Review Physics 

Education Research, 15(2), 020124. 

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of 

mathematics. Educational Studies in Mathematics, 61(1), 103-131. 

McGee, D., & Moore-Russo, D. (2015). Impact of explicit presentation of slopes in three 

dimensions on students’ understanding of derivatives in multivariable calculus. International 

Journal of Science and Mathematics Education, 13(Suppl 2), 357-384. 

Martínez-Planell, R. & Trigueros, M. (2021). Multivariable calculus results in different 

countries. ZDM-Mathematics Education 53(3), 695-707. DOI 10.1007/s11858-021-01233-6 

Martínez-Planell, R., Trigueros, M. & McGee, D., (2015). On students’ understanding of the 

differential calculus of functions of two variables. Journal of Mathematical Behavior (38), 

pp. 57-86.  

Martínez-Planell, R., Trigueros, M., & McGee, D. (2017). Students’ understanding of the 

relation between tangent plane and directional derivatives of functions of two variables. The 

Journal of Mathematical Behavior, Vol. 46, pp. 13-41. 

Moore-Russo, D., Conner, A., & Rugg, K. I (2011). Can slope be negative in 3-space? Studying 

concept image of slope through collective definition construction. Educational Studies in 

Mathematics, 76(1), 3-21 

Moreno-Arotzena, O., Pombar-Hospitaler, I., & Barraguéz, J. I. (2020). University student 

understanding of the gradient of a function of two variables: an approach from the 

perspective of the theory of semiotic representation registers. Educational Studies in 

Mathematics. DOI 10.1007/s10649-020-09994-9 

Tall, D. (1992). Visualizing differentials in two and three dimensions. Teaching Mathematics 

and its Applications, 11(1), 1–7. 

Trigueros, M., Martínez-Planell, R., & McGee, D. (2018). Student understanding of the relation 

between tangent plane and the total differential of two-variable functions. International 

Journal of Research in Undergraduate Mathematics Education, 4(1), 181-197. 

Weber, E. D.  (2015). The two-change problem and calculus students’ thinking about direction 

and path. The Journal of Mathematical Behavior, 37, 83-93.  

Yerushalmy, M. (1997). Designing representations: Reasoning about functions of two variables. 

Journal for Research in Mathematics Education, 28, 431-466.  

24th Annual Conference on Research in Undergraduate Mathematics Education 373



Unpacking Neutrality when Responding to Microaggressions in Mathematics Classrooms 
 

Antonio Martinez 
San Diego State University 

Rebecca Machen 
University of Colorado Boulder 

Kaia Ralston 
San Diego State University 

Tyler Sullivan 
Clemson University 

Adriana Corrales 
University of North Texas 

Matthew Voigt 
Clemson University 

 
In this contributed report, we document results from the third and final round of interviews with 
14 mathematics instructors. In the interviews, we presented two teaching scenarios about a 
racial microaggression and white-supremacy messaging, and asked what the instructors would 
do if they encountered such a scenario in their own classroom. Results from our study indicate 
that some of the participants would do nothing to address the scenario publicly in class. This 
neutrality resembled similar responses as those from our second round of interviews, but there 
was a nuance that differentiated the third interview results. That is, of the participants that opted 
not to address the scenario publicly, they also condemned the scenarios privately as something 
that was inappropriate, as opposed to avoiding and minimizing the situation. We find that doing 
nothing in response to a potentially problematic social justice scenario can be interpreted in two 
distinct ways.  
 
Keywords: race, microaggression, teaching scenarios 
 

With the push for increased diversity and inclusion efforts in higher education (U.S. 
Department of Education, 2016), university educators should be prepared to engage with and 
encourage the incorporation of diverse thoughts and experiences that our students bring to the 
classroom.  Diversity not only leads to new ideas coming from different lived experiences, but as 
technology continues to improve in the hands of the newest generation, a diverse workforce in 
STEM may curtail the impact of biased systems such as facial recognition software (Garvie & 
Frankle, 2016; Nkonde, 2019), and machine learning (Garcia, 2016). Advocating for justice in 
the STEM classroom is the first step to allow students and instructors to recognize their own 
prejudices and biases. This is particularly important as women, people of color, and other 
marginalized groups of students are at a higher risk of failing introductory mathematics, being 
pushed out of STEM altogether (Koch & Drake, 2018; Weston et al., 2019). The idea of failure 
and marginalization is reinforced for these groups with every offensive comment made, which is 
why university instructors should be prepared to handle difficult conversations in the classroom 
and support the students that need it most.  

As research has demonstrated, active learning classrooms have the potential to provide 
superior learning environments compared to non-active ones (Freeman et al., 2014; Theobald, 
2020). However, with the use of active learning comes the potential for conflict in the classroom, 
as students are encouraged to engage with one another’s ideas and interact much more compared 
to lecture classrooms. That is, within any setting of peer-to-peer interaction, problematic 
discussions around race, politics, gender, and other topics may arise. University instructors are 
not necessarily trained to handle these situations, which may lead to unproductive conversations 
and the marginalization of certain groups of students. Such problematic scenarios may present 
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themselves as explicit acts of racism, sexism, homophobia, etc. Although, they may also occur as 
more subtle acts of hostility and enmity known as microaggressions.  

As a research team composed of faculty, graduate and undergraduate students, our stance is 
that the university classroom should be a space where students learn how to engage with one 
another around controversial ideas. If university is not a place to challenge students’ ways of 
reasoning and encourage civil discourse, then where is the right place? Research suggests that 
having these discussions in class can be difficult, but has the potential to foster the development 
of productive community engagement and tolerance (Camp, 2020; Hess & Gatti, 2010; Moran, 
2009). With that in mind, we challenged a group of university instructors by presenting to them a 
set of potentially problematic teaching scenarios in which they were asked to respond as if they 
were the instructor. The goal of presenting these scenarios was to answer the following research 
question: In what ways can a neutral stance by university mathematics instructors be interpreted 
when addressing racial microaggressions and supremacist attitudes in the classroom?  

 
Literature Review 

Mathematics instructors at the college-level typically have undergraduate and graduate 
degrees in mathematics or closely related fields. This extensive background in mathematical 
content makes them experts in the discipline. However, there is often limited training on a major 
component of their roles at universities – teaching – where most doctoral students only take one 
course on undergraduate teaching (Baum & McPherson, 2019). Effective teaching requires 
knowledge of the content, strategies to teach the content, practices to assist with classroom 
management, and knowledge of learners and learning (Eggen & Kauchak, 2006). Student 
learning not only includes specific content but also the development of interpersonal and cross-
cultural competencies, expected outcomes of a college degree.  

Engagement strategies shown to promote student learning in mathematics classrooms, like 
the utilization of group work or active learning (Smith et al, 2021), increases the need for college 
faculty to have competent classroom management skills. Duek (2000) and D.W. Johnson and 
Johnson’s (1989, 1991, 1992, 1994) research on productive cooperative learning environments 
supports the argument for additional training on classroom management practices. Two of the six 
elements of productive cooperative learning environments, value of heterogeneity and 
interpersonal communication, require skills to manage classroom discussion. As students engage 
in conversation with one another through group work, conversation may move to current events, 
like racial tensions or political conflict. When these emotionally charged conversations occur 
between students, faculty should be prepared to respond appropriately to ensure the classroom 
environment is operating as an inclusive space. Student belonging is an important element of 
inclusion, and ample research has linked belonging to persistence in higher education (Solorzano 
et al., 2000; Clark et al., 1999; Mercer et al., 2011; Torres, et al., 2010; Bair & Steele, 2010; 
Salvatore & Shelton, 2007). 

In the context of this study, we are operating under the assumption that race and racism is 
inherent to society’s systems, including the education system, and is difficult to address if not 
directly acknowledged (Delgado & Stefancic 2017; Bourdieu, 2018). Research suggests that 
there is a lack of noticing or acknowledgement of bias in the classroom for STEM educators 
(Boysen et al., 2012). For educators who do recognize the inequity and issues of racism in the 
classroom, they often struggle to devise a response in practice (Duncan-Andrade, 2009; 
Solórzano & Delgado-Bernal, 2001). They may not feel qualified to craft a response or confront 
larger issues in practice, even though they hold a critical stance on the issue at hand. 
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The prior research within the field of education suggest that faculty must respond to 
microaggression incidents in order to avoid “siding with the offender” and creating a hostile 
environment for the affected students, typically students of color, women, and people in the 
LGBT community (Boysen et al., 2012; Sue et al., 2007;  Hernandez et al., 2010). Faculty can 
ameliorate the situation through a variety of actions, the first being a recognition of their own 
biases. This idea is often conveyed in critiques of modern liberalism in which neutrality and 
colorblindness are upheld as critical practices to eradicate issues of race and racism (Delgado & 
Stefancic, 2017). This neutral perspective generally does not address more covert acts of racism 
in society and can only address the most egregious and outward forms of racism. This also 
extends to arguments of the right to free speech, in which hate speech toward minoritized groups 
may be protected (Delgado & Stefancic, 2017), highlighting how societal structures allow racism 
and microaggressions to occur. The argument to ensure rights to free speech may even prevent 
the formation of close communities, which develop through mutual negotiation and dialogue 
(Wenger, 1999).  

 
Researcher Positionality 

As a data collection and analysis team, our personal identities represent diversity in gender, 
sexuality, race/ethnicity, and academic ranks. We recognize that the data collection team’s 
positionality likely impacted the rapport, comfort, and safety of participants to share their lived 
experiences and beliefs. Our personal experiences and positionality were also leveraged to 
interpret and understand the shared experiences of our participants. While inherently 
reductionist, we share some of the identities of the authorship team to help contextualize our 
positionality. Author 1 identifies as a cisgender straight Chicano, Author 2 as a cisgender queer 
white woman, Author 3 as a cisgender Asian and African American woman, Author 4 as a 
cisgender white queer man, Author 5 as non-binary queer Chicanx person, and Author 6 as a 
cisgender white queer man.  
 

Methods 
The data from this study draws on a set of interviews with 14 mathematics instructors (see 

table 1) from nine institutions who agreed to participate in a Professional Learning Community 
(PLC). The PLC activities started in September 2020, with virtual meetings occurring every two 
weeks, focusing on diversity and inclusion in undergraduate mathematics. The nine different 
institutions were all partners in the NSF-funded SEMINAL project which was examining 
departmental change efforts to infuse active learning in introductory mathematics courses. 
Participants were interviewed three times at the start, middle, and end of the year-long PLC. The 
interviews included questions about instructional practices, departmental support, and responses 
to a set of 4-5 teaching scenarios. The 1-hour long semi-structured interviews were conducted by 
members of the research team in pairs via Zoom and were audio and video recorded. The 
interview transcripts were automatically generated by Zoom, reviewed by the research team for 
clarity, and loaded into the qualitative coding software MAXQDA for analysis. The transcripts 
and audio recordings were linked within MAXQDA to ensure interpretability, tone, and pauses. 

The analysis in this manuscript focuses on three different teaching scenarios. The first 
scenario, Zoom Microaggression, describes a situation in which a student posts a racial 
microaggression about another student in the chat during class and instructors were asked how 
they would respond. The Zoom microaggression scenario was presented in the first and third 
interview. The second scenario, Classroom Microaggression (BLM), describes a situation where 
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a student is wearing a Black Lives Matter hat, and another student reacts saying “All Lives 
Matter.” The third scenario, Classroom Microaggression (Alt-Right) is a variation on the 
Classroom Microaggression (BLM), but in this scenario a student is wearing clothing in their 
mathematics classroom with the insignia of an Alt-right movement (Proud Boys, Neo-nazis).  

Table 1. Participant Gender and Racial Identity as Perceived by the Researchers 

Gender and Racial Identity Pseudonym 

white woman Emma, Shea, Lacy, Kathleen, Crystal, Cassandra 

white man Thomas, Bill, Mark 

Woman of Color Shivya, Camila, Aadaya 

Man of Color Robert, Collin 

 
As a research team, we conducted a thematic analysis of the interviews, which is “a method 

for identifying, analyzing, and reporting patterns (themes) within data” (Braun & Clarke, 2006, 
p. 79). We used a cyclical approach to our analysis, analyzing and reporting results from the first 
interviews (Machen et al., 2021), followed by the second interviews (Ralston et al., 2021), and 
we present new findings from the third interview in this manuscript. Prior analysis by Machen 
and colleagues (2021) identified five archetypes emerging from the first round of interviews and 
included the: Action Taker, Cautionary, Connector, Confidant, and Thinker. Some participants 
had overlapping archetypes based on their reactions to the microaggression scenario. During the 
second set of interviews a sixth archetype was identified (Ralston et al., 2021), the Neutral, as 
many of the faculty’s responses indicated hesitation or an interest in keeping their actions neutral 
due to the concern of impinging on free speech. Analysis of the third set of interviews which 
included issues of free speech, politics, and covert racism, suggested that the actions (or lack 
thereof) by faculty were more nuanced than the Neutral category suggested from prior analysis. 
 

Results  
We found that the participants’ responses were nuanced enough to merit the splitting of the 

Neutral archetype into two strands, Apolitical and Conflicted. As we were coding the responses 
to the third interview, we noticed that the existing Neutral archetype that was generated from the 
second round of interviews was not entirely capturing some of the participants’ responses to the 
Far-Right scenario. For this reason, we went back to the Neutral codes from the BLM scenario 
and compared those with the responses that were being coded as Neutral for the third interview. 
Below we highlight some excerpts from the BLM scenario that are representative of the 
Apolitical archetype. We then provide excerpts of participants’ responses that characterize the 
new framing of the Conflicted archetype.  

The Apolitical archetype that emerged from the responses to the BLM scenario in the second 
interview generally reflected a sense of not wanting to take a side in the situation. A common 
motif was the idea that, as one participant put it, “everybody is entitled to their own view or their 
own opinion.” Other participants would have liked more context and clarification on the scenario 
in order to determine how they would respond, as Collin suggested, “I've had the joke with my 
friends that we’ll mockingly say ‘all lives matter’ to each other, just to mock the people who 
have that sort of opinion.” Even without the additional context, Collin went on to say that he 

24th Annual Conference on Research in Undergraduate Mathematics Education 377



thinks intervening into the situation and saying something to the students is “more dangerous for 
me, as an instructor, to make a bigger deal of it than is being made by the students.” This theme 
of causing more harm than good was echoed by other participants characterized with the 
Apolitical archetype as multiple instructors were apprehensive about taking attention away from 
the mathematics. Cassandra described the actions they would take to try and redirect the focus 
back to mathematics: 

My initial reaction would be like ‘hey that's not math content, take it outside’ you know, or … 
‘we can work on math today, and you guys can talk about that later’ or … ‘this is not the 
time or the place for this conversation.’ You know, and I would try to say something like, ‘we 
all have different opinions about different things, but right now we're working on co-
functions, so can we work on co-functions, please.’ You know, just try to defuse the situation. 

Generally, the Apolitical archetype characterizes an approach that would prefer to move past the 
situation, either because the instructor does not see the offending students’ actions arising to a 
level that warrants an intervention or having a discussion in class is not appropriate for a 
mathematics class. Four of the 14 participants responded to the BLM scenario with some action 
that was characterized as Apolitical; however, it is important to note that these are not fixed traits 
that we are assigning to the participants. In some cases, a participant might suggest one approach 
reflecting an Apolitical preference, but also later take an approach as a Confidant in that they 
would pull the offending student to the side to have a one-on-one conversation or with the 
aggressed student about what had occurred in class.  

What we noticed with the Far-Right scenario represented a different stance altogether. That 
is, for the Apolitical archetype, the participants' actions could be categorized as not taking a side 
or not wanting to intervene because they did not see it as appropriate. In contrast, participant 
responses to the Far-Right scenario characterized a situation in which the participant would take 
a stance (in theory), but would not intervene, even though they knew that something should be 
done. The important distinction that we are making here is the idea that the responses reflecting 
the Conflicted archetype generally take an approach of condemnation, rather than one of 
minimization. Lacy’s reaction to the scenario describes the Conflicted archetype well in that they 
know that this Far-Right scenario is problematic, but is unsure about how to respond given the 
context of the situation: 

To do nothing is not acceptable. I think, in years past, to just ignore it and go on was 
acceptable. I don't think it's acceptable, [the instructor] needs to do something. What [they] 
need to do, I don't know because I don't know the makeup of the class … The only thing I can 
say is yes, it needs to be addressed, yes, something should be done. Even if it's after the fact, I 
think [addressing the scenario] should be done.  

Although Lacy takes a firm stance that something should be done and this scenario is 
unacceptable, she does not describe what she would do herself because she is unsure about the 
context. From our perspective, we interpret this as not taking action but still having a 
condemning stance on the issue, stating that this scenario is unacceptable. Another instructor had 
a different reason as to why they would not address the scenario in class,  

The student who is wearing [the far-right clothing] is wearing it because they want to stir the 
pot, they want to offend people, they want attention right? So, if this was me, am I going to 
call this person out? No, because that's what the student wants, right? They want to make 
this space about them, and these ideas. So I don't think I would do something publicly … I 
don't think people that wear neo-Nazi t-shirts are unaware that that is offensive right? They 
do it because they want to offend people, they want attention. 

24th Annual Conference on Research in Undergraduate Mathematics Education 378



Bill’s response was something that we initially interpreted as apolitical given that they did not 
explicitly condemn the scenario as being problematic. However, we interpret Bill’s response as a 
condemnation in that Bill does not want to give the offending student a voice in the classroom to 
spread hate and neo-Nazi ideals. We also saw a Conflicted response from Kathleen, as she 
wanted to do something about this scenario, and offered one potential avenue to stop the student 
from wearing far-right clothing, but was grappling with her ideals of freedom of speech.  

This is really tough because I believe in freedom of expression …  I do think that these shirts 
are inappropriate. Because the shirt is specifically promoting hate … The university must 
have some kind of dress code and if the dress code mentioned something about hate speech 
or this kind of propaganda or promotion, then, absolutely …  If it doesn't, I don't think that 
[the instructor] really has a right to tell the student what they can and cannot wear. 
However, if we're doing some kind of group work and somebody doesn't want to work with 
the student because they find what they're wearing is offensive, or it makes them feel 
uncomfortable, then I'm not going to force them to stay in a group. 

Three participants reflected a Conflicted response to the Far-Right scenario, with the Conflicted 
archetype also arising twice with the Zoom Microaggression scenario in the third interview. One 
participant, Bill, had a Conflicting response to both the Far-Right scenario and the Zoom 
microaggression scenario. Overall, four participants from the third interview provided responses 
that we coded as the Conflicted archetype. Interestingly, we did not characterize any of the 
responses from the third interview as Apolitical. In Table 2 we document the definitions of the 
two archetypes for posterity. 
 
Table 2. Definitions of the Apolitical and Conflicted archetypes. 
Apolitical  The “Apolitical” archetype reflects actions that avoid and dismiss the situation. 

Respondents that fall into this category often did not want to take a stance on 
the issue and leave it to the students to handle any potential conflict. Some 
characterized as Apolitical worried it might trigger an emotional reaction from 
students, and/or they did not feel capable of facilitating a meaningful discussion 
about social justice issues. As a result, actions represented by this archetype 
tend to minimize the situation to avoid bringing discussions about politics or 
racism into the classroom.  

Conflicted The “Conflicted” archetype reflects actions that avoid, but condemn the 
situation. Respondents that fall into this category often know that the situation 
is wrong and something should be done to resolve any potential conflict, but 
may not know the best approach to do so. We see the actions of those 
characterized by the Conflicted archetype as a minimum requirement of allyship 
with the marginalized and oppressed; knowing that an injustice has occurred is 
the first step to intervening and facilitating a productive conversation about 
social justice issues.  

 
In the next section we provide a summary of the two new archetypes that emerged from the third 
interview and our thoughts as to why we saw the emergence of the Conflicted archetype, and 
absence of the Apolitical, in the third interview. 

 
 

Discussion 
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Our research study involved presenting 14 university mathematics instructors with difficult 
teaching scenarios and asking how they would respond to those scenarios if they were teaching 
in the classroom. After the third and final interview with the research participants, we noticed a 
nuance in the instructors’ responses to neutrality that we considered to be valuable to unpack. 
This nuance was particularly interesting in that the action that the instructors would take was, in 
fact, no action at all. That is, in the second interview, the participants that mentioned that they 
would not address the scenario in class often wanted to move past the scenario by downplaying 
the seriousness of the comments made, opting to rely on the idea that everyone is entitled to their 
own opinions or commenting that the mathematics classroom was not the space to have those 
types of conversations. This approach was referred to as the Apolitical archetype. In this 
manuscript, we highlight the emergence of a new archetype, the Conflicted, as a similar, but 
different approach. With those that fell into the Conflicted category, they also opted not to 
address the scenario in class, but wanted to make it clear that the scenario was unacceptable or 
something should be done as a way to condemn the action taken by the offending student. Our 
purpose with highlighting the difference between the Apolitical and Conflicted archetypes is to 
consider what it means not to address these difficult conversations in class from a critical 
perspective.  

A particular point of interest based on our results is the absence of the Apolitical archetype in 
the third interview. We hypothesize that verbal microaggressions are easier to minimize and 
ignore compared to a physical manifestation or racial aggression such as the far-right messaging 
on the clothing. Furthermore, it may be easier for mathematics faculty, and particularly white 
faculty, to notice and condemn white supremacy compared to facilitating more nuanced 
discussion of race, racial microaggressions, and political movements. Moreover, what are the 
implications of approaching difficult scenarios as Conflicted compared to Apolitical? We 
consider this as an open question for future research, but for now we offer a few of our thoughts. 

From our perspective, we see the BLM scenario as an easier scenario to downplay and 
ignore, due to the fact that it was a verbal microaggression and the potentially ambiguous nature 
of the context in which the microaggression occurred. However, we would like to address the 
microaggression for what it is, covert racism in the classroom. We see the responses that were 
categorized as Conflicted to be a productive step in that the instructors that opted for a “neutral” 
stance still condemned the overt act of white-supremacy, as teaching is inherently a political act 
(Kozleski & Waitoller, 2010). They knew that something should be done, even though they did 
not know exactly what that something was. We see the identification of how one might approach 
these difficult situations as an important professional development practice that all instructors 
should consider. Future work will address how all of the archetypes that emerged from the three 
rounds of interviews might impact our teaching practices, and we will explore what it means to 
bring conversations of racism, politics, and equity into the mathematics classroom.  
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Responding to Students’ Suggestions: Attribute Substitution and Heuristic Approaches 
 

 Anna Marie Bergman Keith Gallagher Rina Zazkis 
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Knowing how best to respond to students’ mathematical inquiries is an important skill for all 
teachers to develop. A class of pre-service teachers (PSTs) was presented with a scripting task in 
which a student conjectured that 1/6.5 was “exactly in between” fractions 1/6 and 1/7. However, 
instead of addressing the student’s inquiry directly, many of the PST’s responses contained a 
variety of explanations for more general information about fractions and their various 
representations. We offer a classification of the responses using the ideas of attribute 
substitution along with the availability and representativeness heuristic. 

Keywords: Fractions, Fraction Representation, Attribute Substitution, Representativeness 
Heuristic, Availability Heuristic 

Introduction 
An important aspect of classroom discourse is how teachers respond to students’ 

mathematical inquiries. Alternative interpretations of content may naturally arise in the course of 
any lesson, and it is the responsibility of the teacher to respond to student ideas in a meaningful 
way. However, it is often the case that, rather than responding directly to a particular question, 
individuals respond to a different, but related question without realizing that they have done so. 

Building on prior work by Marmur, Yan, and Zazkis (2019, 2020a), we presented pre-service 
teachers (PSTs) with a scripting task in which a student conjectured that 1/6.5 was “exactly in 
between” fractions 1/6 and 1/7. While many of the PSTs in our sample directly addressed this 
suggestion, several focused on mathematical information that was tangentially related to the task, 
such as fundamental ideas about fractions and fraction representations. In this report, we present 
a classification of PSTs’ responses in terms of questions that were answered, rather than what 
was asked. We frame the responses using the notions of attribute substitution (Kahneman & 
Frederick, 2002) and the representativeness and availability heuristics described by Kahneman 
and Tversky (1972) and Tversky and Kahneman (1973). 

On Fraction Representations 
Students’ struggles with fractions at the K-12 level are well-documented (e.g., Behr, 

Wachsmuth, Post, & Lesh, 1984; Clarke & Roche, 2009; Mack, 1990; Vamvakoussi, Christou, 
Mertens, & Van Dooren, 2011; Zhou, Peverly, & Xin, 2006). Both in-service and pre-service 
teachers have been shown to struggle with fractions in many of the same ways that students do, 
leading to an increase in research on prospective teachers’ knowledge of fractions (Ball, 1988; 
Post, Cramer, Lesh, Harel, & Behr, 1993; Post, Harel, Behr, & Lesh, 1988; Sowder, Bedzuk, & 
Sowder, 1993; Zhou, et al., 2006). Despite the identification of at least five distinct 
conceptualizations of fractions, such as fraction as measure and fraction as ratio (Brousseau, 
Brousseau, & Warfield, 2004; Kieren, 1976, 1993; Lamon, 2007; Sowder, Philipp, Armstrong, & 
Schappelle, 1998), the part-whole conceptualization remains dominant in both students’ and 
teachers’ reasoning about fractions (Ball, 1988; Newton, 2008; Post, et al., 1993; Post, et al., 
1988; Sowder, et al., 1993; Weller, Arnon, & Dubinsky, 2009; Zhou, et al., 2006). 

Many of the difficulties learners experience with fractions stem from the variety of 
representations and ways of conceptualizing them (Čadež & Kolar, 2018; Charalambous & Pitta-
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Pantazi, 2007; Pantziara & Philippou, 2012). Vamvakoussi and Vosniadou (2004) showed that 
middle school students may reason about equivalent fractions (such as 1/2 and 2/4) as if they 
were different numbers instead of different representations of the same number. Marmur, et al. 
(2019, 2020a) observed a similar result in pre-service teachers who rejected the value 1/6.5 as a 
candidate for a number between 1/6 and 1/7 but allowed the equivalent fraction 2/13, suggesting 
that it is not the number itself, but its non-standard representation, that presented a challenge for 
PSTs. Overall, it was demonstrated that the prospective elementary school teachers in their study 
experienced difficulty in assigning meaning to 6.5 when it appeared as the numerator or 
denominator of a fraction. 

We extend this work on PSTs’ perceptions of non-standard representations of fractions, and 
in particular, the ways they conceive of and interact with the representation 1/6.5. Our research 
aimed at addressing the following question:  

 
How do prospective teachers respond to a student’s idea that 1/6.5 is exactly in the middle of 

1/6 and 1/7? In particular, how does the non-traditional representation shape their responses? 
 
We presented a group of pre-service middle and high school teachers with a hypothetical 

classroom dialogue in which one student, Cory, asked what number will be “exactly in between” 
1/6 and 1/7, and another student, Alex, conjectured that 1/6.5 was the desired value. As the PSTs 
extended the dialogue to address Alex’s suggestion, many of them focused on other aspects of 
the scenario, responding by re-teaching foundational knowledge about fractions, trying to give 
meaning to the number 1/6.5, or addressing this representation’s status as a fraction or as a 
number of any kind. 

Theoretical Perspective 

Attribute Substitution 
We adopt the perspective of Kahneman and Frederick's (2002) attribute substitution model. 

Responding to related questions that were never asked is an example of attribute substitution: 
“We will say that judgment is mediated by a heuristic when an individual assesses a specified 
target attribute of a judgment object by substituting another property of that object -- the 
heuristic attribute -- which comes more readily to mind” (Kahneman & Frederick, 2002, p. 53). 

In daily life, people often respond to questions with the answer to a different, but related, 
question. Consider, for example, the following exchange between a mother and her son: 

 
Mother: Do you need help with your math homework tonight? 
Son: It’s not due until Friday. 
 
The mother’s question asked about the son’s need for assistance on his assignment, but the 

son has instead responded to the related question “When is your homework due?” Despite the 
fact that this question was never asked, one can clearly infer the implied answer to the question 
that was asked. In the dialogue we presented above, the target attribute referred to by Kahneman 
and Frederick (2002) is that which the original question asked about: the son’s need for 
assistance. The heuristic attribute is the property to which the response pertained: when the 
assignment is due. In this case, it is up to the mother to infer from her son’s response that he does 
not need help, but this may not necessarily be the case. He may require help, but only on 
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Thursday night. The clarity of attribute substitutions in the response to the original question may 
depend on the particular situation and the particular relationship between the interlocutors. 

This response pattern is consistent with Kahneman and Frederick’s attribute substitution 
model. Attribute substitution refers to the cognitive process in which an individual unwittingly 
thinks about related attributes of an object or concept instead of the one which is under direct 
scrutiny. 

Attribute Substitution and the Representativeness and Availability Heuristics 
Research on attribute substitution has so far focused mainly on the representativeness 

heuristic (Grether, 1980; Gualtieri & Denison, 2018; Kahneman & Tversky, 1972; Tversky & 
Kahneman, 1974) and availability heuristic (Agans & Shaffer, 1994; MacLeod & Campbell, 
1992; Pachur, Hertwig, & Steinmann, 2012; Tversky & Kahneman, 1973). 

Chernoff (2012) described attribute substitution when examining prospective mathematics 
teachers’ responses to tasks related to relative likelihoods (i.e., which outcomes are more likely 
than other outcomes in a given set). Although respondents were asked to identify which of two 
given answer keys to a multiple-choice test was probabilistically more likely to occur, several 
respondents were found to have responded to the related question, “Which of these two answer 
keys is more representative of the collection of possible answer keys?” Thus, while many 
respondents provided objectively incorrect responses to the question that was asked, it was 
determined that these individuals were still thinking mathematically – but were in fact 
responding to a question that was not asked using the representativeness heuristic. 

Furthermore, when responding to questions about relative likelihoods, such as “Which string 
of outcomes of successive coin flips is more likely: HTTH or HHHH?” individuals may appeal 
to the representativeness heuristic rather than use their knowledge of probability (Chernoff, 
2012). A generic outcome of the process of tossing a coin four times is one in which some 
number of the tosses result in H and the others result in T, thus a sequence of tosses that includes 
no T may be perceived as less representative of the event space than one resulting in some 
combination of H and T. Individuals reasoning according to the representativeness heuristic may 
respond that the sequence HTTH is more likely to occur than HHHH, as it looks more like a 
generic outcome. Rather than responding to the question about the relative likelihoods of these 
two events, these individuals provided a response to the related question, “Which of these two 
sequences is more representative of a typical element of the event space?” 

The Study 

Participants and Setting 
Prospective secondary and middle school teachers (n=34) participated in this study. They 

were in the last term of their teaching certification program, enrolled in the methods course for 
teaching secondary and middle school mathematics. The participants held Bachelor’s degrees in 
Mathematics or Science; the latter included a sufficient component of mathematics courses 
required for teaching certification. 

The course provided participants with an opportunity to explore and extend their own 
mathematical thinking, while focusing on the learning and teaching of mathematics. During the 
course, as part of exploring instructional materials and didactical approaches, participants 
prepared for instruction by completing several scripting tasks (see section 4.2.1); their responses 
to one such task, Fraction in the Middle, are analysed in this report. Prior to completing the Task, 
the class discussion attended to various representations of fractions and operations with fractions 
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-- topics that initially appear in elementary school, but are revisited in middle school, as they are 
known to present difficulties for many learners. The Task was presented to participants as an 
individual assignment, which they were asked to complete within two weeks. 

The Task 
The Task presented below belongs to the genre of “Scripting tasks” developed in 

mathematics education to explore and strengthen teacher knowledge, while considering 
instructional situations.  Scripting tasks used in prior research usually included a prompt, which 
is a beginning of a dialogue between a Teacher-character and Student-characters. In most cases 
the prompt introduced a student error (e.g., Zazkis, et al., 2013a), a student question (e.g., 
Marmur & Zazkis, 2018; Zazkis & Kontorovich, 2016), or a disagreement among students (e.g., 
Marmur, Moutinho, & Zazkis, 2020; Zazkis & Zazkis, 2014), to which the scriptwriters had to 
respond by continuing the dialog. The scripted dialogue demonstrated teachers’ “awareness-in-
action” (Mason, 1998, p. 255) by showing the envisioned response in practice, rather than in 
theory, to student errors, queries, or unusual ideas. 

The “Fraction in the middle” Task 
The “Fraction in the middle” Task included the prompt in Figure 1. 
 

 
Figure 1. The "Fraction in the Middle" Task Prompt 

Continuing the dialogue – in particular, addressing a query of Cory (what number will be 
exactly in between) and an unexpected suggestion of Alex (it will be 1/6.5) as well as 
justification for it by drawing analogy to whole numbers – was the main part of the Task.  

The prompt was developed building on the study by Marmur, et al. (2019), in which 
prospective elementary school teachers responded to a student conversation about the possibility 
of finding a number between any two numbers. While a student-character in the prompt 
developed by Marmur, et al. (2019) suggested that there were no numbers between 1/6 and 1/7, 
the reference to 1/6.5 appeared in several scripted conversations. The study examined several 
cases in which student characters grappled with the unconventional representation, either 
rejecting it as a viable number or seeking a way to make sense of it. 

We were interested to learn how 1/6.5 would be interpreted and treated by prospective 
secondary teachers when it is referenced in the context of seeking the number in the middle of 
the two “pseudo-successive” fractions. We focused on a pair of pseudo-successive fractions, as 
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such fractions are frequently perceived as consecutive numbers with no numbers in between 
(e.g., Vamvakoussi & Vosniadou, 2004). As in Marmur, et al (2019), we kept the numbers small 
enough to simplify the calculations, but chose numbers that would inhibit immediate conversion 
to decimals, as the use of decimal representation is known to simplify the identification of 
numbers in between (Van Hoof, Degrande, Ceulemans, Verschaffel, & Van Dooren, 2018). 

Data Analysis 
Participants’ responses to the Task “Fraction in the Middle” comprise the data analyzed in 

this study. The analysis of the data began with a thorough reading of all the scripts to get a 
general sense of how the PSTs responded to the task. We then narrowed our focus to the PSTs’ 
responses to Cory and Alex’s discussion on what number would be “exactly in between” 1/6 and 
1/7 and the ways PSTs addressed the suggestion of 1/6.5. 

We initially noticed the wide variety of mathematical approaches and representations that 
were present in the PSTs’ responses. The PSTs’ mathematics included but were not limited to 
averaging algorithms, number lines, decimal representations, descriptions of graphs, and part-
whole fraction models.  On a second read through of the scripts, we focused on how the PSTs 
were responding to Cory’s inquiry in particular.  We noted that the responses provided by the 
PSTs were typically not mathematically incorrect, but they seemed either irrelevant to or only 
tangentially related to Cory’s question and Alex’s suggestion. Although some responses of the 
participants seemed to us inappropriate for the given task, they did seem appropriate for a 
different task related to fractions. Revisiting the data, we identified 10 questions which were 
implicitly addressed by the participants in their scripted instructional interactions and 
explanations. We then classified each of the explanations provided within the scripts as a 
response to one of these 10 questions. We further grouped these 10 questions under three themes, 
as some questions addressed related content. 

Our unit of analysis was an explanation provided by a PST within a script.  An explanation 
could have been provided by a teacher-character or by a student-character and accepted by a 
teacher.  All of the PSTs provided multiple explanations within their scripts: for example, they 
might have begun with an explanation of the relative size difference between 1/6 and 1/7, thus 
addressing the pseudo-ordering of the fractions, then transitioned into a discussion of different 
algorithms for identifying fractions between a given pair of fractions. Instances like this were 
categorized as two distinct responses and were analysed separately. Thus, although our sample 
consists of 34 scripts, the total number of responses we considered in our analysis is 127. 

Results 

Overview 
Again, each script contained multiple explanations, yielding a total of 127 explanations to 10 

questions across the three themes as organized in Table 1. The three themes we identified were 
explanations related to prerequisite knowledge of fractions, explanations focused on ideas around 
the number 1/6.5, and explanations related to the middle of 1/6 and 1/7.  

For this proposal, we briefly address the results of the first theme and then discuss these 
findings using through the lens of attribute substitution in the discussion.  
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Table 1. Themes and questions identified in responses. 

Themes and related questions  Number of 
explanations 

1. Focus on pre-requisite knowledge related to fractions 
How do you properly order fractions by relative size (i.e. 1/7<1/6)? 
Why can’t you compare fractions with different denominators? 
How do you find a common denominator? 

 
9 
9 
9 

2. Focus on number representations, specifically for 1/6.5 
What is a fraction? Is it a single number of two numbers? 
Why isn’t 1/6.5 a rational number (issue with decimals in fraction)? 
How do you manipulate a fraction containing a decimal? 

 
3 
8 
8 

3. Focus on the middle 
How do you find the middle of two fractions? 
What is the middle of 1/6 and 1/7? 
Is 1/6.5 the middle of 1/6 and 1/7? 
Why isn’t 1/6.5 the middle of 1/6 and 1/7? 

 
24 
29 
20 
6 

Focus on pre-requisite knowledge related to fractions 
Many of the explanations highlighted prerequisite knowledge related to fractions, where the 

PSTs used their response as an opportunity to re-teach elementary concepts. Focusing primarily 
on the fractions 1/6 and 1/7 given in the prompt, 27 of the 33 scripts contained explanations to 
three different questions related to fractions, specifically: “How do you properly order 1/6 and  
1/7?”, “Why are fractions with different denominators not comparable?”, and “How do you find 
the common denominator given two fractions?” 

Of the 27 explanations focused on pre-requisite knowledge, 9 attended to the pseudo-
successive ordering of the fractions 1/6 and 1/7, highlighting the fact that 1/7 is smaller than 1/6.  
Another 9 explanations were provided for why fractions with different denominators cannot be 
compared.  Most of these explanations contained visual representations including pizzas and 
number lines, often highlighting the inevitable size difference between the fractions and 
concluding in statements such as, “1/6 and 1/7 aren’t on the same number line, sort of like they 
are speaking different languages” (Student 19).  Lastly, 9 explanations provided details for how 
to find the common denominator between two fractions, a skill we would consider pre-requisite 
for secondary mathematics.   

Focus on Prerequisite Knowledge and the Availability Heuristic 
We view the scripts in which the main attention was directed towards providing prerequisite 

fraction information as a consequence of the availability heuristic. The availability heuristic 
involves an attribute substitution by which an individual makes decisions about an event by 
recalling familiar instances of similar events (Tversky & Kahneman, 1973). 

The number 1/6.5 presented our prospective teachers with an unfamiliar representation 
(fractions containing decimals) of familiar mathematical objects (fractions more generally). 
Rather than responding to Cory and Alex or addressing the value of the number or its unfamiliar 
representation, some PSTs chose to respond with information about fractions that was more 
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easily retrievable, including familiar facts, representations, and commonly taught models. 
Several of these responses focused on the fact that 1/7 < 1/6 (despite the fact that 6 < 7) or on 
constructing a visual representation for fractions in standard form, like cutting a pizza into 6 
pieces of equal area to represent 1/6 (part-whole model), taking one pencil away from three to 
represent 1/3 (set model), or placing fractions on a number line (measure model). These 
responses explained fundamental concepts and procedures, such as why the magnitudes of 
fractions with different denominators cannot be compared and the necessity for finding 
equivalent fractions with a common denominator as well as procedures for doing so.  

Indeed, from a pedagogical perspective, these explanations resemble standard lessons on 
fractions and ways of thinking about them. The prospective teachers in our sample have likely 
experienced several lessons like these and discussed central ideas related to teaching and 
learning fractions in their coursework. As such, a familiar topic and strategy for a fraction-related 
lesson served for some scriptwriters as an available heuristic attribute. 

Discussion and Conclusion 
The results of our investigation highlight the difficulty of PSTs’ experience when asked to 

respond to students’ ideas that describe a particular strategy for finding a midpoint, and to 
unconventional representation of fractions.  

With respect to the former, we argue that pre-service teachers should be given more practice 
responding to students’ suggestions and focusing on their approaches and reasoning rather than 
on the correctness of the solution. Scriptwriting is a good opportunity to engage in such practice 
in a hypothetical situation, before teachers engage in “thinking on their feet” in actual 
instructional interactions.  

With respect to the latter, we note the PSTs’ uneasiness in dealing with 1/6.5 as a number. 
While treating this number as “illegal” or “not allowed” by prospective elementary school 
teachers was noted in prior research (Marmur, et al, 2020a), we were surprised to find a similar 
uneasiness and similar expressions used by prospective secondary school teachers, who in their 
mathematics courses had significant exposure to fractional forms involving all kinds of real 
numbers, such as !

"
, or algebraic expressions in numerators or denominators.  

In addition to extending research on unconventional representations, our contribution is in 
describing the pedagogical choices of PSTs in terms of attribute substitution. The concern that 
some teachers chose to devote major attention in their scripts to issues that are not central to the 
mathematics at hand was depicted in prior research as a “pedagogical shield”. This included 
detailed discussions related to prerequisite concepts (Koichu & Zazkis, 2013b), considering 
examples that that are peripheral to the mathematical core of the task (Marmur & Zazkis, 2018) 
or limiting the scope of the issues under consideration (Zazkis & Kontorovich, 2016). That is, the 
“shield” metaphor was used as means designed by teachers to protect themselves from 
uncertainty in how to deal with the presented mathematical situation. We analysed such 
pedagogical choices in terms of availability and representativeness heuristics.  

Prior research used attribute substitution in describing judgment in cases of uncertainty in 
probabilistic decisions. We extend the applicability of this construct to cases of uncertainty in 
making pedagogical decisions.  Future research will examine additional heuristic attributes in 
instructional situations that explicitly or implicitly divert attention from responding to students’ 
mathematical ideas.   
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Students’ Mathematical Reasoning With and About Representations 

 

Wesley K. Martsching 

University of Northern Colorado 

In mathematics, problems are solved and communicated to others using various forms of 

representation. For this reason, many mathematics courses are designed to develop and foster 

student fluency with mathematical representations. However, it is equally important to 

understand how students naturally produce and use representations when solving problems. 

Using intentional questioning in task-based, semi-structured interviews, I sought to identify 

emergent themes relating to what representations students construct in solving mathematical 

tasks, how they use these representations, and the relationship between their conceptions of the 

tasks and their constructed representations. Two Calculus I students participated, individually, 

in an interview comprised of two novel tasks. Inductive coding of interview transcriptions and 

participant representations identified three purposes of representation construction: as direct 

interpretations, as auxiliary objects, and as constraints. Results suggest that tasks provide 

students with the opportunity to construct and reflect on their own representations and compare 

them to other available representations.  

Keywords: Calculus, Mathematical Reasoning, Representations 

The importance of students’ ability to utilize and understand various representations when 

engaged in mathematical contexts has been heavily emphasized in policy and curriculum-

standard documents (e.g., CCSSI, 2010; CUPM, 2015; NCTM, 2000). In all levels of 

mathematics preparation of students (e.g., PreK-12 to post-secondary), the guidance of these 

standard documents includes fostering students’ ability to reason about, model, prove, and 

communicate mathematical ideas and concepts. Student construction of verbal or written 

utterances, models using manipulatives or figures, and formal or informal proof that 

communicate or convey mathematical ideas or concepts all exemplify some form of 

representation in mathematics (Goldin, 2014; Goldin & Kaput, 1996; Goldin & Shteingold, 

2001).  

In this study, I situate students’ utilization and interpretation of representations within the 

context of mathematical reasoning; that is, “purposeful inference about mathematical entities or 

relationships” (Conner et al., 2014, p. 183; see also Moshman, 2004). Through a constructivist 

lens, I seek to describe two students’, Seris and Samantha, reasoning with and about 

representations in a mathematical setting.  

Background Literature 

There exists a plethora of research investigating students’ use of representations in 

mathematical settings. However, previous research has focused on students’ use of 

representation in relation to specific mathematical content including algebra (Clement, 1982; 

Moon et al., 2013; Stylianou, 2011), arithmetic (Carraher, Carraher, & Schliemann, 1985), 

calculus (Mamolo & Zazkis, 2012; Stylianou, 2011), conic curves (Moon et al., 2013), and prime 

numbers (Zazkis & Liljedahl; 2004). Related literature also tends to investigate students’ 

construction and held meanings of specific representations including algebraic functions or 

equations (Carraher, Carraher, & Schliemann, 1985; Clement, 1982; Mamolo & Zazkis, 2012; 

Stylianou, 2011), contextual situations and word problems (Carraher, Carraher, & Schliemann, 
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1985; Clement, 1982; Mamolo & Zazkis, 2012; Stylianou, 2011), graphs (Moon et al., 2013; 

Stylianou, 2011), tables (Stylianou, 2011), “transparent” representations (Zazkis & Liljedahl, 

2004), and verbal definitions (Mamolo & Zazkis, 2012; Moon et al., 2013). Thus, modern 

research has yet to investigate the utilization and held meanings of students’ naturally 

constructed representations in contexts not designed to directly elicit construction of traditional 

representations. 

DiSessa et al. (1991) investigated students’ reinvention of graphing that was centered around 

activity meant to promote students’ invention (or reinvention) of the concept of cartesian 

graphing. In this activity, the goal for the students was to use technology to create a simulation of 

the motion of an object depicted in a given scenario, and then, using pencil and paper, construct a 

static motion picture that could be used to express, in as much detail as possible, their 

simulations of the original scenario. The use of a contextual problem, its origin void of any direct 

relation to those representations which our students have been conditioned culturally to use, may 

be the catalyst for opportunities to invent representations by the students in the study. 

In relating expert mathematicians’ and students’ use of representations in problem solving 

situations, Stylianou (2011) identified emergent themes relating to use of representations in 

individual and sociocultural settings. Stylianou determined that, in individual problem-solving, 

participants used representations as means to understand information, as recording tools, as tools 

facilitating exploration, and as monitoring or evaluating devices. In social settings, participants 

further used representations as presentation tools, tools to negotiate, and as tools to co-construct 

meaning. Taken together, Stylianou’s (2011) and DiSessa et al.’s (1991) studies provided 

motivation for the following research questions: (a) what representations do students construct 

when engaged in novel mathematical tasks, (b) how do students use their constructed 

representations when engaged in these tasks, and (c) how do the meanings students imbue in 

their constructed representations relate to their conceptions of the tasks at hand. 

Methods 

Participation was solicited from College Algebra and Calculus I courses at a mid-sized 

university in the Rocky Mountain region. These courses were chosen for solicitation based on 

the perceived diversity of student backgrounds and interests and because instruction in these 

courses often emphasizes the use of traditional representations in mathematical reasoning. Two 

students, Seris and Samantha (participant selected pseudonyms), participated in this study. Due 

to unanticipated restrictions on social interactions with the Covid-19 pandemic, no further 

participants were added to the study. Both Seris and Samantha were enrolled in a Calculus I 

course at the time of the interviews. Seris and Samantha each participated in a single one-on-one 

task-based clinical interview with the researcher. Each interview lasted approximately 75 

minutes. Two tasks were utilized in these interviews. 

Interview Task Design 

Individual interviews were centered around two purposefully constructed tasks; each task 

was comprised of multiple parts and were unique in the prerequisite knowledge required and the 

types of representations they were predicted to elicit. 

Task 1-Loveland Task. This task was developed from Saldanha and Thompson’s (1998) 

research investigating students’ covariational reasoning. The original task was created in 

GeoGebra and allowed a student to move the point associated with a car along a slider 

representing a road on which the car traveled. As the student varied the car’s position on the 
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slider, a secondary representation would display the relationship between the car’s distance 

relative to reach of two cities positioned on either side of the road. 

Modifications to the task by Stevens et al. (2017) added a third city and named each of the 

cities, situating the car’s path of travel within a context relative to the region in which their study 

was conducted. Further, in their goal of constructing tasks specifically designed to elicit 

students’ covariational reasoning, Stevens et al. removed the function allowing students to 

manipulate the cars position themselves and the secondary representation depicting the 

relationship between the car’s distances between each of two cities. Students were then asked to 

construct the graph relating the cars distances relative to each of two cities themselves. The 

graphs that this non-trivial task yielded were utilized by Martsching (2019) to provide students 

with multiple representations to discuss relative to the same prompt. These on-screen 

representations were utilized to investigate students’ eye-movements as they reasoned 

covariationally about each representation.  

The Loveland Task was thus created void of any mention of traditional representations to 

encourage students to construct their own non-traditional representations to convey meaning, and 

further incorporated a speed element to make utilization of traditional representations more non-

trivial. The context for the Loveland Task is provided below: 

Loveland Task: Sam is driving from Ft. Collins to Greeley. Before leaving, she notes that 

her map shows Loveland is about 13 miles due south of Ft. Collins, and Greeley is about 

19.5 miles due east of Loveland. Sam’s trip from Ft. Collins to Greeley can be described 

as follows: Sam begins driving due south from Ft. Collins at a constant speed of 40 miles 

per hour. After 12 minutes, Sam turns and begins driving due east at a constant speed of 

45 miles per hour. After six minutes, she again turns south, driving for four minutes at 75 

miles per hour. She then turns east and, after 20 minutes at 45 miles per hour, finally 

arrives at Greeley.  

This task had multiple subtasks which were intended to build in complexity in a sequential 

manner. The themes of these subtasks were: a) construct a representation of the trip, b) construct 

a representation of the car’s distance from a given city with respect to time, and c) construct a 

representation relating the car’s distance between each of two cities. 

Task 2-Compound Interest Task. The second task was inspired by my observations as a 

teacher and as a researcher of student difficulties in relating contextual, verbal, and figural 

representations involving percentages. This task was included in this study because of its 

prevalence in algebra courses at both the K-12 level and the undergraduate level and the 

perceived association between it and traditional symbolic and figural representations (e.g., 𝐴 =

𝑃 (1 +
𝑟

𝑛
)
𝑛𝑡

, exponential models, etc.). This association with traditional representations in 

conjunction with explicit verbal reasoning was anticipated to cause perturbation with students’ 

reasoning and reveal the prominence of their deeper contextual understanding. 

Compound Interest Task: Brian invests $1,000 into a savings account with an APR of 

5%, compounded annually (i.e., at the end of each year, 5% of the account’s current value 

is added to the account).  

This task had two subtasks: a) discuss aloud how the value of the account changes over time 

and b) sketch a graph of the value of the account with respect to time. The explicit verbal 

representation was predicted to elicit focus on meaning of the contextual representation provided 

and prompt reasoning about discrete changes in the account’s value, whereas figural 

representations where anticipated as allowing students to strip the task of its context and reason 

about the value of the account in traditional, pre-conditioned ways. 
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Data Collection 

The video and audio data relating to participant verbal utterances and physical gestures were 

collected via a camera positioned over-the-shoulder and behind the participant. Primary video 

data relating to participant in-the-moment constructions of representations were collected via 

screen recording of a touchscreen tablet. Secondary audio data was collected via a portable audio 

recording device. 

Both Seris and Samantha engaged in the Loveland Task first. However, the first subtask 

(construct a representation that could be used to convey the trip to someone else) yielded rich 

discussion and took longer than anticipated. Because of time restraints, some subtasks of the 

Loveland Task had to be omitted from the interviews. Further, based on Seris’s reasoning during 

the Compound Interest Task, the order of the two subtasks was changed for Samantha so that she 

was asked to construct a graphical representation prior to constructing an explicit verbal 

representation of the context.  

Analysis 

Following the interviews with Seris and Samantha, the primary datasets for each participant 

(i.e., over-the-shoulder video and audio; screen-recording videos) were superimposed to display 

verbal, gestural, and written representations simultaneously. Audio data were transcribed in their 

entirety. The superimposed videos were reviewed by the researcher in conjunction with the 

transcriptions to familiarize the researcher with the data prior to coding. 

While deductive coding utilizing the themes described by Stylianou (2010) may have been 

fruitful, in this study I was interested in students’ construction of representations in solving 

mathematical problems. In particular, in this study a representation or a collection of 

representations were often the product or solution to a problem, rather than tools by which a 

problem was solved. Inductive coding was thus deemed a more appropriate tool for analyzing the 

data in this grounded theory study. The data sets were hence coded based on (a) instances in 

which each participant constructed or interacted with a representation, (b) the participant’s held 

meaning of the representation of focus, and (c) the participant’s use of the representation of 

focus.  

Results 

Through analysis of Seris’ and Samantha’s mathematical reasoning with and about 

representations in the context of the Loveland Task and the Compound interest Task, I 

determined that these students used representations in three distinct ways. Both Seris and 

Samantha constructed Representations as Direct Interpretations of the context provided. For the 

Loveland Task, Seris and Samantha constructed “maps” depicting the orientation of and distance 

between the three towns in addition to representations of the trips constructed with vector 

representation to depict directionality, speed, and time spent traveling. Seris and Samantha also 

demonstrated their construction and use of Representations as Constraints. This theme was 

recurring throughout the Loveland Task in Seris’ and Samantha’s “maps”, Samantha’s 

conclusion that subtasks c and d were impossible to complete, and in Samantha’s modification of 

her interpretation of the context in the Compound Interest Task to match her constructed graph. 

Finally, both Seris and Samantha constructed Representations as Auxiliary Objects; that is, they 

constructed representations that were to be used in conjunction with one another, but that did not 

necessarily fulfill their intended purpose alone. This use of representation was evident in Seris’s 

triangular map, his “time series”, and in Samantha’s use of equations and table in the Compound 

Interest Task.  
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Representations as Direct Interpretations 

The purpose of each task was to construct a representation that could be used to 

communicate or depict the information of a given context, hence the representations constructed 

by participants were the end products of a solution rather than tools used to find a solution. To 

achieve the goal of communicating such a context, the most appropriate and readily available 

representation for participants was the context itself. Rather than quantifying the information 

given and reproducing it using traditional (or normative) mathematical representations (e.g., 

tables, graphs), participants constructed still images depicting the context itself as they perceived 

it. These representations served as direct interpretations of a context and sought to capture 

emergent components through non-traditional means.  

Task 1, subtask a) asked students to create a representation that they could use to convey 

Sam’s trip from Ft. Collins to Greeley to someone else. Seris began by constructing a 

representation depicting the relationship between towns themselves (see the top-left 

representation of Figure 1a), stating “so I guess with any problem like this, the first thing I would 

do is draw out kind of the basic elements that I know”. Similarly, Samantha also depicted the 

orientation of the towns and the distances between each within a rectangular “map” (Figure 1c). 

 

 

  

Figure 1. Seris’s initially constructed representations (a; left), Seris’s final constructed representations (b; center), 

and Samantha’s final constructed representations (c; right) for the first subtask of the Loveland Task. 

When depicting the trip itself, both Seris and Samantha utilized vectors to convey the speed 

and linear directionality of the car’s travel. In addition to assigning directionality and units for 

speed, both Seris and Samantha included with each vector the time, in minutes, that the car spent 

traveling in a given direction at a given speed (see the bottom representations of Figure 1a and 

Figure 1c). Further, Seris stated that his original representation (see top left of Figure 1a) was 

“grounding to what these vectors actually mean”. 

When engaged in the Compound Interest Task, Seris was asked to first reason verbally about 

the prompt before constructing any written representations. He quickly determined that the 

money in the account only changed at the end of each compound period, at which time the 

account grew by 5% of its current value. Thus, when asked to construct a graphical 

representation, Seris paid little attention to symbolic manipulations, and immediately constructed 
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a step function depicting the constant value of the account within each compound period. This 

instance was determined to be exemplary of Seris constructing his graph as a direct interpretation 

of the context of the task, as he constructed the trace of the function whilst simultaneously 

describing the emergent change in the accounts value over time.  

Representations as Constraints  

Whether implicit or explicit, contexts in which a problem is situated typically contain 

parameters that constrain or limit a solution strategy. Similarly, representations used to convey 

information can be validated or made more accurate by imposing characteristics that serve to 

represent these constraints.  

Upon remembering that his goal for the Loveland Task was to convey the trip to someone 

else, Seris himself opted to construct the “map” seen at the top of Figure 1b. By situating the trip 

inside the depicted triangle that “constrain[s] the problem geometrically”, Seris asserted that this 

depiction including both the vectors and the orientation of the towns depicted the trip in simplest 

terms to get from one town to another. When calculating how far the car had traveled during 

each leg of the journey to Greeley, Seris further stated that “you could use that as a way of 

understanding like, if you are leaving this triangle then I guess either it shows that her pathing is 

weird […] or it kind of constrains you and tells you like, okay, I did something wrong in this 

initial kind of calculation”. To Seris, if any of his calculations meant that the car would travel 

outside of the triangle, then either the original context did not correctly describe the car’s path, or 

his calculations were wrong.  

In the third and fourth subtasks, asking participants to create a representation showing how 

the car’s distance from Loveland changes over time and to create a representation showing how 

the car’s distance from Ft. Collins and its distance from Loveland relate, respectively, Samantha 

claimed that the task could not be answered. To Samantha, the phrase from Loveland implied 

that the car had to have been in Loveland at some point, and that the distance being described 

was in fact the car’s distance travelled as it travelled from Loveland. Like Seris’s triangular map, 

Samantha’s interpretation of the task at hand was a representation in and of itself that constrained 

her ability to solve the problem. To Samantha, the constraints that she’d created, although she 

constructed no tangible representation of them, implied that the task was an impossible one.  

Representations as Auxiliary Objects 

When constructing representations used to convey information from a given context, it may 

be challenging to create a single representation that adequately captures all of the information of 

interest, particular when the context is a dynamic one. In this case, secondary representations 

may serve as auxiliary objects to the primary representation of focus; that is, additional 

representations may be constructed to enhance or organize the information of another.  

When Samantha related her two representations in Figure 1c, she stated that her second 

representation represented that Ft. Collins was directly opposed to being above some point in 

between Loveland and Greeley, and that her initial representation was “more like a compass”. To 

Samantha, this compass oriented her construction and interpretation of her primary “map”.  

Seris, in stating that “maps are 2D so you can put them on a coordinate plane” situated the 

vectors of his trip on the coordinate plane shown in Figure 2a. In realizing that this 

representation alone did not convey how the car’s distance from Ft. Collins changed with respect 

to time, Seris constructed what he referred to as a “time series” (top-right of Figure 2a). He 

justified this construction by recognizing that the velocities along each vector were held constant, 

enabling him to break the overall trip into “discrete coordinates” that, when related to the 
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corresponding point in the time series, could be used to depict time spent travelling, horizontal 

distance travelled, and vertical distance travelled relative to Ft. Collins. In this way, Seris 

constructed the compass shown to illustrate that a −𝑦 value corresponds to southward travel, 

whereas a +𝑥 value corresponds to eastward travel. In representing how the car’s distance from 

Ft. Collins and its distance from Loveland related during the trip, Seris drew the red and blue 

vectors shown in Figure 2b. Seris “zoomed in” on two corresponding vectors to illustrate how 

the distances from each of the two cities related at that point on the trip. Like the “time series”, 

these vectors added a layer of information to Seris’s original representation of the trip.  

 

 

 
Figure 2. Seris’s constructed representations (a; left) for subtask b of the Loveland Task, and Seris’s constructed 

representations (b; right) for subtask d of the Loveland Task. 

Discussion 

Because each interview capped at 75 minutes, there was difficulty in fully completing both 

tasks with both participants. The restriction on time meant that only two tasks were able to be 

used in the study; due to COVID-19, restriction on contact also meant the study was limited to 

two participants. Future studies should investigate students’ construction of non-traditional 

representations when solving contextual problems to determine if any additional purposes in 

representation construction arises.  

The results of this study echo the discussion brought forth by Gravemeijer et al. (2017), who 

questioned what mathematical proficiency was needed by members of society. In their review of 

mathematical workplace tools, the authors described how workers utilized noncanonical graphs 

and problem-solving practices that differed significantly from what is taught and used in the 

classroom. Workers are motivated to use nontraditional representations as practical tools to 

arrive at efficient solutions and, like Seris and Samantha, tailored them to the affordances and 

constraints of the context from which they were derived. As was evident in the results of DiSessa 

et al.’s (1991) study, students provided with more time on the tasks in this study would likely 

have been able to move beyond the use of representations as auxiliary objects and may have the 

opportunity to reconstruct more meaningful representations. I believe that these results warrant 

investigation of the design of tasks and practices that both encourage students’ construction of 

practical representations and promote reflection on the accuracy and efficiency with which their 

representations communicate mathematical ideas.  
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Behavioral Nudges Improve Student Outcomes on Mastery-based Assessments in Precalculus 
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STEM disciplines and especially mathematics are turning to alternative forms of instruction and 
assessment in order to improve learner outcomes. Here, we report on assessment outcomes in a 
mastery-based Precalculus course (N = 464) at a large, public research university. In 
particular, the impact of behavioral nudges on students’ assessment scores is evaluated using 
regression with academic performance covariates. We find a positive effect of two types of 
nudges on student assessment scores that span the semester. These results provide evidence that 
behavioral nudges can help students make choices that ultimately lead to higher scores, and 
presumably improved learning, in Precalculus.  

Keywords: Behavioral nudges, Mastery-based grading, Nudge theory, Precalculus, Regression 

Unique among STEM disciplines, introductory math courses in the U.S. have come to hold a 
hegemonic place in the university curriculum (Reinholz et al., 2019). For most universities and 
STEM degree programs, students must minimally either pass one or two math courses or 
demonstrate “proficiency” through a mechanism like a placement exam or earned transfer credit. 
With math being a foundational discipline across degree programs and at the K-12 level, it is 
concerning that, historically, learners have had a fraught relationship with the subject (Solomon, 
2008). As a discipline, math faces the serious challenges of inducing student anxiety and 
effecting negative student perceptions (Eden et al., 2013; Sonnert et al., 2020). Some student 
groups are affected by these challenges more than others; poor learning outcomes and negative 
changes in affect are felt disproportionately by women, low-income students, and students of 
color especially in courses prior to calculus (Larnell, 2016; Larnell et al., 2014; Martin, 2019; 
McGee & Bentley, 2017), and these groups of students are also more often pushed out of STEM 
degree programs (Seymour & Hunter, 2019). The Common Vision report succinctly stated that 
“the status quo is unacceptable” (Saxe & Braddy, 2015, p. 1) and called for removing barriers 
that keep students from progressing, especially for courses taken during the first two years.  

In this milieu, mastery-based pedagogy has shown promise at addressing these challenges by 
centering student progress in relation to their demonstrated understanding of learning objectives 
(Marzano, 2011; Sadler, 2005; Zimmerman, 2017) and emphasizing the importance of learning 
through struggle and revision, collaboration over competition, and that all students can succeed 
when properly supported. Mastery-based pedagogy has been correlated with gains in student 
achievement in several disciplines (Beatty, 2013; Boesdorfer et al., 2018; Buckmiller et al., 
2017; Diegelman-Parente, 2011), including math (Riordan & Noyce, 2001; Schoen et al., 2003; 
Tarr et al., 2008). Mastery-based pedagogy may provide a productive pathway for course 
transformations, but much remains to be understood about the process of course redesign for 
mastery and its impacts on students and instructors, especially in high-enrollment courses with 
large instructional teams. 

Here, we report on the impact of an intervention designed to improve student behavior with 
respect to an important aspect of mastery-based pedagogy: the opportunity to make multiple 
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attempts on course assessments and improve over time. The intervention is a short series of 
personalized reminder emails and was conceived of as a behavioral nudge, an economics concept 
describing subtle and low-cost changes in an environment that help to promote a desirable 
action. Our research question is: To what extent can behavioral nudges improve student 
outcomes on mastery-based assessments in Precalculus? We found that engagement with the 
reminder emails increased students’ scores on 40% of assessment opportunities, even while 
controlling for relevant covariates.       

Theoretical Framework 
The definition of behavioral nudges is often drawn from the work of Richard Thaler and Cass 

Sunstein (2008) who summarized them as “choice architecture that alters people's behavior in a 
predictable way without forbidding any options or significantly changing their economic 
incentives” (p. 6). In the face of cognitive limitations, nudges can make some choices more 
salient; for example, stocking produce near the cashier at a grocery store improves the rate at 
which it is purchased (Kroese et al., 2016). Importantly, nudges are conceived of as low-cost, 
non-coercive, and easy to ignore, leaving autonomy with the person exposed to the nudge. 
Though ideas about nudges and nudge theory have been criticized for being vague and having 
wide applicability across too many domains (Kosters & Van der Heijden, 2015), small changes 
to learning environments have been shown to effect positive outcomes and student achievement 
in myriad educational settings with students, instructors, and even parents (Damgaard & Nielsen, 
2018). In contrast with interventions that change default and passive behaviors (e.g., opting in 
versus opting out), the nudges employed in this study are informational, providing an addition to 
the decision environment that students can actively use (Damgaard & Nielsen, 2018). 

Methods 

Context 
This research took place at the University of Michigan (U-M), a large, public university 

where the Precalculus course of interest (herein called Math 101) enrolls approximately 600 
students annually across small sections of about 20 students each. Recently, the Math 101 
teaching team began work to shift the course assessments from a traditional model of three high-
stakes exams to a mastery-based model including approximately 10 repeatable assessments and 
standards for each letter grade (Bennett et al., 2022). The new assessment structure now has 55% 
of students’ course grades determined by the repeatable mastery assessments and a further 15% 
from work done during class meetings and on assignments. These scores plus two short, low-
stakes exams comprise students’ course grades, and there is a guaranteed scale for the course: 
students know in advance what grade they will get for a given course average and work. This 
assessment structure replaces a model in which 95% of students’ course grade was generated by 
three timed (and necessarily high stakes) exams and a scaled grade distribution. 

In the study period, students could complete the mastery assessments for a grade up to twice 
per day. Most assessments included five problems and were scored out of 5 points; students 
earned partial or full credit for scores of 4 or 5, respectively, but zero credit for scores of 3 and 
lower. The final assessment had 10 possible points and a similar credit/no credit assignment. 
During the first term with mastery assessments, instructors observed that students tended to make 
their first attempt close to the due date and that they overall used few of the available attempts. 
Thus, an email-based nudge intervention was designed with the goals of 1) encouraging students 
to make their first attempts earlier (each assessment was open for 10 to 14 days), 2) giving 
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students feedback about their current score and number of remaining attempts, and 3) adjusting 
norms so that, in contrast to typical perceptions of quizzes and exams, initially low scores were 
seen as okay. The intervention was implemented with ECoach, a software platform already in 
use in Math 101. ECoach is an award-winning web-based student “coach” that supports success 
in large courses through tailored feedback (IMS Global, 2021; Matz et al., 2021). ECoach uses 
student survey responses, prior performance metrics, and information about how students are 
doing (e.g., homework scores) to provide tailored messages and resources like advice about 
exam preparation. 

The nudge intervention consisted of two short reminder emails tailored to each student’s 
behavior and sent with ECoach for each of the 10 mastery-based assessments. The first reminder 
(Reminder 1) was generally sent five days before the due date to all students and included 
information about students’ current score, their remaining number of attempts, and tailored 
feedback. For example, students who hadn’t yet started were encouraged to make their first 
attempt at least three days ahead of the due date, and students who had already made several 
attempts but still had low scores were encouraged to consider getting help during office hours. 
The second reminder (Reminder 2) was generally sent two days before the due date but only to 
students who had not yet earned any credit for the assessment (i.e., a score of 3 or lower). 
Students again received information about their current score and number of remaining attempts, 
and the feedback was tailored based on whether the student was not passing because they hadn’t 
started the assessment or because they hadn’t yet earned a passing score. Together, these 
reminders reflect a combination of two techniques identified by Münscher and colleagues (2016) 
in their framework for choice architecture: the nudges assist with "decision information" by 
showing students their scores and how many attempts they have remaining, and the nudges serve 
as a reminder about due dates, which is a form of "decision assistance."  

Data Collection and Analysis 
In the semester of interest, 464 students enrolled in Math 101. A demographic profile is 

provided in Table 1 showing that, compared to the rest of U-M, Math 101 tends to have higher 
proportions of students who are female, first-generation, low income, and members of racial and 
ethnic groups historically excluded from STEM (Asai, 2020). We also collected several variables 
from the ECoach database including 1) students’ maximum mastery assessment score for each 
assessment, 2) whether students read the reminder emails for each assessment, and 3) whether 
students read their other Math 101-related ECoach emails throughout the semester as a gauge of 
their general proclivity to read similar emails.  

Further, we collected students’ grade point average in other courses (GPAO), a relevant 
metric of college-level academic performance. GPAO is calculated as the cumulative college 
GPA through the given semester excluding the course of interest and thus acts as a measure of 
student performance in all their other courses (Huberth et al., 2015; Koester et al., 2016). Most 
Math 101 students (≥80% in this study period) are in their first year, so GPAO is essentially a 
measure of their first-year college GPA (excluding Math 101). We note that at U-M, GPAO has 
been found to outpace the predictive value of all other typical covariates (e.g., high school GPA 
and standardized exam scores) with respect to student academic performance, namely course 
grades. The data were imported into and analyzed using IBM SPSS Statistics (version 27). 
Following basic descriptive statistics, we used linear regression to evaluate the impact of reading 
the reminder emails on assessment scores using GPAO and the extent to which students read 
their other Math 101-related emails as covariates. This study was determined by U-M’s 
Institutional Review Board to be exempt research.  
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Table 1. Summary of demographic information for students in Math 101 during 
the study period compared to all full-time U-M undergraduates in the same 
term. aOnly binary sex information was available. bStudents were considered 
continuing-generation if any parent had any college experience. cStudents self-
report estimated gross annual family income. We use a $50,000 cut off because 
it is approximately 200% of the federal poverty guidelines for families with four 
persons (Office of the Assistant Secretary for Planning and Evaluation, 2021). 

Characteristic 
Math 101 <U-M 

n <% <% 

Sexa 

    Female     
    Male 
    Missing 

 
274 
190 
0 

 
<59 
<41 
<0 

 
<51 
<49 
<1 

Race 
    Asian 
    Black 
    Hawaiian 
    Hispanic 
    Native American 
    Two or more 
    White 
    Missing 

 
28 
70 
1 
52 
1 
28 
274 
10 

 
<6 
<15 
<1 
<11 
<1 
<6 
<59 
<2 

 
<23 
<4 
<1 
<7 
<1 
<5 
<56 
<6 

First or continuing generation statusb 
    Continuing generation 
    First generation 
    Missing 

 
368 
82 
14 

 
<79 
<18 
<3 

 
<87 
<8 
<5 

Estimated family annual incomec 
    ≥$50K  
    <$50K 
    Missing 

 
257 
128 
79 

 
<55 
<28 
<17 

 
<62 
<13 
<25 

Limitations 
One key limitation in using these data is that we know whether a student has viewed the 

reminder email but not actually whether they read the reminder email. That is, the ECoach 
database records the timestamp at which the reminder was viewed and there is no way based on 
the current data infrastructure to know the length of time that a student interacted with the 
reminder, though we were able to assess if students opened the same reminder multiple times. 
Throughout this study, then, we assume readership based on viewership and acknowledge that 
other methods of data collection would be needed to better understand the quality of student 
engagement with the reminders. 
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Results 
Results from this pilot semester of email nudges are encouraging. Overall, the reminders 

were read by most eligible students (Figure 1). This pattern holds across both reminders which is 
somewhat surprising because it might be reasonable to suspect the group of students that is sent 
Reminder 2 (students who hadn’t yet achieved a passing score two days before the due date) to 
be different in some academically relevant ways compared to the aggregate group that is sent 
Reminder 1. Readership drops over the course of the semester but levels out at approximately 
60% by the fourth assessment, due about half-way through the term. Overall, students read these 
reminders at a slightly lower rate (M = 67%, SD = 27%) than that at which they read all their 
other Math 101 emails from the ECoach system (M = 72%, SD = 28%; t(463) = 5.2, p < .001).  
 

 
Figure 1. Percent of eligible students who read each reminder email. Because of a scheduling disruption at the 

beginning of the semester, there was a double set of reminders—1(a) and 1(b)—for the first assessment. 
 
Students who read the reminder emails earned higher average scores on every assessment 

compared to students who did not for both Reminder 1 (Figure 2a) and Reminder 2 (Figure 2b). 
These score differences are statistically significant for 12 of the 20 total reminders (we used only 
the data from the first set (1a) of reminders for assessment #1; see Figure 1 for details).  
 

  
Figure 2. Mean scores +/- standard error of the mean on each mastery assessment parsed by students who did 

and did not read Reminder 1 (a) and Reminder 2 (b). Comparisons for statistically significant differences were 
made by independent samples t-tests; *p < .05, **p < .01, ***p < .001. 
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While it might be expected that students who read their email exhibit other behaviors that 
support earning higher scores, this result was stable for six of the reminder emails across four of 
the ten mastery assessments (#2, #5, #9, and #10) even after using linear regression to account 
for prior performance (with GPAO) and how much students read their Math 101 ECoach email 
in general (Table 2). In these cases, reading the reminder emails was associated with higher 
assessment scores by somewhere between 0.27 and 0.84 points on the 5-point assessment scale. 
Average variance inflation factors (VIF) close to 1 indicate that multicollinearity between 
covariates does not substantially bias the models, even considering the expected and observed 
relationship between reading the reminders and reading other course-related emails (correlations 
not shown). Inspection of the standardized residual plots for each model indicated that the 
assumptions of linear regression were met. 
 

Table 2. Linear regressions relating whether students read Reminder 1 or 
Reminder 2 emails and assessment scores. “Other email” refers to the percent 
of other eligible Math 101 emails sent through ECoach that students read. CI = 
confidence interval; LL = lower limit; UL = upper limit. Each model was 
significant with p < .001; *p < .05, **p < .01, ***p < .001. 

Covariate B 95% CI for B 
LL            UL SE B β*** 

Assessment 2, Reminder 1 (n = 462, R2adj = 0.15, VIFavg = 1.21) 

Constant 
GPAO 
Other email 
Reminder 1 

1.75 
0.65 
0.29 
0.28 

-1.16 
-0.48 
-0.12 
-0.02 

2.33 
0.82 
0.70 
0.53 

0.30 
0.09 
0.21 
0.13 

-*** 
0.34*** 
0.07*** 
0.10*** 

Assessment 2, Reminder 2 (n = 311, R2adj = 0.13, VIFavg = 1.18) 

Constant 
GPAO 
Other email 
Reminder 2 

1.72 
0.61 
0.25 
0.38 

-0.99 
-0.40 
-0.33 
-0.05 

2.45 
0.82 
0.82 
0.71 

0.37 
0.11 
0.29 
0.17 

-*** 
0.31*** 
0.05*** 
0.13*** 

Assessment 5, Reminder 1 (n = 458, R2adj = 0.20, VIFavg = 1.28) 

Constant 
GPAO 
Other email 
Reminder 1 

0.54 
0.95 
0.22 
0.38 

-0.14 
-0.75 
-0.29 
-0.09 

1.23 
1.15 
0.73 
0.66 

0.35 
0.10 
0.26 
0.15 

-*** 
0.41*** 
0.04*** 
0.13*** 

Assessment 5, Reminder 2 (n = 321, R2adj = 0.21, VIFavg = 1.17) 

Constant 
GPAO 
Other email 
Reminder 2 

0.46 
0.90 
0.28 
0.52 

-0.34 
-0.67 
-0.33 
-0.17 

1.26 
1.14 
0.89 
0.87 

0.41 
0.12 
0.31 
0.18 

-*** 
0.39*** 
0.05*** 
0.16*** 
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Assessment 9, Reminder 2 (n = 149, R2adj = 0.17, VIFavg = 1.17) 

Constant 
GPAO 
Other email 
Reminder 2 

-0.51 
-0.81 
-0.23 
-0.84 

-0.80 
-0.42 
-1.25 
-0.26 

1.83 
1.19 
0.78 
1.42 

0.67 
0.20 
0.51 
0.30 

--*** 
-0.32*** 
-0.04*** 
-0.24*** 

Assessment 10, Reminder 1 (n = 421, R2adj = 0.22, VIFavg = 1.23) 

Constant 
GPAO 
Other email 
Reminder 1 

0.12 
1.02 
0.42 
0.27 

-0.65 
-0.80 
-0.05 
-0.01 

0.89 
1.24 
0.89 
0.52 

0.39 
0.11 
0.24 
0.13 

-*** 
0.41*** 
0.09*** 
0.10*** 

Discussion 
Here, we find a positive effect of behavioral nudges on student performance on mastery-

based assessments in Precalculus. These improvements are observed in assessments that span the 
semester, indicating some robustness to variation in student workload and the mathematical 
concepts and exercises at hand, and they are observed for both Reminder 1 and Reminder 2 
though these nudges are targeted differently. Mastery-based pedagogy and similar assessment 
frameworks (e.g., standards-based grading and ungrading) are gaining attention in introductory 
STEM courses and specifically mathematics as a route for supporting positive student outcomes, 
both cognitive and affective. The results described here provide evidence that within a mastery-
based framework, non-coercive behavioral nudges can be effective in helping students make 
choices that ultimately lead to higher scores and presumably improved learning.  

Importantly, this study provides an example of successful personalized nudging. Improving 
the precision and effectiveness of behavioral nudges through more personalized default rules is 
an active area of research (Mills, 2020; Sunstein, 2013). With evidence that broadly applied 
homogeneous rules can have unintended effects and even harm specific subpopulations 
(Thunström et al., 2018), understanding the nature and extent of efficacious personalization in 
learning environments is important. There is also a relationship between this work and efforts to 
cultivate growth mindsets with students, especially for those in developmental courses (Mills & 
Mills, 2018). By design, mastery-based pedagogy asks learners to focus on evaluating their 
progress toward achieving learning goals, a key characteristic of students who exhibit intrinsic 
motivation to learn (Middleton & Spanias, 1999). Supporting students’ growth orientation and 
intrinsic motivation to learn may be particularly crucial in math, and evidence that mastery-based 
pedagogy supports growth orientation is building (Collins et al., 2019; Prasad, 2020). 

Future research will report on the quality of interactions that Precalculus students have with 
the reminders and insights into the mechanisms by which they affect outcomes. Certainly, 
student mindset about learning in math, and especially in mastery-based courses, is an important 
area for future work that can provide momentum toward the improvements in undergraduate 
education sought by the larger mathematical sciences community (Saxe & Braddy, 2015). 
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Easy, Medium, and Hard: Structuring Space in 2D and 3D by Way of Linear Combinations 

 

Matthew Mauntel 

Florida State University 

Understanding linear combinations is at the core of linear algebra and impacts their 

understanding of basis and linear transformations. This research will focus on how students 

understand linear combinations after playing a video game created to help students link the 

algebraic and geometric representations of linear combinations. I found that having students 

reflect upon the game and create their own 3D version of the game illustrated which elements of 

2D understanding could be translated into 3D. Also, students creation of easy, medium, and hard 

levels provided insight into how students progressively structure space.  

Keywords: Linear Algebra, Linear Combinations, Game-based Learning 

Understanding linear combinations in a variety of dimensions is core understanding linear 

algebra. In addition, it is important that students can reason through a variety of representations 

of multiple concepts including linear combinations (Hillel, 2000; Sierpinska, 2000; Larson & 

Zandieh, 2013). Well-designed games created with learning theories in mind can help students 

associate multiple representations and problem-solve (Ke & Clark, 2019). Vector Unknown 

(Zandieh et al., 2018; Mauntel et al, 2019; Mauntel et al., in press) is a game designed using the 

tenants of Realistic Mathematics Education (RME). The focus of the game is to help students 

connect geometric and algebraic representations of linear combinations with vector equations. 

This paper is part of a larger project where the goal is to analyze how students structure two-

dimensional space space after playing the game Vector Unknown, and how this two-dimensional 

space structuring informs their structuring of three-dimensional space. 

Literature Review  

Vector Unknown is based on the Magic Carpet Ride task (Wawro et al., 2013) which is the 

first task in a sequence that cover linear combinations, span, linear independence. The task uses 

travel as a metaphor for taking linear combinations of vectors. Stewart and Thomas (2010) found 

that linear combinations were central to students’ understanding of basis, span, and linear 

independence. Dogan-Dunlap (2010) utilized Sierpinska’s modes of reasoning (2000) and found 

that students who were able utilize both geometric modes of thinking were also able to utilize 

analytic modes of reasoning. This research indicates that bridging the gap between geometric and 

algebraic representations of vectors and linear combinations can be beneficial for students 

learning linear algebra. Coordinating the ideas of linear independence and span is a key area of 

difficulty related to organizing linear combinations and transitioning from two-dimensional to 

three-dimensional space. These areas could be addressed using game-based learning as they can 

be represented in multiple ways including a visual mode that may difficult to represent on paper.  

Well-designed games follow good learning principles (Gee, 2003).  Gee (2003) postulates 

that one of the reasons video games are so popular is because they keep students pleasantly 

frustrated with well-ordered problems that engage them in complex reasoning. Furthermore, 

intermittent periods of reflection and gameplay have been shown to be successful in helping 

students learn from video game environments (Foster & Shah, 2015). For this reason, this 
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research will involve having students play the game Vector Unknown, reflect upon the game, and 

then use this reflection to design their own three-dimensional space version of the game.  

Study Context 

The Game Vector Unknown 

In this section I describe the game Vector Unknown (https://tinyurl.com/linearbunny) its 

creation, and describe some gameplay. The game Vector Unknown was developed as a 

coordination between math educators, experts in game-based learning, and programmed by a 

team of capstone students at Arizona State University to help students understand the connection 

between a vector equation and its geometric representation. Zandieh et al. (2018) designed the 

game Vector Unknown based upon a theoretical framework that intersects GBL with RME 

(Zandieh et al., 2018). The goal of the game is to have the player select two vectors, adjust the 

scalars, and press GO to guide the rabbit to the basket. In the first level (Figure 2), the game 

presents with a collection of four different vectors. Once players have chosen at least  

 

 
Figure 2. First level of the game Vector Unknown from Mauntel et al. (2019) 

 

one vector, they can adjust the scalars in front of the vectors. Feedback received by the players 

includes a red predicted path generated from the rabbit illustrating each component of the vector 

equation. The result of the vector equation adjusts as the player adjusts the scalars in the vector 

equation. Above the log, players can view their position and the position of the basket location. 

The map in the upper left–hand coordinates provides an alternate view of the map. After the 

player presses GO, the rabbit moves along the path towards the basket and the log provides all 

vector equations used.  

Prior Research on Vector Unknown 

Mauntel et al. (in press) previously categorized game-play strategies from two main lenses: 

geometric or numeric. The geometric lens is when students focus on utilizing the graphical 

components of the game relating to the graph in particular the Predicted Path. Numeric thinking 

relates to when the player focuses more on the Vector Equation. One of the main goals of the 
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game is to encourage the player to transition fluidly between the two different lenses. Mauntel et 

al. noticed several strategies that students employed while playing the game.  

One of the strategies, quadrant-based reasoning, is when players utilize direction to anticipate 

to make their vector choices. The term quadrant is used because players start at the origin and 

often they would choose vectors that corresponded to the quadrant of the basket location. In the 

numeric lens this presented itself as a player choosing vectors that shared the same sign as the 

basket. In the geometric lens, students would often drag a vector and try it to see its direction to 

determine if it were in the same direction as the basket. Often players would transition between 

lenses for instance there are times when players would find the slope between two points by 

counting the change in y and change x on the Cartesian plane and then using this information to 

find the vector switching to a more numerical lens.  

 For the strategy focus on one vector, players would choose a single vector and then scale 

that vector as close to the basket as possible and then choose another vector to complete the trip 

to the basket. This theme presented itself in the numeric lens as scaling a vector until it was as 

close to the basket location in the vector equation as possible. In the geometric lens, players 

would scale the vector until the predicted path was close to the basket location, and then choose 

another vector to complete the trip. The fourth theme, focus on one coordinate, involved the 

players trying to use a vector or combination of vectors to reach a value or destination that 

matched the x- or y-coordinate of the basket location. This theme presented itself frequently 

when standard basis vectors were involved.  

Theoretical Framing  

My research will focus on analyzing student’s mathematical activity in the sense of 

Freudenthal (1971, as cited by Gravemeijer & Terwell, 2000) as it relates to the taking linear 

combinations of vectors in two dimensions and the emerging activity that it generates. From this 

mathematical activity, I want to characterize a new type of emergent activity which I call 

structuring space use the term emerging activity as opposed to emerging models to indicate that 

tasks are not designed to guide the students to a fixed emergent model or formalize a particular 

concept, rather this research is focused on what models are possible to inform future 

development of an RME sequence. I call the students’ emerging activity their structuring of 

space. After the students structure two-dimensional space, they will be asked to structure three-

dimensional space. This transition is meant to induce a model of/model for transition as their 

structuring of two-dimensional space is utilized for structuring three-dimensional space. This 

research will utilize a realistic starting point of the video game Vector Unknown.  Also, I will be 

looking at a how the student’s structuring of two-dimensional space impacts their gameplay to 

gain more insight into how their ideas of structuring space relate to the game context. My 

research questions are: 

1. How did students structure two-dimensional space with respect to linear combinations in 

relation to the game Vector Unknown? 

2. How did students adapt their structure of two-dimensional space to a three-dimensional 

setting when designing a three-dimensional game based upon Vector Unknown? 

This paper is part of a larger dissertation project and in this paper I will present a portion of my 

findings for research questions 1 and 2 for one group of students.  

Interview Protocol  

 The interview took place over the course of four sessions.  During the first session 

students played the game Vector Unknown individually. In the second section students were 
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paired with another student based upon their gaming experience and were given a set of four 

vectors taken from the Vector Selection in the game and asked to list all possible locations to 

place the basket. Then, they were asked to create an easy, medium, and hard difficult set of 

vectors that could reach the basket location at (-3, 5). Finally, during the third session, 

participants were asked to design a three-dimensional space game based upon the two-

dimensional space game by either creating an Easy, Medium, and Hard difficulty game with 

vectors and potential basket locations or design three sets of vectors (Easy, Medium, and Hard) 

that could be used to reach a basket placed at (3, -4, 5).  

Participants, Data Sources, and Methods of Analysis 

For this paper I will be looking at two students from a large Southern University. Neither 

student had taken linear algebra at the time of the interview. Students were asked to self-identify 

their race and gender. Both students identified as women, with one identifying her race as white 

(given the pseudonym Gabby) and the other identifying her race as other (given the pseudonym 

Delores). Also, both students played video games for less than 5 hours per week and thus were 

classified as non-gamers.   

Interviews were conducted over Zoom, recorded to a secure server, and auto-transcribed 

using Zoom’s automatic transcription service. The videos and associated transcripts for the 

second and third sessions were then reviewed for instances of structuring space in two and three 

dimensions respectively. These instances were then detailed using captured images and 

quotations from the transcripts edited for accuracy when necessary. The two-dimensional and 

three-dimensional structuring spaces were then reviewed for connections and cross-cutting 

themes consistent with grounded theory (Strauss & Corbin, 1990).   

Findings 

In this section I present several examples of structuring space induced by the game Vector 

Unknown and the post-play reflections.  Delores and Gabby had several ways of thinking about 

linear combinations of vectors in two- and three-dimensional space.  In two-dimensional space, 

Delores and Gabby focused on creating increasing more complex linear combinations of the 

vectors that would reach the basket of (-3,5). When designing the three-dimensional space game, 

they created easy, medium, and hard version of the game and chose to illustrate all the possible 

locations that could be reached by the vectors. With the basket location not fixed their method of 

creating different difficulties of the game was based upon creating basket locations that were 

more difficult to reach rather than creating different sets of vectors.   

Easy, Medium, and Hard in two-dimensional space: Numerical Structuring leads to Vector 

Equations 

Gabby and Delores’s work in creating Easy, Medium, and Hard vectors led them think about 

vector equations and how they could be solved. Gabby and Delores designed their Easy vectors 

by thinking about the numerical relationships of the vectors in relation to the basket at <-3,5> 

(Figure 2). They wanted the vectors to sum to the basket location without having to scale. This 

activity resulted in breaking apart the vector <-3,5> in terms of x and y coordinates (for <0,5> 

and <-3,0>) or finding numbers that sum to -3 and 5, for example <-1,3> and <-2,2>. Gabby 

described their strategy for finding Medium vectors by comparing it to their strategy for finding 

easy vectors:  
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So that one would be more medium, I guess, because, instead of just having the numbers 

right there you actually have to multiply the numbers to get the ones you want. For 

medium, we can do like negative one zero and then zero negative one, so that way it's 

less addition and more multiplication. 

 

Medium difficulty is the first instance that Gabby and Delores transition to using linear 

combinations of vectors that included addition and multiplication. Gabby’s idea for the first two 

vectors led to Delores’s idea for finding the remaining vectors by writing down a vector 

equation. 

     

Easy Medium Hard 

<-1,3>, <-2,2>,  

<0,5>, <-3,0> 

 

<-1, 0>, <0,-1>, 

<-1,2>, <-1, 1> 

 

<6,7>,<-9, -2> 

<4,7>, <9, 26> 

Figure 2. Easy, Medium, and Hard Vectors Selections 

Here Delores first started with trying to find two vectors that would add up to <-3,5> knowing 

that she wanted to use -2 as a weight (Figure 3). She eventually dropped the negative and 

through a process of guess and check was able to find vectors that worked. For the Hard set of 

vectors both Gabby and Delores agreed that larger numbers were appropriate. Delores created 

the pair of vectors <6,7> and <-9,-2> to sum to the basket location of <-3,5>. Gabby used a 

similar technique to Delores to design the Vectors <4,7> and <9,26> by choosing a scalar of -3, 

selecting the vector <4,7> and multiplying it by -3, and finally finding solving for each 

coordinate to find the vector <9,26>. Gabby’s work did not indicate clearly if she had guessed 

and checked both vectors or if she chose -3 and <-4,7> and found then solved for <9,26>.   

 
Figure 3. Vector Equations as drawn by Delores for Medium Difficulty  

After designing Easy, Medium, and Hard vectors, the interviewer asked the participants how 

they would explain to a programmer a technique for creating vectors. They focused on 

describing their process for Medium and Hard difficulty vectors. Delores explained that you 

could create the vectors by “just take four random numbers and subtract them until I get my, 

until I get either the -3 or 5” (Figure 3). Here Delores is describing her process of trying random 

numbers in the vectors until you find a combination that works for the x and y coordinate. This 

indicates that Delores is thinking about using subtraction to identify individual coordinates 

instead of whole vectors. This corresponds strongly with the focus on one coordinate strategy in 

the Vector Unknown game. 

 
Figure 3. Random Vector Equation  
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Gabby built on this idea and stated that “you would already have the point specified that you 

want like (-3,5) and then picking random numbers for Vector 1 … then the number you multiply 

it by and then solving for Vector 2.” This suggests that Gabby has started thinking about Vector 

Equations as equations in themselves, subtracting whole vectors as opposed to just thinking in 

terms of individual coordinates.  

Easy, Medium, and Hard in three-dimensional space: Working with Vector Equations 

When asked to design a three-dimensional space game, Gabby and Delores chose to create 

Easy, Medium, and Hard games and illustrate all the possible locations where the basket could 

be located. This contrasts to the exercise in the previous session where they were designing easy, 

medium, and hard vectors to reach a specific basket location. The interviewer introduced them to 

GeoGebra three-dimensional space since neither student had worked in three-dimensional space 

previously. They began by designing by choosing random numbers for easy vectors and taking 

all combinations of the easy vectors for possible locations of the basket indicated by points A-F 

which were sums of the vectors <0,2,0>, <-1,2,3>, <2,0,1>, and <-4,3,-1> (Figure 4).  

 

 
Figure 4. Creating the basket locations for the Easy and beginning goals for Medium  

When they transitioned to Medium rather than change the vectors, they decided to change the 

possible basket locations by placing scalars in front of one vector in each sum that represented a 

basket in the Easy mode of the game.  Figure 5 illustrates one basket location from easy and how 

it was adapted to medium and hard.   

 

Basket Locations for Easy Basket Locations for Medium Basket Locations for Hard 

(2,0,1) + (-1,2,3) b (2,0,1) + (-1,2,3) 

(2,0,1) + b (-1,2,3) 

b (2,0,1) + c (-1, 2, 3) 

Figure 5. Easy, Medium, and Hard basket location comparison 

Both students focused on how they could adapt expression that they had developed to find the 

basket location. Here Gabby and Delores used reasoning about the Easy, Medium, and Hard 

vectors where an increase in difficulty resulted in more scalar multiplication in the context of 

their linear combinations.   

After creating Easy, Medium, and Hard difficulty, Gabby and Delores were asked to describe 

geometrically some of their basket locations: 

Interviewer: What does G = (-4, 3, -1) + b (0,2,0) look like geometrically?  

Delores: It would go all around the board because it has negatives and positives…[Delores 

adjusts her slider] It stays on one side of the board. 
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Gabby: I can’t tell if the vector stays on one side because the graph is three-dimensional 

space. We cannot use the quadrants anymore. 

 

Here Delores and Gabby are trying to build on different knowledge they used previously in the 

interview. Delores is trying to first use a mainly numerical argument using signs until she adjusts 

the sliders and discovers that the basket location seems to be on one side of the board. Gabby 

could not decide if she was convinced Delores’s statement is correct. This indicates that Gabby is 

trying to adapt the notion of quadrants to three-dimensional space and what it means to be on 

“one side.” This is important because one of the keyways that student’s reason about the game in 

two-dimensional space was quadrant-based reasoning. If students were using quadrant-based 

reasoning to reason about three-dimensional space, they need a new way to reconceptualize 

quadrants. One possible way of dealing with this involves thinking about the controls of the 

video game and their relations to the scalars as suggested in the following conversation:  

 Interviewer: If you want to look at all the places you put a goal [basket] with the equation b 

<2, 0, 1> + c <-1, 2, 3>, can you describe it? 

Gabby: b makes it move the vector move up and down and c makes it move side to side 

Interviewer: So if I were to plot all the goals [baskets], what would it look like? 

Delores: It would look like an L-shape and on the left side. 

 

This indicates that thinking about the way the basket moves with the slides similar to the controls 

of the game might be a way to think about the location movement of the basket. Delores’s 

comments highlight the point that while she has conceptualized some points in the linear 

combination b <2, 0, 1> + c <-1, 2, 3>, the basket locations that require moving both b and c 

eluded her description. This could be a result of the limited time of the session or because she 

thought there might be constraints on what scalars were used at what points. Either way it 

illustrates that points that involve changing the scalars on each vector simultaneously  

Discussion 

While students were reflecting upon the two-dimensional game and designing their own 

three-dimensional game, they provided valuable insight into how they organized linear 

combinations, solved vector equations, and conceptualized span (all possible basket locations). 

While this work only analyzed one group of students and thus lacks generalizability, it illustrates 

that certain aspects of two-dimensional space like quadrants, lines dividing space, and balancing 

multiple coordinates do necessarily translate easily for students to three-dimensions. In addition, 

the linear combination av1 + bv2 for vectors v1 , v2 and scalars a,b can prove difficult to 

understand and may need additional geometric representational support in order to be fully 

understood.  Additionally, game-based scaffolds such as easy, medium, and hard type levels can 

provide insight into how students scaffold their conception of structuring space and taking linear 

combinations. This could be valuable as well-designed video games contain several scaffolds to 

create pleasantly frustrating experiences for the player (Gee, 2003). I can see having students 

analyze these scaffolds and design games with these scaffolds could be a rich area of research 

that allows students to structure their ideas and provide valuable insights into their thinking. 

Future research includes interviewing more students and seeing how they structure space and 

transition from two-dimensional structuring to three-dimensional structuring. Also, additional 

analysis will compare the student’s gameplay strategies from the their playthrough of the game 

with their structuring of space in two and three dimensions.  
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Student Experiences with Stereotype Threat in Undergraduate Mathematics 
 

Colin McGrane 
San Diego State University 

 
Mathematics education is a racialized and gendered space in the US, with white males 
historically holding dominion. One form of oppression manifests in the establishment and 
perpetuation of stereotypes involving innate mathematical ability. Students who identify as a 
stereotyped population often perform under extra pressure to not align their performance with 
stereotypes, and this extra pressure is known as stereotype threat. In this report, I amplify student 
voices from undergraduate introductory mathematics courses at multiple universities across the 
US and value their lived experience. We analyze a subset of free response survey data where 
three broad populations of experiencing stereotype threat emerged: Asian, Pacific Islander, or 
Desi American (or APIDA) students, Black or African American students, and women or female 
students. As students relate their identities to their own mathematical ability, our results show 
that their experiences with stereotype threat are distinct.   
 
Keywords: Stereotype Threat, Student Experience, Identity, Precalculus, Calculus 

 
Introduction and Background 

While a multitude of students buckle under the stress of overlapping midterms, increasingly 
complex schedules, living away from home for the first time, and trying to make new friends, 
many are also laboring silently, negotiating their own identities as they learn and grow (Swann, 
1987; Ting-Toomey, 2015). There are some identity groups that have stereotypes involving their 
ability to do mathematics imposed upon them, irrationally based on race or ethnicity, which 
effectively work to place some students of color in a hierarchical positionality (Shah, 2017). 
Members of stereotyped groups often feel extra pressure to not perpetuate these narratives by 
performing in a way that aligns with the stereotype (Spencer et al, 2016), and this pressure that 
hinders students’ academic ability is referred to as stereotype threat (Steele & Aronson, 1995).  

One way that mathematical stereotypes have shaped student experience is through this 
mechanism of stereotype threat, which is driven by implicit and explicit references to racial or 
gendered mathematical narratives. Stereotype threat has been shown to significantly affect test 
performance in women and minority groups (Nguen & Ryan, 2008; Spencer et al, 1999), create 
barriers for the success of Black students (Johnson-Ahorly, 2013), and negatively affect the 
ability of women and minority students to identify with school culture (Steele, 1997). This 
evidence leads to the striking realization that without effort to learn about and combat racial and 
gendered stereotypes, students of many identities will continue to experience inequities in 
opportunities to perform and succeed in mathematics classrooms.   

Although mathematics is often referred to as a perfect, objective, race-free, universal 
language, the disparities found in women and historically oppressed students’ achievement in 
mathematics compared to their white, male counterparts suggest otherwise (Voyer & Voyer, 
2014, Jeynes, 2015). The perpetual enforcement of meritocratic ideals that exist within US 
society permeates the education system, enforcing the belief that anyone can do well at math if 
they just try hard enough. In a country founded on capitalism, meritocracy, and white supremacy, 
these ideologies have certainly bled into our educational institutions. They linger today in the 
assumptions we make about students, the narratives we have heard about their ability to do 
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mathematics, the implicit biases we all have, and the inequities that emerge throughout 
undergraduate student experiences.  

This exposition values undergraduate mathematics students’ voices, as they report their 
experiences in introductory mathematics courses. Students tell stories of how they relate their 
identity with their ability to engage and succeed in mathematics and the implicit role that 
stereotype threat plays in their success in Precalculus through Calculus II courses (P2C2). 
Through the analysis in this study, I make a connection between undergraduate mathematics 
students’ identity and their experience with stereotype threat by asking the research question: 
How are students experiencing stereotype threat in undergraduate P2C2 mathematics courses?  

 
Methodology 

In this study, I analyze data collected through a modified version of the Postsecondary 
Instructional Practice Survey for undergraduate students (S-PIPS), developed by Apkarian et al. 
(2019). The NSF-funded initiative called Student Engagement in Mathematics through an 
Institutional Network for Active Learning (SEMINAL) administered the S-PIPS survey to nine 
different institutions over the course of three semesters: Spring 2018, Fall 2018, and Spring 
2019. The dataset for this study is comprised of 12,188 responses from students in Precalculus, 
Calculus I and Calculus II courses across the US.  

One free-response item on the S-PIPS survey asks, “is there anything about who you are (or 
your identity) that affects your ability to do or learn mathematics?” Out of the 16,523 total 
responses to the survey, there were 5,787 responses to this item that specifically targets student’s 
relation of their identity to ability in mathematics. These responses were analyzed using 
MAXQDA, a qualitative data analysis program that affords the ability to code responses using an 
open, axial coding method described by Miles, Huberman, and Saldana (2014). Through this 
thematic organization of emergent categories and super categories, a system of codes was 
developed to illuminate the patterns hidden within the thousands of responses. A subset of these 
categorized themes are presented in Figure 1, to illustrate the extent of my coding process for 
the focus of this study.  

Parent Code Code Sub-Code 

Race (40) 

Asian (22) 

Good at Math / Threat 
Seek Help 
Family/Society   
 Pressure 

Black / African 
American (18) 

Prejudice 
Pressure / Prove a  
Point 
Representation 

Woman/Female (25) 

Inferiority (9)   
Male Dominated Space 

(9) 
  

Extra Work (6)   
Representation/Inclusi

on (5) 
  

Figure 1. Parent code, code, and sub-codes for Race and Woman/Female themes. A number 
after a code indicates the number of unique responses with that code.  
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Since the dataset is combined responses of undergraduate students from several universities 

all with very different individual stories, it is important to note the demographic analysis of our 
dataset as a whole. Respondents are college students from 9 universities identifying their own 
gender as: 51% men, 41% women, <1% gender fluid, <1% transgender, and about 7% other. 
Racial demographics break down to 48% white, 13% Black or African American, 18% APIDA, 
18% Hispanic or Latino, <4% other, with many students choosing two or more ethnicities. 
Attaining enough data to analyze responses qualitatively is inherently difficult in a space where 
white males hold dominion, but the diversity and cardinality of this dataset helps populate the 
next section with quotes from many unique students from all over the US. 

 
Results 

Gender identity and race play a significant role in the results of the qualitative analysis of the 
free response question, “Is there something about who you are that has impacted the way you 
experience mathematics here at [institution]?” Within those broad categories, there are emergent 
themes that reference common stereotypes and harmful narratives regarding racial and gender 
identities.  
Being “Good at Math” is a Burden   

One of these harmful narratives is regarding “Asians” (Central/East Asian, Pacific Islander, 
Desi American (APIDA) students that are presumed to be “Asian” in the US) and their supposed 
innate proficiency at mathematics. While “being good at math” can be viewed objectively as a 
positive trait, this analysis shows that there are multiple ways expressed by APIDA students of 
how this stereotype is actually harmful. While APIDA is a pan-ethnic term that collects several 
large umbrella racial descriptors, it is important to note that there exist hundreds of identities, 
cultures, and languages that fall into this complex group of students. 

This analysis shows that not all APIDA students are experiencing stereotype threat in the 
same way, especially with subtle differences in the language that they use to describe their 
experience. For example, some students appear to lend some accuracy to the narrative that 
Asians are good at math by saying, “I am an Asian so I should be good at math. But I’m not.” 
Another student reflected on how they were, “wishing the Asian stereotype was true.” Another 
student recalled a previous semester of their math course when they, “heard a student say that all 
Asians are good at math.” This last quote exposes the relevance to stereotype threat in current 
undergraduate mathematics culture when students experience racism in their classroom, rather 
than solely being aware of a popular narrative. While these minor differences in perception of 
how the narrative is accepted, rejected, or experienced for these individuals, there are multiple 
themes that emerged that show how qualitatively different APIDA student experience can be 
when it comes to stereotype threat.  

Awareness of the stereotype and bringing it up in response to a question that asks to relate 
their identity to their ability in mathematics suggests that the expectation and pressure to perform 
a certain way are on these students’ minds. Cognitively, these students could be at a 
disadvantage from paying some amount of attention to the potential judgement of their 
performance. On top of this constant awareness, several students’ responses paralleled the 
following sentiment: “as an Asian, I feel as if I am expected to be good at math, but honestly I 
suck.” Another student mentions how they have, “beaten the stereotype by being an Asian who is 
terrible at math.” The prevalence of low self-efficacy and self-doubt caused by individuals 
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comparing themselves to the stereotype of being good at math appears in more students’ stories, 
as they describe how they are an, “Asian who is not good at math so I feel perpetually judged.”  

This theme of prejudice, fear of judgement, and pressure to succeed also goes beyond the 
individual, the classroom, and the math department. Intersectionality of identities and their 
relationship to mathematical ability also begins to take shape in the analysis, as this student 
explains,  

There is always this stress that East Asians have to [perform in math] well. 
It is an unsaid law from your parents, family, and society though they say 
they do not. Furthermore, coming from a junior college with academic 
excellence in mathematics, I have more stress to do it well.  

APIDA student experiences with family, culture, and intersecting identities are shaped in and out 
of the classroom, and even appears to influence interpersonal relationships when a student 
claims,  

Yes, so I am a Asian, and I feel like all my other Asian friends are good at 
math that they do not study much but they understand everything. Thus, it 
gives me somewhat pressure in [passing] mathematics at [institution]. 

 The final example for APIDA students is a result that was unique to this group, due to the 
nature of prejudice they faced from students and faculty alike. Through multiple students’ 
stories, the analysis revealed that when students are assumed to be adept at math, or have greater 
math skills in comparison to their peers, they feel unable to ask for help in mathematics. One 
student spoke to their experience regarding this phenomenon: “I guess the stereotype of Asians 
being smart at math is something I think a lot about.  With this, I feel less encouraged to actually 
seek for help if I don't understand something.” While they explained how stereotype threat 
hindered their ability to seek help, another student’s experience aligns with this sentiment and 
additionally speaks out against the well-known narrative: 

As an Asian student, people will infer that I am good at Math. So a lot of 
them are shocked when they [find out] I need help. Actually, I do need 
help and not every Asian is good at Math. 

In a society that has accepted broad, over-generalized narratives about how groups of people 
learn and experience mathematics by the way they look, act, talk, or behave, these stories 
demonstrate the personal, affective impact on so many P2C2 students across the US.  
Underestimating Black and African American Students 

Black and African American students share the burden of prejudice and implicit bias, but in a 
qualitatively different way than the APIDA students that responded to this survey. This analysis 
uncovers multiple themes across the students who identified as Black and African American, 
who were treated as a single group in this analysis in order to amplify their unique voices and 
develop their story as respectfully and thoroughly as possible.  

The first theme that was a glaring difference for Black and African American students was a 
severe lack of representation in higher education, specifically in their calculus classes. NameB1 
says, “not having enough African Americans students in my upper division classes with me is 
very saddening and discouraging!” While other students shared similar frustration, NameB2 
added to the detail of how this isolation can affect them in a social dimension and, in turn, affect 
their ability to succeed in mathematics:  

As a black person at [mostly white institution], there is often a feeling of 
isolation. This leads to less opportunities to work in a group setting on 
math problems outside of the classrooms. 
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Along with under-representation, students also expressed that they felt significant prejudice 
in mathematical contexts. One student explains that, “being black, people automatically 
underestimate me”, and another student follows with, “sometimes I feel as if being black and go 
to use the resources such as the [Math and Sciences Resource Center] have limitation with how 
people look at me when I ask and need extra help.” So in these cases, the actions and reactions of 
how others treat these students make them feel as though they are believed to have some lack of 
ability to do or understand mathematics. These feelings can build over time and translate into 
pressure to succeed, such as when this student explains, “being African-American I can feel 
pressure to do good to prove a point.” Another student explains that, “being an African-
American student in the classroom often times I feel pressure being one of the only student or 
few students in the classroom, leading me to take a more regressive role in the course dialog and 
overall participation.” Feeling pressure to prove a point could add a cognitive load onto these 
students that is not present for some of their peers, and is compounded by their intersecting 
identities such as this young African American female: 

As an African American female, it can be uncomfortable entering spaces 
as the double minority: being one of few African American students in the 
[calculus] class as well as being an African American woman. Attempting 
to receive help often ends with a continued confusion of the material and 
an added question of if the wasted time was due to my lack of ability to 
grasp the material, the helper’s (whether it be the instructor or recitation 
instructor) lack of teaching skills to properly help, or if their inability to 
help my understanding is linked with a sexist or racist issue. 

This response indicates an effect that is unique to her experience in this dataset: any 
interaction with a teacher or recitation instructor that transpires in an unsatisfactory way always 
has the possibility of racism or sexism as some part of the cause, even if that was not the case. 
After so many inappropriate or negative interactions over a lifetime of schooling, black students 
may be faced with the need to question the intent and the reality of their experiences with people 
in positions of power and positions to help gain access and opportunity for succeeding in 
mathematics. This student’s story also exposes the dynamic landscape students must traverse 
while negotiating multiple intersecting marginalized identities, such as women of color.  
Mathematical Inferiority of the “Lesser Sex”  

Women who responded to this survey also shared deep and sensitive experiences as 
undergraduate mathematics students in a male-dominated space. Some of them feel intimidated 
from the lack of representation and mentioned in several ways that the dominance of male 
presence in their class affected the way they learn or do mathematics. This analysis revealed that 
not only was the presence of significantly more men in their math class problematic in terms of 
lack of representation, but also how some men act towards women in math classes. One student 
explains that, “being a woman in mathematics courses people often underestimate your abilities 
and belittle your accomplishments”. This quote opens the door to an unfortunate truth of the 
disparity between how women and men experience mathematics courses so differently: women 
are assumed to be inferior to men in mathematics. Another quote adds to the frustration these 
women feel from their experience in math courses: “I am a woman in STEM, so often my fellow 
male students will treat me like I’m stupid (even when I help them time and time again with 
homework).” So even when these women demonstrate their capability their peers, they still must 
fight against prejudice of their mathematical ability. Women respondents also shared experiences 
of rude behavior that was unique to their plight in this analysis, such as several women 
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corroborating the sentiments that “sometimes guys just talk over me when I’m trying to explain a 
problem because I’m a woman”, and that, “… the men in my recitation class tend to overlook me 
because of my gender.”  

Women respondents also find themselves experiencing the compounding effects of identities 
that intersect multiple marginalized groups, such as a Black woman who felt that the double 
minority status of their identity has them notice that, “people tend to be shocked when I 
frequently answer questions during lecture.” The underestimation and prejudice that Black 
students experienced in this analysis stacked on top of the historic marginalization of women in 
the sciences creates a critically problematic experience in their mathematics courses. 
Unfortunately, these issues do not begin or end in the mathematics classroom. Rather, students 
come from backgrounds and educational experiences that shape the way they perceive the world 
and their success relative to others: “Being a girl and a minority who attended public school has 
been a detriment and given me a disadvantage compared to a lot of other people.” While this 
could be perceived as a dig at public education in general, it could also reflect injustices and 
inequities that plague the US through the defunding of public education, gerrymandered school 
districts, and a general disregard for schools that need the most support.  

The extra pressure stereotyped groups feel to perform in a certain way does not escape 
women in mathematics. In fact, the results of this analysis show that women were affected by 
stereotype threat in a different way than other groups. While other students mentioned proving 
themselves, women were the only group that stated in multiple occasions the idea that the 
general belief of the inferiority of women in STEM motivated them in some way to become 
advocates for other women. This sentiment is echoed in this student’s experience, where she not 
only wants to meet expectations, but break them and show the next generation that they should 
not fit the mold: 

I believe that being female in a male dominant field has made me want to 
succeed more than anything in mathematics. Not only that, though, I want 
to be at the top of my class just to prove that women are capable. I want to 
inspire other girls to realize that math is fun and easy. Math should not be 
something to be intimidated by.  

Advocacy for equitable experiences in mathematics and motivation to succeed is important, 
but the stereotype threat that women experience still inhibits them from performing the way they 
should, having their contributions taken seriously, and being perceived as equals in mathematical 
spaces. So, while a positive motivation to break the cycle of problematic narratives can be 
beneficial, women are still greatly affected by stereotype threat in the mathematics classroom.  

 
Discussion 

The results indicate that dozens of minoritized, stereotyped students experienced struggles 
related to stereotype threat, but that different groups experienced stereotype threat in 
qualitatively different ways. All three large demographic groups that emerged through analysis 
(APIDA students, Black students, and Women) expressed their frustration with extra pressure to 
perform a certain way, encountered prejudice of their mathematical abilities based on race or sex, 
and experienced negative interactions with others in the mathematical community. However, the 
way that identities were tied to specific ways of experiencing these hardships suggests that 
stereotype threat is not the same for every stereotyped group. The thread of continuity through all 
these intersecting, dynamic, and unique experiences is the unseen psychological, physiological, 
and cognitive battles some students are constantly fighting behind the typical outward-facing 
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roles and identities they assume when in school. While there is no realistic way of separating 
identity from the dynamically intersectional social sphere that juggles power, rightful presence, 
and proving self-worth, beginning to form an understanding of the nuances of each groups’ 
unique experiences empowers and emboldens the identities of students who need the most 
support.  
Unpack Student Identity-Related Experiences  

It is important to note the fluidity and dynamic nature of identity, especially when studying 
experiences in mathematics education directly to identity. For example, students have the agency 
to reject false narratives about their own abilities in mathematics. However, their identity is also 
shaped by the way people think and talk about them, informed in some degree by their implicit 
biases or perhaps belief in a narrative about innate mathematical ability. As the results of this 
study show, these reflexive influences appear to have a particular significance in the mathematics 
classroom due to the relevance of mathematics to the “Asians are good at math” narrative.   

Black and African American students related their identities directly to how their abilities in 
mathematics are perceived by others. They also affiliated who they are by birth in relation to 
mathematics, which is certainly related to how narratives around mathematical ability are 
constructed and perpetuated. Through visible physical features such as dark skin or high cheek 
bones, people will utilize these features to inform themselves about the identity of a student. The 
identity of the students in this study appears to be what is directly tied to the shaping of 
narratives and beliefs that have such an incredible impact on experience in mathematics courses. 
Black students are recognized as Black, and their abilities in mathematics are scrutinized, 
connecting their identity to their ability in mathematics. How other people talk about their 
students and how other students act and talk about each other feed into an existing narrative that 
Black students are aware of and actively fighting against throughout their mathematical career.  

Throughout this analysis, women respondents often referred to the position of power that 
their male counterparts unrightfully place themselves in. This identity is shaped through an 
othering of women in science and mathematics, historically bestowing the majority perspective 
and representation to the men in the class. The responses from women in this study indicate that 
men are known to disregard contributions from women, believe their mathematical abilities to be 
inferior to their women counterparts, and even talk over them in an acute demonstration of 
superiority. Women have long been marginalized in this hierarchical manner regarding ability, 
and this extends into the mathematics classroom as well.  

 
Conclusion 

As long as the imperfect, racist, classist, sexist, ableist society that shapes the people and 
policies that run US institutions remain, they will continue to be a detriment to the historically 
oppressed identities within US higher education. Furthermore, as long as there are narratives that 
tie broad-sweeping identities to specific abilities in science and mathematics, some students will 
be fighting an internal battle of not living up to certain ways of being or performing while in a 
mathematics classroom. This constant, yet often silent, battle is part of what shapes the 
experiences of so many students in US undergraduate mathematics courses today. As I have 
shown in this paper, the subtle ways in which different groups experience stereotype threat 
differently can inform instructors and fellow students how to address these stereotyped students’ 
specific needs.  

Honorable Mention 
This study would not be possible without efforts of the NSF-funded SEMINAL Team. 
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On the Composition of Even and Odd functions  

 

 Niusha Modabbernia Xiaoheng Yan Rina Zazkis  

 Simon Fraser University University of Toronto Simon Fraser University 

 

We attend to the composition of even and odd functions, as featured in imagined dialogues 

between a teacher and students, composed by sixteen teachers in a professional development 

program. Data were analyzed as aimed at addressing students’ intellectual needs, with 

particular attention to the need for causality and the need for certainty. The results indicate that 

participants bring into account a myriad of explanations that either complement or replace 

algebraic definitions of even and odd functions. We provide possible explanations for such a 

phenomenon in the discussion of the findings.   

Keywords: even and odd functions, intellectual needs, visualization, teacher education 

The concept of a function is central in mathematics and is central in mathematics education 

research. Given the breadth of the function concept, researchers focused on particular families of 

functions, such as linear (e.g., Glen & Zazkis, 2020; Knuth, 2000; Moschkovich, Schoenfeld, & 

Arcavi, 1993), quadratic (e.g., Zaslavsky, 1997), trigonometric (e.g., Weber, 2005) or 

exponential (e.g., Confrey, & Smith, 1995). Our research also attends to a particular “cross-

cutting family”, that of even and odd functions, which are found within polynomial, rational or 

trigonometric functions, among others.  

Brief Background 

Our study focuses on the composition of even and odd functions. We are not aware of any 

research that attends to this explicit focus. As such, in this section we turn to prior research on 

the related topics: (a) function composition and (b) even and odd functions.  

On Composition of Functions 

Function composition is one of the standard topics in the undergraduate mathematics 

curriculum that causes great difficulty for students (Ayers, Davis, Dubinsky, & Lewin, 1988). A 

possible source of this difficulty is that composing functions necessitates the switch between the 

process and object views of a function. In order to form a composition 𝑓 ∘ 𝑔, one needs to start 

with two mental objects for 𝑓 and 𝑔 and to call one process at a time. Then “to form a new 

mental process that consists of first performing the process of 𝑔, generating a result, and then 

performing the process of 𝑓 on that result. The new process is interiorized, and the resulting 

mental representation is encapsulated as the new function 𝑓 ∘ 𝑔” (p. 247). Ayers et al. (1988) 

suggested that programming experiences help students construct the concept of function 

composition as they necessitated operating on functions as cognitive objects. This suggestion is 

echoed by Vidakovic (1996), who argued that a computer environment might enhance students’ 

ability to understand the concepts of function composition and inverse function. 

Meel’s (2003) study found that prospective teachers had difficulty establishing the 

composition of two functions – more than half of the participants treated the composition as a 

product. In the study of Lucus (2006), teachers were asked to describe the main ideas involved 

when they teach composition of functions. The participants focused on “how to do this, how to 

substitute” (p. 101), omitted the definition of function composition, and did not attend to the 

domains of functions to be composed. Consequently, the participants did not complete the task 
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of composing functions correctly when the range of one function did not correspond to the 

domain of another.  

Steketee and Scher (2012) advocated for the use of multiple representations in the teaching 

of composition of functions. They suggested that such an approach “can help students generalize 

the concept of composition, overcome the tendency to tie function concepts to a single 

representation, and develop a more robust and mathematically rigorous understanding of the 

topic” (p. 267).  

On Even and Odd Functions  

A function 𝑓(𝑥) is defined to be even when 𝑓(−𝑥) = 𝑓(𝑥) for all 𝑥 in the domain; and 𝑓(𝑥) 

is odd when 𝑓(−𝑥) = −𝑓(𝑥) for all x in the domain. These definitions imply that the domain of 

even and odd functions is symmetrical around the origin. Graphically, even functions have a 

reflectional symmetry with respect to the y-axis and odd functions have a 180-degree rotational 

symmetry with respect to the origin. Given the analytic and graphical formulations, the topic of 

even and odd functions may serve as a “conceptual intersection between symmetry, which is 

encountered most often in visual contexts such as geometry, and functions, which are often 

explored through analytic means” (Zazkis, 2014, p. 32).  

Even and odd functions are important in many areas of mathematical analysis, particularly in 

studies of power series and Fourier series. The literature on the teaching and learning of even and 

odd functions, however, is limited. Rasslan and Vinner (1997) found that when the concept of 

even and odd functions was introduced by the power function 𝑓(𝑥) = 𝑥𝑛 where n is a natural 

number, students related the concept of even and odd function with the even and odd exponent of 

a polynomial function. In fact, if a polynomial or rational function has only odd exponents, then 

it is odd (for example, 𝑓(𝑥) =  𝑥5 + 𝑥3); and if it has only even exponents, then it is even (for 

example, 𝑓(𝑥) =  𝑥6 + 𝑥2 − 𝑥−2). However, an exclusive reliance on exponents is unhelpful 

when a combination of even and odd exponents is present.  

Sinitsky, Leikin, and Zazkis (2011) noted that the terminology of even and odd for functions 

could be related to the Maclaurin series expansion, where for even functions it consists of only 

even powers of the variable, and similarly for odd functions is consists only of odd powers of the 

variable. The authors also suggested that students’ difficulties with even and odd functions may 

come from their former conceptualization of even and odd numbers, as students tended to 

borrow and transfer the properties of even or odd numbers to even or odd function. 

In addressing arithmetic operations with even and odd functions, Sinitsky et al. (2011) 

suggested that “Exploring the composition of even and odd functions is an appropriate task for 

students” (p. 34). The Task developed in our study explicitly focuses on the composition of even 

and odd functions, starting with particular examples of student interpretations. In particular, we 

are interested in how teachers determine the evenness and oddness of a function which is a 

composition of even and odd functions, and how they guide students in this endeavor.  

Theoretical Underpinnings: Intellectual Needs  

Every instance of mathematical knowledge, explicitly or implicitly, serves a purpose. 

However, as Harel (2010, 2008) argued, the purpose of introducing a new fragment of 

mathematical knowledge is gravely overlooked in mathematics curricula at all grade levels. 

Important questions, such as how to intellectually necessitate the transition from trial and error to 

analytic and abstract thinking, and how to intellectually necessitate the transition from empirical 

proof scheme to deductive proof, are rarely addressed in the classroom.  
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Intellectual need refers to the perturbational stage in the process of justifying how and why a 

particular piece of knowledge came into being (Harel, 2013). The notion of intellectual need 

consists of the following five categories – certainty, causality, computation, communication and 

structure – of which we focus here on the first two.  

• The need for certainty refers to the need to prove, to remove doubts. It is the need to 

determine whether an assertion is a fact or a conjecture.  

• The need for causality refers to one’s desire to explain the causes of a phenomenon, to 

understand what makes a phenomenon the way it is. 

“Humans’ instinctual desire to explain phenomena in their environments serves as a 

cognitive primitive to mathematical justification” (Harel, 2013, p. 126). In the history of 

mathematics, however, a long debate during the sixteenth and seventeenth centuries focused on 

the distinction between achieving certainty and finding causality in mathematics. Some 

mathematical solutions and proofs are non-causal – they provide certainty but do not identify a 

cause for the observed phenomenon. Therefore, they offer little insight into why a result is true. 

Proofs by contradiction, for example, show that a given assumption leads to an absurdity, yet do 

not explain the causal relationship between the premise and conclusion (Harel, 2013).  

Moreover, the empirical approach to proof, that is, the use of multiple examples to achieve 

certainty, often leaves the causes unexplained. In fact, Harel (2013) argues that the transition 

from undesirable proof schemes, especially the empirical proof schemes, to deductive proof 

schemes is dependent upon students’ attention shift from certainty to cause. 

In our study, we address the following research questions: 

1) In what ways do teachers explain the behavior of composition of even and odd functions? 

2) How can teachers’ explanations related to composite functions be interpreted through the 

lens of intellectual needs?  

The Study 

Participants and Setting 

Sixteen practicing secondary mathematics teachers participated in this study. At the time of 

data collection, they were enrolled in a professional development program in mathematics 

education. Their mathematics background and experience varied significantly, but all held 

degrees in Mathematics or Science and had at least three years of teaching experience. The 

particular course aimed at strengthening the participants’ mathematical knowledge and 

investigation skills while focusing on topics that are not usually attended to in school, but which 

do not require mathematical knowledge beyond school curriculum.  

The topic of even and odd functions was one such topic chosen for exploration. At a class 

meeting the participants were either reminded of or recalled the definitions of even and odd 

functions from their undergraduate studies and connected these to the graphical representation of 

functions. The participants revisited various examples, and discussed properties in discord with 

expectations carried forward from experience with even and odd numbers. For example, the sum 

of two odd functions is an odd function, and the sum of an odd function and an even function is 

neither odd nor even. Following in-class discussion, the participants were presented with the task 

related to function composition, described in the next section. 

The Task, the Data and Data Analysis 

The Task presented below belongs to the genre of “scripting tasks” developed in 

mathematics education to explore and strengthen teacher knowledge while considering 
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instructional situations. Initially, scriptwriting was introduced in mathematics teacher education 

as a lesson play, a task in which participants script interaction between an imaginary teacher-

character and student-character(s) (Zazkis, Liljedahl, & Sinclair, 2009; Zazkis, Sinclair, 

Liljedahl, 2013). Juxtaposed to a classical lesson plan describing merely content and activities, 

the lesson play reveals how a teaching-learning interaction unfolds. In later research, the idea of 

a lesson play was extended to an activity of writing an imaginary dialog that is not necessarily 

restricted to a lesson, referred to as scriptwriting. When used in teacher education, scriptwriting 

is a tool related to “approximations of practice” (Grossman, Hammerness, & McDonald, 2009), 

which “include opportunities to rehearse and enact discrete components of complex practice in 

settings of reduced complexity” (p. 283).  

Prior research that analyzed scripting tasks described multiple affordances of scripting tasks 

for teachers, teacher educators, and researchers. In particular, as teachers script-writers imagine 

themselves in a role of a teacher, it highlights how they imagine the unfolding of a lesson or of 

any interaction with students (e.g., Marmur & Zazkis, 2018).  

The following prompt was developed as the beginning of an instructional dialogue. The 

participants were asked to continue the dialogue addressing the student-characters’ suggestions. 

 
Figure 1. Prompt for the Task 

In addition to continuing the dialogue, the participants were asked to include commentary on 

their chosen approaches, addressing mathematics and pedagogy involved in their composed 

scripts, and reflect on their experience of completing the task.   

The responses of the teacher-character in a scripted dialogue shed light on a teacher-

scriptwriter’s mathematical and pedagogical knowledge. In particular, the prompt includes one 

correct claim (|sin(𝑥)| is an even function) and one incorrect claim (for any function 𝑔(𝑥), 

sin(𝑔(𝑥)) is an odd function). Both claims are based on the same reasoning, extrapolating from 

the oddness of 𝑓(𝑥) = sin(𝑥) and evenness of 𝑓(𝑥) = |𝑥|. However, this faulty reasoning 

results in one correct and one incorrect conclusion. We were interested in how the scriptwriters 

would explain this unexpected result in the voices of their characters.  

The scripts for the dialogue between the teacher- and student-characters, along with 

accompanying commentary comprise the data for our study. The claims provided by a teacher-

character or by one of the student-characters for evenness or oddness of a composition of even 

and odd functions, served as a unit of analysis. As the writers attributed the claims to either 

student-characters or the teacher-character, we considered the teacher’s claims as well as claims 

provided by students accepted by a teacher in the script as reflecting the scriptwriter’s choices 

for what is an acceptable explanation.  

Having repeatedly read the data, we compiled all the data excerpts in which claims of 

interlocutors recognized functions as being either even or odd and attempted to justify the 

observation. We then considered what students’ intellectual needs were aimed to be addressed by 

the provided examples and explanations.  
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Results and Analysis 

As mentioned, we focused on claims that attend to evenness or oddness of a function 

composition. We identified several clusters of explanations by the main focus: (1) algebraic 

manipulation vs. graphical representation, (2) consideration of dominance, and (3) consideration 

of examples. While causality was our main focus initially, we also considered whether the 

provided approach attended to other intellectual needs, in particular the need for certainty. We 

briefly exemplify below clusters (1) and (2). 

Algebraic Manipulation vs. Graphical Representation 

Evenness or oddness of a function can be determined by considering whether it satisfies the 

algebraic definition. However, the teachers in scripts did not guide student-characters towards 

the algebraic determination. Even when the algebraic justification was provided, alternatives 

were sought. Excerpt A exemplifies this occurrence.  

A.1  Jess: The inside function is sin(𝑥) and the outside function is |𝑥|. If we test the input 

−𝑥 into the inside function, we get −sin(𝑥). But taking the absolute value of that gives 

us sin(𝑥). Therefore |sin(𝑥)| is even, just like you said, Brian. 

A.2  Sam: That makes sense. I’m going to make a graph to see if you’re right. 

 
A.3  Alex: That is definitely even.  

A.4  Teacher: Excellent. What do we conclude?  

In Excerpt A, Jess proved that |sin(𝑥)| is an even function algebraically [A.1]. In fact, she 

not only connected the definition of an even function to the given function, but she also 

explained how the input (−𝑥) affects the consideration of evenness. We note that Jess’ claim was 

an attempt to address the need for causality. Nevertheless, Sam suggested to make a graph [A.2] 

and check if the graph is symmetrical about the y-axis. That is, the algebraic proof has not 

addressed the need for certainty about what has been proven, but the graph, which is “definitely 

even” [A.3] by observation, satisfied the certainty. Alex’s conclusion was implicitly reinforced 

by the teacher [A.4]. While checking answers was consistently encouraged by teachers, our 

interpretation of the provided conclusion is that algebraic justification was insufficient in 

drawing the desired conclusion.  

Considerations of “Dominance” 

Determining the evenness or oddness of 𝑓(𝑥) =  sin (
1

𝑥2)  –  a function that is a composition 

of even and odd functions – pointed to an interesting general question, which function is 

“dominant” in determining the evenness or oddness of the composite function 

The metaphorical reference to “dominance” appeared in discussions in several scripts. 

However, mathematically, using the language of dominance, evenness is the dominant factor in 

specifying the evenness or oddness of function composed of even and odd functions. 

Furthermore, the outcome does not depend on the order in which the functions are composed. 

This explains why Brian’s claim was correct – the function that has been specified as the 

dominant factor is even, regardless of its order in the composition. However, the similarity of 
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these two claims (focusing on the outsider function) could be very confusing. The situation 

described in the task invited the scriptwriters to address students’ reasoning, regardless of the 

correctness of their conclusion.  

The exchange in Excerpt B follows the teacher’s invitation to consider composite functions 

of even and odd functions.  

B.1  Student 1: How about 𝑔(𝑥) = (cos(𝑥))3 − cos (𝑥)? 

B.2  Teacher: Okay. If you test 𝑔(−𝑥) what do you get? 

B.3  Student 1: 𝑔(−𝑥) = (cos(−𝑥))3 − cos(−𝑥) = (cos(𝑥))3 − cos(𝑥) = 𝑔(𝑥) 

B.4  Student 2: So, 𝑔(𝑥) is even! 

B.5  Alex: Yes, because an even function inside any other function still is even. 

B.6  Teacher: Very good. Now we still must discuss Brian’s claim that |sin(𝑥)| is even. 

B.7  Brian: No, I don’t think that anymore! It’s odd because sin(𝑥) is odd. It’s the inside 

function that matters. 

Following the teachers’ invitation to consider 𝑔(−𝑥)  [B.2] led to the conclusion that the 

suggested composite function was even [B.4]. However, Brian was “stuck” in his thinking that 

the order of composition is the factor that determines parity, so he replaced his initial idea, at 

least temporarily, with “it’s the inside function that matters” [B.7]. As such, concluding from the 

example, the dominance in distinguishing parity of the composite functions was assigned to the 

“inside function”. The implied dominance assured causality of the conclusion.  Eventually, 

Brian’s conjecture was refuted by considering the graph, which assured certainty and further 

causality was not sought.  

Some script-writers used the language of dominance with examples from genetics to focus on 

even functions as dominant factor. This is exemplified in Excerpt C. 

C.1  Alex:  Look at Teacher’s example, 𝑓(𝑥) = sin (
1

𝑥2
). It's a composite function made of an 

even function 𝑥2, inside an odd function sin (𝑥). Yet, when I graph the entire composite 

function it is even.  

C.2  Brian: Well maybe, even functions are dominant functions within composite functions? 

C.3  Teacher: What do you mean?  

C.4  Brian: Well in biology we learned about dominant and recessive genes, where the 

dominant gene always overrides the recessive gene. Maybe even functions within a 

composite function are more powerful over odd functions. So as long as there is an even 

function involved, the resulting composite function would be even. My example from 

earlier, |sin(𝑥)|, would follow this. 

Brian drew the analogy between the role of even functions in composite functions and the 

role of dominant genes [C.4]. In a way, it is the dominance of even function that “overrides” an 

odd function in the composite function. The analogy appeared to address the need for causality. 

As the script continued, a variety of examples was considered and the dominant role of even 

functions in a composition with odd functions was confirmed.  

Discussion 

In this study we explored how secondary mathematics teachers explain the behavior of a 

composition of even and odd functions. The teachers responded to a task in which they were 

invited to craft a script for an imaginary dialogue between a teacher and students, discussing 

student ideas about the parity of a composite function. We focused on how the scriptwriters’ 

explanations can be interpreted through the lens of intellectual need (Harel, 2013).  
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The results indicate the prevailing attention of the scriptwriters to the graphs of composite 

functions, which appeared to address the need for certainty. The need for causality was 

addressed by demonstrating how switching signs of the input affects the result of the 

composition in considering the algebraic definitions of even and odd functions. However, 

algebraic considerations were consistently supplemented by attention to graphs. In addition, 

causality was sought by considering what function is “dominant” in the composition.  

Several decades ago, Artigue’s (1992) and Hitt’s studies (1998) showed that both 

mathematics students and future mathematics teachers tended to avoid the graphical 

representation of the concept of function while preferring the algebraic expression. In particular, 

researchers noted not only the preference towards algebraic methods, but also students’ 

“reluctance to visualize” (e.g., Eisenberg & Dreyfus, 1991, Lowrie, 2000). However, in a more 

recent study, Zazkis (2014) noted that “the script-writers showed evidence of being comfortable 

with both analytic and graphical modes of representing odd and even functions, drawing 

appropriate connections between the two” (p. 42). 

The results of our analysis appear to be in discord with prior research. The participants, in the 

voices of their characters, who used the algebraic approach initially, attended to the definitions 

of even and odd functions but avoided claiming definite conclusions. They sought confirmation 

by considering graphs. It appeared that algebraic manipulation was perceived as unreliable; a 

confident conclusion, appealing to the need for certainty, was derived only by attending to 

graphical representation. The increasing availability of digital graphing provides easily 

accessible demonstrations that substitute the reliance on formalism. The ease of access and 

immediate availability of a graph are the reason for the participants’ preference and dependence 

on the visual.  

Conclusion 

Our study contributes to research on learning and teaching functions, focusing on the 

unexplored niche of even and odd functions and their composition. The behaviour of a composite 

function appeared unexpected to many of the participants, yet they sought and employed various 

approaches to verify and explain the surprising result.  

When considering a real-valued function, we attend to the correspondence that connects x 

and y as well as the domain for which the function is defined, though the name of a function is 

often used as a shortcut. For example, students often claimed that “the sine function is odd” or 

“sin (anything) is odd”. In such claims, which we consider incomplete rather than incorrect, the 

implied interpretation attends to the function 𝑓(𝑥) = sin (𝑥) where the domain is the real 

numbers, ℝ. However, the name “sine” does not apply to one particular function, but to a family 

of functions, given that the domain can be any subset of ℝ. While some features of 𝑓(𝑥) =
sin (𝑥), such as periodicity or range, are applicable to a wide range of functions in the sine 

family, other features are not preserved. For example, while 𝑓(𝑥) = sin (𝑥) is an odd function 

and 𝑓(𝑥) = sin (𝑥2) is an even function, 𝑓(𝑥) = sin (𝑥) where 0 < 𝑥 < 𝜋/3 is a function that is 

neither even nor odd. Considering the function name without attention to the argument or the 

domain points to a reduced abstraction level which could be a source of errors.  

Our results point to the need to re-examine the role of visualization, in particular graphs of 

functions, in considering function properties. Additionally, we call instructors’ attention to the 

potential dangers in referring to functions exclusively by their name. The sine function, for 

example, is odd or even? Most learners will likely answer that the function is odd, while such a 

question cannot be answered without specifying the argument and the domain.  
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Moving Beyond Solving Equations: Characterizing Elementary Pre-service Teachers’ 
Development of Algebraic Reasoning 
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Although elementary pre-service teachers (EPSTs) often have experience with high school 
algebra topics, early algebra (or algebra designed for elementary learners, commonly involving 
story problems and diagrams) may be novel to them. In this study, we seek to examine EPSTs’ 
initial algebraic reasoning and shifts in that reasoning after completing a college course in early 
algebra. Specifically, we examine their algebraic reasoning related to linear equations, story 
problems, and diagrams by analyzing three aligned problems from a pre- and post-test. We 
found that, although EPSTs’ initial strategies with linear equations were deductive, their work 
with story problems and diagrams was not. After the course, however, deductive strategies were 
more commonly identified across all representations. We discuss the implications for the design 
of mathematical experiences to support EPSTs’ algebraic reasoning across representations. 

Keywords: Algebraic reasoning, Elementary pre-service teachers, Early algebra, Diagrams, 
Deductive reasoning 

Algebra knowledge and algebraic thinking are critical for success in calculus and beyond. 
However, for many students, high school algebra is where their mathematics development falters 
or even ends (Kaput, 1998; Loveless, 2013). Moreover, difficulties with algebra have historically 
been more pronounced among students of color and other marginalized populations (Gamoran & 
Hannigan, 2000; Matthews & Fuchs, 2020; Moses & Cobb, 2001). Introducing algebra in 
elementary grades has been theorized as an approach that will better prepare students for high 
school algebra (e.g., Carpenter & Levi, 2000). However, those advocating for this approach 
emphasize that algebraic reasoning in the elementary grades should be fundamentally different 
from algebra in high school (Carraher et al., 2008). To distinguish algebraic reasoning in 
elementary grades from algebra in high school, we use the label early algebra (e.g., Blanton et 
al., 2018).  

Despite early algebra’s potential to improve student outcomes, there currently is a lack of 
systematic development of algebra ideas in the elementary grades (Blanton et al., 2019). 
Preparing teachers to teach early algebra could help address this issue. Given the recency of the 
early algebra movement, elementary teachers and elementary pre-service teachers (EPSTs) often 
have not had experiences with early algebra in their own schooling (Hohensee, 2017), which 
may complicate their teaching of these topics to elementary students. We conjecture that EPSTs’ 
required undergraduate teacher education mathematics content courses can provide opportunities 
to support them in developing their algebraic reasoning and early algebra meanings, thereby 
potentially increasing the traction of early algebra in schools more widely. In this report, we 
advance toward this goal by characterizing EPSTs’ algebraic reasoning with linear equations, 
story problems, and diagrams prior to and after experiencing such an undergraduate mathematics 
content course focused on topics of early algebra. 
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Theoretical Framework: Algebraic Reasoning and Early Algebra 
Researchers (e.g., Blanton et al., 2018; Kaput, 2008; Stephens et al., 2017) have identified 

the following three broad concepts as being fundamental parts of algebraic reasoning: (1) 
generalized arithmetic; (2) equivalence, expressions, equations, and inequalities; and (3) 
functional thinking, which involves representing relationships between two quantities. These are 
concepts that are seen as cutting across high school and early algebra. 

Importantly, early algebra researchers view algebraic reasoning as not dependent upon a 
representational modality; rather, generalized arithmetic, equivalence, and functional 
relationships can occur in a variety of representational forms. For this reason, while high school 
algebra often emphasizes symbolic representations (like equations), early algebra can focus on 
representing the same ideas through story problems (Empson et al., 2011) and diagrams 
(Carraher et al., 2006). Although early algebra includes many of the same concepts covered in 
high school algebra, such as solving for unknowns (e.g., Smith & Thompson, 2008), and 
exploring variables and functions (Carraher et al., 2008), the algebraic representations used are 
one of the key distinctions between high school and early algebra.  

An additional aspect of mathematical reasoning that played an important role in our study 
was the extent to which students employed deductive reasoning, part of what Jeannotte and 
Kieran (2017) conceptualized as the structural aspect of mathematical reasoning. We 
characterize deductive reasoning as systematic and logical, featuring activity that maintains 
algebraic equivalence as students solve a problem. For example, and as exemplified in our 
results, we consider a student removing equivalent quantities in a story problem to determine an 
unknown amount as a deductive strategy. We characterize non-deductive strategies as those that 
do not apply a systematic and logical approach to algebraic equivalence. For example, we 
consider guessing-and-checking strategies to both story problems and algebraic equations as a 
non-deductive strategy. We differentiated between students’ deductive and non-deductive 
strategies as we addressed our research questions: What are ways EPSTs reason about linear 
equations, story problems, and diagrams prior to taking an undergraduate content course on 
early algebra? What shifts in EPSTs’ strategies occur after taking an undergraduate content 
course focused on their developing algebraic thinking and early algebra meanings? 

Methods 
In this section we first describe our participants and the setting of the course. We then 

describe the three problems we analyze and our data analysis efforts.  

Participants and Setting 
Participants were EPSTs enrolled in a required undergraduate mathematics content course in 

a four-year teacher education program at a university in the Mid-Atlantic region of the United 
States. The participants were sophomores and juniors. We invited all 51 students to participate in 
a pre- and post-assessment. 45 EPSTs engaged in the pre-test and 28 engaged in the post-test. In 
the pre-test, we asked participants to provide information about the previous math courses they 
had taken, with 44 responding to this prompt. All 44 EPSTs indicated they had taken Geometry 
or Algebra 2. Further, 39 (89%) indicated they had taken Precalculus, 15 (34%) indicated they 
had taken Calculus, and 21 (48%) indicated they had taken a course in statistics. Hence, the 
students had varied but numerous experiences with high school algebra content.  

The early algebra content course associated with this study was the third of three required 
semester-long mathematics content courses in the elementary teacher preparation program. The 
first two courses covered whole numbers, decimals, number operations, rational numbers, ratios, 
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and proportions. The pre-test was conducted at the beginning of the early algebra course (i.e., 
after participants had passed the first two courses and before instruction began in the third 
course). The course covered topics including representing unknowns, variables, equations, and 
functional relationships using discrete, linear, and strip diagrams to represent quantities and 
relationships between quantities. Students were asked to consider novel ways to represent and 
reason about situations they had previously represented and reasoned about with algebra 
symbols. For example, in the early algebra course, we encouraged EPSTs to determine the 
solutions to story problems by constructing and operating on strip diagrams, rather than writing 
equations and solving them algebraically. We conducted the post-test at the end of the course. 

Data Source 
We used the same assessment for the pre- and post-test. The four-problem assessment was 

administered online through a Desmos activity. For this report, we analyzed three of the 
problems in alignment with our research questions. To assess students’ reasoning about linear 
equations, Problem 1 (P1) asked participants to solve (3x + 2) + (x + 4) = 5x + 3. Problem 2 (P2) 
asked participants to consider the following story problem: “Charles buys 6 bags of apples and 
$10 worth of oranges. Julien buys 3 boxes of strawberries and $10 worth of oranges. Charles and 
Julien spend the same amount of money. What can you say about the cost of a bag of apples and 
the cost of a box of strawberries?” For this problem, we provided space for students to type a 
response and/or draw using Desmos’s tools, stating, “Feel free to draw a picture and/or type your 
thinking.” Problem 3 (P3) entailed a strip diagram representation of a story about two friends 
who together spent as much money for fruit as a third friend (Figure 1). Although the equation 
from P1 could apply to this story, we asked participants to write on the provided diagram to 
solve this problem. 

 

 
Figure 1. Problem statement and diagram in P3. 

Data Analysis 
To answer our research questions, we engaged in conventional and directed content analysis 

(Mayring, 2015). We began by individually reading through EPSTs’ responses and making notes 
about ways they reasoned about equations, story problems, and diagrams within each problem. 
We then met to compare observations and develop codes that could apply across problems. We 
used both a priori codes (e.g., deductive reasoning; Jeannotte & Kieran, 2017) and emergent 
codes (e.g., binomial multiplication), as per Miles et al. (2014). Once we agreed on features for 
coding, each author independently coded nine pre-test and six post-test responses for each 
problem. Interrater reliability for codes ranged from 80-100%. After reliability was established 
and consensus reached for all responses in the samples, one author coded the remaining 
responses for each problem. Difficult decisions were brought to the team for discussion. For 
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brevity’s sake, we do not provide complete descriptions of the codes, instead presenting them as 
needed to help the reader understand the results.   

Results 
In the sections that follow, we present results that respond to our research questions, 1) 

characterizing the ways EPSTs reason about linear equations, story problems, and diagrams prior 
to taking an undergraduate content course on early algebra and 2) characterizing the shifts in 
EPST reasoning with these representations after taking this course. To do this, we present our 
analysis of the features of algebraic reasoning in EPST responses to the three questions (P1, P2, 
and P3) on the pre-test and post-test. 

Reasoning with Linear Equations (P1) 
Our first finding is that EPSTs largely engaged in deductive strategies with linear equations 

in their work on P1 both before and after the early algebra course. Specifically, 35 of 45 pre-test 
responses (78%) and 23 of 28 post-test responses (82%) involved a strategy that maintained 
algebraic equivalence in the solution process, suggesting that most EPSTs could recognize and 
symbolically operate on linear equations both prior to and after instruction (see Figure 2, left, for 
one example). Among the responses that did not apply a deductive strategy with the equation, 7 
responses on the pre-test (16%) and 3 responses on the post-test (11%) approached the problem 
via binomial multiplication instead of a binomial addition (see Figure 2, right, for an example). 
We interpret the popularity of these two strategies as indicative of the salience of EPSTs’ high 
school algebra experiences coming into the study (e.g., experiences FOIL-ing in high school). It 
also suggests the stability of these experiences during interventions that targeted early algebra. 

   
 

Figure 2. (left) An example of deductive reasoning with a linear equation and (right) an example of interpreting 
binomial addition as multiplication in a linear equation. 

Reasoning with Story Problems (P2) 
Whereas EPSTs’ strategies with linear equations were consistent and deductive in the pre- 

and post-tests, EPSTs demonstrated a notable shift in their algebraic reasoning with story 
problems. Prior to completion of the early algebra course, EPSTs’ responses to P2 included 1) 
infrequent justification of conclusions and 2) frequent exclusively typed or symbolically 
represented responses. With respect to the first feature, only 8 of the 42 total EPST pre-test 
responses (19%) included what we coded as justification (a clear, generalized connection 
between the given information and their conclusion) to support an accurate comparison between 
the quantities. We interpret justification as central to a logical solution, so this feature also 
indicates a lack of evidence for EPSTs’ deductive strategies with the story problem. With respect 
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to the second feature, Table 1 shows an overview of coded representations. We note 21 of the 42 
total pre-test responses (50%) provided no representational support beyond words. Furthermore, 
consistent with EPSTs’ high school algebra experiences, responses on the pre-test that did 
include a representation most frequently included algebra symbols (13 of 42 responses, 31%).  

 
Table 1. Number of responses coded for each representation to support their solutions to the story problem in P2. 
(Note: if a student included more than one representation, each was counted independently.) 

Representation 
Equal sized components 
Non-equal sized components 
Algebra symbols 
No representation 

Pre-test (n = 42) 
2 (5%) 
8 (19%) 
13 (31%) 
21 (50%) 

Post-test (n = 26) 
10 (39%) 
8 (31%) 
3 (12%) 
7 (27%) 

 
After EPSTs’ completion of the course, responses to the story problem in P2 included 1) 

frequent justification and 2) frequent diagrams, particularly those with equal sized components. 
Whereas only 19% of EPSTs responses were coded as providing a justification in the pre-test as 
described above, we coded 15 of 26 responses (58%) on the post-test as providing a justification. 
Additionally, 8 of the 26 responses presented diagrams with non-equal sized components (31%, 
Figure 3, right) reflecting the problem’s quantities and an additional 10 featured diagrams with 
equal sized components (39%, Figure 3, left) reflecting not only the problem’s quantities but also 
their magnitudes and relationships. Taken together, the combined increases in both justification 
and diagram use after completing the course suggests the impact of deliberate instruction of early 
algebra topics on algebraic reasoning with deductive features for EPSTs.  
 

 

 
Figure 3. Correct and justified responses involving (left) equal sized components and (right) non-equal sized 

components. 

Reasoning with Strip Diagrams (P3) 
We also observed shifts in EPSTs’ strategies toward deductive reasoning when working with 

strip diagrams in responses to P3. Table 2 presents a full summary of these findings. Prior to 
instruction, we note that EPSTs tended to implement verification strategies (15 out of 40 total 
responses, 38%) and partitioning strategies (13 out of 40 responses, 33%). Verification strategies 
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involved checking a solution, which could stand alone or be combined with other strategies (see 
Figure 4, left); partitioning strategies involved breaking apart at least one of the red components 
without any deductive strategy elements, suggesting measurement or estimation (see Figure 4, 
center). Furthermore, while five EPSTs (13%) used an equation representing the situation to 
deductively determine a solution, only one EPST (3%) provided a strategy indicative of 
deductive reasoning with the diagram itself; such findings are consistent with Hohensee’s (2017) 
finding that EPSTs lack experiences with early algebra in their own school experiences. 
 

Table 2. Students’ strategies for P3 when using a diagram to solve a problem. (Note: if a student used more than 
one strategy, each was counted independently.) 

Strategy 
Verification 
Partitioning 
Inaccurate equation 
Deduce with equation 
Deduce with diagram 
No or unclear strategy shown 

Pre-test (n = 40) 
15 (38%) 
13 (33%) 
2 (5%) 
5 (13%) 
1 (3%) 
9 (23%) 

Post-test (n = 25) 
6 (24%) 
3 (4%) 
0 (0%) 
4 (16%) 
14 (52%) 
3 (12%) 

 

 

 

 
Figure 4. (left) An example of a verification strategy, (center) an example of a partitioning strategy, and (right) an 

example of a deductive strategy with the diagram. 

After instruction, EPSTs’ responses indicate a strong shift toward strategies that involved 
deductive reasoning with the diagram. Deductive reasoning with the diagram showed a logical 
process to group or eliminate quantities to determine a solution. For example, the student’s work 
in Figure 4 (right) shows first removing 3 bags of apples from each diagram by crossing out 
three orange rectangles, before re-drawing two new strip diagrams. The student then removed 1 
bag of apples by crossing out one orange rectangle and $3 by crossing out three green rectangles. 
They then re-draw two new strip diagrams representing the cost of 1 bag of apples. Whereas only 
one student leveraged such a strategy in the pre-test, 14 out of 25 post-test responses (52%) 
featured this strategy in the post-test.  

A Note on Solution Accuracy in P1, P2, P3 
While our analysis has demonstrated features of EPSTs’ initial algebraic reasoning and shifts 

in that reasoning after an undergraduate course on early algebra, we also wish to provide 
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additional context about the accuracy of students’ solutions across the pre- and post-test. These 
findings are detailed in Table 3. We highlight two key observations from this table. First, prior to 
early algebra instruction, the accuracy of EPSTs’ conclusions was relatively high (e.g., 80% of 
pre-test responses in P3 reached the solution of $3). Second, the proportion of EPSTs providing 
accurate responses on the post-test was slightly higher than on the pre-test (e.g., 88% of post-test 
responses in P3 reached the solution of $3). This finding suggests that the accuracy of responses 
remained high and moderately improved alongside the noticeable changes in features of EPSTs’ 
algebraic reasoning with respect to diagrams and story problems early algebra instruction. 
 

Table 3. Number of accurate responses / number of EPST responses (as a percent) to P1, 
P2, and P3 on pre- and post-test. 

Subheading 
Pre-Test, Accurate 
Post-Test, Accurate 

P1 
35 / 45 (78%) 
25 / 28 (89%) 

P2 
27 / 42 (64%) 
21 / 26 (81%) 

P3 
32 / 40 (80%) 
22 / 25 (88%) 

Discussion  
Addressing our first research question, we note that prior to taking an undergraduate content 

course focused on early algebra, EPSTs’ reasoning was largely focused on algebraic symbols and 
manipulations with limited evidence of deductive strategies in story problem contexts and with 
diagrams. Addressing our second research question, we noticed that justification in responding to 
story problem contexts (P2) and deductive strategies with the diagram (P3) increased 
substantially after completing the course. Further, as observed in P2, more students used non-
symbolic representations to support their thinking. We hypothesize diagrams may support 
EPSTs’ justifications (and thus, deductive reasoning) in story problems. This is supported by the 
prevalence of diagrammatic deductive strategies in P3 in the post-test as well, suggesting that the 
course supported ESPTs’ ability to translate their algebraic reasoning to diagram representations. 
We interpret these findings to suggest positive impacts of the early algebra course on the 
students’ algebraic reasoning across a wider variety of representational modalities. 

We note that the students’ prior school experiences likely created a ceiling effect in terms of 
the number of correct responses; as all students had multiple experiences solving equations and 
story problems, they were able to determine correct solutions prior to instruction. However, we 
contend the course fostered the EPSTs’ early algebra meanings as they developed ways of 
representing and reasoning that will support their future teaching of elementary students.  

Our findings support the claim that, prior to a course on early algebra, many EPSTs may 
possess understandings of algebra focused on symbols and manipulations that may be 
challenging to transfer to their future teaching of story problems and diagrams. We also provide 
evidence to support the claim that undergraduate courses focused on EPSTs developing early 
algebra meanings can support their content knowledge needed to teach such a course. The 
findings from the pre- and post-test establish the need for an undergraduate mathematics content 
course for EPSTs focusing on early algebra. Such interventions are critical if we intend for 
EPSTs to become teachers who support their future students’ success in algebra as part of their 
pathway to advanced STEM courses and future STEM careers.  
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Many topics in calculus require students to reason about situations quantitatively and 
covariationally. Furthermore, such quantitative constructions are often the foundation of 
mathematical abstractions that enable students to construct robust and productive 
understandings of concepts throughout the course. With targeted design, dynamic media and 
virtual manipulatives can support students exploring the interrelationships of varying quantities 
and to leverage this reasoning to solve problems that support concept formation. In this paper, 
we report on student interactions with a variety of curricular resources involving such dynamic 
and interactive design to promote productive understandings of the central concepts in calculus. 
Our findings suggest that although strategic use of virtual manipulatives can support students’ 
quantitative reasoning and conceptual development, even highly constrained activities allowed 
students to focus on irrelevant features and seek memorized procedures. Interviewer guidance 
was generally critical to the productivity of the students’ problem-solving activity and concept 
development. 

Keywords: calculus, virtual manipulatives, formative assessment, quantitative reasoning 

Studies have shown that covariational and quantitative reasoning supports students in 
developing productive understandings of calculus concepts (Thompson & Carlson, 2017; 
Carlson et al., 2002). However, when confronted with calculus tasks, students may revert to 
executing routine procedures rather than attending to the quantitative and covariational aspects of 
the task. Moreover, it can be difficult, if not impossible, for students and instructors to explore 
the effects of varying quantities in a calculus context using pencil-and-paper constructions or 
static imagery. We developed a variety of instructional materials—including iClicker activities 
and accompanying online quizzes—which rely on dynamic imagery, animations, and interactive 
virtual manipulatives to demonstrate calculus concepts. We describe students’ interactions with 
these resources and the extent to which these resources supported students in developing 
productive ways of reasoning about the central concepts in calculus. 
 

Background/Literature Review 
Quantitative and Covariational Reasoning 

Several scholars have demonstrated the affordances of quantitative reasoning (Smith & 
Thompson, 2007; Thompson, 1990, 2011) and covariational reasoning (Carlson et al., 2002; 
Saldanha & Thompson, 1998; Thompson, 1994b) for constructing a robust understanding of a 
variety of ideas in algebra, precalculus, and calculus. Quantitative reasoning is comprised of the 
mental actions involved in conceptualizing situations in terms of quantities and quantitative 
relationships. A quantity is an attribute, or quality, of an object that admits a measurement 
process (Thompson, 1990). Conceiving a process by which one might measure a quantity often 
involves an operation on two or more previously defined quantities. Such a quantitative 
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operatios may result in a new quantity, which itself represents the measure of an attribute, may 
be unitized and partitioned, and related to other quantities. (Thompson, 1990, p. 12). 

Covariational reasoning refers to the mental actions involved in coordinating the values of 
two or more varying quantities while attending to how these values change in relation to each 
other (Carlson et al., 2002). Productive covariational reasoning entails coupling quantities to 
form a multiplicative object of their measures in variation (Thompson & Carlson, 2017) in which 
one recognizes that for every possible value that a given quantity can assume, the other quantity 
also has a value (Saldanha & Thompson, 1998). 

Physical and Virtual Manipulatives 
Physical and virtual manipulatives have been used in mathematics education to support 

students’ construction of abstract mathematical concepts (Moyer et al., 2002) and to advance 
their ability to reason quantitatively and covariationally (Thompson, 2002). Moyer et al. (2002) 
describe a virtual manipulative as a “web-based visual representation of a dynamic object that 
presents opportunities for constructing mathematical knowledge” (p. 373). Much of the research 
literature on the use of virtual manipulatives in particular, and multimedia learning resources 
generally, is informed by information processing models of cognition and seeks to identify 
universal principles of their design that contribute to students’ encoding and retention of 
information (Pampel, 2017). We additionally focus on features of the students’ engagement with 
the manipulatives that contributed to their mathematical reasoning (e.g. quantitative and 
covariational reasoning) or their construction of targeted mathematical meanings (e.g. 
approximation metaphors for limits, rate as a proportional correspondence between changes in 
two quantities, etc.).   

Methods 
The purpose of this study was to examine calculus students’ interactions with instructional 

media including a variety of illustrations, animations, and virtual manipulatives. We conducted 
semi-structured task-based clinical interviews (Hunting, 1997) with each participant individually 
via video conferencing software. All students enrolled in Calculus I classes at a large public 
university in Spring 2021 were recruited for this study, and five students agreed to participate. Of 
these, two students participated in one interview, one student participated in two interviews, and 
two students participated in six interviews. Each interview focused on one of five different 
calculus concepts and was conducted shortly after that concept had been covered in their class. 

The first portion of each interview consisted of the student answering multiple choice and 
numerical response questions designed for use during instruction (i.e., iClicker activities). Some 
questions were part of a sequence intended to help develop students’ understandings of a 
particular concept, while others were summative in nature. If a student had already seen the 
activity in their calculus class, they were encouraged to recreate their problem-solving rather 
than remember which answers were correct from class. Students were asked to explain their 
answers and show their work.  

During the second portion of each interview, the students completed online quizzes based on 
interactions with a virtual manipulative designed to focus attention on the relevant quantities and 
quantitative relationships. Students were instructed to complete each question of the quiz as if 
they would without the interviewer present, pausing after each question for the interviewer to ask 
them to explain their thinking or decisions. Interviewers focused specifically on students’ 
interactions with the virtual manipulatives, particularly on how students decided to move the 
manipulatives, how they interpreted the results of their actions, and how they used this to answer 
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the quiz questions. At the end of each activity in the interview, students were asked what they 
thought the main ideas of the activity were, what they thought they were supposed to learn from 
the activity, and if they found any aspects of the activity particularly helpful or unhelpful in 
learning about the topic. 

Each author reviewed the video of all interviews and noted instances or absences of the 
following for each student: quantitative interpretations, strategic decision making, abstraction, 
and the ability to parse questions. Moreover, each author focused on perceived primary sources 
from the interview materials which yielded these instances or absences, namely: virtual 
manipulatives, animations, or representations; previous questions or scaffolding; context and 
applications; prior knowledge; and textual descriptions and aids for students’ parsing questions. 
In particular, we documented which of these instances yielded a notable change in students’ 
patterns of actions and reasoning throughout the interviews. 

Results 
Routine engagement 

Many of the students initially engaged in most of the iClicker and quiz sequences with the 
expectation that they should know and implement specific procedures to successfully answer the 
questions. If students did not immediately know how to answer a question, they often applied 
whatever strategy or procedure they thought most appropriate so that they might receive partial 
credit. When the interviewer presented and discussed the solution to an interview problem, 
students often interpreted the feedback as a minor correction to their initial attempt, which they 
should remember for future use on similar problems. In these cases, students attributed incorrect 
responses either to insignificant mistakes or to a momentary inability to recall a correct 
procedure. In most of these cases, however, the research team’s assessment was that the 
student’s difficulty with the problem was due to more significant limitations in their current 
understanding of the targeted concept. We interpret students’ tendencies to associate rehearsed 
procedures to particular types of tasks and attribution of incorrect responses to lapses in memory 
or minor procedural errors as evidence that the students were largely not approaching the tasks 
from a problem-solving perspective necessary to reason quantitatively and thus to develop 
productive meanings from the activity. 

Throughout most of her interviews, Kellen claimed that she was generally able to complete 
individual steps of calculus problems but “Sometimes in calculus, I have trouble piecing all of 
the information together.” She did not, however, refer to specific concepts or methods she might 
connect or how that association might inform her interpretation of the problem. In her interview 
about related rates, Kellen started, “I think I’m supposed to take some type of derivative, and I’m 
confused as to what part.… I know what it’s asking for, but I get a little confused as to how to 
get there.” She often attended to surface-level features of the problem statement to determine the 
appropriate procedures to execute. For example, when presented with a related rates problem 
involving a triangle, Kellen said, “I’m assuming I can just do trig, using like the Pythagorean 
Theorem and trig,” without attending to the quantities involved and the nature of variation in this 
particular situation. For Kellen, the triangle itself served as a cue to apply either trigonometric 
ratios or the Pythagorean Theorem. Perceiving the context in terms of quantities and quantitative 
relationships might have enabled Kellen to purposefully construct an equation to express the 
relationship between the relevant quantities and to recognize the need to implicitly differentiate 
this equation with respect to elapsed time and manipulate the resulting equation to solve for and 
evaluate the requested rate of change.  
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Kellen tended to quickly answer the multiple-choice questions presented during the 
interviews, doing little or no calculations. When asked to explain her answers, Kellen would 
often recount her process of eliminating choices she thought were incorrect and selecting what 
she perceived as the most plausible answer from those that remained. She was also quick to 
accept explanations for why her answers were incorrect and why the correct answers were indeed 
correct. For example, in response to an explanation about an iClicker question that she had 
answered incorrectly, “Estimate 𝑓(2.1), assuming that 𝑓(2) = 1 and 𝑓′(2) = 3, using the Linear 
Approximation,” she said “I know we have to have a derivative times a difference because we’re 
looking for the area between 2.1 and 2, which is really accurate…. We’re not looking for a larger 
number. We’re looking for a smaller approximation.” When the interviewer revealed the correct 
answer, Kellen quickly stated that she accepted the interviewer’s claim this answer was correct 
without being provided an explanation by the interviewer. When asked to then explain the 
meaning of the correct answer in her own words, she responded by describing the appearance of 
addition to increase an approximation value, “You would add 𝑓(2) to the 𝑓′(2)(2.1 − 2) because... 
so you’re looking for, if 𝑓(2) is one, you’re probably going to need a little bit more than one, 
𝑓(2.1). So that’s why I can see you would add.” 

Quantitative reasoning 
The iClicker and Quiz questions were designed to require students to interact with the 

associated illustrations, animations, and interactions in ways that focus attention on the relevant 
quantities and quantitative relationships. In some cases, this design was sufficiently robust that 
students interacted in the intended ways even when only routinely engaged. In other cases, the 
interviewer was able to ask guiding questions that prompted such interaction.  

The virtual manipulatives did seem to support Kellen in enacting more quantitative reasoning 
as opposed to a focus on procedures. The quiz over related rates involved two virtual 
manipulatives. The first context involved a common problem involving a person walking away 
from a lamp post and the related rates of change in the their distance from the post and length of 
their shadow. Students could select “Walk” and play an animation of the person waling at a fixed 
speed or click and drag the figure to manually move it to different locations. In either case, the 
manipulative illustrated the two relevant similar triangles and a single distance scale from the 
lamp post, but it did not display a numerical measurement for the individual’s position, x, or 
length of their shadow, s. Before reading the first question, Kellen played the animation, then 
paused it and manually moved the individual. Kellen then read the first question requesting the 
relationship between Δ𝑥 and Δ𝑠. Kellen manually moved the figure to 0 meters, and successively 
moved the figure to the right 2 meters at a time, concluding, “Every time there is a change in x, 
the change in s is increasing, but Δ𝑥 and Δ𝑠 are not equal.” She then selected the correct answer 
choice. Kellen explained that she observed how the shadow changed as she moved the figure, “as 
he kept going [i.e., as she successively moved the figure to the right by increments of 2], the 
shadow isn’t necessarily the same change every time. There’s always an increase in the change 
every single time.” Although her description was not entirely correct, Kellen attended to all of 
the quantities, changes in quantities, and covariational relationships needed to successfully 
answer the question and interpret the task situation as intended quantitatively. 

Pseudo-empirical abstraction 
The iClicker and Quiz questions were designed to require students to reason in ways that 

promote the desired mathematical abstractions for the lesson. While routine engagement was 
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never sufficient to support such abstraction, when students did engage in problem-solving 
activity, they did demonstrate aspects of the desired generalized mathematical reasoning. 

In a quiz based on a virtual manipulative illustrating quantities involved in a Riemann sum 
approximation of the energy required to lift a 1 kg mass to geosynchronous orbit, Jarrod was 
supported in making critical initial pseudo-empirical abstractions of the results of his interactions 
with the manipulative. This manipulative displayed the quantities in a contextual diagram 
alongside a graph of force of Earth's gravity on the mass as a function of the distance 𝑟 from the 
center of the earth. The manipulative included three sliders in which students could choose the 
following: the locations of evaluation points on a continuum from a left sum to a right sum, the 
“number of segments” (subintervals), and the “subinterval to evaluate.” The diagram and graph 
then illustrated energy and area associated with the corresponding term of the appropriate 
Riemann sum. Although Jarrod’s class had recently covered Riemann sums, he did not initially 
recognize the notation used in the quiz and was confused about what the various slider variables 
represented in the context and the graph. He answered the first two questions based on unit 
analysis, computing values that would merely have the same units as the quantities requested. 
When asked to find the force used in the second term of L10, Jarrod did turn to a more 
meaningful interpretation of the relevant quantities, but pointed to the first two intervals in both 
the picture and graph and multiplied his change ∆r by 2 indicating the combined length of the 
first two intervals. He divided the value of the energy for only the second interval by this 
distance to obtain the incorrect force, despite the illustration highlighting the correct distance in 
both the picture and graph. 

When asked to compute 𝑀!, however, Jarrod scrolled the sliders for “number of segments” 
and “segment to evaluate,” observing their effects in the diagrams. He asked if the question was 
asking for “all of the [energy components] added up.” Upon confirmation, he scrolled to the first 
segment and said “I could write this one down,” scrolled to the second, “write this one down and 
like add it,” then scrolled through the remaining segments writing down the displayed energy 
values and added them together. He explained this represented “the whole area of all of like the 
rectangles… It’s the total energy needed to, uh, the total energy needed to get that object into 
space in that many intervals.” When asked what the individual terms represented, he explained it 
was just the energy needed for that interval, not cumulative from one to the next, a departure 
from his initial incorrect interpretation. When asked what proportion of the trip used half of the 
energy required, he noted that the first term in 𝑀! was nearly half of the total, and correctly 
estimated 1/7th of the trip, justifying “as you get further the gravity of earth is gonna affect you 
less and if you’re close it’s gonna affect you more so it’s going to take more energy to push past 
it.” Jarrod summarized the purpose of using an integral as,  

I think specifically like with energy and force it's because… if you want to calculate energy 
using force, the force has to be constant. And so, it makes it where you can make the force 
constant by dividing it into different intervals. And so you can kind of work like that for like 
anything if you need to.  

When asked how he could make his estimate as accurate as possible, Jarrod indicated a left sum 
would generate an overestimate and a right sum would generate an underestimate. 

I think midpoint maybe the best just because like there are parts that go over but there's also 
parts that go under because it's in the middle… the ones that are over and under kind of 
makeup for themselves. I would bring it to the largest number of segments and I'd set it to a 
midpoint. For like the like the total energy, I would like add up each segment energy. 

Role of the instructor 
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As noted in the previous sections, the primary challenge to the instructional effectiveness of 
the iClicker and Quiz sequences was students’ disinclination to problem-solving engagement. In 
many cases the interviewer was able to ask questions that disrupted this routine engagement, 
resulting in the desired quantitative reasoning and pseudo-empirical abstraction. 

When interacting with the quiz and manipulative covering Riemann sums described above, 
Kellen correctly calculated the distance from the surface of the Earth to the satellite. Proceeding 
to the next question, “How far is each distance Δ𝑟 (in m) used in the computation for 𝐿"#?” 
Kellen first observed that each segment would have the same length, then attempted to visually 
estimate the width-measures of the rectangles corresponding to 𝐿"#. “I’m looking at how the 
graph is broken up… I just wanted to see if the radius [the variable r for the distance from the 
center of the Earth] was an even number [i.e. an easily determined whole-number] but it appears 
not to be.” The interviewer prompted her to reference her previous answers and attempt another 
solution method. Kellen sought a formula to answer the question, “So, we know that our energy 
is equal to the force times the change in distance, which is going to be that Δ𝑟 in this case.” 
Kellen then focused on the current selected segment and attempted to read the height of the 
rectangle from the graph to represent the approximate force with which she could divide the 
energy approximation for that segment to solve for the distance Δ𝑟. Again, unable to read the 
numerical value accurately from the graph, Kellen conceded to being stuck.  

After the interviewer reminded her of her previous observation that 𝐿"# separates the total 
distance interval into 10 equal parts, she responded “Oh so I could easily use a different part if I 
wanted to.” Kellen then moved the slider to select the second segment, which highlighted a 
rectangle with a height of 4. “So here, you have an even 4 … so 4 - with an energy of 14.38 
mega Joules over 4 is going to give a Δ𝑟.” Kellen then answered the question after performing a 
unit conversion.  

We note that, in this interaction, the interviewer’s two responses merely prompted Kellen to 
further reflect on what she knew, and to persist in her problem solving. Kellen’s responses to the 
prompts included incorporating a quantitative operation into her activity (deriving the radius 
change from the equation 𝐸 = 𝐹 ⋅ 𝑑 as well as the height-width product constructing each 
rectangle), and then manipulating the slider to find a rectangle that provided her with a suitable 
height for her computation. This slider manipulation followed from her observation that each 
interval had the same size, and so she only needed to find one width (segment length) in order to 
calculate all of them. We consider this interaction to be akin to a teaching interaction possible in 
a classroom implementation of this activity, and note that the actions of the interviewer 
supported Kellen’s completion of a solution by building from the reasoning that she had already 
brought to the task. As such, the actions of the interviewer supported Kellen’s engagement in 
further quantitative reasoning, whereas the task merely provided an opportunity to engage in 
quantitative reasoning, possibly constraining her activity at best.  

Discussion 
At the heart of our study is an investigation of the ways that students might bring forth and 

possibly alter their mental organizations of mathematical activity during their engagement with 
our tasks, hopefully working to support students’ reasoning quantitatively and covariationally. 
By exploring Kellen’s task interpretation, her goal setting process, and the reasoning that she 
brought forth when solving these tasks, we gain initial insights into the different ways that 
students might interact with our designed materials. We also use her interactions with the 
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interviewer as an opportunity to discuss the importance of accounting for both student and 
teacher interactions when designing interventions.  

As seen through Kellen’s routine engagement, her primary problem-solving approach aligned 
with test taking strategies (e.g. eliminating wrong answer choices) and attempts to recall 
particular steps taken in accordance with cues from the problem statement (e.g. presence of a 
triangle in a problem suggests use of the Pythagorean theorem, related rates problems involve 
taking derivatives). Accordingly, her engagement with quantities was subservient (at times 
nonexistent) to her primary routine. This constrained her activity when questions required 
nontrivial considerations of quantities at play, which Kellen described as an inability to “[piece] 
all of the information together”.  

One fundamental goal in the development of these tasks was supporting students’ 
engagement in quantitative reasoning. We note that some tasks, particularly for the virtual 
manipulatives, corresponded to her engagement with quantities. Despite this, an important result 
from analyzing Kellen’s work is that her activity was indeed constrained in the absence of 
engagement with quantities, but this constraining itself was insufficient to support her learning of 
our desired mathematical concepts, or her adoption of particular ways of reasoning. We highlight 
that the didactic expectations and ways of interacting in class that students bring to bear when 
solving tasks can fundamentally influence their goal-oriented activity. One manifestation of this 
for Kellen was her quick verbal acceptance of a stated right answer and its justification from the 
interviewer with minimal or no evidence of reflection on what contributed to her selecting an 
incorrect response, including a lack of reflection on ways that the correct answer reflected the 
coordination of the quantities at play in the task. We point out that this kind of interaction might 
occur in classroom assessment contexts, where students might reflect little on why they got 
incorrect answers instead focusing on what the correct answers were. This is in line with 
Kellen’s routine engagement, as if she thought the activities themselves to operate much like an 
in-class quiz.  

As such, we consider that while tasks can serve to constrain and orient students’ activity, 
teaching interactions can support students’ mental activity within the confines of attempting the 
tasks. Though not an aspect of her routine engagement, Kellen did demonstrate the potential to 
productively consider quantities, particularly in moments of interaction where the interviewer 
supported such attention. Though the original goal of the tasks (individually and wholistically) 
was to support students’ engagement with quantities and their learning through abstraction, we 
found that Kellen’s engagements in these mental processes were supported by the interviewer in 
moments where her activity was constrained by the task. This is perhaps unsurprising, as 
instructors’ teaching actions provide an integral aspect of the interactions within a classroom 
environment. We find that, for our purposes, identifying this distinction between interactions that 
constrained Kellen’s activity versus interactions that supported her adoption of particular 
cognitive processes to be important. 

With our eyes particularly towards relevant features of design work, we consider it important 
that future iterations of these materials attend not just student interactions with the task, but also 
the teacher’s role in implementation. More generally, we consider accounting for instructors’ 
views of the tasks, goals for instruction, and means of implementation to be vital components of 
meaningful design research made evident by our renewed awareness of the idiosyncratic nature 
of student interactions with tasks through analysis of Kellen’s work. Our future iterations will 
specifically incorporate a greater awareness of the instructors’ roles in implementation of these 
materials.  
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Active learning is generally considered to be an equitable teaching approach in math education. 

More post-secondary math classrooms have adopted active learning pedagogies to improve 

student learning and promote equity. However, given active learning’s emphasis on verbal 

communication and peer interaction, it is important to consider how bilingual students 

experience active learning. This study espouses a sociopolitical perspective to examine the 

experiences of bilingual students in active learning undergraduate math classrooms. Data was 

collected from interviews with twenty-eight bilingual students for whom English is an additional 

language. Findings suggest that most students participated less than their peers during group 

discussions, were often positioned as peripheral members of their groups, and were not able to 

use their home language as a resource in their learning. Findings suggest the need for more 

research on implementing active learning so that it is equitable in language diverse classrooms.  

 

Keywords: active learning, group work, language diverse classrooms, equity 

 

Introduction 

At the post-secondary level, math classrooms are becoming more reflective of the 

multicultural landscape that we live in (Durand-Guerrier et al., 2016). Undergraduate math 

classrooms in the United States are often no longer monolingual spaces that serve predominately 

native English speakers. It is becoming more common that these classrooms are rich, 

multilingual spaces where students use different cultural, linguistic, and experiential knowledge 

to make sense of mathematics. This calls into question whether teaching approaches developed 

within the context of monolingual classrooms are still meeting the needs of bi/multilingual 

college math students today. 

Active learning is a teaching approach that is also becoming more common in post-secondary 

math classrooms. Ample amounts of research suggests that active approaches to teaching 

improve student learning (Freeman et al., 2014). Furthermore, Ballen (2020) discusses the 

general consensus in the literature that active learning promotes equity in undergraduate STEM 

classrooms. To illustrate this, Theobald et al. (2020) performed a meta-analysis of the post-

secondary literature on active learning. Findings suggest that on average active learning reduces 

the achievement gap for underrepresented students in STEM courses by 33%. Laursen et al. 

(2014) demonstrated using data from over 100 undergraduate math courses that active learning 

in the form of IBL helped “level the playing field” for women. (p. 412). Generalizing from this 

work, researchers and practitioners often treat active learning as a silver bullet for equity in post-

secondary classrooms.  

However, some scholars have questioned active learning’s impact on the experiences of 

underrepresented students (Henning et al. 2019; Esmonde, 2009; Takeuchi et al., 2019). At the 

post-secondary level, Johnson et al. (2020) found that male students outperformed females on a 

content assessment test when inquiry-oriented instruction was used in abstract algebra. Henning 

et al.’s (2019) work suggests that during peer engagement there may be a “heightened awareness 

of social identities” which can impact underrepresented students’ participation, STEM self-

efficacy, and sense of belonging (p. 1). 
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Active learning emphasizes communicating mathematically and participating in the 

classroom (Moschkovich, 2002). Students in active learning classrooms are also expected to 

regularly interact with their peers and make sense of mathematics collectively. Given this 

emphasis on communication and peer interaction, there is a need to better understand active 

learning’s impact on classroom equity in language diverse spaces.  

At the undergraduate level, a lack of research exists exploring this need. However, at the K-

12 level, math education scholars have advocated for active learning – specifically group 

learning – as a tool for supporting students with diverse language needs (Boaler & Stapes, 2008; 

Gutiérrez, 2002; Cohen & Lotan, 2014). For example, Complex Instruction suggests that placing 

students in mixed language-ability groups supports the language development of emerging 

bilingual students through interactions with native speakers (Cohen & Lotan, 2014). Gutiérrez 

(2002) also demonstrates how group work enriched learning for high school English language 

learners by utilizing their home language.  

At the same time, some K-12 researchers have documented inequities that bilingual students 

experienced under more active approaches to teaching (Civil 2014; Takeuchi et al., 2019; 

Takeuchi, 2016). For example, Planas and Setati (2009) describe how immigrant students in 

Barcelona took on identities as active doers of mathematics during small group discussions, 

however they generally adopted more “passive listener” identities in whole class discussions (p. 

41). 

 

Theoretical Framework 

This paper adopts a sociopolitical perspective (Gutiérrez, 2013), by centralizing issues of 

power and identity. This perspective highlights the ways that power and other sociopolitical 

structures privilege certain identities in the math classroom, while marginalizing others (Langer-

Osuna and Esmonde, 2007). In active learning settings, classroom interactions have the potential 

to facilitate learning, but must also be understood as existing in and being shaped by classroom 

power structures. This has implications on how students are positioned and their opportunities 

for learning (Adiredja & Andrews-Larsen, 2018). In this sense, power can be made visible by 

examining the ways that students position themselves or are positioned by others in the 

classroom (Martin-Beltran, 2013). 

A sociopolitical perspective also views language as political, as some languages – like 

English – are assigned “higher status” over others (Civil, 2008). For instance, English is often 

seen as the language of “access and power” (Setati & Adler, 2000, p. 247), whereas Spanish is 

often used as a marker of poverty (Moschkovich, 2007). Because of this politicization of 

language, it is also inextricably connected to who is afforded power and access to participation in 

the classroom. This can be seen in Takeuchi (2016). This study documents different power 

imbalances that arise when bilingual students are assigned to groups with monolingual students. 

For instance, bilingual students were less likely to participate and had less access to being 

positioned as an expert or leader when they were placed in teacher selected groups. 

To think about the role of language and power in the classroom, Planas and Civil (2013) 

presented the language-as-resource, language-as-political framework. This framework 

recognizes that on one hand, language is a resource for students. That is, the metaphor language-

as-resource represents the potential that language has to facilitate mathematical learning. On the 

other hand, language-as-political recognizes that not all languages carry the same status in the 

classroom and can operate to privilege some students while marginalizing others. Planas and 
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Civil (2013) demonstrated how students were impacted by dominant language norms in the 

classroom which impacted their participation.  

By leveraging the work that has been done at the K-12 level and by viewing language 

through a sociopolitical lens, this paper focuses on exploring the experiences of bilingual 

students in active learning post-secondary math classrooms. In better understanding students’ 

experiences, this papers also explores to what extent active learning served as an equitable 

teaching approach in language diverse classrooms.   

 

Research Question 

 

This paper addresses the following research question: How did bilingual students experience 

active learning in undergraduate math classrooms? 

 

Methods 

Data Source  

The data presented here are part of a larger, mixed-methods dissertation study which explores 

the experiences of bilingual students in undergraduate pre-calculus and calculus courses. This 

study took place at a large, public, research university that has been designated as a Hispanic-

Serving Institution. For the qualitative part of the study, semi-structured interviews were 

conducted with twenty-eight bilingual students for whom English is an additional language. 

Nineteen of these students were international students. The languages that were represented 

among the student participants included: Arabic, Bangla, Chinese, Farsi, Hindi, Korean, Spanish, 

Uzbek, and Vietnamese.  

Each interview lasted between 60-90 minutes. The interviews focused on understanding 

students’ general experiences in college math courses, and their experiences with active learning 

and group work. This data was collected during the Covid-19 pandemic. As such, students 

attended different modes of instruction, i.e., students were either enrolled in in-person courses, 

online courses, or hybrid courses. In online course settings, group work was facilitated through 

breakout rooms. During the interviews, students in online courses often reflected about their 

experiences with group work over Zoom and their experiences in in-person courses the previous 

year.  

 

Analysis  

All interviews were transcribed in full and pseudonyms were given to each participant. 

Although interviews were transcribed verbatim, the quotes presented in this paper have been 

modified slightly for clarity. No modification impacted the meaning or feel of any of the 

sentences in the quote. The transcripts were then carefully studied and coded using open and 

axial coding as part of thematic analysis (Braun & Clark, 2006). This analysis first focused on 

identifying themes pertaining to students’ experiences in active learning (e.g., experiencing 

microaggressions, not having your ideas understood). These themes were then further analyzed 

and compared to gain greater, more nuanced understanding of student’s experiences. 

 

Results 

Three students in this study reported having a positive experience with active learning and 

group work. One student attributed this to her ability to advocate for herself while working with 

peers. The other two students found group work to be a less intimidating space for seeking help 
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rather than going to the instructor. However, most participants in this study described the 

challenges and inequities they experienced in active learning environments as a student with a 

diverse language background. This often resulted in students participating less in the classroom 

even though they were actively engaged in the mathematics. For example, Juzhen, an 

international student from China, shared his experience trying to participate in group discussions 

in his calculus II course: 

 

I can understand what they’re saying. I just can’t join in the speaking. When they talk, if I 

want to make a response, I have to come up with a sentence in my brain and then speak 

it, but the native speakers, they will just talk without hesitation /…/ I can understand the 

conversation but sometimes, maybe it’s kind of hard to join the conversation.     

   

From my analysis of student interviews, four themes emerged regarding the inequities that 

students experienced in active learning classrooms: (1) feeling that they were not understood by 

classmates because of language, (2) experiencing microaggressions while working with others, 

(3) being positioned as a peripheral or marginalized member of the group, and (4) not being able 

to use their home language as a resource in their learning. First, many students reported feeling 

like their peers were not as good at understanding “what they were trying to convey” during 

mathematical discussions compared to their instructors. They felt that students often lacked 

“experience communicating with international students” and “people whose first language was 

not English”. Second, because active learning opened the classroom space up for students to 

interact, several students reported experiencing microaggressions during these interactions. 

These microaggressions were based on their country of origin or their accent in English. In this 

paper, I will focus my discussion on (3) and (4).  

 

Student Positioning During Group Work 

Analysis of the data suggests that students in this study were often positioned as peripheral or 

marginalized members of their groups. First, several students shared stories of being positioned 

as passive listeners in their groups, rather than as an intellectual authority or leader. For instance, 

Anayeli, whose first language is Spanish, described how her groupmates were “not really willing 

to listen to [her] input”. She recalled one instance during an in-class activity where she knew 

how to solve a problem because she had encountered something similar before. However, the 

student who was positioned as the group’s leader was not receptive to Anayeli’s ideas. Instead, 

he decided that the group should use his method of solving the problem, which did not end up 

leading to a correct solution. This left Anayeli feeling “frustrated that people don’t listen to 

[her]”. When asked what role Anayeli typically takes up during group work, she explained:  

 

They tell me, oh, we should probably solve it like this and then I'll try it that way. And 

then if it doesn't work, I’ll suggest a different way. I think that sometimes I would also 

like to kind of lead. But it's just not always possible, you know. 

 

This quote highlights a mismatch in the way Anayeli would like to be positioned, as an 

intellectual authority in the group, and the positioning that she had access to, as someone who 

takes directives from others.  

In the interview, Anayeli described her classroom as being predominately composed of male 

students. Later in the interview, I asked her if she thought that being a woman impacted the 
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experiences in group work. Anayeli explained “Well like there's the other girl in my group. And 

she also kind of just disregarded my ideas. So, really, it could probably be like the fact that I 

have an accent, maybe, because she doesn’t have an accent.” Here, Anayeli identifies having an 

accent as a reason she felt that her ideas were devalued by her group members. Therefore, the 

language background that Anayeli brought into the classroom impacted her experiences during 

group work and caused her to be marginalized by her peers.   

Several students were also positioned as inhibiting the group’s productivity. This often 

occurred when instructors created incentives for students to engage in group work. For example, 

this can be seen in the case of Jason, who is a native Chinese speaker from Trinidad and Tobago. 

In his math class, students were allowed to leave class early when the group finished their work.  

Jason describes the pressure he felt to make sure he could explain his group’s solution because 

he did not want to inhibit them from leaving early.  

 

I just feel kind of ashamed when we doing a question and I'm like one of the person in 

that group that doesn't really engage much /…/ And I’m just their getting the answers, 

and just listening, and when it comes to the explanation, they're like, oh, make sure you 

understand this. That’s what’s going through my head like, make sure I understand this 

and I can explain it so we can leave \...\ I felt like I was kind of a burden. 

 

Similarly, Carina, a student from Guatemala, was continually positioned as “slowing down” 

her group during in-class activities. She attributed this to the fact that the activities were graded 

and worth a significant amount of points. Carina describes numerous experiences where her 

classmates were rude and belittling to her when she asked questions. Below are two examples of 

this:  

 

I would be in a group, sometimes I wouldn't know how to say a word. And so sometimes 

my English would go like really bad, like where they wouldn't know what I was talking 

about. And they're like, I'm sorry I don't understand what you're trying to say. And they're 

like okay, well just maybe forget your question and let's just actually get to the problem. 

And I'm like well I am trying to go to the problem, but I don't know how to phrase my 

words to explain the problem. 

 

Sometimes one student was like I'm sorry but we really need to get going but some others 

were like, dude, stop, we can't do this. And then that time I would feel like I'm so 

worthless. 

 

These quotes depict the ways that Carina was marginalized from her group for asking 

questions. Rather than engaging with her questions, her peers positioned the questions as 

distractions or not relevant to the task. Carina described her groupmates as “selfish” and 

“uninterested” in understanding her or helping her learning. In reflecting on her experiences as a 

bilingual student, Carina shared: “I am glad I’m a Spanish speaker but sometimes I'm not when 

students or people feel that they have the upper hand.” This quote highlights how language is 

political in the classroom, positioning some students as having the “upper hand” because they 

speak English.  

 

Using Students’ Home Language as a Resource 
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Another theme that emerged from the data was that students were not able to use their home 

language as a resource in the active learning classroom. The majority of students in this study 

reported leveraging their home language to make sense of mathematics outside of the classroom, 

i.e., forming study groups with peers that share a common home language, finding resources in 

their home language, etc. However, inside the classroom, students expressed the need to only use 

English to “go with the status quo”. 

For example, Gabriela, an international student from Peru, connected with another Spanish 

speaker in her class. They often worked on math together outside of class using both English and 

Spanish. The use of both languages helped facilitate their learning. However, when Gabriela was 

placed in a group with her friend during class, they only spoke English: “When I'm in a group of 

three, me, my friend and someone else, we have to speak in English to make them feel included, 

so it's not like an option for us.” Making sure group members are included is a valid concern. 

However, for Gabriela, there is little room for her to leverage her linguistic resources, as an 

aspect of both her past experiences and current classroom suggest to her that only English should 

be used.  

To further illustrate, Anthony is a domestic student whose first language and the language he 

prefers to do math in is Spanish. When asked to describe his experience in the classroom as a 

bilingual student, he first responded “Well, first I have to pretend I’m monolingual”. This quote 

suggests that a part of Anthony’s identity as a bilingual student is not being affirmed in the 

classroom. 

Furthermore, when asked if he was ever paired with group mates that spoke Spanish in his 

math course, he responded: 
 

Interviewer: So, do you ever get grouped with Spanish speakers when you work in  

groups in math?  

Anthony: Yeah. I’ve had that happen, but they don't want to speak Spanish. 

Interviewer: Why is that? 

Anthony: I don't know, I feel like they have that thing about like that you should be only  

speaking English. If not, they're going to see you as a weird person or something. 

So, at the beginning of my university life, I tried to speak Spanish with other 

people, but I noticed that nobody wants to speak Spanish. So, then I just started 

doing the same thing. I was like okay I'm not speaking Spanish. So, even though 

we knew each other speaks Spanish we just pretend to be fully English speakers. 

 

This exchange also captures the tension between language-as-resource and language-as-political 

in the classroom. For Anthony, Spanish is an important tool for checking his mathematical 

understanding: “When I’m really thinking about something [in math], I tend to go back to 

Spanish as a way to verify what I’m thinking in English is correct”. However, because students 

felt stigmatized when speaking Spanish, Anthony was unable to activate this resources during 

group work.  

 

Discussion and Implications 

Most bilingual students in this study did not have equitable experiences in the active learning 

undergraduate math classroom. In particular, the data suggests that group work generally did not 

facilitate equitable opportunities for participation and learning. Results indicated that bilingual 
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students reported participating less in group discussions, not being positioned as legitimate 

members of the group, and not having their ideas taken up by peers. Furthermore, active learning 

spaces often did not affirm students’ bilingual identities and allow them to use their native 

language as a tool in mathematical sensemaking. During interviews, students identified their 

language background or their accent in English as reasons they felt marginalized. This 

exemplifies the political nature of language in the classroom, which can serve to privilege some 

students by marginalizing others. In this study, viewing language as political allowed for a 

deeper understanding of classroom equity in active learning spaces.     

Although students generally did not have positive experiences, the argument of this paper is 

not that active learning should be abandoned in multilingual classrooms. Nor is the argument that 

active learning is not an equitable teaching strategy. Findings do suggest, however, the need for 

more research on effectively implementing active learning in these spaces. This research should 

examine how active learning can be implemented so that it is more humanizing, affirming, and 

allows bilingual students to leverage the resources that they bring.   

Students in this study provided suggestions for improving the implementation of active 

learning. For example, as discussed in the previous section, some instructor’s used incentives to 

encourage student engagement and active participation in group work (i.e., allowing students to 

leave early, assigning points, etc.). However, this had the unintentional outcome of negatively 

impacting the group dynamics, as the group’s goals shifted from group learning to group 

productivity (Webb, 1995). Students described having better experiences with group work when 

the tasks were low stakes. Students suggested making group activities for participation points 

only. Other suggestions from my dissertation data include having students stay in the same group 

for longer periods of time. Students expressed that this helped them feel more comfortable 

communicating. Students also preferred to be paired with other international or language diverse 

students. The shared experience of having a language diverse background helped make group 

work a more affirming environment.  

Finally, I argue that this paper makes a contributions to the field in the following ways: (1) It 

addresses the lack of research on bilingual students’ experiences in undergraduate math 

classrooms. (2) It examines the impact of active learning on historically marginalized students. 

(3) It illustrates the ways that language is political in the undergraduate classroom. (4) Finally, it 

provides a few recommendations for more effectually implementing active learning to affirm and 

support bilingual students in undergraduate mathematics. 
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Instructor Beliefs and Practices at the Periphery of STEM 
 

 Elizabeth Roan Jennifer Czocher 
 Texas State University Texas State University 

As a practice, modeling is beneficial for students. For students to have the opportunity to do 
modeling, instructors must choose to incorporate it into their courses, a decision based on the 
instructors’ beliefs about modeling in and out of the classroom. To expand applicability and 
generalizability of results and theories, to expand the focus of mathematics education research to 
domains trending mathematically, and to work towards incorporating modeling into other 
classrooms, we interviewed 10 STEM instructors in domains atypical to the current literature 
base. Analysis indicated this demographic of STEM instructors held beliefs about modeling in 
and out of the classroom similar and different to those documented about typical STEM 
instructors. However, similar beliefs are more nuanced than previously reported. 

Keywords: Teacher Beliefs, Modeling, Integrated STEM. 

Mathematical modeling (hereafter: modeling) is beneficial for students for multiple reasons: 
from developing general competence towards creative problem solving to helping acquire, learn, 
and keep mathematical concepts by providing motivation for and relevance of mathematical 
studies (Blum & Niss, 1991). However, facilitating modeling tasks is challenging, and many 
STEM instructors cannot easily find time in their courses to dedicate to modeling. Because of 
this, one obstacle in incorporating modeling tasks into STEM students’ coursework is persuading 
STEM instructors that doing so is achievable and worthwhile.  

In general, instructors’ judgements about their pedagogical practices arise from their beliefs 
(Pajares, 1993), a link that has been documented by many researchers in many contexts.:  k-12 
science (Haney, Lumpe, Czerniak, & Egan, 2002), K-12 mathematics (Bray, 2011; Clark et al., 
2014; Jacobson, 2017; Yurekli, Stein, Correnti, & Kisa, 2020), college sciences (Gibbons et al., 
2018; Pelch & McConnell, 2016), and engineering (Borrego et al., 2013). The first step in 
addressing STEM instructor’s beliefs about a topic, such as modeling, is to first document their 
differing beliefs about the construct (Nathan et al, 2010). Thus, a better understanding of 
modeling’s place might be in the curriculum, can inform efforts to persuade STEM instructors 
that teaching with modeling is an achievable objective.  

Across STEM fields, research has documented instructors’ beliefs about modeling (as a 
professional and educational activity), the integration of mathematics into their courses, and the 
characteristics of successful STEM students where STEM was typically taken to mean physical 
sciences, engineering, and computer science. However, other fields, such as psychology, biology, 
and economics, are becoming more mathematical. For fields whose roots are not mathematical, 
or even statistical, there is still much to be learned about the how these professionals 
conceptualize modeling, and how they view the role of modeling in their course work. 
Articulating an inclusive, and empirically informed, account of what constitutes modeling can 
provide novel perspectives about modeling instruction absent from the literature. Such 
perspectives can better inform the teaching and learning of modeling by expanding the contexts 
in which modeling is studied and potentially include a demographics of students not currently 
accounted for in literature. That is to say, their perspectives are important to include because they 
are STEM professionals who teach STEM students. Indeed, even the NSF classifies 
anthropology, psychology, and economics as STEM fields (NCSES, 2014).  

24th Annual Conference on Research in Undergraduate Mathematics Education 463



This study lays the groundwork for describing an inclusive view of STEM instructors’ beliefs 
about modeling. The goal of this paper is to extend what is known about STEM instructor’s 
beliefs about modeling in STEM majors course work by providing the perspective of STEM 
instructors not currently accounted for in the current literature base. 

Literature Review 
Some studies exposed the contrasting views held by STEM instructors with regards to their 

field’s relationship to mathematics which insinuate a instructor’s conceptions about modeling’s 
place in their courses. Holmberg and Bernhard (2017) interviewed 22 university instructors who 
taught content related to Laplace transforms. Some instructors believed that mathematics, 
physics, and technology are inseparable; others verbalized the opposite view, that these fields are 
not related at all. Nathan et al. (2010) developed a measure of STEM instructor’s beliefs about 
engineering students’ success. They studied differences in beliefs and practices between STEM 
high school instructors with masters’ degrees and instructors using an integrated curriculum. 
Instructors with master’s degrees were least likely to identify sources for engineering support, 
least likely to claim their class was integrated with STEM, and more likely to agree that students 
needed to be high achieving to be successful in a STEM career. Bergsten, Engelbrecht, and 
Kågesten (2015) interviewed two professional engineers about their views of conceptual and 
procedural mathematics skills in engineering education and practice. One engineer, Robert, from 
Sweden worked in technical physics and electrical engineering. The other engineer, Ben, was a 
civil engineer from South Africa. Both engineers held that conceptual mathematics skills are the 
most important for engineering education. However, Robert emphasized the connection between 
conceptual and procedural actions, while Ben stated that procedural mathematics skills are not 
necessary. Bergsten et al. (2015) conjectured that this difference was due to the engineers’ 
differing fields and backgrounds. These studies empirically showcase two ideas about modeling 
and curriculum present in Kaiser (2017), the idea that different fields view applied mathematics 
and pure mathematics as either separate and should be taught separately or inseparable from the 
subject and was an inherent part of other sciences and should not be taught separately.  

Other literature focuses on STEM instructors’ beliefs about characteristics of successful 
STEM students, particularly their beliefs about their students as learners of science, mathematics, 
and, the intersection, modeling. Faulkner and Herman (2016) interviewed engineering and 
computer science instructors about the skills students needed to be considered mathematically 
mature. Results indicated that the instructors valued algebraic fluency, quick computations, 
symbol sense, ability to use online tools to solve mathematics problems, confidence, and other 
modeling skills are necessary for a student to be called mathematically mature.  Similarly, 
Gandhi-Lee et al., (2015) interviewed biology, chemistry, computer science, engineering, 
geoscience, health science, mathematics, and physics instructors. Their participants held that to 
be successful, students must be curious, independent problem solvers, with positive attitudes. 
Additionally, these instructors identified mathematics overall as a roadblock to success, and 
specifically identified algebra as the minimum requirement for success.   

The field has also documented how professional engineers, and instructors of engineering 
and mathematics view modeling as a construct (see Drakes, 2012; Frejd & Bergsten, 2018; 
Gainsburg, 2013). Instructors in these fields, as well as secondary and post-secondary science 
teachers, have not reached consensus when describing the role of mathematics in their classes. 
STEM instructors more broadly, including computer science, health and geo sciences, biology, 
and chemistry have well-considered characterizations for student qualities they believed 
contributed to success. The field has yet to learn how disciplines at the periphery of the 

24th Annual Conference on Research in Undergraduate Mathematics Education 464



definition of STEM, such as geography, psychology, anthropology, and economics, 
conceptualize modeling and how those STEM instructors view the role modeling plays in the 
education of their STEM students. It is thus unknown whether these results generalize to the 
broader population.  Attending to the beliefs and perceptions of the peripheral STEM disciplines 
will strengthen applicability and generalizability of results and theories expressed in the current 
literature, will expand the focus of mathematics education research to incorporate domains that 
are trending mathematical, and will work toward meeting a societal need by getting more 
modeling into these other classrooms. With these goals in mind, the purpose of this study is to 
answer the question: what is the role of modeling in the education of undergraduate STEM 
majors, according to non-traditional STEM instructors and how do their accounts comport with 
existing research on traditional STEM instructors? 

Instructors’ beliefs have commonly been studied using a combination of qualitative and 
quantitative methods (see Bray, 2011; Gibbons et al., 2018; Haney et al., 2002; Nathan et al., 
2010; Pelch & McConnell, 2016). Typically, observations are analyzed qualitatively to study 
instructor practices while instructors’ beliefs are measured using surveys and statistical models 
are used to test associations between beliefs and practices (Philipp, 2007). This approach has 
been critiqued in the broader higher-education literature for the underlying assumption that there 
is a clear causal relationship among instructors’ conceptions, practices, and student learning 
(Devlin, 2006). Thus, qualitative methods, such as thematic analysis, are preferred when 
studying individuals’ beliefs (e.g., Bergsten et al., 2015; Drakes, 2012; Faulkner & Herman, 
2016; Frejd & Bergsten, 2018; Holmberg & Bernhard, 2017). However, a balance must be 
struck; overly broad characterizations lose descriptive power necessary for explaining 
individuals’ instructional choices. Consequently, studying the relationship between teacher 
beliefs and instructor practices necessitates a fine grain size to allow for local causal models that 
are consistent within participants and their circumstances (Speer, 2008).  

Theoretical-Methodological Lens 
 We adopt the stance that a person’s identity, personality, desires, and importantly, their 

beliefs are embedded within the stories they tell, an assumption of narrative inquiry (Loong, 
2019). Following Pajares (1993), we take beliefs to be knowledge a person holds that is either 
descriptive, evaluative, prescriptive, or any combination of the three (Pajares, 1993). Following 
Polkinghorn (1995), we constitute a story as a narrative preserving “the complexity of human 
action with its interrelationship of temporal sequence, human motivation, chance happenings, 
and changing interpersonal and environmental contexts.” (p.4). Thus, a story is more than a 
description of what happened at a point in time, it has also an underlying structure connecting the 
events through choices made by the storyteller. The structure, or plot, aids in identifying how 
individuals connect the events in their lives as precursors for and consequences of the choices 
they make. This orientation affords a view of STEM instructors’ stories as embedding their 
beliefs about the role of modeling in the education of STEM majors, as follows:  

 A STEM instructor has beliefs about modeling (even if they do not use the label 
“modeling”), which include beliefs about modeling in all contexts including their research, their 
industry jobs (if applicable), and their teaching. An instructor can have an experience, a notable 
instance salient to them, that may affect their beliefs about modeling. Consequently, analyzing 
the stories STEM instructors tell about their experiences with modeling in their personal-
professional lives and their teaching will afford inferences as to the nature of those beliefs. 
Descriptive-analytic accounts of the instructors’ stories also articulate explanatory mechanisms 
for how individuals came to hold their beliefs, data useful waypoint for future research.  
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Methods 
We conducted this study at a large southwestern university in the USA. We selected 

instructors from fields that the NSF (NCSES, 2014) has identified as STEM fields yet are not 
typically represented in modeling or mathematics education literature: economics, anthropology, 
geography, and psychology. After identifying majors associated with these fields, we recruited 
instructors who had recently taught courses for those majors. The population has two advantages 
for addressing the research questions. First, STEM instructors who are professionals are more 
likely to have experience with modeling in their undergraduate studies, graduate studies, research 
work, or industry job. Second, insisting the STEM instructor primarily teaches STEM majors 
increases the likelihood that the instructor has considered the role of modeling in the education 
of majors in their classes.  In total, the 10 participants of this study were: two economists, two 
anthropologists, three geographers, and three psychologists.  

Data were collected through episodic narrative interviews (Mueller, 2019) conducted over 
zoom. The episodic narrative interview is a fusion of three other qualitative methods: semi-
structured interviews, narrative interviews, and episodic interviews. This approach enabled 
cross-participant comparisons, provided a strategy for looking at experience-focused narratives 
which allowed for the participants’ views of salience to be prioritized, and allowed for 
exploration of the target phenomenon (Mueller, 2019).  In this way, experience-centered 
narratives of research and teaching were prioritized while also targeting the scope of each 
interview toward instructors’ beliefs about modeling, generally, and in the classroom through 
their own salient experiences. Then the salient-to-participants aspects could be inferred and 
compared across cases and to the extant literature.  

In episodic interviews, the interviewer typically starts the interview by asking a question that 
defines the phenomenon of interest, and then follows with a question to elicit an episode from 
the interviewee’s everyday life in where the phenomenon of interest would take place. The 
interviewer then asks questions about the phenomenon of interest within that evoked situation 
(e.g., Romaioli & Contarello, 2019). Similarly, episodic narrative interviews are constructed to 
funnel the interviewee’s story towards the phenomenon of interest (Mueller, 2019). We 
organized the interview around two sub-stories, building one cohesive story to state and explains 
the instructors’ beliefs about modeling in their classrooms. The first sub-story focused on the 
professor experiences with modeling outside of teaching. The second sub-story focused on the 
instructors’ experiences with modeling while teaching.  

We used analytic techniques informed by narrative inquiry (rather than the more common 
coding techniques that are appropriate when a pertinent, codified framework exists, which our 
review of the literature did not reveal). We began with thematic analysis to identify major 
themes, understood to be patterns within the data (Braun & Clarke, 2006) salient to the 
participants. We then used emplotment analysis (Polkinghorn, 1995) to probe and then 
reconstruct the data. Questions such as how does modeling fit into your class as a whole? and 
How does modeling fit into your students’ major (course)work? elicited responses that intimated 
the instructors’ beliefs about the role modeling in the education of STEM majors.  

The data were analyzed at the latent level (Braun & Clarke, 2006) with the grain size of 
analysis being finished thoughts. A finished thought was one or multiple statements about the 
same topic. A new thought was started when there is a turn in topic of the interview. As informed 
by Braun and Clarke (2006), the analysis was conducted in five phases: becoming familiar with 
the data, generating initial codes, looking for themes within the initial codes, reviewing those 
themes for refinement, and defining the themes. This analysis produced a list of major themes 

24th Annual Conference on Research in Undergraduate Mathematics Education 466



that emerged from the data when focusing on the participants conceptions of modeling in and out 
of the classroom and curricula. The results of this part of analysis gave a group of codes 
providing overarching ideas about modeling in and out of the classroom. For example, one idea 
about modeling was modeling is statistical, and an idea about modeling in the classroom was 
students are not mathematically prepared for it. To personalize a participant’s particular set of 
beliefs, we identified each participants’ core beliefs, where core beliefs are the set of beliefs held 
by a person that was showcased through multiple instances. This was done to get a nuanced view 
of the participants beliefs, as a participant could have answered an interview question with a 
polite response and not necessarily their truly held beliefs. This was done by using the Max 
Maps feature in the qualitative data software MAXQA. The feature visualized the highest-
frequency codes present in a single interview. Codes were transferred to the participants’ maps 
only when they were at least partially constitutive of a core belief.  

To account for important background information, significant experiences with modeling in 
daily life, and significant experiences with modeling while teaching, we used ideas from 
emplotment from narrative analysis to construct individual narratives about each professor. The 
first step in emplotment is to identify the end goal. In this analysis, the end goal was each 
participants’ set of core beliefs. The next step is to hypothesize a plot which is then tested against 
the data. This is done by asking questions like: do any of the major events conflict with this 
current plot structure? If a major event from the data does conflict, then changes are made to the 
plot to accommodate and the new revised plot is tested against the data again. While testing the 
plot against the data, one must ask if each event is pertinent. If an event is not pertinent to the 
plot, that data is culled from the story in a process called narrative smoothing (Kaasila, 2007; 
Polkinghorn, 1995). This process is undertaken until a cogent plot emerges that considers all of 
the pertinent events, this forms the plot outline. This plot outline is then filled in with data 
elements to form the final coherent story (Kaasila, 2007; Polkinghorn, 1995). 

This analysis produced individualized narratives for each participant that tie their core beliefs 
with important background, and significant experiences with modeling both in daily life and 
while teaching. It is important to note that the beliefs about modeling in and out of the classroom 
highlighted by this analysis are not the only ideas about modeling held by the participants in this 
study. For the purpose of this paper, we present the most salient beliefs about modeling in and 
out of the classroom at the time of the interview. This helps with identifying beliefs that are most 
important to the participants but does not identify all the beliefs the instructor might hold. After 
the construction of these individual narratives, we reanalyzed the narratives, again using 
techniques from thematic analysis (Braun & Clarke, 2006), to look for overlap between the 
themes we identified and those present in the literature. This analysis allowed us to make broad-
stroke comparisons of our participants’ beliefs and the existing literature.  

Results 
The literature suggests there are differing ideas about the role of mathematics, and thus of 

modeling, in science, technology, and engineering (STE) courses. The two big ideas about the 
role of mathematics in STE is that of inseparability (STE cannot be taught without also teaching 
mathematics) and isolation (STE and mathematics are taught in their own courses). Both 
sentiments were also found among the core beliefs of our participants. Karter, an economist, and 
River, a geologist, were insistent that mathematics was inseparable from their courses’ content. 
For example, Karter said  

Karter: I tell them [his students] economics and mathematics are inseparable. So, there is no 
way. If you come to this class and you think that I'm just going to chit chat and not write 
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an equation or any numbers on the board, and then you better drop out of this classroom. 
I let them know, they know what is coming ahead of them. But, then I motivate them.  

In contrast, Phoenix, an anthropologist, talked about mathematics as a tool to be taught in 
another class.  

Phoenix: Well, I'm very glad to have them [economics majors] in my class, but it's really for 
the economics program to teach them that part of it [the mathematics behind some 
theories]. Like I said, anthropology is a high-level discipline meaning it's at a high level 
of abstraction. If they want to do economics, they really do need to learn, they need 
economic analysis classes. But that's not my job. That's not my job and truthfully, I'm not 
really qualified to do it.  

We do not claim that differing conceptions of STEM integration originate in the participants’ 
fields. The contrasts seem to be rooted in the instructors’ salient experiences with mathematics 
and modeling in their professional lives and teaching. For example, Karter told a compelling 
story of studying mathematics in his youth and explicated many examples of using modeling in 
his career. In contrast, Phoenix did not share any salient experiences with modeling in his 
research or while teaching.  

Gandhi-Lee et al. (2015) and Faulkner and Herman (2016) showcased how STEM instructors 
believed that mathematics proficiency was important for students in STEM fields. More 
specifically, Gandhi-Lee et al. (2015)’s participants talked about mathematics as a roadblock, 
and how algebra was the minimum for mathematical preparedness. Almost all participants (9 of 
10) in our study explicitly voiced a similar sentiment, that mathematical preparedness of students 
was a roadblock to implementing modeling tasks in the classroom. One anthropologist, called 
Phoenix, did not hold this core belief, did not communicate salient examples of using modeling 
or any mathematics in the classroom. While almost all voiced level of mathematical 
preparedness as a roadblock to including modeling in their courses, we observed a level of 
idiosyncrasy in how each participant operationalized preparedness. Predictably, some instructors 
operationalized mathematical preparedness to mean algebraic fluency or a certain level of 
proficiency in calculus. For example, Quinn, a psychologist, explained that he had to scale back 
the difficulty of the mathematical analysis in an in-class experiment. 

Quinn: I, over the years, I still do that in the class but I've kind of scaled back the complexity 
and difficulty of the exercises. I've found that I just needed to and the main reason… 
Where a math problem that I thought should be pretty simple if you've just taken college 
level, I don't know, algebra for example. It wasn't anything too crazy that I gave the 
students. Even then some students had difficulty with it. Not all, some students did just 
great but I felt that I needed to kind of scale back the complexity of those problems over 
time but still using them.  

Haven, a psychologist, suggested that mathematical preparedness meant fluency with 
graphical representations and their meanings. She recounted a conversation with one of her 
graduate students working on a research problem. The student was having difficulty labeling the 
scatter plot that would illustrate their hypothesis for statistical testing. While recalling this 
conversation, Haven lamented that students, more generally, were not skilled with graphical 
representations. She explained that graphical expressions were most important for her students 
because specifics about what statistical models to run could be looked up later.  

Haven: If you can't figure out what's the label on our scatter plot, if you can't figure out what 
the Y and X axis should be labeled, take a step back and think through what you're doing. 
I guess that's not an issue of what buttons to click or what the test is called. I was like, "I 
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can tell you what the test is called." Once you get that to me, that's the work I want to see 
you doing is thinking through graphically how to depict the data. Once you do that work, 
then you also know what to Google.  

Both psychologists teach STEM majors in a psychology department. However, their 
operationalization of mathematical preparedness was quite different. This is partially due to the 
courses they teach. Quinn’s classes tend to lend themselves more to mathematical exploration 
than Haven’s. This might also be partially due to their differing backgrounds. Both have 
experience studying mathematics as students themselves, but the types of mathematics are vastly 
different. Haven spoke mostly of studying mathematics in her statistics and methods courses, 
while Quinn studied mathematics and physics at both the undergraduate and graduate level. 
Overall, there was broad consensus that mathematics was a roadblock for students, and that this 
roadblock was common in their fields. However, when delving deeper, there was no clear pattern 
of what was meant by mathematical preparedness based on discipline.   

Discussion 
 Our study builds on and extends a synthesis of literature describing beliefs held by STEM 

instructors about modeling in the classroom through documenting perspectives of instructors 
from STEM fields not typically included in the literature. This work was necessary as more 
fields on the periphery of STEM come to rely more heavily on mathematics and statistics.  

 Overall, there were sentiments held in common about modeling in and out of the classroom 
shared among these non-traditional STEM instructors and traditional STEM instructors, such as 
mathematics knowledge being a barrier to implementing modeling in the classroom. However, 
what is meant as mathematical preparedness seems to be idiosyncratic to the individual professor 
and partially dependent upon the specific course content. This implies that discipline-level 
analysis may not be an appropriate grain size for investigating the mathematical barriers students 
face. We do not claim that there are no differences according to discipline, but we observed 
differences within disciplines indicating that using discipline to differentiate participants may be 
too broad. Future research endeavors to uncover instructors’ beliefs and practices about 
modeling in STEM may wish to be cautious when constituting discipline as an independent 
variable because idiosyncrasies of the instructor’s beliefs imply idiosyncrasy of instructional 
decisions. Additionally, beliefs about mathematics’ role in instruction was also as mixed as it 
was in Traditional-Stem focused literature (Holmberg & Bernhard, 2017; Kaiser, 2017; Nathan 
et al., 2010). Because instructor’s beliefs influence their pedagogical decisions, this differing 
view of mathematics’ role in instruction must be accounted for in future work on persuading 
STEM instructors modeling is a doable and worthwhile endeavor, but we do not recommend 
accounting for it at a discipline-based level.  
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The Influence of Graduate Student Instructors’ Mathematical Meanings for Teaching Sine 

Function on their Enacted Teaching Practices 
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Prior research suggests that a teacher’s mathematical meanings for an idea constitute their 

image of the mathematics they teach (Thompson, 2013), their pedagogical decisions, and the 

language they use to cultivate similar images in students’ thinking (Thompson & Thompson, 

1996). As such, it seems reasonable that there is a link between teachers’ meanings for the ideas 

they teach and their instruction, including teachers’ instructional goals, choice of tasks, and the 

questions they pose to students. This report presents results from clinical interviews that 

illustrate the relationship between graduate student instructors’ (GSIs) mathematical meanings 

for teaching (MMT) and their enacted teaching practices. More specifically, these results reveal 

and contrast two GSIs’: i) meanings for sine function; ii) goals for students’ learning of sine 

function; and iii) tasks for supporting students’ learning of sine function. 

Keywords: Mathematical Meanings for Teaching, Teaching Practices, Quantitative Reasoning 

Introduction and Review of Literature 

In 2016, Thompson proposed using the construct Mathematical Meanings for Teaching 

(MMT) rather than Mathematical Knowledge for Teaching (MKT) to make explicit that he was 

using the word knowledge in the sense of Piaget. To Piaget, knowledge and meaning were 

largely synonymous and grounded in the knower’s schemes (Montangero & Maurice-Naville, 

1997). Thompson also proposed using the word meaning since a meaning is attributed to a 

person and knowledge is less personal and disjoint from the knower (Thompson, 2016). 

Investigations into teachers’ meanings (Carlson & Bas Ader, 2019; Thompson, 2013) rather than 

teachers’ declarative knowledge (Schilling, Blunk, & Hill, 2007) provide math educators with 

insight into teachers’ image of the mathematics they teach and intend students to learn and 

ultimately what they might say or do while teaching (Thompson, 2013; 2016). The affordances 

of attending to teachers’ meanings vs. teachers’ knowledge may be best described through an 

example. If two teachers, Teacher A and Teacher B, were asked to determine the value of sin θ in 

Figure 1 below, both Teacher A and Teacher B may correctly answer 𝑠𝑖𝑛 (𝜃) =
1.78

3.96
= 0.45, 

indicating that they know how to answer this question. However, this correct answer provides 

math educators with limited insight into the thinking the teachers used to determine their answers 

and how the teachers might convey this idea to students. 

 
Figure 1. The value of Sine 

Instead, a shift in focus to what teachers mean by 𝑠𝑖𝑛 (𝜃)  =  0.45 can uncover what a 

teacher might say or do in a classroom, and thus, the meaning that a student might construct. For 

instance, imagine that Teacher A uses the commonly applied trig ratios (SOHCAHTOA) to 

answer this question. With this way of thinking, Teacher A might convey a meaning to students 

that 𝑠𝑖𝑛 (𝜃) is not a function of θ, rather a ratio of sides of a triangle. In contrast, imagine that 

24th Annual Conference on Research in Undergraduate Mathematics Education 472



Teacher B’s meaning for 𝑠𝑖𝑛 (𝜃) is a function grounded in quantitative reasoning (see next 

section for example). Regardless of the nature of a teacher’s meaning for sine function, they will 

likely have the goal to convey their meanings to students (Silverman & Thompson, 2008). As 

such, uncovering teachers’ meanings for an idea is essential for understanding a teacher’s 

instructional goals. Although attention to teachers' mathematical meanings for teaching has been 

repeatedly called for (Byerley & Thompson, 2017; Musgrave & Carlson, 2016, Thompson, 2013, 

2016, Tallman & Frank, 2018), few researchers have investigated teachers’ MMT. This report 

addresses the following question: In what ways does a teacher’s MMT sine function influence 

their choice of tasks to be used in class and their goals for students’ learning? 

Theoretical Perspective 

Quantitative reasoning- the analysis of a situation into a quantitative structure, a network of 

quantities and quantitative relationships (Thompson, 1990, 1993, 2011), has been identified as a 

critical way of thinking that supports students’ development of coherent meanings for angle 

measure and trigonometric functions (Hertel & Cullen, 2011; Moore, 2012, 2014; Tallman, 

2015; Thompson, 2008). A quantity is a quality of something that one has conceived as 

admitting some measurement process (Thompson, 1990). Quantities exist in the mind of the 

individual conceiving them. To comprehend a quantity, an individual’s conception of 

“something” must be elaborated to the point that they “see” characteristics of the object that are 

admissible to the process of quantification (ibid). Quantification is a process of direct or indirect 

measurement which results in a value. A quantity’s value is the numerical result of a 

quantification process. Numerical operations are used to calculate a quantity’s value; however, 

numerical operations differ from quantitative operations. A quantitative operation is the 

conception of two quantities taken to produce a new quantity. Put another way, a quantitative 

operation is a description of how quantities come to exist (ibid). 

A Quantitative Meaning for Sine Function 

Moore (2014) described a productive meaning for sine grounded in quantitative reasoning. 

Namely, sine is a function that relates the measure of an angle (measured from the 3 o’clock 

position) and the vertical distance (of the terminal point of the angle) above the horizontal 

diameter measured in radii. As such, the value of sin(𝜃) represents how many times as large the 

vertical distance of a terminal point above the horizontal diameter is compared to the circle’s 

radius when the terminal ray of an angle is rotated to the point that is 𝜃 radians counterclockwise 

from the 3 o’clock position. Thus, for example (see Figure 2), the point (0.8, 𝑠𝑖𝑛 (0.8) ≈ 0.717) 

conveys that for an arc length of 0.8 radii counterclockwise from the 3 o’clock position on any 

circle, the terminal point’s corresponding vertical distance above the circle’s horizontal diameter 

is 𝑠𝑖𝑛 (0.8) or 0.717 times as large as that circle’s radius.  

 

Figure 2. Relating unit circle trig to right triangle trig- Adapted from the Pathways Precalculus Curriculum 
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A coherent meaning for the sine function involves coordinating two varying quantities’ 

values while attending to how the quantities’ values vary in tandem. Moreover, when a student 

or teacher attends to how the value of sin (𝜃) changes as the angle measure, 𝜃 varies, they are 

engaging in covariational reasoning (Carlson et al., 2002). A coherent meaning for trigonometric 

functions also includes robust connections between right triangle trigonometry and unit circle 

trigonometry. The commonly used trigonometric ratios (SOHCAHTOA) can be viewed as using 

the hypotenuse (radius) as a unit of measure for the legs of the right triangle. As one example, 

the output of the sine function can be viewed as the length of the triangle’s leg opposite the angle 

whose measure is input to the sine function, measured in units of the hypotenuse (see Figure 2). 

Methods: Subjects, Data Collection, and Analysis 

This study’s purpose is twofold (1) to explore GSIs’ mathematical meanings for teaching 

sine and cosine function and (2) to investigate the impact of GSIs’ MMT on their enacted 

teaching practices. To accomplish this goal, the first author conducted clinical interviews 

(Clement, 2000) with two GSIs who were in their first year of teaching using research-based 

Pathways Precalculus curriculum materials at a large, public, PhD-granting university in the 

United States. The purpose of the clinical interview was to investigate the instructors’ MMT sine 

function, including each instructor’s goals for students’ learning, images of key ways of thinking 

they wanted students to engage in, and choice of tasks. Before the first clinical interview, each 

GSI was asked to select a task they considered vital to discuss with students during their sine and 

cosine function lesson. During the interview, each participant was asked to describe the task they 

selected, their goals for student learning (relative to a lesson they would be teaching on sine and 

cosine function), and their image of a coherent understanding for sine and cosine function. Each 

GSI was also asked to respond to two mathematical tasks designed to elicit their meanings for 

sine and cosine function.   

The analysis of the clinical interviews occurred in three phases, as described in Simon 

(2019). The first phase involved listening to the interviews to generate hypotheses about the 

teachers’ ways of thinking. The second phase involved a more in-depth, line-by-line conceptual 

analysis (Thompson, 2008) to describe aspects of the teachers’ MMT for sine and cosine. The 

third and final phase of this analysis involved identifying themes in the conceptual analysis to 

characterize the teachers’ MMT sine and cosine.  

Results 

During the first clinical interview, the participants, Razi and Wilma, were asked to complete 

two tasks designed to elicit their meanings for sine and cosine. The estimation task shown in 

Figure 3 was posed to the GSIs to reveal the nature of their meanings for sine and cosine 

function and the degree to which they engage in and value quantitative reasoning. To answer the 

estimation task, the instructors needed to reason about the meaning of the measure of sin (𝜃) and 

cos (𝜃) rather than solely performing a computation. As described earlier, one conceptualizes the 

sine function quantitatively if she conceives of sine as a function that relates the measure of an 

angle (measured from the 3 o’clock position) and the relative size of the vertical distance of the 

terminal point to the radius of the circle. 

Wilma’s response to the estimation task revealed her meaning for the sine function as the 

“terminal point’s vertical distance above the horizontal diameter, measured in radius lengths.” 

She estimated the value of sine function for the angle measure 𝜃 to be 0.8 (see Figure 3). Wilma 
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also expressed that 0.8 means that the “orange line is 0.8 times as big as a radius” or “the orange 

line is 80% of a radius”. 

 During class you ask students to estimate the value of sin(θ) and cos(θ) using the 

 diagram below. Gabriel, a student in your class, tells you that it isn’t possible to answer 

 the question since there are no numbers. Is this student correct? How will you respond? 

 

 
 Figure 3. Wilma’s solution to the estimation task 

I interpret Wilma’s meaning for sine to be grounded in quantitative reasoning. When 

describing the sine function, she initially identified the attribute of a circle to measure (the 

vertical distance of the terminal point above the horizontal diameter), a unit of measure (radius 

length), and a measurement process (multiplicatively comparing the length of the orange line to 

the length of the radius). Wilma’s description of 0.8 as a measure of how many times as large the 

orange line is compared to the radius indicates that her meaning for sine entails a quantitative 

operation. Wilma’s approach of multiplicatively comparing the vertical distance of the terminal 

point above the horizontal diameter to the radius resulted in a measure of a quantity in an 

identified unit (the terminal point’s vertical distance measured in radius lengths). Moreover, 

Wilma’s response to the Estimation Task suggests that she conceptualized the value of the sine 

function for a particular angle measure as the relative size of the terminal point’s vertical 

distance above the horizontal diameter to the length of the circle’s radius.  

In contrast to Wilma’s stable meaning, Razi expressed multiple meanings for the sine 

function throughout the clinical interview. As one example, Razi described the value of the sine 

function as a y-coordinate on the unit circle, the proportion of the y-coordinate to the radius, 

opposite over hypotenuse, and a height. In his response to the estimation task, Razi expressed the 

former two meanings and described the value of sine as "the length of the y-coordinate in terms 

of the radius length".  

At first glance, one might interpret Razi’s description of sine as “the length of the y-

coordinate in terms of the radius length” as conveying a quantitative meaning for the sine 

function. However, a closer analysis of Razi’s response to the estimation task suggests that Razi 

was not thinking about measuring quantities. In particular, Razi described his estimate for the 

value of sine as “a proportion” and “the ratio between the y-coordinate on the circle and the 

radius”. In this instance, I interpreted Razi’s meaning for the value of the sine function to be that 

of a numerical operation since Razi appeared to be comparing numerical values rather than the 

relative size of two quantities. The interview continued by the researcher, prompting him to 

explain how the idea of proportion was related to his meaning for sine function. 

Razi: Oh, I get tongue tied in this all the time, I mean the amount that I have to multiply the 

denominator by in order to get the numerator. 

Interviewer: Okay, so is that what you want students to think about when you say 

proportion? 

Razi: Another thing I like to think about is how many times does the denominator go into the 

numerator. That’s the classic. Umm… yeah, those two ones. Those are the ones I rely on. 
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Interviewer: So, do you want students to think of sine as the number you have to multiply the 

denominator by to get the numerator? 

Razi: No, no, I said this earlier I want students to think that sine of an angle corresponds to a 

place on the unit circle. Which at the same time could be considered a proportion, but I 

think the unit circle with the x-y coordinate is more important. 

Razi’s description in the above excerpt provides further evidence that he conceptualized the 

value of sine as the result of a numerical operation. Razi’s description for proportion focused on 

multiplicatively comparing the numerator and denominator of a ratio. However, it does not 

appear as though Razi conceptualized the values in the numerator and denominator as measures 

of quantities. Moreover, Razi’s expression “that sine of an angle corresponds to a place on the 

unit circle” indicates that Razi was thinking about the value of sine as a location rather than a 

measure of vertical distance. 

Razi and Wilma’s Goals for Students’ Learning of Sine and Cosine 

During the interview, Wilma repeatedly stated that she wanted her students to think about 

quantities and how the quantities values changed together when reasoning about the sine and 

cosine functions. Wilma’s goals for students’ learning, as expressed during the first interview 

(see excerpt below) represent the ways of thinking she wanted her students to use. Wilma 

expressed that she wanted her students to think about how the vertical distance (blue vertical line 

in Figure 4) and horizontal distance (red horizontal line in Figure 4) of the terminal point varies 

as the measure of the angle “swept out” varies. 

Wilma: So, I think…goals for students learning umm I guess like I talked about before, 

imagining the covariation of the angle measure and either the horizontal distance or 

vertical distance. Like, as the angle measure changes, or as that terminal ray sweeps out 

more of the circle, how do the blue line and the red line change? Umm… because I feel 

like that is a really helpful way to think about sine and cosine. 

 
Figure 4. Wilma’s Description of Sine and Cosine 

When prompted to explain her goals for her students’ learning, Wilma conveyed that she 

wanted her students to conceptualize the values of the sine and cosine functions as measures of 

distance. It is noteworthy that her goal for student thinking aligned with the thinking she used to 

respond to the estimation task. Similarly, Razi’s description of his goals for students’ learning 

(see excerpt below) was consistent with the meanings he expressed for the sine function. Razi 

explained that he wanted students to think of the value of the sine function as a coordinate on the 

unit circle. 

Razi: I want them to think that like if I input an angle that it corresponds to or if I have a 

angle on the unit circle or something that it should have an x,y coordinate in the plane 

that it corresponds to. And if I want to find out information about any of those points the 

cosine and sine function are pretty good tools. 

Interviewer: Okay 
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Razi: I honestly think that if they understand that, that the angle corresponds to a point on the 

circle then that’s the pretty big one. 

Razi and Wilma’s Choice of Tasks to be Used During a Lesson on Sine and Cosine 

During the first clinical interview, each instructor was asked to present a task they felt was 

most important to discuss with students during an upcoming lesson on sine and cosine function. 

This section displays the tasks and discusses the meaning the instructors intended students to 

construct while interacting with the task(s). During the interview, Wilma presented the Bug on a 

Fan task (see Table 1) appearing in the Pathways Precalculus curriculum materials (Carlson & 

Oehrtman, 2010). The first part of the task prompted students to identify quantities that vary as 

the fan blade rotates. The prompt was followed by a request to explain how the bug’s vertical 

distance above the horizontal diameter changes as the bug travels through various positions 

around the circle (i.e., from the 3 o’clock position to the 12 o’clock position). This task 

concludes with the students creating a graph to illustrate how the bug’s vertical distance above 

the horizontal diameter covaries with the measure of the angle, 𝜃, swept out by the bug’s fan 

blade. 
Table 1. A table showing Wilma and Razi’s Chosen Task(s) 

A bug sits on the end of 

a fan blade as the blade 

rotates in the 

counterclockwise 

direction. The bug is 2.6 

feet from the center of 

the fan and is located at 

the 3 o’clock position as 

the blade begins to turn. 

 

Kristin boards a Ferris wheel 

at the 3 o’clock position and 

rides the Ferris wheel for one 

full rotation (as shown 

below). The radius of the 

Ferris wheel is 14 meters. Let 

s represent the varying 

number of meters Kristin has 

traveled along the circular 

path sine the ride started. 

 

The vertex of the angle below 

is at (0,0) and a circle with a 

radius of r units is centered at 

the vertex of the angle. The 

angle has a measure of 𝜃 

radians. What are the 

coordinates of the terminal 

point, (x, y)? (Your answers 

should be expressions in 

terms of r and 𝜃. 

 
Wilma’s Chosen Task Razi’s Chosen Task 1 Razi’s Chosen Task 2 

Wilma’s discussion of the Bug on a Fan task primarily focused on her plan to ask students to 

attend to the quantities involved in the task and how the quantities vary together. Wilma 

expressed that she wanted to provide students with ample time to think about what quantities 

they could measure to track the bug’s position on the fan. During the interview, Wilma also 

expressed that she intended to use an animation during her discussion of this task to provide 

students with an image of how the bug’s vertical distance above the horizontal diameter changes 

as the bug travels around the fan.  

The tasks Razi chose are also shown in Table 1. The Ferris Wheel task also included three 

parts. In the first part, students were asked to write an expression in terms of s to represent the 

number of radians Kristin swept out since the ride started. The remaining two parts of the Ferris 

Wheel task asked students to write an expression in terms of s to represent Kristin’s height above 

the center of the Ferris wheel measured in radius lengths or meters, respectively. It is noteworthy 
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that the Ferris Wheel Task included an animation of Kristin traveling along the Ferris Wheel; 

however, Razi did not express a plan to use the animation in class. 

Razi’s descriptions of the two tasks he intended to use in class (shown in Table 1) were 

primarily focused on describing how to determine the coordinates of a point on a circle and 

converting the values of those points when the radius of the circle was not one. It is noteworthy 

that Razi initially expressed that the value of the sine function represents a height in radians. 

However, when Razi was asked about the critical ways of thinking he wanted his students to 

engage in, he expressed a goal for students to “use the sine function to get information about 

wherever I am on the circle”. 

Discussion and Conclusions 

The results of this study illustrate the influence of an instructor’s MMT sine function on their 

goals for student learning and choice of tasks. During the clinical interview, Razi and Wilma 

expressed different meanings for the sine function. Wilma described the sine function as a 

function that relates angle measures to the vertical distance of a ray’s terminal point above the 

horizontal diameter measured in radii. Wilma also expressed that the value of sine represents 

how many times as large the vertical distance of the terminal point is to the radius. When 

reasoning about the sine function, Wilma also consistently described how the vertical distance of 

the terminal point varied as the measure of the angle of interest varied. As such, it appears as 

though Wilma’s meaning for sine function is grounded in quantitative and covariational 

reasoning.  

In contrast, Razi consistently expressed that sine was a function that relates an angle measure 

from the unit circle to the y-coordinate on the unit circle. Although Razi consistently expressed 

that sin(θ) gives a y-coordinate on the unit circle, he was inconsistent in describing what the y-

coordinate represents. For instance, when the radius of a circle is one, Razi expressed that the 

value of the sine function is the y-coordinate on the unit circle. However, when discussing tasks 

in which the radius of a circle was not one, Razi described the value of sine as representing (1) a 

ratio between the y-coordinate of the terminal point and the radius of the circle, or (2) “opposite 

over hypotenuse” (in reference to the commonly applied right triangle trig ratios 

SOHCAHTOA). It is noteworthy that Razi’s meaning for sine included trigonometric ratios; 

however, he consistently referred to the sine function as relating an angle measure on the unit 

circle and a location in the cartesian plane (y-coordinate on the unit circle). 

Both instructors’ meanings for sine function were germane to the tasks they chose to discuss 

in class, their image of the meanings they wanted to elicit from students when discussing the 

tasks, and their goals for student learning. For example, when Wilma was prompted to describe 

her goals for students’ learning, she expressed that she wanted students to think about quantities 

and how the vertical distance of the terminal point varied as the measure of an angle varied. In 

alignment with her goals and meanings for the sine function, the tasks Wilma used when 

teaching prompted students to engage in these ways of thinking. Similarly, Razi expressed that 

he wanted students to think about the sine function as a function that inputs an angle measure on 

the unit circle and outputs the y-coordinate on a circle. In alignment with his goals and meanings 

for the sine function, Razi selected tasks that prompted students to determine the location of a 

point on a circle. The influence of both teachers’ meanings on their goals for student learning 

and choice of tasks is not surprising as it supports other’s findings that teachers’ MMT includes 

their image of how an idea is learned and tasks they envision for achieving this learning 

(Silverman & Thompson, 2008; Tallman 2015; Thompson 2013; 2016). 
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Active-Learning Strategies That Suggest Ingresses for Math Graduate Student Instructors’ Use 

of Student-Centered Teaching 
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In the context of a peer-mentoring program for graduate student instructors (GSIs) who were 

teaching during their first year as instructor of record, we examined what active-learning (AL) 

strategies could provide ingresses for mathematics GSIs’ use of student-centered teaching. 

Mentors observed Novices approximately six times during their first-year teaching, collected 

observation data including a standardized list of AL strategies, and conducted critical feedback 

conversations with each Novice after every observation. Data includes the number of AL 

strategies observed and discussed as well as pre- and post-survey data from Novices and 

Mentors on their perceived use of AL strategies. We found that Novice GSIs were primarily 

observed implementing Quick Polls, Think-Pair-Share, and Conceptually-Based Teacher 

Questioning. Each of these strategies were utilized by Novices differently throughout their first-

year teaching. Our results provide insights for PD facilitators who work with GSIs, and for 

novice collegiate mathematics instructors. 

Keywords: Active-Learning Strategies, Mathematics Graduate Student Instructors, Student-

Centered Teaching 
 

In collegiate mathematics classrooms, the instructor and their students interact around 

mathematics content in a fast-paced, (not entirely) predictable manner. The instructor is expected 

to make quick decisions about facilitating mathematics discussions, when/how to ask and answer 

questions, and how to utilize the class time to support students’ progress. In this setting, our 

intention is to explore ways to provide professional development (PD) and support for novice 

college mathematics instructors encouraging their effective use of active-learning (AL) 

strategies. However, implementing AL strategies can seem overwhelming, especially for novice 

instructors during teaching. Thus, we endeavor to help a specific subset of novice college 

mathematics instructors, namely graduate student instructors (GSIs)1, to efficiently navigate their 

use of instructional practices. This often-overlooked subset of instructors is a vital workforce, 

tasked with teaching hundreds of thousands of undergraduate students in foundational 

mathematics courses each year (Belnap & Allred, 2009). College mathematics instructors often 

have their first experience teaching as instructors of record as GSIs, with little or no pedagogical 

education, while being provided minimal support structures (Speer et al., 2005). As such, in our 

project, PD facilitators2 work with peer mentors to help GSIs learn when and how to use AL 

strategies among other best teaching practices for collegiate mathematics teaching. It can be 

challenging as AL strategies often include teaching approaches that GSIs may have little-to-no 

experience utilizing or observing in their own learning experiences. Focusing on this subset of 

best teaching practices, we consider, what specific AL strategies provide natural paths for GSIs 

to improve their undergraduate mathematics teaching? Moreover, how can we cultivate AL 

strategies with GSIs for their future teaching?  

 
1 GSI is used instead of TA (Teaching Assistant) because GSI specifically means graduate students who 

are instructors of record: responsible for every day classroom decisions and assessments in math courses. 
2 Mathematics faculty members who support GSIs in their learning to teach. 
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To summarize, we provide the following analogy. Since GSIs may need to learn about AL 

strategies in tandem with their first teaching assignment, we envision the vast collection of 

possible AL strategies that one could choose from as contained in an AL Sea. A role of a coach 

(e.g., a PD facilitator or mentor), in this analogy, is to help GSIs get comfortable kayaking 

tributaries so they can access the AL Sea, navigating it effectively. To access the AL Sea, GSIs 

could begin by kayaking along tributaries aligned with a specific AL strategy. Coaches could 

guide GSIs in navigating these tributaries, if they knew which of the tributaries may be most 

accessible to a majority of GSIs (e.g., easy to implement, not a steep learning curve, potentially 

applicable to a range of undergraduate mathematics learning environments or goals). GSIs 

kayaking along a tributary can begin getting comfortable in the water of AL strategies while 

getting closer to accessing a wealth of strategies in the AL Sea. We propose that these tributaries 

(specific AL strategies) could serve as natural ingresses for GSIs to begin navigating their AL 

strategy journey, leading to the potential use of additional strategies and more effective use of 

current strategies that foster improved student learning outcomes. Throughout this paper we 

consider, “what specific AL strategies provide natural ingresses for GSIs into the use of student-

centered teaching?” 

To identify the natural AL ingresses, we implemented a peer-mentoring program for novice 

GSIs3, hereafter referred to as Novices, at three universities over five-years (Cite Grants Here). 

Through this peer-mentoring program, Mentor GSIs4, hereafter referred to as Mentors, guided 

Novices during their first year teaching undergraduate mathematics and statistics courses. From 

observation data, follow up conversations between the Novice and Mentor after each 

observation, and survey data, we address our overarching research question, what specific AL 

strategies provided natural ingresses into student-centered teaching for Novices? To unpack this 

overarching question, we considered the following subquestions: 

RQ1: What AL strategies did Mentors frequently observe and discuss with Novices? 

RQ2: What type and frequency of AL strategies did Novices and Mentors report using? 

To answer RQ1, we identified which AL strategies Mentors documented when observing 

Novices’ classes, and which AL strategies Mentors discussed with Novices during post-

observation conversations. We also analyzed the times during the academic year when AL 

strategies were observed and discussed. To answer RQ2, we analyzed responses to a self-

reported survey from Novices and Mentors about their use of AL strategies. 

Related Literature 

Active Learning in Research 

One foundational axiom across most AL definitions is that an AL strategy actively engages 

students in the content (Freeman, 2014; Anthony, 1996, Laursen & Rasmussen, 2019). 

Contextualizing the verb “engage” is where definitions diverge. Fundamentally, how a teacher 

engages students is content-specific, but most AL definitions lean heavily on contrasting AL 

with traditional lecture (Laursen et al., 2014; Freeman, 2014). In other words, the antithesis of 

engagement has been articulated as traditional lecture. Although it can be helpful to unpack non-

examples when defining something, as Dewey (1938) argued one cannot define an educational 

approach simply by saying it is not another. Kyriacou and Marshall (1989) argued that there are 

two independent dimensions of AL (1) learning activities promoting collaboration and autonomy 

 
3 Defined as mathematics and statistics GSIs in their first or second year of teaching. 
4 Defined as GSIs who taught for at least 2yrs, and who were trained to mentor Novices. 
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and (2) meaningful learning experience for each student. Further, they said that the structure of 

an activity does not guarantee mental engagement: An AL “activity can foster either an active 

mental experience or a passive mental experience, just as a passive learning activity can foster 

either an active mental experience by passive or active learning activities, must be necessarily 

constructive (p. 350).” Thus, generating activities alone is not sufficient to avoid the passive 

mental experience that is often assumed to be the major shortcoming of the traditional lecture. 

Context of Study 

We consider the PD facilitator to be a seasoned kayaker who teaches newer but not 

completely novice kayakers (Mentors), who then teach the Novices, providing them with the 

information and support needed for beginners to learn the necessary basic knowledge and skills 

to enable them to navigate their craft safely and effectively. We implemented and facilitated the 

peer-mentoring program at three universities to support Novices and generate communities of 

practice (Wenger et al., 2002) among the GSIs. The peer-mentoring program prepared 

experienced GSIs to become Mentors through a semester-long professional development with 

the PD Facilitator that met for 15hrs over the course of a semester (Yee et al., 2021).  

Mentors used a GSI observation protocol (GSIOP: Rogers et al., 2019) to observe each 

Novice teach (3x per semester) in foundational mathematics course (e.g., PreCalculus, 

Quantitative Reasoning, Introductory Statistics, and Calculus); Novices were mentored for two 

semesters. The GSIOP informed Mentors’ feedback for the Novices (Yee et al., 2021) and 

focused Mentors’ attention on AL strategies for the Novices to consider integrating into their 

teaching practices. Mentors submitted the number and types of AL strategies they observed, and 

those that they discussed at follow-up meetings with their Novices. In addition, Mentors and 

Novices responded to beginning- and end-of-academic-year surveys that included items 

regarding their perceptions of their use of AL strategies (14 strategies compiled by the Eberly 

Center from Carnegie Mellon University & higher education researchers; Faust & Paulson, 1998; 

Meyers & Jones, 1993). We provided both Mentors and Novices with guidance and examples of 

each of the 14 AL strategies (named in Table 1). Some terms were adjusted to make them more 

understandable to mathematics GSIs who may not be familiar with the educational vernacular. 

For example, instead of listing a broad category like “inquiry-based learning” we focused 

specifically on “conceptually-based teacher questioning” (C-BTQ) because it operationalized a 

classroom practice that Mentors could observe. It is important to note here that teacher 

questioning alone is not an AL strategy (Faust & Paulson, 1998). We included C-BTQ so that 

Mentors could concretely see examples of inquiry-based learning used with C-BTQ, where 

Novices elicited responses from all students.  

Data Collection & Analysis 

Data from two years at three universities included 293 total observations. We coded the 

observations by the semester in which they took place (first or second), and the timing in which 

they took place (beginning, middle, or end of semester). An AL strategy was observed if Mentors 

noticed it being used during the class period. Frequency of a single AL strategy used in a single 

class was not recorded (frequency of use did not imply improved quality). An AL strategy was 

discussed if the Mentor and Novice talked about the method during 1-on-1 follow-up 

conversations (e.g., ways to improve the use of an observed AL strategy or suggestions for future 

AL strategy use). To answer RQ2, we considered Novices’ and Mentors’ self-perceived use of 

the AL strategies and the observation data. We analyzed pre-post survey data where we asked 

three questions about the AL strategies: (1) their familiarity with the strategies, (2) how useful 
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they perceived them to be, and (3) how often they used them in their own teaching. We report on 

our analysis of responses to the third survey question, triangulating our RQ1 findings. 

Findings  

Across the 293 observations, Mentors noted 278 instances of AL strategies in use. In 127 

cases (43.3%) no AL strategies were observed. In the remaining 166 cases, Mentors observed an 

average of 1.63 AL strategies.  Mentors and Novices discussed potential use of AL strategies 403 

times, an average of about 1.4 strategies per follow-up meeting. Our findings elevate three of the 

fourteen AL Strategies studied, described as follows: Think-Pair-Share—students answer a 

question individually, synthesize a joint solution with a partner, and then share/discuss it with the 

class. Quick Poll—all students vote in response to a question. Votes can be tallied using 

technology or quickly by counting. C-BTQ—GSIs’ questions are used in tandem with tasks for 

students to investigate, discover and/or apply concepts for themselves.  

RQ1: Observed and Discussed AL Strategies  

Table 1. Observed and Discussed AL strategies Descriptive Statistics   

AL Strategy  

Number 

Observed  

Percent 

Observed  

Number 

Discussed  Percent Discussed  

Observed to 

Discussed Ratio 

   C-BTQ  68  24.46%  51  12.66%  1.3333  

   Quick Poll  64  23.02%  116  28.78%  0.5517  

   Think-Pair-Share  45  16.19%  108  26.80%  0.4167  

   Peer Review  20  7.19%  16  3.97%  1.2500  

   Self-Assessment Quiz  16  5.76%  18  4.47%  0.8889  

   Set It Up  16  5.76%  24  5.96%  0.6667  

   Brainstorming  14  5.04%  29  7.20%  0.4828  

   Minute Paper  9  3.24%  8  1.99%  1.1250  

   Jigsaw  2  0.72%  5  1.24%  0.4000  

   Muddiest Point  1  0.36%  17  4.22%  0.0588  

   Concept Maps  1  0.36%  7  1.74%  0.1429  

   Case Studies  1  0.36%  1  0.25%  1.0000  

Other Strategies 21 7.55% 3 0.74% 7.0000 

Note: Other Strategies means places where Mentors wrote in a Strategy that was not on our original list. Also, 

two AL Strategies (Application Card & Role Playing) from our original list were not observed or discussed. 
 

Table 1 presents the number of times each AL strategy was observed and discussed, arranged 

in descending order of observed. We note that such limited use of 80% of the 14 strategies may 

indicate further training is needed for such techniques or that they are not natural ingresses for 

novices implementing AL strategies in collegiate math courses. To compare the data, we created 

a percentage from each strategy observed (or discussed) out of the total number of strategies 

observed (or discussed) for that period of mentoring. The right-most column (Table 1) shows 

some AL strategies were observed more often than they were discussed (ratio > 1), while others 

were discussed more often than observed (ratio < 1). The Muddiest Point strategy was observed 

only once but discussed 17 times (ratio of 0.0588), suggesting it may be a more difficult strategy 

for Novices to implement without further guidance. In a more even ratio, we see Minute Papers 

were observed being used 9 times and discussed 8 times (ratio of 1.125) and C-BTQ was 
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observed four times to every three times it was discussed (ratio of 1.3333). Recall, C-BTQ 

required more than teacher questioning, but conceptual questions engaging students in a task. 
 

The three most frequently observed AL strategies (C-BTQ 24.46%, Quick Poll 23.02%, 

Think-Pair-Share 16.19%) were the same three most frequently discussed (Quick Poll 28.78%, 

Think-Pair-Share 26.80%, C-BTQ 12.66%). They were not in the same order, but there is a 55% 

drop in use for the fourth most-observed strategy, Peer Review, (7.19%) and a 43% drop in use 

for fourth highest discussed strategy, Brainstorming (7.20%). Hence, the three observed and 

discussed AL strategies form a cluster and are separated noticeably from the remaining AL 

strategies. These results suggest the top three observed and discussed AL strategies require 

further analysis as they are likely to be viable ingresses for Novices. Based on these findings, we 

wondered if there was a connection between those methods discussed by Mentors after an initial 

observation and those observed subsequently. To investigate this latter possibility, we analyzed 

relationships between the discussion of these three strategies and their use in observations.  
 

 
Figure 1: Top three Active Learning strategies by percent of time frame's method 

For each of the strategies, we divided the data by when in the semesters the observations 

were conducted. We then computed the percentage of instances where the strategies 

were observed or discussed (Figure 1). We did not expect that discussed strategies would be 

implemented in a subsequent observation because there were weeks between subsequent 

observations during which time different learning objectives and instructional goals would also 

affect the Novices’ choices of strategies. We were curious if there would be an increased 

likelihood that Novices would use strategies that had been discussed by their Mentors.  

Looking across time (Figure 1), Quick Poll and Think-Pair-Share had discussed percentages 

consistently higher than observed. Think-Pair-Share had the largest differential between 

discussed and observed percentages at the beginning of first semester, while Quick Poll had the 

largest difference between observed and discussed percentages at the start of second semester. 

However, C-BTQ had observed percentages greater than discussed most semesters with the 
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largest difference at the end of second semester, where C-BTQ observed percentage continued to 

increase. Thus, Think-Pair-Share had the greatest percentile difference with discussed greater 

than observed at the beginning of first semester, Quick Poll had the greatest percentile difference 

with discussed greater than observed at the beginning of second semester, and C-BTQ had the 

greatest percentile difference with observed greater than discussed at the end of second semester. 

RQ2: AL Strategies and Survey Data  

Of the 66 Novices and 16 Mentors who participated over 2 years, survey response rates were 

56% and 100% from Novices and Mentors, respectively. These GSIs indicated their use of AL 

strategies by selecting Never, 1-2 times per semester, 3-6 times per semester, 7-12 times per 

semester, and Almost Every Class Session. We classified regular use if a GSI selected 7-12 

times per semester or Almost Every Class Session (use of a strategy 7 or more times per 

semester translated to an average of at least once per two-week period). We defined the most 

regularly used AL strategies as those used at least once every two weeks by at least 50% of the 

respondents. Because we asked GSIs to indicate how frequently they used each of AL strategy, 

we compiled their responses to consider which strategies they reported using most often. This 

data supplements the observation data by capturing semester-long data. Table 2 shows which AL 

strategies at least 50% of the respondents said they used at least once every two weeks (regular 

use) and Mentors’ Pre-Survey responses were comparable to Novices’ Post-Survey responses.  
   

Table 2. AL Strategies Novices and Mentors Cited Using Regularly 

Novices’ Pre-

Survey  

Novices’ Post- & 

Mentors’ Pre-Survey 

Mentors Post-Survey  

1. Think-Pair-Share  

2. Quick Poll  

1. C-BTQ 

2. Quick Poll  

3. Think-Pair-Share  

1. Quick Poll  

2. C-BTQ 

3. Set It Up 

4. Think-Pair-Share  

5. Brainstorming 

6. Muddiest Point 

7. Self-Assessment 

Quiz  

8. Peer Review 
 

We note that 50% or more of Mentors said they regularly used eight AL strategies, a four-

fold increase from Novices’ pre-survey responses. Table 2 also shows 50% or more of beginning 

Novices said they regularly used only two AL strategies (Think-Pair-Share, Quick Poll). By the 

end of their first-year teaching, Novices cited three strategies (adding C-BTQ). These three AL 

strategies were also the most frequently observed and discussed (Quick Poll, Think-Pair-Share, 

C-BTQ, Table 3). Thus, the pre-post survey findings (Table 2) corroborate the most frequented 

AL strategies observed and discussed by the Mentors (Table 1).  

Discussion 

Table 3. Summary of Findings for AL Ingresses for Novices GSIs 

We identified and triangulated three AL strategies (Quick Poll, Think-Pair-Share, and C-BTQ) 

to answer our over-arching question, what specific AL strategies provided natural ingresses for 

AL 

Ingress  
Observed: 

Discussed (Table 1)  
AL Self-Report  
(Table 2)  

Observed AL Trends  
(Figure 1)  

Discussed AL Trends  

(Figure 1)  

Quick 

Poll  
0.5517   
(More discussed)  

Novices reported 

using it right away 
Initially observed often, 

and dipped down until 

middle of 2nd semester 

Initially, consistently 

~30%; highest in middle 

of 2nd semester 

Think-

Pair-

Share  

0.4167  
(More discussed) 

Novices reported 

using it right away 
Consistently observed 

through both semesters  
Discussed at beginning of 

each semester; decreased 

from there  

C-BTQ  1.3333   
(More observed) 

Reported used more 

often 2nd semester 
Nearly doubled observed 

use by mid 2nd semester 
Not often discussed until 

middle of 2nd semester 

24th Annual Conference on Research in Undergraduate Mathematics Education 486



   

 

   

 

GSIs into student-centered teaching? Our results provide a path for PD facilitators who work 

with GSIs, and for novice collegiate mathematics instructors. In the context of a peer-mentoring 

program utilizing regular observations and post-observation feedback (Rogers et al., 2019; Yee 

et al., 2021), we found that Novices were primarily observed implementing Quick Polls, Think-

Pair-Share, and C-BTQ. Each of these strategies were utilized by Novices differently throughout 

their first-year teaching (as summarized in Table 3).  

Implications  

Our results build upon prior work when examining instructors’ use of Muddiest Point 

Simpson-Beck (2011) argued that studying only one AL strategy may yield misleading results. In 

our study the Muddiest Point was observed only once but recommended 17 times. We interpret 

this result to mean that the Muddiest Point may not be a viable ingress for these Novices. 

Moreover, Angelo, and Cross (1993) argued AL strategies need to appeal to your intuition, 

should not be a burden, and provide benefits to you and your students, aligning with the role of 

Novices’ natural ingresses. Among the 14 AL strategies we trained Mentors to observe and 

discuss, three rose to the top, and each AL strategy had unique characteristics in its observed and 

discussed use by Mentors (Table 3), suggesting that future studies could be designed examine 

longitudinal use of these three strategies and potential connections to student-learning outcomes. 

One strategy, C-BTQ provided insights into a specific timeframe we should expect for its use 

to burgeon. Unlike Quick Poll and Think-Pair-Share, the ability to implement C-BTQ is likely a 

reflection of teaching skill and experience, rather than a teaching technique. C-BTQ requires a 

deeper understanding of the curriculum and pedagogical content knowledge (Shulman, 1986). To 

know what significant questions to pose (and how) for discovery and task-oriented learning, the 

instructor must be anticipating what significant topics are coming up. Thus, it was not surprising 

that the use of C-BTQ was often observed more in Novices’ second semester teaching. This 

result could imply that PD programs interested in increasing collegiate mathematics instructors’ 

use of C-BTQ may need to plan for more than one semester to support Novices’ PD. 

Conclusion 

Initially, we asked how can PD providers cultivate AL strategies with GSIs for future 

teaching? We found one method that demonstrated growth in frequently observed and discussed 

AL strategies was providing time and ongoing PD via peer mentoring during that first critical 

year of teaching. Due to the variety of intentions and resources for mathematics departmental 

programs to educate current and future GSIs, there is inequity in PD opportunities because 

novice GSIs do not have equal access to the pedagogical support for using “best practices” as 

listed within the Instructional Practices Guide (MAA, 2018). Combating this inequity, we 

examined what natural ingresses Novices can first navigate with the support of a peer mentor to 

gain access to the larger set of AL strategies (the AL Sea). Of the three ingresses we identified, 

how and when they are used by Novices varies and so our findings provide guidance within each 

ingress differently. Ideally, these ingresses will provide a means for GSIs to access and have 

positive experiences using AL strategies, resulting in student-centered instruction to foster GSIs’ 

long-term PD. 
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Using Concept Images as a Framework for the Concept of Confidence Intervals 

 

 Kristen E. Roland Jennifer J. Kaplan 

 Appalachian State University Middle Tennessee State University 

Both the American Psychological Association (APA) and American Statistical Association (ASA) 

recommend that researchers move toward reporting interval estimates, such as confidence 

intervals. While previous literature in psychology and statistics education has documented many 

non-normative conceptions about confidence intervals, little is known about how individuals 

construct knowledge of confidence intervals nor what constitutes robust understanding of the 

concept of confidence intervals. This paper defines a formal concept image for the concept of a 

confidence interval. The formal concept image is based on the underlying statistical theory for 

deriving a confidence interval. The statistical theory is followed by a presentation of a formal 

concept image for confidence intervals and the interpretation of the interval and its level. The 

paper concludes with a brief statement of the affordances and limitations of the formal concept 

image. 

Keywords: Statistics, Confidence Intervals, Concept Image 

While a number of misconception studies1 inform statistics education research about what 

individuals can communicate about interpretations and meanings of confidence intervals, little is 

known about how individuals construct their knowledge of confidence intervals. For example, 

previous studies have explored the knowledge retained about interpretations of confidence 

intervals (e.g., Belia et al., 2005; Crooks, 2014; Crooks et al., 2019; Fidler, 2005), interpretations 

of confidence intervals by learners (e.g., Andrade et al., 2014; Andrade & Fernández, 2016; 

Fidler, 2005; Grant & Nathan, 2008; Henriques, 2016; Kalinowski et al., 2018), and aids for 

instruction of confidence intervals (e.g., Bertie & Farrington, 2003; Gordon & Gordon, 2020; 

Hagtvedt et al., 2008). These studies included a diverse group of students (pre-service teachers, 

psychology undergraduate and graduate students, and general population undergraduate students) 

at different levels of statistical experience, with the aim of identifying common misconceptions 

subjects had about confidence intervals, but little work had been done to understand how these 

misconceptions form. As a result, there is no existing theoretical framework describing the 

required knowledge and understanding for a well-developed and connected understanding of 

confidence intervals – including how to interpret the necessary components. This paper describes 

a framework, in the form of a formal concept image, that can be used to elicit and study the 

conceptual knowledge of confidence intervals and uncover, from a cognitive perspective, the 

concepts and connections individuals have developed around the concept of confidence intervals. 

Theoretical Perspective 

This paper defines a formal concept image for the concept of a confidence interval based on 

the underlying statistical theory for deriving a confidence interval, and the interpretation of the 

interval and its level. A concept image is defined as the complete cognitive structure associated 

with a concept, including all mental pictures and associated properties and processes (Tall & 

Vinner, 1981, p. 152). This definition resulted from the difficulty in “[distinguishing] between 

 
1 The authors prefer the words conception or resource to misconception. The authors use the word misconception to 

reflect the intentions and meanings of the original studies cited. 
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the mathematical concepts as formally defined and the cognitive processes by which they are 

conceived” (Tall & Vinner, 1981, p. 151). In particular, Tall and Vinner discussed the difference 

between formally defined mathematical concepts (formal concept definition) and an individual’s 

definition of mathematical concepts (personal concept definition). An individual’s personal 

concept definition may deviate from a formal concept definition, and may vary because of a 

particular evoked concept image: “a portion of the concept image which is activated at a 

particular time” (Tall & Vinner, 1981, p. 152). This paper presents a formal concept image for 

the concept of CIs to be used as a foundation to analyze individuals’ personal concept images. It 

is the authors’ hope that the formal concept image defined here will be a foundational framework 

for future research.  

Statistical Theory 

The formal concept image describing the cognitive structures underlying understanding of 

confidence intervals was developed from the statistical theory for deriving confidence intervals 

and the related curricular concepts. A condensed summary of the statistical theory used as the 

basis for the formal concept image is provided in this section. Formally, confidence intervals2 are 

defined as “interval estimators, together with a measure of confidence (usually a confidence 

coefficient)” (Casella & Berger, 2002, p. 419). In statistics, an estimator is a function, 

𝑇(𝑥1, 𝑥2…𝑥𝑛), of a random variable used to estimate an unknown value of a parameter, . In the 

case of a point estimator, this is represented by a single function of a random variable from a yet-

to-be-collected sample. In the case of an interval estimator, this is constructed through two 

functions of a sample, 𝐿(𝑥1, … , 𝑥𝑛) and 𝑈(𝑥1, … , 𝑥𝑛), that satisfy 𝐿(𝒙) ≤ 𝑈(𝒙), for all 𝒙 ∈ 𝒳, 

the random interval [𝐿(𝒙), 𝑈(𝒙)]. A confidence interval, however, takes the idea of an interval 

estimator one step further by defining a coverage probability, (1 − 𝛼), which is a term used for 

the probability that the random will contain the unknown value of the parameter, 

𝑃𝜃(𝜃 ∈ [𝐿(𝒙), 𝑈(𝒙)]) = (1 − 𝛼) or 𝑃([𝐿(𝒙), 𝑈(𝒙)]|𝜃) = (1 − 𝛼). The formula for the 

confidence interval estimator for a confidence interval for the population mean, , with an 

unknown population variance 𝜎2  
 �̅� ± 𝑡𝑛−1,𝛼 2⁄

∗
𝑆

√𝑛
 (1) 

is derived an example of this statistical theory. Given that certain conditions are met, Equation 1 

is derived starting with the pivotal quantity, T, which allows the researcher to model the 

probabilities associated with the estimators (�̅�, the sample mean, and s, the sample standard 

deviation) with known distributions not determined by either of the unknown parameters ( and 

𝜎2): 

 𝑇 =
�̅�−𝜇

𝑆 √𝑛⁄
~𝑡𝑛−1 (2) 

Using the t-distribution, find the endpoints of the region of the distribution that would satisfy the 

specified coverage probability (1 - ): 

 𝑃 (−𝑡𝛼
2⁄ ,𝑛−1 < 𝑇 < 𝑡𝛼

2⁄ ,𝑛−1) = 1 − 𝛼 (3) 

Substituting Equation 2 into Equation 3 and solving for 𝜇, the confidence interval estimator is 

derived in a way that ensures, probabilistically, the desired coverage probability is achieved:  

 𝑃 (�̅� − 𝑡𝛼
2⁄ ,𝑛−1 ∗

𝑆
√𝑛
⁄ < 𝜇 < �̅� + 𝑡𝛼

2⁄ ,𝑛−1 ∗
𝑆
√𝑛
⁄ ) = 1 − 𝛼 (4) 

 
2 The theory of confidence intervals discussed from the frequentist perspective, referring to the belief that 

probabilities represent long-run frequencies of repeated random experiments. 
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Thus, Equation 1 is derived from functions of random variables: meaning Equation 1 

represents a random interval. 

When using Equation 1 in practice, however, the researcher has already collected (or is 

planning to collect) a sample. Once a sample has been collected, Equation 1 no longer represents 

a random interval because �̅� and s are no longer estimators. Instead, �̅� and s are point estimates 

as they are now a realized value of a function of a random variable used to estimate the unknown 

value of the parameter, 𝜇. Since �̅� and s are now fixed values from an actualized sample from a 

random variable, the probability statement represented by Equation 4 is no longer true because 

there are no longer any random values to which probability can be assigned. The difference in an 

estimate and estimator determines how and why a confidence interval is interpreted.  

As an estimate, Equation 4 is either true or false: the value of the parameter, 𝜇, is either in the 

interval (probability of occurrence is 1) or is not in the interval (probability of occurrence is 0). 

Since the value of the parameter is unknown, the individual calculating the interval cannot know 

whether the interval is one of the 100(1 − 𝛼)% that captures the value of the parameter or one 

of the 100(𝛼)% that does not capture the value of the parameter. Therefore, there was 

confidence level probability that the value of the parameter would be within the random interval, 

but there is confidence level confidence that the value of the parameter is within the actualized 

interval. Confidence refers to the probability associated with the random process – not the 

probability that the value of unknown parameter is within the actualized interval. Thus, in 

communicating the meanings of a constructed confidence interval, interpretations need to be 

clear about the difference between the process that was used to derive the estimator for the 

confidence interval and the estimate that has been calculated. 

Formal Concept Image for Confidence Intervals 

The theoretical underpinnings of a confidence interval presented above require learners to 

simultaneously coordinate meanings and ways of thinking across multiple curricular concepts in 

statistics. This section contains a description of a formal concept image for confidence intervals 

along with two of the “sub”-formal concept images that make up the larger formal concept image 

for confidence intervals. The goal is to provide a formal framework based on necessary cognitive 

structures from which individuals’ personal concept definitions of the concept of confidence 

interval, of the interpretation of a confidence interval, and of the interpretation of a confidence 

level can be understood. This formal concept image is not intended to serve as a learning 

progression for concept of confidence intervals, rather as a guide to understand current 

knowledge based on prior learning, rather than a framework to analyze current learning.  

Hypothesized concept clusters 

It is hypothesized that individuals need to coordinate many statistics curricular concepts3 

when they construct their personal concept image for the concept of confidence intervals. 

Specifically, the model contains five concept clusters representing the pre-requisite and co-

requisite knowledge needed for a robust understanding of the concept of confidence intervals: 1) 

parameter/statistic, 2) random process, 3) estimator/estimate, 4) sampling distribution, and 5) 

coverage probability. Requisite curricular concepts for statistical inference start with 

understanding the underlying purpose of inference: to use information provided in a sample to 

learn more about a characteristic or attribute of a population. The information typically derived 

 
3 The following descriptions are a brief summary of the curricular concepts within each concept cluster, for those 

seeking formal definitions of each of the statistics terms see AUTHOR (2020). 
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from a sample is summarized into a statistic, which should be an unbiased estimator of the 

unknown value of a parameter (a summarization of information gathered from a population).  

Parameter/Statistic. Within this concept cluster, individuals need to understand the 

difference between the unknown value of the parameter, which is a summarization of a 

characteristic of the population, and the actualized value of the statistic, which is the point 

estimate calculated from a collected sample. Before an individual can begin to formalize 

conceptions of parameter and statistic, the individual must understand the difference between a 

population and a sample. Furthermore, the individual needs to coordinate information about 1) 

the population to which results can be generalized, 2) a sample, 3) a statistic, and 4) a parameter. 

Thus, the statistics curricular concepts within this cluster are: (a) observational unit, (b) datum, 

(c) variable, (d) types of variables, (e) population, (f) parameter, (g) sample, and (h) statistic. 

Random Process. The concept cluster, Random Process, encompasses understanding the 

random process. A random process is a process that can be repeated many times under identical 

conditions for which any one instance is unknown, but for which the proportion of times a 

particular outcome occurs in the long run can be predicted (Tintle et al., 2021). This process 

helps explain the variability that exists in the population and sample data and can aid in 

developing a model for the long-run probabilities of particular outcomes. Understanding the 

difference between the assignment of probability to the model of the outcomes of a random 

variable generated from a random process and the lack of probability associated with collected 

data (a particular instance of the random process) is pivotal in understanding the idea of random 

process. The purpose of this concept cluster is to describe the ideas of probability and random 

processes (models designed to explain a real-world situation) that underlie the field of statistics. 

The following curricular concepts may require simultaneous or prior development of the 

Parameter/Statistic concept cluster: (a) random variable, (b) random process, (c) outcome, (d) 

relative frequency, (e) independence, (f) probability, and (g) sampling methods. 

Estimator/Estimate. Understanding the interpretation of an actualized confidence interval is 

reliant on distinguishing between random variables and fixed (but unknown) values, which forms 

the basis of the concept cluster, Estimator/Estimate. A common conception of a confidence 

interval is the belief that the confidence level is the probability that the fixed, but unknown, 

actual value of the parameter is between the endpoints of the interval. This interpretation implies 

the random interval is a fixed interval and the fixed actual value of the parameter a random value 

of the parameter. Both are incorrect. The endpoints of the interval are random values based on 

the random statistic, which is based on the model of a random process from real-world situations. 

The actual value of the parameter is not known to the researcher, which explains the reason for 

inference, but the parameter of interest is defined. Understanding the distinction between the 

fixed unknown parameter and the random endpoints of the interval is not trivial and difficulties 

with this distinction may exist due to incorrect or incomplete knowledge of probability and 

random processes. Thus, the concepts being coordinated within this concept cluster are: (a) 

random variable, (b) actualized variable, (c) estimator, and (d) estimate. In addition to these 

formal concept image-specific concepts, an individual needs to coordinate the Parameter/Statistic 

and Random Process concept clusters. 

Sampling Distribution. The Sampling Distribution concept cluster encompasses many 

concepts including the sampling distribution. The connection between confidence intervals and 

sampling distributions is very complex. The sampling distribution models the natural variability 

in statistics from samples generated by repeated sampling from a population (or repeated 

instances of a random process). The natural variability of the random statistics can be modeled 
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by either theoretically-defined or simulated models, both of which provide a structure to 

understand how statistics generated by repeated sampling vary with respect to the associated 

parameter. This model forms the basis of the theoretical derivation of the formulas for 

confidence intervals. The Sampling Distribution concept cluster may incorporate: 1) properties 

of distributions (measures of center, measures of variability, shape, probability); 2) differences 

between distributions of populations, distributions of sample, and distributions of statistics 

(sampling distributions); and 3) characteristics of sampling variability (i.e. between-sample 

variability). Thus, the concepts that are being coordinated within this concept cluster are: (a) 

mean, (b) variability, (c) standard deviation, (d) distribution of a population and a sample, (e) 

theoretical and empirical probability distributions, (f) shape of a distribution, (g) sampling 

distribution of a statistic (including the mean, standard deviation, and standard error of the 

sampling distribution for a statistic), and (h) sample size. 

Coverage probability. The Coverage Probability concept cluster is the foundation of the 

theory of a confidence interval. Within this concept cluster, the individual is hypothesized to be 

coordinating the ideas of Parameter/Statistic, Sampling Distribution, Random Process, and 

Estimator/Estimate but specifically within the context of a confidence interval. The Coverage 

Probability concept cluster is hypothesized to contain the ideas of confidence level, the 

confidence interval estimator, and the confidence interval estimate. Therefore, the specific 

concepts that an individual may be coordinating are: (a) confidence interval estimator, (b) 

coverage probability, (c) confidence level, and (d) confidence interval estimate. 

Formal Concept Image for Confidence Intervals 

The formal concept image for confidence intervals appears to have sub-formal concept 

images (gray diamonds, Figure 1), only two of which are described in this paper: interpretation 

of a confidence interval and interpretation of a confidence level. The curricular concept clusters 

discussed previously combine in different ways to create the sub-formal concept images (tan 

hexagons, Figure 1). Note that some of the curricular clusters are hypothesized to be dependent 

on each other, but those connections are not shown in the figure. 

 
Figure 1: Formal Concept Image for the concept of Confidence Intervals 
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Formal Concept Image for Interpreting a Confidence Interval. The commonly accepted 

interpretation of the confidence interval4 is: “We are 100(1-)% confident that the calculated 

interval contains the true value of the parameter.” Confident in this sentence implies that the user 

is confident in the random process of sampling and calculating confidence intervals rather than 

the probability that any one actualized confidence interval contained the value of the unknown 

parameter. An individual needs to coordinate several concept clusters in order to unpack the 

meaning of this sentence: 

• 𝟏𝟎𝟎(𝟏− 𝜶)% refers to the coverage probability that the interval estimator will capture 

the unknown value of the parameter of interest and requires the Coverage Probability 

concept cluster. 

• Confident refers to the random process and coverage probability used to derive the 

confidence interval and requires the Random Process and Coverage Probability concept 

clusters. 

• Parameter refers to a fixed, but unknown, value that summarizes a variable of interest 

(or attribute) within a population and is contained within the Parameter/Statistic concept 

clusters. 

• Between is used to denote the actual value of the parameter is fixed and the interval 

“captured” the unknown value of the parameter not that the unknown value of the 

parameter was moving (see for more information: Callaert, 2007; Foster, 2014). This 

requires understanding the Estimator/Estimate and Random Process concept clusters. 

• (Lower limit) and (Upper limit) are possible values for the unknown value of the 

parameter which requires the Parameter/Statistic and Estimator/Estimate concept clusters. 

Formal Concept Image for Interpreting a Confidence Level. Traditionally, the 

interpretation of the confidence level is “Approximately 100(1 − 𝛼)% of all samples of size n 

from a given population are expected to produce 100(1 − 𝛼)% confidence intervals that will 

contain the actual value of the parameter of interest.” Like the interpretation of a confidence 

interval, this interpretation is hiding several concepts that need to be unpacked: 

• Approximately refers to the long-run probability derived from an estimated sampling 

distribution and the difference between theoretical and empirical distributions. This 

requires the concept clusters Sampling Distribution and Random Process. 

• 𝟏𝟎𝟎(𝟏− 𝜶)% refers to the Coverage Probability concept cluster of the given confidence 

interval. 

• All samples of size n from a given population requires the concept clusters 

Parameter/Statistic, Sampling Distribution, and Random Process to understand the ideas 

of gathering all of the samples possible from a population. 

• Will produce refers to the Random Process and Estimator/Estimate concept clusters, 

which allow an individual to understand the difference between an estimator and an 

estimate.  

 
4 The interpretation of a confidence interval is not without its own set of controversies. Morey et al. (2016) argued 

that the frequentist assumptions of traditional (Neyman) confidence intervals do not lend themselves to 

interpretation once an actualized interval has been created. While Morey et al. identified a difficult aspect of the 

interpretation of a confidence interval, the general consensus of the textbooks sampled appeared to side with some 

form of the interpretation: “We are 100(1-)% confident that the calculated interval contains the true value of the 

parameter” (e.g., Agresti et al., 2017; De Veaux et al., 2018; Larson & Farber, 2019; McClave & Sincich, 2017; 

Triola & Iossi, 2018). 
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• 𝟏𝟎𝟎(𝟏− 𝜶)% confidence intervals refers to the specific confidence interval of a given 

confidence level that had been constructed from each sample. This requires the Random 

Process and Estimator/Estimate concept clusters.  

• Will contain refers to the ideas that the actual value of the parameter is fixed, and the 

interval is random. This requires the Estimator/Estimate concept cluster. 

• Parameter of interest requires the Parameter/Statistic concept cluster. 

The final part of the sentence that requires unpacking is the “100(1 − 𝛼)% of all samples … 

100(1 − 𝛼)% confidence intervals.” These two percentages should be the same for the sentence 

to hold true. It is still a true sentence if the first “100(1 − 𝛼)%” was larger than the second 

“100(1 − 𝛼)%”: “approximately 98% of all samples of size n from a given population will 

construct 95% confidence intervals that will contain the actual value of the parameter of 

interest.” In this case, the researcher has overestimated the proportion of samples (98% instead of 

95%) that should produce 95% confidence intervals that contain the actual value of the parameter 

of interest.  

Affordances and Limitations 

The formal concept image presented in this paper provided a theoretical framework for a 

foundational study into the cognitive structures required for a robust understanding of confidence 

intervals, allowing the analysis of the study data to be grounded in statistical content. A 

limitation of this formal concept image as an analytic framework was its specificity and focus on 

curricular concepts. The results from the study demonstrated that student personal concept 

images about interpretations of confidence interval and confidence level are more connected than 

defined through the formal concept image. Future iterations of a formal concept image for the 

concept of confidence intervals may need to demonstrate connections among the concept clusters 

prior to the development of “sub”-formal concept images for the interpretation of the confidence 

interval and the interpretation of the confidence level. Further research into applying the formal 

concept image to individuals’ personal concept image for the concept of confidence intervals and 

into how individuals’ personal concept images affect their knowledge of a confidence interval, 

interpretation of a confidence interval, and interpretation of a confidence level. 
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The Implications of the Difference Between Estimators and Estimates in the Meaning of 

Confidence Intervals: Brody and the Jamie’s Colleague Task 
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 Appalachian State University Middle Tennessee State University 

Recently professional associations have called for increased use of confidence intervals in 

reporting inferential results. Little is known, however, about the knowledge structures necessary 

for a robust understanding of confidence intervals (CIs). This paper presents a case that 

demonstrates an important connection within a formal concept image for the concept of CIs. 

Understanding the interpretations of CIs and confidence levels (C-Lvls) requires understanding 

the probabilistic difference in a CI estimator and a CI estimate. Several tasks were developed to 

explore participants’ demonstrated knowledge of this difference and its connection to the 

interpretations of CIs and C-Lvls. The case provides evidence of 1) the necessity of a 

hypothesized curricular concept cluster including the concepts of CI estimator/ estimate and 2) 

the importance of its connection to both the interpretation of CIs and C-Lvls. 

Keywords: Statistics, Confidence Intervals, Confidence Levels, Estimator/Estimate, Case Study 

News reporting of data and models reached unprecedented levels in 2020 as the world battled 

the coronavirus pandemic. Making sense of this information requires global citizens to be 

knowledgeable consumers of data and results of statistical inference. The two main frequentist1 

statistical inference techniques are hypothesis testing and confidence intervals (CIs). Of these, 

hypothesis testing and in particular, the use of the p-value cutoff, p < 0.05 for publication of 

scientific results, is ubiquitous (Hubbard, 2016, 2019). Both the American Statistical Association 

and the American Psychological Association, however, have issued statements cautioning 

against the over-reliance of p-values in scientific research (see: Wasserstein & Lazar, 2016; 

Wilkinson, 1999) and strongly suggest reporting point and interval estimates and/or effect sizes 

accompanied by a measure of uncertainty, such as a standard error or interval (Wasserstein et al., 

2019). In fact, scientists already use interval estimates in reporting of modeling: for example, in 

predictions about the path and intensity of a storm or the spread of a disease or a contaminant 

spilled into a water source. 

Communicating and understanding the uncertainty associated with CIs requires a robust 

understanding of the interpretation of 1. the CI and 2. the confidence level (C-Lvl). Complicating 

matters, the idea of CIs is a highly complex set of concepts within statistical inference requiring 

an individual to understand fine details in the derivation of the confidence interval procedure. In 

essence, there is a fundamental difference between an estimator, a function of a random variable 

used to estimate an unknown value of a parameter, and an estimate, a realized value of a function 

of a random variable (i.e. a value calculated from a collected sample) used to estimate an 

unknown value of a parameter. Probabilities lie with the estimator and become fixed when an 

estimate has been calculated. This is the theoretical underpinning of the interpretation of CIs. 

The authors hypothesize that developing a deep understanding of the difference in the estimator 

and estimate, particularly with respect to CIs, will help individuals be better consumers and 

producers of statistics. This paper presents an interesting case, selected from a larger study, that 

 
1 This paper discusses only frequentist CIs. Future work should study Bayesian credible intervals and bootstrap 

percentile intervals. 
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provides evidence of the high-level of connections among concepts necessary for a robust 

understanding of CIs presented in a hypothesized concept image for the concept of CIs. In 

particular, the participant discussed in this paper was the only participant in the larger study 

(n=11) to show development of knowledge associated with differentiating between an estimator 

and an estimate.  

At present, the authors are unaware of research about students’ knowledge of the difference 

between an estimator and an estimate. Current research has explored the knowledge retained 

about interpretations of CIs (e.g., Belia et al., 2005; Crooks et al., 2019) and interpretations of 

the conclusion and p-values from hypothesis testing (see: Castro Sotos et al., 2007). These 

studies illuminated what they call misconceptions2, but little work had been done to understand 

how these conceptions form3.  

Theoretical Perspective 

The theoretical perspective and underlying framework for this case study is based in the 

development of a concept image for the concept of confidence intervals. A concept image is “the 

total cognitive structure that is associated with the concept, which includes all the mental 

pictures and associated properties and processes” (Tall & Vinner, 1981, p. 152) The construct of 

a concept image helps researchers distinguish between formally defined mathematical concepts, 

formal concept images, and a personal concept image, an individual’s interpretation and 

coordination of concepts and images, which may or may not align with the formal concept 

definition (Tall & Vinner, 1981, p. 151). Roland and Kaplan (2022) present a formal concept 

image for the concept of confidence intervals. They hypothesize that the concept of a CI requires 

a complex coordination of several “sub” concept images and statistical concept clusters. This 

formal concept image was derived from the formal statistical definitions and curricular concepts 

required to understand the formal definitions. Roland and Kaplan created statistical concept 

clusters to describe the potential clusters of statistics curricular concepts. Since this theoretical 

framework is grounded in the statistical theory, a brief review of the necessary statistical theory 

will be discussed prior to describing the concept image of the concept of confidence interval. 

Statistical Theoretical Background 

There are two typical expressions of the frequentist interpretation of the confidence level: 1) 

approximately 100(1-)% of all possible 100(1-)% CIs should capture the unknown value of 

the parameter and/or 2) prior to collecting data, the probability of a 100(1-)% CI capturing the 

value of the unknown parameter was 100(1-)%. These interpretations are fairly straightforward 

because both describe the coverage probability either in terms of long-run probability or the 

probability associated with a random sample from a random variable. The commonly accepted 

frequentist interpretation of the confidence interval4 is “We are 100(1 -)% confident that the 

calculated interval contains the true value of the parameter.” Confident in this sentence implies 

 
2 The authors prefer the words conception or resource to misconception. The authors use the word misconception to 

reflect the intentions and meanings of the original studies cited. 
3 For current literature on how learners conceptualize CIs see Andrade et al. (2014), Andrade and Fernández (2016), 

Fidler (2005), Grant and Nathan (2008), and Henriques (2016). 
4 While Morey et al. (2016) make a reasonable argument that the frequentist assumptions of traditional (Neyman) 

CIs do not lend themselves to interpretation once an actualized interval has been created, the general consensus of 

textbooks appears to include interpretations similar to that presented here (e.g., Agresti et al., 2017; De Veaux et al., 

2018; Larson & Farber, 2019; McClave & Sincich, 2017; Triola & Iossi, 2018). 
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that we are confident in the random process of sampling and calculating CIs rather than the 

probability that any one actualized CI contains the value of the unknown parameter.  

The derivation of a CI is based on the assumption of the existence of random components 

(point estimators, such as �̅� and s) and fixed, but unknown components (parameters, such as  

and ). The use of point estimators allows the researcher to leverage theoretical probability 

models to create an interval estimator (specifically, a confidence interval estimator) with random 

endpoints. The width of the interval estimator corresponds to the probability the CI estimator 

will capture the true parameter, which is called the coverage probability (1 − 𝛼). Roland and 

Kaplan (2022) provide a detailed example, a CI for the population mean () with an unknown 

population variance (𝜎2), to demonstrate this statistical theory. Summarizing the example, the 

endpoints of the region of the distribution that would satisfy the desired coverage probability (1 - 

) and solving for 𝜇, the confidence interval estimator is derived ensuring, probabilistically, the 

coverage probability:  

 𝑃 (�̅� − 𝑡𝛼
2⁄ ,𝑛−1 ∗

𝑆
√𝑛
⁄ < 𝜇 < �̅� + 𝑡𝛼

2⁄ ,𝑛−1 ∗
𝑆
√𝑛
⁄ ) = 1 − 𝛼 (1) 

Recall that �̅� and s are functions of random variables, meaning the equation represents a random 

interval with an associated coverage probability, called the confidence level (C-Lvl). Since �̅� and 

s are now considered estimates, however, the equation no longer has meaning because there are 

no random components in the equation. As an interval estimate, the statement is either true or 

false: the value of the parameter, 𝜇, is either in the interval (P(parameter) = 1) or is not in the 

interval (P(parameter) = 0). Since the value of the parameter is unknown, the individual 

calculating the interval cannot know whether the interval is one of the 100(1 − 𝛼)% that 

captures the value of the parameter or one of the 100(𝛼)% that does not capture the value of the 

parameter. Therefore, there was C-Lvl probability that the value of the parameter would be 

within the random interval, but there is C-Lvl confidence that the value of the parameter is within 

the actualized interval (the interval estimate based on the collected sample data).  

The Formal Concept Image of the Concept of Confidence Interval 

There are five statistical concept clusters (tan hexagons in Figure 1) defined in Roland and 

Kaplan (2022): 1) Parameter/Statistic, 2) Random Process, 3) Sampling Distribution, 4) 

Coverage Probability, and 5) Estimator/Estimate. Figure 1 summarizes part of the overall formal 

concept image of a confidence interval (red box), including two “sub”-concept images (gray 

diamonds): 1) interpretation of a CI and 2) interpretation of a C-Lvl. This case study explores the 

evidence for the existence of the Estimator/Estimate concept cluster, and its connection to the 

interpretations of a CI and C-Lvl. 

 

 
Figure 1: Modified Concept Image for the Concept of Confidence Intervals 
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The statistical concept cluster, Estimator/Estimate describes the statistical curricular concepts 

needed to understand the difference between the estimator and the estimate and the implications 

of the differences in the interpretation of an actualized CI and the confidence level. Thus, the 

concepts being coordinated within this concept cluster are: (a) random variable, (b) actualized 

variable, (c) estimator, and (d) estimate. To demonstrate knowledge within the Estimator/ 

Estimate concept cluster, an individual should be able to explain how the difference between the 

estimator and the estimate affects the interpretation of the CI and the interpretation of the C-Lvl. 

Using the case of Brody as an example, this paper demonstrates the connections between the 

interpretation of the CI and CL reliant on the Estimator/Estimate cluster within the formal 

concept image of the concept of confidence intervals. 

Methods 

Brody5 is an interesting case from a larger study. He, along with the other participants, were 

students at a large research-focused institution in the Southeastern part of the United States. 

Brody was a senior undergraduate dual major in statistics and theology enrolled in the statistics 

capstone course in the Fall 2019 semester, when data were collected. The senior capstone course 

for statistics majors is 3-credit year-long seminar course centered around a data-based project. 

Brody also reported he had completed most of the requirements for his degree in statistics, 

including a 2-semester mathematical statistics sequence.  

Brody engaged in three clinical interviews each of approximately one hour in length over the 

course of the semester. The first two interviews consisted of open-middle tasks (Bell & 

Burkhardt, 2002; Yeo, 2017), all with correct answers. The interviews were mostly 

conversational in nature and were designed to elicit, among other things, the conceptualizations 

participants had about the interpretation of CI and interpretation of the C-Lvl. The third 

interview piloted an activity designed to introduce students to the concept of CIs by developing 

deep connections between the C-Lvl and the derivation of CIs. The data presented in this paper 

center around the curricular concepts within the Estimator/Estimate concept cluster. When asked 

to define the word confident in the interpretation of a CI in the first interview, several 

participants explained that confident did not mean probability with a statement exhibiting the 

fundamental difference between the estimator and the estimate: there is no longer 95% 

probability, the interval either contains the parameter or it does not. Based on these statements, 

the authors created three tasks to explore the concept cluster: 

1. Task Statement 1: There is a 93% probability that the actual mean monthly rent for 

students at HTSU is within the interval �̅� ± (𝑡𝑛−1
∗ 𝑠

√𝑛
). 

2. Task Statement 2: The process used to generate confidence intervals will capture the 

actual mean monthly rent for students at HTSU approximately 93% of the time. 

3. Jamie’s Colleague: Jamie6 talked to a fellow reporter about constructing 93% confidence 

intervals. Jamie’s colleague said that prior to collecting his sample, there is a 93% 

probability that the confidence interval will capture the actual mean monthly rent of all 

HTSU students. The colleague continued the explanation by saying that once Jamie 

collected a sample, the probability of the interval ($705, $793) actually containing the 

mean monthly rent of all HTSU students is now either 0 or 1. 

 
5 a pseudonym, demographic information and preferred pronouns were not gathered at the time of the study, the use 

of the gendered pronoun is based on the researcher’s assumption of outward projection of gender 
6 In the previous task, Jamie, a recurring character in the interview, had constructed a 93% CI for the mean monthly 

rent for students at a fictional university, Hill Top State University and was found to be ($705, $793). 
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Task Statement 1 is a true statement about the CI estimator presented in a non-traditional way. 

The sentence is Equation 1 in narrative form. Task Statement 2 is a true statement about the 

interpretation of the C-Lvl, also in a non-traditional way. As it is not the typical statement used 

to interpret the C-Lvl, participants may not have seen it before. These statements set up the ideas 

summarized in the Jamie’s Colleague task. The colleague is correct in identifying that 

probability does exists prior to collecting data (discussing the CI estimator), but does not once a 

sample has been collected (discussing the CI estimate). This task describes the reason why the 

statement provided by participants in the first interview is correct. Since little was known about 

the connections students make when conceptualizing and reasoning about CIs, a generative 

research approach, defined by Clement as “generat[ing] new observation categories and new 

elements of a theoretical model in the form of descriptions of mental structures or processes that 

can explain the data” (2000, pp. 332–333) was used. Methods proposed by Powell et al. (2003), 

which are similar to grounded theory-inspired methods, were used as a guide to analyze the task-

based clinical interviews.  

Results 

In the first interview, Brody said the statement of the interpretation of a CI typically taught is 

“formulaic.” He continued his critique of this interpretation explaining the incorrect 

conceptualization people often make: understanding this sentence as reference to a probability 

that the parameter is within the CI. Brody used the explanation that the probability of the 

actualized interval either capturing (1) or not capturing (0) the actual value of the parameter to 

explain how the interpretation of the [actualized] interval does not a include probability. He saw 

the word confident as indicating a CI was used and was quite clear that confident did not mean 

probability. While this is correct, Brody was very uncomfortable with any use of the word 

“probability” with respect to interpreting the CI. Brody initially rejected Task Statement 1 as 

incorrect. When questioned about difference between whether the sample has or has not already 

been collected, Brody was able to make the distinction: 

Yes, in that if you've already collected it, then … the �̅� is no longer a random or it would 

still be a random variable, but you know the value of it. Whereas with if you haven't done 

yet, obviously, you don't know the value. 

He was, however, still uncomfortable with the use of the word probability. He continued by 

saying “You could look at probability differently on what is the probability of obtaining a sample 

monthly rent. …But I don't think it changes the probability for the actual mean monthly rent.”  

Brody was also able to articulate the interpretation of the C-Lvl clearly. He seemed to prefer 

the use of visuals with his explanations and drew many different pictures to demonstrate his 

depth of knowledge of the concept of CIs. Over the course of the first and second interviews, 

Brody drew an image that is a common display used to demonstrate the long-run proportion of 

C-Lvl% CIs that capture the parameter, similar to Figure 2a. This particular drawing was used to 

illustrate Task Statement 2. He described that 93% of the confidence intervals (the horizontal 

lines) would capture (indicated by the horizontal lines that cross the vertical line) the parameter 

(the vertical line labeled ). He continued this explanation by drawing Figure 2b. Previously in 

the interview, Brody drew Figure 2c, which visualizes the region in the theoretical sampling 

distribution where 95% of the statistics calculated from repeated sampling from the same 

population are within a given critical value (±𝑧∗in Figure 2c) of the unknown value of the 

parameter. Having already discussed Figure 2c, Brody explained:  
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I think of how we look at the distribution, we'd expect …93% [of the statistics to fall] 

within these like these like 𝑧∗ or 𝑡∗7. And we'll have a margin of error that's this long 

[drawing the line connecting the dot with the 𝑧∗]. And so 93% of the sample values will 

include whatever is at the center [pointing to the dot], right? And, obviously, 

approximately, if we do anything less than infinite sampling, and we're not going to get 

an exact representation. 

These visualizations and explanations demonstrate the interpretation of the C-Lvl, but only 

describe the long-run behavior and the lack of probability of capturing the parameter for an 

actualized CI. This imagery does not make a connection between the long-run proportion and the 

theoretical reason for its truth: the difference in the estimator (and associated coverage 

probability) and the estimate. Brody had not discussed any connection between the estimates and 

the probability associated with the estimator. Brody’s response to the inclusion of the word 

probability, as discussed above, indicates that his explanation of the interpretation of C-Lvl did 

not include knowledge of the difference between an estimator and an estimate. Rather, Brody 

seemed to hold only understanding of the long-run proportion interpretation of the C-Lvl. 

   
a b c 

Figure 2: Brody’s drawings used to explain the interpretation of a confidence level 

Brody had demonstrated his isolated knowledge about the interpretation of the CI and 

interpretation of the C-Lvl, separate from any probability implications. At the end of his 

discussion about Task Statement 1, Brody began to make connections between his interpretations 

of a CI and a C-Lvl and the idea that probability could be discussed prior to collecting a sample.  

In approaching the Jamie’s Colleague task, Brody stated, “It's actually kind of makes sense. 

And I don't know if it's just because the way I was taught, I think, is that like, instinctively you 

go, it's like, oh, like it has to be 0 or 1.” To punctuate this point, Brody said, 

So, I guess it would be true that it's not until you set those parameters [Brody’s gesture 

indicates he means the bounds of the interval, not statistical parameters] that it either is or 

it isn't. … But if we haven't taken our sample yet, there is still a chance that it could be or 

that could not be and so I think your colleagues right. I don't know. This is the most in 

depth I’ve actually explored this, I haven't really thought about it. … Because I've always 

been taught that like, it's not a probability because it's set already and that like that's true. 

… But when it's not set, I think this [referring to Jamie’s Colleague task] is correct. 

Brody acknowledged this as a new thought process and different from his statements after Task 

Statement 2. By directing him back to Figure 2c and reminding him of his previous statements 

about Figure 2c, Brody continued:  

If 95% of these are in this range, that means 95% would give me intervals that include the 

true parameter. And since this is the sampling distribution for a sample mean of size, 

whatever we're using, there's a 95% chance that a random value chosen from this 

distribution would be on the interval [referring to the area in the sampling distribution 

that contains central 95% of the statistics]. And so yeah, there is a 95% chance that my 

 
7 Brody had already demonstrated he knew the context required the t-distribution. He tended to use the standard 

normal since he already knew (without calculation) the critical values. 
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sample yields a confidence interval that includes the true proportion, or true mean… But 

we can only say that before we do the sample. 

At the conclusion of this task, Brody was able to connect the long-run proportion of CIs that 

capture the parameter (Figure 2a) with the percentage of statistics within a given region of the 

sampling distribution (Figures 2b and c) with the Estimator/Estimate concept cluster. Thus, the 

Jamie’s Colleague task ultimately helped Brody develop and demonstrate the missing 

connection between the concept cluster Estimator/Estimate and the sub-concept images for the 

interpretation of the confidence interval and the interpretation of the confidence level. 

Conclusion 

Brody was the only participant in the larger study who demonstrated robust 

conceptualizations of the concept of a CI, the concept of the interpretation of a CI, and the 

concept of the interpretation of a C-Lvl. From his first interview, it was clear Brody had a deep 

conceptual understanding of the concept of CIs, the concept of the interpretation of a CI, and the 

concept of the interpretation of the C-Lvl. These conceptualizations, however, seemed to be 

isolated: there did not appear to be connections between the concept of a CI and how to interpret 

the C-Lvl and the CI. Brody used visualizations to demonstrate his knowledge of these concepts 

and often used imagery that are standard textbook practice for explaining interpretations of CIs 

and C-Lvls. As Brody demonstrated, these images and statement like “confidence does not refer 

to probability because the parameter is either in the interval or it is not in the interval” when 

discussing or explaining the interpretation of a CI do not necessarily aid in helping students 

develop the necessary connections for robust understanding. The is/is not in the interval 

statement requires just as much unpacking as do the correct interpretation of the CI and the C-

Lvl. In fact, the meaning of the is/is not statement is perhaps more difficult to unpack than either 

of the interpretations studied. The face-value interpretation of this statement is fairly easy to 

explain:  

If I were to toss a coin, there is a 50% chance that it lands on heads. Once I toss the coin, 

even without revealing the outcome, there is no longer a 50% chance it landed on heads. 

It either landed on heads (P(head) = 1) or it landed on tails (P(head) = 0). 

Unfortunately, this explanation does not clarify the underlying theoretical connections between 

the is/is not statement and the difference between the estimator and the estimate. Many 

participants in the larger study made statements similar to the is/is not statement, but it was 

unclear from their demonstrated knowledge whether they fully understood this statement. 

Jamie’s Colleague was invented to determine the strength of the connections. Brody was the 

only participant who was able to make the necessary connections. 

The use of the Jamie’s Colleague task helped Brody make important connections among his 

well-developed conceptualizations of the interpretations of CIs and C-Lvls. This final 

connection, described by the curricular concept cluster Estimator/Estimate was needed to solidify 

the distinction between the use of confident rather than probability in the interpretation of CIs. 

Further, this provides conceptual understanding of the theoretical derivation of the confidence 

interval estimator, particularly with respect to the coverage probability. The long-run proportion 

of CIs that capture a parameter Generally, Brody’s demonstrated conceptualizations were 

unusual in the larger study, even among peers who had taken the same courses. Finding more 

students with his level of conceptualization and identifying how they generated their robust 

understanding of CIs will aid future instruction of CIs.  
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Definitions play an important role in mathematics by stipulating objects of interest to 

mathematicians in order to facilitate theory building. Nevertheless, limited research has 

examined how mathematicians approach writing definitions or the values they seek to uphold 

through definitions. Based on interviews with nine mathematicians, we highlight key 

mathematical values upheld through definitions as well as values related to defining that 

mathematicians do and do not attempt to emphasize through their instruction.  

 

Keywords: Definitions, Norms, Values, Mathematical Culture 

 

Definitions are central to mathematical activity (Edwards & Ward, 2004) as they specify 

objects used for proof activity. Nevertheless, limited research has directly examined how 

mathematicians approach writing definitions or how mathematicians view the role of definitions 

in perpetuating mathematical norms and upholding mathematical values. We examine these 

aspects as well as consider how these norms and values relate to instruction of definitions. 

Literature Review 

Extensive research has examined various facets of proof understanding and instruction. 

Examples include examining the purpose of proofs (e.g., Weber, 2002), the logic of proofs (e.g., 

Selden & Selden, 1995), formats of instruction (e.g., Weber, 2004), differences in proof-

production in different disciplines (Dawkins & Karunakaran, 2016), how students understand 

proofs (e.g., Stylianides & Stylianides, 2009) and differences in students’ and mathematicians’ 

approaches to proof (e.g., Weber & Alcock, 2004). However, limited research has focused 

specifically on the role of definitions in proof or mathematics more generally. 

Most literature on definitions has focused on students’ difficulties. Edwards and Ward (2004; 

2008) highlighted students’ reliance on extracted definitions, where students tried to work from 

examples to create a definition for themselves rather than work with the stipulated definitions 

(written to define a concept) that they were given, as well as students’ tendency to act as though 

their concept image was more important than the concept definition. Similarly, Alcock and 

Simpson (2011) highlighted students’ inconsistency in applying given stipulated definitions for 

increasing and decreasing to particular sequences. Implicit in these works is the mathematical 

community’s belief in the importance of stipulating definitions appropriately. Nevertheless, work 

directly asking mathematicians about their process for making or teaching definitions is limited. 

Theoretical Perspective 

In order to examine how mathematicians’ views of definitions align with their broader views 

of mathematics, we used the theoretical lens of mathematical values created by Dawkins and 

Weber (2017) in the context of proof. In their paper, they highlighted four mathematical values 

upheld by norms of proof as addressed in the literature. These values were: 

1. Mathematical truth is a priori 

2. Mathematical knowledge and justification should be independent of (non-mathematical) 

contexts, including time and author 

3. Proofs should increase mathematicians’ understanding 
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4. Mathematicians desire a consistent set of norms and practices 

While Values 1 and 2 are related, Value 1 emphasizes the logical and objective nature of 

mathematics, while Value 2 especially focuses on the role of the author being irrelevant to final 

presentations of mathematical knowledge. For our purposes, we are modifying Value 3 to say 

definitions should increase mathematicians’ understanding, with the idea that definitions also 

contribute to how mathematicians understand theory. Value 4 highlights the notion of a shared 

mathematical culture that views mathematical knowledge as possessing a standard form. We 

used this framework to organize norms of definitions as described by participants to see whether 

these four values (or others) were supported by mathematicians’ views of the role of definitions. 

Methods 

Data was collected from interviews conducted remotely with nine mathematicians. These 

participants were a subset of those recruited for a previous study targeting mathematicians who 

had taught at least one abstract algebra or category theory course in the last five years. (All 

names are gender-neutral pseudonyms.) For this paper, the first two interview questions about 

how they approach writing a new definition and the purpose of definitions in math are the most 

relevant, although some participants made relevant comments about definitions later in the 

interview when discussing isomorphism and homomorphism, which were also coded. 

Two independent researchers used thematic analysis (Braun & Clarke, 2006) which included 

multiple iterations of coding (Anfara, Brown, & Mangione, 2002). First, two transcripts were 

open-coded using descriptive coding (Saldaña, 2016), noting themes about the construction or 

use of mathematical definitions highlighted by participants. Then, the two researchers discussed 

the open codes and produced a first round of focused codes, which were created by grouping the 

original open codes into categories. Next, all nine transcripts were coded with these focused 

codes and additional codes were developed for any relevant themes appearing more than once in 

later transcripts. Any discrepancies in coding were discussed by the researchers until agreement 

was reached. The focused codes were then examined to come up with axial codes, which led to 

the adoption of the theoretical framework from Dawkins and Weber (2017) for categorizing 

codes. Finally, focused and axial codes were revised and transcripts were recoded as necessary. 

Results 

Following the norms and values of proof laid out in Dawkins and Weber (2017), our themes 

(axial codes) are grouped into four similar values with focused codes (italicized) as evidence. 

Value 1: Mathematical truth is a priori 

In order for mathematics to be rigorous, proof must be based on stipulated definitions that are 

unambiguous (Dawkins & Weber, 2017; Edwards & Ward, 2008). These codes are related to this 

norm of proof in that they highlight that there is a norm of precision in writing mathematical 

definitions and that this precision is necessary for using definitions to support arguments. 

Mathematical communication norm of precision. The code axiomatic system/work with 

definitions was given to five participants who referred to definitions as part of the axiomatic 

method or as the building blocks of a particular theory in mathematics. Avery said: 

And definitions [are] a critical part of the axiomatic method. This last spring, I taught my 

students an axiomatic geometry course, and so the first couple of weeks is pretty heavy 

on just the structure of logic. Day two, we defined the axiomatic method. We have our 
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undefined terms. We have our axioms. We have our definitions…the definitions are those 

things we define for this theory because we’re going to talk about them all the time. 

Like others given this code, Avery believes mathematical definitions are important to the 

axiomatic method and students need to understand how to work with them for this reason. 

Eight participants highlighted the norm of mathematical definitions being unambiguous 

(clarity/no ambiguity in communication). Several of these participants emphasized this lack of 

ambiguity is important for communicating with other mathematicians. For instance, Greer said:  

I think fundamentally the purpose [of definitions] is to make clear what you’re talking 

about. I do have trouble conversing with mathematicians who don’t make precise 

definitions because I can’t understand their arguments because I don’t have this precise 

set of rules I’m allowed to work by. 

Other participants tended to use similar language when talking about this topic, describing 

definitions as an agreement of rules between the author and the reader. Five participants noted 

the norm of rigor in definitions, often without clarifying exactly what that means in a math 

setting, and were given the code rigor/precision. This included phrases like “it would be defined 

properly, rigorously” (Avery) or “it’s fundamental for rigorous mathematics to use clearly stated 

definitions” (Dallas). These participants may have chosen not to elaborate because they assumed 

the interviewer, as a member of the mathematical community, would know what was meant. 

Norms perpetuated through teaching. The code norm of precision perpetuated through 

teaching arose in all nine interviews. Here, Emerson described their approach to teaching 

definitions in proof courses such as abstract algebra: 

I think the … right place to start proof in formal methods is to talk about definitions. And 

so I spend the first couple of days just practicing definitions. So why is this definition 

good or bad? You don’t want to define something in terms of what it’s not. You should 

define it in terms of what it is. It needs to be unambiguous. And it should be something 

that you can use. If it’s not clear enough from what you call a definition, how you’re 

going to be able to use this quote “definition” in a proof then it’s not a good definition. 

Notice Emerson believes that a proper understanding of what a good definition is aids discussing 

the role of definitions, which then supports teaching proof. 

Value 2: Mathematical knowledge and justification should be independent of (non-

mathematical) contexts, including time and author 

The second value of proof in Dawkins and Weber (2017) is that mathematical knowledge and 

justification should be independent of non-mathematical contexts. Related to Value 1, many 

participants spoke about being “on the same page” (Cameron) with regards to definitions. 

However, only Avery was explicit that definitions should be written in a way that avoids 

multiple interpretations based on the readers’ experience: 

As different people have sort of different personal, cultural connotations that they have, 

we do have to make sure that we are talking about the same things. So we need a rigorous 

definition because, I mean, if you take a word like group…that has a very specific 

meaning in mathematics, but just in standard English, there are lots of ways you could 

use that word, sometimes good, sometimes bad…And that’s the thing is we have to be 

prepared that someone’s life experience might have prepared them to hate a certain word, 

and therefore, we need to make sure that we see exactly what it is. 

Notice Avery focused on personal, context-dependent ways of interpreting mathematical 

definitions as being excluded by writing a proper definition. 
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Value 2.5: Mathematical knowledge and justification are generated by people with agency 

We propose an addition to Dawkins and Weber’s framework that highlights that definitions 

are specifically chosen by mathematicians both to communicate results effectively and for 

purposes of exploration in research. 

Definitions written purposefully by people. All nine participants stressed that definitions 

are written by people who have agency and actively choose how to frame the definition. This 

idea was given the code people make definitions. For example, Hayden said: 

I mean, often, I guess I’m working in something for a while before some of the 

definitions are crystallized. The ones that become the sort of bones on which I want to 

sort of build the story.… I think of them as part of building a story rather than something 

that exists a priori. 

This is in contrast to Dawkins and Weber’s Value 1 that mathematical truth is a priori, although 

still compatible since the emphasis is on a tool for discovering truth rather than the conclusion. 

Many quotes coded in this way emphasized that mathematical definitions are actually quite 

flexible and are crafted specifically for a purpose. The latter idea was coded as write definitions 

purposefully for utility, which also occurred in all nine interviews. For example, Greer said, “I 

was trained to think of the definition as the set of properties needed to prove a theorem” and then 

later when talking about students, “It’s hard to get into this conversation with students about 

[alternate] definitions because I think of them as so flexible because I think of them as just 

designed to make the theorems true.” Again, we see that mathematical definitions are often 

written in such a way that makes them easy to use in particular results, though Greer 

acknowledges that this idea is not necessarily easy to communicate to students.  

Definitions created to explore in research. Many participants pointed out the importance of 

writing definitions to aid the research process, whether through generalizing examples or homing 

in on a particular topic. Blair was given the broad code of definitions as a way to explore for 

saying things like “When you’re originally mapping out areas that you’re not even necessarily 

sure what consequences are going to look like, definitions are ways of focusing on particular 

areas of that map and then being able to explore the territory around you.” Blair clearly invoked 

an exploration metaphor, though the manner of exploration was not explicit.  

Others were clearer about mechanisms for exploration. Seven participants talked about the 

fact that definitions arise from/relate to examples in their research. For instance, Finley said: 

I guess it comes about in the way that it would for most mathematicians—that you have 

some examples in mind and you recognize that they have common features. And at some 

point, you try to write down those common features, and those become the definition. 

Seven participants similarly mentioned that definitions permit inspection of relevant features, 

often noting the separable axioms embedded in definitions. For instance, Blair noted:  

So when you’re researching different ideas and different structures within existing 

frameworks, certain adjectives and hypotheses and settings begin to present themselves 

as being useful of specifically naming and studying. And so as those come up, you go 

back and create definitions that pull out the relevant features from whatever you’re 

thinking about so that you can explore just those structures with those features.  

These codes all highlight the idea that while mathematical definitions may arise from existing 

mathematical objects or examples, they are specifically constructed by mathematicians. 

Value 3: Definitions should increase mathematicians’ understanding 

This value is a slight reframing of that in Dawkins and Weber (2017) in order to center on 

definitions. While this value emphasizes mathematicians’ understanding, we found that the 
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norms that served to uphold this value focused specifically on characteristics of good 

communication.  

Good mathematical communication helps explain concepts. This norm centers on ways 

that definitions are written to aid understanding and positioned to enhance clarity. Five 

participants highlighted students’ need for more than memorized definitions to understand a 

concept—rather they expected students to have intuition or use multiple representations (need 

more than definitions to understand concepts). Dallas gave a number of ways students should be 

able to engage with a concept: 

A lot of the goal with teaching, …you want to help them to kind of build an intuition for 

these different concepts. Certainly, …they need to understand the formal definition, be 

able to work with it. But…[I] also want to kind of convey how do we actually think about 

what does it mean when two groups are isomorphic or two rings are isomorphic. And 

here, kind of the sameness concept is… part of the—sort of, the intuition. 

Notice Dallas expects students to have some sense of what isomorphism is besides reciting a 

definition, though being able to recall some version of the definition is implicitly important.   

Similarly, six participants viewed undergraduates as requiring scaffolding and more intuitive 

explanations of definitions than graduate students or mathematicians (definitions scaffolded for 

undergrads). Reasons for this included students’ unfamiliarity with notation or being 

conceptually unready for rigorous definitions to be used without explanation. Indy said: 

For graduate students, … [y]ou don’t have to necessarily motivate the definitions as 

much so you can just say, “We’re going to consider this kind of definition or this 

definition.” Or you could just say, “Because we’re going to get some really nice results, 

and then, we’ll see cases where that applies.” … Whereas, with the undergraduates, I 

think you really have to sort of motivate things a little bit more. 

Indy suggests that more explanations are necessary for undergraduates because they are less 

familiar with why mathematicians work the way that they do. 

Formatting and notation choices aid communication. This norm focuses on ways that 

mathematicians utilize standard formatting and notation for definitions to make communication 

easier. Five participants addressed standards of written mathematical communication, such as the 

layout of research papers, and their norms for formatting and ordering (norms of mathematical 

communication through formatting choices). Avery emphasized the use of different typefaces for 

showcasing important definitions: 

For the important definitions…I take…a textbook approach, in which case you will have 

“Definition 1.3”, we’ll write it out, the word or words that are sort of the focus here, 

they’ll be bolded…Other terms that aren’t as important, I’ll…take a less formal approach 

that perhaps in the prose there’ll be a sentence that describes it, and then I’ll maybe 

italicize the word…to kind of emphasize that we’re trying to define this word right now. 

Thus, changes in text style facilitate the reader’s understanding by highlighting what’s important.  

Conventions between mathematicians, noted by six participants, addressed mathematicians’ 

adoption of conventions in their papers and when teaching; specifically, choices need to be 

clearly communicated, especially when multiple choices could be made. For instance, Blair 

noted their choice of a different convention on whether rings had to be commutative: 

In a class, I’ll try to pick a convention and have it stick consistently through that class. 

And ideally, it will be the same conventions that the textbook shows…if I really disagree 

with the textbook, I will either not choose that textbook, …or I’ll go out of my way to 

constantly saying like, “Author of textbook, definition” every time I talk about that and 
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then, versus, “Our definition” of something…I did do that in my last abstract algebra 

class. I wanted to talk about rings not necessarily being commutative. And I believe, in 

the textbook we were using, very quickly, the rings all became commutative with unity. 

Notice the choice of definitional convention influences the types of assumptions that can be 

made, which can influence students’ understanding of the concepts.  

Eight participants emphasized efficient communication through the norm definitions as 

shorthand. For instance, Emerson contrasted naming a property “*” with having a word name: 

A name just gives you—just makes the paper shorter because then you can refer back to 

this thing every time, rather than having to say you have some condition you call star 

[(*)]. …It’s a lot nicer to read and easier on the brain if you have a word for it. 

Similarly, Finley focused on how encapsulating a concept with a standard definition makes it 

easier to process new information: “I mean, it’s just kind of a way of preserving space in your 

working memory, I guess.” This seems to suggest that definitions make easier building blocks 

for arguments than unencapsulated, multifaceted concepts.  

Value 4: Mathematicians desire a consistent set of norms and practices 

The norms discussed here related to norms of communication within mathematics and how 

communication differs with people outside that community. Three participants highlighted the 

norm that mathematical communication has consistency, which focused on mathematicians 

having a standard way of communicating that should not be changed lightly. Avery gave an 

example of someone trying to defy this norm: 

I regrettably…got involved in some stupid social media debate on ResearchGate where 

people were talking about, are the rational numbers bigger than the integers…one author 

sort of had the argument that…rational numbers are like infinity times infinity. And 

we’re trying to convince them that’s still infinity…They wouldn’t accept that the 

question was closed because they were, in their essence, trying to change what cardinality 

meant, without actually saying that. 

This participant was focused on how definitions, once defined and accepted, should not be 

redefined at will; new concepts should be described with new terms. Implicitly, defying this 

norm would cause communication problems because people would not know which meaning 

was intended. This also demonstrates that violations of norms can clarify the form of norms. This 

idea arose indirectly through instances of violations like the failure of consistency noted above. 

However, it also arose more explicitly with the four participants given the code norms irrelevant 

to laypeople, which occurred in discussions about how to explain isomorphism and/or 

homomorphism to a layperson. For instance, Dallas said “So if I were trying to describe 

isomorphism to say someone in a different department… I might just be really vague and say 

they’re roughly the same,” suggesting that ambiguity was acceptable for laypeople, which was 

quite different from the typical mathematical norm of precision in communication. 

 Discussion and Conclusions 

This study aimed to determine mathematicians’ norms of mathematical definitions, both in 

the writing of definitions and their use, and how these norms relate to their values. Analysis of 

interviews showed these norms largely aligned with the four values upheld by norms of proof 

conjectured by Dawkins and Weber (2017), with the exception that mathematical definitions 

showcase mathematicians’ agency more than a-contextual knowledge. Specifically, the 

mathematical norm of precision (Value 1), various aspects of clear communication (Value 3), 

and a desire for consistent norms (Value 4) all parallel ways that proof upholds these same 
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values. However, participants focused less on definitions as a-contextual objects (Value 2) and 

more on the (changeable) context that leads to their generation (Value 2.5). Indeed, participants 

noted definitions are written purposefully for known or exploratory purposes. Thus, while 

mathematical truth is a priori, the definitions one chooses to get at this truth are not. This is not a 

contradiction to Value 2 of Dawkins and Weber–the purpose of definitions merely relates better 

to a different mathematical value, that of mathematical agency.  

Of special note, while we might naturally think about precision as a norm in mathematics and 

expect it to be cited by mathematicians, the range of ways in which communication was centered 

was illuminating. In particular, definitions encapsulate a large amount of information and thus 

can be used as a shorthand in both writing and in memory. However, while experts seem to view 

these definitions as enhancing their ability to work with new ideas, it is less clear whether they 

expect students to able to use definitions in the same way. Research suggests students may not 

automatically have those skills (Weber & Alcock, 2004). Even while highlighting this important 

role of definitions, many participants noted that students and researchers need more than just 

definitions to understand a concept, such as specific examples or multiple intuitive 

representations. 

Many norms found in these interviews are critical to doing good mathematical research and 

to communicating mathematical results. Thus, it is important that these norms are communicated 

to students, and many of those interviewed mentioned that they try to do so. For instance, all nine 

participants indicated that they communicate the norm of precision to students. This included 

encouraging clear and explanatory writing, talking about how definitions are situated in an 

axiomatic system, and discussing what makes a good mathematical definition. They also seemed 

to attend to aspects of communication in teaching, such as noting the need for more than 

definitions to understand concepts and for additional scaffolding to understand mathematical 

definitions. Some attempted to provide this scaffolding through examples and intuitive 

explanations, though future research should examine more details of how this scaffolding is 

provided. In contrast, there was limited emphasis in the interviews on communicating to students 

the norm of agency in creating definitions. Some participants mentioned adopting conventions in 

class that are different from those in the textbook, and that this difference must be clearly 

communicated to students. However, others indicated that students are likely unaware of the fact 

that mathematicians choose definitions and the flexibility that results from this. Furthermore, 

they seemed less likely to try to communicate this norm to their students, which may skew 

students’ view of what mathematicians do. Edwards and Ward (2004) noted that some upper-

level undergraduate students do not always categorize mathematical definitions as stipulated but 

rather see them as extracted from what we know about a concept, suggesting a perceived lack of 

agency for mathematicians. Future research should examine how, if at all, students’ views of 

math and mathematicians might be impacted by explicit conversations around mathematical 

agency or when such interventions would be most impactful for students considering advanced 

mathematical study. 

 

Acknowledgments 

This research was funded by a Northern Illinois University Research and Artistry Grant to 

Rachel Rupnow, grant number RA20-130. 

References 

Anfara, V.A., Brown, K.M., & Mangione, T.L. (2002). Qualitative analysis on stage: Making the 

research process more public. Educational Researcher, 31(7), 28-38. 

24th Annual Conference on Research in Undergraduate Mathematics Education 513



Alcock, L., & Simpson, A. (2011). Classification and concept consistency. Canadian Journal of 

Science, Mathematics and Technology Education, 11(2), 91–106. doi: 

10.1080/14926156.2011.570476 

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in 

Psychology, 3(2), 77–101.  

Dawkins, P.C. & Karunakaran, S. S. (2016). Why research on proof-oriented mathematical 

behavior should attend to the role of particular mathematical content. Journal of 

Mathematical Behavior, 44. 65–75. doi: 10.1016/j.jmathb.2016.10.003 

Dawkins, P.C. & Weber, K. (2017). Values and norms of proof for mathematicians and students. 

Educational Studies in Mathematics, 95(2), 123-142. 

Edwards, B. S. & Ward, M. B. (2004). Surprises from mathematics education research: Student 

(mis)use of mathematical definitions. The American Mathematical Monthly, 111(5), 411–

424. doi: 10.1080/00029890.2004.11920092 

Edwards, B. & Ward, M. (2008). The role of mathematical definitions in the mathematics and in 

undergraduate mathematics courses. In M. Carlson & C. Rasmussen (Eds.), Making the 

connection: Research and teaching in undergraduate mathematics education MAA notes #73 

(pp. 223-232). Washington, DC: Mathematics Association of America. 

Saldaña, J. (2016). The coding manual for qualitative researchers. Thousand Oaks, CA: SAGE 

Publications, Inc.  

Selden, J. & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational 

Studies in Mathematics, 29(2), 123–151. 

Stylianides, A., & Stylianides, G. (2009). Proof constructions and evaluations. Educational 

Studies in Mathematics 72, 237–253. 

Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall 

(Ed.), Advanced mathematical thinking (pp. 65-80). Dordrecht: Kluwer Academic Press. 

Weber, K. (2002). Beyond proving and explaining: Proofs that justify the use of definitions and 

axiomatic structures and proofs that illustrate technique. For the Learning of Mathematics, 

22(3), 14–17. 

Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Educational Studies 

in Mathematics, 56(2-3), 209–234.  

 

 

24th Annual Conference on Research in Undergraduate Mathematics Education 514



College Algebra Students’ Definitions of ‘Simple Mistakes’ Through A Causal Attribution Lens 
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Mathematics students sometimes refer to making “simple mistakes” in analyzing or explaining 

their past performance. We interviewed eight college algebra students to learn whether they 

classified their mistakes on a first test as simple or not-simple and how they would direct their 

studying efforts in the future based on these classifications. Using Attribution Theory, we created 

categories of students based on how their causal attributions impacted their definition of a 

simple mistake.  

Keywords: Error Analysis, Simple Mistakes, College Algebra, Attribution Theory 

We know too little of how mathematical learning for college students happens outside the 

classroom and how it might be influenced. We do know that study habits, study attitudes, and 

study motivation, which are underdeveloped when students arrive to their first college math 

course, are strongly correlated with collegiate academic performance and can predict collegiate 

performance at a rate comparable to test scores and prior grades (Crede & Kuncel, 2008). Some 

authors have called for instructors to explicitly help students learn how to study math while 

teaching math itself, but this is not common practice (Lewis, 2014; Mireles et al., 2011), and 

attempts to do this have not always led to significant results (Bogardus, 2007; Hight, 1993). 

Changing student behavior requires students to see a need for change and understand the 

change will be worth the effort. This is of primary importance in first-year college math courses, 

since these students are more likely to be struggling with confidence in mathematics and 

questioning whether to persist (Brainard & Carlin, 1998; Ellis et al., 2016; Seymour & Hunter, 

2019). This study was motivated by our prior research in using self-reflective activities in the 

College Algebra classroom to help students process how their efforts leading up to an exam may 

have impacted their performance. On one self-reflection, multiple students indicated they were 

not satisfied with a recent exam score (50-70%) because they made “simple mistakes” (Ryals, 

Hill-Lindsay, Burks, & Pilgrim, 2000). We define a “simple mistake” as one that could be made 

accidentally, would likely not be repeated, or violates a mathematical convention rather than a 

rule while a “not-simple mistake” arises from a lack of conceptual understanding (Ryals et al., 

2000). We hypothesize that 1) students’ definitions may not agree with ours and 2) their 

definitions and their classifications of their mistakes may provide evidence for why and how they 

do or do not modify their future study behavior. Therefore, we posed the following research 

questions: 

1. What are the different student distinctions between simple and not-simple mistakes?  

2. How do those distinctions compare from student to student and to the researchers’ 

distinction? 
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3. How do students say they will change their behavior after identifying their mistakes as 

simple or not-simple? 

Literature and Analytic Framework 

Math educators have long studied the impact of students’ beliefs about the nature of 

mathematics (Carlson et al., 1999; Carter & Norwood, 1997; Kloosterman et al., 1996; 

Schoenfeld, 1989; Suthar et al., 2010), but the impact of students’ beliefs about their own 

characteristics and behavior on performance and persistence in mathematics has been given less 

attention. Instructors and researchers may ask “why” do students perform well or poorly, but 

their interpretation of causes do not necessarily agree with students’ perceived causes, or causal 

attributions. Causal attributions are explanations or reasons for behaviors or outcomes (Heider, 

1958; Weiner, 1972). Motivation is closely tied to these attributions (Borkowski et al., 1990), 

and the potential exists for instructors to impact attributions, thereby changing students’ effort 

allocations and persistence in mathematics (Perry & Hamm, 2017). Causal attributions are 

directly linked to affect and future expectations, significantly impacting future behavior (Kelley 

& Michela, 1980). For example, a student who attributes failure on a test to a lack of ability may 

experience shame or hopelessness, may expect similar results on future exams, and be unlikely to 

change their approach to the course; whereas a student attributing failure to a lack of effort may 

study more or seek help in the future with the expectation they can change future outcomes. 

Ability and effort have been commonly viewed as dominant attributions (Graham, 1991), but 

Weiner and others have expanded the list of common attributions to include variables such as 

task difficulty, luck, and strategy (Watkins & Astilla, 1984; Weiner, 2000).   

Weiner theorizes that each attribution has three dimensions, locus (internal/external), stability 

(stable/unstable), and control (controllable/uncontrollable), which are underlying properties of 

the attributions that can help explain how that attribution will impact affect and behavior. The 

attributions effort and ability, for example, are both internal, while task difficulty, something 

determined by the instructor, is external. Individuals are more likely to attribute success to 

internal factors and failure to external factors (Wolleat et al., 1980). While both effort and ability 

are internal attributions, ability is typically perceived as stable, or at least more stable than effort. 

Stable attributions for failure can lead to hopelessness because they indicate past failures are 

likely to be repeated. While external factors are inherently uncontrollable by the student, internal 

factors, particularly those that are unstable, can be perceived to be either controllable or 

uncontrollable. Effort, for example, is perceived to be controllable, while ability often is not.  

We have several decades of research linking attributions and causal dimensions to 

performance, behavior, or affect. High performance is consistently associated with not attributing 

failure to low ability (Bempechat et al., 1996; Shores & Smith, 2010) which is supported by a 

well-established link between self-efficacy and mathematics performance (Hackett & Betz, 

1989). Confidence in one’s potential to succeed in the long-run can increase effort and 

persistence in the face of failure (Pajares & Kranzler, 1995; Stevens et al., 2004). Shores and 

Smith (2010) note that attributions to unstable or controllable factors can lead students to believe 

that past failure does not dictate future performance. In contrast, attributing failure to stable, 

uncontrollable factors, such as low ability, often results in reduced effort in the short term and a 

lack of persistence in mathematics (DeBoer, 1985; Shores & Smith, 2010; Weiner, 2010). There 

is a difference between confidence in overall mathematical ability, which can improve with 
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effort and/or assistance, and confidence in the ability to complete a particular mathematical task 

in the moment (Hackett & Betz, 1989; Bandura, 1986). Over-confidence in the ability to 

complete a particular task can lead to insufficient effort, decreasing performance.  

Methods 

Data Collection 

Study participants were enrolled in College Algebra for STEM-intending students at a large 

public institution and were also enrolled in a co-course designed for students whom the 

university identified through multiple measures as having weaker prerequisite backgrounds. We 

invited all students present in class to participate in a 30-minute interview after the first test was 

graded and returned. Eight students signed up and were interviewed. In the interviews, students 

were asked about each error they made (not just each problem they missed). We asked them to 

identify the type of error (such as a copy error or arithmetic mistake) and then classify it as 

simple or not-simple and explain. After all errors were addressed, students were asked for their 

overall definitions of simple and not-simple mistakes and were asked how they would modify 

their study behavior if the majority of mistakes on a failed test were simple versus not-simple.  

Analysis 

In order to address Research Questions 1 and 2, we first inductively coded for students’ 

definitions of simple mistakes. We went from error to error on each student’s transcript and used 

the constant comparative method (Glaser, 1965) to develop new codes and refine existing ones. 

When coding a particular error, we considered student’s comments about their other errors to 

help interpret their meaning. After coding all eight transcripts, we wrote a description of the 

defining characteristics between simple and not-simple for each student. We did not rely solely 

on the student’s overall definition of a simple mistake because they often omitted some of the 

attributions they had made for individual errors in these overall statements, likely due to 

availability bias and relying more heavily on recently discussed errors (Tversky and Kahneman, 

1973). 

We were surprised by how often students referred to some cause of the error rather than the 

type of error and also by their emotional response to the error; we had not explicitly asked about 

causes or emotions. This led to the choice of attribution theory as an analytical framework. We 

began coding for student’s perceived causal attributions, starting with Weiner’s four main 

attributions (ability, effort, task difficulty, and luck), and added other distinct attributions 

(anxiety, running out of time) or created subcategories (study effort, metacognitive effort during 

test) as they emerged from the data. We noticed specific attributions were not always 

consistently described on the control and stability dimensions, a phenomena Weiner uses to 

justify shifting focus to the three dimensions rather than the causes themselves (2012). 

Therefore, we began coding for the three causal dimensions: controllability, stability, and locus, 

rather than focusing on the specific attribution. 

For each student, we compared our codes for the simple versus not-simple distinction and the 

attributions. We looked for patterns across the errors and summarized each student’s pattern of 

attributions for simple and not-simple mistakes. We then did a cross-case analysis. We used a 

matrix to compare and contrast these summaries for each pair of students. From this arose the 

major themes we will discuss in the results below.  
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For Research Question 3, we coded the behaviors mentioned in responses to the final 

interview questions and compared these behaviors across students to determine if there was any 

pattern between categorizing past errors as simple and modifications to future study behavior. 

 

Results 

We will first address Research Questions 1 & 2 together and end by answering Question 3 

separately, as there were separate prompts in our interview protocol addressing Question 3.  

 

Relationship between Stability and Control 

For a majority of participants, there was a strong link between unstable and controllable 

attributions. These students did not attribute their errors to unstable, external causes like bad luck 

or the teacher choosing a particularly difficult test problem. For these students, some aspect of 

control was a distinguishing factor of their definition of a simple mistake. 

Control during the test. Of the students that addressed controllability, TY, R, and MM 

defined simple mistakes as those that were controllable on the test (i.e. an in-the-moment error 

due to lack of metacognitive effort during the test) and not necessarily controllable prior to the 

test (i.e. an error in understanding due to lack of study effort). TY explained, “simple is more 

like when like you know what you’re doing and how to do it but like you kind of just like mess 

up in that moment.” This conception of a simple mistake was most consistent with ours.  

This group of students associated not-simple mistakes very closely with a fundamental lack 

of understanding (as opposed to not knowing how to perform a procedure or not having 

something memorized). One problem asked students to rationalize a denominator. Multiple 

students, including MM, remembered they were supposed to multiply by the conjugate, but used 

the same, rather than the opposite sign. MM called this a not-simple error, explaining, “I didn’t 

really understand how to do that. Like, it wasn’t such a small error in my mind, even though it is 

on paper. But to me it was not a small error.” On the only problem with an error that R classified 

as not-simple, he had still received 7 out of 8 points. While missing a single point would be 

considered a simple error for other students, R was very critical of the fact he had had to attempt 

this problem multiple times before finding a correct approach. He believed that not knowing 

immediately which strategy to use implied he did not understand the material, and therefore it 

was not a simple mistake.  

Control at any point in time. Where TY, R, and MM saw simple mistakes as attributable to 

factors that were controllable during the test, two other students, AY and RG, classified mistakes 

as simple if they were attributed to controllable factors at any point in time, including before and 

after the test. RG classified all nine of his mistakes as simple. He suggested some simple 

mistakes could have been prevented during the test, such as when he lost points for not showing 

his work. He also often suggested a mistake was simple if he could now understand his mistake 

and solve the problem during the interview: “I feel like if I was to do [the] problem again, now I 

learned. We went over it. You told me. Not really the kind of mistake that I would make twice.” 

(This is despite the fact that the instructor had gone through this type of problem immediately 

prior to the test, and he did make this error twice on the test.) We contrast this with TY, who 

called a particular mistake not-simple, saying, “I remember doing like this problem right before 

like doing the test but I remember like going over it but like when I did it on the test I just 
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forgot.” RG also attributed other simple mistakes to a lack of effort prior to the test: “If I would 

have looked at these questions again other than the one time I did it...I probably would have got 

that one right.” We noticed a frequency of what we termed “if/coulda” language that was 

common for RG and AY, such as “If I had” or “I could have.” This language alludes ultimately 

to the perceived unstable nature of their errors and hope for the future, and specifically for RG 

and AY, indicates a belief they ultimately have control over the outcome.  

Both RG and AY downplayed the amount of effort that would have been required to be 

successful and associated simple mistakes with minimal additional effort. RG stated explicitly, “I 

think that a simple mistake is something that can be fixed without a, without a, uh, large amount 

of time devoted to fixing the problem.” AY suggested that simple mistakes are due to a lack of 

memorization. She never mentioned studying explicitly, and we suspect she equates studying 

mathematics with memorization. When discussing a problem where she incorrectly added 

exponents rather than multiplying them, she explained, “I know there’s some instances where 

you’re supposed to add them but I don’t remember which instances...I feel like [my mistake is] 

simple because it’s memorizing rules of exponents.”  

Did not address control. We now discuss those students for whom control was not a 

distinguishing factor between simple and not-simple mistakes, J and C. Similar to RG and AY, C 

and J frequently used “if/coulda” language, but in contrast, when using this language, C and J did 

not necessarily indicate they believed these possibilities were within their control, unlike RG and 

AY. C frequently said “If I had studied...” or “If I had practiced…,” attributing multiple errors to 

a lack of practice or lack of memorizing, but some of these errors she labeled simple and others 

not-simple. On the surface, these appear to be effort attributions (controllable), but she began and 

ended the interview explicitly stating she doesn’t “know how to study for math, so [she] didn’t 

study” indicating (uncontrollable) lack of ability. C missed a problem asking solely about 

vocabulary. She explained that she did study the definitions, but didn’t know how to study them 

correctly. “I think I did go over them but there’s different like, um, definitions so I was like, 

‘What? These are not the definitions I studied.’ And I Googled the definitions. I didn't get it from 

this course, so it’s probably different.”  

While the large majority of attributions made by all participants were internal, C and J used 

“if/coulda” language frequently with external attributions. C classified one error as simple, 

saying “for these like I guess I just feel like if I like had more time…” It was common for the 

external attributions to be associated with the frequency of exposure to certain types of problems 

(as part of course activities). C justified classifying one error as not-simple saying, “Yeah, like I 

feel like - like I don’t really remember seeing that, like, in the homework, or it probably was but 

it wasn’t as common [as another problem where she classified a similar error as simple].” 

Similarly, she had classified two seemingly similar mistakes differently, and when prompted to 

explain the difference, she said “When I was studying, I did problems from, like, number 3, 

but...I didn’t do problems that would be square root times square root.” We contrast this with 

TY, who did not consider how frequently or recently she had practiced a problem essential to her 

definition of a simple mistake. TY classified a mistake as not-simple and explained: “I remember 

doing this problem right before like doing the test...but when I did it on the test I just forgot.”  

For both C and J, the distinction between simple and not-simple mistakes is not primarily 

about control but about the complexity of the problem itself and the student’s perceived 
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probability of being able to solve it correctly or at least more completely in the future. C 

explained her reason for classifying a particular error as simple: “It was a simple, like question. It 

wasn’t, it didn’t ask me to do much.” C made the same sign error MM made when attempting to 

rationalize a denominator, but C classified her error as simple, explaining “...if I would have 

remembered like that it’s the opposite like that, I would have gotten it right.” To C, this is 

something she could have corrected fairly easily, and could, with little effort, remember in the 

future, and therefore it is a simple mistake. J had multiple similar attributions for errors she 

classified as simple, such as “cause if I just read it correctly I would have gotten it right.” On a 

different problem, J said her error was simple “because if I would have remembered the equation 

and then remembered the steps, it would have been simple.” We note that she did not remember 

during the test, but she still classified this error as simple, reiterating the importance of this 

“if/coulda” influence on her simple/not-simple distinction. J and C labeled any error as simple 

that may not have occurred if any reasonable changes to circumstances, whether within or 

beyond their control, could have prevented the error. 

Control changes depending on time frame. MF was the only participant whose simple 

mistake definition did not reflect patterns in causal attributions. Regardless of whether the 

mistake was simple or not, she framed her mistakes as uncontrollable in the past, yet controllable 

in the future. For example, she claims some errors were made because she did not know what to 

study, but speaks hopefully about the future when stating how she will change her future 

behavior to prevent similar mistakes: “I mean, it’s just memorizing just definitions of terms, and 

then on the test, it wasn’t the correct form that I was looking for, but, um, hopefully for the next 

test, I’ll definitely look at the vocabulary more, and then that way I won’t have this issue again”.  

Like C and J, MF’s simple mistake distinction was based on the likelihood of making that 

mistake again in the future. For example, if the problem required only one or two steps or if the 

mistake could have been caught with minimal monitoring, then she believed it was likely she 

would not make that mistake again, and therefore it was a simple mistake.  

 

Modifications to Study Behavior 

At the end of the interview, students were asked how they might modify their studying in 

response to two hypothetical situations. In the first, they missed 50% of a test’s problems due 

primarily to simple mistakes, and the second, they missed 50% due primarily to not-simple 

mistakes. Five of the students explained that making a lot of not-simple mistakes would mean 

they needed to seek outside help (such as from a tutor or their instructor during office hours), but 

that they could learn to prevent simple mistakes on their own. There was an important difference, 

however, in the goal of seeking outside help. Some described a need for procedural assistance, 

such as J. She explained she would need to ask for help at the learning center because “it’s like I 

don’t know how to do it at all.” In contrast, some students would seek outside assistance to 

deepen their conceptual understanding. TY said that if she was making a lot of not-simple 

mistakes, it’s because “I’m not understanding something in it.” Though R did not indicate he 

would seek outside help for not-simple mistakes, he said “I would work on harder problems. Or I 

would like work on like fewer problems but like understanding like in depth every step and like 

what you’re actually doing in the step.”   
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A common approach to address simple mistakes was repetition or a revisiting of problems 

they had already worked and believed they already knew how to solve. For some, this repetition 

was closely associated with memory. This was especially true for the students who did not limit 

simple mistakes to those that could be controlled during the test. RG, for example, said that to 

avoid simple mistakes, he needed “familiarization I guess. Lookin’ over the stuff.” For J, direct 

memorization of formulas was a strategy to combat simple mistakes. C and MF suggested they 

needed to actually work and “write down” more problems (as opposed to avoiding practicing 

particularly challenging problems and/or only relying on studying provided solutions). 

Discussion and Implications 

Our analysis uncovered clear distinctions between students’ definitions of simple mistakes 

when compared to our definition or other students’ definitions. While we see a simple mistake as 

something made once, in-the-moment, some of our participants have a much wider umbrella for 

simple mistakes. Some include any mistake on problems they believe they previously knew or 

currently know how to solve, and others also include problems they believe they could or would 

have a decent probability of solving, if just one of many possible variables was or had been 

different. To some, the distinction between simple and not-simple mistakes has more to do with 

the amount of effort required to learn to solve the problem or the perceived difficulty of the 

problem itself. In practice, this means that instructors and tutors cannot assume that students 

attributing their underperformance to “simple mistakes” means the student made a bunch of copy 

errors. It is quite possible that those “simple mistakes” were made on problems that the student 

cannot solve and/or never knew how to solve. 

What is more consistent across these different groups is an approach for how to prevent 

certain types of mistakes in the future. Most students argued they can address simple mistakes on 

their own, with more repetition, practice, or memorization, versus needing assistance with 

problems on which they made not-simple mistakes. This is crucial for instructors and tutors to 

consider when assisting a student in making changes to their study approach. Some of our 

participants had a wide net for simple mistakes, but did not indicate a need to seek help or 

deepen their conceptual understanding in the future when trying to avoid these mistakes. 

We posit that students whose definition of a simple mistake was limited to those controllable 

during the test (R, TY, MM) are the most adaptive, as they recognize mistakes due to flawed 

studying or misunderstandings are not-simple. Students such as RG and AY, who consider a 

mistake simple if they knew how to solve the problem prior to or after the test, are not motivated 

to understand why they made the mistake during the test and do not think critically about how to 

prevent these types of errors in the future. Finally, students like C and J, who do not use control 

to distinguish simple mistakes, are at a distinct disadvantage. Their focus is on the perceived 

instability of their simple mistakes and their hope is that circumstances, possibly beyond their 

control, will change in the future and lead to their improved performance even without making 

changes to their future behavior. We recommend instructors challenge the last two groups of 

students to compare results across tests, highlighting inconsistencies between expectations and 

outcomes from one test to the next. Interventions aimed at retraining students’ causal styles 

towards controllable, unstable causes have been shown to increase performance and persistence 

(Perry & Hamm, 2017), and we suspect classroom discussions surrounding simple mistakes 

could be an effective intervention to help move students toward controllable, unstable causes.  
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Department's Openness to Change. A Study from Calculus Instructors' Perceptions 

 

Brigitte Johana Sánchez Robayo 

Virginia Tech 

I studied factors that predict the department's openness to change (DOC). I used survey data 

collected from STEM instructors using the Survey of Climate for Instructional Improvement 

(SCII) instrument. Using Mathematics Instructors' responses, I first conducted an exploratory 

factor analysis. I extracted six factors, including DOC. Then, considering the components of the 

SCII, the extracted factors, and the elements that influence change according to the literature, I 

conducted a multiple regression analysis assuming collegiality, leadership, and participation in 

professional development could be predictors of DOC. Based on the literature and the extracted 

factors, I also added self-efficacy as a possible predictor. In this analysis, leadership is the 

strongest predictor, followed by collegiality and self-efficacy. Professional development is not a 

predictor of DOC.  

Keywords: change, collegiality, leadership, self-efficacy, and professional development. 

Change in STEM higher education has been a focus of study over the last decades 

(Henderson et al., 2011; Reinholz et al., 2020, 2021). There are mainly significant efforts for 

supporting instructors (Kezar et al., 2015; Reinholz et al., 2021; Tirosh & Graeber, 2003). 

Furthermore, different perspectives of change (Corbo et al., 2016; Kezar, 2013) have called for 

also considering contextual factors that may influence instructional practices.  

Academic departments are critical sites for change, and more research on changes in the 

mathematics department is needed (Reinholz et al., 2020). Research in mathematics departments 

would contribute to understanding unique aspects of change in these settings and contexts 

(Reinholz & Andrews, 2020). Also, studying departmental culture for change is essential since 

faculty are highly impacted by their department (Corbo et al., 2016; Henderson et al., 2011). As 

part of the efforts for understanding how change occurs in departments, Walter et al. (2016, 

2021) designed and applied the Survey of Climate for Instructional Improvement (SCII) to elicit 

"organizational climate for instructional practices" (2016, p. 411).  

The SCII's design assumes that culture and climate are different, although commonly, they 

have been referenced indistinctively (Walter et al., 2016, 2021; Wang & Degol, 2016). Whereas 

culture refers to values, beliefs, and rituals; climate refers to "shared, subjective experiences of 

organizational members that have consequences for organizational functioning and performance" 

(Walter et al., 2021, p. 167). Furthermore, climate includes the atmosphere of the organization, it 

is multidimensional (Wang & Degol, 2016), and it is "more malleable to change than culture" 

(Walter et al., 2021, p. 167). In this way, as an instrument that gathers information about 

organizational climate, the SCII is applied to collect instructors' perceptions of the organization 

they belong to according to seven components: rewards, resources, professional development 

(PD), collegiality, academic freedom, and autonomy, leadership, and shared perceptions about 

students and teaching.   

Viewing departments as crucial units of change (Quardokus & Henderson, 2015; Reinholz & 

Apkarian, 2018), I concentrated my study on the mathematics department's openness to change 

(DOC). In any change process, openness to change and resistance to change are considered 

essential factors (Hussain et al., 2018). Commonly openness to change has been considered the 

individual's willingness to accept and implement a specific change (Sinval et al., 2021; Wanberg 
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& Banas, 2000). In the organizational context, this idea can be transferred to consider, for 

instance, the department's acceptance to change or the department instructors' willingness to 

implement changes. The SCII includes questions regarding the department chair's, the 

department instructors', and the department's willingness or flexibility to implement different 

strategies for improving teaching. Thus, this study started with the assumption that the SCII 

could also be used for studying DOC. Using the instructors' perceptions, I looked to understand 

the extent to which some factors predict the openness or willingness of the mathematics 

department to improve teaching by implementing different strategies or providing various 

resources to instructors.  

Here I focus on three components of the SCII, collegiality, leadership, and professional 

development, that are also commonly cited factors for instructional change (Berebitsky & 

Andrews-Larson, 2017; Kilinc et al., 2020; Melo Moreno et al., 2020; Sleegers et al., 2014). 

Thus, the research question was: to what extent do collegiality, leadership, and PD predict DOC? 

While not part of the SCII, the survey did include some items on the instructor’s self-efficacy. As 

some literature does point to this being an important factor that may influence change 

(Tschannen-Moran & Woolfolk Hoy, 2001; Wheatley, 2002), secondary analysis added 

instructor’s self-efficacy into the primary model.  

Framework 

In the SCII, collegiality is defined as the instructors' feelings of belongingness to a 

community of colleagues (Walter et al., 2016, 2021). As part of the community, an instructor can 

have different types of interactions with their colleagues that will help to improve their practice 

(Males et al., 2010). Those interactions and the sense of community between colleagues may 

positively influence DOC. Solid interactions between colleagues are essential for different 

approaches to changing mathematics teaching practices in K-12 education, such as lesson study 

or collaborative action research (Sánchez Robayo, 2020). In high education, Reinholz et al. 

(2021) found that Communities of Practice was the most common theory used in research about 

change in STEM. In particular, communities of practice have been used to design theories of 

change for specific attempts of change (Reinholz & Andrews, 2020). Communities of practice 

refer to groups of people (communities) with a common goal, a mutual compromise, share a 

concern, and belong to a specific enterprise (Wenger, 1998). In this way, participating in the 

community gains a particular connotation and represents individual learning and community 

strengthening.  

Collegiality can take place as part of a formal learning opportunity or as an on-the-job 

learning opportunity. As an on-the-job learning opportunity, interactions between colleagues can 

vary from low to a high depth depending on the focus of the conversation (Cobb & Jackson, 

2011; Coburn et al., 2012). For instance, a low-depth interaction is a quick exchange about a 

deadline, whereas a high-depth interaction could be a conversation about the nature of student 

learning (Coburn et al., 2012). Walter et al. (2021) found that experienced faculty build stronger 

and more diverse networks of colleagues, facilitating instructional improvement in higher 

education. Similarly, instructors who belong to a social network with strong ties, deep 

interactions, and more experienced teachers develop a flexible instructional approach to adjust it 

to changing conditions (Berebitsky & Andrews-Larson, 2017; Coburn et al., 2012).  

The idea of leadership has been extended, and currently, there are types of leadership such as 

distributed leadership (Sleegers et al., 2014) or shared or collective leadership (Kezar, 2013) in 

high education. In general, these variations assume leadership beyond the scope of an individual. 

For instance, leadership is a property of a group, network, or community rather than of an 
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individual in the case of the distributed version (Bianchini et al., 2014). However, generally, 

leadership has been considered an individual enterprise, in which the leader influences a group of 

people to achieve a common goal (Hussain et al., 2018). In the SCII, leadership is defined as 

"policies, actions, or expectations established by the formal leader of the department that 

communicate the value of teaching and instructional improvement" (Walter et al., 2021, p. 171). 

In particular, Walter et al. (2021) consider leadership a catalyst of change in higher education, 

and they found that department chairs are essential for instructional improvement. In this way, 

the leader's actions and perceptions may determine the department's willingness to implement 

different approaches or resources.  

PD refers to a set of activities designed to train staff members to improve their performance 

in their role through learning about their profession (Ball & Bass, 2002; Ball & Cohen, 1999; 

Ball & Forzani, 2010; Desimone, 2009; Korthagen, 2017; Opfer & Pedder, 2011; Osman & 

Warner, 2020; Shabani, 2016; Silver, 2009; Tirosh & Graeber, 2003; Walter et al., 2021). At 

different educational levels, PD is considered a driver for change in instructional practices 

(Ainley & Carstens, 2018; Ball & Cohen, 1999; Ball & Even, 2009; Durksen et al., 2017; Frank 

et al., 2011; Franklin, 2015; Guskey, 2002; Osman & Warner, 2020). In addition, through PD, 

instructors can extend their knowledge and skills to address challenges (Walter et al., 2021). 

Thus, department instructors' participation in PD may influence the department's flexibility at the 

moment to implement some change.   

Self-efficacy is defined as one's perceptions of their capabilities to perform a task (Ainley & 

Carstens, 2018; Skaalvik & Bong, 2003; Skaalvik & Skaalvik, 2007). It is a belief about what the 

person can do rather than their attributes; thus, self-efficacy is more about what individuals 

believe they can do independently of their skills and abilities. Teacher self-efficacy refers to 

teachers' beliefs of their ability to influence student learning, to provide effective learning 

environments, or to enact a teaching behavior (Agudelo-Valderrama et al., 2007; Ainley & 

Carstens, 2018; Fackler & Malmberg, 2016; Rodríguez et al., 2009; Skaalvik & Skaalvik, 2007; 

Tschannen-Moran & Woolfolk Hoy, 2001; Wheatley, 2002). Instructors with high self-efficacy 

are more receptive and more likely to implement changes (Bellibaş et al., 2020; Guskey, 1988; 

Piwowarski, 2010); thus, instructors with high self-efficacy in the same department may shape a 

receptive department for change.     

Methods 

The data came from the SCII applied to different STEM instructors from different colleges in 

the US. Along the design and validation process, the designers confirmed five factors to study 

organizational climate: leadership, resources, collegiality, respect for teaching, and 

organizational support. Although the survey also included questions about change; change and 

precisely the department's openness to change was not considered a factor. Thus, I started 

conducting an exploratory factor analysis. 

The exploratory factor analysis 

First, I restricted the dataset selecting only mathematics instructors and keeping survey items 

related to department climate and context, instructors' self-efficacy questions, frequency of 

different actions related to teaching, and participation in PD.  

I transferred the data from excel to SPSS, and once I manage the missing values, I did all the 

analysis in SPSS. First, I confirmed the sample had an acceptable Kaiser-Meyen-Olkin measure 

of sample adequacy (KMO= 0.915) and a significant Barlett's Test of Sphericity 

(𝜒2(528)=14403.938; p=.000). Since data were not normally distributed, I followed Samuels' 
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(2016) advice of using Principal Axis Factoring as the extraction method since I intended to deal 

with the data for further analysis rather than developing an instrument. I also used Promax 

rotation as the recommended rotation method for correlated factors (Osborne, 2015). According 

to Samuels (2016), the threshold for the commonalities is 0.2; thus, I removed items with lower 

commonalities. Over the process, I removed 14 items because they had low commonalities. Six 

factors were extracted and retained once I compared them using parallel analysis 

(https://analytics.gonzaga.edu/parallelengine/). Error! Reference source not found. shows the 

final factors with their reliability (Cronbach's alpha measure). 

 
Table 1. Factors from EFA 

Factor Eigenvalue 

(% variance) 

Reliabilit

y 

Number 

of items 

Representative item 

Leadership 8.890 

(26.939%) 

0.921 7 The department chair is receptive to 

ideas about how to improve teaching 

in the department 

Instructors' 

self-efficacy 

4.194 

(12.709%) 

0.858 9 How confident are you in ability to ask 

open, stimulating questions? 

Departmental 

openness to 

change 

1.969 

(5.966%) 

0.807 5 Instructors in my department value 

teaching development services 

available on campus as a way to 

improve their teaching. 

Organizational 

support 

1.905 

(5.772%) 

0.797 5 Instructors in my department have 

adequate departmental funding to 

support teaching improvement. 

Collegiality 1.683 

(5.101%) 

0.884 3 Instructors in my department 

frequently talk with one another about 

their teaching 

Participation in 

PD 

1.321 

(4.003%) 

0.692 3 Have you ever participated in half-day 

workshop(s)?  

 

Although participation in PD had low reliability, I decided to keep that factor in the model 

because the literature highlights it as one of the strongest mechanisms for change.  

The multiple regression analysis 

Once I got those factors, I conducted a multiple linear regression to predict departmental 

openness to change based on leadership, collegiality, and participation in PD. Following is the 

model: 

𝐷𝑂𝐶 = 𝛽0 + 𝛽1𝐶 + 𝛽2𝐿 +  𝛽3𝑃𝐷 + 𝜀 
Where 

DOC is the department’s openness to change L is leadership 

C is collegiality PD is participation in PD 

 

For running the model, I found the mean of the questions that belong to the same factor. In the 

case of PD, I recoded the answers as follows: 

 
Table 2. New codes for questions about PD 

Question Original value New code 
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Have you ever participated in any of the following types of 

teaching-related professional development? 

 2- yes  

Half-day workshop(s) 2 1 

Full-day or longer workshop(s) 2 2 

Attending a teaching-focused conference 2 3 

 

In all the cases, the answer "no" had the original value '1' and was recoded as '0'. Using these 

new codes, I summed up the values of the questions for the factor PD.  

Once I run the model, I included the factor self-efficacy in the model. Then, as I did with the 

other factors (DOC, C, L), I calculated the mean of the questions that composed that factor.  

Results 

Since the research question is focused on a predictive relationship, I will focus the results in the 

multiple regression analysis calculated to predict the department's openness to change. Table 3 

shows the means of instructors' responses to the items of each factor (DOC, C, and L). The items 

were Likert scale questions ranged from one to six, with one being the lowest positive score, and 

six being the highest from strongly disagree to strongly agree. The table also shows the mean of 

the sum of PD values after recoding.  

 
Table 3. Descriptive Statistics 

 Mean Std. Deviation N 

DOC 3.8857 1.07173 1084 

sumPD 4.2583 2.17381 1084 

Mean_leadership 4.4040 1.09169 1084 

Mean_Collegiality 4.8495 1.01377 1084 

 

A backward multiple regression analysis was conducted to identify predictive variables based on 

their contribution to the model. Pearson correlation revealed no correlation between DOC and 

PD (r(1082)=0.063, p=0.020). PD was removed during the multiple regression analysis 

obtaining a significant regression equation for two predictors: L and C. Table 4 shows beta 

coefficients for these two variables that were statistically significant related to DOC, L 

(r(1082)=0.712, p=0.000), and C (r(1082)=0.569, p=0.000).  

 
Table 4. Multiple regression coefficients 

Variables β coefficients Std. error t Sig 

(Constant) -.056 .112 -.501 .616 

Leadership .559 .023 24.865 <.001 

Collegiality .305 .024 12.579 <.001 

 

A significant regression equation was found (F(2,1081)=715.210, p<0.001) with R=.755, 

R2=.570, and 57% of variance explained (adjusted R2=.569). A subsequent stepwise multiple 

regression analysis starting with the predictor leadership yielded the same regression equation. 

Overall, leadership is the best predictor of DOC. It is an expected result since leadership has 

been considered as one of the strongest facilitators for change in higher education, and leaders 

are seen as change agents (Kezar, 2013) in particular, in top-down changes. This means leaders 

are considered the ones who promote and lead changes initiated by the top of the organization's 
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hierarchy and attempt to affect faculty. In particular, this result confirms the essential role of 

department chairs in the department climate for change (Henderson et al., 2011; Walter et al., 

2016, 2021). However, as Knaub et al. (2018) highlight, not everyone can be a leader, 

particularly in the context of change. Organizations need individuals who can adapt easily to 

change (Wanberg & Banas, 2000). In particular, leaders as change agents should know how to 

create conditions for a change initiative and work with others (Quardokus & Henderson, 2015). 

Based on the questions that compose the leadership factor, department chairs who: are flexible, 

view changes in teaching positively, accept the possible struggles that come with change, 

recognize possibilities for improvement, and acknowledge the potentialities of the department in 

that process will have a significant role to set a department that is prepared for implementing 

change.  

Collegiality is also a predictor of DOC, although it is not the strongest. As a collective 

stance, the community and its relationships are a strong influential element in determining how 

the collectivity will scope challenges. In this case, the opportunity to discuss with colleagues 

about teaching, the use of different resources, or challenges that arise in classrooms seem to 

influence the department's willingness to accept different strategies in teaching. In particular, 

collegiality as an on-the-job learning opportunity creates the scenario for having a mathematics 

department willing to introduce different teaching strategies or resources.  

Surprisingly, PD is not a predictor of DOC. Since PD is an approach that seeks instructional 

improvement viewing the instructor as a learner, it is expected this factor influences the 

instructor, their practice, and the department on a broader level. However, some authors have 

reported that PD has a very limited impact on teaching practices (Cobb & Jackson, 2011; 

Guskey, 2002) and unsuccessful results on teacher change (Parise & Spillane, 2010; Simon, 

2013). Thus, although the impact of PD in teacher learning is undeniable, there is a doubt about 

the effect of PD on change at the instructional and departmental levels.  

Additionally, a backward multiple regression was conducted to identify if instructors' self-

efficacy was also a predictor of DOC. In this case, also a significant regression equation was 

found (F(3, 1086)=498.123, p<0.001) with R=.761, R2=.579, and 58% of variance explained 

(adjusted R2=.578). The following table shows the coefficients: 

 
Table 5, Multiple regression coefficients including SE variable 

Variables β coefficients Std. error t Sig 

(Constant) -.660 .165 -3.998 <.001 

Leadership .548 .022 24.601 <.001 

Collegiality .304 .024 12.724 <.001 

Self-efficacy .201 .041 4.949 <.001 

  

Self-efficacy is a significant predictor of DOC (p<.001). Although not in high proportion, the 

model increases the percentage of variance explained, which means self-efficacy as a predictor 

improves the regression equation. 

Discussion  

The SCII proved to be a useful tool for investigating the extent to which faculty view their 

departments as open to change. In addition to the factors already identified within the SCII 

(Walter et al., 2016, 2021), the EFA conducted here demonstrated that the SCII has a 

considerable potential to study even more specific factors than those considered in the 

instrument's design. For instance, the factor DOC arose with high reliability (α=0.807).  
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Commonly, the study of change in educational settings has concentrated on the process of 

implementation or afterward; the SCII and, in particular, the idea of DOC would enable to 

identify the grounds for studying change not just during the implementation but also before. 

Investigating DOC allowed to identify specific elements as part of the department climate to 

analyze the state of a department to implement new strategies or resources to improve teaching. 

In this way, I found three significant predictors: leadership, collegiality, and self-efficacy. As the 

type of individual leadership, it lies in the department chair. The study reveals that an open-

minded department chair willing to manage the difficulties that could come with changes in 

teaching strategies or with the introduction of different sources could increment DOC. 

Meanwhile, collegiality is an expected predictor since it shapes the interactions between the 

community members. Finally, self-efficacy has a subjective nature and predicts DOC, maybe by 

increasing the instructors' trustiness in their ability to face challenges.  

Although this study confirmed the influence of individual leadership in a change in the 

department, particularly in DOC, for future work, it could be worthy to identify since a 

descriptive view, how the individual leadership may influence DOC. Similarly, other types of 

leadership, such as shared leadership (Kezar, 2013), seem to have great potential to influence 

DOC. Inquiring how these collective views of leadership influence change would also bring 

essential steps to understand change phenomena.  

There is an open question regarding the influence of PD in DOC. On one way, PD is one of 

the components of the SCII. Also, many studies in K-12 education focus on the relationship 

between PD and instructional improvement; some of them included characteristics of 

effectiveness to produce deep and significant changes in mathematics teaching practices (e.g., 

Boström & Palm, 2020). On the other way, the relationship between PD and change in teaching 

practices is not clearly defined. Although that result could sound striking, it is important to recall 

the finding from Opfer and Pedder (2011). They establish that the literature about PD's effects 

has the epistemological fallacy of assuming some measures of teacher change as teacher 

learning.   

There is also another open question about how self-efficacy, which is a variable with an 

individual nature, influences DOC. One possibility could rely on what has been called teachers' 

collective efficacy, which refers to teachers' beliefs about their collective capacity to do a task 

(Klassen et al., 2011; Skaalvik & Skaalvik, 2007). Instructors' self-efficacy could influence their 

confidence as a collective producing a better disposition to implement a change in the 

department.  
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Fostering mathematical creativity in the classroom requires intentional actions on the part of the 

instructor. We examine the teaching actions that students in a creativity-based Calculus I course 

report as contributing to their sense of creativity. Based on interview data, we found the four 

overall types of teaching actions: Task-Related, Teaching-Centered, Inquiry Teaching, and 

Holistic Teaching. We discuss subtypes as well as concrete actions, to provide actionable steps 

practitioners can take to foster students’ creativity.    

Keywords: creativity, Calculus I, teacher actions 

Educational efforts to prepare students for Science, Technology, Engineering, and 

Mathematics (STEM) related jobs need to be furthered to prepare the STEM workforce to tackle 

ill-defined problems with no clear solution paths (Wilson et al., 2017). Fostering creativity in 

mathematics classrooms help develops this (Leikin, 2014), but at the tertiary level such 

classroom experiences are often restricted to pre-service teachers (Shriki, 2010) or mathematics 

majors in upper-level courses beyond Calculus I (Zazkis & Holton, 2009). By the time 

mathematics is exposed as a creative subject, we have lost many potential STEM majors, due to 

the ways in which calculus serves as a gateway course (Moreno & Muller, 1999). We argue that 

creativity must be fostered as early as Calculus I.  

The role of teachers in fostering students’ mathematical creativity is crucial. Moore-Russo 

and Demler (2019), citing Aiken (1973) stated that “teachers [are] the keys to unlocking 

creativity in the classroom” (p. 1). This is furthered by Hershkovitz, Peled, and Littler’s (2009) 

statement: “creativity in mathematics classroom[s] can be improved through appropriate teaching 

methods” (p. 255). However, most discussion of how to foster creativity has been theoretical 

and/or at the K-12 level (e.g., Levenson, 2011, 2013). There is a need for actions tertiary 

instructors can take that are grounded in empirical data. In this paper, we explore teacher actions, 

as reported by undergraduate students, that fostered their sense of creativity in a creativity-based 

Calculus I course. Using qualitative coding, we present types and subtypes of actions that 

students discussed in interviews to provide practical actions that instructors can take.   

 

Conceptual Framework & Background Literature 

Creativity 

We take a stance that mathematical creativity is relative to the student (Liljedahl & Sriraman, 

2006; Zazkis & Holton, 2009); if any item (process or product) is new to the student then that is 

an act of creativity. This perspective differs from absolute creativity, which requires an item to 

be new to the field of mathematics (Kaufman & Beghetto, 2013; Leikin, 2009) to be considered 

creative. This discussion of relative versus absolute creativity is also reflected in the 

psychological literature, discussed as Big-C creativity (absolute) versus little-c creativity 

(relative) (Beghetto & Kaufman, 2007; Levenson, 2011). In educational settings, where the goal 

is to support students, relative creativity may be most relevant. We therefore take a 

24th Annual Conference on Research in Undergraduate Mathematics Education 536



developmental perspective on creativity: that a person’s creativity can and does develop over 

time (not fixed). The main focus of investigation then is a person’s process and actions, as 

opposed to the product created (Kozbelt, Beghetto, & Runco, 2010). Given that a person’s 

creativity can change, this implies creativity can be honed by an instructor’s processes and 

actions.  

Teacher Actions 

We consider a teaching action to be any act (physical, written, or verbal) in or out of the 

classroom that can be attributed directly to the teacher. Teaching actions share similarities to 

teaching practices (e.g. Ponte & Chapman, 2006). According to Ponte and Quaresma (2016), 

these actions can be “framed by two basic elements: the tasks proposed to the students, and the 

communication processes that take place in the classroom” (p. 52). Teacher actions have been 

one of the important constructs of research studies within inquiry-based and inquiry-oriented 

teaching. For example, Kuster et al. (2018) identified “four primary components of inquiry-

oriented instruction: 1) generating student ways of reasoning, 2) building on student 

contributions, 3) developing a shared understanding, and 4) connecting to standard mathematical 

language and notation” (p. 2). For each component, Kuster et al. provided examples of 

instructional actions. For instance, when generating student ways of reasoning, Kuster et al. 

stated a description in action, including: “The teacher explicitly asks students to share their 

approaches to the tasks and the reasoning the students used to complete those tasks” (p. 6). In 

this paper, we follow a similar trajectory of categorizing creativity-oriented instruction through 

providing specific and explicit actions as reported by students that fostered their mathematical 

creativity. 

 

Actions to Foster Creativity: K-12 & Tertiary  

 Actions to foster mathematical creativity proposed in the literature at the tertiary level are 

largely theoretical or conjectural (Sriraman, 2005). At the lower grades, Levenson (2011, 2013) 

explored fostering mathematical creativity at the 5th and 6th grades. Levenson (2013) found 

concrete actions that fostered creativity: “choosing appropriate tasks, fostering a safe 

environment where students can challenge norms without fear of repercussion; playing the role 

of expert participant by providing a breakdown of the mathematics behind a process; and setting 

the pace, allowing for incubation” (p. 273). Both Sriraman’s theoretical principles and 

Levenson’s empirical findings agree with some of the educational psychology literature, 

including Cropley’s (1997, 2018) nine categories of fostering creativity. Levenson (2011, 2013) 

is one of the few that identified concrete actions grounded in data of fostering creativity.  

In the context of tertiary education, Zazkis and Holton (2009) spoke about one crucial aspect 

of fostering creativity: “for a student to be creative, the instructor has to provide a problem where 

creativity can be shown” (p. 346). They included tasks in specific topics (e.g., graph and number 

theory). The authors suggested other tasks, including Watson and Mason’s (2005) learner-

generated examples, Leikin’s (2013) multiple-solution tasks, and Shriki’s (2008) explicitly 

valuing creating new mathematical concepts. They concluded with some teaching actions that 

“attend to the ‘flow’ of students’ thinking, rather than setting the boundaries of formal 

mathematical curriculum” (p. 361). Shriki (2010), focusing on pre-service teacher education, 

furthered the research by allowing students to create new geometrical concepts and questions 

over the course of six weeks. They starkly stated, “Refraining from development of creativity in 

the classroom conveys the impression that mathematics is merely a set of skills and rules to 
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memorize, and in doing so, many students’ natural curiosity and enthusiasm for mathematics 

might vanish” (2010, p. 161-162).  

We aim to complement these existing, mostly theoretical or conjectural work, by supplying 

ways of fostering creativity through practical actions that instructors could apply in their tertiary 

Calculus I courses. Given the need for actions grounded in data, coupled with the need for more 

creativity in calculus (Ryals & Keene, 2017), our research question is: What are the teaching 

actions that calculus students have reported as fostering their sense of creativity? 

 

Methods 

Participants were 34 undergraduates enrolled in Calculus I courses across various institutions 

in the United States. This study is part of a larger NSF-sponsored research project investigating 

fostering mathematical creativity in calculus. Participants were spread across two cohorts: Spring 

2019 (C1) and Spring 2020 (C2). Twenty-four students identified as female (four bi-racial, five 

Latina, four Black, two AAPI, one Persian, eight White), nine as male (one bi-racial, one AAPI, 

one Latino/Hispanic, six White), and one as non-binary (White). 

Instructors who taught these courses took part in a weekly online professional development 

about fostering creativity in Calculus I as part of a larger NSF-funded grant, where they designed 

and implemented at least six creativity-based tasks (El Turkey et al., 2020) and used a reflection 

rubric for creativity (Karakok et al., 2020) in their classroom.   

 

Data Collection, Sources, & Analysis 

We conducted semi-structured interviews with all participants. Interviews lasted 45-90 

minutes long and took place over video conferencing software. The researcher asked questions 

such as “Did you feel creative in this course?”, “Why and when do think you were creative?”, 

“What have you learned about your mathematical creativity from this course?”, and “What 

aspects of this course contributed to your or your classmates’ creativity in the course?” 

Interviews were transcribed using a third-party transcription service and uploaded to the software 

nVivo™ for further analysis.  

Because our theoretical stance was students’ relative mathematical creativity, we examined 

each student’s response to “Did you feel creative in your Calculus 1 course?” If they answered 

“yes,” we looked at the reasons they gave for why they felt creative. If they answered “no,” we 

looked at actions stated in the follow-up questions about their peers’ creativity in the classroom. 

This was to account for students who did not see themselves or may not have felt comfortable 

stating they were creative during the interview but perceived a fellow classmate as creative. Two 

authors used holistic coding (Saldaña, 2016, p. 142) to identify (1) teacher actions: any student 

utterance about what the teacher did in reference to themselves or the class as a whole and (2) 

instances of creativity: any specific mention of creativity or answers to questions pertaining to 

mathematical creativity. In doing so, we identified teacher actions that fostered creativity. 

For the first round of coding, we looked at the intersection of creativity and teacher actions, 

specifically if a student referenced a teaching action when talking about their own creativity. 

Two authors created teaching action nodes using a combination of descriptive and in vivo coding 

(Saldaña, 2016) and created 40 nodes. From those nodes, we used the process of theming 

(Saldaña, 2016) and organized them into five initial types based on emerging themes: Task-

Related, Assessment-Related, Teacher-Centered, Inquiry Teaching, and Holistic Teaching. 

Within each of these types, we then read over all 211 instances of teaching actions mentioned 
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and identified further sub-types. Due to the low number of instances and similarities in theme, 

we subsumed Assessment-Related under Task-Related as a subtype, resulting in four types.  

   

Results 

We created four overall types of teaching actions from analyzed student utterances related to 

fostering their own creativity. These types are separated into two overall categories, as inspired 

by Ponte and Quaresma (2016): actions that are part of the design of tasks and assessments, and 

actions that are part of the implementation of those tasks in class (See Table 1). These are 

teaching actions that the students reported as fostering their mathematical creativity in calculus; 

this does not consider teachers’ perceptions of fostering creativity.  
 

Table 1. Teacher actions reported to foster creativity, by type and frequency. 

 

Type Subtypes (with excerpts of teaching actions) 

D
es

ig
n

 

Task- 

Related 

(76) 

Design High-Cognitive Tasks: 

assign create new definitions, theorems, functions, and problems; assign 

solve created problems; assign problems that require making connections; 

give higher-order-thinking tasks 

Include Meta-Task Properties: 

provide group-worthy tasks, assign writing assignments such as 

journaling/reflections, revising homework 

Assessment-Related:  

assess open-ended questions, assess journaling assignments, assess creating 

new theorems, assess purposefully, de-emphasize correctness in assessment, 

does not assess drafts 

Im
p

le
m

en
ta

ti
o
n

 

Teacher-

Centered 

(18) 

Teacher Answers: 

give different ways to solve problems, use online lecture videos, teach how 

topics are connected, review material 

Teacher Guides: 

foster understanding, persist to foster understanding, guide to correct answer, 

allow students to quietly work 

Inquiry 

Teaching 

(50) 

Allow for Discussion:  

allow for discussion in class, allow for students to build (on other’s 

thinking), divide class into groups 

Allow to Present: 

allow to present in class 

Teacher Active Listening: 

be aware of students’ actions, encourage participation, inquire into students’ 

thinking 
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Holistic 

Teaching 

(67) 

Encourage Mathematical Behavior: 

prompt and encourage different approaches or divergent thinking; de-

emphasize correctness in class; allow students freedom of time; use of the 

Creativity-in-Progress Rubric on Problem Solving tool (Karakok et al., 2020) 

Attend to Emotional Space: 

explicitly encourage students in their creativity, show excitement after 

student contributions, respect differences in the classroom 

 

Within our dataset, the most frequently reported types were Task-Related, Inquiry Teaching, 

and Holistic Teaching. We focus our results on these three, as each had over 50 reported 

instances (out of 211). Teacher-Centered had the fewest: 18 instances. We defined Teacher-

Centered as any action that was mostly focused on the instructor, whether it be verifying 

correctness or connecting topics. Given the low number and that they primarily consisted of 

typical teaching actions that many instructors already undertake, we do not expand on it here.   

 

Task-Related 

We defined Task-Related as any action that mentions properties of a mathematical content 

task that were (re-)designed, evaluated, or assessed by the instructor. Actions of this type were 

split into three subtypes. The first sub-type, Design High-Cognitive Demand Tasks, were made 

of teacher actions that were essentially about designing tasks with high cognitive demand (Stein 

& Smith, 1998). For example, Abbie (White woman, C1) discussed problem posing as fostering 

her creativity: “We had to create and solve most of our own problems based on problems in the 

textbook.” Bryan (White woman, C1) also talked about the choice of assigning word problems 

that provide a “need to understand the concept in order to solve the problem.” She went on to 

talk about making a connection with “information we’ve already learned in previous things and 

applying it here or just being very um inventive and creative about how to solve the problem.”  

The next sub-type, Include Meta-Task Properties, were about overall properties of the task 

itself that were not necessarily part of high-cognitive demand tasks. These tasks were not 

content-focused, but rather prompted the students to think about their problem-solving processes 

or reflect on how others thought about content. For example, Sal (Biracial Filipina American 

woman, C2) stated that “I know we had one class about thinking creatively and how to approach 

a math problem in a creative situation or asking, are there? Is it possible to approach a problem 

with a different mindset or different mannerisms?” This also involved re-evaluating homework 

or getting together in groups to discuss homework that had been done, in order to “understand 

how we went through the process to get our answer” (Breezy, Mexican man, C2). 

The last sub-type, Assessment-Related, consisted of any mentions of how an assignment was 

graded or of tasks on quizzes or exams. For example, Bryan shared how homework was graded 

on a complete/incomplete scale. Murphy (White woman, C1) also said that the instructor would 

“give them [problems] back to us with like a little bit more notes on it just saying like oh that’s 

interesting. Like the way that you found that and if you like you could have done this or this and 

that was good.” We note that there were very few reported instances of Assessment-Related 

actions (11). Moreover, most of the instances (7) were in reference to one instructor. We explore 

what this lack of students reporting Assessment-related actions could mean in the Discussion.   

 

Inquiry Teaching 
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Inquiry Teaching was defined as any action that can be linked to inquiry-oriented (or -based) 

instruction. We center the definition of active learning on two previous studies: Shultz and 

Herbst (2020) and Kuster et al. (2018). Shultz and Herbst (2020) created the INQUIRE (inquiry-

oriented instruction review) instrument with four constructs about in-class teacher instruction: 

“interactive lecture, hinting without telling, group work, and student presentations” (p. 532). 

With these understandings of inquiry-oriented instruction, we saw the following three sub-types 

in our coding: Allow for Discussion, Allow to Present and Teacher Active Listening.  

Allow for Discussion actions were about student discussion and characterized by group work, 

including actions as basic as divide the class into groups for deeper attention to student thinking 

such as allow for students to build knowledge. JCRU (Black woman, C2), in response to what 

contributed to her creativity, stated: “we all are able to learn from each other and build off of 

other people’s ideas. Or take it and add a little something or maybe change it a little bit to make 

it work and make sense for us.” 

Allow to Present actions were also about student discourse but in front of the whole class. 

For example, interactive lecture was one way that Amelia (White woman, C2) reported her 

instructor contributed to her sense of creativity. The instructor “would always ask, like, how 

someone solved something. And then she would ask if someone solved it in a different way. And 

so she kind of wanted us to think differently and have different solutions.”  

Teacher Active Listening actions were where the teacher attended seriously to student voices. 

Aon (Black woman, C2) said her professor was aware of students’ actions in the classroom: 

We did the problem, but we did it in a different way. And she compared the two ways 

and told me, “what’s good about this way? What’s good about this way?” So I feel 

that right there, her showing us, the students, different ways to do different problems 

showed her creativity and showed how, like she’s able to adapt to everyone’s learning 

style, learning that everyone won’t be able to learn something as quickly in one way. 

 

Holistic Teaching 

Holistic Teaching consists of any teaching actions that do not require a response from 

students yet psychologically build an environment for fostering creativity. Within this type, there 

were two subtypes: Encourage Mathematical Behavior, which encourages mathematical 

behaviors that lead to creativity, as well as Attend to Emotional Space which attends to the 

student’s affect. For example, Jmenard (White man, C2) shared the impact of his instructor 

promoting students’ different responses on the growth of his sense of creativity: 

We spent like a whole 10 minutes, just everybody coming up with their own, you know, 

thoughts of what are different examples and then we went through them all together and she 

didn’t tell anyone that they were wrong. She was just like, ‘Well, I don’t think that is one. 

Can you try to prove me wrong’ or, ‘Yeah, that is one. Can you prove [to] me why you’re 

right.’ Or, you know, so and so forth. So you’re not in a situation where there’s only one and 

one acceptable answer…So then that’s where the creativity side gets in, because you’re not 

worried about just doing a bunch of homework and applying the formula and just essentially 

robotic type learning. To where it’s so I can actually learn the material, get comfortable with 

it. And then when it comes time to applying it, I can apply it any which way I want. And as 

long as I can convince the teacher that I’m right, then I’m right, you know? 

 

Attend to Emotional Space actions attended to students’ emotional states, by including 

supportive actions. As an example, Jennifer (White woman, C2) discussed how her instructor 

24th Annual Conference on Research in Undergraduate Mathematics Education 541



encouraged creativity: “He always tried to show the different ways that we would solve stuff, 

because he knew that some of us did do it that way and some of us did this way. So he always 

encouraged that even if it wasn’t the most conventional method to use he would always 

encourage everyone’s methods.” She also shared that “he would always get excited whenever we 

would answer the questions and everything. And that whenever we would be understanding [the 

content]. So, it was just nice to see that he was rooting for us, (laughing) I guess all the time.” 

Holistic Teaching was made up of actions where instructors relinquished some control of the 

classroom. Some of the creativity-fostering actions reported involved uncertainty in solutions or 

understanding and acknowledging that teachers can learn from students. For example, Frost 

(Native American/Latinx/white man, C1) stated: 

[T]here’s never…any negative outcome whenever you try and fail with him. It’s like ‘Oh you 

tried this. That’s a good idea. But maybe next time like or what else could you do in this 

situation?’ and he’ll make you think through it and then eventually you’ll solve it yourself.  

This shows the impact of how students feeling there are no negative impacts to their attempts can 

lead to positive attitudes and mathematical practices that feed into feeling creative.    

 

Discussion 

In summary, we themed teaching actions that Calculus I students reported fostered their 

sense of creativity: Task-Related, Teacher-Centered, Inquiry Teaching, and Holistic Teaching. 

We further split these into subtypes, to show the breadth of actions teachers can take to foster 

students’ creativity. We provided practical actions, as examples within these types and sub-types, 

to provide actionable recommendations for instructors looking to further creativity in their 

Calculus I classrooms. We note that these actions are from the students’ (not instructor) 

perspective. We did not corroborate whether instructors in fact did these actions. Given our lens 

of creativity and that the individual themselves is the ultimate judge of whether they felt creative 

(independent of their reporting of it to us), students’ judgments of what their instructor did that 

actively contributed to their sense of creativity are most valuable.  

A number of the Task-Related teaching actions corroborate findings within the mathematical 

creativity literature (e.g., Levenson, 2013) and our own previous findings regarding creativity 

task features (El Turkey et al., 2020), e.g., different approaches leading to one answer, posing 

problems and questions, allows for originality/novelty, and uncertainty. That these are reflected 

in what students report back (versus the instructor/task designer perspective) and that moreover 

stand out in memory for them confirms that students are noticing their importance.  

Our work confirms Hassi and Laursen’s (2015) findings that “…inquiry, collaborative 

problem solving, and class discussions seemed to foster students’ creativity and flexibility, 

growth that also improved their learning in other classes, and in everyday life” (p. 17). Next 

steps include exploring the further impact of these teaching actions on students, namely on their 

affect. We will link specific teaching actions to specific affective or other desired outcomes, so 

that instructors can choose which teaching actions to focus on, given their classroom goals. 

Another step is to use the themes from this paper to analyze classroom video data to identify 

what the teachers in fact did. This work may serve as a basis for developing a Creativity-

Fostering Teaching Guide for practitioners. Our results suggest that teaching to foster creativity 

does not require a complete redesign of a class but can be done in little changes by incorporating 

some of the actions listed here. 
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Students’ Conceptual Understanding of Normalization of Vectors from ℝ2 to ℂ2 

 

Benjamin P. Schermerhorn Megan Wawro 

Virginia Tech Virginia Tech 

 

Interdisciplinary studies illuminate ways mathematics is incorporated into core STEM courses. 

Vector normalization is a crosscutting idea that appears in several mathematics and physics 

courses. The research question pursued in this study is: how do quantum physics students reason 

about normalization of vectors from ℝ2 and ℂ2, before and after quantum mechanics 

instruction? The data are analyzed using the theory of coordination classes (diSessa & Sherin, 

1998). Results focus on students’ thinking as they normalize different types of vectors: (A) a real 

vector and (B) a complex vector before instruction; and (C) a complex vector after instruction. 

Analysis identifies the ideas students coordinate when problem solving, which problem aspects 

students attend to, and how students take up or disregard ideas while they problem solve. 

 

Keywords: linear algebra, quantum mechanics, normalization, coordination class theory. 

  

Interdisciplinary studies have a significant role within mathematics education research 

because they illuminate the ways mathematics is incorporated into core science, technology, 

engineering, and mathematics (STEM) courses. For example, many physics programs require 

students to take mathematics courses in integral and vector calculus, differential equations, and 

linear algebra. In these courses, problem solving and reasoning involve a coordination of 

discipline-specific and mathematical knowledge (e.g., Christensen & Thompson, 2012; Hu & 

Rebello, 2013; Uhden et al., 2012; Wagner et al., 2011; Wittman & Black, 2015). 

Physics and mathematics education researchers have started investigating student thinking 

around how linear algebra concepts are used in quantum mechanics. These areas of research 

include eignetheory (Dreyfus et al. 2017; Her & Loverude, 2020; Wawro et al., 2019), notation 

(Gire & Price, 2015; Wawro et al., 2020), expectation values (Schermerhorn et al., 2019), basis 

and change of basis (Serbin, et al., 2021; Close et al., 2013), and boundary conditions (Ryan & 

Schermerhorn, 2020). One mathematical concept that is essential to quantum mechanics is vector 

normalization, a crosscutting idea that also appears in several other mathematics and physics 

courses. Despite students encountering normalization several times in their undergraduate 

studies, students’ understanding of normalization has been relatively uninvestigated. In this 

study, we pursue the research question: how do quantum physics students reason about 

normalization of vectors from ℝ2 and ℂ2, before and after quantum mechanics instruction? 

 

Literature Review 

Research on students’ understanding of norms and normalization at the undergraduate level 

is sparse. There is some education literature where these ideas are relevant, such as student 

understanding of unit vectors. Barniol and Zavala (2011) asked physics students at a Mexican 

university to draw a unit vector in the direction of a vector drawn from the origin to the point 

(2,2) on the Cartesian plane. 22% of students gave a correct answer, 25% drew a vector from the 

origin to the point (1,1), and 14% drew the component vectors 2𝑖̂ and 2𝑗̂; these findings were 

confirmed in a subsequent study (Barniol & Zavala, 2014). Vega et al. (2016) investigated 

students’ abilities to draw unit vectors representing the motion of a particle moving in a two-

dimensional plane, where the unit vectors were in terms of polar unit vectors �̂� and 𝜃. Many 
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students drew vectors that did not satisfy the definition of a unit vector. The authors found four 

fundamental ideas to correctly solve this problem, namely that unit vectors: are vectors, have a 

length or magnitude of one, point in the increasing direction of the corresponding coordinate, and 

are dimensionless. This shows that finding a unit vector (i.e., normalizing) is not trivial. 

 

Theoretical perspective 

We analyze the data using the theory of coordination classes (diSessa & Sherin, 1998). 

Derived from a knowledge-in-pieces perspective (diSessa, 1993), a coordination class (CC) is a 

model for student understanding of a concept based on a networked system (or coordination) of 

context-specific knowledge elements. The theory of CC was developed as a means to define 

conceptual understanding and conceptual change (diSessa & Sherin, 1998) for the analysis of 

thinking and learning. To account for how information is determined from observation and from 

inference, a CC is divided into two parts: readout strategies and a causal net.  

The first component of a CC, Readout strategies, relates to how information is observed from 

the surrounding world, while the second component, a causal net, deals with inferences. Readout 

strategies are the processes by which the information is drawn out from the external source. 

diSessa and Sherin note that for many quantities in physics, the readout strategies mostly involve 

determining the value of the quantity in a given situation (1998). A readout strategy for a CC 

around the concept of “fastness” could mean attending to what is more (Parnafes, 2007).  

The second structural component of the CC, the causal net, represents the network of 

knowledge elements that connect observation to targeted information. This network can include 

small elements such as phenomenological primitives (diSessa, 1993) or more complex resources 

(Buteler & Coleoni, 2016; Wittmann, 2002). The causal net is often intertwined with the readout 

strategies. How students read information out of a given task can determine which elements are 

invoked and/or the causal net might influence strategies for answering a question.  

In addition to usefulness in describing conceptual understanding, CC theory was designed to 

map conceptual change as new information is integrated into understanding or previously held 

ideas are deemed inapplicable. Incorporation is the process of recruiting knowledge elements in a 

CC. New CCs can be constructed by an individual through reorganizing and extending existing 

readout strategies and causal nets from known CCs and other prior knowledge (diSessa & 

Sherin, 1998). Complimentary to incorporation, displacement is the acknowledgement that 

certain elements or ideas are not applicable or helpful in a particular context.  

 

Methods 

To analyze the impact of a quantum mechanics course on the ways students conceptualize 

normalization, interviews1 were conducted at two universities identified as University A and 

University C. Both universities offered a spins-first approach following the textbook Quantum 

Mechanics: A Paradigms Approach (McIntyre et al., 2012) and incorporated student-centered 

activities which encouraged discussion in the classroom. University A is a large, public, 

research-intensive university in the northwestern United States. The course enrolled 35 students 

and met seven hours a week for three weeks after a week-long preface on matrix methods. Linear 

algebra was a prerequisite course. University C is a medium-sized, public, research university in 

the northeastern US. The course met three hours a week for 15 weeks and enrolled 17 students. 

Following the textbook, eigentheory was first introduced in the context of spins before learning 

about wave functions in a continuous positions space. The second round of interviews was 

 
1  All interviews were conducted in-person prior to the COVID-19 global pandemic. 
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conducted within a few weeks of the conclusion of the spins content. As the prerequisite, 

students could take differential equations and linear algebra as one combined or two separate 

courses, and students saw some linear algebra in a mathematical methods for physics course.  

 Both the pre-interview and post-interview were semi-structured (Bernard, 1988), containing 

targeted questions related to thinking about normalization. Interviews were conducted using a 

think-aloud protocol and students were encouraged to discuss their choices when problem 

solving. The main stem for the interview questions are given in Figure 1. In the first interview 

(pre-interview), students were given two different vectors. Each was written on a piece of paper 

with the statement “Normalize the following vector.” The first vector did not include any 

complex terms. After students completed the normalization, they were asked what it means to 

normalize and why they chose that procedure to normalize 𝑣. Students were then presented with 

a second vector included complex terms in both components. This vector was changed at 

University C to align with a physics convention of having real-valued first components and 

complex-valued second components. Additionally, the vector components were chosen so that 

students who did not use the complex conjugate2 would arrive at ‖𝑤‖ = 0 and need to reconcile 

the connection of length with normalization. The second interview (post-interview) focused on a 

vector in ℂ2. Students were asked out loud to “Normalize a vector whose components are 3 and 

2i” so they could choose the representation of the vector. Students were again asked about their 

meaning for normalization and about their procedure. 

At University A, interviews were conducted with nine and eight students during the preface 

and at the course’s end, respectively; six students participated in both interviews. At University 

C, eight and nine students were interviewed in the first and eighth weeks, respectively; seven 

students participated in both interviews. All interviews were videotaped and transcribed. Written 

work was collected and scanned.  Participants were assigned pseudonyms “A#” or “C#” to 

identify them from a roster of all students in the courses. Students were not asked for their 

pronouns, so we use the gender-neutral singular pronoun “they” throughout the paper.  

Data analysis identified the knowledge elements (units of ideas) as students reasoned about 

normalization. CC theory is used to analyze (a) information students invoke when normalizing 

vectors and describing normalization, and (b) compare snapshots of students’ CCs to determine 

how the CCs are impacted by learning quantum mechanics. The second focus places interest on 

how knowledge of complex terms is incorporated into a student’s conceptual framework.  

Interview transcriptions were analyzed synchronously with the video data to account for 

students’ written work. Analysis specifically attended to ways students conceptualized or 

 

 University A University C 

 
Pre-interview 

Normalize the following vector: 𝑣 = [
5
2

] 

Normalize the following vector:  

𝑤 = [
3 + 2𝑖
4 − 𝑖

] 

Normalize the following vector:  

𝑤 = [
3
3𝑖

] 

Post-interview  Please normalize a vector whose components are 3 and 2i. 

Figure 1: Overview of interview questions presented at University A and University C. The questions given during 

the first week of the course were written out on paper. The question given post-spins content was asked verbally. 

 
2For 𝑣 = [𝑣1 𝑣2]ϵℝ2, ‖𝑣‖ = √〈𝑣|𝑣〉 = √𝑣 ∙ 𝑣 = √𝑣1

2 + 𝑣2
2, but for vectors 𝑤 = [𝑤1 𝑤2]ϵℂ2, ‖𝑤‖ = √〈𝑤|𝑤〉 =

√𝑤1�̅�1 + 𝑤2�̅�2. The conjugation in the inner product for ℂ2 produces nonnegative magnitudes in ℝ for 𝑤 ≠ 0. 
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characterized vectors, vector representation, complex quantities, mathematical norms, and 

normalization. We performed inductive open coding (Miles et al., 2013) to identify knowledge 

elements, which were student ideas (complete thoughts or utterances expressing an idea), 

representational choices, or procedural choices.  

The initial coding of the knowledge elements incorporated the language used by students. For 

example, the two student utterances “that will give us the length, and we can divide that length 

to normalize the vector” and “So, I’m just going to divide v by the magnitude of v” resulted in 

two similar codes: “Dividing a vector by its length normalizes the vector” and “Normalization is 

vector divided by its magnitude,” varying only by the concepts of magnitude and length. Codes 

based on representational choices or calculation were also framed around student statements. A 

student who said “I’m going to do this in Dirac Notation” and a student who rewrote the vector 

in Dirac notation3 would both be coded as “A vector can be expressed using Dirac notation.” To 

interpret students’ readout strategies, the initial review of the transcripts involved identifying 

what elements or aspects students attended to when problem solving.  

 

Results 

We present students’ coordination classes as they normalize different types of vectors: (A) a 

real vector and (B) a complex vector during pre-interviews; and (C) a complex vector during 

post-interviews. Using a CC perspective, we identify the ideas students coordinate (causal net), 

which aspects of the problem statement students attend to (readouts), and the ways in which 

students take up or disregard ideas while they problem solve (incorporation and displacement).  

 

Pre-interviews for normalizing a real vector 

Overall, students were successful in normalizing a real vector. All but one student read out 

the coefficients of the vector and coordinated that the coefficients were squared and added. Four 

of seventeen students explicitly identified the dot product. Others bypassed the dot product by 

directly correlating magnitude or length with the square root of the sum of squared components.  

We first present the CC established by A11 to highlight the method of data analysis, then 

expand discussion to other students. A11 correctly approached the procedure for normalization:  

A11: Normalize the following vector. Uh, well, we just, we solve for the dot product, 

which is v-dot-v, which would be five-squared plus two-squared. And we want to square 

root that, and divide by it. So, you'd have v divided by the square root of v-dot-v.  

A11 immediately connected normalization and the dot product. We identify a knowledge 

element “Normalization involves a dot product.” They then coordinated this element with their 

reading out of the components, an element we label “Dot product adds the components squared.” 

Lastly, they take the result of the calculation and divide it into the original vector, which is 

identified by the element “Normalization involves dividing by the square root of the dot 

product.'' The progression of ideas in the causal net is shown by (1)-(3) in Figure 2.  

When asked to “explain why you chose that process,” A11 introduced the idea of magnitude 

and unit vectors, and reiterates several of the earlier connections.  

A11: Oh, so, to find the magnitude of v, square root of that [v-dot-v] …  To normalize it, 

I took v and I divided by the magnitude of v. It's taking the vector and dividing by its 

length. ... What's the symbol for a unit vector? … [the] hat kinda tells you it's normalized. 

Figure 2 shows the causal net with the elements from the student’s additional explanation. Since 

the student references the dot product they wrote in their initial calculation, we can draw a  

 
3 Dirac notation uses bras, ⟨𝑣|, and kets, |𝑣⟩, to represent row and column vectors, respectively. 
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Figure 2. A depiction of A11 CC after they are asked to explain their process. Elements 1-3 were part of their 

original solution., while the remaining elements appear during further explanation.  

 

connection between their first element and “Magnitude is the square root of the dot product.” 

They coordinate this information with the element “Normalized vector is divided by its 

[magnitude/length].” The subsequent discussion of division, as the student finalizes their 

response, is why we connect this element with their initial element (3) in Figure 2.  

Our analysis of A11’s initial solution provides a look at the sequence of knowledge elements 

that led from the observed prompt to the determined output. As the student explained their 

process in response to the interviewer, other elements were identified ((4)-(6) in Figure 2). 

Three students approached normalization geometrically, either through graphing on a set of 

Cartesian axes or by representing a triangle, as exemplified by C7 below.  

C7: 5 units along one basis vector and two units along the other basis vector which is 

orthogonal. [draws triangle] … the magnitude of this entire vector would be 52 plus 22. 

C7 coordinated an earlier element “Normalization makes magnitude 1” with elements: “Vector 

forms a triangle,” “Components are amounts along basis directions” and “Magnitude is sum of 

components squared.” Reading out the components as a number of units, C7 identified the 

magnitude in a physicalized space, albeit incorrectly since they did not include a square root.  

C7 was the only student in the pre-interviews to invoke the use of an arbitrary constant.  

C7 (continued): But we need to normalize that so if I say constant C times 52 plus 22 

equals... C times 29 is one. … So, C is equal to 1 [over] 29, that way it is equal to one. 

[Adds 1/29 to expanded vector] But then how do I get// Oh, I could say that’s 5 over the 

sqrt of 29 all of that squared plus 2 over the sqrt of 29. All that squared equals one. 

A traditional physics approach is to include a normalization constant within a given vector and 

then solve 𝑣 ⋅ 𝑣 = 1 to determine the constant. Inconsistent with the physics approach, C7 

applied a constant after the dot product was calculated (Figure 3). We identify a coordination 

between “Normalize involves multiplying by a constant” and “Constant times the magnitude is 

one.” These connections result in the determination of the constant and a normalized vector.  

Three other students read out “normalize” from the question statement, and activate a CC for 

finding the normal vector. Two of these students end up displacing the incorrect elements by 

separating the ideas of finding a normal vector and normalization as involving magnitude.  

 

                 
Figure 3. C7’s written work where they multiply a constant by the result of their dot product. They then solve 

for the constant as part of finding the normalized vector.  

24th Annual Conference on Research in Undergraduate Mathematics Education 549



 

Pre-interviews for normalizing a complex vector 

The additional readout of an imaginary number requires a shift in thinking to include 

complex conjugates. Most commonly, 10 of 16 students4 did not incorporate elements for 

complex vectors. The causal nets were similar to those for the first task. Students commonly 

invoked the summation of squared components and the division by the square root. As an 

example, A11 applies the same strategy as with the real vector.  

A11: So, you do 3 + 2i squared, uh, plus 4 - i squared, square root of that. That's going to 

equal the w magnitude. [Calculates to √20 + 20𝑖] … divide by that. 

A11 begins the same process of summing the components squared as they did with the dot 

product for the initial vector. They take the square root and identify the result as the magnitude, 

consistent with the knowledge element “Magnitude of the vector is the square root of the dot 

product.” Lastly, they divide the vector, w, by the magnitude. Figure 4 shows the relevant 

knowledge elements that were identified overlapping with the student’s initial causal net.   

Six students identify the imaginary component and change their strategies to incorporate the 

idea of a dot product of the vector with its complex conjugate, as shown by C7 below.  

C7: I think I am going to be using a complex conjugate but I am not sure. So first of all, 

to get the magnitude of w, I am going to do w vector times w vector star. … that is 3+3i 

times 3-3i right. That is equal to ... 18 and then I have got to square root the whole thing.  

After being presented with a complex vector, C7 identified the need for a complex conjugate, 

𝑤*. They changed the sign of the 𝑖 term and carried out a dot product between 𝑤 and 𝑤*. They 

determined the magnitude as the result of the calculation, the square root of 18. The elements 

used by C7 up to this point are consistent with other students’ causal nets for incorporating 

complex terms. However, C7 went on to use a constant and again invoked the elements 

“Normalized vector has a magnitude of one” and “Constant times multiplied vectors is one.”  

 

Post-Interviews with a complex vector 

Following instruction in quantum mechanics, all students invoked the complex conjugate and 

only one of seventeen students incorrectly normalized the vector. The majority carry out 

normalization by independently finding the magnitude of the vector and then dividing by it.  

The most common method was calculating the inner product of a vector with its complex 

conjugate, then dividing by the square root of the result. A11 now exemplifies this process.   

A11: Ok, so normalize it. ... v dot v ... would be, uh, 32 plus negative (2i)2 [laughs] because 

now, we know how to do that, and that's 9 plus 4 and that's going to be 13. So, you're going 

to have v normalized, is going to be 1 over root 13, … you take v, and you multiply by its 

complex conjugate, ... so this would be 3 times 3 plus 2i times negative 2i. 

In addition to elements related to the dot product, A11 referenced the complex conjugate in their 

 

 
FIGURE 4. A11’s causal net for normalizing a complex vector, which incorporates the same knowledge elements.  

 
4 One student did not get the question with the complex vector, since they did not complete the first task.   
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explanation. Here, we identify “Dot product is between vector and complex conjugate” and 

“Complex conjugate adds a negative sign to the imaginary term.”   

Three of the four students using Dirac notation were also among the four to apply a 

normalization constant. As part of the post-interviews, C7 accurately applied the constant to the 

vector (not the dot product), consistent with other students who applied this method.  

C7: Now, to normalize … there needs to be some scalar times these two [kets] such that 

when I square the components of them and add them together, I'll get a total of one. ... v 

bra times v ket is equal to one, alright? So complex conjugate times [writing].  All that 

times the normal thing [initial vector].  So, C 3 up ket plus C 2i minus ket. (Figure 5) 

In C7’s work, we identify the elements “Normalization involves a scalar” and “Multiplying by 

scalar means sum of the components squared is 1.” C7 then sets the Dirac inner product equal to 

one and writes out both the bra and ket in terms of the basis vectors as shown in Figure 5. They 

then invoke elements “Bra is the complex conjugate,” consistent with the application of Dirac 

notation in physics, and “Complex conjugate changes the sign of the imaginary terms.”  

 

Discussion 

Vector normalization is a cross-cutting concept that spans both mathematics and physics 

instruction. This work informs on physics students' conceptualizations of normalization of both 

real and complex vectors. The use of interviews before and after relevant instruction explore the 

way the concept of normalization changes following instruction in quantum mechanics.  

Pre-interviews establish a baseline for thinking about normalization, in which all but one 

student normalized the vector correctly. Students commonly coordinated elements related to dot 

products, the sum of squared components, dividing by a square root, and magnitude or length of 

a vector. The transition to the complex vector resulted in about two-thirds of students invoking 

the same knowledge elements, and thereby utilizing the same CC. Students that correctly 

normalized, incorporated additional elements related to complex vectors into their causal net, 

such as needing a dot product of the vector with its complex conjugate.  

In the post-interviews, all but one student correctly normalized the complex vector. By the 

end of quantum mechanics, students successfully incorporated elements related to complex 

vectors into their causal nets. The identified CC became more consistent with the standard 

approaches for normalization within both physics and mathematics.  

The results provide information to mathematics instructors about how mathematics is applied 

in a physics course. For example, the use of a constant to normalize a vector is a common 

practice in quantum mechanics that is taken up by students following quantum instruction. This 

research further reports common knowledge elements used by students to construct a process for 

normalization by way of coordination class theory from physics education research. 

 

 
Figure 5. C7’s work using a normalization constant. C7 applies C* with the complex conjugate vector but later 

choose C to be real and positive, consistent with physics conventions.  
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Ways that Student Reasoning about Linear Algebra Concepts Can Support Flexibility in  

Solving Quantum Mechanics Problems 

 

 Kaitlyn Stephens Serbin Megan Wawro 

 University of Texas Rio Grande Valley Virginia Tech 

Reasoning with mathematics plays an important role in solving quantum mechanics problems. In 

addition to understanding mathematical concepts and procedures, physics students often connect 

the content areas by mathematizing physical constructs in terms of their associated mathematical 

structures and by interpreting mathematical entities in terms of the physical context. In this 

study, we investigate undergraduate physics students’ reasoning about linear algebra in two 

quantum mechanics problems. Through analysis of interview data from twelve students, results 

show that student reasoning about orthonormal bases, change of basis, and inner products 

informed their flexibility in choosing problem-solving approaches. We illustrate the results with 

student reasoning examples and provide directions for future research. 

Keywords: Linear algebra, Quantum mechanics, Student reasoning, Flexibility, Problem-solving 

Mathematics and physics have an interconnected, reflexive relationship. Physical problems 

motivated the origins of several mathematics concepts, and the mathematization of physical 

phenomena often enables the development of physical theory. According to Uhden et al. (2012), 

“the role of mathematics in physics has multiple aspects: it serves as a tool (pragmatic 

perspective), it acts as a language (communicative function) and it provides a way of logical 

deductive reasoning (structural function)” (p. 486). Due to the entangled nature of mathematics 

and physics, it is essential for undergraduate physics students to reason with mathematics as they 

solve physical problems. They often make connections between concepts and procedures learned 

in mathematics and physics courses, and these sometimes vary between the two disciplines.  

In this paper, we examine undergraduate physics students’ mathematical reasoning used as 

they solve two probability problems in the context of quantum mechanics (see Figure 1). We 

address the following research question: How do undergraduate physics students reason with 

mathematical concepts and procedures as they solve quantum mechanics problems? In 

particular, our research goal was to investigate what linear algebra reasoning students leveraged 

in their solutions and explanations regarding the quantum mechanics problems shown in Figure 

1. Our results demonstrate how students draw on their understanding of linear algebra to inform 

their flexibility in choosing an appropriate problem-solving approach.  
 

 
Figure 1. The quantum mechanics problems addressed in this study. 

Brief Physics Background 

To assist the reader in following student work, we summarize relevant content. Spin is a 

measure of a particle’s intrinsic angular momentum. This observable is mathematically 

represented by an operator such as 𝑆𝑧 (where the z indicates the particle’s axis of rotation). Each 

state of the physical system is associated with a vector, denoted as a ket |𝜓⟩. The eigenstates 

corresponding to possible measurements of an observable create an orthonormal basis for the 

24th Annual Conference on Research in Undergraduate Mathematics Education 554



associated Hilbert space. The eigenstates for the spin-½ operator 𝑆𝑧 are |+⟩ and |−⟩, which 

correspond to the measurements ℏ 2⁄  and −ℏ 2⁄ , respectively. Any quantum state |𝜓⟩ in this 

system is a linear combination of the eigenstates |𝜓⟩ = 𝑎|+⟩ + 𝑏| −⟩ for 𝑎, 𝑏 ∈ ℂ. The complex 

conjugate transpose of a ket |𝜓⟩ is a bra symbolized as ⟨𝜓| = 𝑎∗⟨+| + 𝑏∗⟨−|. The probabilistic 

interpretation of superposition in quantum mechanics implies |𝜓⟩ will sometimes have attributes 

that resemble those of either |+⟩ and sometimes those of |−⟩. If the particle is in a state |𝜓⟩, the 

measurement of its spin along the z-axis will yield one of the eigenvalues ℏ/2 and −ℏ/2 with 

probability proportional to the modulus square of the projection of |𝜓⟩ along the eigenvector |+⟩ 
or |−⟩, respectively. The state changes from |𝜓⟩ to |+⟩ or |−⟩ as a result of the measurement. 

Problem A (Figure 1) asks for the probability of obtaining ℏ/2 or −ℏ/2 in a measurement of 

observable 𝑆𝑧 on a system in state |𝜓⟩. The solution is calculated by 𝑃± = |⟨±|𝜓⟩|2, where 

⟨±|𝜓⟩ is an inner product of one of the z-basis vectors and psi. The solution for problem B (see 

Figure 1) is calculated by 𝑃±,𝑦 = |𝑦⟨±|𝜓⟩|2, where 𝑦⟨±|𝜓⟩ is an inner product between one of 

the y-basis vectors and psi. To complete problem B, a change of basis is involved because |𝜓⟩ is 

written in terms of the z-basis, but the prompt asks for the probability that the spin component is 

up or down along the y-axis. The two main approaches are to either change |𝜓⟩ to be written in 

terms of the y-basis (denoted |±⟩𝑦) and calculate 𝑃±,𝑦 = |𝑦⟨±|𝜓⟩|2, or change the y-basis vectors 

to be written in terms of the z-basis and calculate 𝑃±,𝑦 = |((1/√2⟨+| ∓ (𝑖/√2⟨−|) |𝜓⟩|
2
. In either 

approach, one would need to utilize the equations |±⟩𝑦 = (1/√2 |+⟩ ± (𝑖/√2|−⟩. 

Literature Review and Theoretical Framework 

Although some research does exist on student understanding of relevant linear algebra 

concepts such as basis and change of basis (e.g., Adiredja & Zandieh, 2017; Bagley & Rabin, 

2016; Hillel, 2000; Stewart & Thomas, 2010), the more pertinent literature for this study is the 

relationship between mathematics and physics and how students reason about that interplay (e.g., 

Christensen & Thompson, 2012; Karakok, 2019; Redish, 2006). For example, Schermerhorn et 

al. (2019) investigated physics students’ reasoning about basis and change of basis in the context 

of calculating expectation value problems. They found that a challenge for most students was 

choosing an appropriate basis in which to express the matrices and vectors involved in the 

calculation. Wan et al. (2019) discussed how structural features of quantum notations can foster 

or hinder students’ reasoning about inner products and quantum probabilities. They found that 

Dirac notation brackets helped students make sense of inner products of energy eigenstates and 

state vectors. In examining metarepresentational competence, Wawro et al. (2020) found that 

“students’ rich understanding of linear algebra and quantum mechanics includes and is aided by 

their understanding and flexible use of different notational systems” (p. 020112-2).  

As Caballero et al. (2015) noted, researchers have documented that reasoning about 

mathematics in physics contexts can be a complex endeavor for students. This complexity is 

partly due to the need to connect mathematics and physics via mathematizing and interpreting. 

Karam (2014) defined mathematizing as the “process of constructing a mathematical 

representation for a physical situation (in the broad sense). This process can be seen as a 

translation from the physical world (e.g., observations and experiments) into mathematical 

structures (e.g., numbers, functions, and vectors)” (p. 5-6, parentheses in original). The notion of 

interpreting involves making sense of mathematical symbols and structures in terms of the 

physical phenomena they represent or correspond to (Uhden et al., 2012). Mathematization and 

interpretation are central aspects of Uhden et al.’s (2012) model for the use of mathematics in 

physics, in which one structures physical phenomena, performs varying degrees of 
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mathematization, uses technical skills to reason with mathematics, and interprets mathematical 

structures in terms of the corresponding physical phenomena. We draw on Uhden et al.’s theory 

as it highlights the entanglement of mathematics and physics that students navigate.  

We use Uhden et al.’s and Karam’s (2014) technical and structural skills to analyze students’ 

mathematical reasoning on quantum mechanics problems and illustrate how their structural and 

technical skills support their flexibility in choosing problem-solving approaches. Technical skills 

involve using knowledge of mathematical concepts and procedures as a tool to solve physics 

problems; this use of mathematical skills is independent of connections to physics. Karam (2014) 

elucidated two types of technical skills: procedural and conceptual. Technical-procedural skills 

involve using mathematics to perform manipulations or procedures. This is akin to procedural 

knowledge (Hiebert & Lefevre, 1986; Star, 2005) encompassing “knowledge of procedures that 

is associated with comprehension, flexibility, and critical judgment” (Star, 2005, p. 408). We 

focus on the aspect of flexibility, a central facet of students’ decision-making when choosing a 

particular problem-solving approach. It “incorporates knowledge of multiple ways to solve 

problems and when to use them” (Rittle-Johnson & Star, 2007, p. 562). Technical-conceptual 

skills involve giving conceptual explanations of mathematical rules and procedures, akin to 

Hiebert and Lefevre’s (1986) conceptual knowledge. Structural skills incorporate reasoning 

about the interconnectedness of mathematics and physics and are “based on the capacity of 

employing the mathematical knowledge for structuring physical situations” (Pietrocola, 2008, p. 

7). Structural-mathematizing skills involve translating from the physical world to mathematical 

structures and formulas, and this “involves not only a significant understanding of mathematical 

concepts and theories, but also the ability of abstracting, idealizing and modelling physical 

phenomena” (Karam et al., 2010, p. 2). Structural-interpreting skills involve making sense of 

mathematical structures in terms of the physical phenomena with which they correspond.  

Methods 

The participants were 12 undergraduate physics students, of which eight (pseudonyms A#) 

were enrolled in a junior-level Quantum Mechanics course at University A, a large research 

institution in the Northwest US. The other four participants (pseudonyms C#) were enrolled in a 

senior-level Quantum Mechanics course at University C, a medium-sized research institution in 

the Northeast US. Semi-structured interviews (Bernard, 1988) with each participant were 

conducted with the broad goal of gaining insight into how students reason with linear algebra 

concepts in quantum mechanics contexts. The interviews were recorded, transcribed, and written 

work was retained. We analyzed the participants’ responses to the problems shown in Figure 1.  

We performed inductive open coding (Miles et al., 2013) on each transcript, capturing what 

knowledge or skill the student implicitly used or explicitly described as they engaged with the 

problems. The authors independently coded four students’ transcripts, compared, and created a 

primary code list, which the first author used to code the remaining transcripts. When new codes 

emerged from interpreting the remaining transcripts, they were added to the original list. The 

transcripts were coded again to ensure that no segments were missed or miscoded. We then 

performed deductive coding by assigning the codes one of four a priori parent codes: structural-

mathematizing, structural-interpreting, technical-conceptual, or technical-procedural, which 

derive from Uhden et al.’s (2012) and Karam’s (2014) structural and technical skills, as well as 

Hiebert and Lefevre’s (1986) and Star’s (2005) conceptual and procedural knowledge.  

We explored the students’ reasoning behind their decisions to use certain problem-solving 

approaches. To perform this analysis, we identified segments of the transcripts where the student 

justified their choice in using a particular approach and assigned those segments the code, 
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“Flexibility in Choosing Approach.” We aggregated all the transcript segments labeled with this 

code and identified which part of the problems the students were working on as they decided 

which approach to use. We identified three1 such places in the students’ work: calculating 

|⟨±|𝜓⟩|2, |𝑦⟨+|𝜓⟩|2, and |𝑦⟨−|𝜓⟩|2. To see which technical and structural skills the students 

used as they chose their problem-solving approach or reflected on their choice, we identified all 

the other codes that were assigned to those transcript segments. We then decided which coded 

technical and structural skills were relevant to the students’ flexibility in choosing an approach.  

Results 

Our primary finding was that students’ technical and structural skills related to reasoning 

about linear algebra concepts supported their flexibility in choosing an appropriate approach to 

the problems. Particularly, (1) students’ technical and structural skills related to reasoning with 

inner products and orthonormal bases supported their flexibility in choosing an approach for 

calculating |⟨±|𝜓⟩|2, and (2) their technical and structural skills related to reasoning with basis 

and change of basis supported their flexibility in choosing an approach for calculating |𝑦⟨+|𝜓⟩|2.  

Students’ Technical and Structural Skills Related to Reasoning with Inner Products and 

Orthonormal Bases Supported their Flexibility in their Problem-solving Approaches 

For Problem A, there are two main approaches that could be used to calculate the probability 

that the spin component of angular momentum was up or down along the z-axis: that is, to 

compute 𝑃± = |⟨±|𝜓⟩|2. The first approach involved calculating 𝑃+ = |⟨+|𝜓⟩|2 by substituting 

|𝜓⟩  =
3

√13
|+⟩ +

2𝑖

√13
|−⟩ into the inner product to get 𝑃+ = |⟨+|(

3

√13
|+⟩ +

2𝑖

√13
|−⟩)|

2
, using the 

distributive and commutative properties to find 𝑃+ = |
3

√13
⟨+|+⟩ +

2𝑖

√13
⟨+|−⟩|

2
, using known 

properties ⟨+|+⟩ = 1 and ⟨+|−⟩ = 0 to reduce the equation to 𝑃+ = |3/√13|
2
, and simplifying to 

𝑃+ = 9/13. The procedure for determining the complementary probability 𝑃− = |⟨−|𝜓⟩|2 can be 

performed similarly to conclude that 𝑃− = |2𝑖/√13|
2

= 4/13. Alternatively, the second approach 

allows students to skip most of the procedures in the former approach: students could square the 

norm of the coefficient of |+⟩ or |−⟩, respectively, in  |𝜓⟩  =
3

√13
|+⟩ +

2𝑖

√13
|−⟩ to find 𝑃+ and 𝑃−. 

We include this description of the approaches that the students considered using because their 

reasoning here includes the acts of considering various options and using their understandings of 

the mathematical or physical concepts to decide on an approach. 

First, students’ technical and structural skills related to inner products supported their 

flexibility in choosing this problem-solving approach. For instance, A8 explained:  

Because this is written along the z-axis, I’m assuming that we’re working in the z-basis 

here, standard representation. Then you do… norm squared of plus with psi [|⟨+|𝜓⟩|2], 

and by the same rule I talked about earlier, about how we have this just plus plus minus 

minus equals 1 [⟨±|±⟩ =1], then all you get here is plus and minus. Literally just pull out 

these same coefficients, so you get 3 over root 13 squared and 2 over root 13 squared.   

A8’s technical-conceptual skill of knowing that the vectors in the inner product were expressed 

in terms of the same basis allowed them to take advantage of properties of the z-basis. To be able 

to skip the steps in the first approach of evaluating the inner product, ⟨+|(
3

√13
|+⟩ +

2𝑖

√13
|−⟩), 

students first used the structural skill of interpreting the mathematical symbols to recognize that 

 
1 For brevity, we only discuss the first two instances in this paper. They correspond to the two Results subsections. 
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the vectors in the inner product were linear combinations of vectors from the same basis. Their 

technical-conceptual skill of recognizing that vectors in an inner product must be in terms of the 

same basis then allowed them to use the inner products of z-basis vectors.  

Second, the students’ technical and structural skills related to properties of orthonormal 

bases supported their flexibility in choosing to use the second efficient approach to solving 

problem A. The students used structural-mathematizing skills to recognize that |+⟩ and |−⟩ 
comprise an orthonormal basis which allowed them to use technical skills involved in using the 

inner products of orthogonal basis vectors: ⟨±|±⟩ = 1, ⟨±|∓⟩ = 0. For example, when asked 

about how they found their answer, A11 explained their reasoning about this idea: 

Since this is a basis, uh, plus with a plus is equal to 1 [⟨+|+⟩ = 1], whereas plus with a 

minus is equal to 0 [⟨+|−⟩ = 0]. So, if I was to distribute a plus [⟨+|] out to all of these, 

this would give us zero automatically because they're orthogonal. This would go to 1, so I 

square that. Same thing with the other way, because minus plus [⟨−|+⟩] is equal to 0. 

Reasoning about orthonormal bases, namely that ⟨±|±⟩ = 1 and ⟨±|∓⟩ = 0, allowed students to 

anticipate that evaluating inner products by distributing ⟨+| to (
3

√13
|+⟩ +

2𝑖

√13
|−⟩) and ⟨−| to 

(
3

√13
|+⟩ +

2𝑖

√13
|−⟩) would leave only the coefficient of |+⟩ and |−⟩, respectively. This allowed 

them to skip these steps and instead calculate the probabilities by squaring the norm of the 

coefficients of |+⟩ and |−⟩. Overall, students’ technical and structural skills related to reasoning 

with inner products and orthonormality supported their flexibility for calculating 𝑃± = |⟨±|𝜓⟩|2.  

Students’ Technical and Structural Skills Related to Reasoning with Basis and Change of 

Basis Supported their Flexibility in their Problem-Solving Approaches 

To calculate |𝑦⟨+|𝜓⟩|2, the students recognized a need to perform a change of basis, and they 

had the choice to either change |𝜓⟩ = 
3

√13
|+⟩ +

2𝑖

√13
|−⟩ to be written in terms of the y-basis or 

change |+⟩𝑦 to be written in terms of the z-basis. The students’ technical and structural skills 

supported their decision in choosing their problem-solving approach. In particular, the students’ 

technical and structural skills related to reasoning about the basis that the vectors in the inner 

product were expressed in terms of and about the properties of orthonormal bases supported 

their choice to perform a change of basis. Their technical and structural skills also supported 

their flexibility in deciding which of the two aforementioned change of basis approaches to use. 

The students’ technical and structural skills related to reasoning with basis and inner products 

supported their choice to perform a change of basis. For example, A13 explained: 

You'd either have to change this [|𝜓⟩] to y-basis to fit this, which would not be fun 

probably, or change your y-basis to z-basis… psi is in a completely different basis, so you 

can't just multiply out in- when they're in different bases, so you have to switch bases. 

As exemplified in A13’s reasoning, the students used their structural skill of interpreting that 

“psi is in a completely different basis.” They recognized that |𝜓⟩ is a linear combination of z-

basis vectors, which does not match the basis expression of 𝑦⟨+|, the other vector in the inner 

product. The students then used their technical-conceptual skills to recognize that the vectors in 

the inner product needed to be expressed in terms of the same basis for them to be able to 

perform the inner product. For instance, C6 claimed, “you can’t do anything until you’re in the 

same basis.” The students then used the structural-mathematizing skill of recognizing that a 

change of basis is necessary to be able to perform that inner product. Thus, the students’ 

technical and structural skills related to reasoning about the basis of the vectors in the inner 

product supported their choice to perform a change of basis.  
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Reasoning about the orthonormality of the bases and the associated inner product values also 

supported their choice to perform a change of basis. Some students discussed how changing 

basis made the calculations simpler due to orthonormality of the bases. For instance, A21 said:  

I wanna be able to read off those coefficients really easily and do this in bra-ket notation 

if these are in the same uh basis. If I’m expressing plus y [𝑦⟨+|] in the z-basis then I can 

make all those assumptions about one, you know, the pluses and the minuses, the cross 

terms are gonna be zero. But if I were to do this in the y-basis… like write this out as like 

let’s say y plus, but against all of this [
3

√13
|+⟩ +

2𝑖

√13
|−⟩], then I can’t make any 

assumptions about that, so I don’t really know how to calculate that in bra-ket language. 

A21 claimed it was necessary to change basis to make assumptions about the inner products of 

the various (orthonormal) basis elements, such as ⟨±|∓⟩ = 0. A21 suggested that leaving the 

inner product with the vectors expressed in terms of different bases would not allow them to use 

⟨±|∓⟩ = 0. Thus, the need to use the orthonormality property informed their choice to perform a 

change of basis. C5 also claimed a change of basis was necessary for “inner products to be nice:” 

Because my state vector was given in the z-basis, if I'm doing the inner product of the 

positive y with that, I need that to be written in the z-basis, or to do those inner products 

to be nice. So I guess the plus and plus gives you one. The plus and minus gives you zero. 

Taking advantage of the orthonormal basis properties motivated the students’ selection of the 

change of basis approach. The students used their structural-mathematizing and technical-

conceptual skills to leverage that the y-basis and the z-basis are both orthonormal. These 

structural and technical skills informed their choice of approach and therefore their flexibility. 

In addition to informing their decision to perform a change of basis, the students’ structural 

and technical skills also supported their flexibility in choosing a change of basis approach: either 

changing |𝜓⟩ to be a linear combination of y-basis vectors or changing  𝑦⟨+| to be a linear 

combination of z-basis vectors. A8 performed the former after acknowledging both approaches:  

There are two ways to go about it, um, one of them is to put this vector in some phi prime 

that’s in the y-basis, and then just do y plus phi prime y [ 𝑦⟨+|𝜓′⟩𝑦]…it follows the same 

rules as this. Um, the other possibility is to do, is to take the spin up y and go to whatever 

it is in the z-basis, cause we have this in the z-basis. Um, they’re both equivalent.  

Expressing |𝜓⟩ as a linear combination of y-basis kets allowed A8 to square the norms of 

coefficients of y-basis kets. A8 recognized that both methods were “equivalent” and yielded the 

same probability result. A8 reflected on their choice of approach and compared the efficiency of 

the two methods: “The other method is probably faster if you think of it. Actually, I don’t know 

if it’s really faster. You just save so much time on this side, if you do it this way.” In summary, 

A8’s structural-mathematizing and interpreting skills supported their flexibility in recognizing 

the two approaches, comparing their efficiency, and choosing one for solving the problem. 

Most students chose to use the approach of changing 𝑦⟨+| to be a linear combination of z-

basis vectors, and their structural and technical skills supported their flexibility in doing so.  

Some students chose this one due to computational ease. For instance, A6 explained: 

You can't do anything until you're in the same basis…I needed plus y in the z basis, 

because this was in the z basis. If I really wanted to, I could have changed [|𝜓⟩] to the y 

basis. Um, this [𝑦⟨+|] is a lot easier because we had the spins sheet, so I changed this 

from the y basis to the z basis here, so then both of them were in the z basis.  

Students could use the equation |+⟩𝑦 =
1

√2
 |+⟩ +

1

√2
𝑖|−⟩, which made the change of basis 

procedure “a lot easier,” only involving substitution and not the solution of a system of 
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equations. Students’ technical-procedural skills of using substitution and given equations 

supported their flexibility by allowing them to compare the efficiency of possible approaches. 

A13 also acknowledged that changing |𝜓⟩ to be in terms of the y-basis vectors “would not be fun 

probably,” so they chose to change the basis that 𝑦⟨+| was expressed in terms of, instead. A11 

similarly recognized that changing |𝜓⟩ to be in terms of the y-basis vectors would involve more 

work, explaining, “I didn't really want to have to deal with that math.” These students’ structural-

mathematizing skill of recognizing that changing 𝑦⟨+| to be in terms of the z-basis vectors was 

easier than changing |𝜓⟩ to be in terms of the y-basis vectors supported their flexibility in 

choosing a way to change basis. Overall, the students’ structural and technical skills related to 

reasoning about change of basis via substituting and using equations supported their flexibility. 

Discussion 

Given the entanglement of mathematics and physics, it is essential for undergraduate physics 

students to learn to reason with mathematics as they address physical problems. This is complex 

for students as it involves connecting their mathematics and physics reasoning via interpreting 

and mathematizing. We leveraged Uhden et al.’s (2012) and Karam’s (2014) framework of 

students’ technical (conceptual and procedural) and structural (mathematizing and interpreting) 

skills to investigate the flexibility of physics students’ reasoning about mathematics in relation to 

physics content addressed in two quantum mechanics problems. Through our analysis of 

interview data from twelve physics students, we found that the students’ technical and structural 

skills related to reasoning about linear algebra concepts supported their flexibility in choosing a 

problem-solving approach. Flexibility is an essential aspect of problem-solving, as it involves 

being aware of multiple approaches to solve a problem and choosing an appropriate one. Other 

researchers have demonstrated how conceptual knowledge can support procedural flexibility 

(e.g., Rittle-Johnson et al., 2015). This finding is furthered in our study. When students draw on 

their mathematical knowledge to inform their approach for solving these quantum mechanical 

problems, it relies on their understanding of how the mathematics and physics concepts are 

intertwined. Students’ use of conceptual understanding in their work on these problems is more 

complex than just reasoning about mathematical concepts and procedures because students must 

reason about them in relation to their corresponding physical concepts. Thus, not only are 

physics and mathematics are entangled; students’ reasoning about them is also entangled.  

With respect to teaching implications, our research helps raise the mathematics community’s 

awareness of what concepts from mathematics courses are used and in what way by students in 

physics courses. Our study revealed the centrality of: basis, orthogonality, normality, change of 

basis, algebraic substitution, simplification of vector equations or system of equations, and inner 

product in the solution process for a quantum mechanical problem. While those are core to a 

linear algebra course, additional mathematical concepts were central, namely the probabilistic 

relationship of mutually exclusive events, distribution, and operations with complex numbers. 

These concepts are relevant for larger systems, as well as other quantum mechanical observables. 

Future research can address how students use their understanding of linear algebra in quantum 

mechanical contexts in which the mathematical concepts correspond to physical phenomena. 
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Prospective Teachers Connecting Group Axioms with the Structure of the Identity Function 

Kaitlyn Stephens Serbin 

The University of Texas Rio Grande Valley 

I examined the development of three Prospective Secondary Mathematics Teachers’ (PSMTs) 

understandings of connections between concepts in abstract algebra and secondary algebra. I 

investigated how PSMTs deepened their understanding of the identity function and unified 

various identities under the overarching identity structure as they engaged in a Mathematics for 

Secondary Teachers course. Analysis revealed that one PSMT conceptualized the identity 

function as both a function that leaves its input alone and the result of composing inverse 

functions. The other two conceptualized the identity function as 𝑥, the output of 𝑓(𝑓−1(𝑥)), 

instead of a function. The PSMTs unified the additive identity, multiplicative identity, and 

identity function as instantiations of the same overarching concept by reflecting on the group 

axioms. I discuss the opportunities given to the PSMTs during instruction that contributed to 

their development of these understandings. I conclude with implications for PSMT preparation. 

Keywords: Abstract algebra, Prospective teachers, Mathematical knowledge for teaching  

Abstract Algebra is an almost universally required course for prospective secondary 

mathematics teachers (PSMTs, Blair et al., 2013), but teachers might not perceive connections 

between properties of algebraic structures in secondary algebra and abstract algebra contexts 

(e.g., Cofer, 2015; Wasserman, 2017). Thus, there is a need to make more explicit the ways in 

which teachers use their knowledge of abstract algebra to better understand the algebra content 

they teach. Wasserman (2018) theorized that for knowledge of abstract algebra to be useful in 

teachers’ instruction, it must first help reshape the teacher’s understanding of the content they 

teach. Thus, this study examines the reshaping of PSMTs’ mathematical understandings that 

occurs as they reason about content connections between secondary algebra and abstract algebra. 

Teachers’ knowledge of abstract algebra could potentially influence their instruction on 

inverses (Wasserman, 2016). The structure of inverses is derived from that of a group. An 

identity element 𝑒 in a group (𝐺,∗) satisfies the property that 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 for any element 𝑎 

in 𝐺 (referred to as the identity group axiom). In a group, there exists an inverse element 𝑎−1 for 

every element 𝑎 ∈ 𝐺, such that 𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 𝑒 (referred to as the inverse group axiom). 

Some groups commonly found in secondary contexts include (ℤ, +), (ℚ∗,⋅), and the set of 

invertible functions (with domain restrictions) under function composition. Understanding the 

structure of a group might help one make sense of the structure of additive, multiplicative, and 

function inverses, as well as the structure of various identities. Each type of inverse is an inverse 

element from a group and is associated with an identity and binary operation. Thus, every 

element 𝑓 of the group of invertible functions under composition has an inverse 𝑓−1 such that 𝑓 ∘

𝑓−1(𝑥) = 𝑓−1 ∘ 𝑓(𝑥) = 𝑖(𝑥), where 𝑖 is the identity function defined as 𝑖: 𝑋 → 𝑋 such that 𝑖(𝑥) = 𝑥. 

The application of group axioms is involved in the algebraic cancellation used in equation 

solving, which illustrates content connections in secondary and abstract algebra. These content 

connections were covered in a Mathematics for Secondary Teachers course. In this study, I 

explore how PSMTs in that course reasoned about the group axioms to make connections among 

the additive, multiplicative, and compositional identities. I address the research questions: (1) 

How do PSMTs reason about the structure of the additive identity, multiplicative identity, and 

identity function? (2) What aspects of the course helped them develop those understandings? 
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Literature Review and Theoretical Background 

Several studies have addressed teachers’ or undergraduate students’ understandings of 

inverses, focusing on their attention to the corresponding binary operation and identity. Zazkis 

and Kontorovich (2016) explored prospective teachers’ explanations of the superscript -1, which 

is the same notation used for inverse functions and multiplicative inverses (reciprocals). Most 

PSMTs in their study perceived the superscript -1 as a symbol that refers to different unrelated 

meanings that are context-dependent. They did not use their knowledge of group structure to 

reason about the similar inverse meanings implied by the superscript -1. Furthermore, Bagley et 

al. (2015) found all ten of their participating undergraduate students “said the result of 

composition of a function and its inverse should be 1” (p. 36), implying they associated inverse 

functions with the multiplicative identity. They found that when students resolved that inaccurate 

idea, they used “do-nothing function reasoning” or “net-do nothing function reasoning,” which 

respectively involve understanding the composition of inverse functions as a function that does 

nothing to its input argument (i.e., the identity function) or as a process of an inverse function 

undoing what a function does to an input. They suggested these were productive ways of 

reasoning about the composition of inverse functions. Wasserman’s (2017) study also focused on 

teachers’ attention to the binary operation and identity that was associated with inverse functions. 

He investigated how secondary teachers, who had recently taken Abstract Algebra, situated 

inverse functions within their group structure by attending to the identity function and 

composition; only two of seven teachers could do so. These studies illustrate the complexities 

teachers may experience in distinguishing inverses by reasoning about their associated identity.  

This study is framed by Wasserman’s (2018) theory of Knowledge of Nonlocal Mathematics 

for Teaching. Wasserman (2018) distinguished types of mathematics as local or nonlocal, 

relative to the mathematics one teaches and used this distinction to consider how teachers’ 

understanding of nonlocal (advanced) mathematics influences their understanding and teaching 

of local mathematics. Wasserman argued for teachers’ understanding of nonlocal mathematics 

(e.g, abstract algebra) to influence their instruction, the teachers need to first make connections 

between the nonlocal and local content that reshape their understanding of the mathematics they 

teach. I conceptualize this reshaping of knowledge according to Lee’s (2018) construct of a 

transformative transition which involves extending the contexts in which one’s understanding is 

situated, deepening one’s understanding of a concept, unifying disparate concepts under an 

overarching concept, and strengthening the connections between their existing understandings of 

multiple mathematical concepts. I use the deepening and unifying categories to analyze how 

PSMTs reshape their understandings of identities used in secondary algebra. 

For documenting this increase in depth of students’ understandings, Lee (2018) used Action-

Process-Object-Schema (APOS) theory (Arnon et al., 2014), which provides a lens for how 

students can deepen their understanding of a concept through transitioning from having an action 

to a process to an object level conception. As students begin to understand a mathematical 

concept, they manipulate either physical objects or previously constructed mental objects to form 

actions. A student first performs an action explicitly and then repeats and reflects on this action. 

Once a student can mentally imagine the steps of this action without having to explicitly carry 

out all of the steps of the action, the student has interiorized the action into a process. A student 

then encapsulates a process into an object by performing actions on the process as if the process 

was a static object. A schema is a collection of actions, processes, and objects and the 

connections between those structures. I focus on the PSMTs’ development of Identity Schemas, 

which comprise conceptions of additive, multiplicative, and compositional identities and the 

relations among them. I use Lee’s (2018) construct of unifying to analyze the development of 
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this schema in which the connections between identities become more coherent. A learner can 

unify their existing understandings under an overarching mathematical object by increasing the 

extent to which seemingly unrelated mathematical concepts become more coherent. This 

reshaping of a mental schema can be analyzed using Piaget and Garcia’s (1983/1989) triad. At 

the intra-object level of unifying, the learner focuses on constructs in their mind individually in 

isolation from each other. The inter-object level of unifying involves finding similarities between 

some of the concepts but not articulating the overarching idea that the concepts embody. The 

trans-object level of unifying is characterized by the learner recognizing the concepts all as 

instantiations of the same overarching idea and thus connecting the concepts into a coherent 

schema. In this paper, I use these deepening and unifying categories in Lee’s (2018) Extend-

Deepen-Unify-Strengthen (EDUS) framework as mechanisms to document how PSMTs’ 

understandings of identities are reshaped in a Mathematics for Secondary Teachers course.  

Methods 

Data were collected in a senior-level Mathematics for Secondary Teachers course at a large 

research university in the eastern US. The class consisted of four PSMTs, of which three 

(Amelia, Christina, and Derek) participated in this study. The participants had previously taken 

an introductory undergraduate course in Abstract Algebra. Clinical interviews (Clement, 2000) 

were conducted with each participant before and after instructional units covering ring and group 

axioms in relation to inverses and equation solving. These interviews elicited evidence of the 

PSMTs’ understandings of inverses, identities, binary operations, and the relations between 

them. These interviews had a pre-post format, so I could observe changes in their understanding.  

To address research question (1), I used Lee’s (2018) EDUS framework to analyze changes 

in each participant’s understanding of inverse, identity, and binary operation. I characterized the 

depth of the students’ understanding of a single concept (e.g., identity function) using the levels 

of Action, Process, and Object. A student with an action conception can compose two inverse 

functions and get 𝑥 as the resulting output but does not perceive the identity function’s identity 

structure. A student with a process conception can compose two inverse functions and anticipate 

the resulting output to be the identity function internally in their mind. A student with an object 

conception can perceive the identity function as a function in its own right and can act on it via 

function composition. I also classified the extent to which their understandings of different types 

of the same concept (e.g., additive, multiplicative, and function identities) were unified into a 

coherent schema using Piaget and Garcia’s (1983/1989) triad of schema development. At the 

intra-object level, a student focuses on additive, multiplicative, and function identities in 

isolation from each other and does not recognize similarities among them. At the inter-object 

level, a student can articulate some similarities between the identities. At the trans-object level, a 

student can articulate the identity structure shared by these different identities, i.e., that two 

inverse elements operated together equals the identity or that an element operated with an 

identity equals that element. I documented changes in these classified levels of the PSMTs’ 

understanding between the pre- and post-interviews to find how they were deepened or unified.  

To address research question (2), I collected video and audio data of each class from the two  

instructional units. I analyzed class episodes in which the PSMTs had opportunities to deepen or 

unify their understandings of identities as they received instruction on abstract algebra concepts 

and their connections to secondary mathematics. Through this analysis, I identified aspects of  

instruction (e.g., the instructor’s discussion prompts or tasks) in the Mathematics for Secondary  

Teachers course that supported the PSMTs’ in deepening and unifying their understandings.  
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Results 

The PSMTs Deepened Their Understanding of the Identity Function 

The PSMTs deepened their understanding of the identity function during the Mathematics for 

Secondary Teachers course, although to different depths. During the pre-interviews, Amelia and 

Derek described the composition of inverse functions as one or zero and thus had not yet 

constructed a conception of the identity function. For example, Amelia anticipated the 

composition of inverse functions to be 0 and was surprised when the composition yielded 𝑥. She 

explained because “they negate each other, it would make sense for it to be zero.” She thus 

related the composition of inverse functions with the additive identity.  

Amelia, Christina, and Derek then developed Action conceptions (Arnon et al., 2014) of the 

identity function as they verified that two given functions were inverses of each other. Once they 

reflected on 𝑥 as the result of the composition of inverse functions, they could anticipate that 

result in subsequent tasks and use that to determine whether a pair of functions were inverses of 

each other. They thus developed a Process (Arnon et al., 2014) understanding of the identity 

function as the result of composing inverse functions. For example, Derek constructed a Process 

conception of the identity function during a pre-interview. After Derek found the inverse of a 

given function, the interviewer asked follow-up questions: 

Interviewer: How does this inverse relate to the inverse definition you gave? 

Derek:  … so in functions, your like, I guess the thing you're doing is composition of 

functions … and 𝑓(𝑥) = 𝑥 is kind of your identity in functions. So when they're put 

together, you want it to be equal to the identity, which would be 𝑥. So you want to get the 

equation 𝑓(𝑥) = 𝑥 when you do those two things together…  

Interviewer: Why, again, do we want it to be equal to 𝑥 there? 

Derek:  That's the identity function, that we've referred to as the identity of functions is just 𝑦 

equals 𝑥, so we want to have that kind of form when we do the composition of functions. 

Derek’s responses demonstrated his Process conception of identity function as the result of 

composing inverse functions, as he could mentally anticipate the result of the composition. 

Derek also developed an Object conception (Arnon et al., 2014) of the identity function, as he 

could perform actions, such as composition, on the identity function as if it were a static entity. 

Derek demonstrated an understanding of the structure of the identity function as the function that 

maps an input to the same output, as well as the function that is the result of a composition of 

inverse functions. For example, Derek said, “The identity function is just a function that equals 

𝑥, so it's something that if we plug in, it just doesn't change the function, I guess, so if we like 

plug in an 𝑥, we just pop out 𝑦, which it happens to be 𝑥, so it just like leaves it alone.” He 

described that if one plugs an input into the identity function, the identity function does not 

change it and “leaves it alone,” meaning the input of the function is the same as the output. 

Amelia and Christina developed a process conception of the identity function as the result of 

composing inverse functions. They conceptualized the identity function as a variable 𝑥 rather 

than a function, which seemed to inhibit them from constructing an Object conception of the 

identity function because they were unsure of how to compose it with other functions. Whenever 

they reasoned about why 𝑥 was the identity function, they related it to the property that it was the 

resulting output of the composition of inverse functions (𝑓(𝑓−1(𝑥)) = 𝑥). For example, Amelia 

described the identity of the set of invertible functions, saying “For invertible functions with 

composition, plugging them into each other would give you back 𝑥 as the identity… when you 

compose them with one another you get out 𝑥, so if 𝑓 inverse is actually the right inverse for 𝑓, 

then you'd get out an 𝑥.” She thus demonstrated a Process conception, but she did not show 
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evidence of having constructed an Object conception of the identity function by the post-

interviews. She expressed uncertainty about whether the identity 𝑥 was a function or a variable. 

She tried to show that the identity function satisfied the definition of identity, explaining: 

Amelia: The inverse would just be 𝑓 inverse and the identity would just be 𝑥, the identity 

function, since it is under composition, and so we know, 𝑓, 𝑓 inverse, 𝑥. But I'm not 

really sure. Like going back to the definition of an identity, because earlier, I would do it 

like 𝑎 plus 0 equals 0 plus 𝑎, which equals 𝑎. I’m not sure how that would work like with 

the definition similar to that for functions and composition of functions. 

Interviewer: Okay, so the identity 𝑥, is that just like the variable, or is that a function? 

Amelia: It’s the variable, or it is a function. I'm not sure.  

Amelia tried to relate the additive identity structure (𝑎 +  0 =  0 + 𝑎 = 𝑎) to the structure of the 

identity function, but she was unsure of how to do that. Thus, she did not know how to show that 

the identity function satisfied the definition of identity that for any function 𝑓 in the given group, 

𝑓 ∘ 𝑖 = 𝑖 ∘ 𝑓 = 𝑓, where 𝑖 is the identity function defined as 𝑖(𝑥) = 𝑥. Given that she consistently 

referred to the identity function as just 𝑥, she conceptualized the identity function as the variable 

𝑥, not a function. Christina similarly expressed uncertainty regarding the identity function, 

explaining, “I think identity might not be the function. I think it’s the variable.” Amelia and 

Christina did not know how to compose the identity function with another function. Thus, they 

had not yet constructed an Object conception of the identity function.  

In summary, Amelia and Christina developed process conceptions of the identity function as 

the result of composing inverse functions, but they did not recognize how the identity function 

satisfied the definition of identity that for any function 𝑓 in the given group, 𝑓 ∘ 𝑖 = 𝑖 ∘ 𝑓 = 𝑓, 

where 𝑖 is the identity function defined as 𝑖(𝑥) = 𝑥. They thus conceptualized the identity as 𝑥, 

the resulting output of 𝑓(𝑓−1(𝑥)), instead of the function 𝑖(𝑥) = 𝑥, while Derek conceptualized 

the identity as a function itself. He could articulate how it satisfied the identity group axiom and 

the inverse group axiom that the identity function equals the composition of inverse functions. 

The PSMTs Unified Additive, Multiplicative, and Function Identities 

Amelia, Christina, and Derek all unified additive, multiplicative, and function identities 

under the same overarching identity concept throughout the semester. They originally exhibited 

an inter-object level understanding of the connections among the additive and multiplicative 

identities, but they conflated the multiplicative identity and the identity function, particularly 

when composing inverse functions. For example, Derek explained his reasoning about 𝑒ln(2) as 

“𝑒 to the natural log cancels out, and that just essentially becomes one, and same with natural log 

of 𝑒 is just one…I guess multiplicatively they're inverses because if you multiply… they come 

back to an identity of one.” Derek reasoned about the structure of operating inverse elements 

together to get the identity, so he connected the idea of “𝑒 to the natural log canceling out” to the 

idea of multiplicative inverses “coming back to like an identity of one” instead of the identity 

function. He thus confused the multiplicative identity with the identity function. Derek had not 

yet mentally constructed the concept of the identity function, so he could not yet form 

connections between it and the multiplicative identity to develop a coherent schema of identities. 

Overall, the students’ Identity Schemas were not yet coherent during the pre-interviews because 

they had not yet unified the identities as instantiations of the same concept.  

Once the students each developed a conception of the identity function, they recognized the 

structure of the identity function as the result of composing inverse functions and perceived it as 

similar to the structure of the additive and multiplicative identities. For instance, when Amelia 
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defined an inverse during the post-interviews, she said, “An inverse is an operation or a function 

that when computed will bring that portion of like the equation to the identity… for a function it 

would be the identity function, or like the additive identity, or the multiplicative identity.” 

Christina similarly could identify the identities of various groups. For the groups (𝑄∗,⋅), (ℤ, +), 

and the set of invertible functions with the same domain and range under the operation of 

function composition, she identified their respective identities as 1, 0, and 𝑥. Furthermore, after 

Derek mentally constructed the identity function during Interview 2, he could identify the similar 

structure of different types of identities. For example, when Derek compared multiplicative and 

function inverses, he identified similarities in the structure of their corresponding identities, 

explaining, “they're similar in the sense that they take it back to the identity… if we had 𝑎 and it 

was operated with 𝑎 inverse, it’d give you back to identity in that set, and 𝑓 inverse does the 

same for 𝑓.” Derek recognized that the multiplicative identity and the identity function are both 

the result of an element of a set being operated with its inverse. He made connections between 

the different identities associated with different inverses by reasoning about their similar 

structure of being the result of operating inverse elements together. Once Derek recognized that 

the identity associated with inverse functions was 𝑖(𝑥) = 𝑥, he could unify 0, 1, and 𝑖(𝑥) = 𝑥 as 

instantiations of the same overarching concept. Overall, these students recognized 0, 1, and the 

identity function as instantiations of the same overarching identity concept. They could articulate 

the shared identity structure of the additive, multiplicative, and compositional identities as the 

result of operating two inverse elements in a group together, which is indicative of a trans-object 

level (Piaget & Garcia, 1983/1989) understanding of these identities. Thus, the PSMTs all 

unified their understandings of these different types of identities under the overarching identity 

concept and thereby developed a more connected and coherent Identity Schema.  

How Instruction in the Course Supported the PSMTs in Developing these Understandings 

The PSMTs had opportunities to develop these understandings of the identity function during 

class. The instructor led class discussions about the inverse group axiom and the identity group 

axiom to lead the PSMTs to reason about the structure of the identity function. Reasoning about 

the structure of operating inverses together to get the identity (i.e., 𝑓−1(𝑓(𝑥)) = 𝑓−1(𝑓(𝑥)) =

𝑥) first led the PSMTs to conceptualize 𝑥 as the identity that resulted from the composition of 

inverse functions. The class later proved that the identity function defined by 𝑖(𝑥) = 𝑥 satisfied 

the inverse group axiom, (i.e., 𝑓 ∘ 𝑓−1 = 𝑓−1 ∘ 𝑓 = 𝑖), by showing these three functions had the 

same output for each input. Thus, the class discussed the identity function as an actual function. 

The instructor often referred to “getting back to the identity function” after composing a function 

with its inverse. This likely contributed to the PSMTs’ development of a Process conception of 

the identity function as the result of composing inverse functions. The class also discussed how 

the identity function satisfied the identity group axiom, “𝑖 is the identity if for all 𝑓 in some set 𝑆, 

𝑖 ∘ 𝑓 =  𝑓 ∘ 𝑖 = 𝑓,” by showing that (𝑖 ∘ 𝑓)(𝑥) = 𝑖(𝑓(𝑥)) = 𝑓(𝑥). This likely supported Derek 

in developing an Object conception of the identity function, and this might have supported 

Amelia and Christina in transitioning toward their development of an Object conception, as well. 

The PSMTs had opportunities to unify the additive identity, multiplicative identity, and 

identity function as they reflected on their shared identity structure during class. They reasoned 

about their identity structure as the result of operating two inverses together, particularly in the 

context of equation solving. The instructor led the PSMTs to consider the motion of crossing out 

while solving equations and had them identify what structures were used that allowed them to 

cross terms out. Discussing how “getting rid of” terms while solving equations involves the use 
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of the additive identity, multiplicative identity, or identity function gave the PSMTs an 

opportunity to identify similarities in the structure of the identities corresponding to different 

binary operations. The instructor often juxtaposed the identity function with the additive and 

multiplicative identities to lead the PSMTs to think about the identity was associated with 

inverse functions. This gave the PSMTs an opportunity to recognize the similar structure of the 

various identities as the result of operating two inverse elements together. The PSMTs’ 

development of the connections among these concepts during class involved reasoning about the 

inverse group axiom and reflecting on the similar structure of each of the identities, 0, 1, and 

𝑖(𝑥) = 𝑥. This likely helped the PSMTs recognize 0, 1, and 𝑖(𝑥) = 𝑥 as instantiations of the 

same identity concept and unify them into a coherent Identity Schema. 

Discussion 

Wasserman (2018) suggested that teachers’ abstract algebra knowledge can potentially 

become useful for teaching if it helps reshape their understandings of the algebra content they 

teach. Drawing on Lee’s (2018) extend-deepen-unify-strengthen framework, I explored this 

reshaping of PSMTs’ understandings as they reflected on connections between group axioms and 

the structure of the identity function. I examined how PSMTs deepened their understanding of 

the identity function and unified various identities under the overarching identity structure as 

they engaged in a Mathematics for Secondary Teachers course. The first finding revealed that the 

PSMTs deepened their understandings of the identity function from not having a conception of it 

to developing process or object conceptions. One PSMT conceptualized the identity function as a 

function that leaves its input alone and as the result of composing inverse functions. The other 

two conceptualized the identity function as 𝑥, the output of 𝑓(𝑓−1(𝑥)), instead of a function. The 

participants’ conceptions of the identity function are similar to the do-nothing function (DNF) 

reasoning or net do-nothing function (net-DNF) reasoning documented by Bagley et al. (2015). 

These authors claimed, “the process of pushing an arbitrary element through the function and its 

inverse and observing that the net result is no change… can allow students to come to see the 

result of composition of a function… and its inverse as a function…in its own right” (p. 45). 

Derek was successful in reflecting on the result of composing inverse functions to develop an 

Object conception of the identity function (i.e., do-nothing function). However, Amelia and 

Christina reflected on the result of composing inverse functions and demonstrated net-DNF 

reasoning, but they conceptualized the output 𝑥 as the identity instead. Thus, the findings of this 

study provide additional insight into students’ conceptions of the identity resulting from a 

composition of functions as the function 𝑓 ∘ 𝑓−1 = 𝑖 or the output 𝑓(𝑓−1(𝑥)) = 𝑥. Future research 

can address how students transition from Process to Object conceptions of the identity function.  

Another finding was that the PSMTs unified the additive identity, multiplicative identity, and 

identity function as instantiations of the same overarching concept by reasoning with the group 

axioms. They all could identify that the different identities were the result of operating two 

inverse elements together with the group’s corresponding binary operation. Reasoning about how 

the inverse group axiom applied to various inverses and identities in secondary algebra contexts 

allowed them to make these connections among the different identities and thereby develop a 

more coherent Identity Schema. The PSMTs had opportunities in their course to develop this 

understanding. Implementing class discussions of how the cancellation procedure in equation 

solving involves the use of the various identities helped the PSMTs identify similarities in their 

structure. I, therefore, suggest that teacher educators should ask PSMTs to explicitly identify 

which properties from abstract algebraic structures are used in each step solving an equation.  
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Epistemological Tensions in Applying Culturally Relevant Pedagogy to Undergraduate
Mathematics
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Communities of practice are rich places to learn new practices and refine existing practices.
Mathematics schooling has been racialized and inequitable to minoritized groups and learning
how to teach mathematics in culturally relevant ways is one potential way to address the needs of
students who have been systemically ignored. We found from analysis of ten interviews with
mathematics instructors at Hispanic-Serving institutions that two central barriers to enacting
culturally relevant pedagogy in undergraduate mathematics instruction are a lack of
communicating about students’ identities and holding epistemologies that mathematics is a
culture-free discipline. For the community of mathematics instructors to incorporate more
culturally relevant pedagogy, first, it needs to become safer to talk about students’ racial and
gendered identities and, second, culturally relevant tasks that leverage mathematical tools in
nontrivial ways need to be developed.

Keywords: Hispanic-Serving Institutions, Professional obligations

Mathematics has been given a high-status position as an academic subject in the United
States school curriculum (Berry et al., 2014; Schoenfeld, 2004). Students’ mathematical
performances have influence over their future academic and economic opportunities (U.S.
Department of Education, 2008) and their social access and mobility (Schoenfeld, 2004), and can
be interpreted as an indication of one’s intelligence (Shah, 2013). Scholarship in mathematics
education has revealed how K-16 mathematics education is inherently racialized and inequitable
and has a long history of ignoring the needs of minoritized groups (Berry et al. 2014; Gutiérrez,
2017; Martin, 2019). Mathematics functioning as an important subject for access and social
status, yet systematically discriminating based on race, is a toxic combination. Given this
perpetuated inequity, Culturally Relevant Pedagogy (CRP; Ladson-Billings, 1995; 2014) has
been regarded by education researchers as a way to empower minoritized students and update the
mathematics curriculum (Brown-Jeffy & Cooper, 2011; Morrison et al., 2008).

Ladson-Billings (2014) described CRP as teaching that helps students achieve three
outcomes: (1) academic success, “the intellectual growth that students experience as a result of
classroom instruction and learning experiences”; (2) cultural competence, “the ability to help
students appreciate and celebrate their cultures of origin while gaining knowledge of and fluency
in at least one other culture”; and (3) sociopolitical consciousness, “the ability to take learning
beyond the confines of the classroom using school knowledge and skills to identify, analyze, and
solve real-world problems” (p. 75). These are also known as the three tenets of CRP. She
explained that undertaking this way of teaching is a long-term commitment to give students the
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education they deserve and to create the future society we want to live in (Ladson-Billings,
2006).

Enacting all three tenets of CRP requires attention to students’ cultures and identities. For
example, helping students understand how mathematics relates to their own culture and
real-world situations relevant to them requires that the instructor knows what cultures students
identify with and what sociopolitical issues are relevant to them. Identity research in
mathematics education has drastically increased in recent years (Darraugh, 2016). However, it
has largely been split into research done on the identities of learners and on the identities of
instructors (Darraugh, 2016; Graven & Heyd-Metzuyanim, 2019), without much attention to how
instructors are thinking about or incorporating student identities in their practice. We contend
that understanding of how instructors consider student identities in their instruction is key to
understanding if or why they enact CRP. We do not define identity ourselves, but explore how
instructors at Hispanic-serving institutions (HSIs) perceive identity  as playing a role in their
instruction.

Instructors at HSIs are well-positioned to serve a critical mass of historically underserved
students but can also replicate the existing inequities if they rely on their disciplinary
enculturation to shape their pedagogical choices. Institutions with at least 25% Hispanic full time
student populations can apply for HSI status (U.S. Department of Education, 2021). Hubbard and
Stage (2009) found few differences between HSI faculty and their faculty counterparts at
predominantly White institutions in terms of perceptions and attitudes towards teaching and
students. It is unclear whether or how instructors are attempting to serve their increasingly
diverse student populations. Shifts in demographics (Laden, 2004) have left many institutions
without clear direction about the implications of being an HSI. This study investigates CRP
enactment at HSIs and what barriers might currently exist to its implementation in mathematics
classrooms.

Theoretical Framing
An integral part of changing and developing one’s teaching practices is involvement in a

community of practice (Wenger, 1998). We employ this framework to give a lens as to how
mathematics instructors might change their practice to incorporate more CRP, or what might be
preventing such change. The community of practice framework begins with the premise that
learning is fundamentally a social activity that involves participation in the context of a given
community. Wenger (1998) continues that communities of practice are not only places for
individuals to learn but are especially rich places for new insights to be transformed into
knowledge. Participants can bring their own unique experiences to generate the creation of
knowledge within a community: “A history of mutual engagement around a joint enterprise is an
ideal context for this kind of leading-edge learning” (Wenger, 1998, p. 214). As instructors
become increasingly aware of their shifting student populations and the inequities that students
experience, there is an opportunity to learn (as communities of mathematics instructors) new
ways to serve those populations. However, little is known about if or how mathematics
instructors at HSIs think about students’ cultures and identities.

With this community of practice framing of learning, we ask the following research
questions: (1) To what extent are the three tenets of CRP being used by mathematics instructors
at HSIs? and (2) What barriers might communities of mathematics instructors at HSIs face to
enacting CRP?
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In a community of practice, meaning is negotiated in two primary ways. First, community
members make meaning through participation by taking part in the actions and interactions
associated with the social community and, second, through reifications of those participatory
actions. Participation happens by doing, acting, teaching, and interacting, while reification refers
to the product of giving concrete form to the shared experiences. For example, a lesson plan, a
definition of CRP, or an abstract formula could all be reifications. Reifications are like the tip of
the iceberg, where the iceberg represents what the community counts as meaningful. For change
to happen in a community of practice, the way meaning is negotiated must change. We suspect
that two substantial barriers in the community of undergraduate mathematics instructors
correspond to the duality of participation and reification.

Ignoring Culture in Identities and Mathematics Reifications
Discussions around some aspects of identity can be inadequate to nonexistent. This is not

unique to mathematics or even education, but deeply ingrained in history. In the United States,
legal documents used the language of “colorblindness”, intending to indicate that they treated
humans as equal regardless of their color (Annamma et al., 2015). While initially intended to
portray that the policies should be applied equally regardless of race, the language began to be
used to indicate that the policies should instead ignore race (Annamma et al., 2015). In
education, this color-evasiveness in school policies has led to policies at odds with factors that1

center on race such as where students go to school, access to resources, and categorization into
certain academic programs (Wells, 2014). The extent to which instructors currently recognize or
ignore racial identities seems like valuable information for HSIs to better serve the large
percentage of Hispanic and other minoritized student populations.

The second potential difficulty is how the mathematics community’s reifications reflect an
abstractness that some mathematicians see as culture-free. Non-applied mathematics, or ‘pure’
mathematics, is often about removing context and finding the most generalizable universal rules.
In doing higher level pure mathematics, not only do mathematicians remove the real-world
application of the problem, they also generalize to other non-Euclidean spaces (e.g., hyperbolic
geometry). Framed by topology, a coffee cup and a donut have identical properties. Rabin et al.
(2021) facilitated a collaboration between chemistry, biology, physics, and mathematics
instructors to try to streamline how mathematics is presented and applied in sciences. Doing the
work, the science instructors noted that “mathematicians’ thinking is too abstract, context-free,
or ungrounded in reality” (Rabin et al., 2021, p. 8). Thus, there could be a tension between the
context-free reifications of mathematics problems and focusing on students’ contexts to teach the
mathematics that would be applicable to issues relevant to their lives.

Methods
We used a stratified random sampling technique to identify the institutions we invited to

participate in this study. This paper is based on a larger study of 40 interviews with STEM
instructors, ten of them with mathematics instructors from eight different HSIs. Participants
represent a range of institution categories (associate’s=4, master’s=1, doctoral=5) and locations
(East=1, Midwest=1, Southeast=1, Southwest=5, and West=2). The mathematics instructors

1 Preferable term to color-blindness, which equates a form of racism to an unavoidable disability
(Annamma et al., 2015).
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self-identified their gender (women=6, men=4) and race (Caucasian=2, Indian=1, Latin White=1,
Latina=1, South Korean=1, White =4).2

We coded the transcripts for enactments of the three tenets of CRP (academic success,
cultural competence, and sociopolitical consciousness), evidence that identity did or did not play
a role in their practice, and evidence of the epistemology that their field was culture-free, as
defined in Table 1.
Table 1. Code names, descriptions, % agreement, and kappa scores (Cohen, 1960).

Code Description % Agreement κ

CRP:
Academic
Success

Expresses the intent or willingness to take into
account students’ backgrounds, cultures or
identity to set them up for academic success.

82.2% 0.63

CRP: Cultural
Competence

Expresses the intent or willingness to set
students up to understand things relevant to their
own or other students’ cultures.

93.3% 0.37

CRP:
Sociopolitical
Consciousness

Expresses the intent or willingness to help
students use the discipline to develop the skills
to critically “identify, analyze, and solve
real-world problems” that tie to sociopolitical
issues that directly impact the students being
taught.

100% undefined

Culture of no
culture

Evidence that they believe that culture is
somehow absent or neutral in their discipline.

93.5% 0.66

Identity: YES There exists evidence that they intend or would
like to take into account student identity in their
teaching practice. Identity was operationalized
as how instructors’ interpreted it.

50.2% 0.42

Identity: NO Considers student identity as not playing a role
in their practice.

84.4% 0.61

The first author coded the full set of interviews. The codes largely applied to responses to
the questions, “Do the identities of students who enroll in that course influence your approach or
the way you teach it? If so, how?” and, “How would you describe the culture or climate for
students in your department in terms of supporting their identities?” To check reliability, the two
remaining authors coded responses to those two questions for 20 of the 40 interviews. Our
agreement was at least moderate for all codes (Landis & Koch, 1977) except CRP: Sociopolitical
consciousness and CRP: Cultural competence because there were so few instances.

Results

2 In this publication, we capitalize all races, including White, emphasizing that there is no default race and that they are all social
constructs with associated sets of cultural practices.
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Instructing with Culturally Relevant Pedagogy
We coded these examples of academic success as CRP only when instructors specified

that they did them on account of students’ backgrounds, cultures, or identities. For example,
altering assessment for all students would not be considered enactment of CRP. The instructor
said he changed how he viewed and conducted assessment while explaining that his students are
50% Hispanic and often parents. As an example of how he changed assessment practices, instead
of giving a poor participation grade to a student who kept missing class, he instead tried to
proactively reach out to the student and communicate about what was going on. He made this
change after switching from a non-HSI to an HSI.

We found that, of the ten mathematics instructors we interviewed, eight enacted CRP in
ways consistent with the academic success tenet, two with the cultural competence tenet, and one
with the sociopolitical consciousness tenet (see Table 2). The tenet of academic success was
enacted through speaking to students in Spanish, making sure they had resources available (e.g.,
textbooks, calculators, online materials), maintaining high academic standards, taking personal
responsibility for students’ success, directing students to extra tutoring, reviewing more
background content, recording lectures and making class notes available, modifying examples to
be more inclusive, changing assessment, and making sure that minority students’ voices were
heard.

Table 2. Percentage (and number) of participants that gave evidence of enacting tenets of CRP.

Evidence of Mathematics (n=10) Total (n=40)

Culturally relevant pedagogy: Academic Success 80% (8) 75% (30)

Culturally relevant pedagogy: Cultural Competence 20% (2) 23% (9)

Culturally relevant pedagogy: Sociopolitical
Consciousness

10% (1) 3% (1)

The two examples of the cultural competence tenet were showing the film Hidden Figures to
familiarize students with more representation and talking about how politics spilled over into
class. The example of the sociopolitical consciousness tenet came from a mathematics for future
teachers course in which students read a special education article with the goal of helping them
think critically about how what they were learning would apply differently to a marginalized
group of people.

Barriers to Cultural Competency and Sociopolitical Consciousness
We found two main barriers to undergraduate mathematics instructors learning to teach with

CRP, especially pertaining to the cultural competency and sociopolitical consciousness tenets: (1)
lack of communication around student identity and (2) limited perspectives on what the
mathematical community counts as disciplinary knowledge.

Barrier 1: Communication around student identity. For communities of practice to learn,
they need to negotiate meanings with each other. However, we found a cautiousness around the
language needed to communicate about race. When asked, six out of ten instructors stated
explicitly that student identity does not play a role in their teaching. Yet we found evidence that
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seven of the ten instructors did incorporate identity in their teaching. Three of the instructors did
so while explicitly denying it.

The only three student identities instructors explicitly said do not impact their teaching were
gender, race, and nationality. Some instructors did say or show that gender and race influenced
their teaching, but for many instructors, it seemed like they had a concern with making
assumptions based on race and gender and preferred labels that had more direct implications.
Other labels instructors used when they explained ways they changed their teaching on account
of students’ identities included first generation, English-language learner, international student,
socioeconomic status, mathematics experience, caregiver, and age. For example, an instructor
said, “I think of them as individuals, but not necessarily as identities, if that makes sense. So
given the fact as far as you know, their color, their gender or anything else, you know, it’s all the
same to me in a sense when I teach.” Moments later, however, she explained how if students
were not native English language speakers it would impact how much work students would have
to do to decipher the context of statistics problems.

Even when instructors said race played a role, they also emphasized the importance of not
making assumptions based on these labels. Samuel, a mathematics educator, said, “Things like
race, gender identity, first generation, they all sort of get boiled into building this relationship
with the individual students. I don't want to [...] assume that because they're a first-generation
student, they're gonna struggle with X, Y, Z.” He did not want to make assumptions about the
student based on the community that student might belong to, because he did not know how that
individual had experienced the things associated with that community.

Barrier 2: Mathematics as culture-free. Two of the ten mathematics instructors viewed
mathematics as a culture-free discipline. Instructors were never explicitly asked about their
opinions on whether their discipline was culture-free or not, so it is possible that more instructors
felt similarly. One other instructor expressed that, while she believed mathematics was
culture-dependent, other instructors in her department did not. To instructors with this
culture-free epistemology, mathematical knowledge could be viewed independent of race and
gender. For example, Francesca said, “We don't see a color or sex or anything. We see a raw
being that you can teach mathematics to. Mathematics has no color.” She continued, “You look at
something like the ocean and the color currents in it. And you know that those are all governed
by mathematics. And, you know, many, many forces. And that's just nothing about ethnicity in
it.” Kyung Joon similarly expressed that the sciences are more neutral than other subjects.

Holding this culture-free epistemology does not appear to be wholly incompatible with
enacting CRP or incorporating student identity into their teaching. Both instructors that
expressed culture-free epistemological beliefs concerning mathematics also enacted the
academic success tenet of CRP. Francesca held high academic standards for students especially
when she taught racially diverse students and took personal responsibility for each students’
success. Kyung Joon did extra review of background content for students who were struggling
financially or had poor high school preparation. We found evidence that Francesca incorporated
student identity into her teaching while we did not for Kyung Joon. Francesca said that students
of different ethnicities had minds that understood things differently and all were capable of
understanding - it was a matter of finding the right way to explain it so a student would be able to
understand.

However, instructors holding culture-free epistemologies might be more hesitant to enact the
cultural competence and sociopolitical consciousness tenets of CRP. Neither Francesca or Kyung
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Joon found it necessary to enact any aspects of those two tenets. Kyung Joon explained, “If the
math professor used K-pop as an example, or some Korean barbecue, they wouldn't make the
math problem easier or more understandable. To me it's not really that relevant in math courses.”
He said that not only is it not relevant to use such cultural examples, but also it can come off as
insulting. Thus, we found that if instructors believed mathematics is culture-free, they did not see
a need to teach how the content is relevant to students’ individual cultures nor how mathematics
might be used as a tool to critique or solve sociopolitical issues relevant to students.

Implications and Conclusion
We found evidence that many practitioners in the community of mathematics instructors at HSIs
already enact the academic success tenet of CRP, and there are two primary barriers to enacting
the other two tenets. First, to communicate about students’ cultural contexts in a community of
practice, conversations about aspects of identity must become more normalized. That instructors
have difficulty talking about students’ racial identities is not evidence that instructors do not care
about the cultural context of their students. Rather, it is a misguided but well-intentioned
color-evasiveness or a desire to avoid essentialization of students (Gutiérrez, 2013). Race is
politically charged, and we live in an era where the wrong publicly stated comment can ruin
careers (Ronson, 2016). The implication for the mathematics community is that it must become a
lower-risk place to talk about race and the role it has in doing mathematics. Dr. Loretta Ross
advocates for calling people in rather than calling them out (Bennett, 2020). She proposes the
idea that publicly shaming is a toxic, non-productive response. Instead, she advocates leaning
into the discomfort of having a conversation and talking to the person directly with compassion
and assuming they bring good intentions.

The second barrier to enacting CRP was perceiving mathematics as culture-free,
corresponding to the issue that reifications of mathematics often reinforce that mathematics is
free of culture. While holding these culture-free epistemologies did not prevent enacting the CRP
tenet of supporting students’ academic success, the two instructors did not see reason to teach
how mathematics could be relevant or applicable to students’ cultures or to sociopolitical issues
relevant to them. For instructors like Kjung Joon who only could think of cultural applications
that were surface-level, content-specific resources might make a difference in their enactment of
CRP.

The findings suggest three implications for communities to start creating and sharing
culturally relevant content that goes beyond helping students achieve in traditional ways.
First, mathematics instructors can improve communication with each other about students’
racialized and gendered identities. Doing so is messy and political, so when instructors,
departments, and universities inevitably say problematic things, they need to learn how to teach
each other rather than shame each other. Second, if mathematics instructors are more
comfortable talking about more concrete student characteristics (e.g., first generation, low
socio-economic status), those identifiers could still be useful for understanding what issues might
be culturally relevant. For example, calculus can be used to understand issues of minimum wage,
student loans, or COVID growth/decline rates; these are nontrivial applications that can be taught
before instructors work to communicate about gender and race. Moreover, if mathematics
instructors would like to avoid making assumptions about a given individual, instructors can
design teaching that is culturally relevant for a population of students in their course without
assuming anything about the identity or culture of any specific student. For example, something
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related to Hispanic culture broadly would contribute to the cultural relevance of the course for
everyone, whether they identify with the aspect of Hispanic culture involved. Third, a
community effort must go into developing content that is relevant to both the students’ lives and
the mathematical tools learned in standard courses like the calculus series. With the practical
time constraints on full- and part-time faculty, it would be unrealistic to expect everyone to
create materials to enact CRP on their own.
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Key Aspects in the Development of a Quantitative Understanding of Definite Integrals 

 

Courtney Simmons 

Florida State University 

This work draws on the framework of Emergent Quantitative Models to identify how calculus 

students might develop a quantitative understanding of definite integrals that supports them in 

modeling activity when the differential from is not a multiplicative product between a rate of 

change and a differential quantity (e.g. gravitational force). To characterize the mental activity 

that supports the productive development of a quantitative understanding of definite integrals I 

engaged students in an eight-week teaching experiment. 

Keywords: emergent models, quantitative reasoning, calculus, definite integrals 

Introduction 

Research has shown the majority of students primarily reason about the definite integral in 

terms of either prototypical imagery (e.g. area beneath a function, above an 𝑥-axis, and between 

two boundary lines at 𝑥 = 𝑎 and 𝑥 = 𝑏), or purely algorithmic and non-quantitative ways (e.g. 

antiderivative). Over the past two decades, a growing body of research has identified that 

connecting definite integrals to Riemann sums and quantitative reasoning provides students with 

robust ways to reason about contextual tasks (e. g. Merrideth and Marongelle, 2008; Jones, 2015; 

Sealey, 2014). These studies have primarily focused on constructs in which the differential form 

is a local Riemann product—a multiplicative product between a rate of change and a differential 

quantity. However, limiting students’ definite integral reasoning to local Riemann product 

structures has been identified as potentially inadequate for a successful transition to other STEM 

coursework in which the integrand does not naturally decompose into a rate of change or density, 

such as gravitational force (Oehrtman, 2015). This study aims to contribute to the mathematics 

education field by offering insight into the question: 

How can calculus students develop an understanding of definite integration that supports 

the quantitative reasoning necessary to productively engage in definite integral tasks in 

which the differential form does not naturally decompose into a local Riemann Product? 

Literature Review & Frameworks 

Quantitative reasoning encompasses the mental actions in the conceptualization of quantities 

and relationships between quantities. By quantities, I mean the measurable qualities of objects 

which are formed by individuals engaging in a dialectic between an object, an attribute of that 

object which is of interest, and a way in which to measure that attribute to solve a problem 

(Thompson, 1990, 2012). As part of the experimental design, I drew on Realistic Mathematics 

Education which views modeling as an integral aspect of what it means to do mathematics and 

sees “mathematics as a human activity” where experientially real problems play a crucial role. 

Realistic Mathematics Education is a domain-specific instructional theory originating out of the 

Netherlands with three central design heuristics: guided reinvention (Freudenthal, 1973), 

didactical phenomenology (Freudenthal, 1986), and emergent models (Gravemeijer, 1999).  

In line with Gravemeijer’s approach to modeling as an emergent process, Simmons and 

Oehrtman (2017, 2019) described an Emergent Quantitative Models framework for students’ 

reasoning about definite integrals. This framework extends previous characterizations of 

students’ reasoning about definite integrals when the differential form does not naturally 
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decompose into local Riemann Product and can be utilized to understand, for example, how 

students reason about physics-based tasks. The framework relies on three conceptual models, 

basic, local, and global, which students draw on when reasoning about definite integrals.  

The basic model represents the quantitative relationship which would apply to the 

situation if the quantities involved were constant values, the local model is a localized 

version of the basic model applied to a sub region of the original situation (typically 

within a partition), and the global model is derived from an accumulation process applied 

to the local model, whose underlying quantitative reasoning is encoded in the differential 

form (Simmons & Oehrtman, 2019).  

Through an analysis of students’ emergent models while productively engaging with physics-

based integration tasks, Simmons & Oehrtman characterized a Quantitatively Based Summation 

(QBS) symbolic form (Sherin, 2001; Jones, 2013) for the definite integral. This symbolic form 

associates the symbolic template ∫ [𝐶]
[𝑩]

[𝐴]
 with an underlying conceptual schema in which A and 

B are the values representing the beginning and end of the measure for the quantity defined to be 

the differential respectively and C represents an algebraic representation of the local model 

which shares a quantitative structure with the basic model of the desired quantity. The 

construction of the symbolic template for the differential form [𝐶] involves a recognition that 

variation of a quantity makes the basic model inappropriate, a partitioning and accumulation 

process based on a parts of a whole symbolic form, and coordinates of the accuracy of global and 

local models as dependent upon the magnitude of a differential quantity.  

Methodology 

The epistemological underpinning of this study is that of Piaget’s genetic epistemology 

(1972; Piaget & Duckworth, 1970). From this perspective, knowledge is an adaptive construct of 

human minds which is actively created consistent within an individual’s conceptual structure 

through interactions with the outside world. Because the QBS symbolic form was identified as 

productive for students’ reasoning for contextual integration tasks, this study aimed to engender 

the development of this conception through an eight-week teaching experiment (Steffe & 

Thompson, 2000). Unlike a clinical interview, where the goal is to capture students’ 

understanding at a particular instant in time, the goal of a teaching experiment is to characterize 

the development of students’ schemes as those understandings evolve to test hypothesized 

learning trajectories.  

For the teaching experiment, I recruited six freshman students during their first-semester 

calculus course at a large southwestern university. The interviews began two weeks before the 

introduction of Riemann sums. Due to the longitudinal nature of planned follow-up studies, I 

requested all Fall 2020 introductory calculus instructors submit recommendations for students 

appropriate for a year-long study based on the engagement in the course. Due to the large time 

commitment, students were compensated $20 per hour for participation. Students were matched 

into groups of two based on availability. 

Due to social distancing restrictions in Fall 2020, I interviewed and recorded study 

participants through the Zoom platform. There were two types of interviews throughout the 

eight-week teaching experiment: paired (approximately one hour) and individual (approximately 

a half-hour). Both types of interviews were planned to take place twice a week for a total of 3 

hours per week in interviews per participant resulting in over 70 hours of video recordings. Most 

weeks all interviews took place as planned. At the end of the teaching experiment, I engaged 

participants in a series of task-based clinical interviews in which they were asked to model 
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physics-based tasks in which the differential form was not a Riemann product. During paired 

interviews participants worked on tasks while talking with one another through zoom and writing 

on a collaborative online whiteboard, AWWApp.com. I asked clarifying and directive questions 

while transitioning between responsive/intuitive and analytical interactions as the students 

progressed through the tasks.  

The data was analyzed in two phases: ongoing and retrospective. After each interview, I 

refined my models of the participants’ understandings. This involved taking notes during and 

after each group interview, noting significant interactions, and reviewing clips before conducting 

the follow-up individual interviews. Follow-up interviews provided an opportunity to test my 

hypothesized models of participants' reasoning, build a more coherent image of their evolving 

schemes, and let students elaborate on constructs they might not have provided enough detail on 

in group interviews. When I developed specific hypotheses regarding students’ reasoning that 

would not be investigated through the normal course of the hypothetical learning trajectory, I 

designed and introduced supplementary prompts and tasks which I provided to groups and/or 

individuals on an as-needed basis. After the teaching experiment, I reanalyzed all data using 

constant comparative analysis (Clement, 2000) with the MaxQDA analytic software. This 

analysis included refining the hypothetical learning trajectory and conceptual analysis based on 

additional passes through the teaching experiment data which characterized participants’ 

emergent quantitative models. Follow-up reviews of the dataset were performed to identify 

episodes that supported, or refuted, my evolving image of the participants' schemes until I felt 

that the data was no longer able to provide additional nuance. I concluded with a cross-

comparison between the emergent quantitative models of the different groups to identify 

commonalities and distinctions between participants.  

As part of the data collection, there were limitations to conducting the teaching experiment 

online. First, the need for participants to have access to a computer, high-speed internet, and a 

web camera placed a potential handicap to the generalizability of the results. Participants needed 

to have access to a private computer with internet access for at least three hours a week which 

means it is likely participants in this study were of above-average socioeconomic status. Online 

interviews also limited the ways I could capture students’ reasoning that would normally be 

evident in gestures, demeanor, and written work. By only viewing students’ upper bodies I often 

missed out on slight hand movements, fidgeting, and quick scribbles made as they were problem-

solving. Additionally, slow internet connections sometimes resulted in choppiness in videos and 

an inability to clearly identify what the participant was relaying. Finally, due to recruitment, it is 

possible the participants in might not be an accurate representation of the general calculus 

population. These students were handpicked by their professors as being highly engaged and 

likely to succeed through to the next calculus course. There also may have been implicit biases in 

the instructors’ recommendations which affected the outcome of the final participant population.  

Results 

For brevity, this paper will focus on the key aspects of the conceptual development of 

quantitative understanding of definite integrals for a single group, Ashley and Adam, over the 

first two major tasks of the six-task teaching experiment sequence which adds nuance to the 

Emergent Models framework as participants’ emergent models were in development.  

Ashley was a Caucasian female statistics major pursuing a minor in music. Adam was a 

Caucasian male architectural engineering major. Both Ashley and Adam took a calculus course 

in high school and agreed that it felt like they had “missed the last half of calculus” due to 
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COVID which included integration topics. They both demonstrated an inclination to rely on 

procedural knowledge without giving much thought to the underlying mechanics in their initial 

clinical interviews. Ashley and Adam worked well together and were open about their thinking 

throughout the teaching experiment. As a result, I developed a detailed image of the precise 

development of their basic, local, and global models (and relationships between models) as they 

constructed a quantitative understanding of definite integrals.  

The Development of a Gross Basic Model and Global Model 

In the Curiosity Rover task, students were presented with the goal-orientated activity, in four 

parts, of identifying whether a rover would complete its mission on Mars. The task provided 

specific readings for rates of dust accumulation at different geographic locations and had a 

limitation that the rover could not continue operating when it had over 400 mg of dust on its 

solar cells. Students were provided a GeoGebra applet with a slider that presented data for 

specific sites which included location, total distance along the path from the landing site, 

composition of the Martian surface, and the corresponding rate of dust accumulation. The 

Curiosity Rover task was chosen and adapted due to its ability to provide a meaningful context 

which motivated the need to identify an overestimate using an accumulation of local estimates. 

The conception the Curiosity Rover task aimed to engender most closely represents a finite 

Riemann Sum, however, no formal summation notation or language was introduced.  

I presented Ashley and Adam with prompts requesting rates of dust accumulation at different 

sites, the measured distance between sites, and how one could identifying the approximate 

amount of dust on the rover’s solar cells as it traveled between sites. Early in the task, I prompted 

Ashley and Adam to identify an overestimate for the amount of dust that would accumulate on 

the rover as it traveled between two neighboring locations which did not share identical rates of 

dust accumulation. As they were discussing the task Ashley observed,  

Ashley: So, if we're traveling. The rover is traveling. And, at the beginning, it's kind of 

getting dust at six milligrams per kilometer, but slowly, by the end of it, it's only getting 

dust at 3.5 milligrams per kilometer. So, this rate is going to be decreasing. Like, if we 

were to draw a graph. You know what I'm saying? So, I think it's wanting us to 

overestimate. Like, for example, a gigantic overestimate for this problem would be 6 

times 30. If we just say, well, it just keeps the 6 milligrams rate the entire time it travels, 

times 30, which is the kilometers, you know, we would get like, what 180? That would be 

like a massive overestimate because we know it changes because the soil changes. And 

then like, obviously, an underestimate would be the opposite to do it by 30 times 3.5. 

That is, Ashley extended her basic model of [rate of dust accumulation]∙[distance]=[total amount 

of dust] to what I describe as a gross basic model. A gross basic model represents directly 

applying a quantitative relationship that holds for constant quantities (a basic model) to a 

quantitative relationship in which one, or more, of the quantities is varying. An important aspect 

of a gross basic model is the recognition that the quantity obtained is only an approximation, and 

that the varying quantity within the gross basic model must be bounded (either above or below 

depending on the desired approximation).  

From here, Ashley was able to construct a global model for the total dust on the rover along 

longer paths through the additive accumulation of gross basic models; “So basically, we can take 

from Darwin to Cooperstown [the next segment along the rover’s path], find our overestimate of 

that, and then add it,” and Adam agreed “yeah, it’s just a bunch of intervals.” 
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Increasing the Accuracy of a Global Model Through Refinement 

A key aspect of the hypothetical learning trajectory was to have students construct their 

conception of a definite integral as a tool that would aid in precise approximation when one, or 

more, quantities of a basic model is varying. To that end, the Curiosity Rover task was designed 

so that additional data points provided more accurate underestimates and overestimates of the 

total dust obtained along the rover’s journey. The initial applet displayed data for 7 major sites, a 

subsequent applet adjustment allowed students to see data for the midpoints between sites, and a 

final applet, with an accompanying spreadsheet, provided additional readings every 2.5 

kilometers for a total of 65 data points. Until the third applet, it would remain unclear if the rover 

would be able to complete its journey on Mars.  

After Ashley and Adam computed overestimates and underestimates for the initial 7 data 

points, resulting in a range of 295.75mg to 471.25mg of dust on the solar panels, they reported 

that they would not feel safe sending the rover to Mars. In response, I provided the second applet 

with a comment that an intern managed to obtained more data. When asked if this would help, 

Adam suggested that it would because they could calculate “another set of intervals… how we 

did intervals last time, right. Yeah, it's the exact same thing, just with more of them, because we 

can use the midpoints.” Ashley added, “yeah, we could make an even more precise over and 

underestimate, and see how far away from 400 that is… to see how much our recommendations 

need to change.” This anticipation that the difference between the overestimate and 

underestimate could be reduced by additional data would serve as a crucial component of Ashley 

and Adam's development of a local model in the next major task.  

The anticipation of an increasingly more accurate global model through additional datapoints 

was put to the test when a computational error resulted in a larger overestimate value than 

471.25mg. Adam was dissatisfied because the increase in the number of partitions “didn’t really 

narrow the interval [difference between the underestimate and overestimate]” and that “the 

smaller value [the underestimate] should have gotten a bit bigger and the bigger value [the 

overestimate] should have gotten smaller.” That is, Adam was already operating with the 

expectation that more intervals equate to a more accurate result and that this phenomenon should 

act “kind of like limits that should approach the actual [value].” After writing out the expression 

on the shared whiteboard, Ashley identified Adam’s error and they moved on to the final phase 

of the Curiosity Rover task. To make quick computations Ashley and Adam multiplied each rate 

of dust accumulation by 2.5km (the distance between each reading) and added those values 

together to obtain a single answer of 381.7mg. Adam conjectured, “All right, so that is, umm. Is 

that just an estimate of the actual?...Yeah, cause that’s not an over-under.” However, because the 

question prompts continued to situate students’ goal-oriented activity toward identifying both an 

under and overestimate, Ashley remained perturbed. Drawing on her earlier correction of 

Adam’s overestimate, she recognized that the last term in their computations would represent an 

underestimate for the total amount of dust on the rover if it only traveled the last 2.5 km of the 

journey. She explained, 

Ashley: Because if we add up, okay, let's see, two minus, okay 65. Because 65 times 2.5 

is 162.5, and see, we have 65 cells here and our total distance is only 160. So, whenever 

we just look at this, this is too much distance. That's why you have to subtract one or the 

other to get your over and underestimate….So the underestimate is gonna be 364.7, and 

the over will be 381.25. Since we've narrowed it to that interval, we know that the rover 
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should be able to handle the load of the milligrams of dust.… That's exciting! This is 

exciting, our rover works! At least according to our spreadsheet math. 

The Development of a Local Model from a Gross Basic Model 

In the second major task of the teaching experiment I tasked Ashley and Adam with 

identifying over and underestimates for the total fluid force exerted on both rectangular and 

trapezoidal dams. The Fluid Force on a Dam task was situated so that identifying over and 

underestimates was in service of providing parameters that allowed a superior to minimize the 

total cost of the dam. I included this task early in the teaching experiment sequence because (1) it 

provided students an opportunity to reason about non-Riemann product quantitative structures as 

their basic-local-global models were in development, and (2) provide a challenge to those 

students who may have already constructed a scheme for integration that was based in 

antidifferentiation or consistent with schemes for the differential as a Riemann product.  

After engaging Ashley and Adam with a supplementary activity aimed at familiarizing them 

with the basic models involved in fluid force, I prompted them to identify estimates for the total 

fluid force that would be exerted on a rectangular dam. Unsurprisingly, Ashley and Adam 

directly applied a gross basic model to the entire dam to obtain over and underestimate values. 

Following this, I requested Ashley and Adam improve their estimations based on a supervisor’s 

feedback to partition the dam into two pieces. This prompt was aimed at extending Ashley and 

Adam’ gross basic models from discrete to continuous data in which they perform the 

partitioning and measurement process. That is, this prompt encouraged Ashley and Adam to 

explicitly construct a local model to measure the force on each half of the dam which required 

them to reason about the quantitative relationships involved in their basic and global models. 

After dividing the dam into two, Adam attempted to add the overestimate of the fluid force on 

the top half of the dam, to the overestimate for the fluid force on the entire dam. However, with 

an expectation of the global model being more accurate with more data and upper bound 

provided by the gross basic model estimate, Ashley observed, “If we add the same thing [the 

value of the whole dam] it [the total force] gets bigger instead of smaller.” This expectation 

positioned Ashley to determine that the overestimate for local models should only reflect the 

largest pressure multiplied by the local elements area.   

The Development of a Generalized Local Model 

After correctly identifying overestimates and underestimates Adam actively anticipated the 

next steps in the sequence, commenting, “So, I guess just to kind of look ahead. Are we just 

going to keep breaking this up into smaller parts and adding these together to get narrower?... 

We did that before.” In response, I had Ashley and Adam identify over and underestimates for a 

partition with 5 elements, before asking them to find the number of pieces they would need to 

break the dam into to identify estimates within 50,000 Newtons of the actual value. This request 

would require a significant shift in reasoning, as the correct answer was well over 8000 peices. 

Intuitively, Adam recognized that it would “be an insane amount of intervals to add” and went 

on to suggest, “I was thinking, I guess if there's some way to relate depth and force kind of like 

we already have but an equation, then we could use that equation to kind of get a more accurate 

feel for the estimations,” and Ashley asked, "Do you want to write a formula… using a tool to 

compute it?” As Ashley and Adam began trying to construct a formula Ashley observed, “we 

know we’re just multiplying area times depth times 9800, right? And then we’re adding that 

again. We’re just going to keep going for each interval that we decide to do.” That is, Ashley 
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recognized that each element within a global model shared the same quantitative structure. I 

provided Ashley and Adam a GeoGebra applet to compute their desired sum using their local 

model expression. During their initial ‘guesses’ Adam and Ashley explicitly worked out the 

value for area before wondering aloud if there was a way to automatically compute height, I 

informed them that the calculator was designed to accept Δ𝑥 as the height. The timing of the 

introduction of this notation allowed Ashley and Adam to coordinate that the Δ𝑥 element within 

a local model was a quantity that remained constant across elements of a global model, but 

whose magnitude was dependent upon the number of elements within the global model (i.e. the 

value varies across different partitionings). I characterized this mental activity of generalizing 

quantitative structure across elements of a global model as a generalized local model.  

The most obvious outside behavior Ashley and Adam engage in as part of their development 

of a generalized local model was the algebraic representation of this activity. However, as a 

generalized local model become a more engrained aspect of their emergent model system, they 

drew on this same mental activity to anticipate the applicability of a partition for a global model. 

That is, in later tasks within the teaching experiment, if they could not notice meaningful 

variation across a fixed partition quantity, then they looked for alternative partitionings. 

Discussion 

As a result of this teaching experiment, I contribute two constructs to the Emergent 

Quantitative Models framework, which offer explanatory power and instructional implications 

for the development of a QBS conception of integration. I created the gross basic model as a part 

of the experimental task design to engender students’ goal-oriented activity towards identifying 

estimations for a whole through the direct application of a basic model. In support of generating 

a global model as an accumulation of elements of the same quantitative type as the basic model, I 

engaged students in the act of progressive addition of gross basic models to create a global 

whole. This positioned students to create a local model, as a new construct, through an 

accommodation of applying a gross basic estimate to a partitioned element of a global model.  

A generalized local model is a result of the mental activity students engage in as they 

generalize the structure of a local model across elements of their global model and was identified 

as a critical element in the evolution of students’ emergent models. This construct is a result of 

the mental activity students engage in as they make comparisons across elements of their global 

model to coordinate which quantitative components vary and which remain fixed. In this study, 

the genesis of a generalized local model emerged from students’ need to create an explicit 

formula for their local (or global) model which would allow them to identify the value of any 

element of a partition, for any size partition, in service of identifying the number of partitions 

necessary to be within a given tolerance. The mental activity required for such an activity is 

cognitively distinct from that of computing explicit values for partitions through a measurement 

process and is at the crux of the difficulty in students’ ability to productively model complex 

quantitative situations using definite integrals.  
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A Reemergence of a Non-Quantitative Interpretation of the Differential for Definite Integrals 
Courtney Simmons Jason Samuels 

Florida State University City University of New York 

Robert Ely Zackery Reed 
Embry-Riddle Aeronautical University University of Idaho 

This work is drawn from a larger study on student conceptions in a Calculus course designed to 
promote quantitative understandings of definite integrals. For one student, we investigate the 
evolution of conceptions of definite integral applications. We pay particular attention to 
quantitative and non-quantitative interpretations of the differential as they emerge or disappear 
in unexpected ways. Implications for instruction and future research are considered.  

Keywords: calculus, definite integral, differential, quantitative reasoning 

Introduction & Literature Review 
Students’ reasoning about differentials has been of continued interest to mathematics and 

physics education research due to its importance in the fundamental understanding of derivative 
and integral concepts in STEM. In the area of integration particular interest has been paid to 
whether students interpret differentials as simply a cue for an antiderivative process (e.g. 
Merrideth and Marrongelle, 2008; Jones, 2013), as an infinitesimal quantity (Ely, 2017), as a 
width of a representative rectangle used in identifying graphical area (e.g. Jones, 2013), or as a 
physical quantity (e.g. Thompson & Silverman, 2008; Merrideth and Marrongelle, 2008; Sealey, 
2014; Author, 2017, 2019). Physics education researchers Von Korff and Rebello distinguished 
different categories for differentials based on size, macro (Δ𝑥	) and micro (infinitesimals 𝑑𝑥) 
(2012), as well as different types of differentials, change and amount (2014). Amount 
differentials are distinct from a typical 𝑥! − 𝑥" computational change approach due to some 
quantities not being productively conceived of in terms of changes, such as mass.  

 In most learning trajectories and textbook curricula, definite integral applications are 
initially limited to position-velocity-acceleration contexts, and other meaningful quantitative 
interpretations are placed well after learning the fundamental theorem of calculus and 
computational methods. This promotes the dominance of antiderivative and area under a curve 
conceptions amongst calculus students. Based on evidence promoting the productivity of 
quantitative interpretations of the differential form (e.g. Jones, 2015; Wagner, 2018; Author, 
under review), in recent years, emphasis has been placed on the study and development of 
calculus curricula which promotes a quantitative understanding of differentials, leading us to an 
obvious research question;  

 RQ: How do students reason about the differential after engaging in curriculum designed to 
produce a quantitative understanding of the definite integral?  

Theoretical Perspective and Methods 
Six students were recruited from an accelerated eight-week asynchronous online introductory 

calculus course at a large southwestern university. The learning trajectory for the calculus course 
was designed to engage students in the mental activity of developing a quantitative 
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understanding of definite integrals distinct from area under a curve and antiderivative 
conceptions (Author, under review). To that end, modeling using accumulation with summations 
and definite integrals was covered early in the coursework, while topics related to antiderivatives 
and computational practices were not covered until the final two weeks (Table 1).  

Drawing upon the heuristics of Realistic Mathematics Education (Gravemeijer, 1994, 1999), 
the course materials were designed to engage students in experientially real tasks which extended 
beyond simple reproductions of instructor examples, called “Your Turn” activities. Each week 
students were provided with approximately 3 hours of lecture videos. Within these lecture videos 
there were embedded “Your Turn” activities that accounted for approximately 60% of the course 
material. These activities were required to be turned in weekly as a part of their course grade. 
“Your Turn” activities were routinely referenced when new topics were introduced to allow 
students to reflect on their previous problem-solving activity as they learned new skills (e.g. 
Recall Your Turn X.X). For example, the lecture videos introduced the concept of using a 
definite integral to model work against gravity for building a cement column, and students were 
tasked with identifying the work against gravity to build a pyramid or to lift a chain to the top of 
the building. Once students learned the fundamental theorem of calculus they revisited all tasks 
from the accumulation section to rework those solutions by hand. 

Table 1. Course learning trajectory topics broken down by week covered. 
Week 1 Some Basics: Introduction, Quantities, and The Spread of Disease 

Accumulation: Introduction to Accumulation, Approximations using Sums. 
Week 2 Accumulation: Continuously Varying Rates, Limits, Modeling with 

Definite Integrals – Geometry 
Week 3 Accumulation: Modeling with Definite Integrals – Density, Work/Energy, 

Force, Reinterpreting Accumulation as Area Under a Curve 
Rates of Change: Approximating Instantaneous Rates of Change; Limits 

Week 4 Rates of Change: The Derivative Rules, Techniques 

Week 5 Rates of Change: Modeling - Basic Applications, Related Rates, Limiting 
Values, Differential Equations 

Week 6 Rates of Change: Modeling: Extreme Values, IVT and Monotonicity, 
Concavity, Drawing Graphs, Applied Optimization. 

Week 7 Bringing It All Together: Fundamental Theorem of Calculus Part 1, 
Antiderivatives, Fundamental Theorem of Calculus Part 2 

Week 8 Bringing It All Together: Accumulation Functions 

Data collected for this study included an introductory questionnaire which identified a 
baseline for students’ understandings for calculus concepts, all written notes for the course 
(including “Your Turns”), quizzes, exams, written homework, hour-long task-based clinical 
interviews mid-semester (immediately following the accumulation section in Week 3), and a 
series of task-based clinical interviews post-final exam. The interviews were conducted through 
Zoom using an online collaborative whiteboard. Additionally, there were 25 required short 
surveys throughout the semester, one at the end of each subsection module, in which students 
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provided immediate feedback regarding their evolving understanding of calculus constructs. 
Students who participated in the study were offered extra credit in the course, worth 1% of the 
course grade, as well as a chance to win a $10 gift card. Data was analyzed using the constant 
comparative method to construct a model of the participants' image of definite integrals at 
various stages of the course (Clement, 2000). Particular attention was paid to the mid-semester, 
and post-final exam task-based clinical interviews as these interactions provided the most 
nuanced data to inform our models of students evolving schemes for the definite integral and 
differential quantity.  

Results 
In this paper, we focus on a single student, John, from the larger dataset. John was a white, male, 
sophomore Chemical Engineering major who reported having taken at least half a semester of 
university calculus before enrolling in the Summer 2020 course. John reported that low quiz 
scores prevented him from achieving a satisfactory grade. In John’s preliminary survey he did 
not provide quantitative interpretations of the definite integral notation, including the differential 
(Figure 1). 

Figure 1: John's preliminary calculus survey responses. 

During his mid-semester interview, John was presented with four tasks. The first task was 
posed as a general inquiry to explore John’s image of definite integrals in the abstract, while 
questions 2-4 situated definite integral tasks within specific contexts. Throughout John’s mid-
semester interview he repeatedly demonstrated that his primary conception of a definite integral 
is an area under a curve. John viewed a definite integral as an infinite summation of rectangles 
with height the function value at a particular point, and width an infinitesimally small width of 
the horizontal axis. The aim of this summation was to identify a ‘really good’ approximation for 
the total area under the rate function. John’s view of infinitesimally thin rectangles coordinated 
values for differentials that could be considered smaller than the size of a single atom with a non-
finite summation process. For John the differential form 𝑓(𝑥) ⋅ 𝑑𝑥 represented the height times 
the width of a single rectangle and when asked if you could leave off the differential off the 
differential form, John objected, “Oh no. Because that would just tell you, let's see 𝑓(𝑥) on the 
interval a to b… that would just be talking about the height of the rectangles, which you can see 
by the graph. You don't calculate area without having these widths here.” 

24th Annual Conference on Research in Undergraduate Mathematics Education 591



Figure 2: Mid-semester task 2 – flow rate. 

When presented with the Flow Rate task (Figure 2), John quickly identified that the definite 
integral measured the total ounces of water in the beaker which accumulated between 3 and 8 
seconds. John justified his conclusion through a graphical area interpretation, stating, 

John: The area under the curve, which is the rate that the beaker is filling up with water 
and ounces per second, if we take the area underneath that, that tells us the total amount 
of ounces put into the beaker over the interval of three seconds to eight seconds after 
turning the faucet on.  

John went on to describe that he was able to identify what the definite integral was computing 
through unit cancelation that he had learned in Organic Chemistry. In particular, 𝑟(𝑡) was 
measured in units of 𝑜𝑧/𝑠𝑒𝑐 and 𝑑𝑡 was “just seconds,” so their product, 𝑟(𝑡) ⋅ 𝑑𝑡, must be a 
measurement of 𝑜𝑧. That is, John was intentional with regards to assigning the differential (𝑑𝑡) a 
quantitative interpretation, the width of a rectangle, as well as its associated unit which 
corresponded to the independent variable of time. 

Figure 3: Mid-semester task 4 – population density. 

In the following task, which required the construction of a linear rate of change function in 
service of writing a definite integral, John continued to associate an appropriate unit to the 
differential quantity while reasoning through a graphical area interpretation of the context. Task 
4 of the mid-semester interview (Figure 3) was chosen because in prior studies, students with a 
primarily area under a curve or antiderivative conception of the definite integral were often 
unsuccessful in productively producing a correct definite integral expression due to the radial 
density function being provided in terms of a radial length, while the natural differential quantity 
for a Riemann product structure would be in terms of area. In this task, John was asked to 
identify the total number of people within 4 miles of a university center when provided a two-
dimensional, one-variable population density function. John’s initial strategy for solving Task 4 
was to write an integral of the form 

2 𝜌(𝑟) ⋅ 𝜋𝑟! ⋅ 𝑑𝑟
#

$
= 2 [𝑟𝑎𝑑𝑖𝑎𝑙	𝑑𝑒𝑛𝑠𝑖𝑡𝑦] ⋅ [𝑎𝑟𝑒𝑎	𝑎𝑡	𝑟𝑎𝑑𝑖𝑢𝑠	𝑟] ⋅ 𝑑𝑟

[#	'()*+]

[-.	/01(2+]
 

Watson is filling a huge beaker with water from a faucet. He is playfully turning the faucet up 
and down, so that the water’s flow rate is continually changing. There is a flow meter on the 
faucet that tells him this flow rate 𝑟(𝑡), in ounces/sec, where 𝑡 is measured in seconds after 
Watson first turns on the faucet.  

What does ∫ 𝑟(𝑡)𝑑𝑡3
4  mean? 

During the school year, the population density of a certain college town can be measured as a 
radial density,  

𝜌(𝑟) =
25

√1 + 𝑟!
	(𝑖𝑛	𝑡ℎ𝑜𝑢𝑠𝑎𝑛𝑑𝑠	𝑜𝑓	𝑝𝑒𝑜𝑝𝑙𝑒	𝑝𝑒𝑟	𝑚𝑖𝑙𝑒!) 

where r represents the distance (in miles) from the University. Write a definite integral that 
will identify how many people live within 4 miles of the University.  
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Notably, when not reasoning in terms of area under a curve, John’s associated schemes for the 
summative properties of a definite integral were transferred to the integrand rather than the entire 
differential form. When writing out the units associated with each term John ascribed 𝜌(𝑟) the 
units 𝑝𝑒𝑜𝑝𝑙𝑒/𝑚𝑖!, 𝜋𝑟! the units 𝑚𝑖!, and the differential term 𝑑𝑟 no units. When the 
interviewer brought John’s attention to the fact that in his solutions to the previous three prompts 
he had ascribed a unit to the differential quantity, John immediately correlated the differential 
quantity with a width of a rectangle;  

John: That’s 100% correct… so if I’m going to be consistent. That should just be the 
width of like, er yeah, the width of how much it should be. So why did I put 𝜋𝑟! there?  
This is a thinker. I believe what I wrote is correct but.… Okay, I'm sticking by what I said 
before, 𝑑𝑟 is definitely the width of the rectangle for the area underneath a curve.  

However, John had not initially reasoned about this task in terms of area under a curve which 
caused him to reevaluate his differential form. When attempting to reinterpret the context with an 
image of the differential quantity as a width of a rectangle, John scratched out the 𝜋𝑟! leaving 
just the radial density to act as the height of the rectangles. Although bothered by the fact that the 
units in his new expression, ∫ 𝜌(𝑟)𝑑𝑟#

$ , still did not produce ‘people’ as expected,	John was 
unable to make further headway on the task. 

Approximately two months later (two weeks into his next calculus course) John participated 
in a set of 3 post-semester interviews in which he was presented with additional contextual 
definite integral tasks. The first task asked participants to identify the total fluid force acting on a 
dam, while the second centered on finding the total kinetic energy of a rotating rod. Despite 
John’s inclusion of a differential during his mid-semester interview, his post-semester interview 
solutions did not include such a quantity. It was hypothesized that the physical contexts of the 
tasks were in opposition to John’s tendency to ascribe to the differential the quantitative 
interpretation of ‘rectangle’s width’ impeding the need for its inclusion within the differential 
form. At the end of the second interview, the interviewer directly asked about the omission of the 
differential. John observed that “there should definitely be a 𝑑𝑟,” and attached the notation to the 
end of his definite integral expression. When asked if there should be units attached to the 𝑑𝑟 
John replied “I don't think so. I think it's just telling the person looking at it that it’s with respect 
to 𝑟,” and then hedged “or it adopts the unit of whatever variable it is.” When asked to explain 
John continued,  

John: I've never thought of it as having a unit. That would mess with our units at the end. 
I've never seen it do that. But the other train of thought I was thinking was because it’s 
with respect to 𝑟, and 𝑟 has a unit of meters… but I’ve never seen it mess with units 
before.  

John's reversal of units being associated with a differential was unexpected. To investigate 
further, the interviewer provided John a much simpler context of distance as an integral of 
velocity over time, which could be more readily adapted to an area under a curve 
interpretation (Figure 4).  
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Figure 4: Post-semester task 3 – toy car. 

Once again, John left off the differential quantity when writing a definite integral expression to 
the toy car task, initially providing the solution ∫ 3 sin M 5

!

"$$
N 𝑡"$

$ . The inclusion of the extra t in
the differential form was “because otherwise we’d just get velocity if we didn't multiply by 
another t.” When asked to describe how the definite integral was able to use the expression in the 
differential form to find the total distance traveled, John noted “there definitely should be a dt 
there,” appending the notation to the end of his expression. Like in the previous post-semester 
interviews John did not ascribe a quantitative meaning to the differential, even when the 
interviewer presented him with a graphical representation of the velocity function.   

Looking for an indication as to why John no longer considered dt to be a quantity, even if 
just the width of a rectangle, the interviewer related the notation of the differential with the 
derivative language of ‘change in t’, and associated notation df/dt, which prompted John to re-
associate the notation with the “size of the partition” that was the Δ𝑡 in the summation 
representation of accumulation. Attempting to reconcile both meanings John reflected,  

John: That’s just a wicked small number…. I’ve always just negated it. Because, I 
remember thinking about it this summer, about how it does have some effect but not 
really much. On like computing it at least.   

Discussion 
The case of John provides a glimpse into an unexpected outcome of engaging in curriculum 
designed to engender a quantitative understanding of the definite integral. Although during the 
mid-semester interviews John did not demonstrate a fully formed quantitative conception of 
definite integrals, he provided clear quantitative interpretations for the differential form as an 
area of a rectangle and ascribed units of measurement associated with each quantity of that 
product. When these infinitesimally thin rectangles were accumulated they would provide the 
area beneath a rate of change curve. That is, during the mid-semester interview John 
demonstrated a consistent area under a curve conception along with an image of computing the 
area using a Riemann sum approach which was reinforced by his organic chemistry unital 
analysis. For tasks that did not naturally lend themselves to a graphical interpretation (e.g. radial 
density) John was unsuccessful in constructing a definite integral which would model the 
situation. Because the course curriculum de-emphasized the correlation between area under a 
curve and definite integrals, only briefly covering the topic at the end of the accumulation section 
as motivation to transition to investigating rates of change, it is safe to assume that John entered 
the course with some pre-existing schemes for the definite integral as area under a curve.   

The most interesting aspect of John’s development was the lack of inclusion, or meaning, 
given to the differential at the conclusion of the semester even when directly presented with a 
graphical curve. John’s recorded coursework notes did not provide enough detail into how his 
image of definite integrals and differentials adapted over time or when he began to negate any 
quantitative meaning for the differential quantity. Additionally, due to the asynchronous nature 
of the course and John’s free admittance to relying heavily on an outside tutor throughout the 
semester, it was not possible to pinpoint the precise source of his conceptions. Even with these 

When fully wound, a toy car will travel in a straight line for just over 17 seconds. Its speed 𝑡 
seconds after it is released is 𝑣(𝑡) = 3 sin M 5

!

"$$
N m/s. What distance will the car travel during 

the first 10 seconds? 
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limitations, John’s case provides potential instructional and research implications. First, similar 
to other studies, John’s reliance on graphical imagery to reason about definite integrals limited 
his ability to reason about quantitative situations in which the integrand is not inherently a rate of 
change. Second, John’s decision to ‘negate’ the differential because it is such a small number 
leads to implications for students reasoning about differentials as infinitesimal quantities. If 
students interpret phrases such as “negligible” as “unimportant” or “infinitesimal” as 
“insignificant” then they might be prone to disregarding the differential as having a quantitative 
interpretation which could prevent them from being successful in constructing definite integral 
expressions.  

In John’s case, even with a heavy emphasis on modeling using definite integrals in his course 
curriculum, an area under a curve conception remained persistent through his mid-semester 
interview, potentially hindering his ability to adapt to a more general quantitative interpretation 
of the definite integral. By John’s post-semester interviews he only demonstrated reasoning 
about the differential as a meaningful quantity when interpreting the differential in terms of a 
macro-sized change differential through an interviewer's direct intervention. With the continued 
rise of students who take calculus courses in high school, before retaking the course in 
university, such a finding suggests that more research be conducted to identify how coursework 
designed to engage students in quantitative understandings of calculus concepts interplays with 
the primarily procedural and computational skills learned in their secondary education.  
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Constructing Linear Systems with Particular Kinds of Solution Sets  
  
 Jessica L. Smith Inyoung Lee 
 Florida State University Arizona State University 
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Systems of equations are a core topic in linear algebra courses. Solving systems with no or 
infinitely many solutions tends to be less intuitive for students. In this study, we examined two 
students’ reasoning about the relationship between the structure of a system of linear equations 
and its solution set, particularly when creating systems with a certain number of equations and 
unknowns. Using data from a paired teaching experiment, we found that both students favored 
the notion of parallel planes, geometrically and numerically, in the case of a system having no 
solution or infinitely many solutions. We also found that algebraic or numerical approaches 
were used as the main way of developing systems with a unique solution, especially in systems 
with more than two equations and two unknowns. Throughout the tasks, one student generally 
used geometric approaches and the other toward algebraic and numerical approaches.  

Keywords: solution sets, linear systems of equations, Realistic Mathematics Education, paired 
teaching experiment, linear algebra 

Systems of linear (SLE)equations are a fundamental topic of introductory linear algebra 
courses. Systems are one way to model relationships among multiple quantities (Smith & 
Thompson, 2007). Students from applied science, technology, engineering, and mathematics 
make up a dominant portion of those enrolled in linear algebra in the U.S. and Canada, and 
applications related to linear systems are an important component of their learning in this course 
(Andrews-Larson et al., in press). In applied contexts, SLE often do not have a unique solution, 
so in this work we focus on students’ reasoning about SLE with non-unique solutions.  

Students at a variety of levels have exhibited greater levels of success solving systems of 
linear equations with unique solutions as compared to solving inconsistent systems or systems 
with an infinite number of solutions (Harel, 2017; Huntley et al., 2007; Oktaç, 2018), and this 
has been linked to procedural and rule-based approaches to students’ solving processes. Oktaç 
(2018), for example, found that interpreting the result “x=x” was not intuitive for students. Such 
approaches tend to be unhelpful to students when linking algebraic and geometric representations 
of systems and their solution sets. It has more recently been documented that, in the context of 
introductory linear algebra, though students are relatively successful at rewriting systems as 
augmented matrices and row reducing with technological assistance, many students experience a 
disconnect in reinterpreting solutions in relation to the original system (Zandieh & Andrews-
Larson, 2019). In this paper, we identify resources in students’ reasoning that may help address 
this disconnect, drawing on data from a teaching experiment. Our research question is: How did 
students reason about the relationship between the structure of a system of linear equations and 
its solution set, including their reasoning about the graphical representation of the solution set? 

Theoretical Framing 
In this paper we focus on how students symbolize systems of linear equations that have one, 

infinitely many or no solutions, and how the students relate their symbolizations to various 
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graphical representations. In doing this we follow Larson and Zandieh (2013) who describe a 
system of equations as one way to symbolize a relationship between variables and scalars. They 
compare and contrast this symbolization to others such as a vector equation (a linear combination 
of vectors equaling another vector) or a linear transformation stated in function notation. 
Collectively they refer to these as interpretations of the matrix equation A�⃗�=𝑏$⃗ . Paired with these 
symbolic expressions are different graphical representations.  For example, a system of two 
equations with two unknowns is depicted graphically as two lines with the intersection of the 
lines denoting the solution. In contrast a linear combination graphically is indicated by scalars 
stretching each of two vectors with the vectors being added in a tip to tail manner.   

In a later paper, Zandieh and Andrews-Larson (2019) extend their work to symbolizations of 
augmented matrices and discuss how the solution(s) to a system of equations may be expressed 
using both implicit and explicit notation. For example, the statement of a system of equations to 
be solved is already an implicit description of the solution space. In this paper we focus on two 
students’ growing recognition of how the components of the symbolic expression that implicitly 
describes the solution set (i.e., the system of linear equations) relates to the graphical inscriptions 
that illustrate the solution space.  

 
Methods 

      This proposal reports findings from a paired teaching experiment (PTE) conducted as part of 
a larger NSF-funded project aimed at extending inquiry-oriented curricula in linear algebra. The 
task sequence was designed to support students’ reinvention of ways to reason about solution 
sets to systems of linear equations (SLE). We conducted a task-based PTE with two students for 
four consecutive days on Zoom to see how students reason about solutions to SLE related to the 
task and how their reasoning evolved throughout the sequence of tasks (Steffe & Thompson, 
2000). The participants we call Student R and Student L were undergraduate math majors also 
studying to be secondary teachers; one was a white woman and one a white man, respectively. 
They had no experience with linear algebra but had taken Calculus I at the time of the PTE. Two 
authors conducted the PTE with one leading the interview and the other taking notes and asking 
clarifying questions. We present findings from the last day of the PTE, in which students started 
working individually on the given tasks and shared their initial thoughts with each other. The 
leading interviewer prompted with questions about their thinking in the moment and leveraged 
their ideas to help them advance their mathematical thinking. While this proposal emphasizes the 
last day of the PTE, relevant results from the first three days are included in the task description 
to give readers the basic context of the instructional sequence.  
      The Day 1 and 2 tasks were designed to support students in reinventing the notion of large or 
infinite solution sets corresponding to a SLE. On Day 1, the students worked with a constraint of 
meal plans that included three variables, B, L, D (# of breakfasts, lunches, and dinners), where 
B+L+D=210. They used ordered n-tuples to organize a large set of solutions satisfying the 
constraint. On Day 2, the students made predictions about how the set of solutions to 
B+L+D=210 and 5B+7L+10D=1500 (an added meal plan constraint) would look geometrically. 
The students agreed the graphs of the two equations would intersect more than once because they 
found several solutions to both equations (for more details, see Smith et al., 2021b). Day 3 
focused on graphing the two meal plan constraints in GeoGebra. This was the first time the 
students used GeoGebra in the PTE. Based on this work they concluded that each constraint 
constitutes a plane and the solutions found on Day 2 are on the same line where the two planes 
intersect. They were guided to the next task called “Intersections of Three Planes” (Wawro et al., 
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2013). Given the new SLE where the third equation is the sum of the first two equations, the 
students were asked to find the closest graphic from options (a) through (f), focusing on the 
intersection of the three planes. At first, they were not allowed to do any calculations nor use 
GeoGebra. The options consisted of graphics such as three planes having no intersection and 
intersecting at a point, line, or plane, as shown in Figure 1. Results from these tasks will be 
discussed in the next section. 
 

  
Figure 1. Examples of options in the Intersections of Three Planes task (Wawro et al., 2013). 

      On Day 4, the students continued to work on the Intersection of Three Planes task with a 
different approach. Using GeoGebra as an aid, they engaged in the activity to construct a SLE 
that looks like one of the options’ graphics. The students started manipulating the given SLE 
(where the third equation is the sum of the first two) to satisfy the graphics. The students then 
worked on a task involving creating SLE that met a specified number of equations, unknowns, 
and solutions described in a table, called the Example Generation task. In this paper, we use 
abbreviations to report these more succinctly. For example, 2E2U refers to 2 equations and 2 
unknowns and 3E2U refers to 3 equations and 2 unknowns. This task also included a prompt to 
make generalizations about SLE regarding the number of solutions, equations, and unknowns. 
      Our data sources include Zoom video recordings, students’ written work, and field notes. The 
Day 3 and 4 video recordings were transcribed in spreadsheets. Two of the authors watched and 
reviewed the videos and transcripts and created reflective notes focusing on the students’ 
reasoning about creating SLE with specific solution sets using an emergent coding method 
(Glaser & Strauss, 2017). We paid special attention to what students were referring to when 
reasoning about solutions, including students’ attention to specific traits of the SLE as written 
and traits of its graph. We discussed the students’ quotes and gestures that offered insight into 
their mathematical reasoning about SLE. Based on the findings, we were able to describe the 
differences and similarities between students’ reasoning about SLE in relation to specified 
solution sets. 
 

Findings 
We found that Student R and Student L developed geometric and numeric strategies, 

respectively, for reasoning about parallel planes, and leveraged these strategies heavily in 
constructing systems of linear equations with specific types of solution sets. In this section, we 
illustrate how this strategy emerged from students’ efforts to construct a system with particular 
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visual characteristics in GeoGebra and provide evidence regarding how students leveraged these 
strategies to construct systems with no solution, unique solution, and infinite solutions -- even as 
the numbers of equations and unknowns in these systems varied. 

Intersections of Three Planes Task 
When working on the modified version of the Intersections of Three Planes task, students 

looked at scenario (a) in which three planes intersect at a point and initially noted that they did 
not think it was possible. Student R drew on her knowledge of systems of line equations by 
drawing three lines as a way to represent three planes to see if they could intersect in a point.  

R: I didn't even think (a) was possible at first, but I drew out a picture of what I thought it 
could be. And I was like, maybe, I guess it is possible for planes to intersect in a point. 
But I thought only lines could intersect in a point. 

Int (interviewer): Can you show what you drew? [Student R shows Figure 2] ... Tell me how 
you were thinking about what you drew. 

R: I thought, these are lines technically, but I was like, even if they were extending, if they 
were all going different directions, then I just drew three random lines that all intersected 
only in the middle. 

 

 
Figure 2. Student R’s two-dimensional reasoning about three planes intersecting at a point. 

 
Student (R) drew on her prior knowledge to make sense of a new type of intersection. She 
conjectured, through the lens of intersecting lines as shown in Figure 2, that it could be possible 
for three planes to intersect at a point. Both students revisited this idea in the Example 
Generation task. 

The rest of this section will highlight students’ initial reasoning with parallel planes that they 
used later in the Example Generation task. When starting the modified Intersections of Three 
Planes task, Student R stated that she initially thought the parallel option “would be easier 
because… if you just double the values, then it’ll be the same plane. But maybe if you manipulate 
the number that it’s set equal to, to not be double, if you doubled the coefficients of the 
variables… [then] I think we can make the planes parallel.” She pointed out that every value 
cannot be multiplied by the same number, but parallel planes might be achievable by changing 
the constant by a different factor from the coefficients. While working on making three parallel 
planes, Student R referred to the “slopes” of the equations in terms of the coefficients in each. 
She reasoned that to make parallel lines they needed to create equivalent slopes in the equations, 
then expanded that reasoning to planes.  

Int: So why do you think you have to make them the same for all of them? 
R: If we want the slope to be the same, they all have to be multiplied by the same. I can't 

think of the words… We want the slopes to be there's a word that I can't think of, 
related… 

L: Parallel. Yeah, related. 
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R: So like, if you change the coefficient of one number, it's no longer gonna be parallel 
because then the slopes of the equations aren't the same anymore. 

Int: So like, what if your original equation was x plus three y plus z and you're trying to 
make one parallel by changing the coefficients?  [Referring to L's eq7: x+3y+z=6] 

L: ... like 2x+6y+2z is equal to like, whatever. I believe that would make it as well… Then, 
so then 2x+6y+2z=6. 

Int: So you doubled one side but not the other. So it kept the slope the same.  
L: Right. Exactly. 

Both students reasoned that all the coefficients in an equation must be multiplied by the same 
number to have the same “slope” as the original equation. They said that if one coefficient is not 
multiplied, then the plane will no longer be parallel to the original. Once again, it was mentioned 
that the ‘right side’ (or constant) cannot be changed by the same amount as the coefficients. 

The students used the parallel planes they had just developed to recreate a system consisting 
of two parallel planes with a third plane intersecting both. When asked about the number of 
solutions to the SLE, Student R relied on the fact that two of the planes are parallel and said 
“Zero. Because two of the planes are parallel. And those are never going to have a solution that 
makes them both true.” Student L came to the same conclusion but by reasoning numerically, 
stating, “And also because you have x+y+z is two, and x+y+z is eight. So that doesn't really 
make sense either, because you can't have three numbers that equal two and also equal eight, 
when you add them together.” 

Overall, we found that students’ previous knowledge regarding systems was essential to 
students’ development of SLE in relation to graphical representations. Students wondered about 
the possibility of a unique solution for a system with three planes. Because they had never seen it 
previously, they explored this possibility by drawing on their knowledge of a system of 
equations in a 2-dimensional setting. The students developed initial reasoning for parallel planes, 
seemingly relying on what they knew about parallel lines. This reasoning about parallel lines and 
planes became a way for students to reason about systems with infinitely many and no solutions. 
 
Example Generation Task 

Constructing systems with no solutions. In this section, we will describe our findings 
regarding students’ reasoning while creating SLE with no solutions. The students’ work on the 
example generation task began in the context of 2E2U (two equations and two unknowns). In 
this case, the students started with one equation, x+y=3, and created another equation by 
multiplying each coefficient by two to get, 2x+2y=3. As they explained with planes in the 
previous task, the constant cannot be multiplied by the same number as the coefficients, or else 
the second equation is actually the same line as the first. When students subsequently worked to 
construct an example of a system with 3E2U with no solution, they added another parallel line to 
their previous example. The interviewer probed on whether this was the only way a SLE with no 
solution could be constructed. 

Int: So would it have to be parallel? 
R: I guess not. We could do like we just did with the last one we did with three variables. 

Maybe. That also has no solutions. 
L: If it wasn't parallel, wouldn't they eventually come to a point or something? 
R: Well, equation one and equation two are parallel. But if I change the third equation, 

instead of it being parallel as well, if I make it not parallel, then it's kind of like what we 
just did. How there's no solution because these two lines are parallel. 
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Student R mentioned their previous example in which there were two parallel planes and one 
plane intersecting the two, except with lines this time. The students used similar thinking to 
create a system of 3E3U with no solution with parallel planes. 
 

Constructing systems with infinitely many solutions. When constructing systems of 
equations with infinitely many solutions, the pair began by working on the case with 2E2U. 
Student R created two copies of the same line by multiplying x+y=3 (equation one) by 2 and 
explaining, “If we wanted infinitely many solutions, we can just do like 2x+2y=6 with equation 
one. And then they're the exact same line.” The students used a similar process to construct a 
system of 3E2U and voiced that multiplying the second and third equations by some value is the 
only way they understand creating a system of lines with infinitely many solutions. Student L 
wondered, “Is there? I'm not sure if there's another way to have infinitely many solutions.” When 
shifting to the cases with 2E3U and 3E3U, the pair leveraged their previous work, and created 
equations representing the same planes. 

 
Constructing systems with unique solutions. In working to construct a system of 2E2U 

with a unique solution, Student L used a heavily numeric approach and started with one 
equation, found a viable solution to that equation, then created a second equation in which the 
previously viable solution satisfies. In other words, Student L started with the equation x+y=3 
and a solution of x=2, y=1 and developed 2x+y=5 as a second equation. He explained, “So I just 
used x+y is equal to three. And then I said, okay, x is equal to two y is equal to one. So, then I 
was just like, well, two times two is four plus that one is five. So that should give us the one 
solution. It'll be two, one.” The students only referenced the geometry of this SLE by describing 
(2, 1) as the point of intersection. In moving to 3E2U, Student L did something similar by 
building another equation based on a selected solution that satisfies the two originally developed 
equations: “Just like how we did it with the, the two equations and two unknowns. I was just 
thinking, well, we have x+y is equal to three. And then if x is two, y is one. So then, in 2x+y, it 
would make it five. And then if you were to add like another one to just like another coefficient to 
that x, it would make it 3x+y. And now you just go to seven.” Once again, neither student 
explicitly referenced geometry as they built this SLE. 

In shifting to the case with 2E3U, student L stuck with his numerical approach, presumably 
because it had been successful previously. Student R thought more geometrically, arguing that it 
was impossible for the system to have a single solution because two planes cannot intersect at a 
single point. She explained, “When we were doing the algebra part of it, I was more like maybe 
there is only one solution. But because when you look at it, it's hard to just tell from the numbers. 
There's no way just to look at it and be like there's a million solutions. I know what they all are. 
But when you look at the graph, it becomes clear that there's no way that these two planes are 
going to ever intersect in just a point because they’re planes. And there's only two of them.” 
Student L tried a guess-and-check method, but he later accepted Student R’s justification because 
he could not find a system that had only one solution. In the case of 3E3U, the students 
questioned whether it was possible to have a single solution, thus revisiting their previous query. 
Their intuition told them that it was possible. They constructed the SLE in GeoGebra by creating 
two planes that intersect in a line and then added a plane that intersected that line at one point. 
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Making Generalizations 
At the end of the interview, the interviewer asked students for generalizations about systems 

and their solutions. We found that both students attended to ideas they developed when 
reasoning about parallel planes, such as looking at coefficients and constants. 

R: I would say pay attention to the coefficients and maybe look for like how the equations 
could be maybe parallel… or how they’re intersecting… Parallel will tell you that 
there would be no solutions for the system. 

L: I would also say, make sure to pay attention to the constant. So like whatever you're 
setting it equal to, x+y is equal to three. So for instance, it had no solutions, we know that 
the constant is just going to stay the same, because the lines are going to be parallel… 
The constant is going to change based on how the other equations change. 

Student R eventually came to reason about the number of equations and unknowns, something 
that had not been deeply discussed previously. She stated, “In the beginning, we were trying to 
find a solution to that system of equations that had only two equations and three unknowns. Now 
I know in the future, don't waste your time looking, doing substitution. It's not gonna work… 
Maybe because there's more unknowns than equations, you don't have enough information to 
use substitution or anything because there's not going to be a single solution. I don't know if 
that's true.” It could be that the design of the Example Generation task led Student R to connect 
that the reason two planes could not have one solution was because there were fewer equations 
than unknowns (along with her geometric reasoning), leading her to conjecture that there can 
never be one solution to a system with that trait. 
 

Discussion 
On Day 4 of the PTE, Student R generally oriented her reasoning around a geometric 

approach to make sense of no, unique, and infinitely many solutions. She predicted how the 
graphs of solutions would look as she modified the coefficients in the SLE and used the same 
strategy when constructing SLE in the Example Generation Task. On the other hand, Student L 
leveraged a numerical approach to reason about solutions to various SLE. He began by choosing 
specific tuples satisfying a first equation or concluded no solution by examining the coefficients 
and constants in equations. Then, the parallel graphics became sensible to him. The two students’ 
different ways of reasoning seemed to reflect their interpretation of solution to SLE: It is the 
intersection of graphs [R] and the point(s) in the intersections of graphs that satisfies all 
equations in the SLE [L]. In the case of 2E3U, Student R’s geometric approach allowed her to 
conclude that this type of system can never have a unique solution. She subsequently conjectured 
that this might be true in all cases where the number of equations is less than the number of 
variables. Throughout the task sequence, Student R’s geometric reasoning was more useful in 
some cases, and Student L’s numerical reasoning in other cases, but both students relied on their 
understanding of parallel lines and planes in many of the infinitely many and no solutions cases. 
This study demonstrates ways students can reason about solutions to SLE without having learned 
row reduction, pointing out potential areas for connections between students’ prior knowledge 
and what is to be learned. 
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Function Metaphors Seen in Undergraduate-Mathematics Sign Language 
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In this study, two Deaf instructors and two American Sign Language (ASL) interpreters sign 

undergraduate mathematics terms and definitions. This study characterizes the types of 

metaphors present when the participants signed about the notion of function. We used a 

theoretical framework for characterizing the metaphor clusters students used in the unified 

notion for function to categorize the signed metaphors. We found the Mapping cluster to be the 

most common metaphor cluster used, and compared the different uses of an indicative sign of 

this cluster, MATCH, to show the differently conveyed meanings.  

Keywords: deaf, sign language, metaphor, function 

Deaf students are overlooked in many equity-based research projects along with other 

students with different abilities, specifically in STEM Education and Mathematics Education 

research (Schneiderwind & Johnson, 2020). American Sign Language (ASL) is the native 

language of the Deaf Community in the United States and most of Canada. It is not a one-to-one 

translation of the English language and maintains its own grammar structures and cultural 

significance (Lepic, 2015). Because of this, ASL is an important area to investigate in order to 

further the goals of increasing equitable research with regards to d/Deaf and Hard of Hearing 

(DHH) students. ASL also has regional differences throughout the states.  

The structure of ASL lends itself to different affordances than spoken language because of its 

three-dimensional modality (Lepic, 2015). Thus, the study of ASL communication in 

mathematics not only has potential benefits for DHH students, but it also has potential benefits 

for non-DHH education in expanding our insight into language use and communication issues 

about mathematical concepts. In this paper we draw on research into metaphor in spoken English 

language and consider how these constructs might apply to ASL. This has overlap with other 

research on iconicity of signs in mathematics contexts. 

Background Literature and Theoretical Perspective 

 

Iconicity and Metaphor in Sign Language 

Mathematics Education research on gestures has influenced research about sign language in 

mathematics education (e.g., Krause, 2019). McNeill (2005) created a classification of deictic, 

iconic, and metaphorical dimensions of gestures. Metaphorical gestures are used in synthesis 

with spoken word and are different from iconic gestures in that they convey abstract ideas rather 

than imagery. Some researchers have studied the use of iconicity and/or metaphor in ASL 

specifically (e.g., Krause 2019; Taub, 2001). 

In a previous study, Smith identified categories of iconicity present in sign language of key 

undergraduate mathematics terms like function, limit, derivative, rate of change, slope, span, 

linear independence, concavity, and continuous function (Smith, 2021). Meir and Tkachman 

(2014) define iconicity as “a relationship of resemblance or similarity between the two aspects of 

a sign: its form and its meaning”. An iconic sign in some way represents the meaning of the 

concept being signed. Krause (2019) found that iconicity of signs can influence how students 

using ASL will conceptualize mathematical concepts. Smith extended Krause’s constructs of 
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iconicity present in elementary students’ mathematical signs by creating subcategories of 

innerlanguage iconicity and iconic-symbolic reference for the purpose of looking at 

undergraduate mathematical signs. The subcategories are conceptually-linked and English-linked 

(innerlanguage iconicity), and initialized, notational, and graphical (iconic-symbolic reference). 

In this study, the iconicity of signs is considered while examining the metaphor surrounding a 

specific sign: FUNCTION.  

 

Metaphor in Mathematics Education 

A number of researchers have studied conceptual metaphors as a way of analyzing 

student thinking about mathematical concepts (Adiredja & Zandieh 2020; Lakoff & Núñez 2000; 

Oehrtman 2009; Zandieh & Knapp 2006; Zandieh et al. 2017). 

Zandieh et al. (2017) studied how ten linear algebra students viewed the concept of linear 

transformation and how it is related to their concept of function from high school. They found 

that the conceptualization could be described by three mathematical structures: properties, 

computations, and metaphorical clusters. Zandieh et al. found that students used metaphorical 

language to express a unified notion of function from their high school definition of function to 

the notion of linear transformation. For the purpose of this study, the primary use of the 

framework looks at the five metaphorical clusters that could be identified: Input/Output, 

Travelling, Morphing, Mapping, and Machine. 

The Input/Output metaphor cluster involves language related to “putting in” an input and 

“taking out” an output. The travelling metaphor cluster involves language related to “moving” an 

entity or “sending” an entity to a location. The Morphing metaphor cluster involves language 

related to morphing an entity from a beginning state to an ending state. The Mapping metaphor 

cluster involves language related to a mapping, correspondence, or relation between entities. The 

Machine metaphor cluster involves language related to a machine, device, or process that 

changes one entity into another.  

Research Question 

What types of metaphors can be found in how undergraduate mathematics Deaf instructors and 

ASL interpreters sign about the concept of function? Are there any metaphors for function that 

seem to be more common? 

Methods 

The participants of this study are a part of the previous study analyzing iconicity of key 

undergraduate mathematics terms. The participants include two ASL interpreters of collegiate 

mathematics and two Deaf instructors (one previous, one current). They come from three 

different regions of the country for the purpose of collecting diversified sign language data.  

The four participants of this study (all residing in different states and given pseudonyms) 

consist of two ASL interpreters and two Deaf mathematics students/instructors. Martha and 

James are the two ASL-interpreter participants. Martha has been interpreting for 35 years and 

works as a staff member at a community college known for having a large population of deaf 

students. James has been interpreting ASL for 27 years and is hired through an agency to 

interpret at a large Southwestern university.  

Andrew and Thomas are the two Deaf participants who have been undergraduate 

mathematics students and worked as TAs in a STEM program. Andrew and Thomas have both 

taken and taught undergraduate mathematics courses in ASL at large universities. While Andrew 
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has taught in ASL to deaf students, Thomas has taught ASL that was interpreted for hearing 

students. 

The participants were interviewed with a series of general experience questions in the first 

half of the interview and shown term/definition cards to sign in the second half of the interview. 

Each participant was asked to show their primary sign and other signs they have seen for the 

main term on the cards. Then, they were asked to sign the definition that was written on the card. 

The ASL interpreters more closely signed the words written on the card, while the Deaf 

instructors took more liberties in elaborating on the definitions, providing more context for how 

they conceptualize the mathematical idea (and how they might explain the concept to students). 

For the purpose of analyzing function metaphor, the pieces of data that were coded included 

the excerpts of signed definition for the function term card and excerpts surrounding any time the 

participant signed FUNCTION. Thus, we can establish what metaphors might be evoked when 

the concept of function is specifically being prompted or discussed. First, the excerpts were 

glossed (an informal way of writing ASL). Glossing is typically used as a mechanism for 

teaching English speakers ASL, and a sign is given an associated English word and written in all 

capital letters. Words are not always consistently used in the glossing of ASL, but are helpful for 

transcribing and coding ASL data. The excerpts were then translated to English. The metaphor 

clusters from the codes in Zandieh et al. (2017) were used to code the English translation and 

indicator signs were coded for their associated clusters. Then, a discussion between the 

researchers solidified the metaphor codes.  

A follow-up email exchange with Andrew was used to clarify the intended use of a specific 

sign, MATCH, that was used by all four participants in different contexts (and by three 

participants in the context of describing function. His explanation was used to take another look 

at the use of the sign, MATCH, and note the differences in use and the implications of those 

differences.  

It is important to note that the participants were asked to sign an English definition which can 

influence the type of metaphor being signed. When the study was originally designed, the term 

cards were designed for the purpose of seeing how specific words or concepts were signed. 

However, the participants took it upon themselves to either deviate from the written definition or 

provide further explanation for the terms in question, thus providing more information about how 

the participants conceive of the mathematics concepts.  

Function Term Card: 
Function: A function consists of three parts: Domain, Range, and Rule. The domain is the 

values the independent quantity may assume. The Range is the values the dependent quantity 

may assume. The Rule assigns to each value of the independent quantity exactly one value of the 

dependent quantity.  

 

Results 

All four participants used the same sign for function in the interviews. Its iconicity is 

classified as an initialized sign due to the use of the handshape F and can be seen in Figure 1. 
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Figure 1. James signing FUNCTION. 

Metaphor Clusters 

The most common metaphor cluster used was Mapping used by all four of the participants in 

their signing of the function term card definition. The least common metaphor cluster used by the 

participants was Machine (with no participant showing signs related to function as a process). 

The term card uses the language “The rule assigns to each value of the independent quantity 

exactly one value of the dependent quantity”. This correspondence language is indicative of the 

Mapping cluster, and could have influenced the Mapping cluster to be more prominent in the 

participants’ signing of the function card. However, only one participant could be identified as 

specifically using the sign, ASSIGN, in their function definition. Examples of signs that were 

indicative of metaphor clusters are given in Table 1. The Travelling metaphor signs, 

CLOSE/NEAR and MOVE were used to represent a function “moving” graphically towards a 

specific point (e.g., when signing about a limit). The Morphing metaphor signs BECOME and 

CHANGE were used in the context of an x value or input value “becoming” or “changing into” a 

y value or output value.  

Table 1. This table shows example signs presented for each of the five metaphor clusters. When words are 

capitalized, they represent a sign.  

Signs indicating 

metaphor cluster 

   

Metaphor 

Input/Output 

 

 

Travelling 

 

 

Mapping 

 

Morphing 

Example 

IN/INPUT 

 

 

CLOSE/ 

NEAR (repeated) 

 

MATCH 

 

BECOME  

Example 2 

OUT/OUTPUT 

 

 

MOVE 

 

 

LINK/RELATE 

 

CHANGE 

Example 3 

PUT-IN/ 

TAKE-OUT 

 

GOES-TO 

 

 

ASSIGN 

(give-to) 

 

Examples of Metaphor Signs 

 In his extended description of function, Thomas uses the Input/Output metaphor cluster to 

explain how one “puts in” an input into the function and “takes/gets out” an output (Figure 2). 
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 Figure 2. Thomas signs PUT-IN (top 2 pictures) and TAKE-OUT (bottom 2 pictures). 

Use of Match in Mapping Metaphor 

All four of the participants used the sign, MATCH, at some point during the term and 

definition card signing portion of the interview. However, it was not always used to illustrate the 

same concept and was not prompted by a specific English word. Three out of four of the 

participants used the sign as a metaphor describing function. We can see an example of how 

MATCH is used in an English translation of Andrew’s signing about function: 

I pick one element from the left set and calculate to get a number in the other set. I match 

every element from the left set to an element in the right set. I can only match it to 1 and 

only 1 number from the right set. I call the left set the domain and the right set the range. 

 

Although MATCH would be characterized as part of a Mapping metaphor cluster in this 

English translation, the sign MATCH can mean many things. In a post-interview email 

discussion with Andrew regarding the use of the sign, MATCH, and its possible uses when 

describing function, he mentions: 

The usual words that go with that sign are “match”, “fit”, “-mate”, “make a good pair”, et 

cetera. If you inflect it, it can mean “accommodate”, “adapt”, “make changes for 

something or someone who cannot or will not change”, “not a good a fit”, “mismatch”, 

and so on… it is a “pure” ASL sign in the sense that fluent signers rarely mouth anything 

for that sign… This makes it difficult to translate to English clearly. 

 

He goes on to describe the importance in how the sign, MATCH, is used to convey different 

meanings, “It is important to clarify the subtlety of matching elements in two lists (a simple 

relation) versus a function (no multiple outputs, every element of the domain must have a 

match).” This subtlety can be illustrated by the different ways Martha and Andrew use the sign, 

MATCH. 

In Figure 3, Martha (ASL interpreter) is shown using the sign, MATCH, to describe a 

simple relation of two lists, the domain and range. She had previously designated a space for 

Domain on her right side (left side from audience’s perspective) and the Range on her left 

side. She then uses the handshape for 1’s on both hands to illustrate 1 element from each set 

and uses the sign MATCH to relate the two elements.  
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Figure 3. Martha uses the sign MATCH to show a simple relation of matching two elements together. 

 

In contrast, in Figure 4 and 5, Andrew sets up Domain (his left side) and Range (his right side) 

and uses the sign, MATCH, modified with directionality to show that elements of the range are 

dependently related to the independent elements of the Domain.  

 

 
Figure 4. Andrew establishes a set space for domain (left picture) and a space for the range (right picture). 

 

 
Figure 5. Andrew uses the sign MATCH to show directionality of element relation. 

 

During the email discussion, Andrew sent a video where two more signs were presented for 

the sign for function. In Figure 6, Andrew shows the alternative signs. 

 

      
Figure 6. Andrew shows two alternative signs for function. 
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Andrew described the sign on the left was described as an “English sign”, however, it is a 

modification of the initialized sign for function, where the top hand forms the handshape of the 

letter F. The sign on the right was shown as a more recently developed sign used at NTID 

(National Technical Institute for the Deaf) at RIT that modifies the sign for change. Andrew 

described this sign as meaning “changer”, and it is displayed almost exactly as Andrew’s 

primary sign for derivative. This sign can be seen to contain the metaphor cluster Morphing, as 

well as displays innerlanguage iconicity to CHANGE, and for Andrew, DERIVATIVE. 

Discussion 

The most common metaphor cluster present in the function sign card is Mapping, however, 

the word that is associated with that metaphor, assign, is not the most common sign associated 

with the mapping metaphor clusters present in the participants’ signing of that term card. This 

implies that the participants are familiar with signing Mapping metaphor clusters outside of 

specific prompting of the English language. While all four participants used the sign, MATCH, 

while signing terms and definitions, only three of the participants used it in the signing of the 

function definition. The other participant used it only in the context of linear combination as his 

sign for combination. Even within the mapping metaphor, the inflection of MATCH changed the 

meaning behind the signing, thus altering the conveyed definition of function. 

During the post-interview discussion with Andrew regarding the sign, MATCH, he mentions 

it as a “pure” ASL sign. This means that exactly equating it to the English word “match” is not a 

completely accurate way to describe the meaning behind the sign. As he mentions, there are 

many different English words or phrases that can be associated with that sign, including the word 

“combine/combination” that shows itself in other mathematical contexts: computation, algebra, 

linear algebra etc. The importance in how MATCH is used in a metaphorical cluster when 

signing about function rests on the modification or inflection of the sign. Signs can be modified 

or inflected to show directionality of action, plurality, and many other features of a sign. For 

example, the sign, GIVE-TO, can be inflected to show “give to me” where the sign goes towards 

you or “give to her” where the sign goes towards the intended party. The difference in inflection 

in the sign MATCH between Martha and Andrew illustrates that slight differences in this sign 

can convey different meanings: a simple relation between lists of elements or a function mapping 

from an independent to a dependent set.  

While Mapping metaphor cluster is the most common metaphor cluster used in the four 

participants’ signing about function, this study shows the variety of metaphor clusters also 

present in their signing. The participants illustrate the Travelling metaphor cluster when 

describing shapes and behaviors of the graphs of function, typically when describing how a 

function looks or behaves as it approaches a specific point or limit. The Morphing metaphor is 

used as a supporting metaphor cluster for how one entity is changed into another entity by a 

function, typically in extended explanation after using a Mapping metaphor.  

The sign choice and metaphor use in signing definitions of mathematical concepts is not the 

only important feature of mathematical signing to focus on. The inflection of the signs can alter 

the meaning, and future studies can dive deeper into these differences. Iconicity and metaphor of 

sign language give a window into how Deaf students, instructors, or ASL interpreters are 

conceptualizing mathematical concepts. The differences in metaphor surrounding the sign for 

function show us how sign language is being used by Deaf instructors and ASL interpreters in 

the classroom and how that signing can influence the types of conceptual metaphors students 

might encounter.  
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“A=2πrh is the Surface Area for a Cylinder”: Figurative and Operative Thought with Formulas  

 

Irma E. Stevens 

University of Michigan 

Researchers studying students’ quantitative reasoning argue that students’ reasoning 

covariationally is essential for their construction of productive meanings for various ideas 

related to relationships (e.g., linear, quadratic, trigonometric) and representations (e.g., graphs, 

tables). In this report, I build on that literature by considering a unique feature of geometric 

formulas, the idea that one formula can be used to re-present multiple (geometric) relationships. 

To do so, I use The Formula Task in exploratory teaching sessions and a teaching experiment; 

seven undergraduate students were given the formula “A=2πrh” and consider if/how the 

formula can be used to re-present relationships in various dynamic geometric contexts. In 

analyzing students’ responses, I use the ideas of figurative and operative thought to make sense 

of the ways that students reason about and construct formulas. This report provides implications 

for how students understanding formulas as ways to re-present situations vs. quantitative 

relationships impact their interpretation of formulas. 

Keywords: Cognitive Research, Teaching Experiment, Precalculus, Formulas 

In the quantitative and covariational reasoning literature, there is evidence that supports that 

students’ reasoning covariationally is essential for their construction of productive meanings for 

rate of change (Carlson et al., 2002), trigonometric relationships (Moore, 2014), and numerous 

other topics (e.g., Ellis et al., 2013; Johnson, 2015, 2013; Trigueros & Jacobs, 2008). Many of 

these studies include students reasoning with dynamic contexts to construct various 

representations. In this report, I build on that literature, specifically the ideas of figurative and 

operative thought, by considering the idea that one formula can be used to re-present multiple 

(geometric) relationships (I use re-present to emphasize an image being presented again a new 

context (see von Glasersfeld, 1982, who describes re-present similarly as images that result 

absent of perceptual material). To do so, I use The Formula Task, in which students are given the 

formula “A=2πrh” and asked (i) to describe a situation that the formula can re-present, and (ii) 

when given various dynamic geometric contexts, if/how the formula can be used to re-present 

that relationship. This study is part of a larger study consisting of exploratory teaching sessions 

and a semester-long teaching experiment (Steffe & Thompson, 2000) conducted with seven total 

pre-service secondary mathematics teachers (heretofore students) aimed at understanding and 

developing students’ meanings for formulas. To analyze the data from The Formula Task, I 

consider the extent to which students’ activities relied on figurative or operative thought (Piaget, 

1974). I report on the results of four students’ activities on the task. I then provide insights into 

how these students’ reasonings show that students constructing or interpreting a formula as a re-

presentation of a relationship between quantities, rather than as an individual feature associated 

with a particular shape, is a powerful way for students to reason.  

Background Literature 

Researchers have identified students’ difficulties with reasoning about formulas. For 

example, students reverse symbols re-presenting variables’ measures (e.g., Clement et al., 1981, 

1981) and treat symbols as static, or fixed given referents (e.g., Dubinsky, 1991; Gravemeijer et 

al., 2000; Musgrave & Thompson, 2014). These difficulties are problematic for undergraduate 
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students, particularly those in Calculus and Differential Equations sequences, in which students 

need to reason symbolically and re-present and reason with changing quantities via formulas and 

equations. One way that researchers have recently considered supporting students’ productive 

meanings for formulas is to incorporate opportunities for covariational reasoning—reasoning 

about two quantities change together (Carlson et al., 2002)—and dynamic situations. Along with 

the examples of covariational reasoning research mentioned in the introduction, some researchers 

have specifically considered dynamic geometric environments to support symbolization. For 

example, Fonger et al. (2016) used the context of an area of a rectangle growing in proportion 

with middle school students to explore and symbolize quadratic growth, and Panorkou (2020, 

2021) has studied students’ meanings for volume and area using dynamic geometric 

environments. In designing the tasks used in the exploratory teaching sessions and teaching 

experiment of this study (including The Formula Task described in this report), the literature on 

these dynamic geometric situations and covariational reasoning informed how we might support 

students’ meaningful construction of formulas as re-presenting quantitative relationships. 

One primary finding in the literature relevant to this report is the distinction between 

figurative and operative thought (Piaget, 1974, 2001; Steffe, 1991). In essence, figurative 

thought is associated with thought that foregrounds sensorimotor actions that are subordinate to 

perceptual (figurative) properties, and operative thought is not constrained by sensorimotor 

experience (see Moore (2016)). Building on the work of static and expert shaping thinking 

(Moore & Thompson, 2015), Moore et al. (2019) took up this distinction to make sense of 

students’ graphing actions. For instance, they described a student struggling to re-present a 

dynamic relationship between two quantities that resulted in a trace that traveled from right to 

left, because “it’s backwards” to the usual left to right graphing activities typically done in the 

classroom. In this way, the students’ actions were constrained by the sensorimotor experience of 

a graph’s trace rather than foregrounding the quantitative relationship re-presented by that trace. 

In this report, I use the findings from The Formula Task to describe how the constructs of 

figurative and operative thought can be used to construct viable models of students’ actions when 

constructing formulas. Specifically, I considered how Thompson’s (1985) distinction between 

figurative and operative thought could relate to geometric formulas. Thompson (1985, p. 195) 

said, “Any set of schemata can be characterized as figurative or operative, depending upon 

whether one is portraying it as background for its controlling schemata or as foreground for the 

schemata that it controls.” In this study on formulas, the set of schemata does not rely on 

perceptual actions taken on perceptual material that can be operated on, such as tracing right to 

left as Moore et al. (2019) described, or repeating partitioning activities across contexts as Liang 

& Moore (2020) described. Rather, the schemata relies on associations of a symbol (or collection 

of symbols) in a formula. Thus, I sought to answer what meanings for formulas do students have 

when they see “A=2πrh”? Those meanings could potentially be serving as controlling schemata 

in the background if they are tied to attributes/shapes (e.g., (surface) area of cylinder, circle, 

spherical cap), in which case the student would be engaging in figurative thought. Alternatively, 

if those meanings include the formula as re-presenting quantitative relationships that could be re-

presented in a variety of contexts (e.g., a linear relationship between height and area that could 

be re-presented in a rectangle, cylinder, spherical cap, etc. depending on what quantities the 

symbols re-present in the situation), then the student would be engaging in operative thought. 

The results in this paper detail particular illustrations of how students engage in figurative and 

operative thought when reasoning with the formula A=2πrh.   
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Methods 

The larger study was split into two parts: a round of 3-5 individual exploratory teaching 

sessions with four pre-service mathematics teachers (heretofore, students) and semester-long 

individual teaching experiments with three students (Steffe & Thompson, 2000). All the students 

were either in their first or second semester of secondary mathematics teacher program at a large 

public university in the southeastern U.S. Each student had completed a Calculus sequence and 

at least two other upper-level mathematics courses (e.g., linear algebra, differential equations) 

with at least a C in the course. Moreover, each student was either enrolled in or had completed a 

spring semester content course exploring secondary mathematics topics through a quantitative 

and covariational reasoning lens inspired by the Pathways Curriculum (Carlson et al., 2015). 

For the exploratory teaching sessions, the teacher-researcher (TR) individually interviewed 

all four students who expressed interest in the study after contacting the entire class about the 

study. During the interviews, the TR presented the students with tasks via a semi-structured 

clinical interview style pre-interview and a series of 3-5 interviews (Clement, 2000). These 

interviews lasted about two hours each, and this report focuses on Charlotte, Kimberley, and 

Alexandria’s final task of the sessions, The Formula Task (details in the next section).  

For the subsequent teaching experiment, three students were selected from a different 

semester of the aforementioned secondary content course by identifying students that exhibited 

different ways of reasoning on a modified version of the MMTSM assessment (Thompson, 2012) 

and a clinical interview. The students in the teaching experiment individually met with the TR 

and a witness-researcher (WR) approximately weekly for a semester. In this article, I report on 

Lily’s activities on The Formula Task, the last task of the teaching experiment.  

The analysis done for this report involved ongoing and retrospective analysis through which 

the TR built these models of students’ mathematics (Steffe & Thompson, 2000). It was during 

the retrospective analysis of the exploratory teaching sessions that the ideas of figurative and 

operative thought became a viable way to distinguish between students’ reasoning about 

formulas in The Formula Task. The TR then went through the data again to identify different 

instances of figurative and operative thought, definitions that were carried through in both 

ongoing and retrospective analysis for the teaching experiment. The resulting definitions are 

presented in the results along with sample illustrations.  

The Formula Task 

In The Formula Task (Figure 1), students receive the following prompt: “Describe a situation 

in which the formula A=2πrh describes a relationship between quantities. How does your 

situation describe that relationship?”. After the students gave their initial responses, they were 

presented with the dynamic situations presented in Figure 1 one by one: a cylinder (height 

varying), a rectangle (width varying), a parallelogram (one of the side lengths varying), a cone 

(height varying), and a spherical cap (with radius of sphere constant, spherical cap varying up 

until a hemisphere). All these situations except for the cone situation entail relationships that can 

be re-presented by the formula A=2πrh, with A re-presenting (surface) area, and h re-presenting a 

certain length quantity (height, width, length, etc.) and r re-presenting a radius. 

The purpose of this task is to analyze the images (quantitative, covariational, or otherwise) 

students evoke from A=2πrh, and to determine the importance of the particular structure, 

ordering, and use of the letters/numerals to their construction of situations. In this way, I consider 

the role of students figurative and operative thought. For instance, a student with a figurative 

meaning may conceive the formula as the normative formula for the surface area of an open 

cylinder, and only an open cylinder; the student would not describe any other situation with that 
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formula. Alternatively, a student with an operative meaning may have a meaning for a formula 

as re-presenting a linear relationship that can be identified in various contexts. Specific results 

are detailed in the next section. 

 
Figure 1. The initial prompt in The Formula Task and images of the follow-up shapes that the students were 

presented with in a dynamic geometric environment. 

Results 

The results section is organized into four sections. Recall that The Formula Task asked 

students to answer both if A=2πrh was an appropriate relationship for a given and how (or why 

not). In the results below, students’ figurative and operative thought is distinguished based on 

whether the students were reasoning about the formula as a whole (first two sections) or a more 

nuanced referencing of particular (groups of) symbols in the formula (last two sections).  

Figurative Thought with the Formula as a Whole 

In the first example of figurative thought, a student considers a formula as an attribute of one 

and only one shape. For A=2πrh, a student may conceive the formula as the normative formula 

for the surface area of an open cylinder, and only an open cylinder; any other context could not 

be described using the given formula. For example, after concluding that the formula A=2πrh 

was appropriate for the cylinder context (using the normative definitions for each of the 

symbols), Charlotte said there was not a way for her to make sense of writing A=2πrh for the 

(surface) area of a parallelogram or cone; her argument for the cone is in the following excerpt.   

Charlotte: No, because if it were the area, then, it would-it would be, I would just be saying 

like it was this shape [pointing to the cylinder shape], but that shape is this shape with 

those cut out [forming a cone shape within the cylinder shape], so I can’t say that.” 

As seen above, Charlotte’s justifications for the appropriateness of writing A=2πrh was 

rooted in comparing the shapes to one another rather than focusing on a potential quantitative 

meaning the formula could re-present across different contexts.  

Alexandria had similar reasoning with the spherical cap. When the TR confirmed that, in 

fact, A=2πrh was an appropriate formula given that A=surface area of the spherical cap, 

h=height of the spherical cap, and r=the radius of the sphere from which the spherical cap is 

formed, she was perturbed. She stated, “That really bothers me because that doesn’t make sense 

to me... That’s the surface area for a cylinder, but that’s [the spherical cap] not a cylinder”).  

Like Charlotte, Alexandria’s justification for a formula being appropriate for a context relied 

more on the shape being considered than the relationship between quantities re-presented in the 

formula. For both students, the formula was uniquely associated with the cylindrical shape. 

24th Annual Conference on Research in Undergraduate Mathematics Education 616



Operative Thought with the Formula as a Whole 

To engage in operative thought with a formula as a whole, a student considers the formula as 

re-presenting a relationship between quantities identified in a context. As an example, we return 

to Alexandria and her work with the spherical cap. Although her initial reaction was that the 

formula could not re-present the area of the spherical cap, when she engaged in covariational 

reasoning, she made sense of the implications that formula meant in terms of the relationship 

between the height and surface area of the spherical cap. Considering successive equal changes 

in height for the spherical cap (see Figure 2), she stated “that each change in area is the same as 

before.” Although she was uncomfortable with this conclusion because of she had difficulty 

comparing changes in area in the spherical cap, she returned to the formula and said, “If r is 

staying the same, then you have a linear relationship, which is constant, by definition, so it would 

have to be.” Thus, rather than relying on associating a formula with a particular shape like she 

did at first, Alexandria considered what quantities the formulas re-presented in each context and 

considered the (linear) relationship that the formula was re-presenting in each case. Her going 

through the activity of comparing the changes in area within and across the two contexts 

indicated that her focus shifted from associating a formula with a shape (i.e., a cylinder), a 

figurative association, to reasoning with a formula as re-presenting relationships between 

quantities in the given context (i.e., a spherical cap), which is operative thought.   

 
Figure 2. Alexandria’s equal changes in height marked on the sphere for The Formula Task. 

Figurative Thought with Quantities Re-presented within the Formula  

In this second example of figurative thought, a student considers a formula for a shape as 

comprised of quantities/formulas that are identified in that shape. In this case of A=2πrh, 

students may associate 2πr with circles, and thus any context that contains a circle (e.g., cylinder, 

cone, sphere) may be associated with the formula in one way or another. For instance, Kimberley 

considered the 2π in the formula A=2πrh and thought both the cylinder and cone were potential 

candidates, but not the parallelogram or the rectangle. Her thoughts on the parallelogram context, 

particularly her interpretation of the 2π in the formula, are in the following excerpt.  

Kimberley: I don’t know why-you wouldn’t have pi for the area of a parallelogram. I guess 

the r is whatever you want it to be, but you wouldn’t have a two pi. 

TR: So why wouldn’t you have a two pi? 

Kimberley: Because I don’t know what it would represent in a parallelogram. Like, in a 

circle, it’s because you can like divide a circle into two pi radii, but you don’t have 

anything even here that you could do that with. 

In the excerpt above, Kimberley argues that 2π is associated with measurements of radii in a 

circle, but because there is no circle present, there is nothing with which to associate the 2π 

24th Annual Conference on Research in Undergraduate Mathematics Education 617



(Note: It would be possible to re-present the height of parallelogram with 2π (i.e., 2πr)). On the 

other hand, the cylinder and cone contexts do contain circles, and thus Kimberley used the 

circles to justify her conclusions about why A=2πrh could re-present these contexts. The 

following excerpt shows her reasoning. (It is important to note that Kimberley remained unsure 

whether 2πr, πr2, 2πr2 was the formula for calculating the area of a circle, so she used them 

interchangeably throughout the interview. At this point, she had settled on 2πr2.) 

Kimberley: I mean, they’d obviously, either one of these [cylinder of cone] makes more sense 

than like a parallelogram or a rectangle. 

TR: Okay, and why does it make more sense for these? 

Kimberley: Because you got a circle and you know that, like, to find the area of a circle, 

you’re gonna have two pi included. 

TR: Okay. Right, and because these [cylinder and cone drawings] both have circles, then this 

formula [A=2πrh] kinda makes more sense for those? 

Kimberley: Mhm.  

Although figurative associations such as associating πr2 with the area of a circle can be 

useful in constructing a quantitative structure in a context, it is important to note the effects of 

maintaining figurative associations in constructing formulas. Namely, the student may attempt to 

identify perceptual features in the context and then attempt to incorporate formulas associated 

with those figurative elements in their construction of a formula, resulting in a non-quantitative 

formula. For instance, after the previous dialogue, Kimberley identified both the cone and 

cylinder as including circles and a varying height, thought that only one should be able to be 

associated with the formula A=2πrh, and struggled to decide which one was appropriate. She 

continued reasoning figuratively with formulas by attending to the triangle shape that she noticed 

in the cone (but not the cylinder). At one point, Kimberley tried to write a formula for the cone 

using the formula for the area of the circle combined with the area of a triangle: A=2πr2∙ ½bh, 

crossing out the b for the base of the triangle, because the base is “just the circle part of it” which 

the 2πr2 already accounted for, leaving her with A=πr2h as the formula for finding the surface 

area of a cone (Figure 3). Note that all her reasoning relied on associating formulas with shapes. 

 
Figure 3. Kimberley’s constructed formulas for a cone and cylinder. 

Operative Thought with Quantities Re-presented within the Formula 

To engage in operative thought with quantities re-presented within the formula, a student 

considers the formula as consisting of quantitative operations between quantities identified in a 

context. For the formula A=2πrh, these quantitative operations could include a quantitative 

operation (i.e., multiplication) between a quantity re-presented by 2πr and another quantity re-

presented by h that would result in the measure of a quantity re-presented by A. This way of 
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thinking is how Lily thought about the formula A=2πrh. More specifically, the formula pointed 

to covariational relationships between quantities; she could anticipate the relationship between 

the values of the amounts of change between quantities using her formula. For instance, when 

explaining why she anticipated that the amounts of change in area would be equal for equal 

changes in height, she stated, “[I]f you add like this much more to the height, you would multiply 

the height, that equal change in height, times two pi r, and that’d be the equal change in area.” 

She could assimilate this covariational relationship with several different geometric shapes. For 

example, Figure 4 shows her comparing the cylinder and cone contexts by identifying and 

comparing changes in surface area (A) for equal changes in height (h), concluding that between 

the cylinder and cone, the cylinder was the “winner” (i.e., the context in which A=2πrh was 

appropriate) because she identified equal changes in surface area for equal changes in height 

(unlike with the cone). In this way, Lily engaged in operative thought across situations fluidly. 

 

 
Figure 4. Lily’s work on the Cylinder and Cone in The Formula Task.  

Discussion 

This report includes different ways in which figurative and operative thought might occur, 

depending on what symbols, groups of symbols, or formulas the students are considering. It also 

showed that, similar to Moore & Thompson’s (2015) expert shape thinking, figurative thought 

may not always result in problematic conclusions (in the case of Charlotte and the cone), but that 

there is potential that figurative thought could result in ways of thinking about formulas that do 

not rely on re-presenting quantitative relationships (in the case of Kimberley’s construction of a 

formula for the surface area of a cone). Lastly, although both Lily and Alexandria’s examples of 

operative thought included covariational reasoning, the definition of operative thought deals with 

students’ capacity to reason quantitatively (not necessarily covariationally) about the 

relationships rather than relying of associations of formulas with figurative materials (shapes). 

Alexandria, nevertheless, showed how opportunities for covariational reasoning with perceptual 

materials might support operative thought. These results are important for researchers to consider 

when thinking about how undergraduate students’ meanings for formulas impact ideas such as 

what it means to take the derivative or antiderivative of formulas.  
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Characterizing Quantitative Structures Students Establish for Real-World Scenarios 
 

 Sindura Subanemy Kularajan Jennifer A. Czocher 
 Texas State University Texas State University 

In this report, we characterize a spectrum of mathematical structures of real-world situations. 
Using data from teaching experiments with undergraduate STEM majors and theories from 
quantitative reasoning, covariational reasoning, and multi variational reasoning, we build 
second order accounts of modelers’ reasoning with and about conceived quantities. Through 
these accounts we illustrate four different kinds of structures as means for describing key aspects 
of how modelers develop their models. 

Keywords: Mathematical Modeling, Quantitative Reasoning, Covariational Reasoning, 
Multivariational Reasoning 

Typically, mathematical modeling involves translating real world scenarios into 
mathematical representations. The mathematical representations can take the form of 
mathematical expressions, tables and graphs depicting how variables vary with one another (or 
not), and even diagrams depicting the dynamics of the scenario (e.g. stock-flow diagrams). 
While tables, graphs, and figures are useful for representing the real-world scenario, the ultimate 
goal is producing a mathematical expression that is consistent with their previous representations 
and reasonings about the scenario and also representative of the real-world scenario. 
Quantitative relations govern the mathematical model of a real-world scenario. That is, a 
mathematical representation of a real-world scenario can be understood as an expression of the 
relationships among conceived quantities. Therefore, it would make sense to view mathematical 
modeling through the lens of quantities and relations among quantities (Thompson, 2011; 
Larsen, 2013; Czocher & Hardison, 2019) in order to find ways to help guide students towards a 
mathematical expression. However, reasoning with and about quantities doesn’t necessarily yield 
a mathematical expression consistent with the modeler’s reasoning and representative of the 
scenario as an end result (Czocher & Hardison, 2019). In milieu of this, we ask: what is the 
nature of the quantitative relations students establish of real-world scenarios.  

Theoretical Orientation 
Our research lies within the cognitive perspective of mathematical modeling (Kaiser, 2017). 

In this perspective, mathematical modeling is considered to be the cognitive processes involved 
in constructing a mathematical model of real-world scenarios. We define a mathematical model 
to be the external representation of the relations among the quantities a modeler conceived as 
relevant to model a real-world scenario. We define mathematical modeling activity as the mental 
activities involved in creating a mathematical representation of a real-world situation.  

Thompson (2011) defines quantification as the “process of conceptualizing an object and an 
attribute of it so that the attribute has a unit of measure, and the attribute’s measure entails a 
proportional relationship its unit” (p. 37). In that sense, a quantity is a mental construct of a 
measurable attribute of an object. Quantitative reasoning involves conceiving and reasoning 
about conceived quantities. Reasoning about conceived quantity can entail operating on 
conceived quantities and reasoning about how the quantities can vary. Thompson (1994) defines 
quantitative operation as the “mental operation by which one conceives a new quantity in 
relation to one or more already-conceived quantities” (p.10). As a result of a quantitative 
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operation a relationship is created: the quantities operated upon along with the quantitative 
operation in relation to the result of operating (Thompson, 1994).  Examples of quantitative 
operations include combining two quantities additively or multiplicatively and comparing two 
quantities additively or multiplicatively. Scholars address the following ways individuals can 
reason about how quantities vary: variational reasoning (Thompson & Carlson, 2017). Co-
variational reasoning (Carlson et al, 2002; Thompson & Carlson,2017), and multivariational 
reasoning (Jones, 2018; Jones & Jeppson, 2020, Panorkou & Germia, 2020).  

While variational reasoning involves reasoning about varying quantities independently 
(Thompson & Carlson, 2017), co-variational reasoning involves “coordinating two varying 
quantities while attending to the ways in which they change in relation to each other” (Carlson et 
al, 2002, p.354). Carlson et al (2002) contributed a framework for the mental actions involved in 
covariational reasoning. Later, Thompson and Carlson (2017) proposed six major mental 
operations involved in covariational reasoning. These mental operations are: no coordination of 
values, pre coordination of values (envisioning asynchronous changes in variables), gross 
coordination of values (envisioning the general increase/decrease in variables’ values), 
coordination of values (coordinating the amounts of change of each quantity), chunky continuous 
variation (envisioning change in variables happening simultaneously but in discrete chunks), 
smooth continuous variation (envisioning change happening simultaneously but smoothly).  

Scholars have extended the work of covariational reasoning to multivariational reasoning, 
which is reasoning about more than two quantities changing in conjunction with each other 
(Jones 2018; Jones & Jeppson,2020). Jones and Jeppson (2020) identified the following mental 
actions attendant to multivariational reasoning: recognizing dependence/independence, reduce 
into isolated covariations, covariational reasoning, switch variables/constants, imagining 
simultaneous changes in inputs, coordinating multiple simultaneous changes, coordinating 
qualitative amounts of change, coordinating numeric amounts of change, articulate the type of 
relationship, identifying the order of effect between variables, and recognize a chain of influence.   

Borrowing ideas from the aforementioned theoretical underpinnings, we define establishing 
structure for a real-world scenario to be creating a network of quantitative relations among the 
quantities the modeler conceives and recognizes as relevant to modeling the scenario. By 
network of quantitative relations, we mean the system of quantitative relations that was created 
as a result of reasoning about and operating on conceived quantities. In this paper we address the 
question: What is the nature of the quantitative structures students establish for real world 
scenarios?  

Methods 
We present data from a set of three teaching experiments (Steffe & Thompson, 2000) 

conducted with undergraduate STEM majors at a large university. The overall goal of the 
teaching experiment was to investigate the role of quantitative and co/multi-variational reasoning 
in students’ conception of real-world situations as they attempted to model those scenarios.  
Baxil, Pai, and Szeth, each participated 10 interview sessions; each session was approximately 1 
hour long. Baxil and Pai were enrolled in differential equations and Szeth was repeating the 
course. During the interviews, in addition to asking students the meanings they attributed to each 
symbol they introduced, participants were also probed to unpack the reasonings behind certain 
decisions they made during their mathematical modeling activity. In this report we present data 
from the following sessions: Baxil and the Fruit Ripening Task, Szeth and the Disease 
transmission Task, and Pai and the CI8 Account task. We focus on these sessions because they 
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illustrate the finding that quantitative structures established by modelers may have differing 
natures.  

• Fruit Ripening: There is a surprising effect in nature where a tree or bush will 
suddenly ripen all of its fruit or vegetables, without any visible signal. This is our first 
example of a positive biological feedback loop. If we look at an apple tree, with many 
apples, seemingly overnight they all go from unripe to ripe to overripe. This will 
begin with the first apple to ripen. Once ripe, it gives off a gas known as ethylene 
(𝐶𝐶2𝐻𝐻4) through its skin. When exposed to this gas, the apples near to it also ripen. 
Once ripe, they too produce ethylene, which continues to ripen the rest of the tree in 
an effect much like a wave. This feedback loop is often used in fruit production, with 
apples being exposed to manufactured ethylene gas to make them ripen faster. 
Develop a mathematical model that captures the dynamics of the ripeness of the fruit.  

• Disease Transmission: Suppose a disease is spread by contact between sick and well 
members of the community. If members of the community move about freely among 
each other, develop a mathematical model that informs us about the dynamics of how 
the disease would spread through the population. 

• The CI8 Account: The competing Amtrak Trust has introduced a modification to City 
bank's SI8, which they call the CI8 account. Like the SI8 account, the CI8 earns 8% 
of the "initial investment". However, at the end of each year Amtrak Trust 
recalculates the “initial investment” of the CI8 account to include all the interest that 
the customer has earned up to that point. Create an expression that gives the value of 
the CI8 account at any time t (Castillo-Garsow, 2010).  

We retrospectively analyzed the data via building second-order models (Steffe & Thompson, 
2000) of students’ reasoning. Since we did not have direct access to participants’ mental 
activities, the second-order models we constructed are inferences made from the students’ 
observable activities such as language, verbal descriptions and discourse, written work, and their 
mathematically salient gestures.  Our retrospective analysis consisted of five rounds of data 
analysis to arrive at examples that illustrate the different natures of the structures present in 
students’ conception of real-world situations. First, we watched the subset of videos without 
interruption to observe students’ ways of reasoning about conceived quantities. Second, we paid 
close attention how they transformed these reasonings into a mathematical expression, or not. 
Third, we distinguished sessions where a normatively acceptable mathematical expressions were 
created from those where it wasn’t the case. Fourth, we sought to distinguish the sessions where 
acceptable mathematical expressions weren’t created according to the level of sophistication in 
mental actions attendant to co/multivariational reasoning. Fourth, we created annotated 
transcripts of such scenarios that provided rich description of the modelers mathematical 
modeling activity. Finally, we built and refined the explanatory models of participants structural 
conception of real-world scenarios.  

Findings 

Qualitative Structure – Baxil and Fruit Ripening 
Baxil operationalized ripeness of the fruit as “readiness to eat” the fruit. He indicated that the 

ripeness of the apple is dependent on “rate and time”. By rate, Baxil meant the rate at which the 
apple will become “ready to eat,” as illustrated below: 

Baxil: What I’m assuming is the rate of the apple are ready to eat because not all the apple 
will be always ready to eat, so I assume that, and the time will be keep increasing because 
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if it keep too short, it's not ready. If it's right about time, it's ready, but if it's too long, it's 
not ready, as well, so it will be the time between ready and too ready. I would say it's 
same thing because it's any... It's changing maybe every minute or hours, but I think it's 
continuously again. 

He conceived of the situation to be that not all apples will be ready to eat at the same time 
and the apples’ readiness to eat depends on time. From above, it is evident that Baxil was able to 
coordinate the directions of changes of time and “readiness to eat”, thus engaging in gross 
coordination of values. He reasoned that as time goes on the “readiness to eat” of the apple will 
increase and then after a certain time the “readiness to eat” will start decreasing. For Baxil, the 
“readiness to eat” will start decreasing because an overripe fruit cannot be consumed. This is 
evident in the excerpt below. He also envisioned this change happening smoothly and 
continuously (see Figure 1).  

 
Figure 1. Baxil's graph for “readiness to eat" vs. time 

Baxil: It would be negative because it's not ready to eat, so I am assuming it start at 0, and to 
here is ready to eat [B]. And if I'm here [C], it's not ready to, and that the graph will be 
from here [C] to here [D], then decreasing, I think, and it will be... because this the time 
those two... from here to here is ready to eat because one is increasing because giving 
time to ready to eat, and from here[B] to here is the time you can eat [D], I think. I'm 
going to assume, and then after you can eat, then you cannot eat anything because it's... I 
don't know what that word, but it was expired. 

Here Baxil explains how the “readiness to eat” of the fruit changes with time. He was mostly 
involved with the gross coordination of the quantities “readiness to eat” and time and did not 
produce a mathematical expression that captured the dynamics of the ripening fruit. We call 
structures of this nature – where no more than the gross coordination of quantities is involved – 
as qualitative structures.   

Emerging Quantitative Structure – Pai and Disease Transmission 
After reading the Disease Transmission task, Pai immediately reasoned that the account 

would not change at a constant rate (linear growth) because “the value of what’s going to be 
multiplied by 0.08 changes”.  This indicates that Pai envisions the amount by which the account 
grows each period changes. He then wrote down what the values of the account at the end of the 
first, second, and third year as follows: 𝑆𝑆1 = 𝑆𝑆0 + 0.08(𝑆𝑆0)(𝑡𝑡), 𝑆𝑆2 = 𝑆𝑆1 + 0.08(𝑆𝑆1)(𝑡𝑡), 𝑆𝑆3 =
𝑆𝑆2 + 0.08(𝑆𝑆2)(𝑡𝑡) , where 𝑆𝑆𝑛𝑛 is the value of the account at the end of the 𝑛𝑛th compounding period 
and 𝑡𝑡 = 1 year. Pai continued to reason as:   

Pai: Because each year grows 8% times the initial level of the account balance, which is the 
prior year ending balance. Since the prior year, S1, is greater than, essentially, S0. S2 is 
going to be taking the S1 value and adding 8% of that value to it. It will just keep 
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increasing…But if you take the entire account balance over time, it's going to grow at a 
faster and faster rate.” 

As he was reasoning he drew the graph of Account balance vs time (Figure 2). Upon probing 
to discuss the numerical amounts of change, Pai started with $100.00 and used his expressions 
from above to find the accounts’ value at the end of the first and second year as $108, and 
$116.64, respectively. Thus, Pai was coordinating the numeric amounts of change to the account 
balance with time. He further articulated that the change of the account size during each 
compounding period would continue to increase. Although Pai was able to coordinate the 
amounts of change of the value of the account and time, he was uncertain how to write a 
mathematical expression that would give the value of the account at any time t. We call 
structures of this nature – where a modeler has coordinated the amounts of change of the 
conceived quantities but hasn’t translated that into a mathematical expression yet – as emerging 
quantitative structures.  

 
Figure 2. Pai's graph of account balance vs time in years 

Quantitative Structure – Szeth and Disease Transmission 
Szeth initially wrote down 𝑃𝑃(𝑡𝑡) = 𝑆𝑆(𝑡𝑡)𝐻𝐻(𝑡𝑡), where 𝑆𝑆(𝑡𝑡) is the sick people, 𝐻𝐻(𝑡𝑡), is the 

healthy people and 𝑃𝑃(𝑡𝑡) represents the population that becomes sick. After realizing that P(t) and 
𝑆𝑆(𝑡𝑡) measure the same thing, he changed his expression to be 𝑆𝑆′(𝑡𝑡) = 𝑆𝑆(𝑡𝑡)𝐻𝐻(𝑡𝑡). When asked 
why he did so, he reasoned as:  

Szeth: Yeah. The big, I guess, driving force was, like I said, these two variables felt like the 
same thing to me which then the equation doesn't make sense that way. So I was thinking 
of, well, should I try and change this one [pointing at 𝑃𝑃(𝑡𝑡)] or should I try and change 
this one [pointing at 𝑆𝑆(𝑡𝑡)]? So I quickly just look through the wording of the problem, 
and in the last sentence it says how the disease would spread through the population. So 
the spreading, that sounds like to me like a rate, how quickly it would spread out, slowly 
it spreads. So then that led me to change what the equation is equal to. It's equal to the 
spreading or how quickly people get sick, and then that's based on the interactions 
between healthy and sick.  

As in the except above, Szeth was trying to determine if he should be changing 𝑃𝑃(𝑡𝑡) or 𝑆𝑆(𝑡𝑡) 
since having them as is doesn’t make any sense”. When re-reading the task, he realized that since 
he wants to know how the disease spreads, the left-hand side of the equation should be a rate 
rather than an amount. He then changed 𝑃𝑃(𝑡𝑡) to be 𝑆𝑆’(𝑡𝑡) because the spread of the disease is 
dependent upon the interactions between healthy and sick people. So, Szeth’s final answer was 
𝑆𝑆’(𝑡𝑡) = 𝑆𝑆(𝑡𝑡)𝐻𝐻(𝑡𝑡). When probed, he indicated that his model assumes that all healthy people who 
come in contact with the sick people, get sick. When the interviewer asked him how he would 
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modify it to account for only a portion of healthy people who come in contact with the sick 
people will get sick, Szeth wrote 𝑆𝑆’(𝑡𝑡) = 𝛼𝛼𝑆𝑆(𝑡𝑡)𝐻𝐻(𝑡𝑡) where α is the percentage of interactions 
that lead to people getting sick.  In this scenario, Szeth was able to construct the quantity the 
spread of disease through operating on the quantities 𝑆𝑆(𝑡𝑡), 𝐻𝐻(𝑡𝑡), and α, under two different 
assumptions. Not only was he able to recognize the dependence among the quantities 𝑆𝑆’(𝑡𝑡), 
𝐻𝐻(𝑡𝑡), 𝑆𝑆(𝑡𝑡), P(t), and α, but he was also able to translate this dependence into a mathematical 
expression. We call structures of this nature – where the network of quantitative relations is 
translated into a mathematical expression – as quantitative structures.  

Pseudo Quantitative Structure: Baxil and Fruit Ripening 
Baxil was asked to draw a graph of the gas produced vs time. Baxil, while drawing his graph 

(Figure 3), reasoned as “I would say increasing slowly at the beginning, then increasing faster as 
they are ready to eat because after you're ready to eat, it will produce more instead it didn't ripe 
yet.” The interviewer probed his rationale for why the ethelyne gas production would be faster as 
the fruit ripens. Baxil explained “When you're not ready to eat, it's just like a little bit amount of 
the gas, I would think, but after it's ready, it goes faster because everywhere have the gas”. Baxil 
engaged in coordination of three interdependent quantities (amount of ethelyne gas produced, 
gas production, and time), while maintaining pairwise coordination between amount of gas vs. 
time and gas production vs. time, and production of gas vs. amount of gas. We can say that Baxil 
has established a qualitative structure of the situation.  

 
Figure 3. Baxil's graph for ethelyn production vs time 

The interviewer then asked Baxil to write an expression for the amount of ethelyne gas 
produced. He wrote down two expressions and was trying to figure which suited the situation 
most.  

i. Amount of gas produced by the apple which is ready to eat = 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑔𝑔𝑟𝑟𝑔𝑔∗ 𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟 
ii. Amount of gas produced by the apple which is ready to eat = 𝑟𝑟𝑟𝑟𝑡𝑡𝑒𝑒  𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟 

In expression (i), Baxil conceived of rate of gas to be the “percentage of gas inside the 
apple”. By that, Baxil meant the ripeness to ethylene conversion rate. Whereas in the second 
expression, he indicated that rate would be “the rate of gas that affect the (ripeness of the 
apple)”. Baxil further indicated that the amount of gas, as represented in the first expression, 
would be increasing slowly. Whereas in the second expression, the amount of gas would increase 
quickly. This interpretation was evident in his following explanation: 

Baxil: May I make an example like the raw apple there is a little bit of gas like I say 10% of 
them I guess, so it might be a 20% of them and the next there is something like that and 
there is a 40% then a 60% it doesn't add to 100% that's the second equation thinking and 
for the first equation I was thinking if it is 10% the rate won’t be changing... I mean not 
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the rate the like the amount then I say like its 10% it might be and depend on the tense it 
will be increasing by one-tenth, two-tenth, third-tenth, four-tenth... something like that.  

The interviewer asked him to draw graphs of the two scenarios, he drew figure a to represent 
expression 1 and b to represent expression 2. While he attributed the amount of gas in the first 
one to be increasing slowly, and in the second to be increasing faster, he drew a steeper graph for 
the first one (Figure 4a).  

 
Figure 4. Baxil's graphs for ethylene production vs time 

Here Baxil conceived two distinct measurable attributes of the same object, apple. One was 
by how much gas is produced by the apple and the other being by how much the gas affects the 
ripeness of the apple. As a result, he createded two expressions that, despite being 
mathematically equivalent, behaved different to him in terms of quantities and quantitative 
operations. He settled on expression (ii) as his final model because, according to him, in the 
second expression the gas is produced quicker which is most suited for the given situation. 
Baxil’s expression modeling the amount of ethylene gas produced was normatively correct. 
However, his reasoning evidenced a few kinds of inconsistences. First, Baxil did not justify why 
he thought the second expression produced ethelyn gas faster than the first. Second, he produced 
graphs that are inconsistent with the aforementioned reasoning. We call structures of this nature 
– where the qualitative structure is mapped into an acceptable expression but for incorrect 
reasons – as a pseudo quantitative structures.  

Discussion 
In this report, we have illustrated four different kinds of structures students may establish for 

real-world scenarios. For completion, we suggest that it is possible that the modeler does not 
establish (a quantitative) structure for the real-world scenario. That is, the modeler may have 
conceived the quantities but has not recognized interdependencies among those quantities, thus 
explaining their absence from the structural network. We acknowledge that the types of 
structures reported in this paper are not exhaustive. In addition, the presence of these structures 
may be limited to students’ modeling activities for dynamic systems. These distinct kinds of 
quantitative structures can be used as a researcher tool to describe the degree of the formality of 
the network of quantitative relations students established on real-world situations. These 
descriptions may be used to analyze where the student is in her model developing activity, with 
quantitative and co/multivariational reasoning as the backbone, complementing existing research 
on mathematical modeling processes. This in result may provide insights into how educators can 
guide students into creating a mathematical expression – the favorable outcome of mathematical 
modeling - as the mathematical representation of a real-world situation.  

Acknowledgments 
This material is based upon work supported by the national Science Foundation under Grant 

No. 1750813.  

24th Annual Conference on Research in Undergraduate Mathematics Education 628



References 
Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning 

while modeling dynamic events: A framework and a study. Journal for research in 
mathematics education, 33(5), 352-378. 

Castillo-Garsow, C. C. (2010). Teaching the Verhulst model: A teaching experiment in 
covariational reasoning and exponential growth. Unpublished Ph.D. Dissertation, Arizona 
State University, Tempe, AZ. 

Czocher, J. A., & Hardison, H. (2019). Characterizing Evolution of Mathematical Models. In. 
Otten, S., Candela, A. G., de Araujo, Z., Haines, C., & Munter, C. (Eds). Proceedings of the 
forty-first annual meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education. St Louis, MO: University of Missouri.  

Jones, S. R. (2018). Building on covariation: Making explicit four types of “multivariation”. In 
A. Weinberg, C. Rasmussen, J. Rabin, & M. Wawro (Eds.), Proceedings of the 21st annual 
Conference on Research in Undergradute Mathematics Education. San Diego, CA: 
SIGMAA on RUME. 

Jones, S. R., Jeppson, H. P. (2020). Students’ reasoning about multivariational structures. In. 
Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). Mathematics Education 
Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education, Mexico. 

Kaiser, G. (2017). The teaching and learning of mathematical modeling. In J. Cai (Ed.), 
Compendium for research in mathematics education (pp. 267–291). Reston, VA: The 
National Council of Teachers of Mathematics, Inc. 

Larson, C. (2013). Modeling and quantitative reasoning: The summer jobs problem. In Lesh, R., 
Galbraith, P. L., Haines, C., & Hurford, A. (Eds). Modeling students' mathematical modeling 
competencies. International Perspectives on the Teaching and Learning of Mathematical 
Modeling.  (pp. 111–118). Springer, Dordrecht.  

Kandasamy,S. , & Czocher 
Panorkou, N., Germia, E. (2020). Examining students’ reasoning about multiple quantities. In. 

Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). Mathematics Education 
Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education, Mexico. 

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying 
principles and essential elements. In R. Lesh & A. E. Kelly (Eds.), Research design in 
mathematics and science education (pp. 267–307). Hillside, NJ: Erlbaum.  

Thompson, P. W. (1994b). The development of the concept of speed and its relationship to 
concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative 
reasoning in the learning of mathematics (pp. 181-234). Albany, NY: SUNY Press.  

Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. Hatfield, 
S. Chamberlain & S. Belbase (Eds.), New perspectives and directions for collaborative 
research in mathematics education. WISDOMe Mongraphs (Vol. 1, pp. 33–57). Laramie, 
WY: University of Wyoming.  

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational 
ways of thinking mathematically. Compendium for research in mathematics education, 421-
456. 

 
 

24th Annual Conference on Research in Undergraduate Mathematics Education 629



“The reason why I didn't like [math] before is because I never felt creative”: Affective Outcomes 
from Teaching Actions to Foster Mathematical Creativity in Calculus 1 

 
 Gail Tang Miloš Savić V. Rani Satyam  
 University of La Verne University of Oklahoma Virginia Commonwealth University  
 
 Houssein El Turkey Gulden Karakok 
 University of New Haven University of Northern Colorado 

In this paper, we describe the student-reported affective outcomes from teaching actions of 
professors involved in a professional development experience to explicitly value creativity in 
their Calculus 1 courses. Using the four main teaching themes that emerged (Task-Related, 
Inquiry Teaching, Teacher-Centered, and Holistic Teaching), we further explored the data for 
affective outcomes resulting from teaching actions that foster student creativity. We observed 
five distinct affective outcomes: Enjoyment, Confidence, Comfort, Negative then Positive 
Feelings, and Negative Feelings. Enjoyment and Confidence were the most reported affective 
outcomes from the creativity-fostering teaching actions. Particularly, Enjoyment was reported 
the most from Holistic Teaching and Task-Related teaching actions; Confidence was reported 
the most from Holistic Teaching actions among all the types. Finally, we offer concrete 
creativity-based teaching actions that have the capacity to build students’ mathematical 
enjoyment and confidence. 

Keywords: mathematical creativity, affect, confidence, enjoyment, teaching actions  

Learners bring their prior experiences into the classroom that influence how they learn 
mathematics, who should learn it, and how they feel about learning it; this impacts students’ 
persistence in mathematics and other STEM fields (Ellis et al., 2016). For example, Laursen et 
al. (2014) found that teaching pedagogies impacted students’ affective gains in confidence, intent 
to pursue more mathematics classes and attitude about mathematics. Furthermore, despite having 
similar grades, students in Laursen et al.’s study reported different learning gains by gender and 
pedagogy. That is, these students had a weaker sense of mastery that is not reflective of actual 
content knowledge. Indeed, affective outcomes such as confidence impact persistence through 
Calculus II and STEM in general (Ellis & Cooper, 2016). There are numerous aspects of a course 
that could impact students’ affect. In this paper, we concentrate on the teaching actions aspect of 
a creativity-based undergraduate Calculus I course, because creativity is often overlooked in this 
course (Ryals & Keene, 2017). We conclude with teaching actions that have the greatest 
potential to positively impact students’ enjoyment of and confidence in doing mathematics. 

Background Literature & Theoretical Perspective 
We utilize a relativistic perspective of mathematical creativity (Liljedahl & Sriraman, 2006). 

Through the four “C” model of creativity, we situate our definition of mathematical creativity as 
“mini-c,” defined as “subjective self-discoveries—the novel and personally meaningful insights 
and interpretations inherent in the learning process” (Kaufman & Beghetto, 2013, p. 230). This 
notion of self-discovery necessitates a phenomenological perspective (Abakpa et al., 2017; van 
Manen, 1990) – we asked participants to define creativity in their own words, report if they felt 
creative according to their definitions, and list aspects of the course that impacted their levels of 
creativity. We focus on students’ perspectives because actions to foster mathematical creativity 
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have mainly been posited as theory or conjecture (e.g., Sriraman, 2005); actions based on 
empirical work have rarely been analyzed at the tertiary level (e.g., Levenson, 2011 for 5th and 
6th grades). 

Affect encompasses a wide range of constructs that involve feeling (McLeod, 1988), 
including attitudes, emotions, engagement, and so forth (Middleton et al., 2017). Researchers 
have long tried to develop constructs that distinguish various forms of affect. McLeod (1988) 
discussed the importance of beliefs, attitudes, and emotions as a trio; he differentiated among 
them using the dimensions of magnitude, direction, duration, level of awareness, and level. More 
recently, Middleton et al., (2017) distinguished between trait-like versus state-like affect: the 
former refers to affect that is longer in duration, relatively stable, and thus not amenable to 
change easily (e.g., beliefs), while the latter is shorter in duration, oftentimes in reaction to an 
event, and can be volatile in intensity. This “in-the-moment” nature suggests state-like affect 
may be more open to influence by the environment and teacher.  

We approach affect broadly as many questions remain over the robustness of definitions and 
various forms of affect (Grootenboer & Marshman, 2016). Following the recommendations in 
the literature (Hannula, 2002; Schindler & Bakker, 2020), we define an affective outcome as any 
emotions, beliefs, attitudes—whether they are state-like or trait-like— that the students 
referenced when speaking about the teaching actions they felt fostered their mathematical 
creativity. In this paper, we address the research question: what affective outcomes do students 
report from teaching actions of instructors involved in professional development to explicitly 
value creativity in Calculus I? 

Methods 

Participants and Setting 
Within a larger NSF-funded project investigating fostering mathematical creativity in 

Calculus I, this study focuses on semi-structured interviews conducted with 34 undergraduate 
Calculus I students. The larger research project consists of 3 total cohorts of instructor 
participants from various universities in the U.S. We report only on the two completed cohorts. 
The research team interviewed 12 students from Cohort 1 (Spring 2019) instructors and 22 from 
Cohort 2 (Spring 2020). Because different students have different educational experiences or 
opportunities, we provide students’ self-reported gender and racial categories (Adiredja et al., 
2015) along with their instructors’ self-reported gender and racial categories. Twenty-four 
students self-identified as female (four bi-racial, five Latina, four Black, two AAPI1, one Persian, 
eight White), nine as male (one bi-racial, one AAPI, one Latino/Hispanic, six White), and one as 
non-binary (White). These students’ instructors participated in an online professional learning 
community in which fostering creativity in Calculus was the emphasis. Nine total instructors 
have completed participation in the project: three from Cohort 1 and six from Cohort 2. Six self-
identified as female (two Latina or Hispanic, three White, one Black) and three as male (one 
AAPI, two White). 

Data Collection, Coding, and Analysis 
Participating students were interviewed once by one of the authors for 45-90 minutes towards 

the end of their Calculus course, prior to taking their final exam. We asked students questions 
such as “Did you feel creative in this course?”, “Why and when do think you were creative?”, 

 
1 Asian Americans or Pacific Islanders 
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“What have you learned about your mathematical creativity from this course?”, and “What 
aspects of this course contributed to your or your classmates’ creativity in the course?”  First, we 
used responses to this last question to code the transcribed interview data for students’ references 
to teaching actions when talking about their own or others’ creativity. We created nodes using a 
combination of descriptive and in vivo coding (Saldaña, 2016). From those nodes, we used the 
process of theming (Saldaña, 2016) to categorize the teaching actions. The themes that 
encompass the teaching actions are described in Satyam et al. (submitted) as follows: 

• Task-Related: any action that mentions properties of a mathematical content task (re-) 
designed, evaluated, or assessed by the instructor.  

• Teacher-Centered: any action that was mostly focused on the instructor, whether it be 
verifying correctness or connecting topics.  

• Inquiry Teaching: any action that can be linked to inquiry-oriented (or -based) 
instruction.  

• Holistic Teaching: any teaching actions that do not require a response from students 
yet psychologically builds an environment for fostering creativity.  

Each teaching theme has sub-types and associated concrete teaching actions. For more details on 
each theme, sub-types and teaching actions, see Satyam et al. (submitted). 

We used nVivo™ (a qualitative analysis computer software) to isolate all student references 
coded with any of the teaching themes and performed a secondary coding for students’ self-
reported affective outcomes. Therefore, the affective themes that we have categorized came 
directly from student-reported teaching actions that contributed to their or their peers’ creativity. 
To code the affective outcomes, we took the same coding approach as for the teaching actions: 
creating nodes using descriptive and in vivo coding followed by theming. To identify themes, we 
organized the nodes into groups using constant comparison (Glaser & Strauss, 1967).  

Results 
Five affective themes surfaced and were titled: Enjoyment, Confidence, Comfort, Negative 

then Positive Feelings, and Negative Feelings. At times, students reported several affective 
outcomes in one utterance. In those cases, all affective themes appropriate were used to code the 
student’s words. Below, we expand on how we coded for each affective theme and provide 
interview excerpts. The corresponding teaching action is given in quotation marks and teaching 
theme in parentheses. The underlined portions indicate the context that situate the quote into the 
affective theme; the underlined and italicized words show the phrases associated with the theme. 
Conversational fillers such as “um”, “like”, “so”, “I guess”, or “you know” were removed. 

Enjoyment 
The Enjoyment theme includes utterances that reflected students’ enjoyment, excitement, 

interest, appreciation, entertainment, or satisfaction due to the professor’s creativity-based 
teaching action. Moments where students were stimulated or inspired by their professor were 
also coded into this theme. For example, Optimus’s (White male student with Hispanic female 
instructor) response which stemmed from the teaching action “assign open-ended questions” 
(Task-Related) is shared below. 

I think the most creative I felt was when I did that C++ program to do my homework. It 
felt nice to just do a different way and approach from a completely different angle. I think 
it gives you a different level of satisfaction because it’s not like the same mundane 
objective. And getting those results, you just don’t get that satisfaction. It was cool for me 
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to figure something out finally on my own. It’s one thing that really turns me off about 
math; it’s like, "damn, I’m learning about like just something some smart dude said" and 
you know, I don’t understand how we got to this point…I’m just spitting out whatever he 
said. I don’t know why. I don’t know what it really means…Nobody told me to make the 
C++ program, nobody told me how to put it together, it was very satisfying when I did get 
the result I wanted. 

Confidence 
Students’ references that mentioned confidence, success in the class, feeling good about 

themselves, self-efficacy (making use of ideas for next time or feeling they can figure out a 
problem in the future), or persistence were coded under this theme. Aon (African American/ 
Black/Nigerian female with Hispanic female instructor) expressed the sentiment below from the 
teaching actions “allow for freedom in time” (Holistic Teaching) and “teach how topics are 
connected” (Teacher-Centered).  

I remember the first the very first day of class, she already gave us the problem and I was 
like "oh, my gosh like, I don’t know this." But then as the class went on, it was like, 
"wow, I see why she taught us this, because it connects to this…[S]he thought that 
teaching us something else before something else would really help us connect when we 
learn that next topic. And it really did. Just being very abstract with it really helped me be 
creative when it came to math. Because I feel like today, if you give me a problem, I’ll be 
able to think of different ways [it can be, went about]. 

Comfort 
Students reported they felt no pressure in being right or wrong, comfortable, encouraged, and 

their mistakes were valued. They also reported that they were not made to feel dumb and that 
they did not feel rushed. They felt the classes they were in grew closer as a group and felt like 
different backgrounds, including nationalities, state residencies, and educational systems were 
appreciated. All these types of references were coded into this theme. Amelia’s (White female 
with White female instructor) quote fits into this theme because she discusses the comfort in not 
having to perform quickly with respect to the teaching action of “prompt and encourage different 
approaches or divergent thinking” (Holistic Teaching). 

I think that’s kind of the reason why I didn’t like it before is because I never felt creative. 
I just felt like I had to do these steps and give these answers. And now understanding that 
it’s all right to take different steps. Before it was always you have to take the quickest 
steps to get to the answer the quickest, and you have to do everything quickly. And now I 
like how it’s not rushed. 

Negative then Positive Feelings 
There were instances of students reporting initial negative feelings and then a shift to a 

positive feeling. Experiences below like Sal’s (biracial Filipina American female with Latinx 
female instructor) were coded into this theme. Her quote was coded with the teaching actions 
“assign writing” (Task-Related); “allow to present in class” and “allow for discussion in class” 
(Inquiry Teaching); “divide class into groups for collaboration” (Inquiry Teaching); and “respect 
differences in the classroom” (Holistic Teaching). 

[The instructor assigned] very reflective, open-ended questions that necessarily aren’t 
calculus related. I think she just wants this to show…there is a possibility to approach 
[calculus] differently than what she’s teaching or than what may be one of your peers is 
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doing… I think she also just wanted to address the fact that everyone’s minds work 
differently…whether it be more creative or more like critical thinking or more 
analytical…So people might be moving at different speeds or might be just thinking and 
approaching of, approaching certain calculations differently…In the beginning, I’ll be 
honest, I didn’t really exactly see a point to it. Just because, it was like very early on in 
the semester, and I was just like, like, "I wonder why we aren’t doing math." But I’m like, 
"OK, that’s fine. I understand these reflective questions much more than I do calculus. So 
that’s all right." [I]n the beginning, I definitely was a little lost in the intent that she had. 
But then looking back on it, I definitely see it has helped. And honestly, it’s helped us 
grow closer as a class, I feel, because it was a very good… bonding moment for everyone 
because it kind of forced us to talk, in a way, and get to know each other and kind of 
share our ideas and perspectives. So that definitely helped. 

Negative Feelings  
Feelings of annoyance, struggle, frustration, or being overwhelmed were coded into the 

Negative Feelings theme. Additionally, comments regarding a negative change in belief in their 
mathematical skill level were captured in this theme. Bryan (White female with White male 
instructor) mentioned the negative feelings towards the end of the semester when the instructor 
made “use of Karakok et al.’s (2020) Creativity-in-Progress Reflection (CPR) on Problem 
Solving tool” (Holistic Teaching). 

At this point, I feel like [using the CPR was] …one more thing I have to do and it doesn’t 
mean as much to me because I have seen a little bit improvement on what I rate myself, 
but sometimes I feel like either I don’t understand how to use it or I just feel like it 
doesn’t necessarily apply. Um, and so then I find it a little bit annoying to be doing it and 
also sometimes I just forget because I forget to do it. In the beginning it was very helpful 
and I did think it was good to do that. 

Teaching Actions and Affective Outcomes Overlaps 
We used nVivo™ to run overlaps of students’ data between the creativity-fostering Teaching 

Actions and Affect because we were interested in uncovering the teaching actions that had the 
greatest number of reported affective outcomes. Table 1 below shows the counts of the quotes 
that were coded with both the Affect listed in column 1 and the Teaching Action in row 1. Note 
that these are not the counts for number of students. That is, one student could have several 
quotes referring to Enjoyment & Inquiry Teaching. Table 1 is organized by frequency of the 
codes for both the Teaching Actions (most to least from left to right in row 1) and Affect (most to 
least from top to bottom in column 1). For example, Enjoyment is the most reported Affect, and 
Holistic Teaching is the most reported Teaching Action. 

For the purposes of this paper, we will look at the three largest counts in Table 1: Enjoyment 
& Holistic Teaching (18), Enjoyment & Task-Related Teaching Actions (18), and Confidence & 
Holistic Teaching (17). Within these overlaps, we look at the most reported creativity-based 
teaching action to uncover which could be most encouraged to foster these affective outcomes. 

In examining the Holistic Teaching actions that made students feel creative while also feeling 
Enjoyment or excitement, the action that had the greatest number of references was “prompt and 
encourage different approaches or divergent thinking.” In the Enjoyment and Task-Related 
intersection, students reported enjoyment came mostly from tasks that were “open-ended (i.e., 
that can be solved in multiple ways).” The top two Holistic Teaching actions that students 
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reported affected their Confidence positively were “de-emphasize correctness in class” and “use 
of CPR”.  

Table 1. Number of Affect Utterances by Teaching Action Theme 

  Teaching Action  

  Holistic 
Teaching 

Task- 
Related 

Inquiry 
Teaching 

Teacher-
Centered TOTAL 

A
ff

ec
t 

Enjoyment 18 18 14 2 52 
Confidence 17 14 8 8 47 
Comfort 14 7 6 4 31 
Neg then Pos 5 8 3 1 17 
Negative 3 3 1 0 7 

 TOTAL 57 50 32 15  

Conclusion 
These student experiences point to the promise of incorporating creativity tasks in Calculus I 

to increase students’ enjoyment, confidence, comfort, and transitional feelings of this gatekeeper 
class. There were also negative affective outcomes reported, but as Table 1 shows, they were 
comparatively fewer than the other affect themes. Table 1 also shows that Enjoyment and 
Confidence were the most reported affective outcomes from the instructors’ teaching actions. 
Considering students’ references to Enjoyment and Confidence together, the creativity-based 
teacher actions that most promote both affective outcomes are: 

• prompt and encourage different approaches or divergent thinking  
• de-emphasize correctness in class 
• show excitement after student contributions, and 
• explicitly encourage students in their creativity. 

It appears these four teaching actions have the most potential for practitioners not only for 
fostering student’s creativity, but also encouraging students’ enjoyment of and confidence in the 
course. Ellis et al. (2016) found that all mathematically-capable students in their sample of 1,524 
lost confidence over the course of their Calculus I course. Thus, encouraging students’ 
confidence is particularly important for STEM students since those with less confidence are less 
likely to continue on in STEM (Nugent et al., 2015). As teaching is shown to be a major 
influence on students’ persistence in school subjects (Rasmussen & Ellis, 2013; Regan et al., 
2015), these four creativity-based teaching actions have major implications on persistence in 
Calculus I. We offer some examples of how to incorporate these teaching actions in the course. 

The instructors in our study “prompt and encourage different approaches or divergent 
thinking,” by soliciting different ways from individual or groups of students. Eb (Asian-
American female with Black female instructor) reported on the comfort of choice in different 
methods or approaches to open-ended questions: 

…definitely the questions that were a little bit more open-ended and not just solve it and 
find a particular answer. Especially the ones where depending on how you solve it or 
which identities you’re using, you might come up with something that looks different at 
the end but it means the same thing, or as long as you solved it correctly using correct 
rules, you’ll come up with an answer that should be correct and there might be multiple 
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answers to that. In that case, I really like that because I could pick and choose which one 
I’d want to use or which ones which ones I’m most comfortable with. 

For specific open-ended tasks that can be designed to “prompt and encourage different 
approaches or divergent thinking” see El Turkey et al. (submitted). 

With regard to the “de-emphasize correctness in class” teaching action, students reported the 
emphasis on the freedom to mess up during the learning process due to a lack of grading for 
correctness. For example, Ensigo (Mexican female with White male instructor) shared: 

My creative abilities in this class have been a lot better than they had been in calculus one 
in high school just because…here…it doesn’t matter if we have the right or wrong 
answer. [W]hat I learned about my personal creative abilities is that I have more of a 
freedom to you know mess up. And it being OK because they’re not looking for the right 
answer. 

One way instructors can promote the freedom to mess up is to grade certain assignments for 
completion and save grading for correctness for more summative assessments.  

Students from this study reported that instructors’ excitement moved them, as it showed the 
instructors’ investment in their learning. Jennifer (White Female with White Male instructor) 
said, “[H]e would always get excited whenever we would answer the questions and…whenever 
we would be understanding. It was just nice to see that he was like rooting for us, (laughing) all 
the time.” We can see that these seemingly small actions can have big impacts on students.  

Lastly, instructors can encourage creativity by explicitly acknowledging that creativity is a 
mathematical skill. Clare (White female with White male instructor) reported:  

[C]reativity...I learned it’s a thing. I learned that in math there are ways to be creative. 
And I think I’ve started understanding that and using it. But I also understand now why 
creativity and math is so important because the creative solutions or the creative people 
are the ones that are the most helpful and are making those innovative discoveries…[T]he 
exam questions are so open ended and…when we would go through [the answers], no 
one would necessarily have the same way of going about it. I think that’s what helped me 
understand that there is a creativity level. 

This also helps to address the myth that creativity and mathematics have an empty intersection.  
Though this study shows existence of positive affective outcomes from explicitly teaching 

for creativity, we need to collect more data to generalize to the greater undergraduate Calculus I 
student population in the U.S. Furthermore, in the future, we want to take a more in-depth 
analysis of affective outcomes by social identity categories such as gender, race/ethnicity, or 
their intersections. It is important to tease out the experiences of students and women of color 
because they often report negative affective outcomes that impact their ability to succeed or 
persist in STEM (Leyva et al., 2021; McGee & Martin, 2011, Trytten et al., 2012). We also want 
to highlight teaching actions that may promote positive affective outcomes by social identities. 
Preliminary analysis shows that learning in a course that explicitly fosters mathematical 
creativity is not a zero-sum game that benefits one group; as seen above, students from many 
different social identities have reported positive affective outcomes. 
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The calculus sequence has outsized importance with regards to the experiences of students in 

STEM degrees. As such, non-traditional formats have been introduced to calculus classrooms in 

attempts to enhance student experience. This work conducts a critical case which analyzes the 

value of a newly implemented Calculus II course paired with an applied lab component by 

explicitly seeking to understand what components of the newly designed course were salient to 

students’ experiences and how those align with the motivations behind the course creation. 

Informed by interpretive grounded theory, we identified three higher-order concepts related to 

students' experiences in the course: instructor impact, student feelings of confidence in the 

course and content, and accessible exposure to various applications. We conclude with 

suggestions for how these themes can provide foundations for further work in understanding 

student experiences of structural calculus innovations. 

Keywords: Calculus II, Student Experience, Lab Calculus, STEM 

Despite an overwhelming national need for individuals with STEM degrees (Olson & 

Riordan, 2012), STEM graduates remain a relative rarity; the National Center for Education 

Statistics indicates that in the academic year 2015-16, only 18% of bachelor’s degrees awarded 

were in STEM fields (National Center for Education Statistics, 2019). Attempting to explain this 

gap in the supply of STEM graduates and demand for a STEM-focused workforce has led 

researchers to identify mathematics- and specifically the calculus sequence - as an important 

influence on whether STEM-intending students will continue in their chosen STEM field, or 

whether they will switch out (or be pushed out) of STEM (Steen, 1988; Ellis et al., 2016). The 

need to ensure that the calculus sequence is oriented toward positive student experiences is key 

in ensuring both that universities are awarding the quantity of STEM degrees required by 

advances in STEM industries, and that students of diverse identities are structurally enabled and 

encouraged to pursue fields that they are interested in. This study examines a course that was a 

part of a broader campus-wide initiative to improve student experiences in introductory STEM 

courses at Dunshire University (pseudonym), especially the experiences of students who were 

not already successful at Dunshire. This course, called Enrichment Lab Sessions, sought to 

connect calculus students with upper level mathematics and a research mathematician.  

The idea of reforming the way that mathematics is taught is not a new one; in 1986, the 

National Science Foundation put out a report calling for academic institutions to increase the 

involvement and investment of university faculty in the mathematics education of their 

undergraduate students (National Science Foundation, 1986). Several such investments targeting 

reform in the course structure and instructional strategies used in calculus-level courses have 

shown promise for increasing student learning and engagement (Moore et al., 1987; Young et al., 

2011; Kogan & Laursen, 2013), and among them is the idea of having both a lecture and 

recitation component to a standard calculus classroom (Anderson & Loftsgaarden, 1987; et al., 

2015). As educators and administrators contemplate and implement structural reform within the 

calculus sequence, it is important that they think critically about the impacts of such reform. 

While studies often look at the “success” of such reforms as being quantifiable boosts in earned 
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grade or pass rate (i.e. Anderson & Loftsgaarden, 1987; Young et al., 2011; Vestal et al., 2015), 

fostering critical analysis of these programs requires the centering of the narratives of individual 

student experience when assessing program effectiveness and providing direction for future 

adaptations. Teaching and learning are simultaneous functions, and thus listening to and 

understanding student feedback is key in successful program adaptation. This qualitative analysis 

of how students experienced an Enrichment Lab Sessions (henceforth referred to as ELS) 

provides such a centering, and enables student-focused and student-informed adaptation of 

similar corequisite structural reforms. We address the following research question: How do 

enrolled students experience and describe the Enrichment Lab Sessions? In our discussion of 

these results, we attend to how the motivations for creating ELS relate to student experiences of 

it. 

 

Theoretical Framing 

This study is rooted in constructivism (Narayan et al., 2013; Bazeley, 2021) in which each 

participant in the focus group has a uniquely constructed student experience of ELS. These 

students are positioned  as key informants of the impactful aspects of the instructional innovation 

of ELS, which aligns with previous work regarding student voice as a necessary component of 

program evaluation and development (Robinson, 2007). Attending to student voice allows us to 

contrast how students talked about their ELS experience with the targeted goals of the 

department and university, and thus takes a critical stance on those goals and the programs 

themselves through their relevance (or irrelevance) to the students’ own experiences. The goal of 

this analysis is to learn from these students’ experiences, and not to generalize on how all 

Calculus II lab courses are experienced. This case study considers what students found impactful 

about this course, and how these impactful attributes align or misalign with the motivations for 

its creation. 

 

Research Design and Methodology 

Data from this analysis comes from the broader NSF-funded study Progress through 

Calculus. The overall Progress through Calculus project included data collected from twelve 

institutions, and included classroom observations and analysis of course materials, individual 

interviews, surveys, and focus groups. As part of this data collection, a focus group with students 

enrolled in the ELS at Dunshire University occurred during the Spring 2019 semester and was 

conducted by a research team specifically examining issues of diversity, equity, and inclusion 

within the calculus sequence. Dunshire is a highly selective private university located in the 

Southern United States with approximately 6,500 undergraduate students, of whom 41% identify 

as white, 21% identify as Asian, 9% identify as Black, 7% identify as Hispanic/Latinx, and 10% 

identify as international students.  

Dunshire’s implementation of the ELS program was a direct result of an administrative call 

for departments across the university to enhance the experience of first-year students. Dunshire’s 

mathematics department chose to invest into creating ELS. ELS added a lab component to a 

traditional lecture section of Calculus II, creating a course structure in which students were in a 

lecture with their primary instructor, Tara, 3 hours per week, and participated in a lab section 2 

hours per week. While most lecture-lab or lecture-recitation structures rely on Graduate 

Teaching Assistants (TAs) to facilitate the lab or recitation component of such a structure, the lab 

component of ELS was led by an established research faculty member in the mathematics 

department, Hank.  
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Interviews with administrators and faculty confirmed that a prime motivator for the 

development of ELS was to encourage personal and professional connection between 

undergraduate students and faculty members- connections which can lead to increased student 

persistence through heightened social and academic integration within their department or 

broader institution (Seymour & Hewitt, 1997; Tinto, 1997; Wolniak et al., 2012). These 

connections can be especially salient for individuals identifying with populations that have been 

traditionally underrepresented in STEM fields, such as first-generation college students and 

students from low socioeconomic backgrounds (DiGregorio, 2018).  

An additional motivator for the development of ELS was to engage students with 

mathematical content that existed outside of a traditional Calculus II course structure. In the 

context of the labs, students were encouraged to learn about STEM field-relevant examples that 

leveraged the math that they were learning in the lecture portion of the class. In addition to 

enhancing students’ mathematical understanding and providing reason for furthering that 

understanding through connection with outside STEM concepts (Furner & Kumar, 2007; Young 

et al., 2011), connecting mathematics to students’ lives outside of an educational setting is also 

important as a measure in working towards equity and engaging students critically with 

mathematics (Martin, 2003; Díez-Palomar et al., 2006). 

Recruitment and Participants 

In order to recruit participants for this study, Tara sent an email to students who were 

enrolled in ELS at the time of the study requesting participation. Each student was assigned a 

pseudonym (Ana, Audrey, Bella, Cassidy, Madiha, Paulo, Rebecca, and Sarah). While 

demographic information was not collected on these participants, each participant did self-

disclose various elements of their identities and backgrounds with the researchers in the context 

of the focus group. The focus group contained: five economics majors, one math major, one 

economics and math dual major, and one environmental science major. In addition, six identified 

as women, two as international students from Brazil, and one as a student with a dis/ability.  

Eight students in total were a part of the roughly one-hour semi-structured focus group 

(National Defense Research Institute, 2009). The focus group centered on students’ experiences 

in ELS with particular attention paid to how their identities may have related to these 

experiences, and allowed room for additional interpersonal exchange and attendance to student 

opinion on ELS. Within the context of the focus group, the interviewers attended to who was 

speaking, and explicitly asked for notions of agreement and disagreement with stated 

perspectives, and was intentional about making space for less vocal individuals to share. The 

focus group was audio-recorded and transcribed for analysis. We recognize that the identities of 

the research team inherently impact the lens through which data and analyses are filtered. The 

authors of this study represent variation in gender, sexuality, first-generation status, and 

academic rank, and all identify as white, neurotypical, able-bodied individuals, holding or 

pursuing advanced degrees in mathematics. Data analysis for this project was informed by the 

tenets of interpretive grounded theory (Corbin & Strauss, 1990; Sebastian, 2019). This involved 

the development and refinement of themes from the data through line-by-line open coding, 

memo-ing, axial coding, and selective coding of the themes. 

 

Results 

Three main themes related to how students experience the ELS were identified: Instructor 

Impact on Student Experience, Student Feelings of Confidence in the Course and Content, and 

Accessible Exposure to a Variety of Applications. A total of ten sub-themes, which exist under 
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three higher-order concepts, arose from the data as being impactful to student experience. In this 

section, we describe each of the refined themes and provide evidence for their development. 

 

Instructor Impact on Student Experience 

The higher-order concept “Instructor Impact on Student Experience” stemmed from ways in 

which students attended to how the ELS instructors impacted students’ experiences of the course. 

This came through strongly; many participants began the focus group by comparing Tara and 

Hank’s instructional styles to those of TAs they have had in past math classes. Five subthemes 

emerged and are described below. 

Instructor responsibility for learning. When describing past mathematics experiences at 

Dunshire, several of the students emphasized that they felt that they were responsible for their 

own learning. Comparatively, students described ways in which Tara specifically took 

responsibility for student learning, both through her words and actions. Cassidy described an 

experience in which her ELS section did poorly on an exam, and Tara responded by taking 

responsibility and telling the class that perhaps the exam was difficult due to how she wrote it, 

and not necessarily due to the students’ lack of knowledge. Tara also took responsibility for 

students’ learning by prioritizing students’ learning above simplistic assurance of content 

coverage. Madiha mentioned how Tara “[is] definitely much better in making sure that you 

actually learned rather than just checking the topic off.”  

Welcoming response to questions. Audrey, Paulo, and Madiha all attended in several ways 

to how Tara’s positive responses to student questions impacted their experience. Paulo 

specifically attended to Tara’s smile in response to questions as being impactful to his time in 

ELS. Audrey highlighted Tara’s positive verbal response to questions as being important as well, 

saying that “with being able to ask questions and everything, even if it might be a simpler 

question, she’s like ‘oh, that’s such a good question.’” Madiha expands on the importance of 

verbal affirmation by saying that if ELS has been instructed by someone who wasn’t Tara but 

“who answered the questions also” in a similar way, then “it would definitely have some sort of a 

similar experience,” implying that welcoming responses to questions were so impactful that they 

would shape how Madiha experienced ELS whether the instructor was Tara or someone else.  

Community of care leading to inclusion. “Community of care” is a term borrowed from 

DiGregorio (2018), in which faculty create an environment in which “everyone feels safe, 

supported, and encouraged to express [their] views and concerns” (Kardia & Saunders, 1997). 

For the students in ELS, ways in which Tara and/or Hank created a community of care and thus 

an inclusive environment spanned a range of actions and traits. For Ana and Paulo, who are both 

international students originally from Brazil, a community of care and consequent feelings of 

inclusion stemmed from Tara’s meeting them where they were at in their coursework. Several 

other students articulated “openness” as being an important trait that Hank and Tara brought to 

their ELS experience, for “making people feel included” (Bella), “making [students] want to 

work harder” (Rebecca), and for reducing intimidation in instructor interactions (Sarah). In all of 

these ways, Tara and Hank worked consciously or unconsciously toward creating a community 

of care within ELS, and thus enabled a more inclusive environment. 

Instructor enthusiasm. With Tara specifically, Madiha, Cassidy, and Ana all mentioned 

how Tara’s enthusiasm for both the content and for student learning was positively impactful to 

their experience. Cassidy explained from the first day of class Tara had been “so positive” and 

wanted to “have fun.” Ana built directly off of Cassidy’s statement by saying that “because we 

see her actual excitement with math, we feel more excited.” In this way, Tara’s enthusiasm 
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shaped in some ways Ana’s own affect toward the class and the content. Madiha also highlighted 

that Tara “was super eager about it, like she was actually enjoying math,” and that this translated 

to greater enjoyment for the students. Tara’s enthusiasm impacted student experience by 

influencing the enthusiasm that students themselves felt for the course and for the material. 

Instructor as a role model. This subtheme pertained particularly to Tara, and how she 

functioned within participants’ minds as a female role model in a STEM field. Madiha 

encompassed both her own experience and that of her female friends in ELS by stating that she 

and “a lot of [her female friends] were inspired by the fact that she is so good and she’s in the 

STEM field and she’s female.” Other participants discussed how seeing Tara as a role model 

impacted their experience individually by way of mathematical affect or desire to pursue STEM. 

Rebecca mentioned that she “[doesn’t] see a lot of people who look like me sitting in my big 

lecture halls. So I think seeing a female [teach ELS], it’s really inspiring,” a sentiment also 

shared by Ana. Audrey recognized that “having a female professor… has helped me consider a 

math major whereas I previously wasn’t.” In these comments, Tara’s status as a role model 

extended beyond just impacting experience within the ELS classroom, but served to shape how 

these student participants see themselves as women in their respective fields. 

 

Student Feelings of Confidence in the Course and Content 

In this higher-order concept were ways in which students expressed feeling secure about the 

structure of the class and about their own competency in the material. In contrast to previous 

courses, many expressed how having a clear outline for the structure and grading system of ELS, 

the way in which assessments and assignments were lower-stakes, and the mathematical 

knowledge gained from Tara’s lectures were impactful to their experience. The subthemes 

observed within this higher order concept are described below. 

Agency attributed to instructor. The subtheme of Agency Attributed to Instructor 

encompassed ways in which the perceived agency of Tara and/or Hank in determining grades, 

creating assignments, and disseminating content impacted their experiences of the course. This 

was often presented in comparison to previous classes that the participants had experienced 

which had been taught by TAs. Bella noted that the content coverage expectations that TAs are 

subject to “forces some [TAs] to not teach all of the material,” while Tara was able to “take the 

time to get through all of the material” in a way that still allowed for a positive environment. For 

Cassidy, the agency that Tara had as a lecturer in ELS was impactful because it allowed for more 

directed homework and a more subsequently positive testing experience. She appreciated that 

homework “is [Tara’s] problems, because they’re a lot closer to what the test is than a textbook.” 

Because of ELS’s novelty, Tara and Hank had the agency to determine grades irrelevant of other 

Calculus II sections, and it is this agency that impacted student experience in the above ways. 

Clarity in grading. Students felt further confidence in the course that stemmed from 

an enhanced knowledge and clarity regarding how their overall course grades and exam 

grades were determined. Madiha noted that the grading is not “complicated” nor “hard to 

explain,” as it was for previous mathematics courses. Ana also highlighted how this 

clarity in grading policy allowed her to understand better where she stood quantitatively 

in the class. This clarity, for Audrey, allowed her to better prioritize the time she spent on 

coursework, making this clarity in policy impactful to both her experience within ELS 

and to her overall time-management in the broader context of her education.  

Lower-stakes format. A majority of the focus group participants made comments relevant 

to how the various ways in which ELS presented them with a lower-stakes grade environment 
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made for a more positive experience by way of reduced stress and anxiety related to the course 

and content. Paulo called the replacement of quizzes with weekly problem sets a “better format”; 

Audrey agreed, and notes that having problem sets is “so much less stress,” and highlighted that 

this is in direct contrast with Calculus II’s “difficult and scary” reputation at Dunshire. Ana and 

Madiha also noted that removing high-pressure quizzes from the Calculus lab format reduced 

anxiety around the labs themselves. 

 

Accessible Exposure to a Variety of Applications 

Showcasing a variety of applications for Calculus II was a primary motivator for the 

development of ELS, as mentioned earlier in this paper. Of particular interest within this higher-

order concept is the fact that both positive and negative responses emerged regarding both 

Content Applications and Accessibility of Material, as described below. 

Content applications. One target of the ELS lab component was to expose students to a 

wide variety of applications for the material that they were learning in their lectures, and 

students’ comments reflected the impact of this attribute of ELS. A majority of students 

appreciated and enjoyed the variety presented by ELS; Cassidy and Paulo saw the variety of 

applications as having educational value through giving her “a little bit of exposure” (Cassidy) to 

subjects she might otherwise not see. In contrast, Bella noted that she felt that the content 

applications presented were irrelevant and had a negative impact on her experience, indicating 

she was “not interested” in them and that they didn’t apply to her field. The contrast of Bella’s 

perspective with that of the other focus group participants exemplifies how incorporating a 

variety of content applications impacted students’ experiences in different ways.  

Accessibility of ELS material. ELS’s design was intentional about connecting Calculus II 

material to those applications in ways that were accessible to students. Rebecca noted that the 

videos, posted by Hank to be watched prior to the ELS lab, were particularly helpful in allowing 

students time to “get into those topics and...understand them with the videos.” She and Sarah 

also noted that Hank made the content applications more accessible by breaking that material 

down during class time “so it’s very simple” (Sarah). Bella, however, did not experience this 

accessibility in the context of the ELS labs; instead, she saw the ELS content applications 

material as going beyond her “math background” in a way disconnected with Calculus II content. 

In this way, the (in)accessibility of the ELS material was seen as a negative impact to Bella, 

while other students noted that the accessibility of the ELS material had a positive impact. 

 

Discussion 

This analysis has resulted in an in-depth case study of how eight students experienced the 

addition of a lab component to a Calculus II course, and highlights ten components of ELS that 

were positively or negatively impactful to their experiences. From these components, each 

student constructed their own perceptions of their experience, and built off of one another’s 

perspectives in the focus group setting. These robust themes provide indication of what may be 

important to student experiences in other non-traditional mathematics course formats. As the 

need to innovate to ensure mathematics courses are relevant and reflective of best practices is 

tried and tested, it becomes increasingly important that student’s perceptions of their own 

experiences are elevated and used as valuable tools of assessment. 

The emergent themes illustrate many unintentional consequences of ELS’s development. The 

two original goals of ELS were to enable students to connect with a tenured professor in 

mathematics and to expose students to a variety of applications for the Calculus II content they 
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were learning. While student attention to Content Applications and Accessibility of ELS Material 

align with the latter of the goals, the former did not prove to be consciously impactful to 

students’ constructions of their experiences. While students did discuss Hank’s “openness” and 

ability to teach complicated material effectively, there was no mention that they felt that their 

experience was at all impacted by his specific position within the department, but by his 

personality and teaching style. Hank was not mentioned exceptionally often in the focus group. 

Instead, it was Tara who emerged as being exceptionally impactful to students’ constructed 

experiences of ELS. Tara was mentioned specifically as contributing to all components created 

under the higher-order concept of Instructor Impact on Student Experience. Her prominence in 

Instructor as a Role Model is particularly salient because of who was contributing to this 

discussion; every focus group participant who identified as a woman noted that Tara functioned 

in some way as a role model for them within their STEM fields, with several citing ways in 

which Tara’s presented femininity had helped them see themselves in fields that they previously 

hadn’t. The experience of the women in this focus group was universally and positively impacted 

by Tara’s presented gender identity. This speaks to previous work on the importance of 

representation and the role of shared-identity role models in faculty members within higher 

education, and particularly for women in STEM fields (Herrmann et al., 2016; González-Pérez, 

et al., 2020). The findings presented in this paper certainly appear to support the idea that female 

role models within STEM have a positive impact on the experiences of female students, and set 

the stage, in the particular context of experimentally structured mathematics courses, for 

additionally inquiry into how having an instructor with a shared gender identity affects women 

students’ experience in the course. 

The higher-order concept Student Feelings of Confidence in the Course and Content and its 

associated themes arose as another seemingly unintentional component of student experience. 

While ELS was not necessarily designed to reduce student feelings of uncertainty surrounding 

their grades, the course structure, or their own content knowledge, this does appear to have been 

a significant factor in how they experienced ELS. Because ELS was a new, largely experimental 

course, it was very intentionally crafted in terms of structure. Consequently, grading and 

coursework policies were perhaps more clearly defined than they might be in other course 

contexts. Clear definitions, in place from the beginning of the course, may have allowed for ease 

in communicating these definitions around grading and coursework to students, resulting in 

positive responses from students in regard to Clarity of Grading and Lower-Stakes Format. 

While this is purely speculation on the reasoning behind why the themes within Student Feelings 

of Confidence in the Course and Content were so prominent, it does undoubtedly speak to the 

ways in which the intentionality with which a course is developed can have unintentional 

positive impacts.  

This paper has sought to elevate student perspectives, while simultaneously acknowledging 

that these themes provide merely an introduction into the kinds of student-centered topics that 

ought to be considered when designing, implementing, or assessing an alternative-format course. 

More work is necessary- particularly work aggregated to emphasize the experiences of 

individuals from traditionally marginalized populations- to affirm these themes as relevant to 

student experience of mathematics courses with lab components outside of ELS, and to build 

upon them and enhance knowledge about what students attend to as important to their experience 

of such courses.  
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Developing Geometric Reasoning of the Relationship of the Cauchy Riemann 
Equations and Differentiation 
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This study details the embodied, symbolic, and formal reasoning of two undergraduate students 
as they attempted to develop geometric reasoning about the Cauchy-Riemann equations with the 
aid of Geometer’s Sketchpad. Participants took part in a task-based interview designed to 
encourage them to shift between embodied, symbolic, and formal reasoning, and to make 
connections between the Cauchy-Riemann equations and the amplitwist concept. Results suggest 
that the participants gradually refined the idea that complex-differentiable functions map small 
circles to small circles although they did not recognize a distinction between real-linear and 
complex-linear functions. The shifting of student reasoning was prompted in various ways. In 
particular, cognitive dissonance seemed to both progress and prevent the participants from 
refining their conjecture about complex-differentiable functions mapping small circles to small 
circles; eventually, it led them to doubt their conjecture entirely. Pedagogical suggestions are 
provided as a result of this data analysis. 

Keywords: Cauchy-Riemann equations, Embodied, Symbolic, Formal, Geometer’s Sketchpad 
 

Introduction 
The National Council of Teachers of Mathematics, the Mathematical Association of America 

(MAA), and other mathematical organizations have a long history of stressing the importance of 
connecting algebraic and geometric reasoning in K-16 mathematics. The MAA Committee on the 
Undergraduate Program in Mathematics Curriculum Guide to Majors in the Mathematical 
Sciences states that “geometry and visualization are different ways of thinking and provide an 
equally important perspective …  [which] complement[s] algebraic thinking … [and] remain[s] 
important in more advanced courses” (Zorn, 2015, p. 12). Complex analysis is a course that is 
inherently geometric, though many textbook authors focus on presenting symbolic and formal 
representations of the concepts (Oehrtman et al., 2019) and omit geometric interpretations. Thus, 
students enrolled in complex analysis may not have sufficient opportunities to explore geometric 
interpretations of complex analysis concepts. We summarize how researchers have successfully 
aided in the development of students’ geometric reasoning of both arithmetic and analytic 
concepts of complex analysis, and in this similar research, we explored the question: In what 
ways does a team of two undergraduate students reason about and explore the Cauchy-Riemann 
(C-R) equations and differentiability of a complex-valued function with the aid of a dynamic 
geometric environment (DGE)? Specifically, we explored the process by which a team of two 
undergraduate students attempted to develop a geometric interpretation of the relationship of the 
C-R equations and differentiability of a function with the aid of Geometers’ Sketchpad (GSP). 
The participants were familiar with the theorem: Suppose 𝑓𝑓(𝑧𝑧) = 𝑢𝑢(𝑥𝑥,𝑦𝑦) + 𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦) is 
differentiable at a point 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑦𝑦. Then at 𝑧𝑧 the first-order partial derivative of the function u 
and v exist and satisfy the Cauchy-Riemann equations 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
  (Zill & Shanahan, 

2015, p. 131). Overall, we found the team connected complex-differentiability, local linearity, 
the Jacobian matrix, and non-conformality by shifting between embodied, symbolic, and formal 
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reasoning. Additionally, they used GSP to make and test conjectures as they deepened their 
reasoning and navigated between symbolic, embodied, and formal worlds. 
 

Literature Review 
Education research literature on the teaching and learning of complex analysis has flourished 

for the past two decades. Research participants for such work include high school students 
(Panaoura et al., 2012; Soto-Johnson, 2014), in-service mathematics teachers (Karakok et al., 
2015), collegiate students (Danenhower, 2006; Dittman et al., 2016; Hancock, 2019; Nemirovsky 
et al., 2012; Soto-Johnson & Hancock, 2019; Soto-Johnson & Troup, 2014; Troup, 2019; Troup 
et al., 2017), and mathematicians (Hanke, 2020; Oehrtman et al., 2019; Soto-Johnson et al., 
2015). An overwhelming theme of this research is how research participants conceive of 
complex analysis concepts geometrically. Some of these studies explore how gesture or body 
movement can assist students in developing a geometric understanding of the arithmetic of 
complex numbers or complex-valued functions. Other studies explore how DGEs such as GSP 
can facilitate students’ geometric reasoning of the arithmetic of complex numbers or of analytic 
concepts such as function behavior or the derivative of complex-valued functions. Researchers of 
these studies also consider gesture in their studies, as it serves as a source of evidence indicating 
that participants may be engaged in geometric reasoning.  

Many of these studies leverage Needham’s (1998) geometric interpretation of the derivative 
of a complex-valued function as an amplitwist which has three characteristics: (1) small circles 
are dilated by |𝑓𝑓′(𝑧𝑧)|, (2) small circles are rotated by 𝐴𝐴𝐴𝐴𝐴𝐴(𝑓𝑓′(𝑧𝑧)), and (3) small circles map to 
small circles, i.e., differentiation is a local property. In their seminal work, Troup et al. (2017) 
describe how GSP helped their undergraduate research participants to move away from 
perceiving of the derivative of a complex-valued function as the slope of the tangent line. As the 
students reasoned about the derivative of a linear complex-valued function, they discovered that 
the function 𝑓𝑓(𝑧𝑧) = 𝑎𝑎𝑧𝑧 + 𝑏𝑏, where a and b are complex numbers, rotates and dilates a pre-image 
by the argument and magnitude of the derivative, which is the complex number a. Unfortunately, 
the undergraduate students did not initially show evidence of generalizing their geometric 
interpretation to non-linear complex-valued functions because the derivative of a linear complex-
valued function is a constant. This was overcome with the aid of GSP, where they discovered 
that the derivative describes the rotation and dilation of an image with respect to its preimage 
under the function. However, there was no evidence that they fully recognized that the derivative 
is a local property, just as with differentiation of real-valued functions. In a follow-up study, 
Troup (2019) addressed this problem by having students who had already discovered the rotation 
and dilation characteristics of the derivative of a complex-valued function work in reverse. 
Instead of providing students an algebraic function, he provided the students with the GSP 
mapping of the rational function 𝑓𝑓(𝑧𝑧) = 2𝑧𝑧+1

(𝑧𝑧+𝑖𝑖)(1−𝑧𝑧)
  and the students were asked to determine the 

function. By attending to small discs, the students determined where the function was non-
differentiable and constructed the algebraic formula. Soto-Johnson and Hancock (2019) obtained 
similar results when they integrated the GSP labs into the classroom. Thus, both research and 
practice suggest that DGEs can support students’ geometric reasoning about complex analysis 
concepts.   

         
Theoretical Perspective 

We adopted Tall’s three worlds of mathematical thinking (Tall, 2013) to analyze and 
interpret our data to continue this prior work. These three worlds refer to three stages of 
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development in mathematical reasoning: conceptual-embodied (embodied world), proceptual-
symbolic (symbolic world), and axiomatic-formal (formal world). Tall (2007) specifies that the 
embodied stage of development describes how we allow ourselves to see a single representation 
of an entire concept and the “idea of embodiment conceptualized through thought experiments 
based on perception and reflection on the properties of objects” (2007, p. 2). The symbolic stage 
involves performing actions with little conscious effort after practicing them repeatedly and the 
ability to use mathematical symbols to express ideas which can represent “both a process to be 
carried out or the thinkable concept produced by that process” (2007, p. 2). The formal stage is 
largely based on formal proof and definitions. Tall states, “the fundamental shift to the 
axiomatic-formal world occurs through a shift in attention from the focus on properties that 
belong to known objects to properties formulated as concept definitions to define mathematical 
objects'' (2007, p. 3). In this study, through guided exploration, participants utilized GSP as an 
interactive technology with the aim that they would develop a geometric interpretation of the C-
R equations. By design, participants moved between symbolic, embodied, and formal reasoning 
to deepen their reasoning. We acknowledge and use physical experiences of the learner as 
evidence for knowledge rather than unobservable evidence. This includes GSP interactions 
where learners can visualize, create, and manipulate a physical representation for points, lines, 
mappings, etc. as they attempt to abstract their understanding of concepts in complex analysis.  

 
Methods 

Setting and Participants 
Participants were recruited as volunteers from the 11 undergraduate students who had 

completed an introduction to complex analysis class at a western university. Two students, David 
and Will (both pseudonyms), participated in a two-hour task-based interview involving GSP. 
Will was an applied mathematics major, David was a pure mathematics major, and both students 
were seniors at the time of the interview. Neither participant had previous experience with GSP.  
Task-Based Interview 

The tasks for the interview were designed to motivate shifting in different directions between 
Tall’s worlds, given that research suggests that moving from symbolic to embodied reasoning 
offers different affordances than moving from embodied to symbolic reasoning. The first two 
tasks were intended to motivate a shift from symbolic to embodied reasoning, the third was 
intended to encourage a shift from embodied to symbolic reasoning, and the fourth was intended 
to offer an opportunity to use the previous experiences with symbolic and/or embodied reasoning 
to shift to formal reasoning. Additionally, the lead researcher conducted the interview and 
probed as needed based on the students’ comments and interactions with GSP. 

The first task was partially intended to help teach the participants how to use the program. 
Thus, they were provided with detailed instructions on how to construct the transformation 
𝑓𝑓(𝑧𝑧) = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑖𝑖(𝑐𝑐𝑥𝑥 + 𝑑𝑑𝑦𝑦), where 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑦𝑦. We chose this form of the function because it 
renders the partial derivatives for the real and imaginary parts apparent, facilitating potential 
connections with the C-R equations. Participants might observe that a real-linear transformation 
can be characterized as “a stretch in [a particular direction], another stretch perpendicular to it, 
and finally a twist” (Needham, 2009, p. 208), which results in an infinitesimal circle mapped to 
an infinitesimal ellipse under these transformations. This family of real-linear functions also 
facilitates connections to the Jacobian matrix and how it relates to the geometric behavior 
revealed via GSP. In particular, the family of functions above can also be expressed as a matrix 
transformation 𝑓𝑓(𝑧𝑧) = �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� �
𝑥𝑥
𝑦𝑦�. Geometrically, these real-linear functions map circles to 
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ellipses (if the matrix is invertible; otherwise, circles will map to lines or points). If the C-R 

equations are satisfied, the Jacobian matrix �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� becomes �A −B
B A � for some values of 𝐴𝐴 

and 𝐵𝐵. If this transformation is complex-differentiable, that is, locally complex-linear, the matrix 
transformation must be a composition of a rotation and a dilation, and nothing else. Thus, if the 
C-R equations are satisfied, the two stretch factors are ensured to be equal, so that such functions 
map infinitesimal circles to infinitesimal circles rather than ellipses. The total effect is that the C-
R equations ensure that the transformation is a rotation and a dilation. Therefore, connections to 
the Jacobian offer another possible path to the amplitwist concept. Given the values of 
𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 can be varied with GSP, this family of functions includes all possible complex-
linear functions 𝑓𝑓(𝑧𝑧) = 𝑎𝑎𝑧𝑧 + 𝑏𝑏, which are complex-differentiable and satisfy the C-R equations. 
This was intended to mirror previous research.  

In the second task, the participants constructed the function 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 4𝑧𝑧̅, which has real 
part 𝑓𝑓𝑎𝑎(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2 − 𝑦𝑦2 − 4𝑥𝑥 and imaginary part 𝑓𝑓𝑏𝑏(𝑥𝑥,𝑦𝑦) = 2𝑥𝑥𝑦𝑦 + 4𝑦𝑦. After the participants 
constructed this function, they observed its geometric behavior, attempted to determine points 
where the function is complex-differentiable to calculate the partial derivatives, explored how 
these values are related to the geometry, and determined at what points, if any, the C-R equations 
are satisfied. The function for this task was purposefully non-analytic, so participants 
experimented with non-linear examples where the C-R equations are not satisfied. For the third 
task, the interviewer constructed the function 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 in GSP ahead of time and the equation 
was hidden from participants. The interviewer directed them to explore and make observations 
about the geometry of this function in GSP without knowing the function. Like previous tasks, 
the interviewer asked the students to determine at what points, if any, the function is complex-
differentiable, to calculate the partial derivatives at a particular point, and to identify points 
where they believed the C-R equations are satisfied. Unlike previous tasks where the students 
could use both the algebraic formula and the geometric representation to answer these questions, 
here, they only had use of the geometric data. Finally, the participants were asked to try to 
determine an algebraic formula for this function based on the geometric data. The third task was 
intended to encourage participants to move from the embodied world to the symbolic world. In 
the fourth and final task, the students were asked to connect what they learned from the previous 
tasks to the theorem stating that if the real and imaginary parts of a complex-valued function are 
real-differentiable at a point, then the complex-valued function itself is complex-differentiable if 
and only if the C-R equations hold at that point. As such, participants were asked to use their 
collective embodied and symbolic experiences to make sense of the theorem relating the C-R 
equations to complex-differentiability. Thus, this task was intended to encourage a shift from 
either embodied or symbolic (or a combination thereof) into the formal world.  
Data Collection and Analysis 

Data were collected via a video recorder and screen-capture software, two mediums which 
both recorded video and audio data. The participants were seated side-by-side at a desk in front 
of a laptop computer. The video recorder was placed on the opposite side of the desk facing 
toward them, intended to capture the physical gestures of the participants. The screen-capture 
software simultaneously recorded all the actions the participants took on screen with GSP. As 
such, our transcribed data includes utterances by each participant, sensorimotor actions such as 
gesture, and the technological actions they performed within GSP, including mouse and 
touchpad actions. The research team then analyzed this transcription for occurrences of where 
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the participants engaged in symbolic, embodied, or formal reasoning and shifted their reasoning. 
We also documented episodes related to the participants’ characterization of the C-R equations 
themselves, of complex-differentiability, or connections drawn between these two concepts.  

 
Results 

We found that the nature in which David and Will shifted between worlds in their attempts to 
characterize the geometric interpretation of the C-R equations and differentiability of a complex-
valued function was influenced or prompted by the following: their GSP explorations, board 
work, their intuition, the interviewer’s probing, David’s and Will’s interactions, and moments of 
cognitive dissonance.  

David’s and Will’s development of the idea of local linearity appeared to be driven by a 
combination of symbolic and embodied reasoning. During Task 1, David initially conjectured 
that a function is complex-differentiable if “the output moves smoothly with the input” and Will 
conjectured that a function is complex-differentiable if “it’s not jumping around.” After trying to 
no avail to write this function symbolically as a complex-linear function 𝑓𝑓(𝑧𝑧) = 𝑎𝑎𝑧𝑧 + 𝑏𝑏, the 
participants realized that the function they were investigating was not complex-differentiable. In 
GSP, they changed the parameter values so that the function satisfied the C-R equations and 
observed that the output was a circle rather than an oval. Thus, with a blend of embodied and 
formal reasoning, they formed a conjecture that complex-differentiable functions map circles to 
circles. They returned to this idea when they investigated 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 via embodied reasoning in 
GSP in Task 2. The participants appeared to realize in Task 2 that their previous characterization 
of differentiability as a smoothly moving output better depicts continuity than differentiability. 
They noticed that 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 did not map a circle around the origin to a circle and still shortly 
afterward articulated that complex-differentiability means that circles map to circles. Noticing, 
via embodied reasoning, that one of their circles mapped to a triangular shape, David claimed 
that the function is nowhere differentiable. Unsure about this conjecture, Will continued 
interacting with GSP, made embodied observations, and redirected the team to determine at 
which points the function is complex-differentiable. This motivated the participants to consider 
mapping smaller and smaller circles, where they noticed, via embodied reasoning, that the output 
becomes more circular as the input becomes smaller as shown in Figure 1 and 2. After this 
observation, the participants operated under the conjecture that complex differentiability means 
that small circles map to small circles, rather than just circles mapping to circles. 

  
Figure 1: Exploring the mapping of smaller and 
smaller circles. 

Figure 2: “More circular” output 𝑓𝑓(𝑧𝑧). 

Our second finding emerged while the participants explored Task 1 in the embodied GSP 
world. The participants claimed their current function was linear because the function could be 
represented as a matrix, and believed that, because the function was linear, they could write it in 
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the symbolic form 𝑓𝑓(𝑧𝑧) = 𝐴𝐴𝑧𝑧 + 𝐵𝐵. The interviewer then asked them to write the function in this 
form. Shifting to the symbolic world, David wrote the parameter values in matrix form and 
converted to the equivalent linear expressions 𝑢𝑢 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 and 𝑖𝑖 = 𝑐𝑐𝑥𝑥 + 𝑑𝑑𝑦𝑦. David struggled 
to find workable values for 𝐴𝐴 and 𝐵𝐵, as the function was not complex-linear. David’s confidence 
in his symbolic manipulations created cognitive dissonance between their previous embodied 
investigation and the current symbolic board work. This cognitive dissonance further caused 
David to express a disconnect between his symbolic and his formal reasoning, when he claimed 
that all matrices are associated with linear functions. He did not recall that this theorem applied 
specifically for transformations from ℝ𝑛𝑛 → ℝ𝑚𝑚. As such, this could be an instantiation of 
Thinking Real, Doing Complex (Danenhower, 2000), where David applied the theorem to 
transformations from ℂ → ℂ without acknowledging the distinction between real-linear and 
complex-linear functions. His symbolic and formal conclusion appeared to be that their function 
could not be written as 𝑓𝑓(𝑧𝑧) = 𝑎𝑎𝑧𝑧 + 𝑏𝑏, and therefore not every linear function is differentiable. 
However, he remained certain that there was a correspondence between 2 by 2 matrices and 
linear transformations and could not resolve this seeming contradiction.  

In Task 3, only given the embodied representation of 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 in GSP, the participants 
seemed to shift between embodied and symbolic reasoning, specifically utilizing embodied 
reasoning in service of a symbolic goal. David first observed the non-conformality of the 
function and how it “wants to wrap around zero,” and then stated a symbolic goal of determining 
the function formula. To determine the function, the team transitioned back to embodied 
reasoning, as they conjectured that they might still be able to make the output a circle. Much of 
the participants’ embodied reasoning here seemed driven by an embodied-formal version of the 
symbolic-formal epsilon concept: small circles map to small circles. Similarly, Will also made 
the embodied observation that the function was non-conformal at zero. In Task 4, David noted a 
conflict between the idea developed in previous tasks that “functions are complex-differentiable 
if and only if they map small circles to small circles,” and their observation from Task 3 that 
“𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 is nonconformal at zero and thus does not send a small circle around zero to another 
small circle.” Although he originally thought that functions that are complex-differentiable have 
something to do with the preservation of angles or circles under the transformation, here he 
concluded that he had no idea how to characterize the relationship between the C-R equations 
and the geometry of complex-differentiable functions. As the interview was concluding shortly 
after, they abandoned some of their previous incomplete but salient conjectures. 

 
Discussion and Teaching Implications  

Although the participants did not formalize a geometric interpretation of the C-R equations 
and complex differentiability by the end of the interview, they made progress which can be 
leveraged in the classroom. The shifts between worlds were related to the participants’ 
mathematical knowledge and conjectures in three different ways, as summarized in Table 1. 
First, shifting from symbolic and embodied reasoning to an embodied-formal blend, the 
participants recognized the importance of small circles mapping to small circles to determine 
local linearity. This occurred when they realized that their symbolic reasoning did not align with 
their GSP output. In classrooms, labs based on these tasks might lead students to draw similar 
conclusions through guided moments of cognitive dissonance. The participants’ interactions in 
GSP with 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 may have motivated David and Will to refine their conjecture to focus 
specifically on small circles. David noticed that a circle mapped to a triangular shape, which did 
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not fit their conjecture of circles mapping to circles. However, Will doubted this conclusion and 
noticed that smaller circles did map to circles, at which point they modified their conjecture. 
Table 1. Summary of findings. 

Participant 
Source(s) 

Participant 
Destination(s) 

Prompt/Trigger Participant Result 

Symbolic/ 
Embodied 

Embodied- 
Formal 

Dissonance between board 
work and GSP output 

Differentiability = circles 
map to circles 

Embodied/ 
Symbolic 

 

Symbolic/ 
Formal 

 

Dissonance between inability 
to write 𝑓𝑓(𝑧𝑧) = 𝑎𝑎𝑧𝑧 + 𝑏𝑏 and 

(assumed) theorem that states 
a correspondence between 

linear transformations and 2 
by 2 matrices 

Wrote function on 
whiteboard as a matrix and 

attempted to determine 
values 𝑓𝑓(𝑧𝑧) = 𝑎𝑎𝑧𝑧 + 𝑏𝑏. This 

failed. 

Symbolic/ 
Embodied-

Formal 

Embodied- 
Formal 

Dissonance between the fact 
𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 is differentiable at 
zero but 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 doesn’t 

map circles to circles at zero  

Maybe differentiability ≠ 
circles map to circles 

Second, David and Will transitioned from embodied and symbolic to symbolic and formal 
reasoning, in their attempt to show that they could write their GSP function as a 2 by 2 matrix, 
and therefore also as 𝑓𝑓(𝑧𝑧) = 𝑎𝑎𝑧𝑧 + 𝑏𝑏. This shift occurred after they recalled an isomorphism 
between 2 by 2 matrices and linear functions, though they did not realize that this theorem only 
holds for linear transformations from ℝ𝑛𝑛 → ℝ𝑚𝑚 and not for complex-linear functions from ℂ →
ℂ. We should additionally point out that many of the theorems in linear algebra apply 
specifically to real-linear functions, but not necessarily to complex-linear functions, as in the 
case of the theorem our participants attempted to recall. While it is encouraging that David 
recalled a theorem from linear algebra establishing the correspondence between matrices and 
real-linear functions, neither participant distinguished real-linear functions from complex-linear 
functions during the interview. Such a student conception is an opportunity for instructors to help 
students recognize this difference. In our study, we gave examples of functions that are real-
differentiable but not complex-differentiable. Perhaps providing examples of functions that are 
real-linear but not complex-linear could aid to further distinguish between these two concepts.  

Third, in Task 3, the participants utilized symbolic reasoning in conjunction with an 
embodied-formal blend to draw the embodied-formal conclusion about the non-conformality of 
𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 at zero. They considered this observation as a potential contradiction to their idea that 
small circles should map to small circles at complex-differentiable points. Instead, they started 
investigating the preservation of angles under the transformation, but they could not explain a 
perceived contradiction. It seems this task motivated the participants to connect to ideas 
embodying conformality, but they did not provide evidence of noticing a connection to the 
derivative value of the nonconformal point of 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2.  

Our results reinforce the importance of classroom discussions about the geometric 
implications of a derivative value of zero, the particular case where infinitesimal circles do not 
necessarily map to other infinitesimal circles. Future research could investigate how such 
classroom discussions can facilitate a complete geometric interpretation of the C-R equations. 
Another line of inquiry is to investigate mapping squares instead of circles as seen in Needham 
(1998) to leverage conformal mapping ideas. 
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Analyzing the Structure of the Non-examples Contained in the Instructional Example Space for 
Function in Abstract Algebra 

 
 Rosaura Uscanga John Paul Cook 
 Mercy College Oklahoma State University 

The concept of function is critical in mathematics in general and abstract algebra in particular.  
We observe, however, that much of the research on functions in abstract algebra has focused on 
specific kinds of functions, including binary operation, homomorphism, and isomorphism.  
Research focusing on the function concept itself – and such fundamental properties as well-
definedness – is exceptionally scarce, particular in abstract algebra settings.  To this end, in this 
short report we describe our investigation of the instructional example space for function in 
abstract algebra, with particular attention to the non-examples related to the fundamental, 
definitive function characteristic of well-definedness.  By conducting a textbook analysis and 
semi-structured interviews with mathematicians, we impose a productive refinement of the non-
examples of function with well-definedness issues by defining and illustrating the categories of 
‘equivalent representations’ and ‘multiple rules.’  We conclude with a discussion of the 
theoretical and practical applications of these categories.   

Keywords: function, abstract algebra, example space, non-examples 

The function concept is critically important in mathematics and, accordingly, is a core topic 
in the secondary and undergraduate mathematics curriculum (e.g., Bagley, Rasmussen, & 
Zandieh, 2015; Oehrtman, Carlson, & Thompson, 2008). In abstract algebra, functions play a 
fundamental role in the development of such topics as homomorphism, isomorphism, and binary 
operations. While there has been a fair amount of research examining students’ reasoning about 
functions in abstract algebra, nearly all of it has examined particular types of functions (e.g., 
Brown et al., 1997; Larsen, 2009; Leron, Hazzan, & Zazkis, 1995; Melhuish et al. 2020; 
Rupnow, 2019). Aspects of the function concept itself, such as what students might need to 
attend to when determining what is and is not a function, have been relatively unexplored.  

The definitive function property of well-definedness1 is of particular importance. Melhuish 
and colleagues (2020), for example, reported that only 2 of their 18 participants’ concept 
definitions of function addressed well-definedness.  They offered an illustrative example of the 
potential implications of such a definition in which a student classified a non-example of 
function as a homomorphism.  This calls attention to the need to better understand well-
definedness and how students reason about it.  We note, however, that well-definedness is 
currently not well-documented or coherently characterized in the literature, particularly in the 
context of advanced courses like abstract algebra. Additionally, research on the constituent parts 
of function concept itself (as opposed to specific types of functions, like isomorphisms) is scarce. 
We propose that a productive way to begin addressing this issue is to develop a clearer image of 
the various examples of functions and non-functions that students encounter and are expected to 
reason about in an introductory abstract algebra course. To this end, here we investigate what the 
key function property of well-definedness entails by examining the contents and structure of the 
instructional example space (Watson & Mason, 2005; Zazkis & Leikin, 2008) for function in 

 
1 The notion of everywhere-definedness is also of fundamental importance to the function concept.  Due to space constraints, in this short report 
we focus only on well-definedness.   
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abstract algebra.  Our research question is:  what examples of function are students expected to 
reason about in introductory abstract algebra, and how might we productively classify them? 

Literature Review 
The overwhelming majority of function research focuses on a covariational approach to 

functions (e.g., Carlson, 1998; Carlson et al., 2002; Oehrtman, Carlson, & Thompson, 2008). 
However, covariation is often not relevant in an abstract algebra setting because it “superimposes 
an ordinal system on function, which does not underlie many of the discrete structures in abstract 
algebra” (Melhuish & Fagan, 2018, p. 22). Thus, the majority of research on functions in the 
math education literature does not account for the ways in which students must reason about 
functions in abstract algebra, highlighting the need for research on the function concept in 
abstract algebra settings.   

We focus here on the fundamental, definitive notion of well-definedness (also called 
‘univalence’), which states that each element of a function’s domain can map to no more than 
one element of the codomain.  The majority of studies of function-related ideas in abstract 
algebra acknowledge well-definedness but do not directly examine these properties in detail.  For 
example, Melhuish and colleagues (2020) prompted abstract algebra students to state their 
personal concept definition for function and list several examples. While the researchers noted 
whether or not well-definedness was included in some form in the students’ definitions, they did 
not investigate students’ reasoning with or conceptions of it. Many other studies have also 
generally called attention to the importance of the underlying function concept for understanding 
such topics as binary operation (e.g., Brown et al., 1997; Melhuish, Ellis, & Hicks, 2020; 
Melhuish & Fagan, 2018), homomorphism (e.g., Hausberger, 2017; Rupnow, 2021), and 
isomorphism (e.g., Leron, Hazzan, & Zazkis, 1995; Nardi, 2000)  but have similarly stopped 
short of explicitly addressing well-definedness. 

There are, however, a few studies that do address well-definedness more directly.  We note 
two themes from these studies. First, the concept’s nuance creates some difficulties for students. 
As Melhuish and Fagan (2018) explained, “students may not identify all required properties in 
their concept images and, for example, miss the requirement of well-definedness” (p. 23). 
Additionally, students struggle to articulate what it means and why it is important (e.g., Even, 
1993; Even & Tirosh, 1995) and typically associate it with procedural conceptions of the vertical 
line test (e.g., Clement, 2001; Kabael, 2011; Thomas, 2003). Second, students have difficulties 
adapting well-definedness (and the vertical line test) to functions whose domains are not the real 
numbers (e.g., Dorko, 2017; Even & Tirosh, 1995). We note that the vertical line test is of 
limited use in abstract algebra as many functions do not usually lend themselves to a useful 
graphical illustration (which is required for the vertical line test). Thus, much of the literature on 
well-definedness focuses on students’ use and understanding of a procedure that is of very 
limited use in abstract algebra. We also found no studies directly examining the notion of well-
definedness and its use in abstract algebra settings. Thus, in this paper we elaborate the notion of 
well-definedness to provide additional insight into the nature of the function concept in abstract 
algebra. 

Theoretical Perspective 
We use examples of the function concept to gain insight into the nature of the concept of 

well-definedness. Following Watson and Mason (2005), we interpret ‘example’ inclusively to 
mean any specific illustration of an abstract mathematical principle, concept, or idea. This might 
include exercises, diagrams, and, importantly for this study, non-examples. Non-examples are 
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particularly insightful because they “demonstrate the boundaries or necessary conditions of a 
concept” (Watson & Mason, 2005, p. 65). They showcase the essential aspects and features of 
definitions (such as the feature of well-definedness in the definition of function) by illustrating 
what happens when these features are not satisfied (therefore highlighting their importance).  In 
this short report, we use non-examples as a means to investigate the fundamental notion of well-
definedness.   

We operationalize examples in this study by employing Watson and Mason’s (2005) notion 
of example space— that is, the content and structure of the examples that are associated with a 
particular concept. Researchers have found that constructing models of both students’ and 
experts’ example spaces affords valuable insights into their thinking because one’s example 
spaces “mirror their understanding of particular mathematical concepts” (Zazkis & Leikin, 2008, 
p. 131). Watson and Mason (2005), distinguishing between between different kinds of example 
spaces, defined the conventional example space as the collection of examples “as generally 
understood by mathematicians and as displayed in textbooks, into which the teacher hopes to 
induct his or her students” (Watson & Mason, 2005, p. 76). Zazkis and Leikin (2008) proposed a 
useful refinement of the conventional example space, distinguishing between expert example 
spaces and instructional example spaces. Expert example spaces display the “rich variety of 
expert knowledge” whereas instructional example spaces involve what is “displayed in 
textbooks” and used in instruction (Zazkis & Leikin, 2008, p. 132). Watson and Mason (2005) 
noted that one of the ways in which students can extend their personal example space—and thus 
also extend their understanding of the associated concept—is by reasoning about the contents of 
the conventional example space. This calls attention to the potential for examining the 
instructional example space for function in abstract algebra to identify its key aspects. 

Example spaces, including the instructional example space, are not just lists of examples (the 
contents), but also include the categories by which the (non-)examples in these lists might be 
productively organized  (the structure). Indeed, we note that many papers that operationalize 
example spaces are fine-grained analyses of collections of examples; the analyses are then based 
upon researchers’ perceptions and inferences of how these collections are organized. A key point 
here is that the structure of the instructional example space is consists of researchers’ inferences 
– based upon the input of experts – about how the contents might be productively and coherently 
organized. Researchers can base these inferences upon the explanations and rationale that an 
experts use to describe particular (non-)examples. Inferences might include, for instance, 
researchers’ views of (1) the purpose served by an example (such as the attributes that make it 
exemplary), or (2) important distinctions between (non-)examples in a given collection (and 
what aspects of the associated topic these distinctions might correspond to). In particular, in this 
short report we infer a structure for the instructional example space for function by considering 
the explanations and rationale offered by abstract algebra instructors (textbook authors and other 
algebraists) to describe the non-examples that comprise its contents.  

Methods 
We employed two methodologies to examine the instructional example space for function in 

abstract algebra. First, we conducted a textbook analysis because (1) the instructional example 
space, by definition, contains the examples in textbooks, and (2) textbook analyses can provide 
insight into “how experts in a field … define and frame foundational concepts” (Lockwood, 
Reed, & Caughman, 2017, p. 389).  Accordingly, while the primary purpose was to identify the 
non-examples in the instructional example space (the contents), we were also attentive to insights 
in the textbooks regarding how experts might organize these non-examples (the structure). In 
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total, we collected data from 14 abstract algebra textbooks. Four of the textbooks came from 
Melhuish (2019), who identified the four most popular abstract algebra textbooks used in the 
United States, while others were compiled from the textbooks used in introductory abstract 
algebra courses at the top 25 ranked universities in the United States (National University 
Rankings, n.d.). Lastly, we included five textbooks from our personal textbook libraries. (A 
listing of the textbooks we analyzed is included in a section called ‘Bibliography of Textbooks’ 
that appears after the references.)  We then created a list of terms (informed by the literature and 
our knowledge of abstract algebra) related to function (e.g., map, correspondence, well-
definedness, etc) and examples of function that arise in abstract algebra (e.g., binary operation, 
homomorphism, isomorphism).  We then collected the sections in each textbook related to these 
terms via a digital PDF file of the textbook (when available) or by scanning the desired sections 
from a hard copy of the textbook.  To analyze the data, we followed Creswell’s (2012) method 
for identifying and interpreting themes in qualitative data, beginning by making notes on first 
impressions of the data. There were two kinds of excerpts we sought to identify: (1) those 
containing non-examples of function, and (2) the authors’ associated descriptions and 
explanations related to a given non-example.  We then administered codes that described 
particular characteristics of these non-examples and looked for new codes that arose as well as 
elaborations to existing codes; these additional codes were continually refined and revised as 
coding progressed. 

Second, we conducted a series of semi-structured interviews (Fylan, 2005) with 
mathematicians as a way to follow up on conjectures we developed—as well as points that 
needed clarification—from the textbook analysis. Semi-structured interviews were important for 
our objectives because they allow the interviewer to “address aspects that are important to 
individual participants” (Fylan, 2005, p. 66) and thus allowed us to flexibly pursue emerging 
themes we inferred related to the structure of the instructional example space. Indeed, the 
primary purpose of these interviews was to gain insight into the structure of the instructional 
example space (though we were also open to identifying additional contents as well). The five 
mathematicians who participated (whom we refer to as Professors A, B, C, D, and E) were all 
tenured or tenure-track faculty members at a midwestern Research 1 university who had taught 
an abstract algebra course in the last five years. The prompts used in this interview were 
informed by the textbook analysis. The interviews were about an hour to an hour-and-a-half in 
length and allowed the first author (the interviewer) to ask clarifying questions about themes and 
comments that emerged in the textbook analysis and group interview. All mathematicians 
participated in at least one individual interview; Professor B participated in two and Professors A 
and E participated in three.  To analyze the data from these interviews, we again used Creswell’s 
(2012) method. One distinction, though, was that this analysis was more targeted and made use 
of the codes from the textbook analysis. Iterating Creswell’s (2012) procedures enabled us to 
clarify, refine, and elaborate these existing codes. These emerging hypotheses about the key 
structural elements of the non-examples in the instructional example space were then iteratively 
elaborated and refined. 

Results 
We classified a non-example as having a well-definedness issue if there was an element of 

the (proposed) domain for which there were at least two corresponding images contained in the 
(proposed) codomain. For example, consider the rule 𝑓: ℤ! → ℤ" given by 𝑓([𝑎]!) = [𝑎 + 1]" 
(this is a special case of an exercise in Hodge, Schliker, & Sundstrom, 2014, p. 134). Then 
𝑓([0]!) = [0 + 1]" = [1]" and 𝑓([6]!) = [6 + 1]" = [7]" = [0]". Since [1]" ≠ [0]" in ℤ", we 
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have that 𝑓([0]!) ≠ 𝑓([6]!) but [0]! = [6]! in ℤ!. Thus, 𝑓 is not well-defined. Other non-
examples that we classified in this category are displayed in Table 1. 

 
Table 1. Non-examples of function with well-definedness issues.2 

Non-example   Source 

1. 𝜙:ℚ → ℤ given by 𝜙 3#
$
4 = 𝑎 + 𝑏 

2. 𝐴 is the union of two subsets 𝐴% and 𝐴& 
𝑓 from 𝐴 to the set {0, 1} where 𝑓 maps 
elements of 𝐴% to 0 and elements of 𝐴& to 1 
 

3. 𝑓: ℤ' → ℤ! given by 𝑓([𝑥]') = [𝑥]! 
 

4. � defined on the set ℝ by: 𝑎�𝑏 is the number 
whose square is 𝑎𝑏 

 
 

 
 

Gallian (2017, p. 21) 
 

Dummit & Foote (2004, 
p. 1-2) 

 
Beachy & Blair (2019, p. 

57) 
 

Pinter (2010, p. 20) 
  

 
We further refine these non-examples based upon a distinction in the way the experts in our 

study discussed them. For example, when commenting on non-example 1 (Table 1), Professor A 
noted that “there is a clean procedure … the formula as written, it looks like it’s cut and dried 
and well-defined. Um, it’s not, but it looks like you’re getting, an unambiguous output.”  
Consider also non-example 4, which, we note, is equivalent to the proposed correspondence 
𝑓:ℝ × ℝ → ℝ given by 𝑓(𝑎, 𝑏) = ±√𝑎𝑏.  Making this identification, Professor A further noted 
that, unlike non-example 1, “there’s no way you could write this formula [for 𝑓] down and as 
you were writing it, think your output is unambiguous.”  He concluded that, compared to non-
example 1, non-example 4, “really does demand a different treatment.”  Observations of this 
kind formed the foundation for our refinement of the intstructional example space.  We represent 
this distinction by introducing the categories of equivalent representations and multiple rules, 
which we elaborate in the subsections that follow.   
 
Equivalent Representations 

We characterize the equivalent representations non-examples as non-examples of function in 
which (1) elements in the domain can be represented in multiple ways, and (2) these equivalent 
representations are mapped to different outputs. Textbook authors attended to this distinction as 
well.  Beachy and Blair (2019), for example, noted that “problems arise when the element 𝑥 can 
be described in more than one way, and the rule or formula for 𝑓(𝑥) depends on how 𝑥 is 
written” (p. 56). Indeed, if “there are multiple ways to represent elements in the domain (like in 
ℤ( or ℚ), then we need to know whether our mapping is well-defined before we worry about any 
other properties the mapping might possess” (Hodge, Schlicker, & Sundstrom, 2014, p. 129).  

Non-examples 1 and 3 (Table 1) are both examples of proposed correspondences in the 
equivalent representations category. On non-example 3 (on Table 1), for instance, Gallian 
(2017) explained that 𝜙 “does not define a function since 1/2 = 2/4 but 𝜙(1/2) ≠ 𝜙(2/4)” 
(p. 21).  Similarly, Professor D noted that “one half and two fourths, you get different 

 
2 Some of these non-examples were slightly modified for clarity and simplicity. 
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answers. So if you get different answers for the same input, it’s not a function. […] Any 
rational number that you pick, has non-unique representations as a fraction.”  Notice that this 
comment underscores how different (yet equivalent) representations in the domain (e.g. “one 
half and two fourths,” “for the same input,” “non-unique representation”) are mapped to 
different elements in the codomain (“you get different answers”).  Other mathematicians 
made this point as well.  For example: 

 
§ Professor E:  “the function is deliberately taking, a particular presentation. [It] takes a,  

a particular presentation of the rationals … That’s the issue … that’s a problem. Like 
if you’re going to, if you’re gonna use a representative … then you have to be extra 
careful.” 

§ Professor C “students tend to look at fractions as a fixed thing and not […] a 
representative of an equivalence class.”   

 
We also note that attending to this kind of well-definedness issues—related to equivalent 
representations of elements in the domain—is of particular importance in abstract algebra 
because, as Professor B explained, “a large, uh, an important, uh, aspect of abstract algebra is to 
construct things, by means of, equivalence relations. And, uh, so, the validity of your 
constructions, depends on checking, that equivalent things are used in the same way.” This is a 
key issue in proofs, especially those involving functions on quotient structures (e.g., ℚ, ℤ/𝑛ℤ). 
 
Multiple Rules 
 The multiple rules category includes non-examples in which the definition of the rule 
involves two or more choices of images in the specified codomain for a single element of the 
domain.  For example, we classify non-examples 2 and 4 (Table 1) in the multiple rules category. 
Regarding non-example 4, we note that this rule could also be stated as 𝑓(𝑎, 𝑏) = ±√𝑎𝑏, and 
thus the input (2,8), for example, has two outputs (4 and -4) caused by the ‘±’ part of the rule 
(and not, for example, by the representation of the input (2,8) in the domain ℝ × ℝ).  Regarding 
non-example 2, Dummit & Foote (2004) explained that “this unambiguously defines 𝑓 unless 𝐴% 
and 𝐴& have elements in common (in which case it is not clear whether these elements should 
map to 0 or to 1)” (pp. 1-2).  Professor B – in a comment that inspired the name of this category 
– pointed out that “the definition has, two possible values on the intersection of [𝐴%] and [𝐴&] … 
you have to clarify which value you’re gonna choose … that’s a problem with the multiple 
values of the rule.  The primary distinction we inferred between multiple rules and equivalent 
representations involves the nature of a ‘choice.’ For example: 

 
§ Professor A:  “Where is the choice taking place? Is it in your input? Or is it, uh, in the 

execution of the rule?”  
§ Professor B:  “They are two different types of problems … your [proposed] function 

could be, um, not well-defined because, the value in the domain is not well-defined, 
or that you have to make a choice in the value of the domain. Or they could be, not 
well-defined because the value of the output is not well-defined and you have to make 
a choice of that value of the output.” 
 

We therefore infer that equivalent representations is characterized by a choice in the domain 
(e.g. “it is in your input?,” “choice in the value of the domain”), whereas equivalent 
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representations is characterized by a choice in the codomain (e.g. “value of the output”) caused 
by the rule (e.g. “execution of the rule”).   

Discussion 
Using a textbook analysis and semi-structured interviews with mathematicians, we focused 

on answering the following research question: what examples of function are students expected 
to reason about in introductory abstract algebra, and how might we productively classify them?  
Our answer to this question centers on our elaboration of the fundamental notion of well-
definedness – these elaborations are summarized in Table 3. 

Table 3. Summary of the structure of the instructional example space for function in abstract algebra. 

Well-definedness 
 
Equivalent 
Representations 
 
 
 
 
Multiple Rules 

Description 
There is at least one element in the 

domain that has different, 
equivalent representations; the 
rule assigns these to different 

images in the codomain. 
 

There exists at least one element 
in the domain that gets assigned 
different images in the codomain 
due to the rule being ambiguous. 

Non-example 
 

𝜙:ℚ → ℚ given 
by 𝜙 3#

$
4 = 𝑎 + 𝑏 

 
 
 

𝑓:ℝ) → ℝ given 
by 𝑓(𝑥) = ±√𝑥 

 

Familiarity 
 

Relatively 
unfamiliar to 

students 
 
 

Somewhat 
familiar from 

previous courses 

 
These elaborations are important for several reasons. First, non-examples in the multiple 

rules category are more likely to resonate with students’ experiences with functions in previous 
courses, while those in the equivalent representations category are relatively unfamiliar to 
introductory abstract algebra students.  Thus, this elaboration is important because (1) it points 
out aspects of the function concept that students must attend to in order to successfully reason 
about functions in abstract algebra, while also (2) providing a viable explanation for why 
students struggle with functions (they have limited, if any, experience with equivalent 
representations, the category that is most prevalent in abstract algebra). Second, a practical 
suggestion that emerges from this analysis is that productive learning experiences for students 
should involve non-examples of each of these four kinds. This elaboration can therefore inform 
instructional design and selection of non-examples for abstract algebra lessons. However, though 
our analysis establishes that students should gain experience with non-examples in each 
category,  it does not address or provide insight into the nature or instructional context that might 
make these experiences impactful. That is, it remains unanswered how these categories might be 
used to support students’ development of a productive conception of function in abstract algebra.  
It is also still unclear in what contexts and for what purposes these non-examples should appear 
in an instructional sequence.  We propose that these nuanced questions represent productive lines 
for future research via task-based clinical interviews, conceptual analyses, and hypothetical 
learning trajectories. 
 

References 
Bagley, S., Rasmussen, C., & Zandieh, M. (2015). Inverse, composition, and identity: The case 

of function and linear transformation. Journal of Mathematical Behavior, 37, 36-47.  

24th Annual Conference on Research in Undergraduate Mathematics Education 663



Brown, A., DeVries, D. J., Dubinsky, E., & Thomas, K. (1997). Learning binary operations, 
groups, and subgroups. Journal of Mathematical Behavior, 16(3), 187-239. 

Carlson, M. P. (1998). A cross-sectional investigation of the development of the function 
concept. In E. Dubinsky, A. H. Schoenfeld, & J. J. Kaput (Eds.), CBMS Issues in 
mathematics education: Research in collegiate mathematics education, III (Vol. 7, pp. 
115-162). American Mathematical Society. 

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning 
while modeling dynamic events: A framework and a study. Journal for Research in 
Mathematics Education, 33(5), 352-378. 

Clement, L. L. (2001). What do students really know about functions? Mathematics Teacher, 
94(9), 745-748. 

Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative 
and qualitative research (4th ed.). Pearson. 

Dorko, A. (2017). Generalising univalence from single to multivariable settings: The case of 
Kyle. In A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro & S. Brown (Eds.), 
Proceedings of the 20th annual conference on Research in Undergraduate Mathematics 
Education (pp. 562-569). 

Even, R. (1993). Subject-matter knowledge and pedagogical content knowledge: Prospective 
secondary teachers and the function concept. Journal for Research in Mathematics 
Education, 24(2), 94-116. 

Even, R. & Tirosh, D. (1995). Subject-matter knowledge and knowledge about students as 
sources of teacher presentations of the subject-matter. Educational Studies in 
Mathematics, 29, 1-20. 

Fylan, F. (2005). Semi-structured interviewing. In J. Miles & P. Gilbert (Eds.), A handbook of 
research methods for clinical and health psychology (pp. 65-77). Oxford University 
Press. 

Hausberger, T. (2017). The (homo)morphism concept: Didactic transposition, meta-discourse 
and thematisation. International Journal of Research in Undergraduate Mathematics 
Education, 3, 417-443. 

Kabael, T. U. (2011). Generalizing single variable functions to two-variable functions, function 
machine, and APOS. Educational Sciences: Theory & Practice, 11(1), 484-499.  

Larsen, S. (2009). Reinventing the concepts of group and isomorphism: The case of Jessica and 
Sandra. Journal of Mathematical Behavior, 28, 119-137.  

Leron, U., Hazzan, O., & Zazkis, R. (1995). Learning group isomorphism: A crossroads of many 
concepts. Educational Studies in Mathematics, 29, 153-174. 

Lockwood, E., Reed, Z., & Caughman, J. S. (2017). An analysis of statements of the 
multiplication principle in combinatorics, discrete, and finite mathematics textbooks. 
International Journal of Research in Undergraduate Mathematics Education, 3, 381-416. 

Melhuish, K., Ellis, B., & Hicks, M. D. (2020). Group theory students’ perceptions of binary 
operation. Educational Studies in Mathematics, 103, 63-81. 

Melhuish, K., Lew, K., Hicks, M. D., & Kandasamy, S. S. (2020). Abstract algebra students’ 
evoked concept images for functions and homomorphisms. Journal of Mathematical 
Behavior, 60, 1-16. https://doi.org/10.1016/j.jmathb.2020.100806 

Melhuish, K. & Fagan, J. (2018). Connecting the group theory concept assessment to core 
concepts at the secondary level. In N. H. Wasserman (Ed.), Connecting abstract algebra 
to secondary mathematics, for secondary mathematics teachers (pp. 19-45). Springer. 

24th Annual Conference on Research in Undergraduate Mathematics Education 664



Nardi, E. (2000). Mathematics undergraduates’ responses to semantic abbreviations, ‘geometric’ 
images and multi-level abstractions in group theory. Educational Studies in Mathematics, 
43, 169-189. 

National University Rankings (n.d.). Retrieved 2 Apr 2020, from https://www.usnews.com/best-
colleges/rankings/national-universities 

Oehrtman, M., Carlson, M., & Thompson, P. W. (2008). Foundational reasoning abilities that 
promote coherence in students’ understanding of function. In M. P. Carlson & C. 
Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate 
mathematics education (pp. 27-42). Mathematical Association of America.  

Rupnow, R. (2019). Instructors’ and students’ images of isomorphism and homomorphism. In A. 
Weinberg, D. Moore-Russo, H. Soto, & M. Wawro (Eds.), Proceedings of the 22nd 
Annual Conference on Research in Undergraduate Mathematics Education (pp. 518-
525). 

Rupnow, R. (2021). Conceptual metaphors for isomorphism and homomorphism: Instructor’s 
descriptions for themselves and when teaching. Journal of Mathematical Behavior, 62, 1-
14. 

Thomas, M. (2003). The role of representation in teacher understanding of function. In N. A. 
Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.), Proceedings of the 2003 joint meeting of 
PME and PMENA (Vol 4, pp. 291-298). Center for Research and Development Group, 
University of Hawaii.    

Watson, A. & Mason, J. (2005). Mathematics as a constructive activity: Learners generating 
examples. Lawrence Erlbaum Associates. 

Zazkis, R. & Leikin, R. (2008). Exemplifying definitions: A case of a square. Educational 
Studies in Mathematics, 69, 131-148.  

 
Bibliography of Textbooks 

Artin, M. (2011). Algebra (2nd ed.). Prentice Hall. 
Beachy, J. A. & Blair, W. D. (2019). Abstract algebra (4th ed.). Waveland Press. 
Birkhoff, G. & Mac Lane, S. (1977). A survey of modern algebra (4th ed.). Macmillan 

Publishing.   
Davidson, N. & Gulick, F. (1976). Abstract algebra: An active learning approach. Houghton 

Mifflin. 
Dummit, D. S. & Foote, R. M. (2004). Abstract algebra (3rd ed.). John Wiley & Sons. 
Fraleigh, J. B. (2002). A first course in abstract algebra (7th ed.). Pearson. 
Gallian, J. A. (2017). Contemporary abstract algebra (9th ed.). Cengage Learning. 
Gilbert, L. & Gilbert, J. (2015). Elements of modern algebra (8th ed.). Cengage Learning. 
Herstein, I. N. (1975). Topics in Algebra (2nd ed.). John Wiley & Sons. 
Herstein, I. N. (1996). Abstract algebra (3rd ed.). Prentice-Hall.    
Hodge, J. K., Schlicker, S., & Sundstrom, T. (2014). Abstract algebra: An inquiry-based 

approach. CRC Press. 
Hungerford, T. W. (2014). Abstract algebra (3rd ed.). Brooks/Cole, Cengage Learning.  
Pinter, C. C. (1990). A book of abstract algebra (2nd ed.). Dover Publications. 
Rotman, J. J. (2006). A first course in abstract algebra with applications (3rd ed.). Pearson 

Prentice Hall. 
 
 

24th Annual Conference on Research in Undergraduate Mathematics Education 665



 A Quantitative Critical Analysis of Instructional Practices and Math Identity 
 

Matthew Voigt 
Clemson University 

Jess Ellis Hagman 
Colorado State University-Fort Collins 

Ciera Street 
Colorado State University-Fort Collins 

Jason Guglielmo 
Arizona State University 

Antonio Martinez 
San Diego State University 

Rachel Tremaine 
Colorado State University-Fort Collins 

 
Abstract: The growing interest in the implementation of active learning practices necessitates a  
critical inquiry into how students with identities that are traditionally marginalized in 
mathematical spaces differentially experience these practices. In this work, we draw on critical 
quantitative theories to analyze how shifts in math identities in precalculus and calculus courses 
are mediated by intersectional gender identities in regard to the active learning instructional 
practices of math engagement, peer collaboration, instructor inquiry, and participation. Using a 
generalized linear model, we identified that (1) math engagement was the strongest instructional 
practice linked with positive shift in math identity overall, (2) intersectional gender identities 
linked with sexuality and First-Generation college status were significant contributors to explain 
the model variation, and (3) high levels of math engagement mediated against a loss in math 
identity for Women, and high levels of peer collaboration mediated against a loss in math 
identity for Indigenous students.  

Keywords: active learning, equity, quantitative methods, critical theory, precalculus, calculus 

There is a growing body of literature investigating the impacts of active learning classroom 
practices on students' experience and success, in general, and specifically within college math 
classrooms (Freeman et al., 2014; Hyland, van Kampen, & Nolan, 2021; Rämö, Lahdenperä, & 
Häsä, 2021). There is also a growing body of literature documenting the marginalizing 
experiences and exclusionary systems within mathematics (Battey et al., in press; Ellis, Fosdick, 
& Rasmussen, 2016; Leyva et al., 2021). For example, Leyva and colleagues (2021) document 
discouraging and marginalizing instruction in college precalculus and calculus classes, 
emphasizing the ways that instruction perpetuates whiteness and patriarchy. Battey et al. (in 
press) connect these discouraging and marginalizing instructional events to additional emotional 
and cognitive labor undertaken by Students of Color and white Women, which negatively 
impacts the labor they have available to learn the content of precalculus and calculus. At the 
intersection of these bodies of literature are a small number of studies examining how active 
learning practices differentially impact students with marginalized identities. While a recent 
meta-analysis by Theobald and colleagues (2020) provides evidence that active learning narrows 
the racial opportunity gap in STEM, Johnson et al. (2020) found that active learning instruction 
in Abstract Algebra courses introduced a gender performance difference in content assessment, 
with men in active learning courses outperforming women, but men and women performing 
similarly within lecture-based courses. 

How students with marginalized identities differentially experience active learning in college 
math classes remains an open question. There are numerous reasons why answering such an 
important question is difficult. One challenge lies within defining what we mean by active 
learning, what we measure related to student experience or success, and what student identities 
are attended to. A second challenge appears when using those definitions to answer the question 
in a robust way, given that for many identity groups, marginalization within math is related to a 
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lack of representation in math classrooms. In this study, we draw on a large-scale dataset of 
student responses related to their experiences in college precalculus and calculus to investigate: 
what aspects of active learning are beneficial for students’ math identity development, for whom, 
and are they differentially beneficial for certain students? Specifically, our analysis centers on 
how gender mediates active learning classroom practices related to mathematical identity 
development with a particular focus on the intersections of identities. Our decision to center the 
experiences of women and gender non-conforming students with an attention to intersectional 
identities within womanhood is driven by literature (e.g., Ellis et al., 2016; Johnson et al., 2020; 
Laursen et al., 2014; Leyva, 2017), by preliminary analysis of our data, and by the lived 
experiences of the author team.  

Literature Review 
To answer our research question, we must operationalize how we conceptualize math 

identity, intersectionality, and classroom practices linked to active learning. 

Definition of student success: Math identity 
To measure student success, we focus on math identity, which Martin (2006) defines as “the 

dispositions and deeply held beliefs that individuals develop, within their overall self-concept, 
about their ability to participate and perform effectively in mathematical contexts and to use 
math to change the conditions of their lives” (p. 206). Other research has further detailed math 
identity as including (1) self-perceptions of mathematical ability and capacity to participate in 
the math environment; (2) sense of belonging in the math environment including feelings of 
wanting to be in that space, being an important part of the space and one’s perception of others 
recognizing them as belonging in the space; and (3) the role of social discourses within 
institutions, individuals, society, etc. that shape (either support or constrain) students’ 
mathematical identities (Adiredja & Andrews-Larson, 2017; Good et al., 2012; Mendick, 2006; 
Leyva, 2016, 2017, 2021; Rainey et al., 2018, Voigt, 2020).  

Defining student identities: Intersectional lens 
Intersectionality draws from the work of Critical Race Theory and Black Feminist Thought 

to highlight how aspects of a person’s social and political identities combine to create 
overlapping forms of privilege and marginalization (Crenshaw, 1990). Attending to 
intersectionality in STEM education research can be challenging as participant recruitment and 
sample size may limit possible analysis. Laursen and Rasmussen (2019) call on researchers to 
“[design] studies that have the statistical power needed to unpack average gains or outcomes in 
more intersectional ways” (p. 140). Our study design allows us to respond to this call by 
investigating the perceptions of active learning classroom practices among women students 
while also attending to other identities within womanhood, including race, sexual identity, and 
first-generation status. It is necessary to, when methodologically possible, attend to differences 
within groups (such as within women students) to avoid having the experience of the majority 
group (in our sample: white, straight women whose parents have completed college) speak for all 
women students. Further, intersectional theory centers how holding multiple marginalized 
identities, such as Queer and woman, compound one another and so the marginalization of being 
a Queer woman is different from being a Queer man and different from being a straight woman 
(Crenshaw, 1990).  
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Definition of active learning: Four pillars of inquiry instruction 
We draw on the four pillars of Inquiry-Based Mathematics Education (IBME) (Laursen & 

Rasmussen, 2019) to define active learning and identify which active learning classroom 
practices relate to students’ math identity development. Inquiry, as a branch of active learning, 
centers both the reinvention and creation of math not previously internalized by the student, and 
scaffolds prior mathematical work and knowledge to “build to big ideas.” IBME is composed of 
four pillars: (1) students engage deeply with coherent and meaningful mathematical tasks, (2) 
students collaboratively process mathematical ideas, (3) instructors inquire into student thinking, 
and (4) instructors foster equity in their design and facilitation choices. While the participants in 
this study were not all enrolled in IBME classrooms, these pillars describe the instructional 
practices being reported by students to varying degrees in the courses in our study. 

Methodological Approach: Critical theories related to quantitative analysis 
For many identity groups, marginalization within math is linked to a lack of representation in 

math classrooms, thus the number of students from such groups (e.g., Students of Color, Queer 
students, First-Generation Students) is relatively small within introductory math classrooms. This 
has resulted in few quantitative studies documenting the experiences of students from 
marginalized populations in college math, meaning these experiences are often ignored or, 
potentially more harmful, inferred based on the experiences of other marginalized populations, 
specifically (predominantly white) women. This “exclusion and misrepresentation of [Students 
of Color] in education research” is often attributed to methodological limitations (Teranishi, 
2007, p. 38). In this paper, we bring the potential power of quantitative methods to examine the 
experiences of students from marginalized identities in precalculus and calculus classes. We do 
this informed by two perspectives for conducting quantitative analyses from a critical lens: Data 
Feminism and QuantCrit.  

Data Feminism 
Building from various works in Feminist thought and Intersectionality theory, D’Ignazio and 

Klein (2020) characterize Data Feminism as “a way of thinking about data, both their uses and 
their limits, that is informed by direct experience, by a commitment to action, and by 
intersectional feminist thought” (What Is Data Feminism?, para. 9). Thus, data maintain power 
hierarchies as well as present an opportunity to challenge sociohistorical power differentials. In 
particular, Data Feminism recognizes the unequal distribution of power within and because of 
higher education institutions. Controlling educational spaces allows dominant groups to 
systematically exclude certain groups and explicitly or implicitly benefit their own social, 
political, and economic interests. Pervasive mathematical discourses continue to uphold white, 
patriarchal values which marginalize women and students of color within these spaces (Leyva, 
2017; Martin, 2009; Mendick, 2006). Data Feminism emphasizes utilizing data to acknowledge 
important and often unrecognized counternarratives to dominant discourse. This extends across 
all arenas of quantitative research including the content, the form of communication, and data 
processes such as collection and analysis. In terms of content, Data Feminism suggests 
challenging dominant discourses by dismantling gender and racial binaries beyond man/woman 
and Black/white and illuminating often subjugated knowledge from various voices. 
Communicating data within a Data Feminist lens includes leveraging emotion and other aspects 
of the human experience rather than “valorizing the neutrality ideal and trying to expunge all 
human traces from a data product.” In terms of processes and analysis, Data Feminism urges 
researchers to carefully consider and convey the social, cultural, historical, institutional, and 
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material contexts underpinning and encompassing the data. Overall, a Data Feminist lens values 
various forms of knowledge, particularly highlighting the need for including those most 
frequently marginalized within the data context, and analyzing and presenting data in a way that 
reflects the humanity ingrained within each data point. 

QuantCrit 
There has been a recent movement to introduce more quantitative methods into Critical Race 

Theory research, creating the field known as QuantCrit. Ladson-Billings and Tate (1995) 
characterize Critical Race Theory as a means to unveil the institutional and structural racism 
embedded in US schooling systems. With this perspective, scholars are encouraged to center the 
lived experiences of the oppressed and document the human biases, programmatic structures and 
institutional policies that may lead to negative experiences, negative academic identities, and 
hence, negative student outcomes for Students of Color. Garcia et al. (2018) note that simply 
using quantitative methods for critical research is not enough; one must constantly reflect-on and 
engage with the “historical, social, political, and economic structures and power relations at any 
given point in time” (2018, pg. 150). Gillborn et al. (2010) offer a way to strive for this 
engagement by outlining five central tenets of QuantCrit: (1) racism is a complex, deeply rooted 
aspect of society that is challenging to quantify; (2) numbers are not neutral and can promote 
deficit perspectives; (3) categories are human creations and so units of measures and forms of 
analysis must be critically evaluated; (4) data cannot speak for itself and critical analyses should 
be informed by experiential knowledge of marginalized groups; and (5) statistical analyses have 
power only because of their potential to support social justice.  

Data Analysis 
Data from this analysis comes from the NSF-funded study SEMINAL, which administered 

the Student Postsecondary Instructional Practices surveys (Apkarian et al., 2019) at 12 
universities across four academic terms. A general linear regression model was fit to the data 
(n=19,192) using R software. Our outcome variable was a change in mathematical identity 
(confidence, interest, enjoyment, and ability) that was computed as a difference between student 
reports of their perceptions of math identity at the beginning of the course and near the end of the 
course. Our predictor variables of interest included: university (12 sites), course level (precalc, 
calc 1, calc 2), four measures of active learning instructional practices (math engagement, peer 
collaboration, instructor inquiry, and participation/community) that were determined based on 
prior factor analysis (Creager et al, submitted) and aligned with the four pillars of inquiry 
instruction, and social markers for race (white, Asian, Black or African-American, Hispanic or 
Latinx, Indigenous, Multiracial, Middle Eastern or North African), gender (cisman, cisWoman, 
Gender non-conforming), sexuality (straight, Asexual, Bisexual, Gay, Lesbian, Queer, 
Straight+), First-generation college status, and pairwise interaction effects for each of these 
variables. We used AIC model selection to distinguish among models describing the relationship 
between shifts in mathematical identity and our predictor variables. The best-fit model, carrying 
94% of the cumulative model weight is presented in equation 1.  
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Δmath 
identity   

 
= 

Intercept + university + course level + 
math eng. + peer collab. + inst. inquiry + participation + 
gender + race + sexuality + first-gen. + gender:sexuality + gender:first-gen. + 
gender:math eng. + race:peer collab.  

 
(1) 

 
In building this model, we had to identify a control group for the regression analysis. We 

chose the control group to be those with the most privileged identities in math, because we want 
to highlight the educational debt owed to and the differential experiences of students with 
marginalized identities. Though we understand why we have to use a comparison group for a 
regression model, we did not want this to be a comparison that played into deficit narratives. To 
avoid this, we focused our analysis on changes in mathematical identity to situate comparison 
within a student experience as opposed to examining differences in academic outcome variables. 
Furthermore, we move beyond differences between groups to understand the differential impact 
in relation to classroom practices. We believe doing so avoids deficit narratives and gap-gazing 
by contextualizing how instructional practices interact with social markers which draws attention 
to how mathematics courses are serving or failing to serve particular students. 

Results 
In this section we present the results of the regression analysis. Informed by QuantCrit and 

Data Feminism, these data should not speak for themselves, the analyses must be informed by 
experiential knowledge, and the presentation of data can and should leverage emotion. We 
dedicate the written space here to present the results and for brief discussion. We look forward to 
more space to contextualize and interpret this data in presentation format and to bring in 
qualitative data from students’ survey responses.  

Change in math identity ranged from [-5, 5] with a mean of -0.084 and standard deviation of 
0.21. A summary of the fitted model is presented in Table 1. The instructional practices of math 
engagement (beta = 0.51, p<.001) and instructor inquiry (beta=0.03, p=.002) were positive 
predictors for changes in math identity across all students. The instructional practice of peer 
collaboration (beta= -0.10, p<.001) was a negative predictor and participation (beta= 0.01, 
p=0.34) was not statistically significant. We also identified that course level was a statically 
significant predictor of changes in math identity compared to calculus 1 for both precalculus 
(beta=0.18, p<.001) and calculus 2 (beta= -0.12, p<.001). 

 
Table 1. Regression Model for Change in Math Identity 

    
Estimate 

CI-
2.5% 

CI- 97.5 
% 

Std. 
Error 

t-
value p sig 

(Intercept)                                -1.78 -1.89 -1.66 0.06 -30.28 <.001 *** 
Instructional Practices        

Math Engagement 0.52 0.49 0.55 0.02 30.55 <.001 *** 
Peer Collaboration -0.10 -0.14 -0.07 0.02 -6.67 <.001 *** 
Instructor Inquiry 0.04 0.01 0.06 0.01 3.06 0.002 **  
Participation 0.01 -0.01 0.04 0.01 0.95 0.342      

Course level        
Calc 2 -0.12 -0.16 -0.08 0.02 -5.45 <.001 *** 
Precalculus 0.19 0.15 0.23 0.02 8.73 <.001 *** 
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Social Markers        
cisWoman                            -0.59 -0.73 -0.45 0.07 -8.38 <.001 *** 
Gender non-conforming                               -0.47 -1.48 0.55 0.52 -0.91 0.365      
Asian 0.17 -0.02 0.35 0.10 1.72 0.086 .   
Black or AA 0.05 -0.13 0.24 0.10 0.57 0.570      
Hispanic or Latinx -0.08 -0.24 0.07 0.08 -1.04 0.300      
Middle Eastern or N. African -0.17 -0.47 0.12 0.15 -1.17 0.244      
Multi-racial -0.10 -0.26 0.05 0.08 -1.29 0.197      
Indigenous                               -0.82 -1.45 -0.20 0.32 -2.59 0.010 **  
Asexual                                   -0.06 -0.19 0.06 0.06 -1.00 0.317      
Bisexual                                  -0.02 -0.19 0.14 0.08 -0.25 0.803      
Gay                                       -0.07 -0.22 0.07 0.08 -0.99 0.325      
Lesbian                                    0.06 -2.03 2.16 1.07 0.06 0.954      
Straight+                                 -0.07 -0.35 0.21 0.14 -0.47 0.637      
Queer                                      0.36 0.04 0.68 0.17 2.17 0.030 *   
First-Generation                  -0.01 -0.06 0.04 0.03 -0.32 0.748      

Intersectional Social Markers (Sig only)       
cisWoman x Bisexual                  0.20 0.01 0.39 0.10 2.02 0.043 *   
cisWoman x First-Generation -0.09 -0.16 -0.02 0.04 -2.36 0.018 *   
GNC x Straight+                       -3.40 -4.99 -1.81 0.81 -4.19 <.001 *** 

Instructional Practices x Social Markers (Sig only)      
Math Engagement x cisWoman                0.16 0.12 0.20 0.02 8.28 <.001 *** 
Peer Collaboration x Indigenous                   0.24 0.03 0.45 0.11 2.22 0.026 *   

Site (Omitted)        
 

The estimate for the intercept (beta=-1.77, p<.001) indicates that on average white straight 
non-first-generation men report a decrease in math identity while holding all other predictors 
constant. Examining the predictive social marker, being a woman was associated with a further 
decrease in math identity (beta=-0.59, p<.001) as was identifying as Indigenous (beta=-0.82, 
p<.009). These results highlight how systems of oppression based on race and gender are acting 
on students in math classrooms to communicate concepts of who is a mathematician. Being a 
Queer student was a mitigating factor and associated with less of a decrease in math identity 
(beta=0.35, p=.03). This means that a white, Queer, non-first-generation man still has an overall 
decrease in math identity, but would have a -1.77+0.35 shift in math identity rather than a -1.77 
overall decrease. Furthermore, there were intersectional identities that had statically significant 
impacts on the outcome variable which included Bisexual women (beta=0.19, p=.04), Gender 
non-conforming straight+ person (beta=-3.39, p<.001), and First-generation women (beta=-
.09,  p=-.02). These results point to the nuanced nature of intersectional identities especially at 
the intersection of gender and sexuality and gender and first-generation college status. 
Interestingly, in our data the interactions between gender and race were not significant in the 
model; however, this does not negate the impact of the lived experience of students but may 
highlight the limited nature of our instrument and outcome variables. 

There were two interaction effects of identity social markers with the instructional practices 
that contributed to the model. These indicate that the instructional practices had a differential 
impact on shifts in math identity based on the social marker. The interaction between math 
engagement and gender was significant, whereby higher levels of math engagement had a 
positive association with increases in math identity for women (beta=0.15, p<.001). This 
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relationship is presented in Figure 1a. The interaction between race and peer collaboration was 
significant, whereby higher levels of peer collaboration had a positive association with increase 
in math identity for Indigenous students (beta=0.23, p<0.3). This relationship is presented in 
Figure 1b.   
 

 
Figure 1a: Regression line for math engagement on 
change in math identity for women, men, and gender 

non-conforming students. 

Figure 1b: Regression line for peer collaboration on 
change in math identity for white, Black or African 

American, Middle Eastern or North African, 
Indigenous, Asian, Hispanic or Latinx, and multi-racial. 

Discussion 
In this study we have performed a critical quantitative analysis to identify how classroom 

practices related to active learning can support the math identity development of women students 
in precalculus and calculus courses, while attending to intersectional identities related to race, 
sexual orientation, and first-generation status. Our findings indicate that not all of the pillars of 
active learning positively contribute to math identity development, and there are differences 
across course levels of precalculus and calculus. Math identity in general decreases in these 
introductory math courses, highlighting a need for critical self-reflection as a field. Our model 
development further highlights the need to attend to intersectional identities, as gender alone was 
not a significant predictor to account for the variation in the model, but including the interaction 
effects of gender with sexuality and gender with first-generation college status aided to the 
model fit. Furthermore, in an effort to avoid the pitfalls of gap-gazing (Gutiérrez, 2008) and align 
with the tenets of QuantCrit and Data Feminism, we examined how the instructional practices 
differentially impacted change in math identity. This analysis suggests that higher levels of math 
engagement can positively support women, and higher levels of peer collaboration positively 
contributed to the identity development of Indigenous students. Further analysis should examine 
the causal mechanism underlying these effects to work against a homogeneous view that active 
learning is beneficial for all students.  
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Students’ Validations of Constructive Existence Proofs: There’s More than Meets the Eye 
 

 Kristen Vroom Tenchita Alzaga Elizondo 
 Oregon State University Portland State University 

Undergraduate students are expected to construct and comprehend constructive existence 
proofs; yet, these proofs are notoriously difficult for students. This study investigates students’ 
thinking about these proofs by asking students to validate arguments for the existence of a 
mathematical object. We share salient ways that the students described the mathematical 
arguments, and how, if at all, this impacted their view of the arguments as proofs.  

Keywords: Existence proofs, proof framework, proof validation, explanatory proof  

Existence proofs are a prominent part of undergraduate students’ advanced mathematics 
courses. These proofs argue the existence of a mathematical object by explicitly producing the 
desired result or providing an algorithm for its production (Brown, 2017). Yet, these proofs are 
notoriously difficult for students (Brown, 2017; De Guzmán et al., 1998; Samper et al., 2016; 
Schaub, 2021).  

Our classroom experiences have highlighted one difficulty that students often have with 
constructive existence proofs. When attempting to prove the existence of a mathematical object, 
many students produce an argument with a flaw in the overall structure of the argument, or 
what’s sometimes referred to as the proof framework (Selden & Selden, 2003). The students’ 
argument assumes the existence of the object by starting with a desired property and follows by 
solving for the object (two examples of such an argument are given in the Methods Section, see 
Figure 1 and 2). We believe that students can and will engage in meaning-making, and so, the 
prevalence of this error made us wonder what mathematical reasoning students engage in as they 
produce or endorse an argument of this nature.  

Scholars have identified various reasons for why students have difficulties with proofs that 
we see as especially relevant for constructive existence proofs. To start, students find the 
mathematical language used in proof challenging (Moore, 1994), including unpacking the logical 
statement that they wish to prove (Selden & Selden, 1995) and understanding the nuanced ways 
that mathematical objects are introduced and used (Lew & Mejía-Ramos, 2019). Additionally, 
there are several studies that show students might view an invalid proof with a flaw in the 
framework as a proof because students sometimes ignore the argument's structure or doubt that it 
matters (Selden & Selden, 2003; Weber, 2009, 2010). Instead, students may focus on surface 
features such as the computations offered in the argument (Inglis & Alcock, 2012; Selden & 
Selden, 2003). Our study fills a gap in the research literature on how students think about 
constructive existence proofs, and in doing so, we gain some insight into why these proofs can be 
difficult for students. 

Theoretical Grounding 
For this report, we use Stylianides’ (2007) characterization of proof in school mathematics:  

“Proof is a mathematical argument, a connected sequence of assertions for or against a 
mathematical claim, with the following characteristics:  

1. It uses statements accepted by the classroom community (set of accepted statements) that 
are true and available without further justification;  
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2. It employs forms of reasoning (modes of argumentation) that are valid and known to, or 
within the conceptual reach of, the classroom community; and  

3. It is communicated with forms of expression (modes of argument representation) that are 
appropriate and known to, or within the conceptual reach of, the classroom community” 
(p. 291). 

We note that what constitutes a proof is dependent on the audience’s accepted statements, 
modes of argumentation, and representation. In this report, we specify when we consider the 
students’ evaluation of an argument versus the mathematics community’s. We reserve the term 
valid (or invalid) proof for what we view as the larger mathematics community's acceptance (or 
rejection) of the mathematical argument as a proof of a given statement. Additionally, we expand 
on Stylianides’ (2007) definition by making explicit that the associated mathematical claim plays 
a role in the second characteristic: when evaluating a mathematical argument, one should 
consider whether the argument uses acceptable modes of argumentation that are for (or against) a 
known mathematical claim. When we say that an argument was (or was not) viewed as a proof, 
we mean that the argument was (or was not) viewed as a proof of the given claim. 

Scholars have distinguished between proofs that only convince and proofs that also explain 
(i.e., explanatory proofs) (e.g., Bartlo, 2013; Lockwood et al., 2020; Weber, 2010). In this study, 
we view explanatory proofs as audience-dependent since they may not always give the same 
insight to people with different experience levels. Additionally, we take the explanatory nature of 
a proof as closely tied to the activity of constructing the proof. A reader may find a proof to be 
explanatory if they gain insight into the informal reasoning that was used to create it. A prover 
might then include part of their problem-solving process in their proof in attempts to produce an 
explanatory proof for a particular reader.  

In this study, we explore students’ thinking about, and validation of, arguments for an 
existence claim. One argument is an invalid proof because it features an error in the framework 
while the other argument is a valid constructive existence proof. In particular, we investigate: 
How do students make sense of arguments for the existence of a mathematical object? 

Methods 
The data for this study comes from 16 semi-structured interviews from students at two 

universities enrolled in three different Introduction to Proofs classes with different instructors as 
part of the NSF-funded project Advancing Students' Proof Practices in Mathematics through 
Inquiry, Reinvention, and Engagement project (NSF DUE #1916490). One of the research goals 
of the interviews was to understand how the students reasoned about arguments for the existence 
of a mathematical object. This part of the interview typically lasted between 30 and 40 minutes. 
The interview tasks were either in the context of groups (N=11) or functions (N=5) depending on 
the interviewee’s course context. 

Both authors were present for each of the interviews. The interviews were facilitated 
remotely via Zoom and a shared Google Doc and were video-recorded capturing the students’ 
gestures and typed work. We refer to individual participants with a code that indicates their proof 
validation for each argument and the context of the interview tasks. For instance, for the label 
“NPG-7”, the “N” represents the participant did not view the first argument as a proof, the “P” 
represents they viewed the second argument as a proof, the “G” represents the arguments were in 
the group context, and the “7” represents they were the seventh interviewee. We use “F” to 
represent the tasks in the function context and “U” to represent the one instance in which a 
student was ultimately undecided about the validity. 
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Interview Tasks 
There were three parts to the interview task. First, we asked students to (re)interpret a given 

existence statement. Then we asked them to describe their sense making and validation of the 
Invalid Proof. Last, we asked them to describe their sense making and validation of the Valid 
Proof. See Figure 1 and 2 for the statements and the Invalid and Valid Proofs, which we 
constructed based on our experience with students1 and our mathematical knowledge, 
respectively.   
 

 

 

 

Figure 1. Group version of the statements and two arguments.  

 

 

 

Figure 2. Function version of the statement and two arguments.  

Data Analysis  
Our data analysis process was consistent with a thematic analysis (Braun & Clarke, 2006). 

Together, we engaged in a cyclic process examining each interview transcript and corresponding 

 
1 It was relatively common during the interviews for students to comment that the argument of the Invalid Proof was 
how they would construct a proof of the given statement. 
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video for the students’ sense-making of the existence statement and two corresponding 
arguments. To do so, we focused on the guiding questions: (a) How did the student describe their 
interpretation of the statement?, (b) How did the student initially reason about the Valid/Invalid 
Proofs? (How, if at all, did this change over time?), and (c) How did the student discuss the two 
arguments in comparison to each other? For each student, we discussed our answers to these 
guiding questions until we came to an agreement on how to interpret the students’ sense-making. 
We documented our answers to the questions with relevant quotes and our shared-interpretation 
of the quotes in an analytic memo. After creating each analytic memo, we then compared the 
reasoning to the previous participants’ reasonings. During this comparison, we generated and 
refined a list of the ways in which the participants described the arguments and how, if at all, this 
impacted their view of the arguments as proofs. We offer these results next. 

Results 
The Invalid Proof Shows How to Find the Mathematical Object 

Most of the participants (N=12) indicated that the Invalid Proof showed how to find the 
mathematical object. For instance, PNG-3 explained that it described “the process of finding that 
element [x] for which that [a*x=b] is true”. These students reasoned about the argument in at 
least one of the following ways (we will expand on the first two):   

1. The argument was a proof since it showed the existence of the desired object by 
explaining why such an object fit the desired property, 

2. The argument was a proof since it fit the logical structure of the statement, 
3. The argument was not a proof since it assumed the existence of the desired object, or 
4. The argument was not a proof since it had only solved for the desired object but also 

needed to show the desired property was true. 
Among the students who viewed the first argument as a proof, many thought that the 

algebraic work it provided elaborated on the reasoning behind why the claimed object fit the 
desired property. One student, PPF-13, noted that while both arguments were logical, the Invalid 
Proof provided a “more logical step by step process” for how to find the object. Additionally, 
this elaborated reasoning led many students to observe that the Invalid Proof was more 
appropriate for a novice reader as one student, PPF-16, said, “I could see where somebody at a 
lower math level would appreciate having that”. This suggests that students viewed the Invalid 
Proof as being explanatory for less experienced students since it illustrated the problem-solving 
process for constructing the claimed object. Some of these students also addressed the logical 
implications for constructing the argument in this way. For instance,  

“No, they don't start with the thing that they're trying to prove. They're trying to prove 
that x needs to be an element in G. Right. That's what we're trying to prove, that there 
exists an x in G such that the statement is true” (PPG-11).  

For this student, the primary goal of the proof was showing that the desired object was a group 
element and the property 𝑎 ∗ 𝑥 = 𝑏 was simply the characteristic of that object. Another student, 
PPF-16, explained that “assuming that there exists a real number t that makes the function equal 
to zero” was appropriate because “we know that whatever number we're going to solve t to be is 
always going to make that [𝑓(𝑡)] zero”. To this student, the prover could show that there existed 
a real number t such that 𝑓(𝑡) = 0 by solving the desired equation for t because the value that 
they solved for must be the value that makes 𝑓(𝑡) = 0 true. 

To some other students, the Invalid Proof was a proof since it used the appropriate logical 
structure for showing how to find the mathematical object. PUG-4 explained that she preferred 
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the first argument because it not only made sense to her, but she could also see the statement 
connecting to the argument. She said: 

“I think it makes more sense mathematically. But also in context of the problem that 
we're supposed to show ‘for every a there exists an x…’, you know? So, I like that it gets, 
you know, it starts here, this is the equation that we’re given. This is what we have and 
then here's the x that exists and that's like proof. That's why I like it, because it's kind of 
in the order of the proof...”  

We interpret her comment to mean that she saw the algebraic steps as fitting the logical structure 
of the given statement. Another student, PNG-6, went further in articulating why she viewed the 
Invalid Proof as a proof. When asked how she saw the argument connected to the statement, she 
explained that the prover showed that “no matter what the a is, we're able to figure out an x, that 
will equal b when you do that [operation].” To these students, it was logically correct show how 
to find a desired mathematical object to prove its existence.  
 
The Valid Proof Shows an Instance of the Mathematical Object 

All the students in our study (N=16) identified that the Valid Proof introduced an instance of 
the mathematical object. For instance, when explaining the prover’s logic, NPG-8 said “they're 
just choosing an x, which is essentially what the problem is asking for. It's just saying, just find, 
just find one of them” (NPG-8). We found the students in our study reasoned about the argument 
in at least one of the following ways (we will elaborate on the first two): 

1. The argument was not a proof because it assumed the existence of the object instead of 
deducing its existence, 

2. The argument was a proof with a jump in explanation when the mathematical object is 
introduced, 

3. The argument was not a proof because it only showed that the object met the desired 
property but not how they found the object,  

4. The argument was a proof since it only needed to show the existence of one element that 
met the desired property, or  

5. The argument was a proof even without the line that argued the mathematical object is in 
the desired set. 

While all students saw the Valid Proof as identifying a particular instance of the 
mathematical object, some students did not view it as a proof. Four students explained the error 
of the Valid Proof was that it assumed the conclusion by starting with the desired mathematical 
object. For instance, PUG-4 debated whether or not the Valid Proof is a proof, explaining: 
“because it starts with the 𝑥 - that's a little confusing to be like ‘oh, for every a, an x exists’ but 
that's what they're saying right here, this is the 𝑥 that exists”. For this student, like the other 
three, the prover should not start with the desired object (e.g., 𝑥 = 𝑎!" ∗ 𝑏) because this is what 
needed to be deduced. 

While the rest of the students (N = 11) did view the Valid proof as a proof, a subset of these 
students saw introducing the mathematical object at the start of proof as a jump in explanation 
but one that was logical. For example, 
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“The second [argument], just like tosses that up there. So, they maybe did some side 
work or maybe were just able to see it. But, uh, but they kind of leave a lot of their 
reasoning off the page” (PPG-11).  

We see students’ acknowledgement that the prover omitted relevant reasoning from the reader by 
introducing an object up front as thinking that the proof only convinced rather than also 
explained to the reader how to find the object.  
 
The Arguments are Structured in Different Ways  

Many of the students in our study identified the different logical structures of the arguments 
(N=15). Most of these students described the two arguments as “opposite” from one another,  
explaining how the first deduced the desired mathematical object while the second began with it.  
For instance, when comparing the two arguments PNG-3 stated that “this one [the Invalid Proof] 
shows how they got to that x and this one [the Valid Proof] just like here's the x and you get b 
when you multiply by a”. We found these students as reasoning about the argument in at least 
one of the following ways (we will elaborate on the first two):  

1. Only the Invalid Proof had an effective framework since it was the only one that 
concluded the mathematical object instead of assuming it at the start, 

2. Both arguments functioned as proofs since the Invalid Proof was more explanatory to 
certain readers while Valid Proof only convinced, 

3. Neither of the arguments functioned as proofs since neither had acceptable or complete 
frameworks, or 

4. Only the Valid Proof had an effective framework since it was the only one that concluded 
the desired property held for an instance of the mathematical object. 

Only one of the two frameworks worked to prove the existence of the desired object for some 
students. Students who viewed the Invalid Proof as a proof suggested it had an effective 
framework since it was the only one that concluded the mathematical object instead of assuming 
it at the start. These students tended to be the ones who thought a) the Invalid Proof was a proof 
because it explained how to find the mathematical object and b) the Valid Proof was not a proof 
because it assumed the existence of the object instead of deducing its existence. PNG-3 
explained: 

“Well, we're trying to conclude that there exists an x. Okay yeah, so I don't think proof 
two [the Valid proof] is [a proof], because that is the conclusion, that there exists an x 
such that 𝑎 ∗ 𝑥 = 𝑏. Whereas in this one [the Invalid Proof] we're definitely looking for 
that x, in the first one. Because I think that the conclusion should be that there exists an x 
in G such that 𝑎 ∗ 𝑥 = 𝑏, and our givens are that a is in G and that b is in G, essentially 
and that's it.” 

She later confirmed that to her the Valid Proof assumed the conclusion by introducing the 
element 𝑥 = 𝑎!" ∗ 𝑏 at the beginning of the argument.  

For some students, both frameworks worked to prove the existence of the desired object, 
though in different ways. In particular, they saw a) the Invalid Proof as a proof since it showed 
the existence of the desired object by explaining why such an object fit the desired property and 
b) the Valid Proof as a proof with a jump in explanation when the mathematical object is 
introduced. We interpret this as them seeing one proof as being more explanatory to certain 
readers, while another may only convince since for these students, the first proof provided 
additional information that the second proof left out. In other words, while they saw both 
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arguments as proofs, the students interpreted the arguments as being written for different 
audiences. For instance, PPF-13 explained: 

“So, this one [the Invalid Proof] feels like it's more like explain it like your five and the 
other one [the Valid Proof] is more like assume they already know what it means to go 
from there and that they're both valid, but they're both different ways of doing it.” 

To PPF-13, and the other two students whose thinking fit in this category, both arguments 
accomplished the task of showing the object’s existence, they just did so in different ways. As 
PPG-11 stated: “It's just the construction of it [the two arguments] that's different [...] They [the 
provers] both understand that x needs to be equal to 𝑎!" ∗ 𝑏 whatever a is.”  

Conclusion 
Unlike prior studies that have found that students ignore the structure of proofs or think that 

they do not matter (Selden & Selden, 2003; Weber, 2009, 2010), we found that the students in 
our study attended to, and made sense of, the logical structure of the arguments for the existence 
of a mathematical object. However, how the students saw the structure as working or not 
working to prove the existence claim was sometimes inconsistent with mathematical norms. 

In our view, mathematicians would not see the Invalid Proof as proving the existence of the 
mathematical object since the argument starts with the desired property (e.g.,	𝑎 ∗ 𝑥 = 𝑏) and as 
such, it assumes the existence of the desired object. However, students in our study saw this as 
acceptable for two reasons. First, some of the students viewed the Invalid Proof’s framework as 
fitting the logical structure of the existence statement. For them, the statement required that one 
show how to find the desired object and thus needed to start with the property and end with the 
object itself. Second, other students viewed it as a way to add transparency when showing the 
existence of the desired object by explaining how one would find it. We saw these students as 
valuing the explanatory nature of Invalid Proof while acknowledging it was not the only way to 
prove the existence of the object. These ways of reasoning can explain why students may think 
that a proof that argues the existence of a mathematical object should be structured like the 
Invalid Proof. 

We see mathematicians as viewing the Valid Proof’s framework as introducing the variables, 
introducing an object as a candidate, and then showing that it fits the desired criteria. This 
structure functions to prove the existence of the desired mathematical object in the views of the 
mathematics community. However, the students in our study did not always share this view. In 
particular, some students in our study saw the line that introduced the object (e.g., Choose 𝑥 =
𝑎!" ∗ 𝑏) as assuming the existence of the mathematical object. In other words, the argument did 
not prove the existence of the object since it assumed it from the start. Such a view explains why 
students may not think that proofs of existence claims should be structured in this way.  

We see our study as important steps in supporting students in engaging in proof-activity 
related to existence claims by providing different ways in which students might think about 
proofs of existence claims and their frameworks. We hope that future work will investigate how 
instruction can build on these ways of thinking to support students in constructing, 
comprehending, and validating constructive existence proofs.  
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Discursive Transgressive Actions  

Exhibited in a History of Calculus Course 
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Abstract: Existing studies that explore the use of primary source materials in the teaching and 

learning of mathematics largely document the benefits of such an experience. However, there is 

little research which explores how those benefits are manifested through the study of primary 

source materials. To explore the progression of encountering a barrier, overcoming that barrier, 

and gaining a new understanding or perspective of mathematics via study with primary source 

materials, I use the transgressive actions lens of psychological theorist, Jozef Kozielecki (1986). 

This framing allows for the investigation of barriers which hinder learning and actions 

overcoming those barriers. Although many actions and barriers were discovered through this 

study, I focus specifically on actions of engaging in discursive communities and the barriers 

those actions overcome. 

 

Keywords: Transgressive actions, Discourse, Primary Source Projects 

 

In recent decades, mathematics educators increasingly advocate for the use of history in the 

teaching and learning of mathematics and report many benefits for its place in the mathematics 

curriculum (Furinghetti, 2020; Tzanakis & Thomaidis, 2011). It has been speculated that 

studying mathematics through a historical lens can lead students to perceive mathematics as a 

more humanized discipline (Fried, 2001). Students can also become more cognizant of 

mathematics as a collection of contributions across many cultures, a constantly changing 

discipline which influences our scientific and societal development, and a basis for perpetual 

dialogue with other disciplines instead of viewing mathematics as a polished and pristine 

discipline to be admired from afar (Clark et al., 2019). Can and colleagues found that the study 

of abstract algebra via curriculum materials which incorporate primary source material, author 

commentary, and student tasks, also known as Primary Source Projects (PSPs), can provide 

learning experiences in which students position themselves as professionals in the field of 

mathematics (Can et al., in preparation). These types of outcomes are centered around what 

Jankvist (2009) calls metaperspective issues of mathematics (meta-issues). As opposed to issues 

concerning theories, concepts, and procedures, meta-issues are more focused on how 

mathematics has evolved and the human and cultural influences in its development. 

Although these benefits to studying mathematics history—and importantly, studying 

mathematics via primary sources—are widely discussed in the literature, much less is known 

about how students come to these realizations and what barriers students face which lead them to 

have alternate conceptions about mathematics. I have used Kozielecki’s theory in which he 

conceptualizes transgressive actions to explore the progression of how students of mathematics 

history who encounter barriers overcome those barriers and reach a new understanding or 

perspective. 

Theoretical Framework 
Kozielecki’s (1986) seminal piece, “A Transgressive Model of Man,” offers a unique lens 

which maps a person’s previous state of having/being to a new having/being through the crossing 

of a barrier and thus allows for an exploration of how students overcome obstacles when learning 
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mathematics. The term transgression may carry a negative connotation describing an action 

which violates social norms; however, Kozielecki (1986), described a transgressive action as a 

“purposeful action that leads to an outcome exceeding the boundaries of the individual’s past 

achievements” (p. 89). In this sense, there are two identifiable objects which accompany a 

transgressive action. To transgress, an individual must traverse a boundary that leads to some 

outcome which exceeds their past achievements. Boundaries are characterized by Kozielecki as a 

“demarcation line that marks out the scope and type of positive or negative value scored by a 

person so far” (p. 90). A more appropriate definition related to mathematics learning is offered 

by Semadeni (2015), who describes a boundary as a limit to one’s “own mathematical 

knowledge” or “deep rooted convictions” (p. 27). The outcome which results from having 

crossed such a boundary corresponds to the individual’s new “having or being” (Kozielecki, 

1986, p. 89). This new having or being is operationalized as an outcome that resulted from 

crossing a boundary. Figure 1 displays a model of the transgressive process. 

 

 
Figure 1. A model demonstrating the relationship among boundary, transgressive action, and students’ past 

having/being and new having/being 

Previous theoretical works have described transgressive behaviors of mathematics students 

and barriers to their growth and development in the realms of probability and statistics (Lakoma, 

2015) and geometry and arithmetic (Semadeni, 2015). Findings from students who transgressed 

in abstract algebra courses provide evidence that the theory has merit in exploring mathematical 

learning experiences in which students take actions such as engaging in discourse with different 

individuals and groups of individuals to overcome certain barriers (Can et al., in preparation). 

Unfortunately, a major limitation of their study was that data were not collected with the 

transgressions framework in mind. Therefore, they were limited in their ability to identify, much 

less expand on, barriers and transgressive actions present in the existing data. 

The goal of the current research study was to develop an interview instrument that could be 

used to investigate the highlights from the resulting codes of the project described in Can et al. 

(in preparation). Particularly, the interview protocol was constructed to explore the various ways 

in which students engaged in discourse to overcome barriers they faced. Drawing upon aspects 

of discourse defined by Sfard (2008), I am interested in the role of “overlapping communities of 

discourse” (p. 91). Students participated in discourse through whole class discussion, working in 

small groups, and with partners both in class and outside of class time. I claim that engaging in 

discourse is a transgressive action because students do so purposefully, and all the discursive 

actions referenced here do lead to an outcome which exceeds a barrier. Although some outcomes 

and transgressive action-barrier pairs unrelated to discourse were illuminated as a result of this 

study, my primary aim in this paper is to address the following question: How do students 

overcome barriers via discursive transgressive actions in a history of calculus course? 
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Methods 
In Spring of 2021, four undergraduate students in a History of Calculus course were 

interviewed mid-semester. Students were chosen to represent diverse backgrounds, learning 

experiences, and educational trajectories. The course was delivered as a synchronous hybrid style 

during the COVID-19 pandemic in which students were required to participate via Zoom if they 

were enrolled as a “remote” student or participate in person otherwise (Table 1).1 History of 

Calculus is unique because its audience comprises mathematics students who have already 

received instruction in calculus. The goal of the course is to examine the historical development 

of calculus but not to learn calculus content. Therefore, students primarily engaged in Jankvist’s 

(2009) meta-issues of calculus through the extensive study of primary sources contained within 

PSPs, as well as those as stand-alone primary historical sources. 

Since barriers and transgressive actions were the main focus in the design of the interview 

protocol, few outcomes were revealed in the analysis. From the author’s previous work on a 

related project, it was apparent that transgressive actions and barriers required a more nuanced 

exploration. This can be attributed to the novelty of Kozielecki’s theory in a mathematics 

education context. Any outcomes that were identified will not be included here; however, they 

will be considered in a redesign of the interview protocol to capture all three components for 

future investigation: barriers, transgressive actions, and outcomes.  

 

Table 1. Student demographics 

Name 

Anna 

Sandra 

Brent 

Esther 

Gender 

Female 

Female 

Male 

Female 

Class Setting 

Online (Zoom) 

In-Person 

Online (Zoom) 

Online (Zoom) 

Major 

Actuarial Science 

Applied Mathematics 

Actuarial Science 

Pure Mathematics 

Class Standing 

Junior 

Senior 

Senior 

Junior 

 

At the end of the semester, the four interview transcripts were cleaned and coded using an 

inductive coding method as described by Miles, Huberman, and Saldaña (2014). Once an 

interview was coded, I returned to the codebook to combine redundant codes and delete codes 

that were irrelevant to the present research project. Each cycle of coding ended with this 

reflective cleaning process. By the end of the fourth cycle of coding, and thus analysis of the 

fourth interview, I had categorized codes based on barrier and transgressive action. Within each 

of those categories, some codes were further categorized by similarities. The focus of this article 

is the category, discourse.  

Coding Process 
Coding the data required looking at each interview transcript for evidence that a transgressive 

action had occurred. Kozielecki (1986) stated that transgressive actions overcome barriers, so I 

had to search for instances when a participant mentioned that they could not do something or 

were not able to do something before engaging in some type of transgressive action. They also 

could have stated that there was some limiting aspect they experienced in the learning process. 

For example, Brent wrote the historical text was “referencing something that we know now, and 

 
1 There were two course instructors in Spring 2021 to help facilitate the connection of the remote 

and in-person sections. 
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using a different word for it because of the time differential.” I coded this response as an 

unfamiliar language barrier because the student indicated he had trouble comprehending 

mathematics in a form that he did not consider to be normal. It should be noted that PSPs often 

use an English translation of the source’s original language which most closely resembles the 

spirit of the original text. An antiquated form of English (in the case of, for example, a 17th 

century translation of a Newton text from Latin) is also a source of contention among students 

and was included in the unfamiliar language category.  

Brent revealed being limited by a barrier of unfamiliar language, but he also indicated that he 

overcame the barrier by saying “it was important to have like [instructor name] in this scenario to 

be able to bounce off questions, because otherwise I would just hit a wall, and you feel like, not 

something that I could ever really figure out on my own.” This transgressive action was coded 

expert discourse, meaning the student communicated with someone they perceived as an expert 

in the work they were doing. Brent’s exchange will be further explored in the results. 

Some excerpts of the transcripts were not as transparent as the previous example. There were 

instances in the transcript where either a barrier or transgressive action was identified without 

being accompanied by its counterpart. These were still of interest and could benefit the research 

to identify its existence. Consider Anna who said, “I was kind of disconnected, to the 

mathematicians, initially, because I’m… not a math major… so I didn’t really have a connection 

to historical mathematics as I do now.” Anna clearly transgressed through a barrier of being 

disconnected from mathematicians due to her feeling like an outsider to her mathematical 

community, but she did not specifically state what led to this transgression. It is evident that she 

transgressed over the barrier because there is a clear barrier, previous having/being, and a new 

having/being. In this instance, the three mentioned components are closely related. Anna stated 

that she was disconnected from the mathematician because her major is not pure mathematics. 

The disconnect was her previous having/being and the subsequent connection is the new 

having/being. Her barrier was being disconnected from mathematics because she was not a pure 

mathematics major. It is logical to think that something occurred within the class or while 

interacting with the PSP to initiate this connection, but that is only speculation based on her 

interview. When revising the interview protocol, consideration will be given to constructing 

additional probing questions which enable the participant to explicitly connect barriers and 

transgressive actions.  

Pairing Transgressive Actions with Barriers 
Once all data were coded to separate transgressive action and barrier codes, I mapped each 

barrier to a transgressive action based on the context of that relevant portion of the interview. 

After listing all the barriers, I reviewed each instance where the barrier code was matched to a 

place in the data. I would then search through the proximal data for a matching transgressive 

action. Some of these action-barrier pairs had only one instance while others occurred multiple 

times.  

Results 
The resulting analysis led to some transgressive actions and barriers being grouped together 

based on similar characteristics. Discourse was a prevalent theme throughout the data and was 

partitioned into smaller subsets. Students mentioned that communicating with different people in 

various settings helped shape their understanding of mathematics and historical mathematics.  
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Instructor/Expert Discourse 
The instructor/expert discourse surfaced when students spoke with someone that they 

considered knowledgeable about the field of mathematics or to the specific barrier which limited 

the learning ability.2 Experts included the course instructor/facilitator, other students in the 

course, and other mathematics instructors they knew outside of class. However, it was evident 

students often perceived the instructor/facilitator as an expert in the field of mathematics or 

mathematical history. Anna recalls a time during the semester when she was being limited by her 

background mathematical knowledge (barrier). Although she was in an upper-division writing 

course in the major, she admitted that she had not “seen algebra or geometry since middle 

school” and was having trouble solving a quadratic equation. One of the course instructors 

advised her against dividing by a variable (because of the possibility of dividing by zero) and 

guided her in a more productive direction. Anna was at an impasse because she could not 

proceed without having found two roots of the equation. The instructor’s interjection allowed 

Anna and her group mates to make progress on the task.  

In contrast, Brent sought the instructor’s guidance. Brent admitted that he “left a question 

mark next to [problematic text] and was like, ‘I don’t know.’ My roommates don’t know… just 

ask the professor.” Of course, Brent asking the professor for the correct answer would represent 

a transgressive action, but, like most pedagogically minded professors, the professor did not 

respond with this simple option. She was available to “bounce off questions” as Brent stated 

because he would otherwise “just hit a wall.” Brent’s words represent an intersection of 

instructor/facilitator discourse transgressive action and unfamiliar language barrier. He gave an 

example that he remembered from a historical text, “calling ‘velocities’ ‘evanescent 

increments.’” To Brent, this was something that one could not simply “look at a textbook” or 

“Google and find it.” He later stated, “I definitely need the interaction of someone who knows 

the material [so] that I can ask these questions” referring to questions regarding the unfamiliar 

language. 

Group Discourse 
Working in small groups was a major component of the course implementation. Group 

discourse occurred when students were in breakout rooms on Zoom or in person and when 

students participated in a group chat outside of the class. Groups typically consisted of three to 

five people, and the course instructor occasionally joined each group to listen and help guide 

conversation when necessary. To distinguish between group and expert discourse, only accounts 

of students receiving help from other members of their groups were included in this code. Any 

mention of the instructor intervening in a small group session was coded to instructor/facilitator 

discourse. Students described their group experiences as peers talking about the problems and 

sharing their written work. Anna stated, “we’re really all contributing and really all trying to 

decipher what Fermat was getting at… we were able to grasp what he was doing and work 

through it completely.” She referred to her breakout group and how communicating with her 

group members helped her understand the writings of Fermat and overcome the barrier of 

navigating a new experience. Anna said that working with Fermat was different from other PSPs 

because this project required “getting to an answer” which she valued as “a lot more 

mathematics” as opposed to other PSPs which focused on “going about the proof and working 

through the proof and making ourselves understand what they [the primary source author] were 

doing.” Working with a PSP that demanded more instrumental mathematics (Skemp, 1987) was 

 
2 I will italicize text to signify codes from my analysis. 
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a new experience for her and the rest of the group. By her own admission, the entire group was 

able to transgress this barrier and understand Fermat’s mathematical writing through a 

productive group discourse.  

Esther recalls working in a small group and using that space to help her overcome a barrier of 

following a non-rigorous proof. Esther referred to an encounter when their group was navigating 

Fermat’s instructions to divide by what Kleiner (2001) calls “Fermat’s mysterious e.” (The “e” to 

which Kleiner refers is not Euler’s constant but functioned much like “h” in the much-later 

developed concept of the definition of derivative, for example, in the term (x + h).) She does not 

“understand why the author is doing it this way.” The disconnect from following a proof (or, as 

was the case in historical sources, a “demonstration”) which many modern mathematicians 

would not consider rigorous confines Esther to draw from modern mathematical techniques and 

standards. To make that connection, Esther asks questions in her small group, and “someone will 

either answer, or … that question will then make us talk about another topic relating to the next 

question.” She explained the benefit of collaborating with her group members stating, “it helps 

me to think about the problem in a different way.” In both Anna and Esther’s situation, their 

discourse with group members benefited not only them but also others in the group. Esther 

claimed that in her group member’s attempt to explain Fermat’s adequality concept, the group 

member was able to clarify the concept for himself as well. She said, “I think that clarified it for 

the both of us, because that was something that he was trying to explain.” Here, our perspective 

on discourse allows us to justify the progress made on the Fermat reading as a product of 

communication with the self and another person. Both Esther and her peer overcame a barrier 

through discursive action. 

Whole Class Discourse 
Recall that discourse is more than just speaking. It is participating in communication which 

includes listening, talking, writing, and any other exchange of information that draws people 

together into a discursive community. Those that are drawn together in whole class discourse are 

students, instructors, and even the historical mathematicians in whose writing the class is 

engaged. This discourse is a transgressive action because participating in classroom discourse is 

a purposeful action, and students could make the choice to tune out the instructor and their 

classmates in a whole class setting. Whole class discourse occurred when the class was 

interacting together to make progress on PSP tasks and primary source excerpts. This was not 

simply a lecture delivery from the professor but an exchange of ideas among the professor and 

students in the class (both on Zoom and in-person). Anna stated the course instructor’s expertise 

“in the main session is really helpful to steer the conversation and steer us working through the 

PSP together.” Notice that Anna talked about interacting with the expert instructor. This is an 

instance where there can be more than one transgressive action at play. The class receives expert 

interaction, but the interaction exists to guide the whole class conversation as they make progress 

on the PSP together. Sandra indicated she encountered the barrier of navigating a new 

experience of reading mathematics as words without symbols. To her, the discourse among the 

whole class is “ a bit more interactive than like most math classes, but it’s still similar.” The 

similarity lies in how she is “already used to… learning math which is like the teacher is up 

there… guiding us.” She claims that in the whole class setting, there are “a few people who… , 

want to answer or like to answer, and they can… carry the rest of us. So, it’s less pressure.” 

Notice the affordance of a whole class discourse. Sandra, who disclosed in the interview that she 

had issues with anxiety, feels more comfortable when there is communication among the whole 

class. The way the instructor facilitated discourse among the whole class was handled delicately. 
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Sandra enjoyed the interaction because she could participate in modes of discourse other than 

constant speech. She compared this course to her Spanish course saying, “I really liked that this 

one is interactive but not, like oppressive.” 

Discussion 
Although Kozielecki’s (1986) theory is primarily cognitive in nature, when paired with 

Sfard’s (2008) commognitive theory, the findings suggest that transgressive actions may also be 

sociocultural. The limited research that has been conducted in this area focused primarily on 

transgressive actions in which the transgressor acted alone. However, the purposeful action of 

engaging in discourse with others has theoretical implications of unveiling more sociocultural 

transgressive actions in future projects.  

Additionally, the discourse theme highlighted in this paper provides evidence that learning 

mathematics can be a collaborative process just as situated learning theorists, such as Lave and 

Wenger (1991), have suggested regarding entrance into any community of practice. Students 

often referenced the transgressive action of communicating with an expert or a peer in order to 

understand the material that was presented to them. This is an interesting finding which hints at 

denouncing a more traditional, lecture-style course delivery. Much of the History of Calculus 

course was rooted in the promotion of discussion among peers. Although students may feel 

uncomfortable in this non-traditional sense, it ultimately helped them overcome many barriers 

that one would expect students to face in any mathematics course. I have highlighted that expert 

discourse can help students overcome barriers of unfamiliar language and background 

mathematical knowledge. The expert probably has knowledge which aids them in identifying 

gaps in mathematical knowledge and allows guidance in discovery of the knowledge needed to 

be successful in the mathematical task. Group discourse can help students overcome barriers of 

navigating a new experience and following a non-rigorous proof. The collaborative nature of a 

group discussion could help students form connections with each other in which they build trust. 

That bond may allow group members to feel safe when making mistakes and asking for help 

when they have trouble reasoning about mathematics. Whole class discourse also leads students 

in navigating a new experience. Students converse with knowledgeable individuals who can 

actively guide their thinking. This dynamic guidance may not be present in a textbook or lecture 

notes which is more typical to a mathematics class according to students who were interviewed.  

In essence, students may require a more personal collaborative transgressive action when 

reading mathematical text, especially when that text is from primary historical (mathematical) 

sources. In these cases, it was not just the unfamiliar language, but students stated they did not 

know where to begin or how to think about the text. The text may have been written in English, 

but the writing style and language conventions from several centuries ago proved to be an 

obstacle. It is apparent that group, expert, and whole class discourse seemed to bridge the gap 

and allow students to make meaning of the mathematical text. As Sandra stated, “some of the 

stuff is just… it gets a little confusing, and I don’t know how to… translate it properly. But I’ve 

just been… asking some other people that are in the class… for… a little bit of help.” Sandra is 

aware of the power of discourse. She and her classmates took advantage of its supportive nature 

and were ultimately victorious over barriers they faced. 
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Several mathematics departments have increased their use of active learning to address low 
student success rates. However, it is unclear whether those involved in active learning have a 
consistent conceptualization of it. Like other educational terms, the phrase “active learning” is 
in danger of becoming overused and misunderstood, which puts the utility of active learning into 
question. This study examines 116 conceptualizations of active learning across six institutions in 
the process of change to use active learning. Analysis included three different comparisons: by 
stakeholder, by institution, and by the roles of students, teacher, content, and equity. Findings 
show that many participants conceptualize active learning as student engagement and activities 
other than lecture. Only eight participants mentioned issues of equity. Comparison within 
individual institutions shows that departments may hold common understandings of active 
learning. Implications of these findings include a need and rationale for conceptualizations to 
evolve through professional development. 

Keywords: active learning, definitions, departmental change, undergraduate mathematics 

There have been numerous calls for mathematics departments to increase their use of active 
learning (AL) in undergraduate mathematics courses to address low success rates (e.g., 
Conference Board of the Mathematical Sciences, 2016). Decades of evidence point to AL as 
promising in increasing student success in postsecondary education (Freeman et al., 2014; 
Theobald et al., 2020). Although AL has the potential to positively impact student learning, 
instructors may not know what AL means or be familiar with the research about its benefits 
(PCAST, 2012). Decades ago, Bonwell and Eison (1991) recognized the pitfalls in having no 
common definition of AL. At the time, national calls for faculty “to actively involve and engage 
students in the process of learning” were becoming prominent (Bonwell & Eison, 1991, p.iii). 
Yet, such terms were not consistently interpreted by faculty in ways that higher education 
researchers intended. In one study, faculty were asked how they determine if students are 
involved in learning; responses made it clear that faculty considered “involved” to be 
synonymous with “paying attention” or “being alert” in lectures rather than engagement with 
material (Stark et al.,1988, p. 95). Whereas AL is now a widely used phrase in higher education, 
the lack of a universally accepted, nuanced definition allows for a wide interpretation of what AL 
is. Therefore, one might expect that mathematics departments aiming to incorporate AL in their 
courses may choose a variety of instructional methods and pedagogical approaches, with varying 
effect. With over three decades of use as a phrase in education, “active learning” sometimes is 
treated as a buzzword. As a result, people may hold multiple, contradictory definitions of AL. To 

 
1 All authors contributed equally to this work with Williams starting and providing ongoing 
leadership. 
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successfully improve student outcomes, it is critical that departments develop a shared vision for 
what effective instruction looks like and have the support to carry out this vision (Smith et al., 
2021). This study analyzes the conceptualizations of AL of different stakeholders in several 
mathematics departments across the United States. Based on this analysis, we argue there is a 
need for continued professional development focused on AL. 

Literature Review 
One definition of AL is a teaching approach used during class that engages or involves 

students in the learning process through methods that are not lecturing (Prince, 2004). Many 
scholars expand on this definition, emphasizing the importance of students engaging in activities 
which require higher-order thinking (analysis, synthesis, and evaluation), support the 
development of skills, and allow for exploration of attitudes and values (Bonwell & Eison, 1991; 
Freeman et al., 2014). Many of these characteristics are in the working definition that Freeman et 
al. (2014) developed after analyzing definitions provided by over 300 biology faculty: 

Active learning engages students in the process of learning through activities and/or 
discussion in class, as opposed to passively listening to an expert. It emphasizes higher-
order thinking and often involves group work. (pp. 8413-8414) 

Note that this definition includes an emphasis on group work. Although not always included in 
definitions of AL, methods that support collaboration between students (e.g., pausing lectures to 
let students reflect with a partner, small group work on problems) are generally considered a key 
part of AL (e.g., Laursen & Rasmussen, 2019).  

AL is sometimes considered to encompass other approaches such as inquiry-based learning, 
problem-based learning, cooperative-based learning, and collaborative based learning (Laursen 
& Rasmussen, 2019; Prince, 2004). For example, Laursen and Rasmussen (2019) consider 
inquiry instruction to be a branch of AL that distinguishes itself by emphasizing student learning 
through a sequence of coherent, challenging tasks that allow students to create and reinvent 
mathematics. Laursen and Rasmussen distilled inquiry instruction into a set of four pillars: (1) 
students engage deeply with coherent and meaningful mathematical tasks, (2) students 
collaboratively process mathematical ideas, (3) instructors inquire into student thinking, (4) 
instructors foster equity in their design and facilitation choices. 

Although focused on inquiry, we consider these pillars to be a useful working definition for 
AL. Unlike many descriptions of AL, these pillars bring attention to the significance of 
instructors’ roles in shaping learning opportunities within the classroom. Furthermore, the fourth 
pillar calls attention to the importance of attending to issues of equity in the classroom, a 
characteristic that is notably absent in many scholarly definitions of AL. This inclusion is 
appropriate given recent research that calls into question whether all AL strategies equitably 
promote positive outcomes for students (Brown, 2018; Johnson et al., 2020). For example, 
Johnson et al. (2020) found significant differences in how men and women performed in classes 
following an inquiry-oriented curriculum. Their analysis suggests that men received more 
benefits (measured by learning gains) from the curriculum compared to women. Such research 
points to the importance of an explicit focus on equity in AL.  

Despite clear evidence that AL strategies can improve student outcomes (e.g., Theobald et 
al., 2020), there is a lag in widespread adoption of AL in undergraduate education (e.g., Lane et 
al., 2020; Stains et al., 2018). It is exceedingly complex and time-intensive to help instructors 
learn how to implement new teaching techniques. To be sustainable, such efforts must be 
systemic and accompanied by cultural change at the department and institution level (Smith et 
al., 2021; White et al., 2020). Instructors must believe that improving their teaching (and 
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associated student learning) is valued at the institutional and departmental levels (through 
internal grants, annual review, and promotion/tenure guidelines); otherwise, the substantive 
efforts involved are not worth instructors’ time (Smith et al., 2021). Resources such as the 
MAA’s Instructional Practices Guide (2018) and the EQUIP observation protocol (Reinholz & 
Shah, 2018) provide useful tools for departments and instructors seeking to adopt AL and 
improve equitable outcomes for mathematics students. At the core of improvement efforts, 
however, there must be a common vision of improved or effective mathematics teaching and 
learning (Elrod & Kezar, 2016).  

Purpose and Research Questions 
This research is a part of a larger mixed-methods study investigating institutions seeking to 

infuse AL into their precalculus and calculus courses. In this proposal, we examine how relevant 
stakeholders in these institutions conceptualize AL. To address this purpose, we consider three 
research questions: RQ1: How do conceptualizations of AL involve roles of the student, teacher, 
content, and equity? RQ2: How do conceptualizations of AL compare among different types of 
stakeholders across several institutions? RQ3: How do conceptualizations of AL compare 
among different stakeholders within one institution? 

Methods 
The SEMINAL project takes a multi-case study approach to understand what conditions, 

strategies, interventions, and actions at the departmental and classroom levels contribute to the 
institutionalization of AL in the undergraduate calculus sequence across varied institutions. The 
SEMINAL Project collected data from nine incentivized case study sites: mathematics 
departments provided with resources to institutionalize AL in their precalculus and calculus 
courses. Data from six of those sites comprise the foundation for this paper. All six medium-
sized institutions have graduate programs in mathematics; five are minority-serving institutions 
and the sixth is approaching that classification. The SEMINAL research team conducted 2-3 day 
site visits at each of these sites during 2018-2019 and 2019-2020 which included 20-30 
interviews of a wide range of stakeholders, including students, faculty, and administrators. For 
full details on SEMINAL methodology, see (Smith et al., 2021). Participants were typically 
asked to define, describe, or characterize AL. On occasion, depending upon the participant’s role 
in the change process, they were asked what makes a good AL task, whether the department had 
a shared vision for AL, or about their level of commitment and experience with AL. Responses 
to this part of the interview were extracted and analyzed for this study. For validity purposes, our 
research team randomly selected a small subset of the interviews based on their variance in roles 
and institutions. We individually analyzed these interview excerpts using an initial codebook 
informed by our review of literature on AL and our field notes from the interviews. We then met 
to reconcile codes and revise our codebook, which was used to code the rest of the interview 
excerpts (see Table 1 for a list of our codes). There were a total of 116 excerpts from participants 
across six institutions and six stakeholder roles. 

To analyze interview excerpts by stakeholder role, we first examined the frequency counts of 
particular codes and code combinations (e.g., student + not active learning) and looked for initial 
patterns. The prevalence or rarity of certain codes led to a further analysis of the first four codes 
in Table 1: student, content, teacher, and equity. We completed rounds of in vivo and open 
qualitative coding (Saldaña, 2016) for each of the four codes and sorted excerpts into data-driven 
themes. Later, we constructed pivot tables to examine the frequency of each code combination 
(16 possibilities) for each stakeholder role and to compare across roles. Finally, we re-introduced 
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the code not active learning to our analysis since it was a commonly coded descriptor across all 
stakeholder roles. To analyze interview excerpts by institution, pairs of researchers analyzed the 
data by each institution, using an open-coding process to identify patterns in how stakeholders at 
each institution discussed AL. Throughout this process, we met as a large group to discuss our 
findings across institutions and stakeholder roles.  

Table 1. Codebook 
Stakeholder attended to 
in their definition Description 
Student Describes what students are doing or expected to do 
Content Describes what math is being worked on for AL 
Teacher Describes what the teachers are doing or expected to do 
Equity Mentions anything about equity, equal opportunities for students, etc. 
Not active learning Defines AL by what it's not, such as “not lecture” 
Specific strategies Gives an example(s) of specific strategies for implementing AL 

Citing a definition 
References an "established" or "scholarly" definition or theory; e.g. 
the four-pillars, discovery-based learning, inquiry-based learning 

Problematic Researcher interpretation; problematic way of describing AL 

Findings 
We had hypothesized that we would find differences in definitions of AL based on 

stakeholder role; for example, we expected instructors might have more nuanced definitions than 
administrators. However, while we found many differences in definitions, none of those 
differences were captured when separating the responses by stakeholder role. Thus, our 
conclusion for RQ2 is the variations in conceptualizations of AL are not explained by the 
differing roles of the stakeholders we interviewed. For the remainder of this section, we present 
our findings for RQ1and RQ3 separately and in this order.  

RQ1: Comparing Definitions to Students, Teacher, Content, and Equity 
The most common code used for all stakeholders was students (100 of the 116 excerpts); 

stakeholders were most likely to describe what the students were doing in their definition of AL. 
Further analysis of the student code revealed that each type of stakeholder was describing what 
students are doing for AL in similar ways, but ranged from being specific to very vague. 
Common expressions used were “engaged,” “think and do something,” “working with each 
other,” and “teaching the problem to someone else.”  One instructor said that students needed “to 
futz around with the distance between separating the intervals and see if they can arrive at a 
visual intuition at what a derivative is” to give a specific example of what they meant by students 
building knowledge. In contrast, only eight excerpts were coded as addressing equity; typical 
responses referenced strategies that were good for “all” students. 

The second most common code across all stakeholders was not active learning. Many of the 
descriptions involved definitively stating that AL is not lecturing: “It’s the kids doing the math, 
not me;” “Math is something you do and not watch;” “definitely a more interactive experience, 
not lecturing;” and “Students have to do more than just sit and listen to a lecture. They have to do 
mathematics in order to learn it.”  
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Analysis of the teacher (57 excerpts) code revealed three themes that present opportunities 
for instructional improvement with AL. First, many of the participants’ descriptions of AL 
implied some role of the teacher but did not make explicit the teachers’ actions during 
instruction. One participant said AL meant “engaging back and forth with the students” while 
another said AL meant “having an engaging environment for students.” In both of these teacher 
roles, it is not clear what exactly the teacher is doing to engage students. Second, many 
participants mentioned “facilitating group work;” however, few mentioned specific facilitation 
moves, such as asking questions or eliciting student thinking. The difference in the grain size of 
these responses makes it difficult to know what teacher moves the participants consider to be 
part of facilitation of AL. Finally, many descriptions of the teacher’s actions were reliant upon 
student actions (e.g., “students have to struggle through the problems by themselves”), as 
opposed to describing how “the teacher provides opportunities for students to reflect” and 
engage during class.  

Of the 31 excerpts that addressed mathematical content, 22 of these were from participants in 
the instructor role. While content was not commonly included in descriptions of AL, those 
participants who addressed content mentioned key components of the first pillar of inquiry-
instruction (Laursen & Rasmussen, 2019); for instance, participant’s definitions included “not 
just memorizing," “multiple ways to solve," appropriate ability levels, low floor-high ceiling 
tasks, “tactile” hands-on activities, drawing on relevant topics, and relating to prior knowledge. 
Thus, all together, the participants who addressed content created a robust understanding of 
appropriate mathematical tasks for AL classrooms. 

RQ3: Institutional Definitions of AL 
Each of these institutions were engaged in change efforts to implement or infuse “active 

learning” in their precalculus and calculus courses. From prior research, we know that successful 
change efforts  have a shared vision and aim for the initiative. Therefore, we wanted to examine 
the extent to which each institution had a locally shared definition of AL. While not all 
individuals at the same sites shared the same definition, we did identify common themes in how 
they were defining AL. Examining responses across each institution, there were distinct ways in 
which the individuals were conceptualizing AL in their local contexts that further illustrate the 
codes for students and strategies (summarized in Table 2).  

At institution 1, the shared definition of AL was primarily focused on students not listening 
to lecture. The most prevalent strategy to accomplish this broad definition was the use of 
metacognitive strategies to have students reflect on their own learning process. At institution 2, 
AL was defined as having students engaged in the learning process or having the teaching and 
learning being student-centered. This institution was also the one with the most references to 
equity in their definition of AL. Strategies used to foster this definition were the use of 
technology such as polling systems, videos, and flipped classrooms. Institution 3 is rather unique 
since they have multiple campus locations that are geographically separated. Many of the 
stakeholders from institution 3 discussed how their definition of AL may be different from the 
other campus location. The definitions at this institution were too varied to identify an emerging 
theme for students, but many stakeholders discussed the use of group work as a strategy for AL. 

At institution 4, stakeholders emphasized the importance of students discovering new 
knowledge and being involved in the learning process. The strategies discussed to facilitate 
discovery-based learning included tactile activities (e.g., derivative domino train) and board-
work. As one instructor stated, AL, “allows students to kind of generate the knowledge that 
you're trying to teach them on their own.” At institution 5, stakeholders viewed AL from a 
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largely cognitive perspective in which students must do their own “thinking." As the director of 
the student success center stated, AL features “engagement that the mind is active while learning 
is occurring.” Institution 5 had the most varied responses in terms of strategies referenced across 
stakeholders and within each individual stakeholder’s definition. Some of the strategies cited 
included flipped classrooms, think-pair-share, low-entry point but challenging tasks, and board 
work. At institution 6, AL largely focused on students communicating and engaging with 
mathematics. This was accomplished through group work, worksheets and reading the textbook. 

Table 2. Local Conceptions of Students’ Role in Active Learning and Strategies to Support Active Learning,  
Summarized by Institution 

Site Prevalent definition of students’ 
role in active learning 

Prevalent instructional strategies for active 
learning 

1 Not listening to lecture Metacognitive reflection activities to help 
students learn how to learn 

2 Engaged in the learning process Using technology 

3 N/A (too varied) Group Work 

4 Discovering and communicating 
new knowledge 

Tactile activities/hands-on learning, color-coded 
response cards, group work, and board work 

5 Participatory cognitive thinking  Group work, flipped classrooms, think-pair-
share, low-entry point but challenging tasks, 
board work, and classroom discussions.  

6 Communicating and engaging with 
course topics 

Group Work; worksheets; reading the textbook 

Discussion 
There was a wide variation in conceptions of AL, yet most stakeholders emphasized student 

engagement and not active learning, which suggests that stakeholders recognize AL requires 
giving students a role in the classroom which is, in many ways, nontraditional. Furthermore, the 
emphasis on students engaging with one another suggests that the second of Laursen and 
Rasmussen’s (2019) pillars: students collaboratively process mathematical ideas is a common 
component of stakeholders’ conceptions of AL. While content was less frequently coded, those 
who used it showed a sophisticated understanding that parallels pillar one: students engage 
deeply with coherent and meaningful mathematical tasks. At the same time, stakeholders 
sometimes neglected to consider the role of the teacher in their definition of AL. Teachers play a 
pivotal role in designing and facilitating good AL tasks and setting up norms that support an 
inclusive space. Moreover, our research suggests that equity is rarely made explicit in definitions 
of AL (it was the least used code of students, teacher, content, and equity), despite common 
assumptions that AL is more equitable. Together, our analysis demonstrates that the third and 
fourth pillars: instructors inquire into student thinking and instructors foster equity in their 
design and facilitation choices are often not explicit in definitions of AL.  
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Although we did not notice significant differences in how different stakeholders 
conceptualize AL, there were clear themes in how stakeholders within particular institutions 
conceptualized AL. For example, not active learning was a common code for definitions from 
institution 1. This is not too surprising considering that local change efforts focused on meeting 
instructors where they were at, and the phrase “not lecture” was intentionally used to encourage 
hesitant instructors to take steps toward AL. Similarly, institution 5 has incorporated several 
professional development activities to feature and promote various AL strategies within the 
mathematics department, and they promote AL as a spectrum of strategies. We posit that this 
approach to change led to the variety of strategies that appeared in conceptualizations of AL 
provided by stakeholders within this institution. At institution 6, AL largely focused on students 
communicating and engaging with mathematics through a structured approach to class time that 
featured mini-lectures and small group discussions. These course elements are reflected in the 
definitions of AL provided by participants which emphasized group work, worksheets and 
reading the textbook. 

Limitations, Implications, and Future Work 
This research was conducted within a broader grant-funded research project that narrowed 

the population of interest to mathematics departments with graduate programs. At every site, a 
representative sample of stakeholders were interviewed. However, the focus of this project was 
precalculus and calculus courses, which are broadly applicable across two and four year colleges. 
The interviews were conducted by a number of different research teams across the six sites 
whose data are featured in this study; at times, different interview questions were asked of people 
in particular roles. Thus, the data about AL tasks are drawn only from the subset of stakeholders 
who were asked that question. Despite this variation, interviewees were consistently asked their 
definition of AL. Finally, this study focused on people’s reported definitions, not their observed 
classroom practices. 

Our analysis only focuses on reported definitions; we know departmental norms and 
conversations around teaching influence what instructional practices are used (Author et al., 
2021). We see nuanced understanding of AL strategies as a necessary but not sufficient condition 
for the effective use of AL strategies in mathematics classes. The importance of nuance is 
apparent in the following definition from one instructor in this study, 

So, to be engaged and involved in what you learn, not to be just a member of the 
audience, but to process the information that you get to practice it, and if possible, which 
is not easy in mathematics, to try to push the knowledge by yourself a few steps away 
without the help of the professor, based on what you got from the lecture in class. 

This quotation corroborates findings from Stark et al. (1988) that faculty may not interpret the 
terms engagement and involvement in ways that educational researchers do. A number of 
participants had similar definitions that focused more on the mental experiences of learners 
rather than on the types of in-class tasks that are likely to support such mental experiences. Such 
cases demonstrate the importance of understanding stakeholders’ conceptions of AL as a 
foundation for future work that ties beliefs and practices. 

Finally, our findings indicate that departments who regularly discuss AL develop common 
understandings of what AL entails. This suggests that departments seeking to improve their 
instruction via AL should provide ongoing professional development and conversations about 
AL. Such professional development should build on a common understanding of AL as student 
engagement to include other aspects of AL, such as explicit guidance on the instructor’s role, 
development of good tasks, and how to build equity while using AL methods. 
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One Preservice Teacher’s Refined Understanding of Compactness in Support of Her 

Technological Innovations Used in Planning a Lesson on Gerrymandering 

 

Nick Witt  

Western Michigan University 

This report describes how one preservice elementary mathematics teacher refined her 

understanding of compactness of polygons over a two-week intervention unit dedicated to 

introducing preservice (PSTs) to the idea of teaching mathematics to support the development of 

a sociopolitical disposition (Bartell et al., 2017). The study took place in a university course 

designed to help PSTs learn mathematics content and pedagogy as well as how to use 

mathematical action technology (Dick & Hollebrands, 2011) in their classrooms. Utilizing 

Brown’s (2009) Pedagogical Design Capacity Framework, I determined instances of adaptation 

which I refer to as “technological repurposing” in this context. The results highlight the 

progression of one PST’s understanding of compactness and how this contributed to making an 

innovative technological adaptation to a set of lesson resources developed to help middle school 

students make sense of Gerrymandering.     

Keywords: technology, conceptual understanding, preservice teachers 

Teaching mathematics with technology and teaching mathematics to develop a sociopolitical 

disposition are complex practices that mathematics teachers can engage in to better support 

student learning. In order to better support teachers in engaging in these practices, it’s important 

to understand more about what enables teachers to adapt their curriculum resources to meet these 

goals. Few studies have examined how teachers utilize external (e.g., curriculum) and cognitive 

(e.g., content knowledge) resources in making curricular decisions to support the multifaceted 

goals of teaching with mathematical action technology (MAT) (Dick & Hollebrands, 2011), 

teaching mathematics to develop a sociopolitical disposition (Bartell et al., 2017) and teaching 

for conceptual understanding (Simon, 2018). In the pages that follow, I highlight one prospective 

elementary mathematics teacher’s refinement of her understanding of compactness of polygons 

(as measured by the Polsby Popper Index) and how this enabled her curricular decision to make 

an innovative technological adaptation to a lesson activity related to how compactness can be 

utilized to understand Gerrymandering. 

The Course 

The course where the intervention unit took place can best be described as part mathematics 

content, part methods, and part technology. In years past, the course was developed with the goal 

of developing Preservice Mathematics Teachers’ (PSTs) technological pedagogical content 

knowledge (TPACK) (Koehler & Mishra, 2009). The semester in which this study took place 

(Spring 2021) occurred in the midst of the COVID-19 pandemic which means that every meeting 

session was held virtually via a Web conferencing application. As a regular practice in the 

course, we analyzed curriculum and technological applications and collaboratively planned 

lessons that met the dual goals of integrating mathematical action technology (MAT) (Dick & 

Hollebrands, 2011) and teaching for conceptual understanding (Simon, 2018). Though what 

constitutes conceptual understanding is a frequently debated topic (Baroody, 2007; Star, 2007), 

in this course I chose to include Simon’s (2018) What is a mathematical concept? as one of our 

assigned readings. This reading assignment was treated as a starting point for our conversations 
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about writing conceptually oriented goal statements (COGS). It was chosen because of its focus 

on justification and goal-directed planning for instruction.  

For this semester, an additional two-week long unit engaged PSTs in a lesson design 

experience based on the curriculum resource, High School Mathematics Lesson to Explore, 

Understand, and Respond to Social Injustice (Berry III et al., 2020). In this unit PSTs were 

assigned the task of adapting the curriculum so that it integrated MAT. The section that PSTs 

adapted was related to understanding the social injustices surrounding Gerrymandering. Despite 

the relevance to national political conversations, I also found that the visual nature of this content 

to be particularly conducive to integrating a more dynamic version of the lesson with help of 

Desmos Activity Builder components. 

Desmos Activity Builder (DAB) is a free online software that allows lesson designers to 

integrate Desmos’s graphing calculator software with other “components” to create a module of 

slides for students to work through independently or for an instructor to facilitate with in a 

classroom. The “components” that we utilized the most in the course were text boxes, dynamic 

geometry environments, graphing calculators, and text input boxes where students can submit 

responses to prompts. DAB played a major role in both the facilitation of the learning experience 

for the PSTs and the Lesson Revision Assignment. During the facilitation of the lesson, I built a 

DAB lesson experience1 adapted from the written materials from Berry III et al. (2020) and PSTs 

were instructed to revise these DAB slides for their Lesson Revision Assignment. 

 Theoretical Perspectives 

As part of my analysis, I adapted Brown’s (2009) pedagogical design capacity framework 

(PDC) to gain insights into PSTs decision making when designing a lesson that integrates both 

MAT (Dick & Hollebrands, 2011) and a critical mathematics context (Rubel & McCloskey, 

2021). Both MAT and critical mathematics contexts played a secondary role in this analysis, but 

were relevant to my planning the intervention sequence. In particular, Dick & Hollebrands’s, “A 

Guide for Choosing and Using Interactive Technology Scenarios,” (2011, pp. xvi-xvii) was 

discussed and utilized frequently throughout the course and Rubel and McCloskey’s (2021) 

framing of the contextualization of mathematics helped me to better understand the PSTs beliefs 

around the role of contexts in mathematics tasks.  

Framing the analysis around the PDC framework allowed for PSTs level of agency in 

relation to the curriculum to be made more transparent. Conceptualizing this level of agency 

through the constructs of offloading, adapting, and improvising allowed for a glimpse at PSTs 

knowledge, values, beliefs, and goals related to designing tasks that support conceptual 

understanding, integration of technology, and incorporating critical mathematics contexts. Brown 

(2009) describes offloading as utilizing the curriculum as it is written and improvising as when 

teacher’s personal resources are playing a more dominant role in the design of curriculum. These 

constructs did appear in the data gathered, but in this paper I focus on adapted content since it 

allowed for a more transparent look into PSTs decision making. Given that the curricular 

materials came in a digital format, I described certain acts of adaptation as acts of technological 

repurposing due to the way that much of the original technological components remained intact. 

In common usage, repurposing refers to attempting to use (perhaps with slight modification) 

objects in a way that differs from its original intent. For example, a person may utilize an object 

that is difficult to create on their own (for example a vehicle tire) for a purpose that it was not 

intended for (swinging from a tree). Since the digital curricular materials involved technology 

 
1 Link to the activity will be made available in unblinded paper 
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that the PSTs had varying levels of experience with, it may be the case that that this “difficulty to 

create” factor contributed to keeping much of the original content intact, but utilized to meet a 

new goal. 

Methods 

I define the instructional unit of focus as the sequence of classes in which PSTs engaged in 

the learning the lesson materials as students (Session 1) then brainstormed ideas for how they 

would implement the same or similar content with middle school students (Session 2). This 

instructional unit also includes the work of reflecting on the lesson content (Post-Session 1 

Reflection Assignment), and creating a revised set of DAB slides to submit for their assignment 

(Post-Session 2 Assignments). These sessions served as the contexts where the data sources for 

this study came from. The analysis of classroom video data, discussion transcriptions, and the 

PSTs documentational work submitted to me after Sessions was conducted in support of the 

research question: 

What resources do PSTs draw from as they adapt curricular resources that integrate a 

critical mathematics context to meet the dual goals of teaching mathematics for 

conceptual understanding and for developing an understanding of matters of social 

injustice? 

As the instructor of record for the course, I obtained IRB approval to analyze my students’ 

submitted assignments and video recorded class meeting sessions. After my students were 

assigned grades for all of their work in this sequence of activities, I emailed a request to each 

student to obtain their consent to analyze their submitted assignments and the video recorded 

interactions that took place during our regularly scheduled class meeting time. Of the 15 PSTs 

enrolled in the course, eight of them agreed to participate in the study. Once granted permission, 

I compared my original implemented DAB slides with the revised DAB slides submitted by each 

participant. I noted how many slides were in their set, what order their slides were in, and to 

what degree they made any changes to an “original slide” (i.e., a slide that I provided to them). I 

found that most participants kept many of the original slides as is. When this occurred, I coded 

this as an act of offloading (Brown, 2009). Some participants added new slides to supplement the 

original content. In this case, I coded this as an act of improvisation (Brown, 2009). Some 

participants kept much of the content on an individual slide intact, but either edited the 

information, question prompts, or the MAT on the slide to highlight a new idea. These were 

coded as acts of adaptation (Brown, 2009). Once the PDC coding concluded, I defined a subset 

of adapted slides as “repurposed slides” where the technological capabilities along with the 

questions prompts and informative content were kept mostly intact with some modifications 

which were made to support a new goal. In the results to follow, I focus on how one student’s 

engagement in class discussions and submitted reflection assignment helped to better understand 

what enabled her to engage in an innovative approach to repurposing a technological resource. 

Results 

Of the eight participants, technological repurposing was observed in the three participants’ 

revised DAB slides. Here I focus on one student’s development of a refined understanding of 

compactness and how this affected her adaptation of the curricular resources.    
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Summary of Megan’s Technological Repurposing 

Megan (pseudonym) adapted a DAB slide where the original goal was to have students 

explore how changing the boundaries of a polygon affects the value of the Polsby Popper Index2. 

In the original slide (see Figure 1) that I implemented with my students, I wanted them to 

discover how the polygon’s “P-index” increases as it becomes more regular. I did define “P-

index” later in Session 1, but did not provide the formula until after Session 1. In Megan’s 

repurposed slide (see Figure 2), she animated the point “p3” (green, top middle) to constantly 

vary over a given set of y-coordinates while fixing the coordinates of every other vertex. In 

doing so the animation displays a lower “P-index” when the shape becomes concave. In Megan’s 

rationale for her adaptations, she states that her goal for her students would be to “…look at the 

difference in the [Polsby Popper Index] while considering how the area and perimeter 

changes...”  

 

 
Figure 1. Original Slide Megan repurposed 

 

 
Figure 2. Megan’s Technological Repurposing 

 

 
2 The Polsby Popper index is commonly used as a measure of compactness of a shape which has been used to 

identify instances of Gerrymandering in legislative districts and is given by the formula PP(D) = 4π ⋅
Area(D)

(Perimeter(D))
2 

where D is the given shape. In this activity, we focused on polygons and I introduced it as “p-index” to avoid 

students searching the web for more information prior to their exploration.   
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In Session 2 of the intervention, I concluded the class with an instructor-led demonstration 

with the slide shown in Figure 1 to highlight how the Polsby Popper Index is determined solely 

by the area of a shape when the perimeter is held constant. This proved to be a notable part of the 

intervention for Megan’s refinement of understanding since her technological repurposing was 

done to highlight this idea in a very similar way to how I demonstrated to the class. I take this to 

be evidence that Megan found this to be a valuable demonstration to her own understanding and 

that it could be valuable to middle school students as well. It is not clear how familiar Megan 

was with the idea of compactness prior to the start of this intervention unit, but in her post-lesson 

reflection assignment she states how she, “was unfamiliar with the pp index.” [Megan’s Post 

Session 1 Homework Reflection] 

Below I describe the progression of Megan’s understanding of compactness and how this 

contributed to her technological repurposing. In Session 1, Megan engaged in the content as a 

learner and claimed that she experienced computer problems during some of the lesson, but was 

still able to formulate some initial ideas about the characteristics of compact and not compact 

polygons. After Session 1, the class was assigned a news article3 to read about Gerrymandering 

where they were asked to reflect on how what they read about Gerrymandering connected to 

their exploration in class. In Session 2, Megan and her classmates were assigned to small groups 

to discuss what they liked and disliked about the activity they engaged in and then as a whole 

group they shared out some of the small group discussion main points. At the end of this session, 

a student had a question about the connection between the area, perimeter and Polsby-Popper 

Index that I addressed with a demonstration. Megan and her classmates then had one week after 

this session to ask other questions about the assignment or content and submit a revised version 

of the activity that they felt could be implemented with middle school students.  

Megan’s Refinement of Her Understanding of Compactness 

Session 1. During Megan’s first interactions with the slides geared towards understanding the 

compactness of polygons, she observed that compactness had to do with how, “the angles and 

sides relate to each other like how close they are” [Session 1, In-class Activity, Slide 9]. Here I 

have inferred that she meant “all of the angle measures were close to being equal” and all of the 

side lengths were close to being equal.” This is supported in responses recorded on future slides. 

In particular, on the slide where she worked with quadrilaterals, she accurately observed that any 

square results in the same highest Polsby Popper value possible regardless of its area. She also 

states for the pentagon, that the highest Polsby-Popper (referred to as P-Index in class), results 

when a shape “looks fairly even like they have the same or similar side lengths and angles” 

[Session 1, In-class Activity, Slide 4]. It seems reasonable to me that she was able to generalize 

her engagement with the quadrilaterals to her responses given above related to the shape needing 

to be close to regular. 

Although Megan appears to be making the connection between regular polygons and the 

value of the Polsby-Popper Index, when asked about the characteristics of polygons that have a 

low Polsby Popper value during Session 1, she consistently attends to observations about the 

shape containing obtuse angles. She states, “obtuse angles made a smaller p index.” I take this to 

mean that within this context, she realized that all of the shapes that yield low Polsby Popper 

values contain obtuse angles, but she does not state how they also have at least one acute angle 

and that it is when there are large differences in the angles that the Polsby Popper values tend to 

be lower.  

 
3 https://truthout.org/articles/35-states-at-risk-of-rigged-districts-due-to-gerrymandering-report-finds/ 
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Post Session 1. After Session 1 when prompted on her reflection assignment to respond to 

the following, “Using [the Polsby-Popper formula] and what you know what Gerrymandering, 

please explain why a Gerrymandered district might give a smaller [Polsby-Popper value]”. She 

responded, 

“Gerrymandered districts are not as compact. When they manipulate districts, the area is 

smaller in comparison to the perimeter. Since the area is smaller while still having a 

larger perimeter, it has a smaller pp index.” [Post Session 1, Homework Reflection] 

I took this response to be evidence that she was beginning to refine what she knows about 

compactness to make it more mathematically formal. 

Session 2. In Session 2, PSTs had the opportunity to collaboratively think about how they 

might implement a similar lesson (with middle school students) to the one they experienced in 

Session 1. In the passages below, we see how Megan seemed to maintain her previous 

understanding of compactness and its role in Gerrymandering. She appears to be trying to think 

about how she can make the connection clearer to students. In her small group planning 

conversation she states,  

“I had a little bit of an issue going from the p-index to the Gerrymandering part of it, so 

I'm trying to figure out how to make that transition a little bit more smooth to where like 

the connections can be made easier.” [Session 2, Small Group Planning Discussion] 

Also, in this discussion, when asked by a classmate if Gerrymandered districts have a high or 

low Polsby Popper Index she states,  

“I think it's low because the way that they are manipulated, in like weird shapes and get 

stretched so then their perimeter’s larger than the area that they make up. But I think that 

influences the P index from my understanding.” [Session 2, Small Group Planning 

Discussion] 

Minutes later when explaining to the whole class, she states, 

 “Since the perimeter was manipulated to be a little bit larger in comparison to the area, 

the p value was really low…when we go from the p-index to the Gerrymandering, it'd be 

important to talk about why the lower [Polsby Popper Value] matters, because the 

districts that are a little bit manipulated more for gerrymandering will have a lower p-

index.” [Session 2, Whole Group Discussion] 

At this point in the intervention, it appears that she knows there is a relationship between the area 

and perimeter and that the perimeter being “stretched” decreases the Polsby Popper Index, but as 

we will see below she later refines this to explicitly point out how that when the perimeter is 

fixed while the area is decreased, this results in a less compact shape. 

Post Session 2. In her submitted lesson activity, she states her Conceptually Oriented Goal 

Statement as,  

“Students will be able to use their prior knowledge of area, perimeter, ratios, and 

proportions to understand the Polsby-popper index. They will manipulate shapes using 

Desmos grids and observe the changes in the P-index. Students will be asked to create 

shapes with similar perimeters but different areas, and make observations. Based on the 

observations students can conclude that if the area is smaller given the same perimeter, 

then so will the P-index. [Post-Session 2, Submitted Revised Activity] 

In her submitted revised activity, she provides a slide (figure 2) that animates a point of a 

pentagon (similar to how I demonstrated in class) that fluctuates to make the pentagon change 

from convex to concave and asks students to consider the area and perimeter as the Polsby 
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Popper Index goes from a larger to a smaller value. She also adds in a note to me on a slide that 

states,  

“[I don’t know] how to do it but I kind of feel like I want to help [students] create the 

connection of area and perimeter sooner because [I] didn't make the connection. Is it 

possible to show the area and perimeter as they change the shape???” [Post-Session 2, 

Submitted Revised Activity].  

On the another slide she asks, “What influences or determines how compact something is?” and 

then her rationale in her submitted assignment states and asks,  

“…I added the pentagon with the slider because I wanted students to narrow down their 

thinking and observations. I didn't feel like I made the connections between the area and 

perimeter and compactness and pp index very well. I thought by adding this and asking 

students to look at the difference in the pp index while considering how their area and 

perimeter changes, they might grasp that better…Is it possible to show the area and 

perimeter as they change the shape? I think this could help if we showed it on some of the 

last slides.” [Post Session 2, Submitted Revised Activity] 

Discussion 

 In the results above, we can see how Megan began her understanding of compactness by 

attending to the regularity of polygons. Though she does not initially identify regularity of the 

shapes as an important feature, she does attend to the sides and angles being the same or close to 

same. In later utterances, we see Megan accurately describe how the compactness (as measured 

by the Polsby Popper Index) depends on the ratio of the area to the perimeter of the polygons. 

Near the end of the intervention lesson, we see how she articulates that when the perimeter is 

held constant and the area is smaller, this leads to a smaller Polsby-Popper Index.  

The overall results of my analysis including Megan’s peers brought out multiple approaches 

to thinking about the what the “P-index” was measuring. Some PSTs described connections to 

area, some described connections to angles, some described the ratio of area to perimeter, some 

described it as “close to circle,” and some described it as “close to regular.” These results may 

suggest the task students engaged in was conducive to eliciting multiple ways of thinking about a 

relatively novel concept. Compactness of polygons is typically not taught in K-12 schools and it 

would appear that this idea was new to Megan at the start of the intervention.   

In this paper, I focused on Megan’s adaptation (Brown, 2009) (or technological repurposing, 

in this case) because it served as an instructive example of how one student refined her 

understanding of compactness to aide her pedagogical decision with technology. This highlights 

the complexity knowledge resources involved in teaching with technology and teaching about 

critical mathematics contexts (Rubel & McCloskey, 2021) in mathematics classes. Megan had to 

use her prior technological knowledge, and her refined mathematical knowledge in order to make 

the animation that highlighted an important feature relevant for students to make a key insight 

about the content. This was an example of how her technological innovation was supported by 

her refined content knowledge which helped to provide what she believed to be a good 

pedagogical decision. In other words, Megan displayed her technological pedagogical content 

knowledge (TPACK) (Koehler & Mishra, 2009) in repurposing the provided curricular materials.    
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This paper describes a model of student thinking around equivalence (conceptualized as any type 

of equivalence relation), presenting vignettes from student conceptions from various college 

courses ranging from developmental to linear algebra, and courses in between (e.g., calculus). 

In this model, we conceptualize student definitions along a continuous plane with two-

dimensions: the extent to which definitions are extracted vs. stipulated; and the extent to which 

conceptions of equivalence are operational or structural. We present examples to illustrate how 

this model may help us to recognize ill-defined or limited thinking on the part of students even 

when they appear to be able to provide “standard” definitions of equivalence, as well as to 

highlight cases in which students are providing mathematically valid, if non-standard, 

definitions of equivalence. We hope that this framework will serve as a useful tool for analyzing 

student work, as well as exploring instructional and curricular handling of equivalence.  

Keywords: Equivalence, Equation, Solution Set, Operational Thinking, Structural Thinking, 

Definitions 

Equivalence is central to mathematics at all levels, and across all domains. In mathematics 

education, much research has focused on studying how students think about the equals sign in 

primary school (Knuth et al., 2006) through post-secondary (Fyfe et al., 2020), because students’ 

conceptions of the equals sign have been shown to be related to their ability to perform 

arithmetic and algebraic calculations. However, equality is just one example of the larger 

concept of equivalence—other types of equivalence occur extensively throughout the K-16 

curriculum, but are rarely, if ever, taught under one unifying idea called equivalence (Wladis et 

al., 2020). On the other hand, multiple types of equivalence (e.g., similar/congruent figures, 

function types, expressions or equations with the “same form”) are contained in the Common 

Core Mathematics Standards but are never explicitly labeled as a type of equivalence.  

When equivalence is not explicitly defined, students may extract their own non-standard, ill-

defined, or unstable definitions, or they may inappropriately use the definition of equivalence 

from one area (e.g., expressions) in another area where it cannot be directly applied to obtain the 

“standard” definition expected of them (e.g., equations). In this paper we will illustrate this 

problem by presenting examples of students' definitions around equivalence and a model for 

analyzing student definitions, focusing on college students’ definitions of equivalent equations. 

Student examples will be used as vignettes to illustrate the model. Our aim in presenting this 

model is to start a conversation about student definitions of equivalence and to present an initial 

framework that can then be further tested, refined, and revised by future empirical work.  

Theoretical Framework 

Formally, we define equivalence through the notion of an equivalence relation. The formal 

definition of an equivalence relation most often given in advanced mathematics classes is that of 
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a binary relation that follows the identity, symmetry and transitive properties. However, another 

equivalent but more accessible definition of an equivalence relation is that of a partition on a set, 

or more informally: If we have a set of objects, and a rule for sorting objects into sets so that 

each goes into one and only one set (and this rule is mathematically well-defined), then this 

“sorting” is an equivalence relation, and two objects are equivalent if they belong to the same set.  

We do not advocate at this time for teaching any particular group of students this generalized 

definition of an equivalence relation; we simply note that if we did want to discuss this more 

generalized definition with students, that the definition of a partition on a set is accessible to 

students at many different developmental levels (in fact, it bears a striking similarity to preschool 

sorting tasks in the mathematics curriculum). Our primary motivation for introducing this 

definition is to define equivalence rigorously—this includes not just definitions of equality, or 

insertionally equivalent equations (i.e., equations that have the same solution set), but also 

anything in the curriculum which meets the definition of an equivalence relation.  

This will also help us to more precisely discuss student definitions. “Experts” often point out 

when students use “incorrect” definitions, but we note that in existing curricula and classroom 

practice the word equivalence is often ill-defined (or never explicitly defined), even though it 

takes on different definitions in different contexts. When students have no explicit definitions of 

equivalence, this presents several potential problems: students may incorrectly apply one 

definition to another context where it fails to produce the standard definition (e.g., definition of 

equivalent expressions to equations); they may have only ill-defined or operational definitions of 

equivalence which inhibit their ability to reason through problems; or they may use valid but 

non-standard definitions of equivalence, in which case they are being penalized for not knowing 

certain socio-mathematical norms even when they are reasoning correctly. We hope that the 

model presented here will allow us to better understand student thinking about equivalence, and 

to better recognize when these three situations (as well as others) might be occurring.  

Model of Equivalence 

Our model of student thinking about equivalence conceptualizes student definitions as 

existing on a two-dimensional plane with two axes: operational vs. structural conceptions of 

equivalence (Sfard, 1991, 1992, 1995), and extracted vs. stipulated definitions of equivalence 

(Edwards & Ward, 2004, 2008). In operational thinking, a student thinks of mathematical entities 

as a process of computation; in structural thinking, they think of them as abstract objects in and 

of themselves which can then been seen as objects for even higher-order processes; objects are 

seen as reified processes (e.g., 6𝑥 is seen as an object itself, and not just as the process of 

multiplying 𝑥 by 6), however when students view something as an object which is not the 

reification of any process, this is called a pseudostructural conception (p.75, Sfard, 1992)1. 

 Extracted definitions are created to describe actual observed usage (e.g., a student may 

extract a meaning for equivalence their instructional experiences, whether or not they have 

encountered an explicit definition). In contrast, stipulated definitions are those definitions that 

are stated explicitly—to determine if something fits the definition one must consult the definition 

directly (Edwards & Ward, 2008)2. We note that in our model, a stipulated definition may be 

 
1 We note that process and object dichotomy is also related to other theories such as APOS theory (Arnon et al., 

2014) and the notion of a procept (Gray & Tall, 2011), but we have insufficient space to discuss these distinctions. 
2 Mathematical definitions are typically seen as stipulated rather than extracted, although there may be many (both 

correct and incorrect) features of students’ concept images that stem from extracted rather than stipulated knowledge 

around the concept definition (see e.g., Edwards and Ward, 2004 for examples).  
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stipulated by the student or an authority—the key features we use to determine if a definition is 

stipulated in our framework is whether or it appears to be explicit, well-defined, and stable. We 

note that while we have displayed our model in Table 1 as a two-by-two grid for the sake of 

simplicity, these categories are not necessarily binary, but conceptualized as more of a spectrum. 

In that sense, Table 1 could perhaps better be represented by a 2D coordinate plane.  

Table 1: Model of Student Thinking About Equivalence. 

  Extracted Definition Stipulated Definition 

Operational 

Conception 

of 

Equivalence 

Pseudo-Process View: Students see 

equivalence as a computational process, 

and their approaches to those processes 

are dictated by prior experience in ways 

that are extracted rather than stipulated. 

Definitions of equivalence are typically 

non-standard, ill-defined, and/or 

unstable.  

Process-View: Students see equivalence as 

a process, but do process computations by 

referring to stipulated rules or properties. 

Students with this view may be able to 

perform calculations correctly but this does 

not necessarily translate to being able to 

use stipulated definitions to recognize 

equivalent objects. 

Structural 

Conception 

of 

Equivalence 

Pseudo-object view: The student is able 

to consider whether two objects are 

equivalent without reverting to an 

explicit computation, perhaps by 

considering the structure of the objects; 

but definitions of equivalence are 

typically extracted in some way from 

experience rather than based on 

stipulated definitions of equivalence, 

and as a result are typically non-

standard, ill-defined, and/or unstable 

Object view: 

The student is able to consider whether two 

objects are equivalent without reverting to 

an explicit computation, perhaps by 

considering the structure of the objects; 

definitions of equivalence used to 

determine equivalence are stipulated. The 

student conceptualizes equivalence classes 

(or solution sets) as objects, although they 

need not do this formally. 

Method 

Data for this study were collected from 124 students at an urban community college through 

open-ended questions in 18 different courses, from developmental elementary algebra (similar to 

Algebra I in high school) to linear algebra. Student responses were analyzed using thematic 

analysis (Braun & Clarke, 2006). Responses coded as indicative of an operational-view of 

equivalence provided evidence of thinking of equivalence as an algorithm; those coded as 

indicative of a structural-view of equivalence provided evidence of thinking of equivalence as a 

fixed trait of an object, or reasoning about equivalence via its general properties.  

In coding student work, students often struggled provide definitions of equivalent equations 

for several different reasons. One issue appeared to be that students attempted to apply the 

definition of equivalent expressions to equivalent equations. For example, in Figure 1, we see the 

work of two students-- one in elementary algebra and one in linear algebra-- both of whom give 

somewhat similar definitions of equivalent equations. The elementary algebra student gives a 

more ill-defined definition (“same answer”) but we see from the examples that they provide that 

they appear to be thinking about equivalent arithmetic expressions. We would classify this 

response as a pseudo-process view, as the definition is not well-defined, and because it appears 

to center around arithmetic calculation.  

We see similar work by the linear algebra student in Figure 1, with some differences; they 

give broader examples of equivalence (describing also when two vectors are equivalent) and 
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their definition is a bit more detailed (“when two quantities are the same on both sides of an 

equation”). But like the elementary algebra student in Figure 1, they conflate the definition of 

equivalent expressions with equations (they include an algebra example, but only show identical 

expressions as equal). Their definition of equivalent equations is also not fully well-defined 

(“check if both sides are the same”), because the word “same” here is not well-defined. While 

their answer does show signs of having been exposed to more examples of mathematical 

equivalence, this does not appear to have positively impacted their definition of equivalent 

equations; we would still classify their definitions as extracted, because they are ill-defined.  

 
Figure 1: Definitions from an elementary algebra student (on left) and a linear algebra student (on right), 

conflating the definition of equivalent expressions with equivalent equations 

Students who applied the definition of equivalent expressions to equations may even do this 

in a way that is mathematically valid (i.e., fits the definition of an equivalence relation), even 

though it is not one of the “standard” definitions of equivalent equations (e.g., same solution set).  

 
Figure 2. Precalculus student’s non-standard structural definition of equivalent equations 

Consider Figure 2, where a precalculus student has defined equivalent equations as two 

equations where “the result or the number after the equal sign are equivalent”, and based on their 

examples, this seems to suggest that any equations of the form 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝑛 for fixed 𝑛 

would be equivalent to one another. This is similar to definitions given by other students in other 

research (Wladis et al., 2020). This student is particularly interesting, because the two equations 

that they have given also happen to have the same solution set, so it is unclear if this is an 

implied part of their definition as well. Whether it includes this feature or not, we would classify 

this definition as a structural view even though it is a “non-standard” definition, because the 

student has given what could be a well-defined but alternate definition of equivalence (whether 
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or not their definition is fully well-defined is unclear, as they haven’t filled out all the details)3.   

 
(a) Calculus III student 

  
(b) introductory stats student                 (c) intermediate algebra/precalculus student 

Figure 3: Examples of different ways that students used notion of “solving” in defining equivalent equations  

In contrast to the previous examples, some students did draw in some way on the notion of 

“solving” equations or the solution sets of equations when defining equivalence. However, the 

ways in which students drew on notions of “solving” also fell into different areas of our 

framework. Simply talking about the “solution” of an equation was not sufficient to classify 

work as either stipulated or structural even though it sounds like it is related to the standard 

insertional equivalence definition of equations (i.e., same solution set). In Figure 3(a), we see the 

work of a Calculus III student, who appears to have a well-defined and structural view of 

equivalent equations: they define equivalent equations as having the same solution set (seeming 

to conceptualize the solution set as a fixed object); and their definition appears to be well-

defined, not just because of their definitions, but also because they have provided an example 

which shows that their interpretation of “same solution” appears to be the “standard” one. We 

note that this is critical, as many students used the language of “same solution” but actually 

meant it to describe equivalent sides of an equation (equivalent expressions) rather than 

equivalent equations. See, for example, the work of an introductory statistics student in Figure 

3(b). This student wrote that two equations are equivalent if you “substitute the value in for 𝑥 

and the solution is the same for both equations”: this sounds like the standard definition of 

equivalent equations (if an incomplete one that does not account for the possibility that 𝑥 may 

have more than one value), however, looking at the example this student has provided, we see 

that to them “solution” actually denotes the quantity which results from simplifying each side of 

an equation (not the solution set of two different equations). In this sense, the students’ definition 

is ill-defined, because the vocabulary that they are using appears to be ill-defined and has 

 
3 This student may be drawing on notions of equations with the “same form” (e.g., 𝑦 = 𝑚𝑥 + 𝑏, 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0) 

which is another type of equivalence that is commonly used in the algebra curriculum, even if it is not called 

equivalence in the curriculum (however, “same form” could in fact be codified as a formal equivalence relation, and 

students may be noticing this when they draw on it in their equivalence definitions (Wladis et al., 2020). 
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multiple, perhaps vague, meanings. For these reasons, we would classify this work in (b) as a 

pseudo-process view, even though on the surface the definition initially looked very similar to 

the one given in (a). The third example of student work in Figure 3(c) shows another common 

approach that students used, in which they drew on notions of solving when asked about 

equivalent equations, but struggled to relate these notions to any well-defined definition of 

equivalence. This student has solved an equation and checked the solution by substituting it back 

into the original equation; however, it is unclear what the definition of equivalent equations is, or 

even which two objects the student is claiming are equivalent (perhaps equivalence for them is 

not about the relationship between two objects, but is instead names a process of checking the 

solution of an equation). Because of this, we classify this as a pseudo-process view—there is no 

well-defined stated definition, and the student’s focus is on computation.  

Students also gave a variety of other non-standard definitions of equivalence that might 

possibly have been well-defined definitions of equivalence relations (e.g., equivalent arithmetic 

equations as ones that express the same additive relationship; equivalent algebraic equations 

which express the same relationship between the variables), which for the sake of space we do 

not share here. However, we note that by de-coupling our categorization of student definitions of 

equivalence from notions of what is “standard” and thinking more carefully about the extent to 

which student definitions of equivalence are stipulated definitions which meet the criteria of an 

equivalence relation; and the extent to which student conceptions of equivalence are structural or 

operational, we may be able to achieve two critical goals more effectively: 1) we may be able to 

better identify student thinking which “sounds right”, but is actually ill-defined; and 2) we may 

be able to identify valid student thinking that simply does not adhere to “standard” definitions. 

Both of these goals may better help us to tailor instruction to students.  

We now briefly describe some overall trends we found in coding open-ended questions on 

definitions of equivalence (Table 2). Students primarily associated equivalence with equality, 

and rarely cited other forms (e.g., equivalent equations), although the incidence of non-equality 

examples rose somewhat with course level. Similarly, students at all levels were extremely likely 

to give ill-defined or vague definitions of equivalence when asked. In terms of student 

definitions of equivalent equations, most students conflated this with the definition of equivalent 

expressions; this did not appear to improve with course level, suggesting that the lack of explicit 

definitions of equivalent equations in textbooks and curricula (Wladis et al., 2020) may well be 

contributing to student difficulty in understanding the how definitions of equivalence vary in 

different contexts. Some of these definitions, while non-standard, may have qualified as formal 

equivalence relations, and therefore mathematically valid reasoning—the prevalence of this was 

not correlated with course level, suggesting that students at all levels may sometimes be 

generating valid but non-standard definitions. Many students associated equivalent equations 

with solving, but this was rarely done in a well-defined way: roughly one quarter of all students 

at all course levels solved an equation but did not relate this in any well-defined way to the 

definition of equivalent equations (most commonly this involved solving a single equation, and 

then checking the answer, with no clear mention of which two things were actually equivalent); 

fewer students did this at levels of precalculus and above, but the differences by course level 

were not large. Small numbers of students did interpret equivalent equations to mean equations 

which have the same solution set, and did so in a well-defined way; this was slightly more 

common as course levels went up; however, the vast majority of these students did so in a 

operational way (i.e., solved two equations and said they were equivalent, without discussing the 

solution set in a more general or structural way); this is perhaps to be expected, given the 
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operational way in which the question itself was phrased, however, this does follow patterns 

observed in questions without this more operational wording, such as the more general question 

about the definition of equivalence given on this set of questions (although student tendencies to 

use structural rather than operational definitions did increase with course level). However, we 

note that overall, structural and well-defined definitions were rare among all students, suggesting 

that instruction which specifically includes explicit stipulated definitions, and which encourages 

structural reasoning is needed at all levels.  
Table 2. Summary of student definitions of equivalence 

  elem. alg. or below inter. alg. or 100-level 200-level or above 

general definition of equivalence       

ill-defined or vague 67% 71% 60% 

cited equality 94% 87% 80% 

other valid definition 0% 3% 16% 

operational definition 41% 18% 17% 

structural definition 0% 2% 17% 

how to tell if two equations are equivalent     

conflated w/ equiv. expressions 44% 48% 44% 

of these, possible WD defn. 19% 6% 16% 

finding solution set, operational 0% 3% 8% 

related to "solving" but ill-defined 22% 29% 16% 

solution set, structural 0% 2% 4% 

total n 36 62 25 

Discussion and Conclusion 

The model of student thinking around definitions of equivalence that is presented here aims 

to refocus our attention from whether definitions look like a “standard” definition so that we 

consider more carefully the extent to which student definitions are explicit and well-defined as 

well as the extent to which students are able to think structurally rather than just operationally. 

Using this lens allows us to pinpoint places where students appear to understand a standard 

definition but upon further reflection we find that this definition is not well-defined or is wholly 

operational, limiting the student’s ability to use it. On the other hand, it also allows us to 

recognize when students’ reasoning is mathematically valid, and when students are recognizing 

more generalized instances of equivalence relations, even when they are not able to define them 

fully. Evidence from student examples here suggests that students do notice many kinds of 

“sameness”, yet struggle to articulate this in mathematically well-defined ways, just as they 

struggle to articulate “standard” definitions of equivalence in well-defined ways. This suggests 

that students are capable of noticing and assimilating more generalized notions of equivalence, 

but need more explicit definitions and language in order to be able to do this rigorously. Future 

research is necessary to better understand what kinds of explicit definitions of equivalence work 

best for students in different contexts, and the extent to which discussions of the more general 

notion of an equivalence relation might be helpful in instruction. This framework may also be 

able to serve as a measure of instruction and curricula, to assess how the concept of equivalence 

is presented to students as they are learning at various levels in the curriculum. 
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Concept Usage of the Definition of a Limit of a Sequence in Proof Constructions 
 

 Christian Woods Keith Weber 
 Rutgers University Rutgers University 

In this report, we examine a case study of one student’s proof constructions concerning limits of 
sequences. This student’s case is interesting because he demonstrates that he has a robust 
understanding of the concept of a limit of a sequence and its definition, both of which the 
mathematics education research literature establishes to be notoriously difficult for students. 
However, in failing to coordinate the construction of his proofs properly with the limit definition, 
he ultimately fails at his proof construction tasks. We examine how his proof constructions went 
wrong, and then present some implications that this case could have for the instruction of real 
analysis. 

Keywords: proof, limits, real analysis, concept usage, concept definition 

 
This report explores a case study of a student’s proof constructions about limits of sequences. 

The concept of a limit is notoriously difficult for mathematics students to understand (Williams, 
1991). The student featured in this report is a notable exception to this observation. He has a 
fairly strong understanding of both the concept of a limit of a sequence and its formal definition. 
However, as we will see, these understandings are not sufficient for him to construct valid proofs 
about limits of sequences. 

By using Moore’s (1994) concept-understanding scheme, we will demonstrate how this 
student’s failure to construct proofs about limits of sequences can be explained in terms of his 
inability to connect his understanding of the definition to the strategies he uses to construct his 
proofs. We will then briefly discuss why this may arise from real analysis instruction, and what 
implications this could have on the instruction of proof construction in real analysis. 

Literature Review 
Math education researchers have found that students often leave calculus courses with 

nonstandard understandings about limits. Among these misconceptions are the ideas that limits 
can be determined by plugging a finite amount of numbers into the formula for a function 
(Williams, 1991), that a sequence or function is not allowed to reach its limit (Williams, 1991; 
Roh, 2008), that infinity can be treated as a number with which to do limit calculations 
(Oehrtman, 2009; Ely, 2010), and that a limit serves as an upper or lower bound for a sequence 
or a function (Sierpińska, 1987; Williams, 1991; Szydlik, 2000). These difficulties have sparked 
research into ways that students can better understand the formal definition of a limit (Cottrill et 
al., 1996; Swinyard. 2011; Swinyard and Larsen, 2012; Oehrtman et al., 2014). For example, 
Oehrtman and his colleagues (2014) found that encouraging students to think in terms of error 
bounds and acceptable ranges around the limit of a sequence helped them to reinvent the 
definition of a limit of a sequence.   

Much of the research on limits has been devoted to students’ understanding of a limit as a 
standalone concept, and not to how it is used in their proof constructions. A notable exception is 
Roh and Lee (2017), who described how the use of a graphical epsilon-strip intervention helped 
a group of students to prove that every convergent sequence is Cauchy. Given the established 
difficulty that students have with learning real analysis (e.g. Alcock & Simpson, 2004, 2005), 
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however, more research of this kind is needed. This report aims to further contribute to our 
knowledge about how the limit concept is used by students to construct proofs. 

Theoretical Perspective 
In this report, we examine a student’s understanding of limits of sequences through Moore’s 

(1994) “concept-understanding scheme.” 
Tall and Vinner (1981) introduced the notions of the “concept image” and “concept 

definition” of a mathematical concept. The concept image is “the total cognitive structure that is 
associated with the concept, which includes all the mental pictures and associated properties and 
processes” (p. 152). The concept definition is the formal, mathematically sound definition of the 
concept. Through his analysis of students’ struggles in an introduction to proof course, Moore 
introduced the complementary notion of “concept usage.” Concept usage is the way in which an 
individual uses a concept to produce examples or proofs. With respect to proofs, Moore 
explained that students with well-developed concept usage should be able to apply definitions of 
the concept in a proof and to structure their proof in consonance with the definition of the 
concept. 

Moore grouped the concept image, concept definition, and concept usage into a theoretical 
frame he called the “concept-understanding scheme” of a concept. He found that students’ 
concept usages sometimes drew on both their concept definitions and concept images, and that 
their concept definitions could draw on their concept images. Importantly, though, he found that 
students often had three separate schemas for their concept images, concept definitions, and 
concept usages, and that a failure to fluently connect these three components of understanding 
was a key factor in their difficulties with proof constructions. In other words, well-developed 
concept images, concept definitions, and concept usages are not enough to guarantee success at 
proof construction if they are not adequately related. In this report, we show how an inadequate 
relationship between a student’s concept image and concept definition of the limit concept and 
his concept usage of that concept led him to struggle with two proof construction tasks.  

 

Methods 
This case study is drawn from a larger study taking place at a large public university in the 

northeastern US. The larger study aimed to understand how students who have completed a real 
analysis course use their formal and informal conceptions of limits of sequences to create proof 
constructions for statements about limits. Each of the seven participants took part in four to five 
interviews, loosely structured according to a teaching experiment methodology (Steffe & 
Thompson, 2000). The first interview dealt with the participant’s conceptions about limits of 
sequences. The second and third interviews had participants verbally construct proofs for various 
statements about limits, with the use of scratch work to aid their creation and presentation of 
their proofs. In the second interview, the proof tasks were about sequences defined by a 

particular formula (e.g., prove that ቀ
ଵ


ቁ converges to 0). In this report, we call these “explicit 

sequences.” In the third interview, the proof tasks involved proving the convergence of 
sequences that were not defined by a formula, but rather by some property or by relation to 
another convergent sequence (e.g., prove that if (𝑥) converges to 1, then (2𝑥) converges to 2). 
We call these “abstract sequences.” After these three interviews, the participants responses were 
analyzed to create hypotheses about the strategies and conceptions of limits each participant used 
in their proof constructions. The fourth and fifth interviews were created to test these hypotheses 
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using carefully chosen proof construction tasks, and in some case proof reading and 
comprehension tasks. Each interview was 60 to 90 minutes long, was held on Zoom, and was 
video-recorded and transcribed.  

We examine the case of Greg, who was a junior mathematics major at the time of this study. 
He had completed an introductory real analysis course in the fall semester before his interviews 
began. In this report, we analyze three proof construction tasks completed by Greg according to 
the concept-understanding scheme. We looked for verbalizations in Greg’s proofs that indicated 
mental pictures or informal ways of talking about limits (concept image) and use of the 
definition of a limit (concept definition). We then sought evidence for or against the proposition 
that Greg’s concept image and especially his concept definition were a factor in the strategies he 
used to structure his proofs (concept usage). 

Results 

Concept Image and Concept Definition of a Limit of a Sequence 
The first interview with Greg was largely devoted to understanding his concept image and  

concept definition for a limit of a sequence. Greg’s concept image of limits conformed highly to 
conventional conceptions of limits. He described convergence of a sequence as meaning that if 
“a finite number of terms at the beginning of the sequence are ignored, then the later terms can 
be made arbitrarily close” to the limit. When prompted to consider non-normative conceptions of 
limits, Greg disagreed with them. He did not believe that a limit must serve as an upper or lower 
bound for its sequence terms, he rejected the idea that a sequence must not reach its limit within 
a finite number of terms, and he differentiated between the concept of a limit and a cluster point 
by pointing out that a sequence could only have one limit. 

Greg was also able to provide a concept definition for a limit when asked. He defined 𝐿 to be 
the limit of the sequence (𝑥) if for all ε > 0 there exists a natural number 𝑁 such that for all 
𝑛 ≥  𝑁, |𝑥 − 𝐿| <  𝜀. Furthermore, he was able to explain this definition as it related to his 
informal understandings of a limit. For example, he explained that 𝑁(𝜀) could be considered to 
be the number of terms at the beginning of the sequence that can be ignored so that the remaining 
terms fall within an ε-neighborhood of the limit. In this sense, his concept image and concept 
definition of a limit of a sequence appeared to be tightly related. 

First Proof: An Explicit Sequence 
During the second interview, Greg was asked to prove that the sequence defined by the 

formula 𝑥 =
ଵ

√
య  converges to 0. He began by writing down the definition of a limit of a 

sequence (see Figure 1 for reference). Then he informed the interviewer that “what we want to 
do in this proof is choose a suitable capital N - that is what are our main goal should be in this 
proof…We're choosing the appropriate number of initial terms to ignore and beyond which the 
sequence terms lie in a certain neighborhood.” 

Greg proceeded to explain that he wanted to show that the absolute value of the difference 

between the expression 
ଵ

√ே
య  and the proposed limit, 0, could be made smaller than an arbitrary 

positive ε. His strategy was to “manipulate this expression so that…N is some expression of ε.” 

Using algebra, he determined that this inequality implied the inequality 𝑁 >  
ଵ

ఌయ
. He then stated 

that this work was not “technically” part of the proof. He reiterated that choosing N to be greater 
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than 
ଵ

ఌయ
 would establish the “initial finite number of terms [of the sequence] we ignore.” Finally, 

Greg established how choosing 𝑛 >  𝑁 implied that ቚ
ଵ

√
య − 0ቚ <  𝜀, completing the proof. 

In this task, we see Greg demonstrate the successful construction of a limit proof. He once 
again gives a correct concept definition of a limit, implying that he believes it to be relevant to 
his proof construction. He also relates his concept image of a limit to his proof when he identifies 
his choice of N as the number of initial terms of the sequence to be ignored. However, when the 
interviewer asked Greg how confident he was that his proof was correct, Greg stated he was only 
“fairly confident.” He explained, “the whole approach of sort of reverse engineering the choice 
of N…I think that part I’m rather sure of. I’ve encountered enough proofs of sequences and 
limits of sequences in my real analysis course to be slightly confident about that.” It appears that 
Greg’s confidence in his proof stems not from a sense that his proof aligns with the concept 
definition, but from a sense that he has constructed the proof in ways that agree with his prior 
experiences with similar proofs. Though Greg gave a normatively valid proof of this statement, 
his comment suggests that there are at least two explanations for how he structured his proof: by 
use of the definition, or by the employment of a familiar procedure.  

 
Figure 1. Greg’s scratch work for the first proof. 

Second Proof: An Abstract Sequence 
During the third interview, Greg was asked to prove that a sequence (𝑥) converges to 0 if 

and only if (|𝑥|) converges to 0. He began, again, by writing down the definition of a limit. He 
then noted that since this statement was a biconditional, he would have to prove two “directions” 
of the proof. He began by assuming that the sequence (|𝑥|) converges to 0, with the goal of 
proving that (𝑥) converges to 0. By applying the definition of convergence to the hypothesis, 
Greg said that “for all epsilon larger than 0, there’s a capital N such that lowercase n greater than 
or equal to capital N implies that…the absolute value of the absolute value of 𝑥 less than 0 [i.e., 
ห|𝑥 − 0|ห], which is pretty much the same thing as |𝑥|.” Greg concludes that we “pretty much 
automatically” arrive at the convergence of (𝑥) to 0. His work for this part is shown in Figure 2. 
Very quickly, he explains that the reverse conditional is proved in a similar way, relying on the 
fact that ห|𝑥|ห =  |𝑥|.  

The interviewer was interested in how Greg understood the role of N in his conclusions of 
the two subproofs. Restricting his attention to the first subproof, the interviewer asked Greg to 
explain what value of N would satisfy the definition of a limit for (𝑥) when the value of ε is 0.1. 
Greg asked if this would depend on the specific sequence that (𝑥) represented, and the 
interviewer asked Greg to think about this. He focused on finding an example, the constant 
sequence 𝑥 = 0, and eventually explained that any natural number would suffice for the value 
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of N for this sequence. Hoping to see if Greg could provide a general rule for the value of N that 
satisfied the definition of the limit for (𝑥), the interviewer began this exchange: 

Interviewer: So is there anything in your proof that would help you find such a capital N, so 
if I asked you for a specific epsilon like 1. Is there anything in your proof that addresses 
[the choice of N], or is that kind of a thing that comes on a case-by-case basis, depending 
on what the sequence actually is? 

Greg: I honestly think that it might be on a case-by-case basis, like in this one [the example 
of the constant sequence 0]. 

From the chain of implications at the bottom of his scratch work and from his verbalization 
of the proof, one might expect that Greg understood that the same value of N(ε) will work for 
both sequences, but Greg did not make any reference to the definition of the convergence of 
(|𝑥|) in explaining the choice of N in these follow-up questions. However, Greg also did not 
explicitly state that the choice of N(ε) was independent for these sequences. Moreover, the 
interviewer may have primed him to think of choosing fixed numbers by asking about fixed 
values of ε like 0.1 and 1. Of course, for an exact value of ε, the exact choice of N will depend on 
the specific sequences involved. In short, the data collected in this episode was not enough to 
infer whether Greg’s concept usage in structuring his proof adequately took the concept 
definition of the convergence of (𝑥) into consideration. So, in the next interview, the 
interviewer attempted to elicit a similar proof construction to further investigate how Greg 
conceived of the role N plays in proofs about abstract sequences. 

 
Figure 2. Greg’s scratch work for the first conditional of the second proof. 

Third Proof: Another Abstract Sequence 
In the fourth interview, the interviewer asked Greg to prove that if the sequence (𝑥) 

converges to 0, then the sequence ቀ
௫

ଶ
ቁ converges to 0. Note that, just like in the second proof 

presented above, the choice of N(ε) for the sequence (𝑥) will also satisfy the definition of 

convergence for the sequence ቀ
௫

ଶ
ቁ. Greg’s immediate reaction was that the algebraic limit 

theorem may apply to this task. However, he had trouble recalling what the algebraic limit 
theorem stated. When the interviewer suggested that he try the proof by using the definition of a 
limit, Greg agreed that this was the next thing he wanted to do. 

Greg first stated what it would mean for the sequence (𝑥) to converge to 0. Then, he wrote 

down what he wanted to show to conclude that ቀ
௫

ଶ
ቁ converges to 0 (the first two lines in Figure 

3). Greg states that “I feel like we’re almost finished the proof right there [the first two lines in 
his scratch work].” He goes on to say: 

“|𝑥| is less than epsilon, that would automatically imply that 𝑥over 2  
is less than epsilon…for all n. Now we know that given epsilon greater than 0…there  
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exists a capital N belonging to the natural numbers, such that lowercase n greater than 
or equal to capital N implies that 𝑥 over 2 is less than epsilon, which means that 𝑥 over 2 
converges to 0.” 
Once again, Greg’s verbalization of his proof construction was vague about how he 

established the existence of this N(ε). The exchange following immediately after clarified this: 
Interviewer: You mentioned that we’ve now shown that given epsilon greater than 0, there’s 

this capital N in the natural numbers, such that all this stuff implies 𝑥 over 2 will be less 
than epsilon. What is that capital N? 

Greg: So the capital N is the point beyond which the sequence 𝑥 or the sequence 𝑥 over 2, 
um, well, would it be the same? Could I choose the same? …It’s not necessarily the same 
capital N, but what’s important is that there exists a capital N for both 𝑥 and 𝑥 over 2. 
It’s not necessarily the same- [he is interrupted by the interviewer, who speaks at the 
same time.] 

Interviewer: Ok, and what allows you to assert that? 
Greg: What allows me to assert that is that we know both sequences converge. 
This appears to be the first time Greg is considering whether these two parameters are 

related. He concludes that they need not be identical, and when further asked to explain what 

N(ε) is for the sequence ቀ
௫

ଶ
ቁ he resorts to circular reasoning. Greg’s concept usage of a limit is 

distinctly different in this proof construction compared to his first proof construction. Whereas in 
the first proof construction Greg attended very carefully to identifying N(ε), in the third proof he 

does not. His conclusion appears to be based on the fact that the inequality ቚ
௫

ଶ
ቚ < 𝜀 can be 

derived at all, without paying attention to the indices for which it holds true. Hence, this is an 
episode in which Greg’s concept usage of a limit is clearly divorced from the concept definition.  

 
Figure 3. Greg’s scratch work for the third proof. 

Discussion 
In the case of Greg, we see a student who has a normative concept image and concept 

definition of the limit of a sequence. He is able to accurately recall and explain the definition of a 
limit. He can also construct valid proofs that explicit sequences converge to a particular limit and 
explain these proofs using his concept image and definition of a limit. In these proof 
constructions, he explicitly states that his goal is to find a value of N that corresponds to an 
arbitrary positive ε for which the conditions of the definition hold. From his first proof 
construction, then, we might believe that Greg has a strong concept understanding of a limit of a 
sequence. However, when presented with statements about the convergence of abstract 
sequences, Greg’s proof constructions neglect the role of N in establishing the limit of the 
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sequence in question. Despite beginning these proofs by writing down the definition of a limit, 
Greg appears to be satisfied that his proof is completed if he can conclude that |𝑥 − 𝐿| <  𝜀, 
without being able to describe the value of N(ε) that makes this true. In cases like the third proof 
presented in the results, we see that Greg’s concept usage of the definition of a limit of a 
sequence could be improved by structuring his proof more carefully and explicitly to attend to 
the values of N that satisfy the definition of a limit. 

We see two possible interpretations for this data within the concept-understanding scheme. 
The first is that Greg really did use the definition of a limit to structure his first proof but failed 
to do so completely for his third (and perhaps second) proof. The second and more likely 
interpretation of our results is that Greg did not substantially use the definition of a limit to 
structure any of these proofs. Although Greg repeatedly said that his goal in the first proof was to 
determine a value of N, this goal may not have been supplied entirely by the definition of a limit. 
His remarks about his confidence in the correctness of this proof show that he was thinking about 
previous examples of proofs that explicit sequences converge. Therefore, it is likely the case that 
he was able to explain his proof construction in relation to the concept definition of a limit, but 
that his concept usage in the proof amounted to the application of a familiar procedure. That is, 
Greg considered that his goal was to find N by algebraically manipulating the inequality 
|𝑥 − 𝐿| <  𝜀, and then to reverse this process. In proof tasks involving abstract sequences, it is 
often not possible to find an explicit formula or bound for N through algebra alone. For example, 
in the second and third proofs presented here, it is necessary to logically relate the value of N(ε) 
for the sequence in the conclusion to some N value (implied by the definition of convergence) 
corresponding to the sequence in the hypothesis.  

The case of Greg has implications for instruction. Instructors should take care when inferring 
a student’s concept understanding from their written proofs. It has already been recognized in the 
literature (e.g., Moore, 2016) that mathematicians must use judgment to reconstruct what a 
student was thinking based on their written proofs. However, this is discussed in the context of 
minor mistakes or gaps left in the written proofs. With Greg, we see that even his first correct 
proof is not sufficient to conclude that he has a complete concept understanding, and specifically 
concept usage, of the definition of a limit.  Furthermore, it was unclear from Greg’s second and 
third proof that he understood the nature of the N value that implied convergence of the 
sequences in question. An instructor may be tempted to give the benefit of the doubt to Greg that 
he understood that the same value of N satisfied the definition of convergence for both 
sequences, but speaking to him about his third proof clarified that this was not the case. 

Instructors may also be able to help students build a concept usage of limits that are linked to 
their concept definitions and concept images. It is common to acquaint real analysis students 
with the definition of a limit by presenting and assigning proof construction tasks involving 
explicit sequences. This may have the unintended effect of fostering a concept usage that relies 
on procedures like the one used in Greg’s first proof, which may be more salient to students than 
how the structure of these proofs mimics the concept definition. By giving students a mix of 
explicit and abstract sequence tasks soon after they learn the definition of a limit, instructors may 
be able to help students realize the inadequacy of these procedures and focus more on the way 
that these proofs are driven by the concept definition.  
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Promoting Quantitative Reasoning in Calculus: Developing productive understandings of Rate of 

Change with an adapted Calculus 1 curriculum 

 

Franklin Yu 

Arizona State University 

 

The purpose of this study is to explore the benefits of an adapted Calculus 1 curriculum designed to 

support students in reasoning about quantities covarying. Since researchers indicate that students 

often have unproductive meanings for rate of change (Byerley et al., 2012; Simon & Blume, 1994; 

Castillo-Garsow, 2010), this study deliberately addressed how to support students in developing 

productive understandings for rate of change that could be leveraged into a productive 

understanding for instantaneous rate of change. 

 

Keywords: Rate of Change, Calculus, Instructional Intervention 

 

Calculus is the mathematics of how quantities change. The main idea of Calculus 1 (in the 

US curriculum) can be summed up as “You know how much of a quantity you have at all times 

and want to know how fast that quantity is changing at all times” (derivatives). Understanding 

how quantities vary and utilizing Calculus to model these quantities is an essential skill for 

STEM students. However, typical Calculus courses in the US are heavy on procedural fluency 

with little focus on conceptual understanding (Bressoud et al., 2016). Additionally, research has 

shown that even high-performing students demonstrate impoverished understandings of key 

Calculus concepts (Selden et al., 2001; Carlson et al., 2002) and that the learning of the 

derivative concept is complex (Tall & Vinner, 1981; Park, 2013; Zandieh, 2000; Oehrtman, 

2002; Monk, 1994; Ubuz, 2007; Yu, 2020). Since derivatives represent something that we call 

“instantaneous rate of change,” then students’ understandings of rate of change are pertinent to 

their understanding of derivatives. However, researchers (Byerley et al., 2012; Simon & Blume, 

1994; Castillo-Garsow, 2010) indicate that students have unconventional meanings for rate of 

change. Due to these issues, the purpose of this study is to provide an example of an instructional 

intervention in a Calculus 1 course designed to support students in developing productive 

understandings of rate of change. The research question this study explores is: 

How does an instructional intervention designed to support students in using quantitative and 

covariational reasoning aid them in understanding the idea of rate of change? 

 

Literature Review 

Researchers in Post-Calculus education and engineering education support the finding that 

many students have unproductive meanings for rate of change. Rasmussen and King (2000) 

reported that students in a differential equations course conflated the number of fish in a pond 

with the rate of change of the fish in the pond with respect to time elapsed. Prince et al. (2012) 

reported that their engineering students struggled to distinguish a rate of heat transfer from an 

amount of heat transfer. Ibrahim and Robello (2012) indicated that even students who 

demonstrated understandings of rate of change in motion contexts failed to transfer these 

understandings to non-motion contexts such as work. It should be clear then that our Calculus 

courses need to better support students in developing robust understandings of rate of change in 

order for them to leverage derivatives (rate of change functions) in their respective fields. 
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One example of the benefits of revising curriculum to support students in developing rich 

meanings for rate of change functions is Thompson and Ashbrook’s (2019) Calculus course. This 

course was designed to support students in overcoming difficulties, such as students thinking that 

variables do not vary, believing that Calculus is a set of rules and procedures, and a derivative is 

a slope of a tangent rather than concerning a rate of change (Thompson et al., 2013). Thompson 

(2019) reported that students in his course performed higher on average than students in a 

traditional Calculus course on an 11-item Calculus concept inventory that focused on variation, 

covariation, and rate of change understandings. This study leverages Thompson’s work on a 

conceptual approach to Calculus by adapting a standard Calculus 1 curriculum to include a unit 

on the meaning of rate of change. 

 

Theoretical Background 

The Calculus classes in this study employ a standard Calculus 1 curriculum that has been 

adapted to focus on students’ reasoning about quantities covarying. The instructional 

interventions’ design is influenced by Smith and Thompson’s (2007) theory of quantitative 

reasoning and researchers’ findings on covariational reasoning (Carlson et al., 2002, Thompson 

& Carlson, 2017). 

Quantitative Reasoning 

Thompson (1990) defines quantitative reasoning as analyzing a situation in terms of 

quantities and their relationships. A quantity is a conceived attribute of an object that an 

individual envisions having a measurement. Thompson (2011) defines quantification as the 

process in which one assigns numerical values to an attribute they have conceptualized. Smith 

and Thompson’s theory of quantitative reasoning influenced the design of the in-class activities 

that support students in imagining quantities and how students may represent them using 

mathematical expressions.  

Conceptual Analysis 

Thompson and Thompson (1994a) provided a conceptual curriculum for speed that I leverage 

to articulate the productive ways of thinking for rate of change (Figure 1). Put together in one 

statement, a rate of change quantifies a multiplicative relationship between 2 varying quantities. 

 

In a typical Calculus 1 course, instantaneous rate of change is introduced to students via the 

limit definition of derivative, 𝑓′(𝑥) = lim
∆𝑥→0

𝑓(𝑥+∆𝑥)−𝑓(𝑥)

(𝑥+∆𝑥)−(𝑥)
 (Stewart, 2013; Larson et al., 2006). One 

productive interpretation of the limit is the multiplicative relationship (the value of 𝑓′(𝑥)) 
between a variation in a function’s output (𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)) and a variation in the input 

((𝑥 + ∆𝑥) − (𝑥)) so long as the variation from the input value 𝑥 is arbitrarily small ( lim
∆𝑥→0

). The 

convergence of this limit is what we call “instantaneous rate of change,” which represents the 

relationship between two varying quantities with respect to one another’s relative size of 

1. Rate of change is a quantification of variations 

2. Rate of change relates variations in two varying quantities 

3. Rate as a quantification of variations in two quantities is made by a 

multiplicative comparison of these variations 

4. To say that rate of change of quantity Y with respect to quantity X is “𝑚” is 

to mean that the variation in quantity Y (∆𝑦) is 𝑚 times as large as the 

variation in quantity X (∆𝑥), i.e., ∆𝑦 = 𝑚∆𝑥 

 
Figure 1: Productive Ways of Thinking for Rate of Change 
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variation. To use a derivative value as a rate of change having some value 𝑚, one must imagine 

the input quantity varying while simultaneously imagining the output quantity varying 𝑚 times 

as much as the input quantity’s variation. This is the same meaning we might attribute to an 

average rate of change over a small interval, where someone imagines the necessary constant 

rate of change to achieve the same accrual in one quantity with respect to the accrual size of the 

other quantity. The question then becomes what is needed to support students to construct such a 

meaning. This study describes such an activity that demonstrates the potential for helping 

students reason about rate of change robustly. 

 

Methodology/Results 

This study includes two Calculus 1 courses from the Fall 2020 and Spring 2021 semesters 

through a southwestern university via Zoom. These classes initially contained 40 engineering or 

computer science students (a few students withdrew from the class as the semester progressed). 

The instructor designed activities through Desmos to serve as didactic objects (Thompson, 2002) 

to facilitate a conversation about what rate of change entails. Additional data points include a 

pre-test at the start of the semester and exams that included questions focused on variation, 

covariation, and rate of change. Questions and answer choices on the Pre-Test and course exams 

were all designed with the research in mind. For example, answer choices were created to 

capture the various ways students might have reasoned about a rate of change. 

Pre-Test 

The pre-test involved a set of 10 questions that assessed students’ understanding of function, 

variation, and rate of change. Four items were from the Precalculus Concept Assessment 

(Carlson et al., 2010). Each student took the pre-test on the first day of class, and items were 

scored immediately. This study will discuss the results of 2 of the 10 items. 

Pre-Test Results 

Figure 2 displays the results of students’ responses to a question about constant rate of 

change. The results support previous literature that many students interpret the value of a rate of 

change as an amount to add (Byerley et al., 2012, Yu, 2020). A majority of the students seemed 

to have interpreted the value of the constant rate of change as the change in the weight of the fish 

for a 1-unit change in the input quantity.  

 
Figure 2: Results on Interpreting a Constant Rate of Change (𝑛 = 80) 
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Figure 3 displays students’ responses to a question about what information they would use to 

estimate an instantaneous rate of change. The two most chosen responses were designed to 

capture the thinking of what would happen in the next hour (72.8-23) or how long it took to drive 

1 hour (
23

1
). The responses support the idea that students were likely reasoning about the value of 

a rate of change as the amount of change for a 1-unit change in the input quantity. 

 
Figure 3:Results on Estimating an Instantaneous Rate of Change (𝑛 = 80) 

Due to the Pre-Test results, the instructor designed an instructional intervention to perturb 

students’ understanding of rate of change to set them up for developing a productive meaning for 

instantaneous rate of change. 

The Desmos Activity (a summary of the activity can be seen here: Desmos Activity Summary)  

The following is one example of a series of lessons designed to support students in 

reasoning about quantities covarying with each other. 

Students were initially presented with a situation of “The teacher is walking away from the 

wall at a constant rate of 1.7 meters per second. What does it mean to have a constant speed of 

1.7 meters per second?” The instructor used this to elicit students’ current ways of understanding 

constant rate of change with the anticipation that most students are thinking about 1.7 meters and 

1 second (instead of 1.7 describing the multiplicative relationship between variations in meters 

traveled and time elapsed). True to this anticipation, most students had a response similar to 

“your position changes by 1.7 meters for every second that passes”. 

The instructor then utilized the Desmos activity to push and perturb this way of thinking by 

presenting scenarios where thinking about 1-unit changes in the input would not work. Then the 

activity allowed students to explore what 1.7 measures in the context and that there must be 1.7 

of something in this situation. Additionally, scaffolded questions were provided to aid students in 

thinking about the quantities and what was being measured with a constant rate of change. For 

example, the graphing part of the activity [Figure 4] included questions that focused on what 

quantities were being represented and how the quantities varied. The instructor continually asked 

students to think about what 1.7 represented in this context and where 1.7 shows up in the graph.  
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Figure 4: Examples of the Desmos Activity 

As the activity continued, students were given a Desmos page where they could interact and 

use the change in the input to measure out the associated change in the output quantity. Figure 5 

displays one screenshot of a student’s work where they measured the value of change in the 

output quantity with the value of the change in the input (One large tick mark indicated 1-unit of 

the change in the input quantity, and the smaller tick marks indicated one-tenth of that unit). 

At the end of the lesson, students were once again asked what 1.7 measured about the 

situation. A majority of the students noted that “1.7 represented how many times larger the 

change in distance traveled would be with respect to the change in time”. It would be too hasty 

here to claim that students understanding completely changed; however, it is apparent that 

students were at least cognizant of the difference between their initial statement and how the 

activity helped them alter their meaning. 

 

 
Figure 5: Measuring the Change in Output using the Change in Input as a Unit 

Following this Desmos module, students were prompted to describe what they remembered 

from the previous class. Forty-eight students explained something akin to “We found how many 

times we could fit the change in time into the change in the distance,” and 13 students replied, 

“the constant rate (of 1.7) would be maintained regardless of how much we changed the input”. 

Overall it seemed that students recalled the animation where students measured out the change in 

distance using the change in time as a unit of measure and that this multiplicative relationship 

was captured by the value of the rate of change. 
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Post-Tests 

The post-tests included the course exams and one post-course survey. These assessments 

were a mixture of multiple choice and short free-response questions. Since measurements were 

taken throughout each semester and each students’ responses were tracked, this mitigates the 

possibility that students guessed correctly on these questions. Additionally, while the contexts of 

each question differ (e.g., graphical, algebraic, tabular), I argue that the consistent scoring across 

these contexts support the notion that students were leveraging their new meaning for rate of 

change, instead of viewing these contexts as disconnected from one another (Zandieh, 2000). 

Figure 6 displays one of the questions on a course exam that assessed students’ interpretation 

of a value of a constant rate of change. Compared to the Pre-Test, where most students did not 

choose the option that related the changes between 2 quantities, on this exam, 80% of students 

identified the reciprocal relationship that that constant rate of change implied. While there were 

still students who continued to not distinguish between changes in the quantity (∆𝑉) with the 

amount of the quantity (𝑉) [Parts a and g], it appeared that many students’ meanings for rate of 

change had shifted from thinking of 1-unit changes in the input towards one that described the 

multiplicative relationship between the changes between 2 varying quantities. 

 
Figure 6: Post-Test on Constant Rate of Change 

Figure 7 displays a question on the final exam about interpreting the derivative at an input value 

(interpreting the value of an instantaneous rate of change). The aggregated results indicate that most 

students considered the value of the instantaneous rate of change outside of just a 1-unit change in 

the input value due to their choice in selecting choice two as part of their answer (Note that by the 

end of the course, three students had withdrawn from the course so this data is out of 77 instead of 80 

students). Overall, 54 of the students (roughly 70%) chose both correct answers (and none of the 
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incorrect ones), indicating an overall shift in how the students initially conceived the value of a rate 

of change since the beginning of the course.  

 
Figure 7: Final Exam Question on Interpreting Instantaneous Rate of Change 

Discussion 

From the results of this adaptation to a standard Calculus 1 curriculum, there is evidence that 

a curriculum focused on aiding students in reasoning about how quantities covary and the 

meaning of the value of a rate can help students build productive understandings of derivative as 

instantaneous rate of change that they may need for their future STEM courses. This finding 

aligns with other previous works on alternative curriculums that support students in reasoning 

covariationally (Thompson & Ashbrook, 2019; Carlson et al., 2001; Ely & Samuels, 2019). 

Additionally, this study serves as an example of possible changes teachers can employ to support 

their students in developing productive meanings for Calculus topics. 

However, several limitations should also be considered. For example, due to the lack of 

student interviews, the data is only based on assessments that have not been officially validated 

and do not describe what features of the Desmos module accounted for the possible changes in 

student thinking. The questions (except for those drawn from PCA) have not gone through 

extensive testing and thus are limited in providing definitive evidence of student reasoning. 

Despite this, the results appear optimistic in preventing students from confusing rate of change 

functions with amount functions as indicated by Post-Calculus education researchers (Rasmussen 

& King, 2000; Prince et al., 2012; Ibrahim & Robello, 2012). 

Future studies will investigate individual student thinking as students work through the 

Desmos module and how to improve the tasks. 
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Networking Multiple Reasoning Perspectives to Characterize Students’ Thinking about 
Quantities and Quantitative Relationships 
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We aim to respond to the enduring challenge of characterizing students’ reasoning about 
functions by networking Thompson’s theory of quantitative reasoning and Lithner’s theory of 
mathematical reasoning. We situate this article as an inquiry into how coordinating the two 
theories can provide insight into how students reason about quantities and quantitative 
relationships. We provide data to show how combining the two reasoning perspectives provides 
a rich lens to characterize students' reasoning. Our findings indicate that students generated 
knowledge by shifting from less to more sophisticated reasoning about quantitative relationships. 
We also note that students' quantitative and covariational reasoning enabled them to flexibly 
create multiple representations for quantitative relationships. 

Keywords: Mathematical Reasoning, Quantitative Reasoning, Networking Theories, Quadratic 
Functions, Covariational Reasoning 

Networking theories are defined as a diversity of approaches or ways of making theories 
interact (Kidron et al., 2018). For us, networking theories are creating a rich web of multiple 
theories to shed light on students’ meaningful understanding. Networking theoretical 
perspectives has been popular for several decades, where mathematics education community 
invites scholars for communication, collaboration, and cooperation (Kidron et al., 2018) in 
particular among Congresses of the Europe Society for Research in Mathematics Education 
(CERME) 4–6 working groups in Europe (Bikner-Ahsbash & Prediger, 2010). Another example 
of this is the International Group for the Psychology of Mathematics Education (PME), which 
encourages mathematics education scholars to join the critical conversation to create diverse 
theories (2002). In response to these calls, we aim to explore how networking theories of 
different grain sizes might shed light on students’ ways of thinking about functions by 
communicating, collaborating, and cooperating within multiple theoretical perspectives. We 
network Thompson’s quantitative reasoning and Lithner’s mathematical reasoning.  

Purpose of Networking  
The National Council of Teachers of Mathematics (NCTM, 2014) emphasizes the need to 

promote reasoning as students learn mathematics. Scholars have reported students’ difficulty in 
reasoning about functions when the functional relationship represents quantities and quantitative 
relationships (Altindis, 2021; Altindis & Fonger, 2019; Carlson et al., 2002; Fonger & Altindis, 
2019; Moore & Carlson, 2013). One way to develop foundational reasoning abilities is to 
promote students’ ways of thinking (Oehrtman et al., 2008). While scholars encourage students 
to employ authentic reasoning that is specific to each individual, in most cases students’ 
reasoning about functions is characterized with a single theoretical lens (e.g, Moore & Carlson, 
2012; Thompson, 2011). Hence, merging multiple theoretical perspectives to characterize 
students' ways of thinking is an important area of inquiry. In response to this need, we aim to 
merge Thompson’s theory of quantitative reasoning and Lithner’s theory of mathematical 
reasoning to characterize students’ thinking. 
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Theoretical Orientation 

Quantitative Reasoning 
Thompson situated the theory of quantitative reasoning is based on Piaget’s (2001) work on 

mental images that students create. Creation of the mental images is a cognitively demanding 
process for students during conceptualization of quantities, quantification, and relationships 
among quantities (Thompson, 2011). Students can develop conceptualizations of function by 
engaging with and reasoning about quantities that covary simultaneously. Their ability to build 
an image of changing quantities involves several layers: the first being perceiving a change in 
one quantity, the second being shifting into conceiving the two quantities as coordinated, and the 
final layer being the construction of an image of the two changing quantities as they covary 
simultaneously. In this study, we employ Thompson’s definition of quantity- a quality of an 
object which is measurable. 

There are several central tenets of quantitative reasoning: quantity in mind (not real world), 
quantification, and quantitative operations. Quantity in mind are mental constructions of 
quantities (Thompson, 2011). Quantification is “the process of conceptualizing an object and 
attribute of it so that the attribute has a unit of measure, and the attribute’s measure entails a 
proportional relationship (linear, bi-linear, or multi-linear) with its unit.” (Thompson, 2011, p. 
37). Quantitative operations are the relationships among quantities. Quantitative operations 
involve operating within quantities (Thompson, 2011).  

Quantitative and covariational reasoning 
Quantitative Reasoning is a foundation for covariational reasoning; covariational reasoning 

empowers students to see invariant relationships between covarying quantities (Thompson, 
2011). For Thompson and his colleagues, covariational reasoning is being able to think about 
"two quantities' values varying" and the two quantities "varying simultaneously" (Thompson & 
Carlson, 2017, p. 425). Thompson's perspective of "covariation" is students’ understanding of the 
relationships between quantities that vary continuously. We adopt Thompson and Carlson’s 
(2017) major levels of covariational reasoning as indicated in Table 1. 

Mathematical Reasoning 
Lithner's theory of mathematical reasoning seeks to characterize the nature of students' 

thought processes during task solving in mathematics. Tasks entail exercises, tests, group work 
and other work that are requested from students. Just like Thompson’s theory, Lithner’s theory is 
based on Piaget's theory of mental images and seeks to explain how these images come to be. In 
the theory, reasoning is defined as “the line of thought adopted to produce assertions and reach 
conclusions in task solving” (Lithner, 2008, p. 257). The components involved in reasoning 
consist of objects, transformations, and concepts. Objects are the fundamental entity that one is 
working with in task solving. These may be real world objects or abstract [mathematical] objects. 
Examples of [mathematical] objects include functions, numbers, matrices, equations, graphs, etc. 
Real-world objects may include things like marbles, dice, apples, etc. A transformation is an 
action taken on an object or set of objects to produce another object(s). Transformations can 
occur between real world and abstract objects. For example, counting the number of marbles on 
the desk is a transformation on a real-world object to an abstract object (number). A concept, on 
the other hand, is a coherent set of objects, their properties, and transformations between the 
objects. An example of a concept is the notion of a function, or infinity. Most concepts usually 
have several properties, and one needs to be able to identify the relevant properties in a given 
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problematic situation involving the concepts (Geteregechi, 2020). Such relevant properties are 
called intrinsic properties while irrelevant ones are called surface properties. As an example, a 
student who claims that the function 𝑦 = 5𝑥 has no y-intercept because there is no constant is 
said to anchor their argument on surface properties while a student who recognizes that the y-
intercept is 0 because the solution of the equation at 𝑥 = 0 is 0 is said to anchor their reasoning 
on intrinsic properties. 
 

Table 1.  Major Levels of Covariational Reasoning (Thompson & Carlson, 2017, p. 442) 
 

 Level Definition Verbal Reasoning about Function in the 
Growing Rectangle Context for This Study 

Chunky 
Continuous 
Covariation 

“The person envisions changes in one 
variable’s value as happening 
simultaneously with changes in 
another variable’s value, and they 
envision both variables varying with 
a chunky continuous variation.” 

The student thinks and describes that the area 
of the rectangle is growing because the height 
is growing, conceiving that both length and 
height are varying at an interval. E.g., each 
time the area increases, the length also 
increases. 

Coordination 
of 

Values 

The person coordinates the values of 
one variable (x) with the values of 
another variable (y) with the 
anticipation of creating a discrete 
collection of pairs (x, y).” 

The student thinks and describes that change 
in height and change in area as discrete points. 
E.g., when the height is two, the area is 12; 
when the height is 3, the area is 27, which 
would then create a graph by lining up (2, 12), 
(3, 27) for height. 

Gross 
Coordination 

of Values 

“The person forms a gross image of 
quantities’ values varying together, 
such as ‘this quantity increases while 
that quantity decreases.’ The person 
does not envision that individual 
values of quantities go together. 
Instead, they envision a loose, non 
multiplicative link between the 
overall changes in two quantities’ 
values.” 

The student thinks and describes that the area 
is increasing while the height is increasing, 
and they do not conceive that values of height 
and area are changing together. 

 
Main components of Lithner's theory of mathematical reasoning. The main components 

of Lithner's theory of MR include flexibility, argumentation, novelty, and object anchoring. 
Argumentation refers to any actions aimed at convincing the solver or someone else of the truth 
of stated assertions during task solving. During argumentation, one points to various objects and 
their properties. Argumentation may be based on (anchored) intrinsic mathematical properties or 
surface properties. An argument is said to be plausible if it is anchored on intrinsic properties. 
Flexibility refers to the ability to use different approaches and accommodate adaptations to a 
given situation. Novelty occurs when a solver creates a new strategy or recreates a forgotten 
strategy in a task solving situation. A necessary precursor for novelty to occur is a problematic 
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situation in task solving. A problematic situation happens when a solver does not know the 
solution or parts of the solution prior to task solving (Geteregechi 2020; Lithner, 2008). If a 
solver meets a problematic situation and is able to overcome it by posing plausible arguments, 
then, we say that the solver has engaged in knowledge generation. 

Methodology 
In order to network the two theories to characterize students' reasoning about functions when 

they are given quantitatively rich tasks, we adopt Kidron et al.’s (2008) framework for 
networking theories. We begin by (a) finding a common aspect addressed by the theories, (b) 
identifying ideas shared in both theories, (c) comparing and contrasting the approaches according 
to the aspect under investigation, and (d) connecting the results in a complimentary manner that 
may provide deeper insights into the aspect under consideration. 

The aspect under consideration for our case was the kinds of students’ reasoning about 
functions. While Lithner’s theory provides a well-specified definition of the term reasoning, 
Thompson’s theory of quantitative reasoning is more silent about the term. The lack of 
characterization of reasoning is not a surprising observation and has been documented in other 
studies (e.g, Jeannotte & Kieran, 2017; Authors). Nevertheless, Thompson’s theory provides a 
detailed explanation of reasoning in the context of quantities. Since the concept of function deals 
with quantities and how they vary, we believe that Thompson’s theory and Lithner’s theory can 
be used in a complementary way and provide a strong foundation for characterizing reasoning in 
the context of functions. 

In order to conduct our networking effectively, we start by examining a common aspect in 
both theories, which is the kinds of students’ reasoning about functions. We now identify some 
of the ideas that are shared by both theories and compare and contrast the approaches based on 
the shared ideas. To begin with, we start with the idea of flexibility. The notion of flexibility is 
articulated in Lithner’s theory as the ability to see a situation from multiple perspectives and 
switch between different approaches as the situation may demand. A student who does not show 
this kind of flexibility is said to experience “fixation” (Lithner, 2008, p. 267). We find this 
component of Lithner’s theory to be very general in nature when applied to the case of functions. 
Although Thompson’s theory does not use the term flexibility, the descriptions in the theory 
make it clear that a student needs to be able to see quantities in an unconventional way. For 
example, if a student perceives the height and the length by mapping height of 1 cm with length 
of 4 cm, then the student shifts into perceiving that for every 1 cm change in height there is 4 cm 
change in the length. 

Our second consideration was argumentation. In both Lithner and Thompson’s theories, 
argumentation is a key component in determining students’ reasoning. Since both theories 
emanated from Piaget’s theory of mental images, justifying one’s claims is an important 
consideration in characterizing how they are reasoning. The difference between the two theories 
is that Lithner’s theory provides a way of characterizing the quality of arguments based on 
whether they are founded on mathematical properties of the involved objects or not. While this 
argumentation is subtly presented in Thompson’s theory, Lithner’s theory provides us with a way 
of bringing it forth and making sure it is at the center of any efforts of characterizing reasoning in 
the context of functions. 
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Data Sources and Task  
Data originated from the first author’s work with secondary school students. This work is 

from a design-based research methodology (Cobb, Jackson, & Sharpe, 2017). It was a teaching 
experiment (Steffe & Thompson, 2000) with eight secondary school students. The teaching 
experiment took place at a community center, for eight consecutive teaching episodes for 
approximately two weeks. The data is enhanced transcription of small and whole group 
interactions when they engage in quantitatively rich tasks at after school settings. The growing 
rectangle task (Figure 1) is modified from the “Gamma tasks” (Ellis, 2011). The enacted task 
characteristics includes dynamic growing rectangles and their videos (Altindis & Raja, 2021). 
Students were asked to investigate the relationship between height, length, and area of the 
growing rectangle.  

 
Figure 1: The represents a growing rectangle task  

Network Theories in Action: Method of Networking  
The first author analyzed an excerpt of data using constructs from Thompson’s theory while 

the second and the third authors analyzed the same excerpt using Lithner’s perspective. For 
Lithner’s perspective, our goal was to determine whether the students met a problematic situation 
and how they reasoned their way out of it. We did this by searching for incidents where the 
students argued in support of the various assertions that they made and determined the quality of 
these arguments by assessing their mathematical foundations. Finally, we characterized the 
forms of reasoning as creative or imitative. From Thompson’s perspective, the first author coded 
the data for incidents that reflected major levels of covariational reasoning (Thompson & 
Carlson, 2017).  

Following these analyses, the three of us met to discuss our individual coding processes and 
to identify parts of the excerpt that each of us highlighted as important in characterizing students’ 
reasoning about functions. We then compared these parts of the excerpt and how each 
perspective characterized them. In doing this, our aim was to gain deeper understanding of how 
using these two theoretical lenses on the same excerpt can be used to offer more insights into the 
students’ reasoning about functions. In the discussion section, we highlight issues that were 
important for each perspective and how both can be leveraged simultaneously to promote 
meaningful learning of functions. 

Results 
By analyzing the data from the two theoretical perspectives, we concluded that, (1) Students 

generate knowledge when they shift among major levels of covariational reasoning. (2) Students 
showed flexibility in creating and connecting representations when reasoning about quantities 
and quantitative relationships.  

(1) Generation of Knowledge when Moving Across Levels of Covariational Reasoning. We 
found that when students moved across levels of covariational reasoning (see Table 1), they 
benefited from the generated knowledge. The following vignette is taken from Mert and Tarik’s 
small-group interactions when they were exploring the relationship between the height and 
length in the growing rectangle task.  
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Mert: So like the height is one. The length is something. Like one's going to be two. So like 
one three we can tell like tell how much it is. one is a billion the other like 0.001. I am 
going to make exactly 1. So every one, like, like, wait Is that true? When height is 2,  

Tarik: Oh When it is 2, that is going to work. For every one. For height increases length 
increases by 2cm [Figure 2] 

Mert: When the length is by 2, height increases by 1. As the height increases by 1, the length 
increases by 2, which is making the area larger.  

Tarik : Oh and when it's two of one.  it is a one to two. For every, When the height is 
increasing by 1 cm, the length is increasing by 2 cm. 

 

 
Figure 2: Represents Tarik’s written rtifacts explaining the relationship between height and length of the growing 

rectangle.  

 From the above excerpt, we noted that Mert mapped the values of the height with the value 
of length. Then Tarik noticed that the change in length affected the change in height. We noticed 
that Mert encountered a problematic situation expressed as an uncertainty. Their initial move of 
addressing the uncertainty was by Mert and Tarik engaging in gross coordination of height and 
length without addressing the magnitude of the changes in the height and length. Then, they 
generated knowledge by noticing that for every one cm increase in height, the length increased 
by 2 cm. This was an instance of the students engaging in chunky continuous covariational 
reasoning. We concluded from this data that students engage in knowledge generation, when 
they shift from major levels of covariational reasoning, in this case a shift from gross 
coordination to chunky continuous covariational reasoning. We argue that Lithner’ theory of 
mathematical reasoning can characterize the reasoning entailed in the shifts between the two 
major levels of covariation reasoning described above (Table 1), which originated from 
Thompson and Carlson.  

(2) Students’ Flexibility when Reasoning about Quantities and Quantitative Relationships.  
We found that students who were able to reason about quantities and quantitative relationships 
gained flexibility to create multiple representations. The following data excerpt is taken from 
Mert and Tarik small group interactions, when they explored the relationship between height and 
length of a growing rectangle. 

 
Tarik: So, it is for every 1. So, it's a one to two ratio. So for every one the height, one 

centimeter, the height increases the length increases by 2cm. . 
NA: Say, one more time. Or can you write that much? what you just said for me, okay, you 

can use this. 
Tarik: as the height increases 1, and length increases by 2 therefore they are making the area 

larger.  
Mert: I think it is going to go straight.  
Tarik: No look, don't start the graph yet. We make this [Figure 3b] first. 
Mert: Sketch.  
Tarik: x and y axis. X is length, and Y is height. You can write on the side, it does not matter. 
Mert: Wait. This goes on linearly like that (Figure 3a).  
Tarik: No, we have to sketch it (Figure 3b).  
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Figure 3: (a); Mert’s table and graph. (b) Tarik’s table and graph representing height and length of growing 

rectangle. 

From the above data excerpt, we concluded that students were able to translate the table into 
a graph which gave them a geometric perspective of their function. The ability to create these 
multiple representations (verbal description, table, algebraic equation, and graph)  of the function 
is an indication of flexibility. In this case Mert and Tarik were not fixated on a single perspective 
of the problem. Tarik noticed that the relationship between height and length is covarying in the 
interval of 1 cm (line 11). With that reasoning, Tarik and Mert were able to create table and 
graph (Figure 3) to represent height and length of the growing rectangle. Mert and Tarik’s robust 
covariational reasoning enabled them to create a table and a graph. This flexibility allows them 
to see several quantities and quantitative relationships associated with the function.  

Discussion and Conclusions 
We networked Thompson’s theory of quantitative reasoning and Lithner’s theory of 

mathematical reasoning to characterize students' reasoning about quantities and quantitative 
relationships. Our choice of these two theories was informed by the following reasons. First, we 
found no differences in terms of how an object is defined by Thompson and Lithner’ theories. 
Second, we agreed that the theories describe “reasoning” in similar ways. Thompson’s theory 
doesn’t define reasoning explicitly but describes how functions can be conceptualized using 
covariation reasoning by perceiving change in one quantity, shifting to view two quantities as 
coordinated, and building images of two covarying quantities simultaneously. From the 
description of what is entailed in covariation reasoning, one could characterize aspects of focus 
that would qualify a certain kind of reasoning as covariation. This kind of description, in our 
opinion, when assumed as a way of reasoning about covarying object, is limited to the concept of 
covariation, whereas Lithner’s description of reasoning is more general. So they both speak to a 
kind of reasoning but are different in terms of the scope of the applicability of the kind of 
reasoning. 

Our focus on student reasoning was in support of NCTM’s (2014) and other researchers’ 
emphasis to encourage student reasoning in learning functions. Our analysis of data from both 
theories revealed important aspects of student reasoning including their generation of knowledge 
and their flexibility in thinking as they engaged in quantitatively rich tasks and showed evidence 
of covariational reasoning. Knowledge generation is not only a key aspect of learning but also a 
daily aim for teaching. It is however not a trivial accomplishment in any teaching and learning 
setup. An approach that emerged from our analysis that enhanced knowledge generation was 
affording a problematic situation and assessing the nature of argumentation that aided knowledge 
generation. In particular, the argumentation needed to be anchored in the intrinsic mathematical 
properties of the objects. In a broader sense, our findings can speak to not only characterizing 
student reasoning but also supporting their reasoning by designing mathematical tasks that will 
improve and challenge student reasoning to higher levels.  
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Reframing Relearning 
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We propose an expanded conceptualization of “relearning”, a construct that has a long history 
in the field of cognitive psychology and has more recently been applied to the field of education, 
specifically to teacher training. We illustrate how this broader conceptualization applies to other 
contexts in mathematics education (e.g. developmental mathematics courses and repeated 
courses), aiming to provide opportunities for researchers of relearning experiences to 
reconceptualize their work as describing part of a larger body of research in which findings 
from one section could suggest new avenues for others. By freeing constraints to which studies of 
relearning have previously been subjected, we provide researchers with theoretical tools to 
investigate relearning in their own context. 

Keywords: relearning, teacher education, developmental mathematics, cognitive psychology 

 Despite mathematics being known for its hierarchical structure, it is often the subject of 
courses that are revisited, repeated, or otherwise redundant for students in undergraduate 
institutions. In some instances, as with math content courses for future teachers, this revisiting of 
content studied before is an expected and encouraged part of student experiences. In other 
instances-as with courses that are failed and then retaken, courses that fail to transfer from other 
institutions and are thus retaken, or developmental (or remedial) math courses that are required 
due to insufficient performance on a placement test-the repetition is unexpected and often 
undesirable. All of these cases involve to a significant degree the phenomenon of relearning, or 
learning about content that one has tried to learn before in a previous math course. As a term, 
relearning has been used for over a century to describe specific studies of memory in cognitive 
psychology. Beyond these studies in cognitive psychology, Zazkis (2011) has used the term 
relearning to describe the experience of preservice elementary teachers in their math content 
courses and to distinguish this experience from those that can be well-described by traditional 
theories of learning. We contend that these current conceptualizations of relearning are subject to 
unnecessary constraints that have resulted in their theoretical underdevelopment and have limited 
the potential applicability of the phenomenon of relearning in undergraduate mathematics 
education at large. Although this broader notion of relearning is not limited to the domain of 
mathematics, we believe it is of particular interest to mathematics education given that the 
hierarchical structure of mathematics and higher frequency of course repetition (particularly at 
the college level) leads to an increased number of opportunities for students to experience this 
phenomenon in mathematics compared to other subjects.  

Existing Conceptualizations of Relearning 
In cognitive psychology, the term relearning is used to describe scenarios in which an 

individual is studying some content (typically declarative knowledge such as lists of symbols, 
word-definition pairings, or sequences) they have previously memorized, to once again produce 
that content from memory in an experimental session. This use of the term relearning is 
attributed to German psychologist Hermann Ebbinghaus who in 1885 documented the number of 
verbal rehearsals necessary for him to memorize strings of randomly-ordered nonsense syllables 
as the lengths of the strings varied. He then recorded the number of rehearsals necessary to recite 
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those same strings of syllables again from memory after varying intervals of time. Ebbinghaus 
labeled his experience of trying to memorize the same strings of syllables through verbal 
rehearsal a second time as “relearning”. This research design involving observation of the 
amount of time participants needed to relearn to recite lists of terms multiple times was greatly 
influential on future studies of memory. Of particular significance was the ‘savings in relearning’ 
result (Nelson, 1985; Murre & Dros, 2015), or the observed inverse logarithmic relationship 
between the amount of time elapsed from the first learning trial to the relearning trial and the 
number of rehearsals required in the relearning trial for the individual to reproduce the material 
perfectly from memory. Ebbinghaus hypothesized that this trend was directly related to features 
of memory itself, as something that would fade rapidly at first, then more slowly over time. In 
this way, the ‘savings in relearning’ effect provided a means by which one could estimate 
retention, and thus provide information about the rate at which content was forgotten. Such an 
estimation is unmistakably valuable in educational contexts, in particular when accompanied by 
teaching and studying techniques that could anticipate such a curve to encourage maximum 
levels of retention (Abbot, 1909; Hill, 1914).  

This “traditional” use of relearning in the study of memory would later come to be critiqued 
by more contemporary cognitive psychologists (Bahrick, 1979; Kintsch, 1974; Neisser, 1976). 
Critics noted that the restrictions on the content to be memorized and relearned also restricted the 
extent to which researchers could explore meaningful aspects of retention and relearning in 
authentic contexts. In particular, by only focusing on disconnected items in a series that could be 
memorized and reproduced in totality in one experimental session, researchers limited their 
applicability to contexts in which particular pieces of content are interrelated within a larger 
knowledge system such as a hierarchical structure (Nelson & Smith, 1972) or the structure of a 
language (Hansen, Umeda, & McKinney, 2002). Additionally, by limiting the amount of time 
between learning and relearning trials (sometimes to as little as a few seconds), traditional 
memory studies had little predictive value in an educational context in which students would be 
expected to retain information over the course of several weeks or months. Despite these 
critiques, studies of relearning in naturalistic educational contexts have largely retained the same 
scope in content and methodology that was critiqued over 40 years ago.  

An example of this can be seen in more recent work investigating the use of the traditional 
successive relearning technique in “authentic educational contexts” (Rawson, Dunlosky, & 
Sciartelli, 2013, p. 524). These content/context pairings have included a list of definitions in an 
introductory psychology course (Rawson, Dunlosky & Sciartelli, 2013); a list of definitions, 
names of structures in the brain, and information about the steps in a mental process in a 
biopsychology course (Janes et al., 2020); and instructions for how to solve four types of 
probability problems in a laboratory setting (Rawson, Dunlosky & Janes, 2020). These studies 
share the same restrictions of focusing on content that is considered to be learned when it is 
memorized (with content retention being demonstrated in an experimental session), and thus fail 
to capture the range of authentic experiences with relearning in educational contexts (e.g. content 
courses for future teachers, all forms of developmental education, courses that students retake for 
any number of reasons, and preparatory courses for standardized tests such as the SAT).  

The traditional focus on memorization may explain why a separate theory of relearning has 
more recently been developed by Zazkis (2011) in the field of content courses for preservice 
teachers (Zazkis did not reference the idea of relearning as it has been treated in cognitive 
psychology). While relearning as a term was used colloquially to describe the learning 
experience of preservice teachers learning mathematics prior to Zazkis (2011) (e.g. Nicol, 2006; 
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Klein, 2008; Hough et al., 2007), Zazkis’ work marked the first acknowledgement of the 
experience of relearning as a phenomenon of theoretical significance in undergraduate math 
education. Zazkis argued that “contemporary” understandings of how people learn such as 
constructivism (Ernest, 1996) or situated cognition (Greeno, 1991) are insufficient for describing 
the experience of relearning for prospective elementary teachers. Specifically, "since prior 
cognitive structures have been constructed in the learner's mind some time ago, the 
reconstruction and reorganization processes involved [in relearning] are more challenging for the 
learner as well as for the instructor" (p. 13). Zazkis’ notion of relearning allows mathematics 
teacher educators to more clearly focus on unique aspects of the learning experience noted to be 
fraught with resistance from preservice teachers (e.g. Nicol, 2006; Hough et al., 2007; Zazkis, 
2011; Barlow et al., 2013). However, as is the case with cognitive psychology, we see potential 
for an even broader notion of relearning.  

Zazkis’ (2011) notion of relearning honed in the notion of “restructuring knowledge.” In her 
work, this is the result of reconstructing previously-held knowledge and reorganizing it in a 
particular way seen as better-suited for the purposes of teaching. This definition is restrictive in 
that it only considers relearning to occur if two conditions are met: first, the learner began with 
an insufficient understanding of content from K-12 experiences; second, the outcome of that 
learning is reconstruction of previously-learned material. This is made clear by Zazkis and 
Rouleau (2018), who claimed: “It is unavoidable that some ideas of elementary mathematics 
have to be relearned as their domain of applicability was limited to early experiences. Those are 
unavoidable met-befores. However, in other cases, such as BEMDAS [the order of operations], 
relearning would not be required if there was no prior misleading learning,” (p. 161). It is 
suggested that students are only considered to be relearning when they are expanding the 
“domain of applicability” of their content understanding or correcting “prior misleading 
learning”. Hence, if a student had acquired what the researchers would consider to be a desirable 
understanding of the order of operations in K-12, then relearning would not necessarily take 
place when that same content was studied again in the teacher education course. A broader 
perspective would be to consider that relearning may involve outcomes other than significant 
restructuring of knowledge. Using this broader perspective, all preservice with the task of 
learning about content seen before would be considered relearning, but the outcome of that task 
may vary according to a multitude of factors (e.g., the learning that occurred in the K-12 context, 
the perceived quality of understanding of the content before relearning it). It may also be the case 
that multiple learning outcomes could exist simultaneously for one individual such that he or she 
may be reconstructing their understanding of some mathematical topics while achieving different 
outcomes for others.  

Despite their surface differences, we argue that the inherent phenomenon being described as 
‘relearning’ in cognitive psychology and teacher education is inherently the same. Their 
ostensible dissimilarity stems from the fact that they both describe different types of relearning, 
subject to restrictions that are relevant to the foci of their respective fields. By viewing them as 
separate instantiations of the same general phenomenon, both fields would increase the 
likelihood of theoretical advancements as problems from one field are reconceptualized using the 
lens of the other, and as explanatory mechanisms and moderating variables are shared. 
Furthermore, divorcing the term relearning from the norms of a particular context allows for the 
focus to shift from answering the question: ‘what outcome should students get as a result of this 
experience?’ (e.g., memorization, knowledge reorganization) to ‘what outcomes are occurring 
and how do the circumstances of this particular context determine which outcomes are possible?’  
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Proposal of Theoretical Perspective 
At the most basic level, we contend that relearning requires three things: some content (in our 

case mathematical), a “time 1” (T1) representing a past occurrence in which an individual has 
tried to learn about that content, and a “time 2” (T2) representing the most recent time an 
individual has tried to learn about that same content again. In general, it should be compared to 
the phrase “learning for the first time” in that it does not suggest a particular way in which ideas 
are cognitively organized or how that organization takes place. Instead, our proposal is to define 
a context along with defining variables of interest to structure explorations into student 
experiences in that context. Although the name relearning appears to suggest some degree of 
mastery of content at T1, we make no such assumption in our treatment of this construct. That is, 
T1 learning need not cross any threshold or meet any criteria for relearning to be said to occur at 
T2. This is not to say that different levels of proficiency do not matter, but instead that a certain 
level of proficiency at T1 is not required for the phenomenon to take place. By placing 
additional restrictions on these three components, we can recognize various types of relearning 
as they are currently conceptualized in the fields of cognitive psychology, preservice teacher 
education, and other contexts. Each of these fields focuses on a particular type of relearning by 
requiring certain values of the variables: motivation and possible learning outcomes.  

By ‘motivation’ we mean the main rationale that justifies the beginning of the learning (or 
relearning) experience for the individual. In the relearning scenario, it is the answer to the 
question: why is the individual relearning material at this particular time? (e.g., was learning at 
T1 deemed insufficient, if so why?) Importantly, this question is asked of the relearning context 
rather than the individual. For instance, an individual required to participate in a psych study of 
memory for course credit and an individual required to take a math content course for future 
teachers might both list ‘academic requirement’ as their motivation for beginning the relearning 
experience. The motivation behind the design of the two scenarios, however, is very different. 
Whereas the motivation of relearning in memory studies in cognitive psychology is for the 
individual to meet or exceed proficiency in recalling content from T1, the motivation in math 
teacher education is for students to acquire a new type of proficiency of content at T1 for the 
purposes of teaching.  

By ‘learning outcomes’ we mean the resultant relationship between a student and material 
they have seen before at the end of a relearning experience. This is not a grade or an indication of 
passing/failing. For a scenario in which one is learning for the first time, we ask what was 
learned. This may be determined by examining a student’s answers to a very well-designed 
exam. The same is not true for a relearning scenario. In asking what was learned, we mean to 
answer the question: what was the value of their learning experience in terms of their 
understanding of content this time around? The answer to this question requires one to reference, 
in some way, the content that was learned before. This is simply not possible in a course where 
that content is being learned for the first time. The realm of possibilities for what the value of 
this variable might be is constrained by both the context and the individual. For instance, the 
restructuring outcome addressed by Zazkis earlier may be one of several possible outcomes for 
preservice elementary teachers in math content courses. Determining the range of learning 
outcomes that exist in a relearning experience and comparing it to the desired or range of 
desirable outcomes would be one of the first ways in which one could begin to determine which 
contextual elements are or are not supporting students in meeting course expectations.  

While the content at T1 and T2 need not be identical, it does need to cross a particular 
threshold of similarity such that the content learning goals at T2 are essentially the same as those  
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at T1. For some studies of memory in cognitive psychology this criterion is more clearly filled as 
the materials to be memorized are completely identical at T1 and T2. In the field of preservice 
teacher mathematics education, the issue of determining content similarity is more complex. This 
is because math content courses for future teachers often have additional learning goals that 
would not be considered in the K-12 context. Zazkis (2011) describes the experience of 
preservice elementary teachers relearning the concept of divisibility. There are several instances 
in which the preservice teachers “abuse” divisibility rules to make erroneous conclusions. For 
example, inappropriately extending the idea that if the last digit of a number is even, then it is 
divisible by 2 leads to the conclusion that the number 359 must be divisible by 3 since 9 is 
divisible by 3 (p. 60). The learning goal of the lesson occurring with the preservice teachers in 
this instance is the same as the learning goal that would occur with 4th grade students learning 
about divisibility for the first time. Interestingly, it is precisely because these content learning 
goals are the same in the relearning situation that the most relevant questions regarding student 
experiences at T2 can be asked. While it wouldn’t be wrong to ask ‘can a preservice teacher 
produce the prime factorization of the number 359?’ a question that would be more relevant in 
the context would be: ‘Given that this student has already learned about prime factorization, why 
are they approaching the task of producing the prime factorization of 359 in this way now?’.  

Alternative Relearning Contexts 
If one considers the basic components to be the only criteria necessary, then several other 

more common college math experiences are capable of being classified as experiences with 
relearning. Three types of course experiences that heavily involve the experience of relearning 
but do not currently utilize the concept for the purposes of theoretical advancement are: college 
math courses which are retaken, traditional developmental math courses, and non-traditional 
forms of developmental courses featuring co-requisite sections or supplemental instruction. For 
the sake of space, we briefly consider developmental courses in more depth. Traditional 
developmental math courses are semester-long courses taught in college settings whose content 
mirrors that of pre-algebra and algebra courses offered in the middle and high school settings. 
These are typically non-credit courses that are required for students to take after placement in 
order to graduate. Given the high failure rates of these courses combined with their status as 
degree requirements, students often need to retake developmental courses, sometimes multiple 
times (Ngo & Velasquez, 2020; Fay, 2020). Thus, it is highly likely that students are spending 
significant time learning about content they have seen before, either from a previous K-12 math 
course or from a previously attempted developmental math course in college. In fact, this 
similarity to content learned at a time T1 is explicitly acknowledged as a common feature and a 
point of concern for developmental math educators. For example, Stigler, Givvin, and Thompson 
(2010) provide the following summary of a typical developmental math experience:  

Thus, students who failed to learn how to divide fractions in elementary school, and who 
also probably did not benefit from attempts to reteach the algorithm in middle and high 
school, are basically presented the same material in the same way yet again. It should be 
no surprise that the methods that failed to work the first time also don't work in 
community college. And yet that is the best we have been able to do thus far. (p. 4)  
Although the authors’ comments focused on the community college context, similar 

sentiments have been made across developmental math courses offered at 2- and 4-year 
institutions (see Ngo, 2020). In this case, not only is the mathematical content itself considered 
similar enough to be “retaught” but the teaching methods used to do so are similar as well. The 
use of the word ‘reteach’ here is colloquial, and not suggestive of an underlying theory of 
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relearning as the primary activity in developmental math classrooms. The present framework 
would serve as a guide into the type of theoretically rigorous investigation of student experiences 
in these courses that has been called for numerous times before (Grubb & Cox, 2005; Sitomer et 
al., 2012; Mesa, Wladis & Watkins, 2014).  

The developmental math relearning experience differs from an experience with relearning in 
preservice teacher mathematics education and studies of memory in cognitive psychology due to 
the motivation behind the T2 experience and the range of possible learning outcomes considered. 
For example, content courses for future teachers are a mandatory component of the normal 
curriculum for the major. Relearning in this context is motivated by the career requirement for a 
different relationship to mathematical content. In contrast, a developmental math experience with 
relearning is motivated by demonstrated insufficient proficiency with the content learned at T1, 
either according to the institution (e.g. failing the course previously, poor placement exam 
results) or the student. Preservice teachers may also have developed an insufficient proficiency 
with the content in their K-12 math experiences, but T1 proficiency does not dictate whether a 
preservice teacher would be required to take the course. Likewise, whereas the learning outcome 
of reconstruction through the reconsideration of previous understandings and restructuring of 
content may be desirable in both teacher education and developmental math, other learning 
outcomes are possible. For instance, it is a reasonable learning outcome in a developmental math 
course for an individual to acquire the content proficiency that they should have acquired the 
first time they took the course. Learning outcomes in this domain are much more bound to the 
learning outcomes that were possible at T1, much like studies of memory in cognitive 
psychology. While this outcome is also possible in math teacher contexts, it would be far from 
desirable. Learning outcomes in these contexts are made to intentionally expand beyond those 
possible at T1 due to students’ differences in age and mathematical experience.  

Comparison to Alternative Relearning Conceptualizations 
Due to the hierarchical structure of mathematics, one could argue that you would be hard-

pressed to find any college math course that didn’t include learning about at least some content 
that a student had seen before. Thus, one might argue that instances of relearning are really 
simply special cases of students building on prior knowledge. Recall that in order for a scenario 
to be labeled as relearning, the content learning goals at T2 are essentially the same as the 
content learning goals at T1. This would exclude cases, for instance, in which calculus 
instructors reference common algebraic errors when teaching students how to find critical values 
of functions whose derivatives involve fractions (Stewart & Reeder, 2017). The content learning 
goals at hand are focused on novel Calculus concepts of derivatives and local maxima and 
minima, not the algebra that might be involved in solving a problem related to these concepts. 
Like the title of the book Stewart and Reeder’s chapter comes from, And the Rest is Just Algebra, 
learning of algebra in this context is considered trivial, or at best secondary.  

While we agree that it would be possible to view relearning scenarios like any other learning 
scenario in which prior knowledge is used, we contend that this level of generality would be less 
advantageous for understanding student experiences. Consider the comparison between the 
above examples from calculus with the educational scenarios described in Cox (2015). In her 
analysis of curriculum and instructional activities across six developmental math courses, Cox 
describes instructional strategies for teaching students about fraction representations. One 
strategy involved walking students through “a review of division more broadly” in order to 
contextualize the idea of fraction division within a larger domain of part-whole relationships 
between numbers (p. 274). The instructor asked students to produce mathematical problems  
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whose solutions would be represented by various fractions. For instance, 3/.25 could be a 
representation for the solution of the problem “How many quarters do I need to make $3?” (p. 
274). One could think of these students as building on prior knowledge of division to produce a 
new type of understanding of what previously may have been only a mathematical “rule”. 
However, considering this lesson to be an example of relearning allows the primary area of focus 
to be more specific to the purpose and impact of the repeated content. Using this lens, we might 
wonder: what kinds of problems would these students be able to solve more easily using this type 
of understanding, than they could in their previous algebra course? To what extent did students 
perceive this lesson as a “review” and how did that impact the value they gained from this 
additional lesson in fraction division?  

In a similar way, relearning can be distinguished from McGowen and Tall’s notion of a met-
before (McGowen & Tall, 2010). A met-before is defined as “a mental structure that we have 
now as a result of experiences we have met-before,” (p. 171). McGowen and Tall use met-
befores to construct mental models of students’ understanding of content by considering how 
students employ mental structures formed by previous experiences with mathematical content to 
learn new things. The notion of a met-before is not incompatible with the notion of relearning, 
but the two terms represent different types of entities. Met-befores are mental structures of 
previously seen content, whereas relearning is an experience that takes place when a student is 
learning about the same content at a different timepoint. However, met-befores may be a 
particularly useful concept for examining how the particularities of a relearning context restrict 
the kinds of learning outcomes that are possible for students given that they are capable of being 
both supportive and unsupportive according to the context in which they are encountered. 

Conclusions 
One of the most difficult and yet most useful aspects of defining a phenomenon is 

determining the boundary conditions. Deciding whether or not an educational scenario can be 
described as relearning is not always obvious. While some scenarios (like the cognitive 
psychology experiments described above) more clearly fit the definition of relearning, deciding 
to view experiences in naturalistic educational contexts as relearning requires a bit more thought. 
In the contexts discussed above of teacher education, students repeating courses, and 
developmental math courses, the question is not so much ‘is this an instance of relearning?’ but 
rather ‘to what extent can I describe student experiences in this context as relearning?’ Exploring 
the boundaries around what is and is not best described as relearning in a given context is a 
method by which instructors can work to better understand the scope of experiences students are 
having with content in their course. In the realm of teacher education, a consequence of 
considering the role of relearning within a math methods course is that it requires one to also 
carefully consider the role of pedagogical content knowledge. The extent to which the two can or 
should be thought of separately is a point of debate for teacher educators. One benefit of 
considering the role of relearning in such a course is that the phenomenon is not inextricably tied 
to the teacher education context like pedagogical content knowledge is. This enables teacher 
educators to compare the experiences of their students with those students in other relearning 
contexts in which the motivation of teaching the content is not present. This, in turn, may help 
shed light on the influence of the expectation of teaching over student experiences, even in 
courses that are “purely” subject-matter based. How similar are the experiences of students in a 
developmental algebra course and those in a math course for future teachers aimed at that same 
mathematical content? Which learning outcomes might only be possible in either context due to 
the difference in motivation for relearning? 
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The Staging of Proof by Contradiction in Texts: An Exploration of Disciplinary Artifacts 
 

Stacy Brown 
California State Polytechnic University, Pomona 

 
Drawing on Vygotskian perspectives of cultural artifacts and the work of Plut and Pesic (2003) 
this theoretical report argues that, as culturally supportive tools (CSTs), texts play a role both in 
students’ development and in the reproduction of culture. The extent to which these roles are 
fulfilled, however, can vary. Indeed, as argued by Plut and Pesic (2003), texts can be functional 
or dysfunction with respect to either development ot culture. Taking these possibilities into 
consideration this theoretical report explores: (1) the staging of proof by contradiction in 
Introduction to Proof (ItP) texts, and (2) the extent to which these ItP texts (cultural artifacts) 
align and/or fail to align with historical /philosophical treatments of proof by contradiction; that 
is, the extent to which these CSTS may be either functional or dysfunctional. 

Keywords: Proof by Contradiction, Contradiction, Cultural Artifacts, Textbook Analysis 

Introduction 
Research on students’ difficulties with proof by contradiction has tended to cast students’ 

difficulties as an attribute of students. Specifically, researchers have argued that students 
experience difficulties because: (i) students’ dislike this form of proof (Harel and Sowder, 1998); 
(ii) prefer to reason constructively (Harel & Sowder, 1998; Leron, 1985;) or from known objects 
as opposed to the absurd (Antonin & Mariotti, 2006), and/or (iii) experience difficulties 
accepting the logical theories (metatheorems) required for proof by contradiction and, therefore, 
the results of such proofs (Antonini & Mariotti, 2008). In other words, students supposed 
difficulties with proof by contradiction are essentialized (in the sense of Gutierrez, 2008): they 
are portrayed as characteristics of students, their ways of reasoning and believing, seeing and 
knowing. One issue with this tendency is that essentialization results in students’ ways of 
reasoning and knowing being treated as separate from rather than linked to mathematicians’ 
didactical practices and curricular resources. But what if students’ ways of reasoning about proof 
by contradiction are not, in fact, that which arise irrespective of the instructional and cultural 
milieus students experience? The focus of this theoretical report is to begin to explore this 
question in the context of ItP texts. Specifically, this report explores the questions: (1) How 
might we characterize the staging of proof by contradiction in ItP texts, i.e., didactic CSTs; and 
(2) Does this staging align with discourses found in historical/philosophical artifacts?  

Why Investigate Texts? 
Plut and Pesic (2003) argue that by taking a Vygotskian perspective of texts we can see texts 

as cultural products with a cultural mission. Specifically, textbooks – those written, symbolic 
artifacts used for didactical purposes and henceforth referred to as texts – not only function as a 
“formative influence on the individual development” but also play a critical role in “the cultural 
reproduction of society” (p. 502). One of the ways texts do this is by providing “samples of 
knowledge that competent adults in certain cultures have selected, classified and didactically 
shaped as organized systems of knowledge” (Plut & Pesic, 2003, p.502). Beyond this role, texts 
also mediate various psychological and social practices. Consequently, texts can and should be 
thought of as disciplinary artifacts, which function as culturally supportive tools (CSTs): 
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“independent symbolic entities of an external world (whose function is) cultural mediation … 
(and which) become constitutive elements of an emerging (psychological) structure” (p. 503). 

Texts as CSTs are of interest because of the many roles CSTs play. CSTs both represent and 
are representative of cultures (including disciplinary cultures such as the mathematics 
community); they mediate the internalization of knowledge and, therefore, can be a constitutive 
of ways of reasoning and knowing, and CSTs “enable or support … the very self-reproduction 
and development of culture” (Plut & Pesic, 2003). Indeed, returning to the focus of this 
theoretical report, it can be argued that Introduction to Proof (ItP) texts are the very artifacts that 
the mathematics community (i.e., the discipline of mathematics) produces to play these roles: 
they provide a sampling of expert knowledge which both represents and is representative of the 
discipline’s cultural practice of proving, they are designed to mediate students’ ways of knowing 
and reasoning about the practice of proving, and are developed to support the reproduction of not 
only cultural practices but also the culture of the discipline of mathematics itself.  

On Examining and Operationalizing the CST Concept 
One of the key questions asked by Plut and Pesic (2003) in their discussion of texts as CSTs 

is: “Is it possible to classify CST according to their validity” (p. 509). Turning to ItP texts, what 
would it mean for such texts to be valid CSTs for proof by contradiction? One criterion might be 
that a text’s stance towards the practice of proof by contradiction aligns with that found in non-
didactical disciplinary artifacts, such as the historical-philosophical artifacts of the discipline 
where meta-mathematical discussions are found. Such criteria would necessarily be seeking to 
determine if the texts are acting as a means for cultural reproduction. Another criterion might be 
that derived from the work of Brousseau (1997); namely, that the text’s staging of proof by 
contradiction not only mediates development but also hampers the emergence of didactical 
obstacles (i.e., obstacles which are neither epistemological nor ontological but due to didactical 
aspects), such as those that arise from the encoding of didactical transpositions (i.e., shifts in 
meanings which arise from efforts to make concepts teachable). And, while the first criterion – 
that of alignment to disciplinary artifacts - explores the question of cultural reproduction, this 
second criterion would enable examinations of questions of internalization: Can the text support 
the internalization of valid practices and ways of knowing? Indeed, there are many criteria that 
might fruitfully inform questions of the validity of ItP texts as CSTs for proof by contradiction. 
Due to space limitations, this theoretical report explores the first criteria: To what extent do ItP 
texts meet the criteria of cultural reproduction? The selection of this criteria is due in part to the 
timing of the research (a pandemic) and in part to the belief that such research is foundational. 

 
Is alignment enough? Theoretical discussions of CSTs tend to characterize CSTs as playing 

a “positive” or functional role (Plut & Pesic, 2003). Yet, there is cause to consider alternative 
possibilities. Specifically, “the concept of cultural tools has inherent positive connotation (sic)” 
and ignores the possibility of a “dark side” of cultural influence (p. 510). Two examples of 
negative (“dark side”) influences include CSTs that play a restrictive function and those that 
have a destructive function (Plut & Pesic, 2003).  In a restrictive function, a CST acts in a 
“controlling and directing” manner which “narrows the wide range of developmental 
possibilities” (p. 510). Whereas, when playing a destructive function, CSTs are “not orienting 
but disorienting, not regulative but disintegrative, bringing chaos instead of order and structure, 
restricting or even destroying the developmental potentials” (p. 510). These negative functions or 
dysfunctions lie in contrast to the positive functional roles CST might play, such as: supporting 
the coding of cultural material; fostering productive internalization; mediating the emergence of 
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shared ways of knowing, enabling participation in cultural practices, etc. Thus, questions about 
alignment between historical/philosophical and didactic texts are important, for they may inform 
explorations of the extent to which CSTs range from functional to dysfunctional. 

 
The Staging of Proof by Contradiction in Historical/Philosophical Cultural Artifacts 
In this theoretical report, the phrase “historical/philosophical cultural artifacts” refers to the 

written artifacts produced by members of a discipline (or cultural group) with the aim of 
describing an object or practice of the discipline to other disciplinary experts and/or with the aim 
of placing the object/construct within a broader theoretical framework related to the discipline. 
Artifacts that belong to this category include but are not limited to manuscripts written by 
members of the discipline and those produced by researchers, be they educational, historical or 
philosophical. In this report, commentaries on proof by contradiction produced independently by 
David Hilbert, G. H. Hardy, and G. Polya are considered, as are writings on proof by 
contradiction produced by the logician and philosopher Ludwig Wittgenstein and further 
described by Alfred Nordmann (2010), and historical analyses of the emergence of proof by 
Hans Neils Jahnke (2010); in particular, his remarks regarding the origins of indirect proof. 
 
The Commentaries of Mathematicians in Historical/Philosophical Artifacts 

If one turns to mathematicians’ writings on proof, in general, it is not difficult to find remarks 
on proof by contradiction. In this report, analyses were restricted to the three most well-known 
commentaries on proof by contradiction, those of Hilbert, Hardy, and Polya. In the early 1920s, 
David Hilbert put forth what became known as the formalist program. He is said to have sought 
to rid mathematics of the many paradoxes and inconsistencies emerging during the development 
of set theory and other areas of advanced mathematics. His practices and goals put him at odds 
with some in the mathematics community; in particular, those who are often referred to as the 
intuitionists and/or constructivist. Debates ensued. One comment from these debates often 
attributed to Hilbert is the following: “without proof by contradiction a mathematician is a 
pugilist with his hands tied behind his back.” A pugilist is a boxer. The image Hilbert’s remark 
conjures is of a fighter without access to his fists. Thus, without contradiction we have nothing to 
fight with. Proof by contradiction is a fighter’s tool, one with which we can rid mathematics not 
only of the paradoxes that plagued a generation but also any inconsistencies.  

In the famous essay, A Mathematician’s Apology (1940/2005), G. H. Hardy offered a slightly 
different characterization of proof by contradiction (i.e., reductio ad absurdum):  
 

“Reductio ad absurdum, which Euclid loved so much, is one of a mathematician's finest 
weapons5. It is a far finer gambit than any chess gambit: a chess player may offer the 
sacrifice of a pawn or even a piece, but a mathematician offers the game.” (p.19)  

 
A gambit is a risky move, one which often entails some level of loss while at the same time can 
potentially lead to significant gain. Why does Hardy refer to proof by contradiction as a gambit? 
Why does he say, “a mathematician offers the game”? One possibility is that, as a mathematician 
of the 1940s, Hardy was well aware of the controversies of the foundations crisis and the impact 
of the non-Euclidean geometries of Gauss, Bolyai, Lobachevsky, Reimann and others. In regard 
to the latter, many of these mathematicians (e.g., Gauss) had sought to establish that the fifth 
postulate of Euclidean geometry was actually a proposition by assuming the postulate was false 
and attempting to derive a contradiction. In the case of Gauss, Bolyai, and Lobachevsky, this 
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approach, along with the assumption that all lines are infinite, led to their (independent) 
development of hyperbolic geometry. In the case of Reimann, he took the same approach but 
with an assumption that lines are finite and developed elliptic and then Reimannian geometries. 
Returning to the work of Gauss, we find an example of that which Hardy describes. As a gambit, 
Gauss negated the fifth postulate. He then sought out a contradiction (hoping to preserve the 
“game” of Euclidean geometry). Instead, what he found was a new game. Indeed, writing to his 
colleague Taurinus, Gauss remarked he’d developed “a geometry quite different from Euclid’s, 
logically coherent, and one that I am entirely satisfied with … The theorems are paradoxical but 
not self-contradictory or illogical … All my efforts to find a contradiction have failed” (Gauss’s 
letter to Taurinus, quoted in Gray, 2006, p. 63). Thus, it was as Lockhart warned in A 
Mathematicians Lament, (2002), in mathematics “your creations do what they do, whether you 
like it or not.” Looking across these commentaries we can see an emerging pattern: Proof by 
Contradiction is a means for establishing the consistency of a mathematical theory. It is a 
weapon against paradoxes and inconsistencies; a mechanism by which we test the limits of a 
mathematical theory or even from which new theories emerge. 

But what of Polya? In Polya’s famous 1957 problem solving text, How to Solve It, he 
discussed proof by contradiction and then there is a section titled Objections where he notes: 

 
… it would be foolish to repudiate “reductio ad absurdum” as a tool of discovery. It may 
present itself naturally and bring a decision when all other means seem to be exhausted ... 
Experience shows that usually there is little difficulty in converting an indirect proof into 
a direct proof, or in rearranging a proof found by a long “reductio ad absurdum” into a 
more pleasant form … In short, if we wish to make full use of our capacities, we should 
be familiar …with “reductio ad absurdum”... When, however, we have succeeded in 
deriving a result … we should not fail to look back at the solution and ask: Can you 
derive the result differently? (p.169). 

 
Unlike Hilbert and Hardy, Polya does not refer to proof by contradiction as a “fine” weapon, nor 
does he describe it as a primary fighting tool like the fists of a boxer. Instead, it is characterized 
as a necessary method “when all other means seem to be exhausted.” From Polya’s perspective, 
proof by contradiction is a last resort, which should be avoided if other techniques are possible.  
 

Researchers’ explorations of the discipline as Historical/Cultural Artifacts 
In addition to commentaries by mathematicians, others have written about mathematics at a 

metamathematical level. Among these scholars, two stand out due to the attention paid to indirect 
proof: the philosopher and logician Ludwig Wittgenstein and the mathematician and historian 
Hans Niels Jahnke. Regarding Wittgenstein, his work is of interest because Wittgenstein argued 
that proofs can be viewed as pictures or as experiments. This is noteworthy because it is the later 
that Wittgenstein argued was best exemplified by proof by contradiction. A proof is a picture 
when symbols have been employed to produce a surveyable, reproducible representation of an 
activity. Though the activity itself was an experiment – the experiment is rendered in symbols. 
As Nordhamm (2010) notes, the proof is “something to be surveyed and seen.” In contrast, a 
proof by contradiction is an experiment. We do not survey such proofs but rather reenact them. 
“The reductio argument …exemplifies the proof as an experiment that probes commitments and 
establishes the connection between inference and decision” (Nordhamm, 2010, p. 195). Indeed, it 
is this aspect of indirect proof Wittgenstein focused on when arguing, whereas pictures show us 
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what is, the reductio argument tests our commitments and reveals the “domain of the 
imaginable;” it demonstrates not only what can but also what cannot be within our theory. 

Turning to Jahnke’s (2010) writings on the origins of proof, two points are important. First, 
Jahnke notes that during the era of Euclid’s Elements a great deal of discussion occurred among 
Greek mathematicians on the topic of axioms, postulates, and hypotheses. Though often equated 
in modern mathematics, Greek mathematicians made subtle distinctions. Moreover, these 
components of mathematical theories were themselves examined. Indeed, when engaging in 
dialectic practices participants negotiated hypotheses prior to their use. Specifically, participants 
would examine hypotheses in terms of the desirable and undesirable consequences. Speaking to 
this practice, Jahnke remarks “The extreme case of an undesired consequence would be a logical 
contradiction, which would necessarily lead to the rejection of a hypothesis. … the procedure of 
indirect proof in mathematics can be considered as directly related” (p. 19) Indeed, as Jahnke 
(2010) argues, that this practice may explain the “frequent occurrence of indirect proof in the 
mathematics of the early Greek period” (p. 19). The second important point concerns not indirect 
proof, itself, but rather mathematics:  

 
“From the times of Plato and Artistotle to the nineteenth century, mathematics was 
considered as a body of absolute truths resting on intuitively safe foundations … In 
contrast, modern mathematics and its philosophy would consider the axioms of 
mathematics simply as statements on which mathematicians agree; the epistemological 
qualification of the axioms as true or safe is ignored” (Jahnke, 2010, p. 27). 

 
To be sure, after the foundations crisis a modern view emerged where: “mathematics deals 
exclusively with hypothetical states of things and asserts no matter of fact whatever” (Peirce 
1935, p.191 cited in Jahnke, 2010, p. 27). These remarks are of interest for they speak to the idea 
that, from a modern point of view, proofs are tools not for determining “absolute truths” but for 
building theories and establishing their consistency. Something is “true” in the sense that it is 
valid in a mathematical system. And, proofs by contradiction are the means by which we fetter 
out undesired consequences or, to echo sentiments expressed by Hilbert, determine consistency. 
 
The Historical-Philosophical Staging of Proof by Contradiction: A Summary 

As illustrated by the mathematicians’ commentaries, views on proof by contradiction vary. A 
prevailing theme among many is that proof by contradiction is a powerful tool (or weapon) for 
riding theories of inconsistencies and for understanding what one’s theory can and cannot do. 
Standing out as a counter-perspective, we find Polya’s view: among problem solving methods it 
is a last resort, one which should be replaced with other methods, when possible. Interestingly, it 
is this view that we find in texts for novices, as will be seen in the next section. 
 

The Staging of Proof by Contradiction in Didactic Artifacts 
Didactic artifacts are artifacts produced by a cultural group with the intent of teaching the 

recipients concepts or practices employed within a culture. In this case, the cultural group is the 
mathematics community and their “culture” is the discipline of mathematics. Of interest are 
those texts designed to enculturate novices into the discipline’s practice of proving, generally, 
and their staging of proof by contradiction, in particular. Thus, for this analysis 11 Introduction 
to Proof (ItP) texts were selected. The majority were published during the past two decades as 
ItP courses became more prevalent. Two earlier texts were included to see if significant 
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differences in the staging of proof by contradiction were evident. Analyses were limited to the 
ItP texts’ sections or chapters on proof by contradiction. 

Drawing on grounded theory (Strauss & Corbin, 1994) traditions, a process of iterative 
categorization was employed to identify the staging practices in didactic artifacts. This analytic 
approach involved cycles of description, categorization, and comparison followed by cycles of 
recategorization and comparison until stable categories emerged. Specifically, this approach 
produced both a general categorization and three subcategories. Before describing distinctions, 
we explore commonalities. All of the ItP texts, including those of the early period, focused on 
proof by contradiction as a method with specific logical underpinnings. For instance, nearly all 
of the texts included symbolic logic justifications of the method (e.g., (~P Þ R Ù~R) Þ P) 
before getting into details about the distinct steps involved. The texts also tended to provide a 
specific set of steps to follow, which ended with remarks such as, “find a contradiction.” Seldom 
did these texts include an answer to the question “a contradiction to what body of knowledge?” 
or specify what was to be taken as known and not known, as illustrated below.  

 
PROOF TECHNIQUE Proof by Contradiction. To prove an implication, it is enough to 
assume that the hypothesis is true and that the negation of the conclusion is true and then 
deduce any contradiction. Proof by contradiction is based on the rule from proof by 
contradiction stated in Section 2.1. (Barnier & Feldman, 2000, p.41).1 

 
Indeed, the approaches in ItP texts tended to align with the sentiments expressed by Polya: the 
method is a problem-solving approach; the problem is to find a proof and the solution is a 
“proof.” Proofs are not constituent components of mathematical theories, they are a means to an 
end. In some cases, the intellectual need for proof by contradiction was discussed but these 
discussions were infrequent and focused on verification rather than on the other functions of 
proof. Moreover, many texts included commentaries describing the method as “odd,” “strange” 
or to be “avoided.” Thus, due to the general lack of discussion and/or inclusion of mathematical 
theories, the staging of proof by contradiction in didactical artifacts was categorized as both 
atheoretical and methodological, with methodological meaning: focused on the procedures 
employed by a discipline. We now turn to the three subcategories.  

Subcategory 1 ItP texts were those in which front matter or appendices included axioms or 
stated “givens” that were referenced in the sections on proof by contradiction. The texts did not 
present the concept of a mathematical theory nor did they discuss the method in relation to 
mathematical theories but did employ parts of a reference theory when exemplifying proof by 
contradiction. The focus in these texts was on the methodology, its role in the verification of 
results and underlying logic. Descriptors for these texts include: methodological (MT), reference 
theory (RT), intellectual need of validation (INV) and problem-solving approach (PS). Only two 
texts in the sample were in subcategory 1: Bittenger (1970) and Lankins (2016). 

Subcategory 2 ItP texts met all of the criteria of Category 1, except they did not include a 
reference theory. Instead, the staging was atheoretical (AT): no theoretical components were 
explicitly included in relation to proof by contradiction or were withheld until subsequent, 
unreferenced chapters. These texts also alluded to but did not specifically claim universal truths 
when deriving a contradiction. And, in some cases, the idea of a contradiction was described in 
relation to a “known fact.” Descriptors for this category include: MT, PS, INV, and AT. In the 

 
1 The reference rule is (P Ù ~Q Þ O) º (P Þ Q) (See p.36). 
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sample, 6 texts were in Category 2: Lay (2001), Babich and Person (2005), Cunningham (2012), 
Chartrand et al (2013), Cullinane (2013), and Meier and Smith (2017). 

Subcategory 3 ItP texts met the criteria of Categories 2, except rather than being atheoretical 
these texts tended to reference universal truths (UT). In other words, not only was no theory 
provided (or referenced) but the exemplifying proofs refrenced that which is known universally. 
For instance, in Solow’s (1982) text, he remarks “Thus, in a proof by contradiction, you assume 
that A is true and that NOT B is true, and, somehow, you must use this information to reach a 
contradiction to something that you absolutely know to be true." (emphasis added, p.65). In 
Hammack (2013) it is argued that to recognize a contradiction on must merely recognize 
“nonsense” (p.111). And in Barnier and Feldman, students are told that they should simply 
"assume the usual facts” when the authors discuss proofs involving the reals. Codes for this 
category include: MT, PS, INV, and UT. In the sample, 3 texts were in Category 3: Solow 
(1982), Hammack (2013) and Barnier and Feldman (2000). 

In summary, the analyses of the didactic artifacts revealed that when enculturating novices 
into the discipline, these CSTs tended to focus on proof by contradiction as a methodological, 
problem-solving technique focused on validation. Theories were either employed as reference 
theories or not employed at all, with the exception of a few cases in which mathematics was 
treated as body of knowledge with taken-as-shared universal truths. Across the categories the 
distinguishing feature was their treatment of mathematical theories and the notion of “truth.” 
 

Discussion 
The primary aim of this theoretical report was to explore the questions: (1) How might we 

characterize the staging of proof by contradiction in ItP texts; and, (2) Does this staging align 
with that found in historical/philosophical artifacts? As described in the findings of the text 
analysis, the sample ItP texts staged proof by contradiction as a problem-solving methodology in 
a manner which was either atheoretical, or employed a reference theory without a discussion of 
mathematical theories, or approached the method as relying on universal truths. Thus, the 
didactic artifacts differed in significant ways from most of the historical-philosophical artifacts 
examined in the study. To be sure, with the exception of Polya (1945), historical /philosophical 
artifacts tended to describe proof by contradiction as a means for testing theories, hypotheses, 
and axioms – their coherency, consistency and role in a broader mathematical system rather than 
restrict their function to verification and problem solving. Returning to the idea of texts as CSTs 
and the work of Plut and Pesic (2003), the question of whether or not misalignment is indicative 
of dysfunction seems all the more salient. Indeed, this work raises several questions: Is the lack 
of alignment between historic/philosophical and didactic artifacts problematic? In particular, if 
one criterion for validating CSTs is that of cultural reproduction, is a problem-solving 
methodological approach focused on validation sufficient? Or are such artifacts dysfunctional by 
being restrictive or destructive? Certainly, the didactic artifacts cast this form of proof in a 
narrow manner, suggesting at the least a restrictive dysfunction or the need for research that 
examines the impacts on students as they progress in their enculturation to the discipline. 
Moreover, there is cause to question: is the lack of alignment (this dysfunction at the 
enculturative level) destructive: “not orienting but disorienting, not regulative but disintegrative, 
bringing chaos instead of order and structure, restricting or even destroying the developmental 
potentials” (Plut & Pesic, 2003, p. 510). Indeed, it is not clear when students are asked to negate 
a statement and produce “nonsense” that the students will recognize they are building the domain 
of the imaginable; not only revealing what the theories can do, but also what they cannot. 
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Theorizing Proof as Becoming Using the Post-Structural Philosophy of Gilles Deleuze and Félix 
Guattari 

 
Joshua Case 

West Virginia University 

In much of the literature in mathematics education and beyond, proof is often seen as consisting 
of both subjective and objective aspects where mental processes and meaning-making provide 
pathways to some form of objective statement or theorem. In this theoretical report, I explore an 
alternative approach to the conceptualization of proof that is rooted in the post-structural 
philosophy of Gilles Deleuze and Félix Guattari. Proceeding in this manner allows us to see 
proof as a becoming, as a material that is always entangled with the world, in flux, and never 
stable. I illustrate a particular manifestation of Deleuzio-Guattarian becoming, that of faciality, 
with regards to proof by utilizing story excerpts from the AMS text Living Proof: Stories of 
Resilience Along the Mathematical Journey. I argue why viewing proof as becoming is useful 
with regard to expert mathematicians and conclude with a brief discussion about research 
implications. 

Keywords: Proof, Deleuze and Guattari, Post-Structural Philosophy, Becoming, Faciality 

In Rota (1997), the author states that “Everyone knows what a mathematical proof is. A 
proof of a mathematical theorem is a sequence of steps which leads to the desired conclusion” (p. 
183). While this account of proof would certainly be familiar to mathematicians, students, and 
researchers alike, the philosophical and mathematics education literature has proposed various 
ways to further nuance this conceptualization. For example, Kitcher (1981) states that an 
argument is rigorous “if and only if the sequence of statements has the conclusion as its last 
member, and every statement which occurs in it is either a premise or a statement obtainable 
from previous statements by means of an elementary logical inference” (p. 469). Brown (1997) 
argues for the usefulness of picture proofs, providing a platonic argument that “some ‘pictures’ 
are not really pictures, but rather are windows to Plato’s heaven.…As telescopes help the 
unaided eye, so some diagrams are instruments (rather than representations) which help the 
unaided mind’s eye” (p. 174). While these accounts appear to express an objectivist view of 
proof in that logical statements, transcendent conclusions, and truth are emphasized, other 
scholars have conceptualized proof or aspects of proof by also elaborating on the subjective 
qualities (e.g., CadwalladerOlsker, 2011; Harel and Sowder, 1998; Raman, 2003). For example, 
Harel and Sowder’s (1998) notion of proving involves that of a proof scheme which “consists of 
what constitutes ascertaining and persuading for that person” (p. 244). This sort of definition 
assumes that there is a degree of subjectivity involved in the proof process. On the other hand, 
Harel and Sowder’s (1998) proof scheme notion also takes into account an objectivity in that 
ascertaining and persuading involves mitigating doubt to obtain truth. 

In a recent theoretical investigation, Czocher and Weber (2020) produce an interesting proof 
cluster definition that is derivative of Wittgenstein’s notion of family resemblance. The idea is 
that proof should be defined using a variety of criteria but that an argument only has to meet any 
one of those criterion in order to be considered a proof in a minimal respect. For example, 
Czocher and Weber (2020), as part of the cluster definition, indicate that arguments are 
convincing to mathematicians and “sanctioned by the mathematical community” (p. 61) which 
both involve the subjectivities of people. Another property is that a proof is an “a priori 
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justification that shows that a theorem is a logically necessary consequence (i.e., a deductive 
consequence) of axioms, assumptions, or previously established claims” (p. 61) which is a more 
objective aspect. This subject/object binary also seems to manifest in constructivist-inspired 
frameworks such as Kidron and Dreyfus’ (2014) notion of proof image where “the interplay 
between the learner’s intuitive and logical thinking as well as the construction of knowledge that 
results from and enables progress of this interplay” (p. 299) are emphasized.   

Focus and Motivation 
While the above ideas certainly add to our understanding of what proof is, I argue that these 

accounts center fairly straightforward subject/object relations, often involving the subjectivities 
of individuals in relation to, and perhaps resembling or mimicking, that of objective truth or 
rigor. That is, the proof literature often seems to emphasize intentionality which refers to 
“referentiality, relatedness, directedness or ‘aboutness’” (Crotty, 1998, p. 44). If we want to 
further understand what proof is in relation to professional and student experience, I suggest also 
seeing proof as a becoming as opposed to foregrounding its subject and object. Such an approach 
does not fully dismiss subjectivity and objectivity, but it does not center it either. That is, 
becoming is often a post-intentional project that “is not meant to suggest a departure from or an 
opposition to intentionality. Rather, the conceptual move is meant to experiment along the edges 
and margins of phenomenology using some post-structural ideas” (Vagle, 2018, p. 128). In this 
report, I utilize the philosophy of Gilles Deleuze and Félix Guattari (D&G), which views 
material not as stable entities, but as a becoming that is “neither imitation nor resemblance” and 
“that can no longer be attributed to or subjugated by anything signifying” (Deleuze and Guattari, 
1987, p. 10). Rather, becoming can be seen as a formation of something new, an irreducible 
entanglement known as a rhizome, that cannot be separated from the world and that always 
functions with the political, artistic, experiential, and experimental while also intersecting with 
logical, scientific, and cognitive aspects. Such a post-intentional program is better carried out 
through philosophical inquiry rather than with cognitive or social frameworks and methodologies 
that often disentangle phenomena along disciplinary lines. While D&G’s ideas have rarely, if 
ever, been utilized explicitly in proof research, post-structural notions (including those of 
Deleuze) have been used in the study of mathematical materiality and embodiment in school 
mathematics (e.g., de Freitas, 2013; de Freitas & Sinclair, 2013; Roth & Maheux, 2015) of which 
the work represented in this report certainly finds connection. I argue that studying proof as 
becoming is important since it helps us to understand the activity that underlies the subjectivities 
and norms regarding the intentional proof conceptions found in the literature while also 
exploring the ways that these can be overcome. Together, these processes constitute proof itself 
and studying them will further our thinking regarding what proof can be. Finally, since this work 
has some focus on doctoral student proof-related experiences associated with their dissertations, 
it may also help inform our understanding of more “expert-level” proof involvement called for 
by Weber and Mejia-Ramos (2011).  

In the next section, I provide further overview of some of D&G’s ideas followed by a 
juxtaposition of a specific type of becoming discussed by Deleuze and Guattari (1987), that of 
faciality, with the notion of proof. I utilize excerpts from the AMS text Living Proof: Stories of 
Resilience Along the Mathematical Journey1 to help demonstrate such concepts and end the 
report with a brief discussion concerning research implications. 

                                                
1 Excerpts reprinted with permission from the American Mathematical Society and their respective authors. 
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Deleuze and Guattari and their Relationship to Mathematics 
Gilles Deleuze and Félix Guattari were both French philosophers in the post-structural 

tradition which consisted of theorists such as Michel Foucault, Jacques Derrida, Jean-François 
Lyotard and others. Post-structuralism is a response to the enlightenment ideals of structuralism 
which often centers logic, rationalism, positivism, humanism, and stable identities. Post-
structuralism, on the other hand, embraces the exploration of the metaphysical, the irrational, and 
the instable. In the case of D&G, their interest lies not in the centering of the scientific nor the 
linguistic but rather in the material.  For example, in A Thousand Plateaus (Deleuze & Guattari, 
1987), D&G write about the notion of a book: “We will never ask what a book means, as 
signified or signifier; we will not look for anything to understand in it” (p. 4). Rather, Deleuze 
and Guattari (1987) state, “we will ask what it functions with” (p. 4). In reading D&G, it 
becomes clear that a “book” could just as well stand in for any other notion such as “human,” 
“capitalism,” “thought,” “fascism,” “music,” or “proof.” D&G are interested in the conditions 
which stable identities arise without asking what they actually are, what they mean, or what they 
represent. For example, regarding a hurricane, Smith and Protevi (2020) discuss D&G’s notion 
of the virtual and how this creates the material conditions for such a phenomenon to actualize: 

Here it should be intuitively clear that there is no central command, but a self-
organization of multiple processes of air and water movement propelled by temperature 
and pressure differences. All hurricanes form when intensive processes of wind and 
ocean currents reach singular points. These singular points, however, are not unique to 
any one hurricane, but are virtual for each actual hurricane, just as the boiling point of 
water is virtual for each actual pot of tea on the stove. In other words, all hurricanes share 
the same virtual structure even as they are singular individuations or actualizations of that 
structure. (para. 36) 

Smith (2006) indicates that Deleuze’s view of mathematics is somewhat similar to that of the 
hurricane in that it involves movement between the axiomatic and the problematic and that 

The fundamental difference between these two modes of formalisation can be seen in 
their differing methods of deduction: in axiomatics, a deduction moves from axioms to 
the theorems that are derived from it, whereas in problematics a deduction moves from 
the problem to the ideal accidents and events that condition the problem and form the 
cases that resolve it. (p. 145) 

In describing an example of problematics which Deleuze refers to concerning the solvability of 
the quintic, Smith (2006) states that:  

In 1824, Abel proved the startling result that the quintic was in fact unsolvable, but the 
method he used was as important as the result: Able recognized that there was a pattern to 
the solutions of the first four cases, and that it was this pattern that held the key to 
understanding the recalcitrance of the fifth. Abel showed that the question of ‘solvability’ 
had to be determined internally by the intrinsic conditions of the problem itself, which 
then progressively specifies its own ‘fields’ of solvability. (p. 160)  

This example highlights the wandering aspect (or “method”) of the problematic side of 
mathematics, one in which solutions are not centered but are considered unforced events. Smith 
(2003) states that “In Deleuzian terms, one might say that while ‘progress’ can be made at the 
level of theorematics and axiomatics, all ‘becoming’ occurs at the level of problematics” (p. 
424). Problematics corresponds closely to the virtuality of the hurricane in the example discussed 
previously. Smith (2003) also explains that “problematic concepts often (though not always) 
have their source in what Deleuze terms the ‘ambulatory’ sciences, which includes sciences such 
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as metallurgy, surveying, stone-cutting, and perspective” (p. 423). This seems similar in spirit to 
Rota’s (1997) phenomenological analysis of proof where he suggests that proof is “an opening 
up of possibilities” (p. 191) as opposed to being “devised for the explicit purpose of proving 
what it purports to prove” (p.190). Therefore, in taking up D&G’s concepts and applying them to 
the notion of proof, the focus often moves away from solutions and the cognitive strategies for 
attaining them to the chaotic processes of becoming that often move outside of mathematics 
itself.  In what ways, then, can we theorize about proof as becoming without resorting to 
intentional relations of the subject/object binary? This is taken up in the next section regarding 
Deleuze and Guattari’s (1987) concept of the face and how it is formed through faciality which is 
a particular kind of virtual process that allows us to understand how more traditional notions of 
proof develop and form a kind of “face” that blocks further becoming. Utilizing story excerpts 
from the AMS text Living Proof: Stories of Resilience Along the Mathematical Journey, I 
demonstrate this notion of faciality and how we may escape the face of proof via another process 
given by Deleuze and Guattari (1987), that of dismantlement, which does not render the face 
(and thus traditional notions of proof) as useless but as a conduit to further becoming. By 
dismantling the face, proof becomes “an opening up of possibilities” (Rota, 1997, p. 191) as 
opposed to a “regime” of capture and confinement discussed in Deleuze and Guattari (1987). 

The Face of Proof 
In A Thousand Plateaus, Deleuze and Guattari (1987) discuss semiotic systems and propose 

the idea that there are indeed several such systems or “regimes.” Two in particular, the signifying 
and post-signifying regimes, together constitute a mixed system composed of a “white wall” or 
“screen” with that of a pattern of “black holes.” The idea is that the white wall defines a sort of 
enclosed space in which all expressions and communications project but that such signifiers 
merely serve to point to a transcendent totality. Wasser (2018) asks “What does the signifying 
regime signify? Ultimately, it signifies itself: it asserts its own structure as meaningful” (p. 89). 
Concerning the black holes that populate the white wall (that is, the post-signifying regime), 
Wasser (2018) states that it “bears witness to a redundancy of subjects, to a redoubling of the 
interpellated subject with his point of subjectification” (p. 93). The black hole system consists of 
processes that originate from “points of subjectification” generated by conflicts (D&G call these 
“betrayals”) that then induce proceedings or lines of flight from these points. These lines of flight 
are then captured by black holes resulting in the formation of a subject. 

The processes associated with the white wall and the black holes form the face through a 
becoming known as faciality that contains us within the norms and expectations of a facial 
landscape (e.g., laws, policies, mathematical axioms, definitions and theorems) while also 
prompting us to identify, feel, and believe in certain ways (e.g., “This is my favorite movie,” “I 
believe in God,” “My proof is correct!” “I can’t find the answer!”). The result is a face: points of 
subjectivity against a “normed” landscape. 

Proof also has a face that is formed by a faciality process. I demonstrate the facialization of 
proof by utilizing the following story excerpt from Living Proof: Stories of Resilience Along the 
Mathematical Journey in which mathematician Dr. Robert Allen recounts a story from his time 
as a doctoral student in the process of trying to obtain a particularly difficult result related to his 
dissertation work. While this story can likely be interpreted in a variety of ways using the theory 
just described, I mostly focus on the black hole or subjectivity “capturing” aspect of faciality. 

This was causing me to lay awake at night thinking about how this result was going to 
keep me from earning my PhD. In times like these, a long hot shower usually relaxes me 
enough to fall asleep.…As I am standing under the scalding water trying to wash away 
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the anxiety and frustration of my situation, a statement/question pops in my head. “I must 
know something about compact operators. What do I know about compact operators?’’ 
The answer was three words: The Spectral Theorem. That’s right, the glory of every 
functional analysis class on the planet. By this time, the steam had covered the shower 
door, creating a wonderful writing surface. So, I started writing the Spectral Theorem. I 
then feverishly began to connect the dots, and, in the fog of a steaming shower, I wrote 
the cutest result in my dissertation. I immediately jumped out of the shower to grab a 
piece of paper and a pencil to jot this idea down. Yes, I was running around my 
apartment in my birthday suit, dripping wet, giggling like a preteen watching Twilight for 
the 18th time (Team Jacob). Once the adrenaline worked its way through my system and 
I had put some clothes on, I sat down to write the results and send them to my advisor, 
proclaiming victory! Then all the self-doubt flooded back in the single thought: “What if 
there is something wrong with my proof that I can’t see?”…Fortunately, this story has a 
happy ending. The proof was correct. (Allen, 2019, p. 80) 

This excerpt serves to illustrate the facial characteristics of proof which includes both the white 
wall (the body of relevant mathematics related to compact operators, such as the Spectral 
Theorem) as well as the black hole which captures Dr. Allen’s line of flight. In this case, one 
might see the line of flight as his experimentation and celebration that is generated when Dr. 
Allen seeks a new direction through the Spectral Theorem. Deleuze and Guattari (1987) indicate 
that this line of flight is constituted by a “split” subject: one who enunciates a mental reality and 
one who bears a dominant reality “of which the mental reality just mentioned is a part, even 
when it seems to oppose it” (p. 129). One might suggest that there is the Dr. Allen who 
enunciates his success and celebrates a victory while there is the Dr. Allen that takes on the very 
different dominant reality of verification uncertainty. These subjects are in a virtual 
entanglement with each other, propelling the line of flight toward the black hole. Deleuze and 
Guattari (1987) indicate that the subject who enunciates a mental reality “recoils into the 
subject” (p. 129) who bears the dominant reality. That is, the Dr. Allen who enunciates victory 
eventually “submits” to the Dr. Allen who bears uncertainty, thus completing the subjectification 
process through the actualization of a subjectivity (the disposition of verification uncertainty) 
that pauses Dr. Allen’s line of flight. This black hole, or “eye,” highlights the axiomatic face of 
proof that privileges solution (fully obtained or not) as end goal over further becoming.  

Through this discussion of the “split” subject, Deleuze and Guattari (1987) conclude that 
“there is no subject, only collective assemblages of enunciation” (p. 130). Individuals are not 
subjects and do not express subjectivity. Rather, the “subject”, and thus to an extent proof itself, 
is constituted by and subjectified through a chaotic and virtual process of faciality which 
includes the line of flight that is ultimately captured via the formation of a black hole that severs 
becoming. It is here that the face of proof, that is, the more traditional subject/object conceptions 
found in the literature, begins to actualize. How can proof escape these black holes of 
subjectivity and the limitations imposed by its face? This question is taken up in the next section. 

Dismantling the Face 
The white wall confines meaning and ultimately points all signifiers toward a singular 

formation. In the case of proof, we might consider the signifiers as all the relevant definitions, 
axioms, lemmas, and theorems that lead and are in redundancy to the statement in need of proof. 
Black holes that seem to correspond to axiomatic subjectivities of “correctness,” “incorrectness,” 
“conviction,” and “uncertainty” capture lines of flight, keeping them from attaining further 
freedom. Through this process of capture and confinement, this becoming which Deleuze and 
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Guattari (1987) call faciality, proof expresses itself as a face much in the same way a human face 
expresses itself through facial traits such as the eyes set against a sort of “screen.” Indeed, 
Deleuze and Guattari (1987) comment on how faciality produces the actual human face (whose 
norm is the face of Christ) through a selection and “deviance detection” process that occurs via a 
virtual “overcoding” of the body through complex historical, psychological, artistic, and cultural 
developments that emphasize face over body. Through this particular becoming of faciality, 
D&G offer an interesting metaphysical account of racism. The face and its regimes are 
something to overcome. However, Deleuze and Guattari (1987) state that “We can’t turn 
back.…we are born into them, and it is there we must stand battle. Not in the sense of a 
necessary stage, but in the sense of a tool for which a new use must be invented” (p. 189). How 
do we reinvent the face of proof? Deleuze and Guattari (1987) suggest through dismantlement: 

Dismantling the face is the same as breaking through the white wall of the signifier and 
getting out of the black hole of subjectivity.…Find your black holes and white walls, 
know them, know your faces; it is the only way you will be able to dismantle them and 
draw your lines of flight.…With what joy the painters used the face of Christ himself, 
taking it in every sense and direction; and it was not simply the joy of a desire to paint, 
but the joy of all desires. (Deleuze and Guattari, 1987, p. 188-189) 

Here, D&G seem to suggest that the face must not be completely erased but escaped from as 
quickly as it is approached. This process of dismantling is itself a becoming, one that is not 
purely cognitive or social in nature but rather multiplicitous and rhizomatically entangled with 
the world. While it is certainly possible to argue that Dr. Allen had escaped his initial blockage 
in his struggles via the line of flight generated by his turn to the Spectral Theorem, this flight is 
also recaptured when he encounters verification uncertainty. How does one escape the black hole 
while avoiding recapture and therefore engaging in a real dismantling of proof’s face? To 
illustrate such a possible scenario, I end this section with a brief discussion concerning the story 
written by Dr. David Neel from the book Living Proof: Stories of Resilience Along the 
Mathematical Journey, focusing specifically on the escape from the face. Here, like the previous 
story, Neel (2019) recounts a difficult problem related to his dissertation experience in 
combinatorics and, like Dr. Allen, gets caught in a black hole where he tries, but seems unable, 
to obtain the solution. Dr. Neel is invited to his supervisor’s house for a week to work on the 
problem where they continue to struggle. However, after a few days, there is a potential escape: 

we would pack a picnic in the morning and hike up into the state park which bordered his 
backyard. He knew a nice clearing for some lunch, only a half-hour’s walk. Talk through 
the problem, aloud, feet in motion, see if we could sketch out the missing pieces. (Neel, 
2019, p. 85) 

This is a critical moment: Dr. Neel and his supervisor leave the house where they had been 
struggling to work through these results. A new line of flight is drawn from the interiority of the 
house (and perhaps of the mathematician) where they had been working and falling into a black 
hole. Dr. Neel describes the adventure, no longer that of proof but rather a “hike-proof:” 

We reached another split in the path. We may have made a joke about graph theory. Two 
paths, but the shorter one was marked: “Path Closed for Maintenance.” Still two options, 
really: forward or back. We do not have a map. Ken is pretty sure he remembers where 
this forward path emerges. It should be fine. Keep walking. Keep talking about 
combinatorics.…It feels as if this has become some elemental struggle. And we’re still, 
somehow, talking about combinatorics. But now, we have it. It snapped into place. Now, 
we are sketching it out more fully, outlining it for each other, repeating, so that if only at 
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least one of us can somehow walk or crawl free once more into that world outside this 
state park we can explain it to someone. (Neel, 2019, p. 86) 

It is here, amidst Dr. Neel’s virtual entanglement with the mathematical material, his supervisor, 
and the hike where he witnesses and is a part of a new rhizomatic formation (a “hike-proof”) 
where solutions begin to lose their centeredness and are, in a sense, “accidentally” stumbled 
upon. Thus, proof becomes problematics as similarly discussed in Smith (2006). Eventually, the 
pair are able to find their way out of the state park and the story ends with the following: 

The moral is clear: care for one another, keep walking, do not despair. One other moral: 
Ken’s example, his kindness and generosity. He was a model mentor and a good man. I 
had hoped and expected more years and many more chances to thank him. (Neel, 2019, p. 
86) 

Unlike the previous story, Dr. Neel’s line of flight does not break or pause with a black hole of 
axiomatic subjectivity but rather with what Roquet (2014) calls cosmic subjectivity which is “a 
form of self-understanding drawn not through social frames, but by reflecting the self against the 
backdrop of the larger galaxy” (p. 124). A literal galaxy may not be involved in this story, but 
the rhizomatic formation of the “hike-proof” serves as a kind of stand in for a such a universe. 
Dr. Neel has escaped the black hole experienced with his initial struggles and has seen proof as 
“an opening up of possibilities” (Rota, 1997, p. 191) which is, in this case, an entanglement of 
mathematical material with the world while avoiding recapture. The result is, I believe, a partial 
dismantling of proof as face. A face that contains proof within the realm of intentionality and 
blocks further becoming. 

Becoming-Proof 
Applying post-structural philosophy to the study of proof is an interesting challenge since 

proof is often seen as constituting the very foundations of mathematics and connected to 
traditional notions of intentionality when studied in traditional cognitive and social manners. 
With a post-structural approach, proof (and thus mathematics itself) becomes a rhizomatic 
complex that cannot be separated from the world. This is important since both students and 
mathematicians are also entangled with the reality of mathematical materiality, how it is 
produced, and what is produced in turn. Studying proof’s materiality will help us to understand 
how proof itself is constituted virtually by relations of power and desire that limit or encourage 
its becoming and therefore allows us to see proof as immanent (as opposed to transcendent) or as 
“knowing in being” (Jackson & Mazzei, 2012, p. 9). Therefore, understanding the materiality of 
proof will also help us to better grasp the broader lived experiences of students and 
mathematicians as they experience these becomings which ultimately fuel or impede student and 
expert desire to pursue advanced mathematical study. However, as described earlier in the report, 
frameworks, theories, and ideas that are situated along tight disciplinary lines (strict cognitive 
and social theories, grounded theory, straight-forward forms of thematic analyses) will not allow 
us to readily witness such complicated becomings since there is often too much focus on stability 
and intentionality. Rather, the theories of Deleuze and Guattari, Foucault, Derrida, and others 
where issues of power and the problems of intentionality are explored provide a stronger 
grounding for the study of becoming. Additionally, there exists qualitative, post-structural 
research methodologies such as the “thinking with theory” approach of Jackson and Mazzei’s 
(2012) which appears to have connections with the efforts made in this report to understand the 
presented stories. Thus, both post-structural theory and methodology can help us to better 
understand the material openings and becomings that begin to close and disentangle with more 
traditional modes of inquiry. 
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A Framework for a ‘Set-Oriented Perspective’ in Combinatorics Using the Theory of Register of 
Semiotic Representation 

 
Adaline De Chenne 

Oregon State University 

Combinatorics education research has repeatedly affirmed that attending to and reasoning 
about the set of outcomes in a counting problem is productive for students. A ‘set-oriented 
perspective’ (Lockwood, 2014) is a way of thinking about counting so that sets of outcomes are 
intrinsic to the counting process. However, Lockwood’s model of student reasoning in 
combinatorics does not capture necessary nuances when reasoning about sets of outcomes. 
Specifically, many counting arguments use properties of a specific representation of the set of 
outcomes, instead of the set of outcomes themselves. I draw from Duval’s (1995) theory of 
register of semiotic representations to present a complementary framework that distinguishes 
between Events, Encoded Events, and Numerical Solutions, which occur in different registers but 
are each fundamental to a set-oriented perspective. I then analyze theoretical examples and 
examples from the literature to demonstrate the utility of the framework. 

Keywords: Combinatorics, Encoding, Semiotic Representations, Student Thinking 

Counting problems are combinatorial tasks that ask the solver to count the number of ways 
an event can occur, or to count the size of a set. As combinatorics has become increasingly 
important due to its applications in fields such as computer science and data science, there is a 
need to understand better how students reason about counting problems. Despite its relevance, 
combinatorics is also a field that requires critical thinking and ingenuity (Kapur, 1970; Tucker, 
2002), and research has repeatedly demonstrated that students at all levels have difficulty 
correctly solving counting problems (e.g., Batanero et al, 1997) and recognizing errors in 
solutions (e.g., Eizenberg & Zaslavsky, 2004). There is much research that has investigated how 
students reason about counting problems (e.g. English, 1991; English 1993; Halani, 2012; 
Montenegro et al., 2021), and in particular Lockwood’s (2013) model has been frequently used 
to analyze and understand student thinking. Lockwood has also repeatedly concluded that 
attending to sets of outcomes is an important part of producing and understanding counting 
arguments. By a ‘set-oriented perspective’ (Lockwood, 2014), she means “a way of thinking 
about counting that involves attending to sets of outcomes as an intrinsic component of solving 
counting problems” (pg. 31).  

Despite the attention to sets of outcomes, Lockwood’s model does not describe some of the 
nuances of how set of outcomes are created, represented, or used. For example, some counting 
arguments rely on properties of specific representations of the outcomes, and these properties 
may not appear in other representations. In this theoretical report, I draw from Duval’s (1995) 
notion of semiotic representations to propose a complementary framework that focuses on the 
relationship between how sets of outcomes are represented and interpreted in the resolution of 
counting problems. This framework distinguishes between Events (what is being counted in a 
counting problem), Encoded Events (events inscribed according to a decided semiotic 
representation), and Numerical Solutions (algebraic or arithmetic expressions), which are all 
different registers of representation of the same mathematical object. Specifically, I will argue 
that counting processes (as described by Lockwood) are often dependent on how events are 
encoded, and that different methods of encoding can lead to different solution processes. 
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Literature Review and a Set-Oriented Perspective 
Student difficulties in combinatorics are well known, and they include distinguishing 

between order when it doesn’t matter, or conversely failing to distinguish between order when it 
does matter (Batanero et al, 1997). Solutions to counting problems are also difficult to verify and 
may contain subtle errors (Eizenberg & Zaslavsky, 2004). Attention has been increasingly placed 
on student reasoning (e.g. English, 1991; English, 1993; Halani, 2012; Lockwood, 2014; 
Lockwood & De Chenne, 2021), and of importance to this report has been Lockwood’s repeated 
call to adopt a set-oriented perspective towards counting (e.g. Lockwood, 2014; Lockwood & 
Gibson, 2016; Lockwood & De Chenne, 2020; Lockwood et al., 2015). By a set-oriented 
perspective, Lockwood is describing attending to sets of outcomes as a fundamental aspect of 
solving a counting problem.  

Lockwood’s (2013) model for student reasoning in combinatorics describes students as 
reasoning between Mathematical Formulas/Expressions, Counting Processes, and Sets of 
Outcomes. Formulas and expressions are algebraic or arithmetic expressions that yield a number, 
and these are typically thought of as the solution to a counting problem. Counting processes are 
the real or imagined enumerative processes one uses as they solve a counting problem. Sets of 
Outcomes are the set of elements being counted in a counting problem. While the term set was 
used intentionally to invoke that the elements being counted are unordered but with a fixed (and, 
in our case, finite) cardinality, a marked aspect of a set-oriented perspective is reasoning about 
the structure of a set of outcomes. In doing so, Lockwood and colleagues have argued that a 
counting process might impose a specific order on a set of outcomes (Lockwood & De Chenne, 
2020), and that reasoning about lists of outcomes is productive (Lockwood & Gibson, 2016). 
Lockwood & De Chenne have also argued that reasoning about encoding outcomes—where 
students reason about how to inscribe sets of outcomes in a way that aligns with a counting 
process—can be a useful way to engage in a set-oriented perspective. I will argue that what 
Lockwood & De Chenne (2021) describe as encoding sheds light on a larger combinatorics 
issue: many counting arguments proceed by arguing about a specific representation of the 
outcomes. In particular, I will argue that sets of outcomes are often too far removed from a 
numerical solution for students to reason between the two without an intermediate representation 
of the set of outcomes. Further, it is often this intermediate representation that students reason 
about a counting process, and having access to a larger number of representations can give a 
more robust understanding of counting. 

Other additions to Lockwood’s model have been proposed, and specifically Modabbernia 
(2021) argued that Lockwood’s model would benefit from the inclusion of “detecting choices.”  
This addition to the model specifically argues that as students reason about the number of 
possible choices at each stage in a counting argument, it is important for them to recognize all 
choices. While this is a necessary part of counting, my framework folds in those concerns. To 
demonstrate the utility of my framework, I will analyze data from Modabbernia’s (2021) paper. 
Moreover, I will argue that what Modabbernia described as the student not detecting possible 
choices may have been a case of the student not realizing a possible representation of the 
outcomes. Hence, the issue goes beyond the ability to detect choices and speaks to a larger aspect 
of counting: many counting processes reflect the content of a representation of the outcomes, and 
vice versa. When the content of the representation is not reflected in a numerical expression, 
there is an understandable difficulty in converting between the two. 

24th Annual Conference on Research in Undergraduate Mathematics Education 771



Theory of Register of Semiotic Representation 
To develop this framework, I draw from Duval’s (1995) theory of register of semiotic 

representation. For the purpose of this report, semiotic representations are representations of 
mathematical objects and ideas that utilize symbols. For example, an algebraic expression such 
as 𝑦 = 3𝑥 + 4 and the graph of the same line are two different semiotic representations of the 
same object. Register can refer to the medium or mode of representation, and as such an 
algebraic representation and a graphical representation occur in different registers; but register 
can also distinguish between two distinct types of representations in the same medium. For 
example, 𝑦 = 3𝑥 + 4 and {(𝑥, 𝑦) ∈ ℝ! ∶ 𝑦 − 3𝑥 = 4} are two representations of the same 
mathematical object that use symbols common to algebra, but they occur in different registers. 
Duval (1995) points out the importance of not confusing a semiotic representation with the 
mathematical object itself, and in fact the content of the representation depends on the register. 
That is, different representations of the same mathematical object do not state the same 
properties of the object, but what is explicitly stated is the content of the representation (Pino-
Fan et al., 2015). The possible treatments of the representation depend on the content of the 
representation, and so different representations can fulfill different purposes. 

One of the paramount purposes of semiotic representations in mathematics is the ability to 
substitute some signs for other signs (Duval, 2006). For example, the representation 1 + 2 may 
be transformed into 3. The two types of transformations, treatments and conversions, are 
differentiated by the beginning and ending registers. Treatments are transformations of a 
representation to a representation in the same register; transforming 1 + 2 into 3	is an example 
of a treatment. For treatments, the possible transformations depend on the specific register used 
(Duval, 2006). Conversions are transformations of a representation into a representation of the 
same object in a different register; transforming 1 + 2 into the representation “the sum of the 
numbers one and two” is a conversion. This requires recognition of two representations for the 
same object, even when the contents of the two representations are different (Duval, 2006). 
Lastly, transitional auxiliary representations are those that are introduced so as to enable 
conversions between representations. Typically, transitional auxiliary representations are only 
used temporarily, and are discarded after conversion is complete. 

Previous works in combinatorics education that have examined registers of semiotic 
representations largely used the theory to examine how students use registers (such as trees and 
systematic lists) to convert between natural language counting problems and numerical 
expressions as a solution (e.g., Montenegro et al., 2021). Here, I will use the theory to create a 
framework for a more elementary aspect of counting problems: representing the objects that a 
problem counts. In doing so, I will point out that the objects being counted can be represented in 
different and flexible ways. Some of these ways are more conducive to counting, different 
representations may lead to different solutions, and students may be unaware of other ways to 
represent the same object. Hence, part of the complexity in reasoning about sets of outcomes is 
determining a register of representation that is useful for a given counting problem, and some 
‘clever’ solutions are nothing more than determining a novel representation that is useful in a 
counting problem. 

Proposed Framework 
 By applying Duval’s theory of register of semiotic representation to solving counting 
problems, the goal of a counting problem is to convert the departure representation into the 
arrival register, where typically the departure register is natural language and the arrival register 
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is a numerical expression (Montenegro et al., 2021). Yet, counting problems can frequently be 
solved in different ways, resulting in mathematical expressions that are numerically the same 
although the representations are different. In particular, I propose that a natural language 
departure representation often requires in intermediate inscribed register from which a counting 
argument is formed, before converting between the intermediate register and the arrival register. 
The purpose of this proposed framework is to create a way to distinguish the set of outcomes as 
described in the problem, and the encoded set of outcomes that students reason about. When 
considering Lockwood’s model of student reasoning and her set-oriented perspective, Duval’s 
theory warrants a more nuanced approach to a set of outcomes and a counting process. The 
proposed framework here introduces the terms Events, Encoded Events, and Numerical Solution 
as a way to describe better the different registers students may be reasoning about while solving 
a counting process. Figure 1 illustrates this framework. 

 
Figure 1: Framework for a Set-Oriented Perspective 

Events 
A classic counting problem is “how many ways are there to flip a coin three times in a row?” 

This problem asks the counter to determine the number of ways a physical phenomenon might 
take place, and hence I adopt the term Event to indicate this. Events are described in a natural 
language register, and they are the objects being counted in a counting problem. The Events in 
the aforementioned problem are ways to flip a coin three times in a row. 

Encoded Events 
Encoded Events are an inscribed representation of Events that occur in a different register. 

Conversion between Events and Encoded Events occurs by deciding a register for the Encoded 
Events so that every event can be represented and each event has a distinct representation. I refer 
to this as the ‘encoding process.’ For example, if the events are all ways to flip a coin three times 
in a row, encoded events might be concatenations of three letters, where each letter is either an H 
or a T. That is, HHT would represent flipping a coin on the first and second toss, and flipping a 
tail on the third toss. Important to this framework is the fact that there is no single way to encode 
events, and that other ways of encoding the same events might have different content. An 
alternative register would be to encode the events as subsets of {1,2,3}, where the number in 
each subset indicates which coin flips landed heads. For example, {1,2} would represent a coin 
landing on heads on the first and second flips, and landing on tails on the third flip. While HHT 
and {1,2} represent the same event, they are in different registers and have different contents.  
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When solving counting problems, textbooks and other literature might refer to making a 
counting argument that would justify a numerical solution based on set equality. Yet, some of 
those arguments are based on specific representations of the set, which is different from the set 
itself. This does not acknowledge that the contents of two different representations are not the 
same, which can lead to an attempt to justify a counting argument from a representation without 
the necessary content. This mismatching of representation with counting argument will be 
illustrated in the examples of the following section, and it can lead to understandable difficulties 
for students. Further, not all representations are conducive to counting, and some conducive 
representations are hard to realize (e.g. the ‘stars and bars’ representation). By being familiar 
with more possible representations, I hypothesize that the counter would have a more robust 
understanding of counting. 

Numerical Solution 
A Numerical Solution is the arrival register of a counting problem, and it is an algebraic or 

arithmetic representation that uses symbols common to combinatorics, such as nPk or 3"#4. In 
terms of Lockwood’s model, the conversion between Encoded Events and Numerical Solutions 
is the counting process, and I will adopt the term counting process in this framework. The 
Numerical Solution depends on the Encoded Events used, and the counting process makes use of 
the content of the representation in the Encoded Events. For example, a numerical solution that 
counts coin flips represented like HHT could be 2$. The counting process would be to use 
positional reasoning (where we reason about the number of characters that can occupy each of 
three positions) and to apply the multiplication principle. In contrast, a numerical solution that 
counts coin flips represented as subsets of {1,2,3} could be ∑ 3$#4

$
#%& , where the counting process 

makes use of the content of the representation by partitioning the subsets by cardinality, and then 
counting the number of k-subsets using 3$#4. A counting argument that uses positional reasoning 
for this representation would fail because the representation does not have positions. Because the 
contents of the two representations are different, the content of the numerical solutions are 
different. While a counter may reason about a numerical solution directly from events, I 
hypothesize that doing so necessitates reasoning previously about encoded events for a counting 
problem that is reasonably isomorphic.  

Two Hypothetical Examples and One Example from Literature 
Here, I analyze two hypothetical mathematical examples, and one example from 

Modabbernia (2021) using my proposed framework. I chose the hypothetical examples to 
illustrate cases where standard counting arguments do not use expected representations. The 
example from Modabbernia is used to show how two representations can result in two counting 
arguments, and that students can have difficulty verifying a counting argument if the content of a 
representation does not reflect the content used in the argument. 

The Two Coin Flips Problem 
The Two Coin Flips Problem asks “How many ways are there to flip a coin five times in a 

row, where exactly two of the coin flips are heads?” Here, the order of the coin flips matter, but 
rather than counting every arrangement of coin flips we are only counting those where a head 
was flipped exactly twice. The Events in this problem are all ways to flip a coin three times 
where a head was flipped exactly twice. Because the Events in this problem are sequential coin 
flips, which are typically encoded as strings of sequential Hs and Ts, one might expect that this 
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method of encoding is productive in this problem. While we can produce a solution using this 
method of encoding (a case breakdown by the first coin flip to be heads would result in 
4+3+2+1), this solution does not scale well as the number of coin flips increases or as the 
required number of heads increases. Hence, what is required for this problem is a different 
method of encoding the outcomes, which might be a sticking point for students. 

Instead, the relevant properties of the Events in this case are the locations of coin flips that 
are heads (or, conversely, the locations of the coin flips that are tails). We can encode the Events 
as 2-element subsets of the set {1, 2, 3, 4, 5}, where the elements in the subset correspond to 
which coin flips landed on heads. For example, {2, 3} would encode that flips 2 and 3 landed on 
heads, while the rest landed on tails. Thus, the Encoded Events in this problem would be all 2-
element subsets of the set {1, 2, 3, 4, 5}, which is a departure from the expected way of encoding 
the events, and students may encounter some difficulty in the conversion between the Events and 
the Encoded Events. At the point where students were solving this problem, they would most 
likely have already encountered combination problems, so their counting process (the conversion 
between Encoded Events and Numerical Solutions) might be that 3'!4 is a numerical 
representation of the number of 2-element subsets from a set of cardinality 5. 

The Hotdog Problem  
The Hotdog Problem asks “How many ways are there to buy three hotdogs from a hotdog 

vendor that sells five varieties of hotdogs?” Here, the order in which the hotdogs are purchased 
does not matter, and one can buy multiple of the same variety of hotdog. The Events in this 
problem are all ways to buy three hotdogs, where each hotdog is one of five varieties. A 
reasonable way to encode the events are as multisets of cardinality three with elements from 
{1,2,3,4,5}. For example, the encoded event {2, 3, 3} would indicate purchasing one variety 2 
hotdog, and two variety 3 hotdog. However, this method of encoding the events is not 
particularly conducive to counting, in the sense that it is difficult to convert between the encoded 
events and a mathematical expression without already knowing a formula that counts multisets (a 
solution that uses nested sums can be found, by indexing the multisets by the lowest element, 
however the feasibility of using this solution technique scales poorly as the parameter values 
increase).  

Instead, a common way of encoding these events is to use the ‘stars and bars’ argument. For 
the sake of brevity, suffice it to say that bars represent separations between varieties, and the 
number of stars represent the number of hotdogs purchased in each variety. For example, |*|**| | 
and {2, 3, 3} represent the same outcome. However, with the events encoded as arrangements of 
three stars and four bars, an isomorphic counting process to the Two Coin Flips Problem reveals 
that there 3$(')*$ 4 ways to purchase three hotdogs from five varieties. 

Coffee Problem (Adapted from Modabbernia) 
Modabbernia (2021) describes a student’s (named Henry) work as he demonstrates that two 

different numerical solutions both correctly solve the same counting problem. I have changed the 
wording of the problem and the parameter values in the problem for space concerns. The Coffee 
Problem asks “A group of six people have a meeting. After the meeting, three of the people 
decide to go to a coffee shop, and they invite the remaining three people. The coffee shop sells 
five different types of coffee. If the remaining three people may each decide to get coffee or not 
to get coffee, how many possible coffee orders are there?” Two mathematical expressions that 
solve this problem are 5$ × 83$&4 ⋅ 5

& + 3$*4 ⋅ 5
* + 3$!4 ⋅ 5

! +	3$$4 ⋅ 5
$: and 5$ × 6$.  
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The first numerical expression breaks the events into cases based on how many of the 
remaining three people get coffee. Because the content of the encoded outcomes must reflect the 
content of the counting argument, it might include the orders of the three people going to the 
coffee shop, which of the remaining people go to the coffee shop, and the orders of the 
remaining people. For example, a representation of the form  (1, 5, 4){4, 5}(2, 2) might be used, 
where (1, 5, 4) indicates the orders of the three people who must get coffee, {3, 4} indicates 
which of the remaining people decide to get coffee (where the remaining people are labeled as 4, 
5, and 6), and (2, 2) indicates the orders of those remaining people. Another encoded event using 
this encoding method might be (2, 3, 4){6}(1). Of note in this representation is that the number 
of remaining people getting coffee might change, which is reflected by the size of the middle 
subset and the size of the right-most ordered values. 

The second numerical expression, 5$ × 6$, does not break the events into cases. Rather, the 
number of possibilities for each remaining person is increased by 1 because they have the option 
of not getting coffee. In Modabbernia (2021), the author discussed the student’s difficulties of 
detecting this remaining option. The content of these representations might include the coffee 
orders of the three people who must get coffee, and the “coffee orders” of the three people who 
might get coffee (quotations used to signify that one possibility is not to get coffee). For 
example, a representation (1, 5, 4)(2, 2, 0) might encode the same event as (1, 5, 4){4, 5}(2, 2), 
where the ordered triple (2, 2, 0) indicates that people 4 and 5 get coffee number 2, and person 6 
does not get coffee. 

Both of these ways of encoding the events create unique representations for every event, and 
they can both be used to create a reasonable counting argument; yet, the contents of the two 
representations are different, and the counting process for each representation reflects the 
contents. In Modabbernia (2021), the student Harry was able to explain the first solution, yet he 
had difficulty explaining the second solution. However, Modabbernia also notes that 
“Interestingly, considering one element of the set of outcomes helped [Harry] to convince 
himself that the option of not choosing is an option” (pg. 194). By this, Modabbernia is stating 
that Harry was able to justify that the solution 5$ × 6$ was numerically equal to the previous 
solution after he wrote down how one of the events could be represented (using the above 
method of encoding). One possible explanation for this is that Harry recognized that all of the 
events could be represented in this way, and that 5$ × 6$ counted the number of representations. 
Therefore, ‘Detecting Choices’ fits into this proposed framework, and it is an example of why 
Lockwood’s model of student thinking in combinatorics needs a complementary model that 
specifically examines representations of sets of outcomes. 

Conclusion 
In this theoretical report, I have proposed a framework for student thinking in combinatorics 

that is particularly well-suited for analyzing student thinking that displays a ‘set-oriented 
perspective’ (Lockwood, 2014). This framework draws from Duval’s (1995) theory of register of 
semiotic representations, arguing that the content of the representation of the set of outcomes 
informs the counting process, and that different representations may lead to different solutions. 
One conclusion of this framework is that discussion of counting should explicitly include how 
sets of outcomes can be represented, the utility of different representations, and the conversion 
process between encoded outcomes and numerical solutions. Hence, this framework offers 
additional aspects of counting that are not characterized in Lockwood’s (2013) model of student 
thinking in combinatorics, yet are fundamental to counting using a set-oriented perspective.  
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Combining Sealey, Von Korff & Rebello, Jones, and Swidan & Yerushalmy into a 
Comprehensive Decomposition of the “Integral with Bounds” Concept 

 
Steven R. Jones  Brinley N. Stevens 

Brigham Young University 

Previous calculus education work on integrals, including definite integrals and accumulation 
functions, has created useful theoretical frameworks that decompose the “integrals with bounds” 
concept into constituent parts. Yet, each framework focuses on distinct aspects of the integral 
and leaves certain parts implicit. Further, definitions and operationalizations are absent in many 
of these frameworks. This theoretical paper contributes by: (a) pulling together the various 
pieces in these frameworks into a comprehensive decomposition of the integral concept, (b) 
explicitly defining the processes and objects within it, and (c) operationalizing the processes and 
objects within each of the numeric, graphical, and symbolic representations. This comprehensive 
framework is useful for researchers, curriculum or task writers, and instructors alike to have a 
more complete picture of the elements that make up the integral concept. 

Keywords: calculus, definite integrals, accumulation functions, theoretical framework 

There has been a steady focus recently on integration in calculus education (e.g., Ely, 2017; 
Hall, 2010; Hu & Rebello, 2013a, 2013b; Jones, 2015a, 2015b; Kouropatov & Dreyfus, 2014; 
Sealey, 2006, 2014; Swidan & Yerushalmy, 2014; Von Korff & Rebello, 2012). An important 
part of this work has been to theoretically describe the constituent parts of the integral concept to 
provide the field with a shared understanding of the ideas that make it up (e.g., Sealey, 2014; 
Von Korff & Rebello, 2012). Such frameworks are crucial, as they provide a lens that influences 
what researchers may see, what curriculum writers or task designers may attend to, and what 
instructors might guide their students toward during learning. However, the existing frameworks 
in the literature each appear to speak to different aspects of the broader integrals with bounds 

(IBs) concept, including parts of definite integrals,  𝑓ሺ𝑥ሻ𝑑𝑥

 , or of accumulation functions, 

𝑔ሺ𝑋ሻ ൌ  𝑓ሺ𝑥ሻ𝑑𝑥

 . In our own prior work that led to this theoretical paper, we had been 

engaged in designing a hypothetical learning trajectory for definite integrals and accumulation 
functions and found the real need to pull this work together into a single comprehensive 
framework. Thus, this theoretical paper is meant to contribute to calculus education research by 
(a) combining existing frameworks on integrals into a more complete decomposition of IBs and 
(b) making explicit certain parts of these frameworks that were previously implicit. The outcome 
is a comprehensive framework that can provide researchers, curriculum/task writers, and 
instructors with an enhanced view of what makes up the IB concept. 

Definitions  

A definite integral is one with fixed bounds,  𝑓ሺ𝑥ሻ𝑑𝑥

 , and an accumulation function has a 

variable upper bound, 𝑔ሺ𝑋ሻ ൌ  𝑓ሺ𝑥ሻ𝑑𝑥

 . We refer to these collectively under the label 

integrals with bounds (IBs), to distinguish them from unbounded indefinite integrals, 𝑓ሺ𝑥ሻ𝑑𝑥. 
Because common approaches to integration rely on Riemman sums (∑𝑓ሺ𝑥ሻΔ𝑥) (e.g., Hughes-
Hallett et al., 2012; Stewart et al., 2021), we take this “sum” meaning as the foundation for IBs, 
as opposed to “area under a curve” or “antiderivative” meanings. This view is strongly 
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compatible with a large portion of the research literature to date that builds on sum-based 
meanings (e.g., Chhetri & Oehrtman, 2015; Ely, 2017; Hu & Rebello, 2013b; Jones, 2015a; 
Jones et al., 2017; McGee & Martinez-Planell, 2014; Nguyen & Rebello, 2011; Sealey, 2006, 
2014; Simmons & Oehrtman, 2017; Swidan & Yerushalmy, 2016; Von Korff & Rebello, 2012). 
However, we wish to be clear we are aware of other approaches that exist as alternatives to sum-
based interpretations (Kouropatov & Dreyfus, 2014; Thompson et al., 2013). 

Literature Review, with a Focus on Previous Frameworks 
To start, much of the work on definite integrals or accumulation functions contains the theme 

that they are fundamentally quantitative structures (e.g., Blomhøj & Kjeldsen, 2007; Chhetri & 
Oehrtman, 2015; Ely, 2017; Hu & Rebello, 2013b; Jones, 2015a, 2015b; Kouropatov & Dreyfus, 
2014; Nguyen & Rebello, 2011; Sealey, 2014; Simmons & Oehrtman, 2017; Swidan & 
Yerushalmy, 2016; Thompson, 1994; Thompson & Silverman, 2008; Von Korff & Rebello, 
2012). We explicitly incorporate this stance into our framework and speak of the integral in 
terms of quantitative relationships. We see numeric, graphical, or symbolic representations as 
literal representations of this more fundamental quantitative structure.  

Previous Integral Frameworks 
Sealey’s Riemann Integral Framework. Sealey’s (2014) framework was proposed as a 

“decomposition of the Riemann integral into its mathematical components” (p. 230), consisting 
of five layers: orienting, product, sum, limit, function (see Figure 1). Orienting deals with 
attending to the individual parts of the integral, 𝑓ሺ𝑥ሻ and Δx. Product involves multiplication 
between them, 𝑓ሺ𝑥ሻ ∙ Δ𝑥. Sum is adding the products 𝑓ሺ𝑥ሻΔ𝑥 over many subintervals, 
∑𝑓ሺ𝑥ሻΔ𝑥 . Limit considers a Riemann sum, ∑ 𝑓ሺ𝑥ሻΔ𝑥

ୀଵ , for every n, with a limit as  𝑛 → ∞, 

lim
→ஶ

∑ 𝑓ሺ𝑥ሻΔ𝑥
ୀଵ  Finally, function switches a basic definite integral with fixed bounds,  ,


  to 

having a variable upper bound, 𝐹ሺ𝑏ሻ. We note that this final layer has the feel more of a variable 
bound than as a true accumulation function (e.g., Swidan & Yerushalmy, 2014; Thompson & 
Silverman, 2008). Sealey’s (2014) framework was presented mostly within the symbolic 
representation, with less attention to numeric or graphical representations (Figure 1). 

 
Layer 0: Orienting 𝑓ሺ𝑥ሻ and Δ𝑥 
Layer 1: Product 𝑓ሺ𝑥ሻΔ𝑥 
Layer 2: Summation ∑𝑓ሺ𝑥ሻΔ𝑥  
Layer 3: Limit lim

→ஶ
∑ 𝑓ሺ𝑥ሻΔ𝑥
ୀଵ   

Layer 4: Function 𝐹ሺ𝑏ሻ ൌ lim
→ஶ

∑ 𝑓ሺ𝑥ሻΔ𝑥
ୀଵ   

Figure 1. Sealey’s framework (adapted from 2014, p. 242). 

Von Korff & Rebello’s Integral Framework. Von Korff and Rebello’s (2012) framework 
was specifically meant for contextualized integrals, but works well as a general framework. 
Their framework is similar to Sealey’s (2014), with three key differences (Figure 2). First, they 
use a specific quantity layer in place of the general orienting layer, focused on making sense of 
the quantities in the context. Second, and a much more important difference, von Korff and 
Rebello (2012) used infinitesimals, which represent “microscopic” changes in or amounts of a 
quantity (see also Von Korff & Rebello, 2014). Symbolically, Δx represents a macroscopic 
change or amount, while dx represents an infinitesimal change or amount. Infinitesimals can 
formalized either with a “limit,” where an increasingly tiny Δx receives the special notation dx 
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(Jones & Dorko, 2015), or with the hyperreal numbers (Ely, 2017, 2020). However, the informal 
idea of infinitesimals itself has been shown to be quite powerful for first-year calculus and for 
science applications (Amos & Heckler, 2015; Ely, 2017, 2020; Jones, 2015a; Nguyen & Rebello, 
2011; Schermerhorn & Thompson, 2019a, 2019b). Thus, Von Korff and Rebello (2012) give 
each layer the dual nature of a macroscopic version and an infinitesimal version (Figure 2). 
Consequently, there is no separate “limit” layer, but rather a switch at any stage from 
macroscopic to infinitesimal such as an infinitesimal product, 𝑓ሺ𝑥ሻ𝑑𝑥. The arrows show many 
possible paths at starting with the basic quantities and building toward a definite integral or 
accumulation function. The third difference is that Von Korff and Rebello’s (2012) framework is 
explicit in using the integral symbol, , as a literal “sum” symbol.  

 
Macroscopic  
quantity: Δ𝑡 
 

Macroscopic  
product: 𝑣 ∙ Δ𝑡 

Macroscopic  
sum: ∑𝑣 Δ𝑡 

Macroscopic function: 
Δ𝑥ሺ𝑇ሻ ൌ ∑ 𝑣ሺ𝑡ሻΔ𝑡் ௧⁄

   

Infinitesimal  
quantity: 𝑑𝑡 

Infinitesimal  
product: 𝑣 ∙ 𝑑𝑡 

Infinitesimal  

sum:  𝑣 𝑑𝑡
௧ୀ
௧ୀ  

Infinitesimal function: 

Δ𝑥ሺ𝑇ሻ ൌ  𝑣ሺ𝑡ሻ𝑑𝑡
்
   

Figure 2. von Korff and Rebello’s framework (adapted from 2012, p. 3). 

Jones’ AUP structure. Jones (2013) documented an empirical student understanding 
structure called adding up pieces (AUP). Its usefulness as a reasoning structure (e.g., Chhetri & 
Oehrtman, 2015; Jones, 2015a) led it to becoming a theoretical framework in its own right (e.g., 
Ely, 2017; Jones, in press). While AUP has resemblance to the other two frameworks, it adds key 
elements as well. AUP consists of a partition, a target quantity, and a sum (Figure 3). Partition 
means chopping the domain into tiny (infinitesimal) pieces. Thus, this framework considers the 
partitioning as its own layer, as a precursor to the other layers. Target quantity is the construction 
of some quantity of interest within each of the partition pieces. This is akin to the product layer 
in Sealey (2014) and Von Korff and Rebello (2012), except that the target quantity does not have 
to be constructed via a product, 𝑄 ൌ 𝑓ሺ𝑥ሻ𝑑𝑥 (Chhetri & Oehrtman, 2015; Ely, 2017; Simmons 
& Oehrtman, 2017). Rather, other quantitative structures are permitted, such as 𝐿 ൌ
ඥሺΔ𝑥ሻଶ  ሺΔ𝑦ሻଶ or 𝑉 ൌ 𝜋𝑟ଶℎ. Sum is then adding the target quantity across the partition pieces 
to get a total amount, where the integral symbol, , is again used with a literal “sum” meaning. 
Also within AUP research, Simmons and Oehrtman (2017) helped push past a linear ordering, by 
suggesting that the layers can be traced in different orders, such as considering the target quantity 
first, and then partitioning.  

 

             
Figure 3. Jones’ AUP structure (adapted from Jones, in press). 

Swidan & Yerushalmy’s Accumultion Function Framework. The frameworks presented 
so far focus on definite integrals, with the “function” layer being much less developed (Sealey, 
2014; Von Korff & Rebello, 2012). On the other hand, Swidan and Yerushalmy (2016) provided 

a framework (Figure 4) explicitly addressing accumulation functions, 𝑔ሺ𝑋ሻ ൌ  𝑓ሺ𝑥ሻ𝑑𝑥

 . Their 

first three categories – delta x, product and sum – are essentially the same as partition, product 

x = a x = b 

Partition into dx segments 

dx x = a x = b 

Target quantity (Q) in each piece 

dQ 
x = a x = b 

Sum across dx pieces 

 𝑑𝑄
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(or target quantity), and sum from the others. However, the lower bound is a more salient 
construct in these, as a zero accumulation point. That is, the integral is a net amount and some 
previous amount of the quantity may have existed, in a sense, before the start of the integral’s 
accumulation (i.e., lower bound). The integral finds the additional amount past x = a. Swidan 
and Yerushalmy (2016) end with a function layer that is much more developed. It includes 
function properties, like where the intercept is positioned, whether the function is increasing or 
decreasing, and its concavity (see also Kouropatov & Dreyfus, 2014; Thompson et al., 2013). 

 
(A) Delta x  (B) Product (C) Sum of products (D) Accumulation 

function properties 
Ideas in A: 
Partition 

Ideas in B: Lower 
bound and initial 
value 

Ideas in C: Zero-point 
accumulation, relation 
between bounds 

Ideas in D: Accumulation 
function, position, 
tendency, and concavity 

Figure 4. Swidan’s framework (adapted from 2016, p. 42). 

Summary of the State of the Literature and the Need for a Comprehensive Framework 
The hope is that by now, the reader can see that there are several frameworks that 

theoretically decompose parts of the IB concept, including for definite integrals and 
accumulation functions. However, each framework focuses on certain components, leaving 
others implicit. Further, the layers of these frameworks ostensibly rely on mathematical 
processes that culminate into objects used in subsequent layers, such as the product process 
becoming an object (the resulting quantity) that is then needed in the process of summing 
(Sealey, 2014; Swidan & Yerushalmy, 2016; Von Korff & Rebello, 2012). These processes and 
objects have not been explicitly defined, and previous frameworks lack operationalizations for 
them within different modes of representation (i.e., graphical, numeric, and symbolic). These 
issues become important when one attempts to use these frameworks to construct learning arcs 
for IBs over the course of an entire integration unit. In fact, the problems we ran into while 
creating a hypothetical learning trajectory is exactly what prompted this theoretical paper. We 
needed to first organize the different layers, define the processes and objects, and consider them 
within distinct representations before we could proceed. The field of calculus education will 
benefit from synthesizing these prior frameworks into a single, comprehensive decomposition of 
the IB concept. This theoretical paper contributes by providing this needed framework.  

Processes and Objects 
The previous frameworks all implicitly use the idea of processes and objects (Sfard, 1991, 

1992). That is, each layer must transition from a process to an object that is then available for use 
in the next layer. Here, a process refers to some operation that might be done, such as adding 
numbers together or multiplying two quantities – though the operation can be imagined without 
necessarily being carried out (called interiorization, Sfard, 1991). Much of mathematics involves 
taking operations and working with them in their own right as objects, such as thinking of a 
summed total as an entity that can be manipulated, or a product as an actual result that can be 
used in another process. Sfard called this reifying the process into an object. As an example, the 
process of finding the target quantity through some quantitative structure must result in the 
conceptualization of a little bit of that target quantity in each partition piece, before those little 
bits can be thought of as being added together (Ely, 2017; Jones, 2013, 2015a). A key part of the 
contribution of the framework presented in this paper is to explicitly define these processes and 
objects and to operationalize them in terms of different representations. 

24th Annual Conference on Research in Undergraduate Mathematics Education 782



The Framework: A Comprehensive Decomposition of the IB Concept 
In this section, we present our IB framework (Figure 5). The framework is not meant to be 

restrictive in terms of possible understanding or usage, because the larger notion of integration 
can include other ideas, such as computing integrals with antiderivatives, constructing an integral 
for a specific context, or extending integrals to improper integrals. Rather, our framework is 
meant as a decomposition of the central IB structure (as in Sealey, 2014; Zandieh, 2000). 

The framework consists of seven layers, which are listed on the left in Figure 5, along with 
their process (P) and object (O) definitions. The first layer deals with orienting to quantities 
(Sealey, 2014; Von Korff & Rebello, 2012), the next three deal specifically with definite 

integrals,  𝑓ሺ𝑥ሻ𝑑𝑥

  (Jones, 2013, 2015a; Sealey, 2014; Von Korff & Rebello, 2012), and the 

last three layers deal with extending to accumulation functions, 𝑔ሺ𝑋ሻ ൌ  𝑓ሺ𝑥ሻ𝑑𝑥

  (Swidan & 

Yerushalmy, 2016). We adopt Von Korff and Rebello’s (2012) use of infinitesimals, as a 
powerful construct for first-year calculus and its applications (Amos & Heckler, 2015; Ely, 2020; 
Schermerhorn & Thompson, 2019a, 2019b). Thus, we do not use a separate “limit” layer (as in 
Sealey, 2014) and instead define each layer at both the macroscopic and infinitesimals (I) levels, 
where applicable. We also take the broader target quantity view, which is not limited to product-
only structures (Sealey, 2014; Swidan & Yerushalmy, 2016; Von Korff & Rebello, 2012), but 
permits non-product structure as well (Chhetri & Oehrtman, 2015; Simmons & Oehrtman, 2017). 
Thus, target quantity is operationalized in terms beyond only products. Finally, we think of these 
layers fairly hierarchically in theoretical terms, because they build on each other, but we note 
that a person does not necessarily have to think through them in this linear order, in line with 
what Simmons and Oehrtman (2017; 2019) have discussed. 

Within each cell, we provide an operationalization of what “understanding” that layer’s 
process (P) and object (O) would look like within each of the numeric, graphical, and symbolic 
representations. As operationalizations, these definitions are given in terms of cognitive actions. 
Finally, because of the stance that integrals are fundamentally quantitative structures, each 
definition is given in terms of quantities, though these definitions could also be applied to 
generic mathematical variables as well. 

 
Layer  
Definitions 

Numeric 
Operationalizations 

Graphical 
Operationalizations 

Symbolic  
Operationalizations 

Orienting to the context (layer 1) 
Basic quantities:  
P: Identify 
quantities 
O: A set of 
quantities 

P: Pair a number with an 
associated quantity 
O: A set of quantities 
associated with the numbers  

 

P: Pair a visual length/size 
with an associated quantity 
O: A set of quantities 
associated with lengths/sizes 
 

P: Pair a symbol with an 
associated quantity 
O: A set of quantities and 
associated symbols 

 
Definite integrals (layers 2–4) 
Partition:  
P: Chop the domain 
quantity into 
partitioned pieces 
O: A set of 
partitioned pieces 

P: Partition a numeric 
interval into smaller numeric 
subintervals 
O: Recognize the 
subintervals as a set that can 
be manipulated (e.g., made 
smaller) 
I: Subintervals are 
numerically very small 

P: Partition a portion of the 
horizontal axis (or ℝn region) 
into smaller segments/pieces 
O: Recognize those segments 
as a collection that can be 
manipulated (e.g., made 
smaller) 
I: Segments along axis are 
drawn very small 

P: Use “Δ” to mean a change in 
or relatively small amount of a 
quantity 
O: See “Δ[symbol]” as one 
piece among a set of pieces  
I: “d” is used instead of “Δ” to 
indicate infinitesimal scale 

Target quantity:  P: Perform a numeric 
operation relating the 

P: Create a graphical object 
(e.g., rectangle, prism, right 

P: Use or interpret a symbolic 
expression as a quantitative 
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P: Use a quantitative 
relationship within a 
partition piece (e.g., 
product or other 
structure) 
O: The 
conceptualization of 
the resulting target 
quantity  

quantities (e.g., 40N×0.01m  
or  π(3 ft)2(0.1 ft) ) 
O: Recognize the result as 
the target quantity (e.g., 0.4J 
or 0.9π ft3) 
I: Use a small numeric 
amount of one quantity, 
giving a small amount of the 
resulting target quantity 

triangle) where the parts are 
individual quantities related 
together through the object 
O: Recognize that the “size” 
(area, volume, length) signifies 
the target quantity 
I: Object is drawn with small 
components (e.g., rectangles 
with very thin widths) 

structure (e.g., yΔ𝑥 or 

ඥሺΔ𝑥ሻଶ  ሺΔ𝑦ሻଶ ). 
O: Recognize that the 
expression signifies a resulting 
quantity (e.g., yΔ𝑥 ൌ 𝑎𝑟𝑒𝑎) 
I: Use “d” to indicate the 
infinitesimal scale (e.g., 

ඥሺ𝑑𝑥ሻଶ  ሺ𝑑𝑦ሻଶ ) 

Summation:  
P: Add the target 
quantity across the 
partitioned pieces  
O: The aggregated 
total amount of the 
target quantity 

P: Adding target quantity’s 
numeric values across the 
partitioned pieces 
O: Recognize the sum 
signifies a total amount of 
the target quantity. 
I: Sum is imagined over as 
small of numeric intervals as 
possible, creating many 
pieces the addition happens 
over 

P: Imagine the objects filling 
up a graphical space (e.g., an 
area, volume, or length)  
O: Recognize the combined 
area/volume/length as the total 
amount of the target quantity 
I: Objects are drawn as small 
as possible (e.g., a set of 
rectangles with thin widths) 

P: Use “∑” to denote a sum of 
the symbolic expression. 
O: Recognize that 
“∑ሾ𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛ሿ” signifies the 
total amount of the target 
quantity 
I: Use the integral symbol " " 
to mean a “sum” over 
infinitesimal bits 

Extending to Accumulation Function (layers 5–7) 
Net Amount:  
P: Combine integral 
with a “previous” 
amount (at x = a) 
O: The integral’s 
value is seen as an 
additional amount 

P: Add the integral’s numeric 
result to a previously existing 
amount of the target quantity 
O: Recognize the integral’s 
numeric result as an inherent 
“additional/net” amount 
(I: n/a) 

P: Attach some previously 
existing amount to the “left” 
edge of the area/volume/length  
O: See the area/volume/length 
inherently as an “additional/net” 
amount 
(I: n/a) 

P: Notate adding the integral’s 
value with an existing amount 
(e.g., “A+I”) 
O: Conceive of the integral 
symbol, " ", as an inherent 
“additional/net” amount. 
(I: n/a) 

Variable upper 
bound:  
P: Change the upper 
bound to produce 
different amounts 
O: The upper bound 
is a true input 
variable 

P: Use different numeric 
values for the upper bound, 
giving different results  
O: Identify the upper bound 
as a truly variable value 
I: The numeric amounts by 
which the upper bound 
increases are very small 

P: Add on new objects past 
where the original partition 
ended to get different amounts 
O: Conceive of the graphical 
boundary edge as fluid and 
changeable 
I: The new objects are drawn as 
small as possible 

P: Use a non-number symbol to 
notate a changing upper bound 
value (e.g., “#” or “X”) 
O: Perceive the symbol used as 
denoting a true variable  
I: x is seen as increasing by 
continuous amounts 

Accum. function:  
P: Track upper-
bound inputs with 
accumulated-total 
outputs.  
O: The bound-
amount relationship 
is an actual function, 
with function 
properties 

P: Steadily increase the upper 
bound value and track the 
progress of accumulation 
O: Identify accumulated 
numeric value as a function 
of the upper bound, with 
usual function properties 
(e.g., increasing value)  
I: The accumulation is 
tracked over upper bounds 
increasing by very small 
amounts 

P: Steadily add new objects and 
track the aggregated amount up 
to those ending locations 
O: Recognize the graph of the 
accumulated amount as a 
function of the ending location, 
with graphical properties (e.g., 
concave up) 
I: The graph is drawn 
continuously 

P: Use symbols (e.g., A(X)) to 
notate the accumulated amount 
for a given X upper bound 
O: Recognize A(X) as a function 
of X, and the expression 

 𝑓ሺ𝑥ሻ𝑑𝑥



 as its symbolic 
“rule” 
I: The domain for X is 
continuous 

Figure 5. A comprehensive framework, including a refined set of layers, the inclusion of different representations, 
and an operationalization of the process-object and infinitesimal understandings for each layer. 

A Discussion of This Framework 
The purpose of creating a framework for the IB concept is to aid researchers, curriculum 

writers or task designers, and instructors. In our own work, we found this framework necessary 
before we could embark on a hypothetical learning trajectory spanning an entire integration unit 
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on definite integrals, accumulation functions, and the Fundamental Theorem. We see the 
contributions of this framework as follows. (1) It brings together distinct frameworks that each 
focused on different parts of the IB structure into a single, coherent whole (Jones, 2013, 2015a; 
Sealey, 2014; Swidan & Yerushalmy, 2016; Von Korff & Rebello, 2012). (2) It provides clear 
definitions for the processes and objects (Sfard, 1991, 1992) that make up each layer, which has 
hitherto been implicit. (3) It treats each layer in all three numeric, graphical, and symbolic 
representations, with operationalizations for the processes and objects in each. (4) It incorporates 
key ideas from recent research on: (a) infinitesimals (Amos & Heckler, 2015; Ely, 2020; Jones, 
2015a, 2019; Von Korff & Rebello, 2014), (b) thinking of integrals quantitatively (Blomhøj & 
Kjeldsen, 2007; Hu & Rebello, 2013b; Pina & Loverude, 2019; Thompson & Silverman, 2008), 
(c) and using various quantitative structures to create or interpret integrals (Chhetri & Oehrtman, 
2015; Ely, 2017; Simmons & Oehrtman, 2017). 

We see many ways this framework can be useful. We believe it provides researchers with a 
clearer view of the different components of IBs at one glance. For example, it could easily serve 
as a tool of analysis for identifying the specific layers and representations in use in student 
thinking, learning, or reasoning. We believe the framework provides curriculum writers and task 
designers with clearer goals for their curriculum or tasks to hit. For example, one could attend to 
how students would progress through this framework in a systematic manner. Task writers could 
identify which parts of the layers/representations are being elicited by their tasks. Holes in 
current learning progressions can be seen more easily, allowing the inclusion of tasks that can 
address those holes. We believe the framework provides instructors with a tool to ensure that 
their students understand each layer explicitly, and whether they can flexibly use the different 
representational operationalizations to describe the structure for each layer. Instructors could use 
this framework, and its operationalizations, to design homework questions or assessment 
questions targeting specific aspects of integrals. 

Of course, this framework has limitations as well. As stated earlier, we were primarily 
focused on the structure of the IB concept. We did not focus on the computation of integrals, 
proving integral properties, or general families of antiderivatives (see Black & Wittmann, 2007; 
Christensen & Thompson, 2010; González-Martín, 2005; Grundmeier et al., 2006). Additional 
work may wish to identify how such ideas relate to this framework. Further, we wish to be clear 
that despite the hierarchical presentation of the layers, people might be able to think or reason in 
non-linear ways across these layers, especially once the integral concept is understood (Simmons 
& Oehrtman, 2017, 2019). However, despite these limitations, we strongly believe this 
framework captures the essential conceptual components of the IB structure well. We believe it 
extends easily to integrals of various types, including second semester integrals, like 

 𝜋𝑓ሺ𝑥ሻଶ𝑑𝑥

  and  ඥሺ𝑑𝑥ሻଶ  ሺ𝑑𝑦ሻଶ

௫ୀ
௫ୀ , double or triple integrals, ∬ 𝑓ሺ𝑥,𝑦ሻ𝑑𝐴ோ  and 

∭ 𝑓ሺ𝑥,𝑦, 𝑧ሻ𝑑𝑉ோ , or path integrals,  𝑓ሺ𝑥, 𝑦ሻ𝑑𝑠  and  𝐅 ∙ 𝑑𝐫  (Ely, 2017; Jones, 2020; Jones & 
Dorko, 2015). Each of these types of integrals consist of quantities (e.g., dx, f, or F), quantitative 
structures (e.g., 𝜋𝑓ଶ𝑑𝑥, ඥሺ𝑑𝑥ሻଶ  ሺ𝑑𝑦ሻଶ, or 𝐅 ∙ 𝑑𝐫), and a summation of the target quantity 
across some domain. If useful, these can be extended to accumulation functions by allowing the 
summation to continue on with a variable upper bound, and by coordinating the upper bound 

inputs with different accumulated totals, such as  𝜋𝑓ሺ𝑥ሻଶ𝑑𝑥

  (Kouropatov & Dreyfus, 2014; 

Swidan & Yerushalmy, 2016; Thompson & Silverman, 2008). Thus, we propose this framework 
as a useful organization for future work on integrals with bounds. 
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Meanings, Reasoning, and Modeling with Definite Integrals: Comparing Adding Up Pieces 
and Accumulation from Rate  

 

Steven R. Jones   Robert Ely 
Brigham Young University  University of Idaho 

 

Abstract. Approaches to integration based on quantitative reasoning have largely developed 
along two parallel lines. One focuses on continuous accumulation from rate, with accumulation 
functions as the primary object. The other focuses on summing infinitesimal bits of a quantity, 
with definite integrals as the primary object. No work has put these two approaches in direct 
conversation with each other, which is the purpose and contribution of this theoretical paper. In 
this paper, we unpack both approaches in terms of meanings and reasoning. Because modeling is 
a key motive for using quantitatively-grounded approaches in the first place, we then analyze and 
discuss each approach’s method of modeling two example contexts. 
 

Keywords: calculus, definite integrals, quantitative reasoning, adding up pieces, accumulation  
 

Introduction 
One crucial theme in research on integration is that the common area-under-a-curve and 

antiderivatives meanings are insufficient, and that quantitatively-grounded meanings are needed 
(see Jones, 2015; Sealey, 2006). Yet, quantity-based approaches to integrals have largely 
developed along two parallel lines. One approach, which we call accumulation from rate (AR), 
focuses on dynamic rate-of-change integrands where the integral is a continuous accumulation 
(Kouropatov & Dreyfus, 2014; Swidan & Yerushalmy, 2016; Thompson, 1994; Thompson & 
Ashbrook, 2019; Thompson & Silverman, 2008). In AR, accumulation functions, 𝑓ሺ𝑥ሻ ൌ
 𝑟ሺ𝑡ሻ𝑑𝑡
௫
 , are the primary construct. The other approach, adding up pieces (AUP), focuses on 

zooming into tiny (infinitesimal) pieces of a domain to conceptualize tiny (infinitesimal) 
amounts of a quantity associated with each piece, which are added up (Chhetri & Oehrtman, 
2015; Ely, 2017; Jones, 2013, 2015; Simmons & Oehrtman, 2017). In AUP, definite integrals, 

 𝑓ሺ𝑥ሻ𝑑𝑥

 , are the primary construct. While, AR and AUP are both quantitative approaches, 

they have important differences. No literature puts these two approaches in direct conversation 
with each other, and this theoretical analysis paper partly fills this need by examining the 
meanings, reasoning, and modeling practices within the two approaches. We do this by 
explaining the meaning contained within each approach, as well as the entailed reasoning in each 
approach, and then examining how modeling might be done based within each approach. 
 

Adding Up Pieces 
AUP is a structure comprised of three elements: a partition, a target quantity, and a sum 

(Jones, 2013, 2021). To illustrate, consider 𝑐 ൌ  𝑎 𝑑𝑏
మ
భ

, where a, b, and c are quantities related 

by 𝑐 ൌ 𝑎 ∙ 𝑏. Partition means dividing the quantity “b” (e.g., a length or a time interval) into 
small pieces. These pieces can begin at a “macroscopic” scale (Δ𝑏), but can then be scaled to 
infinitesimal (db). In target quantity, each of these db pieces now has a tiny “infinitesimal” 
amount of the quantity of interest, c, constructed by the relationship 𝑎 ∙ 𝑑𝑏. The infinitesimal bit 
of c can be notated “dc.” Importantly, in AUP, the quantitative relationship does not have to be a 
product and can be based on other relationships (Chhetri & Oehrtman, 2015; Ely, 2017), leading 

to a more general format,  𝑑𝑐
మ
భ

, where dc is the result of whatever the quantitative operation is. 

Sum then means that the target quantity is added together across all of the partition pieces to give 
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a total amount. The integral symbol itself, , denotes the summation, with the bounds [b1,b2] 
representing the portion of b that is summed over. This structure is summarized in Figure 1. 

Here, “infinitesimal” essentially means “extremely tiny,” though it can be formalized either 
through the limit (limΔx→0) or the hyperreals (Dray & Manogue, 2010; Ely, 2017). Much research 
has shown the reasoning power across math and science in allowing differentials to retain their 
quantitative meaning (Amos & Heckler, 2015; Dray et al., 2008; Hu & Rebello, 2013; Jones, 
2015; Nguyen & Rebello, 2011; Pina & Loverude, 2019; Schermerhorn & Thompson, 2019a, 
2019b; Von Korff & Rebello, 2014). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Correspondence between AUP and the definite integral notation 

  

Reasoning Involved in Adding Up Pieces 
Each part of the partition-quantity-sum structure of AUP cognitively involves a process that 

leads to an object that is then needed in the next part (Sealey, 2014; Sfard, 1991, 1992). Partition 
is the process of dividing into infinitesimal pieces, leading to a set of infinitesimally-sized pieces. 
Target quantity is the process of relating quantities together, leading to an envisioned target 
quantity associated with each infinitesimal piece. For example, relating pressure and an 
infinitesimal area, 𝑃 ∙ 𝑑𝐴, produces an infinitesimal amount of force, dF, in that piece. Sum is the 
process of adding the target quantity, leading to the total amount of the target quantity. 

Because these processes and objects deal with infinitesimal pieces, scaling-continuous 
covariational reasoning (Ellis et al., 2020; Ely & Ellis, 2018) is a foundational image. This type 
of covariation imagines a static continuum that is infinitely zoomable. For example, one could 
scale time to arbitrarily small increments and coordinate an object’s displacement as becoming 
increasingly small within those increments as well. In scaling-continuous reasoning, no matter 
the scale factor, the new increment is always a continuum, and always has the same dimension 
and quantitative character as the original interval. This avoids the problematic collapse metaphor 
(Oehrtman, 2009), which treats the differential quantity as having disappeared entirely. 

AUP is fundamentally built on quantitative reasoning. Simmons and Oehrtman (2019) used 
the term basic model to refer to the overarching quantitative structure that would apply if all 
quantities had constant values, such as 𝑀𝑎𝑠𝑠 ൌ 𝜌𝑉, or 𝐹𝑜𝑟𝑐𝑒 ൌ 𝐺𝑚𝑀 𝑟ଶ⁄ . They explain that in 
non-constant cases, partitioning into infinitesimal pieces (e.g., dV) allows one to reason that the 
basic model essentially holds within each piece (e.g., dM = ρꞏdV), called a local model.  

While quantitative reasoning is the basis for interpreting or setting up definite integrals to 
model a situation, Ely (2017) explained that within AUP there is a distinction between setting up 
an integral versus computing the integral via the Fundamental Theorem of Calculus (FTC). That 
is, once the integral has been set up, one may need to rearrange the integral expression to ensure 

it matches the  𝑓ሺ𝑥ሻ𝑑𝑥

  structure required for computing integrals via the FTC. In order for the 

FTC to become available in AUP, definite integrals must be extended to accumulation functions 

Partition/Target quantity: dc represents 
infinitesimal pieces of c over implicit 
partition of b (from the bounds) 

Sum: ∫ is the sum of infinitesimal 
amounts of C across the pieces 
between b1 and b2 

Partition: Quantity b is 
partitioned into infinitesimal 
pieces, represented by db 

Target quantity: 𝑎 ∙ 𝑑𝑏 is a 
quantitative structure giving 
an infinitesimal amount of c 
(dc) in each db piece 

Sum: ∫ is the sum of 
infinitesimal bits of c 
between b1 and b2 

24th Annual Conference on Research in Undergraduate Mathematics Education 790



(see Sealey, 2014; Swidan & Yerushalmy, 2016; Von Korff & Rebello, 2012). Recently, Stevens 
(2021) provided a trajectory for doing so, by extending partition in AUP to adding on new 
infinitesimal pieces past the original partition. Generalizing to an arbitrary stopping point for the 

partition,  ,

  leads to the input-output relationship given in an accumulation function. Stevens 

(2021) found that students fairly naturally extended from definite integrals to accumulation 
functions, and even made their own connections that led to the FTC. 
 

Accumulation from Rate 
AR comes from the work of Thompson and colleagues (Thompson, 1994; Thompson et al., 

2013; Thompson & Silverman, 2008) and also contains a structure, which we summarize as rate 
function, bits of variation, and accumulation. While this is based on Thompson and Ashbrook 
(2019) we wish to be clear that this is our own breakdown and language. To illustrate, consider 
an accumulation function, 𝑓ሺ𝑥ሻ ൌ  𝑟ሺ𝑡ሻ𝑑𝑡

௫
 . Rate function entails conceptualizing 𝑓ሺ𝑥ሻ and x 

in dynamic covariation (Saldanha & Thompson, 1998), with 𝑟ሺ𝑡ሻ indicating the rate at which 
𝑓ሺ𝑥ሻ increases or decreases at any moment between a and x. Bits of variation means that as the 
independent variable, x, varies by tiny “infinitesimal” amounts, the rate of change function 
determines how much the dependent variable, 𝑓ሺ𝑥ሻ, increases or decreases at each moment. 
Because the integrand must always be a rate in AR, other types of quantitative relationships are 
required to first be transformed into a rate-of-change relationship, variation in 𝑓ሺ𝑥ሻ = rate × 
variation in x. To construct bits of variation in 𝑓ሺ𝑥ሻ, Δ𝑡 intervals are made that start at x = a, 
with each interval having its own rate, r. As x varies by infinitesimal dt bits within these Δ𝑡 
intervals, there is an accompanying bit of variation in 𝑓ሺ𝑥ሻ given by rate × dt. Finally, 
accumulation means that the increases/decreases in 𝑓ሺ𝑥ሻ are tracked open-endedly as x changes, 
producing a net accumulation from the starting point at x = a. Once this image is established, if 
Δt also becomes infinitesimal in size, the rates become exact (𝑟ሺ𝑡ሻ) and the accruals in 𝑓ሺ𝑥ሻ 
become exact (𝑟ሺ𝑡ሻ𝑑𝑡). This structure is summarized in Figure 2. 
 

 
Figure 2. AR structural elements in integral notation 

 

With AR, accumulation is formalized by first approximating using macroscopic Δ𝑥 intervals 
with constant rates, and considering dx-sized variations within the intervals. It switches from 
approximate to exact by then allowing the Δ𝑥 intervals to also shrink to infinitesimal in size. The 
approximation part of the process produces a (piecewise linear) accumulation function, given by 

𝐴ሺ𝑥ሻ ൌ ቈ∑ 𝑟ሺ𝑎  ሺ𝑘 െ 1ሻ∆𝑥ሻ∆𝑥
ቔೣషೌ
∆ೣ

ቕ

ୀଵ   𝑟ሺ𝑥ሻ൫𝑥 െ leftሺ𝑥ሻ൯ (Kouropatov & Dreyfus, 2014; 

Thompson & Ashbrook, 2019). As with AUP, this transition can be formalized through either the 
limit concept, lim

∆௫→
𝐴ሺ𝑥ሻ, or by taking Δ𝑥 to be hyperreal infinitesimal. 

 

𝑟ሺ𝑡ሻ𝑑𝑡 represents a bit 
of variation in f as t 
varies slightly by dt.  

𝑟ሺ𝑡ሻ is the rate function 
for 𝑓ሺ𝑥ሻ at any moment t. 

f(x) is the net variation of 
the quantity from x = a to 
the current value of x 

Accumulate bits of 𝑓ሺ𝑥ሻ open-endedly 
from x = a to the current value of x 
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Reasoning Involved in Accumulation from Rate 
In AR, one must reason about accumulation functions to make sense of any integral. One 

crucial part is perceiving that f(x) is a function, and that it is a function of x and not of the 
“dummy variable” t that is inside the integral (Kourapatov & Dreyfus, 2014). Another important 
idea is that the bounds of integration, a and x, differ significantly in role and in variable type. 
The lower bound, a, is a “zero accumulation” point (Swidan & Yerushalmy, 2016), whereas x 
represents a continual, open-ended accumulation with no fixed terminating location. 

A robust conception of accumulation functions from rate relies on smooth, continuous 
covariation, the highest level of covariational reasoning (Castillo-Garsow et al., 2013; Thompson 
& Carlson, 2017). It also entails reasoning in terms of something moving fluidly (Thompson & 
Carlson, 2017); the varying quantities are imagined as being tacitly parametrized by conceptual 
time (Oehrtman et al., 2008; Paoletti & Moore, 2017; Thompson, 2011). Accumulation functions 
rely on the objectification of a rate-of-change function that quantifies this covariation. This 
begins with an image of constant rate of change (Thompson, 1994), from which the idea of a 
nonconstant rate of change is abstracted by imagining that a function has constant rates of 
change over infinitesimal intervals of its independent variable (Thompson et al., 2013). 
Thompson and Carlson (2017) describe a moment as a small interval around x over which 𝑟ሺ𝑡ሻ 
is “essentially constant,” implying the accumulation is “essentially linear” over that moment.  

To develop exact accumulation functions, the reasoner must imagine variation and 
accumulation at the infinitesimal scale. In AUP, the transition from finite to infinitesimal scale is 
accompanied by a change in notation from ∆x to dx. In contrast, with AR, ∆x and dx can actually 
both refer to macroscopic or infinitesimal increments (Thompson & Ashbrook, 2019). The 
difference between these notations is not one of scale, but of role. If x starts varying at some 
point a up to some “current location” x = X, ∆x is used to denote a partition interval that begins 
at a. The current location X varies smoothly by dx amounts within any such ∆x interval as the 
accumulation progresses. The approximation is then made exact when the learner imagines this 
same phenomena for infinitesimal ∆x: X varies smoothly through infinitesimal (x, x + ∆x]. The 
function 𝑓ሺ𝑥ሻ then aggregates bits of accumulation while this variation occurs (Thompson & 
Ashbrook, 2019, §5.3). The integral 𝑓ሺ𝑥ሻ ൌ  𝑟ሺ𝑡ሻ𝑑𝑡

௫
  is notation that means the accumulation 

over an interval from a to x of the function f that comes from this rate-of-change function 𝑟. 
With the AR approach, a definite integral is simply a specific value of an accumulation 

function, 𝑓ሺ𝑏ሻ ൌ  𝑟ሺ𝑡ሻ𝑑𝑡

 . The way accumulation functions are developed and the way 

definite integrals are defined means that the FTC is essentially directly built into the AR 
approach. This could be considered one of AR’s big advantages. Part 2 of the FTC states that 

 𝑟ሺ𝑡ሻ𝑑𝑡

 ൌ 𝑓ሺ𝑏ሻ െ 𝑓ሺ𝑎ሻ, which is essentially the definition of AR’s definite integral, or an 

immediate corollary of it. Part 1 of the FTC, states that if f is an accumulation function 𝑓ሺ𝑥ሻ ൌ
 𝑟ሺ𝑡ሻ𝑑𝑡
௫
 , then f is an antiderivative of 𝑟. Using the same “rate-of-change function” rephrasing, 

this part also follows immediately from the way accumulation functions are defined in AR.  
 

Modeling in AUP and in AR: Two Example Contexts 
Example Context #1: Fluid flow 

Consider the problem: a fluid runs through a pipe into a tank, and the pipe has a device on it 
that records the flow rate (R) of the fluid in liters per minute. If the flow rate is non-constant, find 
the amount of fluid (A) that passed through the pipe over the time interval, 𝑡ଵ  𝑡  𝑡ଶ minutes.  
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Modeling fluid flow in AUP. Modeling in AUP could begin with the basic model A = R × t, 
and recognizing it only applies to constant rates. By partitioning the time interval into 
infinitesimal time intervals, dt, the basic model scales down to become an appropriate local 
model: dA = R × dt (see Figure 3). Summing these infinitesimal amounts of fluid over the time 
segments from 𝑡 ൌ 𝑡ଵ to 𝑡 ൌ 𝑡ଶ produces the total amount of fluid that flowed through the pipe 

over 𝑡ଵ  𝑡  𝑡ଶ: 𝐴 ൌ  𝑅ሺ𝑡ሻ𝑑𝑡
௧మ
௧భ

 (Figure 3). This structure already fits the format needed for the 

FTC and an antiderivative of R could be found and evaluated at 𝑡 ൌ 𝑡ଵ and 𝑡 ൌ 𝑡ଶ. 
 

                     
Figure 3. Modeling fluid amount through AUP 

 

Modeling fluid flow in AR. Modeling in AR could begin by imagining the amount A 
covarying with elapsed time x starting at some 𝑥 ൌ 𝑡ଵ. The rate of change function here is 
directly provided in the context, 𝑅ሺ𝑡ሻ, in liters per minute. The current time x begins at 𝑡ଵ and 
increases open-endedly in infinitesimal dt amounts within Δ𝑡 time intervals (Figure 4). The 
structure rate × time = amount provides variational bits of A. An accumulation of the variations 
in A leads to the integral structure 𝐴ሺ𝑥ሻ ൌ  𝑅ሺ𝑡ሻ𝑑𝑡

௫
௧భ

. The total amount up to 𝑥 ൌ 𝑡ଶ is this 

accumulation function evaluated at 𝑡ଶ,  𝑅ሺ𝑡ሻ𝑑𝑡
௧మ
௧భ

, determined by 𝐴ሺ𝑡ଶሻ െ 𝐴ሺ𝑡ଵሻ (Figure 4). 
 

 
Figure 4. Modeling fluid amount through AR 

 

Comparison of AUP and AR in fluid flow. AUP uses scaling to imagine an infinitesimal 
partition of time. Each piece of time has an associated amount of fluid, which are added to 
capture the total amount of fluid over that time interval. AR uses smooth covariation to imagine 
the fluid amount varying as elapsed time changes continuously. The variation of fluid over 
infinitesimal times is tracked to conceptualize an ongoing net accumulation, which is then 
truncated at the desired time value. While both approaches use infinitesimal time segments, they 
construct “fluid amount” in quite different ways (static partition versus dynamic covariation). 
 
Example Context #2: Arc Length 

Consider a curve defined by 𝑦 ൌ 𝑓ሺ𝑥ሻ between 𝑥 ൌ 𝑎 and 𝑥 ൌ 𝑏, with x and y in units of 
centimeters. Find the length of this curve.  

Modeling arc length in AUP. One could begin by recognizing the distance formula (based 
on the Pythagorean Theorem) as a basic model: 𝑠 ൌ ඥሺΔ𝑥ሻଶ  ሺΔ𝑦ሻଶ . However, this basic 
model only works for straight lines. But one can scale to the infinitesimal level by partitioning 
the curve into infinitesimal segments with infinitesimal lengths ds (Figure 5). At this scale, each 
segment is essentially linear. If one imagines an infinitesimal right triangle for one such segment, 
with legs dx and dy and hypotenuse ds, the local model 𝑑𝑠 ൌ ඥሺ𝑑𝑥ሻଶ  ሺ𝑑𝑦ሻଶ can be applied for 

the length of that segment. Summing these ds lengths produces the total arc length, 𝑠 ൌ  𝑑𝑠
௫ୀ
௫ୀ , 

t = t1 t = t2 

Partition into dt segments 

dt 
t = t1 t = t2 

Target quantity in each piece 

dA = Rꞏdt 
t = t1 t = t2 

Sum across dt segments 

 𝑅𝑑𝑡
௧మ
௧భ

x 
A 

𝑅ሺ𝑡ሻ 

Rate function, R, for 
covarying A and x 

Δ𝑡 

x increase by dt 

𝑅ሺ𝑡ሻ𝑑𝑡 produces 
bits of variation in A 

A 

Open-ended accumulation of A, 

 ,
௫
௧భ

 until 𝑥 ൌ 𝑡ଶ:  𝑅ሺ𝑡ሻ𝑑𝑡
௧మ
௧భ

 

A A 
x
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or 𝑠 ൌ  ඥሺ𝑑𝑥ሻଶ  ሺ𝑑𝑦ሻଶ
௫ୀ
௫ୀ  (Figure 5). While this integral is a completely legitimate model in 

AUP, evaluating this integral via the FTC would now require altering into the  𝑓ሺ𝑥ሻ𝑑𝑥

  

structure (Ely, 2017). To do so, one can “factor out” ሺ𝑑𝑥ሻଶ from inside the square root to create 

 ඥ1  ሺ𝑑𝑦 𝑑𝑥⁄ ሻଶ  𝑑𝑥
௫ୀ
௫ୀ . Equally, one could factor out a ሺ𝑑𝑦ሻଶ to create the expression 

 ඥሺ𝑑𝑥 𝑑𝑦⁄ ሻଶ  1  𝑑𝑦
௬ୀሺሻ
௬ୀሺሻ  instead. Here, 𝑑𝑦 𝑑𝑥⁄  (or 𝑑𝑥 𝑑𝑦⁄ ) is the ratio of infinitesimal 

changes in x and y, which precisely defines the derivative, 𝑦′ (or 𝑥′): 𝑠 ൌ  ඥ1  ሺ𝑦′ሻଶ  𝑑𝑥

 . 

 

 
Figure 5. Modeling arc length through AUP 

 

Modeling arc length in AR. This explanation is based on Thompson and Ashbrook’s 
approach (2019, §8.4). The first step would be to start at 𝑥 ൌ 𝑎 and imagine covariation between 
some current position along the x-axis, 𝑥 ൌ 𝑋, and the net arc-length-so-far, 𝑠ሺ𝑋ሻ, with the arc 
length’s growth rate at each moment given by some rate function 𝑟௦ሺ𝑥ሻ. Constructing straight 
line segments over Δx intervals, X is seen an varying smoothly by dx amounts within each Δ𝑥 
interval (Figure 6). As X varies, the y value also varies by 𝑑𝑦 ൌ 𝑟൫leftሺ𝑥ሻ൯𝑑𝑥, where “left(x)” 
denotes the x-value of the left end of the Δx-interval in which x is currently varying (Figure 6).  
Note that 𝑟 is not the arc-length rate function, 𝑟௦, but is the rate at which 𝑦 ൌ 𝑓ሺ𝑥ሻ increases 
within the Δx interval. This is needed because it is the rate 𝑟 at this point that is extrapolated 
across the entire Δx interval as dx grows. Having constructed dy, one can relate a small variation 

in arc length, ds, with dx and dy at the infinitesimal scale, 𝑑𝑠 ൌ ටሺ𝑑𝑥ሻଶ  𝑟൫leftሺ𝑥ሻ൯
ଶ
ሺ𝑑𝑥ሻଶ. 

Factoring out (dx)2 and dividing gives 𝑑𝑠 𝑑𝑥⁄ ൌ ට1  ቀ𝑟൫leftሺ𝑥ሻ൯ቁ
ଶ
. At this point, the reasoner 

also imagines Δx taking on an infinitesimal value, so that ds/dx becomes essentially equal 
to𝑟௦ሺ𝑥ሻ, and 𝑟൫𝑙𝑒𝑓𝑡ሺ𝑥ሻ൯ becomes essentially equal to 𝑟ሺ𝑥ሻ. This finally gives the rate function 

𝑟௦: 𝑟௦ሺ𝑥ሻ ൌ ට1  ቀ𝑟ሺ𝑥ሻቁ
ଶ
. One can accumulate bits of increase in arc length 𝑟௦ሺ𝑥ሻ𝑑𝑥 open-

endendly: 𝑠ሺ𝑋ሻ ൌ  ඥ1  ሺ𝑟ሺ𝑥ሻሻଶ𝑑𝑥

 . Once it is known that the rate function is a “derivative”, 

  
 

 
Figure 6. Modeling arc length through AR 

Partition into 
ds lengths Sum:  ඥሺ𝑑𝑥ሻଶ  ሺ𝑑𝑦ሻଶ

௫ୀ
௫ୀ  

Evaluate via FTC:  
Manipulate to 
 ඥ1  ሺ𝑦′ሻଶ 𝑑𝑥



 
    Target quantity: 
 ds =ඥሺ𝑑𝑥ሻଶ  ሺ𝑑𝑦ሻଶ 

Δx 

dx 

dx 
dy = 𝑟௬ሺleftሺ𝑥ሻ)dx 

Δx 

left(x) 

Δx becomes infinitesimal 

X 

Accrue 
changes in 
s up to X 

𝑟௦ሺ𝑥ሻ ൌ ට1  𝑟௬ሺ𝑥ሻଶ  

Accumulate s(X) continuously,  ,



 
until desired endpoint is reached: 

𝑠ሺ𝑏ሻ ൌ  ඥ1  ሺ𝑓′ሺ𝑥ሻሻଶ𝑑𝑥



  

X varies by 
dx within Δ𝑥 dy is height along 

line segment 
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this is also equal to  ඥ1  ሺ𝑓′ሺ𝑥ሻሻଶ𝑑𝑥

 . To produce an arc length up to a specific location X = 

b, one evaluates this exact accumulation function at that value, 𝑠ሺ𝑏ሻ ൌ  ඥ1  ሺ𝑓′ሺ𝑥ሻሻଶ𝑑𝑥

 . 

Comparison of AUP and AR in arc length. The difference between AUP and AR is more 
pronounced in this context. In AR, the steps involved include all those used in the AUP modeling 
process, but there are a number of additional steps as well. The reasoner imagines both a ∆x 
partition interval and a dx varying inside it. This Δx also becomes infinitesimal, making it subtle 
to distinguish from dx. While in AUP 𝑑𝑠 ൌ ඥሺ𝑑𝑥ሻଶ  ሺ𝑑𝑦ሻଶ is the direct quantitative 
relationship used to construct the integral, in AR it only serves as an intermediate step toward 

deriving the rate function 𝑟௦ሺ𝑥ሻ ൌ
ௗ௦

ௗ௫
. Further, in AR, the reasoner conceptualizes all of this 

before the integral expression is written. AUP allows the reasoner to represent sums along the 

way before the entire process is complete, such as 𝑠 ൌ  𝑑𝑠
௫ୀ
௫ୀ  or  ඥሺ𝑑𝑥ሻଶ  ሺ𝑑𝑦ሻଶ

௫ୀ
௫ୀ . These 

expressions would be meaningless in AR. Lastly, by focusing on the rate at the moment of 
accumulation as a function of x, the reasoner works with 𝑟ሺleftሺ𝑥ሻሻ𝑑𝑥 instead of 𝑑𝑦. If one 
wanted to do the integral with respect to y, one would have to make a different construction for 
𝑑𝑥 ൌ 𝑟௬൫bottomሺ𝑦ሻ൯𝑑𝑦, whereas AUP already has both dx and dy available in the quantitative 
relationship governed by the infinitesimal right triangle. 
 

Discussion 
This paper contributes by putting AUP and AR in direct conversation with each other in 

terms of meaning, reasoning, and modeling. While both are quantitatively-based approaches, AR 
and AUP use very distinct meanings for integrals. AR creates an image of variables in dynamic, 
continuous covariation (Thompson & Carlson, 2017) based on an explicit rate function 
(Thompson, 1994). AUP creates an image of a static infinitesimal partition, with bits of the target 
quantity in each piece, based on the idea of zooming (Ely & Ellis, 2018; Jones, 2013; Jones & 
Dorko, 2015). These meanings lead to distinct types of reasoning. AR requires smooth-
continuous covariational reasoning, and the coordination of elements of a dynamic system into 
an encapsulated rate function (Thompson & Carlson, 2017). AUP is based on scaling covariation 
reasoning (Ellis et al., 2020), involving a zoomable continuum where basic models for 
quantitative relationships can become appropriate local models. Where AR requires all integrals 
conceptualized through amount = rate × variation, AUP allows any quantitative relationship to 
serve as a basic or local model (Chhetri & Oehrtman, 2015; Simmons & Oehrtman, 2019).  

One benefit to AR is that the FTC is an immediate consequence of the definitions of 
accumulation functions and definite integrals. In AUP, further reasoning is needed beyond the 
definition of the definite integral to develop the FTC. However, a key benefit to AUP is its 
power and flexibility in modeling, by allowing different quantitative relationships to be used 
(Chhetri & Oehrtman, 2015; Ely, 2017; Jones, 2015, 2020; Simmons & Oehrtman, 2017). AUP 
handles rate contexts, non-rate contexts, and even non-product contexts (such as arc length) 
equally. The exact same partition-quantity-sum structure functions the same in all cases. Further, 
progress in modeling with AUP can be inscribed by intermediate integral expressions, such as 

 𝑑𝐹
௫ୀ
௫ୀ , prior to the FTC-ready  𝑓ሺ𝑥ሻ𝑑𝑥


  format. On the other hand, AR is constrained by the 

requirement to perceive all integrals as rates. Non-rate or non-product contexts must first be 
reconceptualized as rates. The full rate function, 𝑟ሺ𝑡ሻ, must be described before an integral 
expression that is meaningful in AR can be written. In conclusion, while AR and AUP are both 
valid quantitative approaches, the meanings, reasoning, and modeling is different in each. 
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On the Theory of Conceptualizing an Animation as a Didactic Object 
 

  Julia Judson-Garcia 
  Arizona State University 

In this paper, I propose a theorization of the mental operations involved in conceptualizing an 
animation as a didactic object. I begin by motivating the idea of an animation as a didactic 
object. Then, I leverage the foundations of radical constructivism, conceptual analysis, 
instructional conversation, intersubjectivity, and reflective discourse to make explicit the 
theoretical relationships that underlie the mental operations of conceptualizing an animation as 
a didactic object. I offer a visualization and an explanation of the interaction between the mental 
operations that an instructor or researcher may engage in to conceive of an animation as a 
didactic object. Lastly, I discuss limitations and future directions. 

Keywords: Didactic Object, Didactic Model, Animations, Conceptual Analysis 

Introduction 
Instructors have long since struggled to help students visualize mathematical ideas. Until 

recently, attempts to support students’ visualizations were limited to static diagrams. Now, 
advances in technology have allowed instructors and curriculum writers to display static and 
dynamic images in the hopes that students understand visually what relationships are being 
expressed symbolically and to help students conceptualize problem contexts. The mathematics 
education community has called for the inclusion of visualization in the teaching of calculus to 
help support students’ understandings (e.g. Arcavi, 2003). Recent calculus curriculum reform 
efforts have often sought to leverage the power of technology to illustrate the coherence of 
calculus concepts using graphs of functions (e.g., Swidan, 2019; Thompson, Byerley, & Hatfield, 
2013). With these tools, teachers of calculus might use graphs in their efforts to support students 
in moving beyond procedure-oriented mathematics and shift their students' understandings to a 
more conceptual one.  

This paper focuses on animations because they are widely used in curriculum (e.g 
Thompson et al., 2013). In mathematics education, animations are researched in two different 
ways. The first employs animated cartoon characters which researchers have found useful in 
representing classroom scenarios for supporting preservice teachers reflections on their teaching 
(e.g., Chazan & Herbst, 2012; Chieu & Herbst; 2016; Herbst & Kosko, 2014). The second 
employs an animation as a visual representation that “generates a series of frames, so that each 
frame appears as an alteration of the previous one” (Bétrancourt & Tversky, 2000, p. 313). 
However, utilizing this definition for a mathematical animation would be problematic because 
then any compilation of images formatted as a video could be considered an animation. Hence, I 
extend Bétrancourt and Tversky’s (2000) definition of animation to define a mathematical 
animation as an animation that depicts variation or continuous motion. 

High school and college mathematics instructors offer animations to help students 
understand situations involving varying quantities that otherwise are described in the text, 
perhaps accompanied by a diagram. For example, Figure 1 is replicated from a calculus 
textbook's section on related rates using GeoGebra. It is accompanied by the diagram below the 
problem statement. The purpose of the diagram is to assist students in understanding the 
situation, as described in the text.  

24th Annual Conference on Research in Undergraduate Mathematics Education 799



 

A rubber band connects the hour hand and minute hand on a 
12-hour clock. What is the rate of change of the band’s 
length with respect to time at each moment between 3:00 
pm and 7:00 pm? 

 
Figure 1. Static diagram of clock scenario.  

For students to understand the diagram in a meaningful way, they must envision how the 
hands of the clock vary in relation to time, how the hands vary in relation to each other, and that 
the rubber band's length also varies systematically with regard to the clock hands' positions. 
However, it is well documented (e.g., Carlson, Jacobs, Coe, Larson & Hsu, 2002; Moore & 
Carlson, 2012; Oehrtman, Carlson & Thompson, 2008; Thompson, 1994) that students have 
difficulty imagining situations dynamically when presented in text, even with a static diagram. 
Even in an elementary education setting, mathematics educators have found that diagrams are 
not self-evident. Rather, they are ambiguous and have to be interpreted actively by the students 
(Steinbring 2005; Söbbeke 2005).  

Now imagine that the static diagram was animated for a student to view while solving the 
problem. The intention behind the animation is that students understand that the minute hand 
makes a complete revolution each time the hour hand makes 1/12 complete rotation. Meaning 
the minute hand rotates 12 times as fast as the hour hand. Even with the animation, it is up to 
students to decide the hands’ angular displacements, the directed angle between the hands, and 
the hands' rates of change of angular velocity are salient quantities. They must also decide that 
the relationship between hands' rates, the relationship between the rubber band's length, and the 
directed angle between the hands are significant to the question. Consequently, animations can 
be helpful aids to students’ envisioning a situation, but there are many aspects of situations 
students must still provide for themselves to complete their understanding productively. In 
particular, students must conceptualize relevant quantities within the animation and 
conceptualize relationships among them. 

My discussion of the animation for the students, suggests the animation might be used 
best in supporting students’ understanding were they to experience it in the context of a teacher 
holding a thoughtful discussion about interpreting it—quantities they can see in it, which of them 
might be relevant to problem’s question, and how to think about relationships among them. The 
animation would support such a conversation more productively than would a static diagram. 
With the diagram alone, students would need to envision for themselves all that varies and 
envision the variations and appropriate relationships to each other. Finally, without a well-crafted 
teacher-guided reflective conversation, students could easily flounder because of their 
unawareness of the many decisions and interpretations they must make to understand the 
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animation productively. In describing the animation in this context, I mean to utilize an 
animation as a didactic object.  

Didactic Objects and Model 
Thompson (2002) offered the terms “didactic objects” and “didactic models” as a means 

by which a teacher might create a dynamical space in which students have the opportunity to 
construct the understandings the teacher intends. Thompson defines didactic object as “a thing to 
talk about’ that is designed with the intention of supporting reflective mathematical discourse” 
(Thompson, 2002, p. 198). Thompson went on to say, “I hasten to point out that objects cannot 
be didactic in and of themselves. Rather, they are didactic because of the conversations that are 
enabled by someone having conceptualized them as such” (ibid, p. 198). Didactic objects entail 
images of conversations amongst varying participants about the object that will be propitious for 
the kinds of engagement out of which advanced understandings might emerge. It is important to 
note that an object with no discourse is simply an object and is not inherently didactic, the object 
only becomes didactic when conceptualized as defined previously (Thompson, 2002).   

This wide interpretation of “object” gives the creator a limitless perspective on what type 
of artifact can be implemented. However, the instructor must be aware of why she has selected a 
specific object and how the object will assist students in developing conceptual understandings 
of mathematics. Therefore, the design for guiding a conceptual understanding using an animation 
as a didactic object should include questions that prompt reflective mathematical discourse. The 
questions that are included in the instructional conversation should be conceptual rather than 
calculational (Thompson, Phillip, Thompson, & Boyd, 1994). Questions that are calculational 
prompt and solidify answer getting behaviors and the idea that only one process or answer exists. 
Conceptual questions that elicit deeper thinking and multiple answers will support stronger 
meanings, as well as a conceptual understanding. In this way, the goal of didactic objects is to 
support ways of thinking that go beyond what is actually present in the discussion surrounding 
the object.  

A didactic model is “a scheme of meanings, actions, and interpretations that constitute 
the instructor’s or instructional designer’s image of all that needs to be understood for someone 
to make sense of the didactic object in the way he or she intends” (Thompson, 2002, p. 212). 
Didactic models are not models of students' experiences; rather, they should encapsulate how a 
student's understandings might evolve into sophisticated, advanced, and coherent 
understandings. By focusing on the development of advanced understandings of didactic objects, 
one also addresses the instructional actions to support such development. This is true because the 
conversations an instructor facilitates regarding objects aim to support students’ abstraction of 
mental operations and operative mathematical structures by creating a context wherein students 
might participate communally in mathematical reasoning the instructor intends each to develop 
personally (Thompson, 2002).  

Thompson discussed three issues surrounding the design and use of didactic objects: (a) 
employing didactic objects to manage reflective conversations aimed at supporting students’ 
understanding of fractions as conveying relative size, (b) ways teachers might overestimate the 
impact of using animations on students’ understandings, and (c) issues of designing artifacts with 
the intention of using them as didactic objects. A central theme in all examples was the 
importance of teachers’ ability to decenter from his or her mathematical meanings in the quest to 
hear students’ meanings.  

Other researchers have found the construct didactic object useful in their research to 
design curriculum (Bowers, Bezuk, & Aguilar, 2011; Counrtney, 2010), to support students in 

24th Annual Conference on Research in Undergraduate Mathematics Education 801



 

constructing formulas (Guy, 2020), and to support students’ imagery of varying quantities in 
calculus (Mirin, Yu & Kahn, 2020). However, in prior literature when researchers describe the 
process of conceiving an artifact as a didactic objects they are not explicit in describing the 
mental process(es) that the researcher(s) engaged in to conceive of the artifact as a didactic 
object. Moreover, the implementation of a didactic object is most likely to differ across 
individuals since the conceptualization is dependent on the instructor or researcher’s conceptual 
analysis, didactic model, and instructional conversations. Thus, this paper seeks to make explicit 
the theoretical foundations for conceiving of an animation as a didactic object and seeks to 
explore the following question: 

RQ: What mental operations must an instructor/researcher engage in to conceive of an 
animation as a didactic object? 

Underlying Theory and Theoretical Constructs 
In this section, I will describe the other theoretical constructs of conceptual analysis, 

instructional conversation, reflective discourse, and intersubjectivity before then utilizing these 
constructs to describe the mental operations entailed in conceiving of an animation as a didactic 
object. 

Conceptual Analysis and Instructional Conversation 
Stemming from radical constructivism (Glasersfeld, 1995) the method of conceptual 

analysis (Glasersfeld, 1995; Thompson, 2008) plays an integral part in conceptualizing an 
animation a didactic object. For a curriculum developer or researcher to orient themselves to 
radical constructivism means they are interested in designing mathematical tasks to engage 
learners in the types of actions that promote their construction of desired understandings and 
place them is such situations that foster abstractions from those actions. The focus of designing 
such tasks aims to answer the question, “What mental operations must be carried out in to see the 
presented situation in the particular way one is seeing it?” (Glasersfeld, 1995, p.78). Glasersfeld 
called the method for proposing answers to the question a conceptual analysis and noted there 
are two ways to employ a conceptual analysis. Glasersfeld’s first method of conceptual analysis 
involves the creation of models of knowing that might help one think about how others might 
know a specific idea. The second, was to determine the actions that might be most propitious for 
achieving desired understandings and actions that would help students build more powerful ways 
to deal mathematically with their environment. Thompson (2008) expanded on Glasersfeld’s 
descriptions of conceptual analysis by offering two additional uses for a conceptual analysis. A 
conceptual analysis can also be used to describe ways of knowing that might be unproductive or 
problematic in specific situations and in analyzing the coherence of various ways of 
understanding a body of ideas.  

The four ways of using conceptual analysis have implications for instructional designs as 
conceptual analyses of mathematical ideas cannot be carried out abstractly. Rather, one doing a 
conceptual analysis imagines students doing something in the context of discussing it 
(Thompson, 2002). In this regard we can leverage conceptual analyses to “anticipate the 
conceptual operations that underlie a particular way of thinking and therefore the design of 
conversations that might support students developing them” (Thompson, 2002, p. 197). 
Thompson calls such conversations instructional conversations and notes that while a teacher is 
aware of an intended instructional conversation, students do not need to be aware of it in the 
same way or at all.  
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Reflective Discourse and Intersubjectivity  
Taking a radical constructivist stance means that I interpret discourse involving two or 

more entities as a collective activity in which individuals participate. Each individual has 
schemes that suggest to them how to participate. It is these schemes through which the individual 
interprets the actions and utterances of other individuals (Thompson, 2000). Hence, reflective 
discourse “is characterized by repeated shifts such that what the students and teacher do in action 
subsequently becomes an explicit object of discussion” (Cobb, Boufi, McClain, & Whitenack, 
1997). This means that the teacher shifts the discourse such that the student’s actions and 
meanings become the object of the discussion; implying that the student first has to contribute. 
One should be careful to note that student participation alone does not mean students will engage 
in reflective discourse, rather participation supports students to reflect and reorganize prior 
activities and does not cause, determine, or generate it (ibid). In this sense, guiding and 
developing a reflective discourse requires careful consideration and judgment on the instructor’s 
part in which a conceptual analysis will help guide the instructor to implement the discourse.   
 For two people to communicate successfully in a reflective discourse does not mean that 
they have come to the same understandings and meanings, rather, there is no reason for each 
person to believe they have misinterpreted each other. Intersubjectivity is the state in which each 
person in the interaction feels confident that the other(s) involved thinks or anticipates as they 
do. More eloquently stated by Steffe and Thompson (2000) and Thompson (2000), “people have 
reached a state of reciprocal assimilations where further assimilations are unproblematic”. The 
notion of intersubjectivity therefore implies the focus of the interaction is not about agreement, 
but about the understandings and meanings in the moment of each individual. It would be 
impossible to claim in any instance that two individuals have the same meanings because by 
doing so would imply that the two individuals have identical schemes and have had the exact 
same experiences. In this sense, intersubjectivity can be used as a lens in which to view reflective 
discourse in the moment of the discourse between the student and the instructor or researcher 
when using an animation as a didactic object. 

Putting it All Together 
 In theorizing the mental operations an instructor/researcher may engage in when 
conceptualizing an animation as a didactic object, I offer Figure 2 as a visual representation of 
the relationships between all the constructs defined and explained previously. I will also contrast 
the conceptualization of an instructional conversation without a didactic object to highlight an 
important distinction that an instructor/researcher must engage in when conceptualizing an 
animation as a didactic object. 

The Red Path 
A conceptual analysis imagines students doing something in the context of discussing it 

(Thompson, 2002). Instructional conversations support students developing the conceptual 
operations that underlie a particular way of thinking as a result of a conceptual analysis, but do 
not inherently include didactic objects. Hence, a researcher or instructor could choose to have an 
instructional conversation with a student or class (implementing the instructional conversation) 
and then reflect on how productive the conversation was in supporting the students’ 
understandings (analysis of the instructional conversation). In turn, the analysis of the 
instructional conversation might inform the researcher or instructor of improvements to be made 
on the initial conceptual analysis or the instructional conversation. In Figure 2, it should be noted 
that the shaded purple box depicts the mental operations that an instructor may engage in when 
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conceiving of an instructional conversation with or without a didactic object and that outside of 
the shaded purple box is the enactment and analysis of the instructional conversation.  

 
Figure 2. A visualization of the theoretical relationships.  

While engaging in The Red Path researchers or instructors need not engage in a second-
order model, but they must at least engage in a first-order model. First-order models are “models 
the observed subject constructs to order, comprehend, and control his or her experience” (Steffe, 
Glasersfeld, Richards, & Cobb, 1983, p. xvi), which no one else can have access to. When 
creating a conceptual analysis, the researcher/instructor creates a first-order model of an 
epistemic student’s thinking. Namely, a model of mental actions that govern the student’s 
mathematical perception, activity, and anticipation of results of the activity Many instructors 
may think it is impossible to teach without didactic objects and may find the red path 
impractical; however, it is quite possible that an instructor intends to use an animation but does 
not take careful consideration to conceptualize it as a didactic object. Meaning, that upon 
implementation they may focus students’ attention to irrelevant information and not think about 
how the animation can be used to advance students’ mathematics.  

The Blue Path 
Since a conceptual analysis supports the design of a didactic object from students’ 

understandings, then, within the method of conceptual analysis one thinks about describing 
things students might reperceive and things about which a teacher might hold productive 
discussions with them (Thompson, 2002). Specifically, that the discussions that the instructor 
envisions with an artifact support reflective mathematical discourse focused on mathematical 
topics, where the discourse becomes an explicit object of student reflection. Students 
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participating in reflective discourse have the opportunity to construct deeper understandings and 
cognitive connections.  

A didactic object also entails the images of conversations to support students developing 
an advanced way of thinking. Thus, from an instructional design perspective it reasons that the 
instructional conversation an instructor intends to implement from a conceptual analysis plays a 
role in the designing and implementing the didactic object in the scope of the conceptual 
analysis. Moreover, the relationship between conceptual analyses and instructional conversations 
ensures that both student learning and instruction is thought of when creating a didactic object 
through the means of the didactic model. Thompson (2002) notes that a didactic model differs 
from Simon’s idea of a learning trajectory because didactic models make clear the separation 
between descriptions of instruction and descriptions of learning (p. 213). In essence, didactic 
models allow the possibility of multiple approaches to the same goal whereas as learning 
trajectories are specific instructional sequences.  

In designing reflective discourse using the researcher/instructor’s didactic model, they 
must engage in creating a second-order model, whereas in The Red Path they need not 
necessarily engage in a second-order model. Second-order models are those models the 
researcher/instructor construct of the subject's knowledge in order to explain their observations 
or experience of the subject's states and activities (Steffe et al., 1983). Specifically, a 
researcher/instructor would have to think about how students might interpret the animation using 
their schemes and how the researcher/instructor would respond to such interpretations. A 
researcher/instructor must take careful consideration to think about the ways in which students 
may interpret the animation as a didact object because we cannot take for granted what is the 
conversation in which students will actually participate in when implementing an instructional 
conversation.  

Similarly, to The Red Path, in The Blue Path the researcher/instructor implements the 
instructional conversation with a student or class, reflects on how productive the conversation 
was in supporting the students’ understandings, and then the analysis of the instructional 
conversation informs the researcher/instructor of improvements to be made on the initial 
conceptual analysis, instructional conversation, and/or didactic model.  

Limitations and Future Research 
 I recognize that animations implemented as didactic objects might differ depending on 
the instructor or researcher’s conceptual analysis, didactic model, and instructional 
conversations. This places a necessity to further investigate to what extent the role of the 
researcher/instructor’s mathematical meanings plays in conceptualizing an animation as a 
didactic object and how does that conceptualization impact the instructors’ implementation of the 
didactic object. Moreover, what appears to be an important implementation of animations as 
didactic objects is encouraging that students anticipate how the values of quantities would vary 
before watching the animation (Hegarty, Kriz, & Cate, 2003; Schnotz & Rasch, 2005). In this 
sense, it may be pertinent to explore the lens that quantitative reasoning (Thompson, 1990, 1993, 
1994, 2011) and covariational reasoning (Carlson et al., 2002; Saldanha & Thompson, 1998; 
Thompson & Carlson, 2017) may offer in the mental operations that a researcher/instructor must 
engage in when conceiving of an animation as a didactic object outlined in this paper. Lastly, 
although this paper focuses on animations as didactic objects, future research should also 
investigate the viability of the model in relation to empirical studies and in relation to other 
artifacts (e.g. static diagrams and applets) being conceived of as didactic objects.  
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An Analysis of Multi-Step Questions in a Calculus II Course 
 

Anna Keefe 
The University of Alabama 

This paper describes some of the psychometric properties of a new type of online exam question 
called multi-step questions. The multi-step questions in this study are given through computer 
assisted assessment on two Calculus II exams. Multi-step questions are of a form in which the 
question is broken up into its constituent parts, and a student must work and submit their answer 
for a part before moving onto the next part. These questions are analyzed both qualitatively and 
quantitively through a categorization on Anderson and Krathwohl’s (2001) Taxonomy Table and 
by using Rasch analysis with the Partial Credit Model (Masters, 1982).  

Keywords: Calculus, Computer assisted assessment, Exams, Multi-step questions, Psychometrics 

A crucial facet of undergraduate calculus courses is assessment. Making conclusions based 
on exam results assumes that the exams have properties in which conclusions can be made. 
Exams are often being altered by changing current questions, adding new questions, and 
removing old questions. Sometimes creating new questions requires using different means to ask 
questions. As questions are altered, analyzing the psychometric properties of the exams is 
important to ensure that the exam questions are working as intended.  

This study aims to analyze the psychometric properties of multi-step questions in Calculus II. 
Multi-step questions are questions given through computer assisted assessment (CAA) in which 
a question is broken down into parts, and students must work on and submit their answer for one 
part before continuing onto the next part. Giving multi-step questions on exams allows for 
students to earn partial credit even if they make a mistake somewhere in their work. Once a 
preceding part is submitted on its final submission, the correct answer for that part is shown so 
that the student can use it in the following part. This continues until the student has completed 
the question in its entirety. In this study, these questions are given through an online education 
platform. Automatic item generation (AIG) is used to change numbers for question variation on 
exams. In some cases, these questions are given through question pools in which the online 
platform randomly selects a question out of the pool to give to the student to work.  

Literature Review 
Computer assisted assessment allows for students to complete homework assignments and 

exams through a computer based platform. It enhances exams by increasing the quality of 
assessment (Draaijer, 2019). With questions involving partial credit, it allows for the use of a 
consistent grading scale to allow for partial credit points. It also allows for the use of various 
types of questions, such as placing questions within question pools and multi-step questions.  

Automatic item generation is used to create test items in an automated manner under an 
established item model (Lai, 2009). Embretson and Kingston (2018) attribute the use of AIG to 
decreasing item familiarity and cheating. By using AIG, scores are able to be tracked 
automatically and students are able to earn partial credit (Singley & Bennett, 2002). A great 
benefit of AIG is the ability to generate more questions by reusing item models (Gierl & Lai, 
2012).  

The exact process of multi-step questions that occur in this study was not found in the 
literature. Similar occurrences were found in literature, such as computer algebra systems trying 
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to automatically give partial credit (Erabadda et al., 2016; Kadupitiua, 2016). In this case, multi-
step questions look something such as Figure 1, where a student would first see everything in the 
first block. Once the student either used all of their submissions or got the answer correct, they 
can view the next part to work. This continues until the student is notified that they have 
completed the problem. By breaking down the questions and having blanks within the parts, 
students can earn consistent partial credit when taking these exams.  

 

 
Figure 1. Example of a Multi-Step Question 

Theoretical Framework 
Anderson and Krathwohl’s (2001) revision to Bloom’s (1956) Taxonomy created a two-

dimensional Taxonomy Table with the Knowledge Dimension and the Cognitive Process 
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Dimension. The Knowledge Dimension is comprised of four types of knowledge: factual, 
conceptual, procedural, and metacognitive, while the Cognitive Process Dimension is comprised 
of six cognitive processes: remember, understand, apply, analyze, evaluate, and create. 
Combined, these dimensions form the Taxonomy Table used to categorize exam questions in this 
study as seen in Table 1. Along with the Taxonomy Table, the theoretical framework requires the 
Partial Credit Model (Masters, 1982), otherwise known as PCM. This model was chosen because 
it is a latent trait model that transforms ordinal ratings to interval measures. It also provides clear 
requirements for evaluating item properties. The combination of the Taxonomy Table and the 
PCM form a foundation in which psychometric properties can be analyzed. 

 
Table 1. Calculus II Questions Categorized on the Taxonomy Table (Krathwhol, 2002, p.16) 

       

Knowledge 
Dimension 

Cognitive Process Dimension 

 Remember Understand Apply Analyze Evaluate Create 
Factual _________ ________ ________ ________ ________ ________ 
Conceptual _________ ________ ________ ________ ________ ________ 
Procedural _________ ________ ________ ________ ________ ________ 
Metacognitive _________ ________ ________ ________ ________ ________ 

       

Methods 
De-identified student data containing students’ scores on each question for two exams for 

Calculus II were obtained and considered in this study. The two exams considered in this study 
were the second and third exams during the semester, labelled as Exam 2 and Exam 3, 
respectively. There were 395 students who took Exam 2 and 362 students who took Exam 3. 
These exams were taken using CAA on an online education platform in a proctored mathematics 
laboratory setting. The students were already familiar with the online platform before taking 
these exams since they had an exam prior to the considered exams and were to complete their 
homework through the same platform. When taking an exam, a student is given three 
submissions on each question that is not multiple choice. The student can use the first two 
submissions with no penalties, but there is a 50% penalty on points earned on the third 
submission. If a question is multiple choice, the student is only given one submission.  

In addition to the multi-step questions, the exams had other types of questions on them as 
well. The first action was to remove the other types of questions to get a better understanding of 
the properties of the multi-step questions. Partial credit categories were then combined to meet 
the requirements to use the Partial Credit Model (Masters, 1982) provided by Linacre (2002), 
such as having at least ten items in a category. This was done through a process of taking into 
account the exam questions as well as trying to reach a minimum of ten items per partial credit 
category. After this, each exam question was individually examined and categorized by 
quantitatively placing the items on the Taxonomy Table. Once each item was categorized, a final 
inspection was done to verify that the questions were categorized into the correct category.  

After question categorization, the psych package (Revelle, 2021) was used on R software to 
perform exploratory factor analysis to evaluate dimensionality. A scree plot was produced to 
determine if the items were unidimensional. Having the items be unidimensional is critical 
because, in addition to being a requirement of the PCM, it also facilitates clear interpretations of 
item order and person order. Once the determination was made that the items were 
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unidimensional, the principal axis was checked to make sure all the questions considered were 
providing information.  

Once the exploratory factor analysis was complete, it was determined that the PCM (Masters 
1982) could be used to analyze the exam data. The eRm (Mair et al., 2020) package was used on 
R software to perform the Rasch analysis using the PCM function.  

 
Results 

Table 2 shows the results of the qualitative categorization of the exam questions on 
Anderson and Krathwohl’s (2001) Taxonomy Table.  
 

Table 2. Calculus II Questions Categorized on the Taxonomy Table 
        

Knowledge 
Dimension 

Cognitive Process Dimension 

 Remember Understand Apply Analyze Evaluate Create 
Factual 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Conceptual 0.00% 0.00% 0.00% 16.67% 16.67% 0.00% 
Procedural 0.00% 0.00% 41.67% 8.33% 16.67% 0.00% 
Metacognitive 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
       

  
 The majority of questions were classified as ‘apply procedure’. No multi-step questions 
from the exams were classified in the ‘remember’, ‘understand’, or ‘create’ columns or in the 
‘factual knowledge’ and ‘metacognitive knowledge’ rows. Seeing that the category with the 
majority percentage of exam questions was categorized as ‘apply procedure’, one may infer that 
the multi-step questions for Calculus II are more procedural. It can be argued that this is the case 
because the questions are broken down into their constituent parts rather than asking a student to 
work a problem from start to finish using their own knowledge to follow steps.  
 

 
 

Figure 2: Wright Maps for Exam 2 and Exam 3 

 Above, in Figure 2, are the Wright Maps for the multi-step questions on the two exams. 
Looking into Exam 2 a bit further, it was found that of the 395 students that took Exam 2,  
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person ability was lower than the lowest item difficulty (-0.41) for 44 students or about 11.14%. 
On the other hand, it was found that person ability was higher than the highest item difficulty 
(0.57) for 213 students or about 53.92%. Only about 34.94% of students’ abilities were in the 
item difficulty range for this exam. Similar results were found for Exam 3. Of the 362 students 
that took Exam 3, 27 students’ person ability was lower than the lowest item difficulty (-0.25), 
which is about 7.46%. It was found that for 258 students, or about 71.27% of students taking 
Exam 3, person ability scores were higher than the most difficult item (0.49).  
 The visual representations of the person locations shown in Figure 3 for Exam 2 shed 
light onto how little information is able to be drawn from the analysis of these questions. Figure 
3 expresses the relationships between percentage correct and person ability for each exam 
question. Consider MS1. Students with person ability scores over two standard deviations above 
the average had scores ranging from the minimum to the maximum. Similar cases occur in items 
MS3, MS4 and MS6. With scores close to the maximum having so much congestion, variation 
amongst students with average to high person ability are not being differentiated. The ability of 
the students goes much beyond what is asked on these questions. 
 

   

   
Figure 3: Percentage Correct by Person Ability for Exam 2 

 The lack of information being given by Exam 2 is consistent with Exam 3. Consider 
Figure 4, which shows the person-item map for Exam 3. When the location of person abilities 
and item difficulties are placed along the same latent dimension, it is clear that half of the 
locations of item difficulty fall below the average; hence, the exam questions being given are too 
easy and cannot accurately measure person ability because they are not differentiating between 
students in the upper echelon of person ability.   
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Figure 4: Person-Item Map for Exam 3 

Discussion 
Overall, the questions considered in this study are not beneficial to measuring student 

understanding and cognitive skills because they are too easy for the students taking them. There 
is a lack of student differentiation due to the lack of difficulty on these exam questions. Although 
multi-step questions allow for consistent partial credit, they could be making exam questions too 
easy for the average calculus student. It would be beneficial to analyze the questions with various 
difficulty levels. This would allow strong conclusions to be made about whether or not giving 
multi-step questions on exams is beneficial for calculus students. Five of the twelve questions 
considered in this study were categorized as ‘apply procedure’. More research needs to be done 
to determine if the exam questions were too easy because students were mostly asked to apply a 
procedure or if they were too easy because of the breakdown of the questions.  

As computer assisted assessment is incorporated into more and more classrooms, it is 
important to find methods in which partial credit can be given, especially for courses such as 
calculus in which there are many steps to reach the correct answer. Calculus courses demand 
deep cognitive reasoning skills, and instructors are aiming to measure student understanding and 
cognitive skills in these classrooms but continue to run into constraints, such as giving consistent 
partial credit. Multi-step questions might have the potential to successfully differentiate students 
and give consistent partial credit if different types of questions are asked. Increasing the 
difficulty level of multi-step questions could better differentiate person abilities. Although this 
may result in lower exam averages, grading scales could be changed to ensure that students are 
still passing even though they are scoring lower due to the higher difficulty of the exams.   
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Theoretical Development of the Constant Rate of Change Assessment (CRCA) Instrument 

Ishtesa Khan 

Arizona State University 

This theoretical report presents the constant rate of change assessment (CRCA) taxonomy that is 

designed based on the theory of quantitative reasoning, proportional reasoning, and 

covariational reasoning. The paper also presents the development of four novel assessment items 

informed by the CRCA Taxonomy. I also share the contribution of clinical interview data in the 

development of the CRCA instrument.  

Keywords: assessment items, constant rate of change, proportional reasoning, precalculus 

Introduction 

The ideas students study in Precalculus are foundational to build meanings for ideas in 

higher- level mathematics courses (Calculus, Linear Algebra, etc.) and to persist in continuing a 

STEM degree. Sonnet & Sadler (2014) reported that most Precalculus curricula in college 

reintroduce the procedural techniques students learn in high school, and therefore, students 

struggle in their college Calculus courses. In an effort to improve students success and 

understanding of ideas in Calculus courses, researchers have identified the idea of constant rate 

of change as foundational to understanding linear functions, the idea of average rate of change, 

proportionality, and slope (Thompson, 2008; Byerley, 2016 & Coe, 2007). The studies also 

reported the disconnections students and teachers have as they conceive these ideas as separate 

sets of actions and associated with unrelated contexts (Lobato, 2006; Lobato & Siebart, 2002; 

Lobato & Thanheiser, 2002; & Coe, 2007). If students build meanings for the idea of constant 

rate of change that entails thinking about two quantities co-accumulating so that their increments 

are in constant proportion regardless of their size, they will be better prepared to conceptualize 

functional relationships in Calculus (Thompson & Carlson, 2017). Therefore, it is an academic 

interest to develop assessment items that are designed to assess students understanding and ways 

of thinking of the ideas of a quantity, change in quantity, variable, formula, ratio, rate, linear 

function, slope, an average rate of change, etc. that are related to learning and understanding the 

idea of a constant rate of change. In this report, I share a theoretical development of four 

assessment items from my current study of developing the Constant Rate of Change Assessment 

(CRCA) instrument. The CRCA instrument is informed by a theoretical report (Khan, 2021a) on 

conceptual analysis (Glaserfeld, 1995 & Thompson, 2008) of the idea of a constant rate of 

change and a proposed hypothetical learning trajectory (Simon, 1995; Simon & Tzur, 2004) of 

ideas to be foundational for understanding the constant rate of change. I will present a Constant 

Rate of Change Assessment (CRCA) Taxonomy that details the specific ideas and reasoning to 

be assessed by the CRCA instrument. I conclude by sharing clinical interview results and discuss 

how the clinical interview plays a role in developing the assessment items.  

Background: Foundational Reasoning for Understanding the Constant Rate of Change  

Mathematics educators and researchers have investigated students’ understanding of 

proportionality, rate, and ratio at various mathematical grade levels, with findings that repeatedly 

manifest student difficulties in applying proportional reasoning when interpreting the rate of 

change in a modeling context (Tourniaire & Pulos, 1985; Doerr & O’Neil, 2011; Orton, 1983 & 

Yoon, Byerley & Thompson, 2015). In an exploratory study (Khan, 2020) with calculus students, 
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I found that thinking about constant rate of change requires proportional reasoning (Lamon, 

2007; Lesh, Post& Behr, 1988; Thompson, 1994), covariational reasoning (Carlson, Jacobs, Coe, 

Larsen & Hsu, 2002; Thompson & Carlson, 2017), and quantitative reasoning (Thompson, 1994 

& 2011). This section provides a brief description of the reasoning abilities and understanding 

students need to develop to understand the idea of constant rate of change and guide our effort to 

design items to assess students’ understanding of the idea of constant rate of change.   

A student engages in quantitative reasoning (Thompson, 1988, 1990, 1993, 1994 & 2011) as 

she conceives quantity as a measurable attribute of an object and conceives measuring it as a 

multiplicative comparison of two fixed quantities. A quantity is a student’s conceptualization of 

an attribute of an object that can be measured (Thompson, 1990, 1993, 1994 & 2011). When a 

student is presented with a candle burning context where a 14-inch candle is lit and steadily 

burns until it is burned out, the student imagines measuring the original length (attribute) of the 

candle (object) or measuring the remaining length (attribute) of the candle at any elapsed time 

(attribute) since it started burning, she is conceptualizing quantities. Therefore, Thompson (2011) 

claimed that quantities exist in an individual’s mind when she conceptualizes measuring the 

quality of an object that can assume a measure.  

Proportional reasoning as a theory interacts with quantitative reasoning (Thompson, 1994 & 

2011) as one conceives quantity as a measurable attribute of an object; she conceives a 

multiplicative comparison of two fixed quantities. She conceives ratio as a result of the 

multiplicative comparison of the quantities. She conceives rate as a proportional relationship 

between the measure of two varying quantities. Researchers have reported that student’s ability 

to engage in proportional reasoning revolves around the understanding of rational numbers, 

fractions, the idea of ratio and rate, and over the years, educators have developed multiple 

definitions and distinctions of ratio and rate (Lesh, Post & Behr, 1988; Kieren, 1976; Lamon, 

2006; 2007 Kaput & West, 1994 & Verganaud, 1983; 1988). Thompson (1994), Thompson & 

Thompson (1994 & 1996) suggested that the distinction between rate and ratio depends on an 

individual’s mental operations on how she comprehends the given rate and ratio within a context. 

Thompson (1994) defined ratio as a result of comparing two quantities multiplicatively and 

defined rate as a reflectively abstracted constant ratio. When one conceives the idea of rate, she 

thinks about the characteristic of rate as two quantities are covarying. A person reconceives ratio 

as a rate when she applies the ratio to a different situation and thinks about the ratio as a rate that 

characterizes covariation between quantities. In other words, a ratio is a multiplicative 

comparison of the measures of two non-varying quantities, and rate is the proportional 

relationship between two varying quantities’ measures (Thompson & Thompson, 1994). 

Researchers vaguely adopted the term proportional reasoning, and Lamon (2007) said that 

‘anything and everything related to ratio and proportion’ (p. 637) is referred to as proportional 

reasoning.  

When two quantities vary in relation to each other, the mental operation that supports the 

dynamic images in students’ thinking is referred to as covariational reasoning (Carlson et al., 

2002; Thompson & Carlson, 2017). When a student engages in proportional reasoning, she 

simultaneously engages in covariational and quantitative reasoning. A student engages in 

proportional reasoning when she conceives the invariant relationship of quantities in a dynamic 

situation or applies her understanding of proportionality in mathematical modeling situations. 

Constructing the idea of rate involves envisioning two quantities in a situation vary smoothly and 

continuously, and the changes (increases or decreases) in one quantity or variable’s value is a 
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simultaneous result of changes in another quantity or variable’s value; and as the two quantities 

covary, the multiplicative comparisons of their measures remain proportional.  

A student thinks about the idea of constant rate of change as relating two covarying 

quantities when changes in one quantity’s value are proportional to the corresponding changes in 

the other quantity’s values. She thinks about using variables 𝑥 and 𝑦 to represent the values of 

two quantities that change together, if the quantities are related by a constant rate of change, then 

∆𝑦 = 𝑚. ∆𝑥 where ∆𝑦 represents the changes in 𝑦 values and ∆𝑥 represents the changes in 𝑥 
values and 𝑚 is proportionality constant. The changes in 𝑦’s values are 𝑚 times as large as 

changes in 𝑥’s values. The theory mentioned above informs the role of the related ideas- quantity 

(varying and fixed), covariation, changes in quantity’s varying values, representation of 

quantities using variables, expressions, formula, variable (delta notation) to express any change 

in quantity’s values, graphical representation of a dynamic situation, ratio, rate, proportionality, 

linear graph, functional relationship, etc. in understanding the idea of constant rate of change. 

The ideas involved in understanding the idea of constant rate of change are mentioned in the 

CRCA Taxonomy in the next section of the report.   

 The CRCA Taxonomy 

The CRCA Taxonomy (Figure 1) includes three reasoning abilities that are foundational for 

learning the idea of constant rate of change. The taxonomy includes understanding various ideas 

related to the concept of quantity, proportionality, constant rate of change, and constant rate of 

change in a functional relationship. The CRCA is a 20-item multiple-choice exam with each 

question having five answer choices. The CRCA also includes three already validated items from 

PCA (Carlson, Oehrtman & Engelke, 2010) instrument and two items drawn and modified from 

Lobato & Ellis (2010). Each item assesses at least more than three understandings of concepts 

mentioned in the CRCA Taxonomy. In the next section, I will introduce four novel items that I 

designed based on the Taxonomy and provide brief rationale of how each item can assess 

multiple understandings of the CRCA Taxonomy.   

 

Figure 1. The CRCA Taxonomy 
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The Process of Developing the CRCA  

I am using a four-phase technique to develop and validate the CRCA, suggested by Lissitz 

and Samuelsen (2007). Developing and validating an instrument is a time-worthy process. In this 

report, I only intend to set forth my ongoing effort of the first two phases in developing the 

CRCA. According to Lissitz and Samuelsen (2007), developing a valid instrument should always 

begin by identifying the concepts or ideas worthy of assessment. I worded questions and chose 

item distractors based on the observation of students thinking during nine semesters of 

consecutive precalculus teaching and analyzing exploratory teaching interviews (Steffe & 

Thompson, 2000) data on student thinking of the idea of constant rate of change (Khan, 2020 & 

2021b). Next, I conducted interviews with students using open-ended items to identify and refine 

distractors based on students’ thinking. I used the CRCA as a precalculus course assignment quiz 

after introducing the concept of constant rate of change and proportionality. The quantitative data 

from the quiz provides insights in favor of some chosen distractors and suggests further iteration. 

I plan to repeat clinical interviews (Clement, 2000) until each item is validated to clear 

interpretation, assess the concepts mentioned in the CRCA Taxonomy, and the distractors reflect 

students’ thinking as suggested during the iterative interviews.  

Here, I briefly mention the intended phases of the CRCA development- 

Phase I. I began my investigation (Khan, 2020 & 2021b) by interviewing calculus and 

precalculus students, to answer the research question-how do students think about the idea of 

constant rate of change? The literature and results of my prior investigations provided insights 

that students’ understanding of the idea of constant rate of change has a key role in improving 

students’ understanding of other precalculus and calculus topics. This led me to develop the first 

collection of assessment items that will inform the foundational reasoning abilities and the 

foundational ideas to understand the idea of constant rate of change. The first pass of the 

development included identifying already validated items from PCA and other instruments 

relevant to the CRCA Taxonomy. I designed other items based on the data from the tasks I used 

in previous studies (Khan, 2020 & 2021b). I engaged with students in clinical interviews with the 

open-ended form of the items to ensure that students interpreted the wordings of each item as I 

intended. The students’ interpretations were analyzed carefully to address the required changes 

to improve the wording of the items.  

Phase II. To gain a sense of the quantitative performance of the assessment items and the use 

of the distractors, I used the items as a class quiz in the Spring 2020 semester in one section of 

the precalculus course. The students took the quiz after they completed class discussions and 

assignments based on the idea of constant rate of change. I noticed the variation of choosing 

different distractors among students with an average score of 59%. Based on the phases I and II 

insights, I went through another iteration of updating the assessment items.  

Phase III. The next step includes circulating the CRCA instrument among precalculus 

sections taught by different instructors using different curricula in the beginning of the semester. 

Then based on the data, I will choose participants for another round of clinical interviews 

(Clement, 2000). I will select interview participants who receive less than the mean score. Their 

thinking in justification of the incorrect choices will provide crucial arguments to accept or reject 

the distractors before another iteration. I will remove the distractors chosen by fewer than 5% of 

students. In this phase, I will establish the internal content validity of the CRCA.   

Phase IV. This phase will be essential to examine external measures to establish CRCA’s 

validity as a tool for determining students’ understanding of the idea of constant rate of change. 

During this phase, I will administer the CRCA as a pre-post-assessment to precalculus-level 
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students. The pre-post-CRCA mean scores will be important to analyze the role of instructional 

intervention to the instrument CRCA.  

Table 1. below presents the most recent version of four-novel items from the CRCA- 

 
Table 1. Four novel items from the CRCA 

Items Choices 

1. Jim tosses a pebble into a pond, and it produces a circular ripple that 

travels outward. Jim notices that the circumference of the circle increases at a 

constant rate as the radius of the circle expands. Which of the following 

formula represents a change in the circle’s circumference with respect to a 

change in the circle’s radius? Here, 𝐶 represents the circle’s circumference in 

cm and 𝑟 represents the circle’s radius in cm.  

 

a. 
𝐶

𝑟
= 𝜋 

b. 𝐶 = 4𝜋𝑟 

c. ∆𝐶 = 4𝜋∆𝑟 

d. ∆𝐶 = 2𝜋∆𝑟 

e. 𝐶 = 4𝜋𝑟2 

 

2.On Saturday Lee drove 200-miles on a road trip at a constant speed of 75 

miles per hour. On Sunday he drove 2/3 as far as he drove on Saturday, while 

maintaining the same constant speed of 75 miles per hour. How long did Lee 

drive on Sunday?  

 

a. 200/75 hours 

b. 2/3*200 hours 

c. 3/2*(200/75) hours 

d. 2/3*(200/75) hours 

e. 2/3*75 hours 

 

3. What is the constant rate of change of 𝑦 with respect to 𝑧, when 𝑦 = 525 −
1

3
𝑧?  

 

a. 525 

b. 1/3 

c. 524.66667 

d. -1/3 

e. 3 

 

A function 𝑓 has a constant rate of change of 7. 𝑓(10) = 132. What is the 

value of 𝑓(0)?  

 

a. 0 

b. 132/7 

c. 132-7/10 

d. 62 

e. 70  

 
 

All the items mentioned above require students to conceptualize quantities as a first response. 

The items are followed by students’ thinking about the relation between two or more quantities 

and covariation in the values of the quantities. Item 1 requires all three reasoning abilities from 

students, including the understanding of Q1, Q2, Q3, Q5, Q6, C2, C3, P1, and P2 from the 

CRCA Taxonomy. To answer item 2 with correct choice, students will think about the situation 

with reasonings R1 and R2, including the understanding of Q1, P1, P2, P3, and C1. Item 3 

requires R1 and R3 reasonings and understanding of Q1, Q2, Q3, Q4, C1, C2, C3, and C4. Item 

4 inquires students thinking about the idea of constant rate of change in a functional relationship. 

Students will think about quantities and their changing values by interpreting the function 

formula and meaning for a function to have a constant rate of change of 7. This item requires 

students’ R1, R2, and R3 reasoning abilities and understanding of C1, C2, F1, F2, F3, F4, and 

F5.  
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Clinical Interview Results in Developing the CRCA 

CC and Alexi (pseudonyms) were enrolled in Precalculus courses in a large southwest 

university in the US during the clinical interviews (Clement, 2000). They participated in 1 hour 

and 30 minutes long sessions with open-ended CRCA items at the end of the Fall 2020 term. The 

data was collected using zoom video/audio recording during the COVID-19 pandemic. Both 

participants were already exposed to the idea of constant rate of change as part of their 

coursework and used the annotation feature of zoom to share their scratch work. The qualitative 

data analysis method in this study is supported by grounded theory (Strauss & Corbin, 1994). 

The open-ended version of item 1 (Table 1) initially did not mention the respective variables to 

express the circle’s circumference (in cm) and the circle’s radius (in cm). CC exhibited 

difficulties interpreting the problem without given variable names. I encouraged her to use any 

variable names of her choice to write the formula. Alexi, on the other hand, was prompt in 

thinking about using variables of her choice, and she justified choosing ∆𝐶 = 2𝜋∆𝑟 as her 

answer because “delta represents change, and the question is asking for to represent the change 

in the circle’s circumference with respect to the change in the circle’s radius.”  

While thinking about item 2 (Table 1), CC’s first instinct was to correlate the problem with 

the distance formula, 𝑑 = 𝑠𝑡 where 𝑑 represents the distance (in miles), 𝑠 represents the speed 

(in mile/hours) and 𝑡 represents the time (in hours). She thinks that the distance and time in both 

days are proportional as Lee maintained a constant speed to drive during both road trips. She 

used 𝑡 as a variable to express how long it took Lee to drive on both road trips but explicitly 

mentioned that 𝑡 does not express the same quantity on both days. Alexi took a different 

approach; she made a drawing to make sense of the item. She then thinks that the distance and 

time for both road trips are proportional. She thinks that if the distance of the second road trip is 

2/3’s of 200 miles, then the time to complete the second road trip is 2/3’s of the time to complete 

the first road trip. Figure 2 and Figure 3 below show their work (item 2 was numbered 4 during 

the interviews)- 

 

 

Figure 2. CC and Alexi’s work on item 2.  

CC and Alexi were initially thinking about finding pairs of values of (𝑧, 𝑦) while working on 

item 3 (Table 1) and thinking about ‘rise over run’ formula to find the constant rate of change of 

𝑦 with respect to 𝑧 in this context. They figured the slope of this equation would be -1/3 from the 

calculations and later noticed that -1/3 is the constant multiplier of z in the given equation that 

represents the slope. They reflected in their thinking and realized that the role of the constant 
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multiplier in a linear equation is to express the constant rate of change when 𝑦 and 𝑧 covary and 

changes at a constant rate.  

For item 4 (Table 1), CC thinks about an equation or formula she could work with, and she 

thinks about eventually solving for 0 as the item asked for the value of 𝑓(0). Alexi, alternatively, 

thinks about the role of the constant rate of change of 7 in a function formula. She thinks that for 

every change in the independent variable’s value of 𝑓, the dependent value will be “7*10 

subtracted from 132”. CC and Alexi both compared the imaginary function formula in this 

context with the general equation 𝑦 = 𝑚𝑥 + 𝑏. However, CC first solved for 𝑏 and gets 62 as the 

value using the point (10, 132), then she used the equation 𝑦 = 7𝑥 + 62 to solve for 𝑦 when 𝑥 is 

0. The interviewer then probed CC to think about what 𝑏 represents in a linear equation. After 

some probing, CC realizes that the corresponding 𝑦-value when 𝑥 is 0 represents the 𝑦-intercept, 

and the general variable b is used in the equation 𝑦 = 𝑚𝑥 + 𝑏  to represent the 𝑦-intercept of the 

context.  

Discussion and Future Work 

The data from the clinical interviews (Clement, 2000) suggest that it is important to introduce 

variables to represent the varying quantities in an assessment item for students to make sense of 

the problem context. Therefore, I revised the CRCA items to define appropriate variables in all 

problem contexts. The quantitative data from the quiz suggest that 57% of students chose the 

correct answer for item 1. CC and Alexi’s thinking for item 2 indicates that students are likely to 

use proportional reasoning to compare road trips. I have chosen the distractors as expressions for 

item 2 so that the students focus on the quantitative and proportional relationship between 

quantities’ values rather than thinking about calculating values. 78% of the students chose the 

correct answer for item 2 in their quiz. For item 3, 525 and 524.66667 were popular answer 

choices among 30% of the students, suggesting the students might identify 525-1/3 as a 

multiplier of 𝑧 or they might think 525 can be replaced with 𝑚𝑥 in a general linear equation 𝑦 =
𝑚𝑥 + 𝑏. In either possible case, students need to think about each element of a linear equation to 

understand the idea of constant rate of change in a linear equation. CC and Alexi showed ways of 

thinking that led them to the correct value of 𝑓(0) while working on item 4. However, 40% of 

the students chose 0 as the correct answer in the quiz and 38% chose 62. The students who chose 

the answer choice 0 might think there is no vertical intercept when the independent quantity’s 

value is 0.  

The data provided insights to revise the CRCA items with distractors that might reflect 

students’ thinking. However, the development of an instrument is a process that will require 

more iterations to make sufficient comments on the content validity. The development of the 

CRCA is still in progress with more iterations and will proceed with phases III and IV in due 

time. The theoretical framework in designing each assessment item is easily overlooked when we 

discuss the overall development of an assessment instrument and the validity of the instrument to 

measure students’ performance. Therefore, this report features the role of theory in building a 

taxonomy for an assessment instrument and how the theoretical framework and taxonomy inform 

each assessment item. I have presented brief data to support the process of theoretical 

development of four CRCA assessment items. The items are not limited to use only to assess 

students’ thinking about the idea of constant rate of change. Researchers can use and modify the 

items as teaching materials or tasks to investigate how students think about the idea of constant 

rate of change.  
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The Story of Circulating Conversations Methodology towards RUME Research Questions 
 

Danny Luecke 
North Dakota State University 

The goal of this paper is to convey an Indigenous research paradigm to the RUME (Research in 
Undergraduate Math Education) community in a way as authentic as possible. This paper stories 
my PhD research journey of applying an Indigenous research paradigm to research in 
undergraduate math education at Sitting Bull College (SBC). For this study, Circulating 
Conversations Methodology (CCM) was named as the theoretical framework with one of its key 
features as co-connecting knowledge. This paper shares the process of developing Circulating 
Conversations Methodology (CCM) within an Indigenous research paradigm and shares its 
results of four research questions. Within an Indigenous research paradigm, the process is the 
product of my research (Wilson, 2008). 

Keywords: Indigenous research paradigm, relationality, co-connecting knowledge, tribal college, 
math curriculum and pedagogy 

In seeking to follow Indigenous ways of knowing and being throughout every aspect of this 
research, how knowledge is transferred is equally significant with the knowledge itself 
(Kimmerer, 2013; Kovach, 2009; Wilson, 2008). The goal of this paper is to discuss my process 
of applying an Indigenous research paradigm which in turn led to the development of research 
questions. Through this experiential process, I am continually learning from Shawn Wilson 
(Opaskwayak Cree) that “the process is the product” (Wilson, 2008, p. 103). Within my 
understanding of an Indigenous research paradigm, the process to arrive at the research questions 
is equally as significant as the answer to the research questions. This process-centric and 
relational way of writing and view of knowledge will likely feel striking to a Western trained 
reader. In this paper, the research questions are part of the product, that is developed in process 
through CCM, and so will be shared near the end. I will begin this paper with the cultural 
protocol of introductions. 

Introductions 
Hau mitakuyepi. Ċhaɳte	waṡteya	nape	ċhiyuzapi.	Danny	Luecke	emaċiyapi.	Fargo,	North	

Dakota	el	wathi	na	Fargo	emataɳhaɳ.	Ina	Kathy	Jo	Dahlgren	eċiyapi.	Ate	Lenny	Luecke	eċiyapi.	
In	Lakhol’iyapi	(the	Lakota	language)	I said, hello my relatives. With a good heart I shake 

your hand. My name is Danny Luecke, and I am from and currently live in Fargo, North Dakota. 
I shared my parent’s names in my desire to honor all my ancestors. I am from multiple European 
nations as well as Choctaw Nation and reflect upon the bind of embracing or neglecting my 
Choctaw heritage because of my predominantly white background, privileges, and experiences. I 
am honored by your interest in reading my work and learning with me. I pray that this proposal 
would strengthen the relationship between us and strengthen your relationships with Indigenous 
knowledges and Indigenous Peoples. There are so many connections I do not know. I strongly 
dismiss any notions of being an ‘expert’ (Kovach, 2009; Wilson, 2008; Windchief & Pedro, 
Ch.2, 2019). All I share with you are some of the connections I have made. I acknowledge the 
land I am from as the land of Oceti Sakowin, Anishinaabe, and multiple more Nations. I honor 
and thank them for their millennia of sustainably partnering with the Land as a living relative. In 
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humility, I introduce Land as one who has been here long before any of us and will be here long 
after any of us (L. T. Smith et al., 2018, Ch.1).	

While Western research demands the notion of objectivity, an Indigenous research paradigm 
embraces the clear articulation of subjectivity (Archibald, 2008; Grande, 2004; Kovach, 2009; 
Meyer, 2014; Wilson, 2008; Windchief & Pedro, 2019). A first-person introduction like this and 
a story writing style may seem unusual to you. It certainly was to me when I began learning 
about Indigenous research paradigms. Shawn Wilson wrote a seminal work that likely has the 
most influence on me and this research titled “Research Is Ceremony: Indigenous Research 
Methods” (2008). Wilson and his co-researchers developed a saying that I have embraced also. 
“If research doesn’t change you as a person, then you haven’t done it right” (Wilson, 2008, p. 
135). I know I have changed dramatically through this process, personally as well as my 
professional views towards research and writing. I did not grow up participating in spiritual 
ceremony. I am learner to Indigenous ways of knowing and being. My continual greatest fear is 
not respecting the Indigenous knowledges and Indigenous Peoples that I am connecting with and 
learning from. Today, I am trusting Creator, my academic elders, and the relationships being 
developed through the research process to guide me. 

Another seminal work towards an Indigenous research paradigm written by Jo-Ann 
Archibald, also known as Q’um Q’um Xiiem, (Stó:lo Nation) is titled “Indigenous Storywork: 
Educating the Heart, Mind, Body, and Spirit” (2008). In doing any research with Indigenous 
communities, she shares pivotal self-reflection questions addressing issues from past and 
ongoing colonialism within research. “Was I doing anything different from earlier ‘outsider’ 
academics who created a legacy of mistrust among First Nations concerning academic research? 
How was my research going to benefit the education and wellbeing of Indigenous peoples and 
their communities? How would I address ethical issues related to respect and ownership of 
Indigenous intellectual property?” (Archibald, 2008, p. 36). As I seek to do RUME at a tribal 
college, these questions help guide my work by guiding my heart, mind, body, and spirit. 

Wilson elaborates in sharing that “As we Indigenous scholars have begun to assert our 
power, we are no longer allowing others to speak in our stead. We are beginning to articulate our 
own research paradigms and to demand that research conducted in our communities follows our 
codes of conduct and honors our systems of knowledge and worldviews” (Wilson, 2008, p. 8). 
Circulating Conversations Methodology (CCM) seeks to follow this demand in every possible 
way. Thank you for joining in unraveling this CCM journey towards RUME research questions. 

Indigenous Research Paradigm 
While reading “Research is Ceremony” (2008) the first time, I wrote down in my notebook 

“Relationality is the sum of the whole Indigenous research paradigm.” Going through the book 
for a third time months later, the actual quote reads, “Relationality seems to sum up the whole 
Indigenous research paradigm to me”{emphasis added} (Wilson, 2008, p. 70). This epiphany 
moment struck my heart and mind. In my first reading, I had removed the subjectivity and opted 
for a more definitive way of knowing. It was not until the third reading, and after a discussion 
with my mentor, professor of education, Dr. Hollie Mackey (Northern Cheyenne) about my 
absolutist writing style at that time, did the revelation come that my reading and writing patterns 
were not matching the subjectivity inherent within relationality (H. Mackey, personal 
communication, September 21, 2020). I was reading the seminal pieces with an eye for the single 
precise definition for an Indigenous research paradigm so I could extract that out of context into 
my work (L. T. Smith et al., 2018). The single definition for an Indigenous research paradigm is 
not written in any of the seminal works, which fully aligns with the paradigm itself. There is no 
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one way to apply an Indigenous research paradigm! There cannot be one way because it is 
dependent on all relations. This may include spirituality, a specific place, a specific language and 
culture, and certainly a dependence on the researcher and participants themselves (Archibald, 
2008; Kovach, 2009; Wilson, 2008). 

Relationality to me is the idea that everything is in relationship (Wilson, 2008), that 
everything [including knowledge] is alive and connected (Meyer, 2014). Wilson taught me that it 
goes beyond the idea that I have a web of relationships to I am the web of relationships. This is 
not for humans only, knowledge as a living entity does not have relationships, but knowledge is 
relationships. This reality of nature and knowledge is distinct from constructivism that centers 
human knowing (Hatch, 2002; Kovach, 2009). Wilson says relationality to him is that 
“relationships form reality” (Wilson, 2008, p. 137). I laughingly remember the essence of 
relationality via seeing relationality as a contraction of the two words relationship and reality. 
Mathematically, it may be seen as emphasizing the study of the edges instead of the vertices. 
This assumption about the nature of reality, that is ontology, impacts not only research but 
perspectives about science and math as living entities themselves (Kimmerer, 2013). Greg Cajete 
(Santa Clara Pueblo), a well-known Native scientist, is quoted by Manulani Aluli Meyer (‘Ōiwi 
Hawai’i) by saying “The perspective of Native science goes beyond objective measurement 
honoring the primacy of direct experience, interconnectedness, relationship, holism, quality and 
values, and they are specific to tribe, context, and cultural tradition” (Meyer, 2014, p. 98). 
Wilson (2008) brought me to tears as he shared a metaphor describing relationality applied to 
knowledge, and therefore my responsibility to the knowledge in its relational context. 

 
So the way I see it, gaining knowledge is more like being married to someone – you don’t 
own your spouse or children but you do share a special relationship. It is a relationship 
that you are accountable to. And therefore it becomes cultural appropriation when 
someone comes and uses that knowledge out of its context, out of the special 
relationships that went into forming it. You have to build a relationship with an idea or 
with knowledge, just like you have to with anything or anyone else… For someone else 
to come along and use this knowledge in an inappropriate manner is like raping that 
relationship. You know that sexual exploitation and total denigration of our humanity 
was a big part of colonialism. Now that is taking place with our ideas and knowledge. 
Our knowledge is being stripped of its relationships and being used without 
accountability. (p. 114) 
 
This metaphor hits the heart, body, and spirit. I can feel the knowledge and perhaps you may 

too. This metaphor not only helped me crystallize knowledge as relational (and therefore 
personal, subjective, experiential and holistic) but also demonstrated the obligation of 
responsibility and accountability I have towards the Indigenous knowledges and Indigenous 
Peoples I learn from. Linda Tuhiwai Smith (Ngāti Awa, Ngāti Porou) addresses the specific 
connection between research and Indigenous Peoples in her high impact book “Decolonizing 
Methodologies” (1999, 2012). Here are the first words of her introduction. 

 
From the vantage point of the colonized, a position which I write, and choose to 
privilege, the term ‘research’ is inextricably linked to European imperialism and 
colonialism. The word itself, ‘research’, is probably one of the dirtiest words in the 
Indigenous world’s vocabulary. When mentioned in many Indigenous contexts, it stirs up 
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silence, it conjures up bad memories, it raises a smile that is knowing and distrustful… At 
a commonsense level research was talked about both in terms of its absolute 
worthlessness to us, the indigenous world, and its absolute usefulness to those who 
wielded it as an instrument. It told us things already known, suggested things that would 
not work, and made careers for people who already had jobs. (p. 1-2) 

 
As Indigenous communities/nations are asserting their sovereignty, there is a growing 

demand for research by, for, and with the community towards an indigenizing or decolonizing 
outcome (Kovach, 2009; L. T. Smith, 1999; Tuck, 2009; Wilson, 2008; Windchief & Pedro, 
2019). This demand fit with my experiences. When I first read the quote above, I recalled an 
experience I had a couple months previous with a tribal college administrator who strongly 
warned me of parasite research. With an adamant tone, the administrator declared ‘We are 
stopping it here!’ Not fully understanding what was meant by the declaration I sheepishly asked 
what was meant by parasite research. The administrator continued that parasite research(ers) 
take, take, take, and give nothing back. They show up for a short period of time to extract data 
solely for their own benefit and then disappear, giving nothing back to us or the community. 

An Indigenous research paradigm, grounded in Indigenous knowledges, moreover a tribal-
specific knowledge and language, emphasis giving back to the community and strengthening all 
relationships in the process (Archibald, 2008; Kovach, 2009; Wilson, 2008). From my 
viewpoint, themes of relationality, subjective knowledge, holism, and story seem to circulate 
with values of responsibility, respect, and reciprocity to form the dynamic and place-based 
research paradigm (Archibald, 2008; Kovach, 2009; L. T. Smith et al., 2018; Wilson, 2008; 
Windchief & Pedro, 2019). However, my understanding of an Indigenous research paradigm is 
only my understanding. Each person, including you, will connect with it in their own way and 
join in the joint responsibility of being in relationship with an Indigenous research paradigm 
(Archibald, 2008; Kovach, 2009; Wilson, 2008). 

Circulating Conversations Methodology (CCM) 
With a context of hurtful research with Indigenous Peoples and with the core of an 

Indigenous research paradigm centered around relationality and relational accountability, I began 
the research for my PhD with Sitting Bull College (SBC), where multiple personal and 
professional friendships had already been established. SBC is a tribal college chartered by 
Standing Rock Nation guided by Dakota/Lakota culture, values, and language. I was confident 
that I could not come in with my research questions, framework, or agenda. I was confident that I 
wanted to do research that was beneficial and actionable for the SBC math instructors and that 
outside of directly talking with them I had no aspiration of thinking I could determine that on my 
own. Two statements rang in my ears after a discussion with Dr. Josh Mattes, engineering/math 
instructor at SBC. From his perspective, looking at the intersection of math and Dakota/Lakota 
language and culture was an “excellent idea” and that “even minimal results here would be 
beneficial [for SBC math instructors]” (J. Mattes, personal communication, September 25, 2020). 

Within my literature review, I found precisely one article about collegiate math and 
Indigenous languages. It excited me showing a potential path but also warned of difficulties with 
the delicate relationship between math education research and fluent elders (Ruef et al., 2020). 
Due to the implications of the COVID-19 pandemic, a time of waiting, struggle, research 
roadblocks, prayer, and Choctaw identity development became the norm. I saw no clear path 
forward. Then at the end of January 2021, a spiritual moment of connection brought Sunshine 
and I together for our first meeting. Sunshine Carlow (Lakota) is an instructor and the financial 
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manager for Lakȟól’iyapi Wahóȟpi Wičhákini Owáyawa (Lakota Language Immersion Nest) 
located at SBC. This new relationship made a way to learn about the intersection of 
undergraduate math education and Dakota/Lakota language and culture. 

After initial introductions and first interviews with Hollie, Sunshine, Josh, and my advisors, 
more focused conversations happened within the next week and a half about potential research 
directions at the intersection of undergraduate math and Dakota/Lakota language and culture. 
With all the conversation notes in front of me, drawing upon what I remembered hearing, I 
sought to holistically (heart, mind, body, spirit) connect all the ideas together. This time of 
synthesis formed an initial one-pager with four first draft research topics looking at content, 
development methodology, student affect, and faculty experiences. I circulated amongst Josh, 
Sunshine, Hollie, and my advisors to connect with each of them and listen to their feedback on 
the initial four topics. Again, seeking to holistically connect each of their responses altogether 
illuminated two topics. Content and development methodology becoming research question 2-4 
and 1, respectively, through a final round of conversations with each key person. 

In a spiritual moment of epiphany midway through, I came to realize the pattern of 
relationships I was enacting was literally a web. My experiential journey of conversations with 
each key person was my theoretical framework! I named it Circulating Conversations 
Methodology (CCM). Although time moved forward as CCM happened, the connecting of 
themes and ideas was anything but linear as shown in Figure 1 below. 

 

Figure 1: A diagram showing that Circulating Conversations Methodology is a circular web. 

Like a spider web that glistens and waves with the wind, each intersection point between 
circles and strands is unique. The circles represent different stages, moving from one to the next 
through moments of synthesis. The strands represent central people in the development of the 
research questions. Each intersection point is an essential conversation in the web. Conversations 
followed Kovach’s conversational interview protocol (2010). The RUME research questions 
were the end goal of this particular CCM that brought together multiple people, ideas, value 
systems, and institutions. Hollie connected her knowledge of an Indigenous research paradigm 
and Indigenous Knowledges. Sunshine connected her knowledge of Dakota/Lakota language and 
culture. Josh connected his knowledge of teaching math and pre-engineering courses at Sitting 
Bull College. I and my advisors connected with an impetus for my PhD research and our PhD 
level understanding of mathematics. Through circulating conversations, the research questions 
developed through an iterative, circular, and collaborative process. 

Co-Connecting Knowledge: Relationships Form Reality 
Circulating Conversations Methodology (CCM) is based in an Indigenous research paradigm. 

Within this paradigm, theoretical frameworks and/or methodologies are as diverse as in Western 
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research paradigms. Until we can articulate the vast array of these theoretical frameworks, they 
may be seen as vague or fuzzy (H. Mackey, personal communication, February 19, 2021). To 
attempt further clarity for CCM, one critical component is co-connecting knowledge, a term like 
CCM that was developed through the process. CCM is not haphazardly talking to a few different 
people. It is specifically based in the ontology (nature of reality) and epistemology (nature of 
thinking and knowing) of relationality. As Hollie and I discussed the initial four research topics, 
we recognized our word choice of “co-constructing knowledge” was a Western term that was 
distinct from the activity we were doing. We found ourselves stuck in Western terminology “to 
describe something that’s far more nuanced” and desired to “come up with something that 
actually catches what it is” (H. Mackey, personal communication, February 19, 2021). Co-
connecting knowledge became that term. None of our conversations constructed, created, found 
or discovered new knowledge. Rather it was the collaborative connecting via conversation and 
story that new relationships/knowledge developed. 

Co-connecting knowledge describes the space where theory from the literature can connect 
with personal experiential knowledge in practice. It describes the space where intellectual 
knowledge can connect with spiritual knowledge (Meyer, 2014). It allows a relational worldview 
to connect with the neuroscience that says learning is new connections in the brain. Plus, co-
connecting knowledge gives the space to connect all of these connections together holistically. 
Co-connecting knowledge aligns with an ontology and epistemology of relationality where 
knowledge is not owned, discovered, created or constructed but rather “knowledge is shared with 
all creation… the idea belongs to the cosmos, to all of the relations that it has formed, not to the 
individual who happens to be the first to write about it” (Wilson, 2008, p.56, 114). 

Co-connecting knowledge instead of co-constructing knowledge is one example of how an 
ontology (nature of reality) and epistemology (nature of thinking and knowing) based in 
relationality is distinct from Western research paradigms (Grande, 2004; Kovach, 2009; Wilson, 
2008; Windchief & Pedro, 2019). Some Western frameworks/methods are popular in Indigenous 
communities such as participatory action research, critical/feminist paradigms, and constructivist 
paradigm because the expansive intersection in seeing knowledge as personal, subjective, and 
political, recognizing a larger meaning to the mantra ‘knowledge is power’ (Grande, 2004; 
Gutiérrez, 2012; Kovach, 2009; Sfard, 1998). However, these Western frameworks are still 
based in Western constructs such as human-centrism and progressivism (Grande, 2004; Kovach, 
2009). For example, Gutiérrez’s work (2012) in equity recognizes math education as going well 
beyond individual intellectual capacity. However, math is still viewed through a human-centric 
lens. Similar can be said for Sfard’s work on using multiple metaphors for learning (1998). The 
ontology and epistemology of these frameworks are not based in relationality and Indigenous 
knowledges. An Indigenous research paradigm is distinct in its decolonizing aim, tribal-specific 
knowledges, and knowledge being bound to place through ancestors, language, and land. 
Further, an Indigenous research paradigm can certainly include quantitative methods as well 
(Grande, 2004; Kovach, 2009; Windchief & Pedro, 2019). 

Scientific/Academic Rigor 
A distinct ontology and epistemology of relationality and a distinct set of values of being 

accountable to all these relationships through respect, responsibility, and reciprocity leads to 
distinct validity measures. Scientific/academic rigor in my understanding is the alignment of 
ontology (what is real?), epistemology (how do I know what is real?), methodology (how do I 
find out more and explore this reality?), and axiology (what moral beliefs will guide this search 
for reality?) (Wilson, 2001, 2008). Even if a research project meets the Western standards of 
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judgement, like validity and reliability, but does not show respect to the relationships between 
researcher, participants, topic, Land, and community it would be considered inauthentic or non-
credible within Indigenous research paradigms. Wilson (2008) explains, 
 

We don’t need externally imposed measures or tests of whether or not something is 
‘true,’ we have our own ways of ensuring this. We have our own ways or questions to 
ask, so that we know that what we are saying is strong enough to say, ‘Yes, we can go 
ahead and design a program for our children or our community based on what we have 
learned from this research.” And we have trust or faith enough so that we are willing to 
use this in our communities, for our own people. (p. 102) 

 
I have been conditioned and trained into a specific ontology through my Western education. 

In contrast, to remind myself of the heart and core of an Indigenous research paradigm I often 
look back to the words of Margaret Kovach (Plains Cree/Saulteaux). In part she shares, “The 
sacredness of Indigenous research [and knowledge] is bound in ceremony, spirit, land, place, 
nature, relationships, language, dreams, humor, purpose, and stories in an explicable, holistic, 
non-fragmented way” (Kovach, 2009, p. 140). 

I attempted to follow this holistic way through Circulating Conversations Methodology 
(CCM). In that attempt I learned that the process of determining the research questions is 
equivalent in significance as the research questions and results themselves. Without this CCM 
process, the four research questions for the next phase of this research would not exist in this 
way whatsoever. Looking back in my reflective journal I see how much I and my attitudes 
towards my PhD research have changed. I am indeed continually experiencing and learning that 
“the process is the product” (Wilson, 2008, p. 103). 

Research Questions 
The four research questions that were co-connected via CCM are: 

1. In what ways can an Indigenous research paradigm lead an individual researcher 
towards more ethical and impactful (beneficial and actionable) RUME at TCUs? 

2. In what ways can Western higher order math concepts (HOMC) be identified within 
Dakota/Lakota space, place, and language, to inform possible SBC math 
curricular/pedagogical adjustments for TCU math courses? 

3. In what ways can Dakota/Lakota culture and language be identified within Western 
HOMC, to inform possible Lakota Language Immersion Nest curricular adjustments? 

4. In what ways can Dakota/Lakota space, place, and language represent non-Western 
HOMC? 

I did not come up with these research questions myself. I did not choose a topic or gap in the 
literature. Rather I chose some values and a process, that is an Indigenous research paradigm, 
and it guided me throughout. I did not come into SBC with my agenda for research to be done on 
Indigenous communities. Instead, every word of the research questions has a specific moment of 
co-connecting knowledge through CCM that brought that wording or idea about. 

The goal of this paper was to introduce an Indigenous research paradigm through my journey 
of CCM. Future RUME at tribal colleges could potentially use this research paradigm and 
theoretical framework. My work at SBC has built from these research questions and will 
hopefully be presented in the future. Thank you for joining me in unraveling this journey. I pray 
that you were able to connect holistically with some of this writing and it can be beneficial to 
you and your work. In Choctaw, Yakoke. In Lakota, Pilamayayelo. In English, Thank you. 
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Strengthening the RUME field: substantive research questions and suitable claims 
 

 Kathleen Melhuish Jennifer A. Czocher 
 Texas State University Texas State University 

In this report, we discuss a common type of methods found in RUME research: qualitative 
coding techniques. Claims stemming from such an approach depend on warrants for the 
appropriateness of the methods and data collected. Yet, we commonly find methodological 
misalignments between the types of research questions asked and the methods used to investigate 
these questions. When the result of such research is often a framework with relative counts. 
Thus, researchers are making implicit claims that rely on statistical generalizability that is 
unwarranted by common sampling techniques. We advocate for future researchers to examine 
the alignment between their research questions and methods and move beyond producing 
frameworks as results to using these frameworks to explore deeper relational questions. 

Keywords: research questions, methodologies, grounded theory, qualitative coding 

Qualitative coding techniques, like those used when conducting research “in the spirit of” (or 
“inspired by”) grounded theory (iGT) or thematic analysis, are commonly applied in 
undergraduate mathematics education research.  In these studies, researchers usually collect data 
by recording classroom lessons or conducting task-based interviews. They transcribe the 
recording, and then perform inductive or deductive coding techniques (or sometimes use content 
analysis) to reduce the data to sets of categories. In RUME, the category set is often referred to 
as a framework. The framework is reported with (relative) frequencies, and the authors attempt 
to interpret descriptive statistics for the categorical variables, which usually involves comparing 
frequencies across categories or perhaps across demographic variables. These frameworks tend 
to be paired with questions like:  

(Conception-RQ) How do undergraduate students conceive of topic X? Or  
(Belief Comparison –RQ) To what extent do instructors hold different types of beliefs {Xi}? 

Such questions are often methodologically misaligned with the types of samples and types of 
analysis techniques applied. If we turn to the commonly used Toulmin’s argumentation scheme 
(1958), we can point explicitly to the role of flawed warrants. The strength of claims that answer 
these questions rely on the type of data collected. To make a claim that the set of student 
conceptions is exhaustive, or to claim one type of belief is more prevalent than another, 
researchers would need to move beyond convenience samples and counts. In Figure 1, we outline 
a Toulmin’s argumentation diagram from a common type of claim (and rebuttal), found in 
manuscripts that report iGT methods. The data tends to reflect convenience samples and the 
claims rely on exhaustive/representative samples to make assurances of fully capturing all 
conceptions. In this sense, the typical warrant is insufficient because iGT methods do not allow 
for connecting between a convenience sample and such a claim. Further, such results are often 
paired with a limitation around sample-to-population generalizability that at best weakens the tie 
between data and claim and at worst completely invalidates the inference. 

 In our experiences reviewing for journals and for this conference, we often find these 
mismatched questions and claims. This leaves such manuscripts and proposals unable to make a 
compelling case for their contribution. In this report, our goal is reflect on the types of research 
questions that are answerable with iGT methods to advocate for a shift away from questions 
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such as those above (singular focus) into deeper explorations of relationships, causality, and 
change (relational focus) that can be addressed productively with such methods. We will discuss 
and synthesize methodological essays on conducting high quality qualitative research, focusing 
on formulating research questions, and matching them to iGT methods contextualizing in 
undergraduate mathematics.  
 

Figure 1. A Toulmin’s Argumentation Diagram for Typical Claims from a “Framework Paper” 

Analyzing Qualitative Research Questions 
Formulating research questions means attending not only to their content but also toward 

foreshadowing their methods and their answers. Maxwell (1996) outlined four types of research 
questions that are relevant to our considerations: generalizing, particularizing, variance, and 
process. Generalizing questions are about a population. Conception-RQ is phrased as a 
generalizing question about students. Answering them requires selecting a sample from the 
population that will allow for generalization of any results about the sample back to the 
population. Particularizing questions are about populations within a particular social context. 
Particularizing questions frame studies as cases of some larger phenomenon. The focus is on 
“developing an adequate description, interpretation, and theory” of that case (p.89-90) rather 
than generalizing findings from the sample to a broader population. Variance questions are about 
differences and correlation. They lead with does, how much, to what extent, and is there and call 
for analyses that explain differences in some outcome within the phenomenon of interest. Belief 
Comparison –RQ is a variance question, seeking a univariate distribution of individuals across 
beliefs. Finally, process questions focus on unpacking how outcomes come about, rather than on 
whether a pair of explanatory variables is related or the extent to which an outcome is explained 
by a given variable.  

We see that Conception-RQ and Belief Comparison –RQ are actually not robustly qualitative 
questions that would be well-matched to iGT methods. Answering Conception-RQ suggests a 
survey of students’ responses to mathematics tasks that draw on topic X while Belief 
Comparison –RQ suggests a survey of instructors'’ beliefs. We do not suggest that authors 
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formulating these questions have confused qualitative approach with survey methods or that 
these questions cannot be answered qualitatively, but rather that though the answers to these 
questions could be found, through iGT procedures the type of answer would be similar to what 
one would expect as when conducting a survey, namely, a list of categories with (relative) 
frequencies for each category. What is the contribution of a list of categories, without knowing 
that the list is (likely to be) exhaustive? What is the contribution of a set of (relative) frequencies 
for those categories without knowing that they were generated from a representative sample?  
The issue with addressing generalizing questions with iGT methods is that they call for the 
researchers and the audience to make statistical inferences without assuring the validity of such 
an inference. The issue with addressing variance questions is that qualitative methods are not 
capable of doing so. The choice to focus on differences between groups defined along 
dimensions arising from the analytic constructs can lead to shallow analyses and weak 
conclusions because, in quantitative terms, the cell counts are often not sufficient in size to 
warrant claims bout comparisons between groups. Thus, whether an outcome of interest is 
related to another variable across analytic units and the extent of the relationship within or across 
analytic units is best treated by quantitative methods.  

The How? Question 
How? is a common start to a qualitative research question. Indeed, a popular heuristic for 

formulating qualitative research questions is to begin them with How…?. This leads to trouble 
when the research design for the study is still vaguely quantitative, as with variance questions. 
For example, How does professors’ mathematical philosophy influence their grading? Such a 
question, phrased as a how? question suggests looking at variation in grading policies associated 
with variations in mathematical philosophies. Aside from being potentially deceitful, how 
questions are often imprecise. There are at least three operationalizations of a how? question that 
determine the kind of answer it should receive: 

1. in what ways is answered by a descriptive list,  
2. what are the steps is answered by a sequence or procedure, and  
3. under what combinations of conditions will the outcomes occur calls for an 

explanation or prediction. 
Judging by the answer/question pairings in RUME papers, the how in Conception-RQ is 

typically unpacked as What are the different ways students conceive of topic X? Its answer is a 
comprehensive list. Unpacking Conception-RQ in the second sense might involve conducting a 
set of cognitive interviews with a diverse array of students to generate a hypothetical learning 
trajectory for topic X. Unpacking Conception-RQ in the third sense might suggest using a 
teaching experiment or variation theory to generate multiple adjacent learning environments to 
provide evidence for the kinds of pedagogical materials and supports that result in an adequate 
conception of topic X. Neither of the second two senses are amenable to iGT methods, and an 
answer to the first sense might be difficult to interpret because of the implicit claim that such a 
list exhaustive, but rarely developed using a sample to warrant such a claim. 

Multi-Dimensional Research Questions 
In contrast to the examples above, we suggest iGT methods are best aligned with relating two 

or more dimensions of interest, within and across participants. We use Spradley’s (1980) social 
dimensions as a tool to operationalize such questions. These dimensions can be found in Table 1, 
and for the purposes of mathematics education, we expand upon the object category to not just 
consist of physical objects, but also mental entities.  Although Spradley introduced these 
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dimensions in the context of ethnography, we find them equally amendable to addressing 
research questions that are answerable by iGT methods. We use them to add structure to research 
questions. A research question can have either a singular focus or a relational focus. Singular 
focus questions have a form like “Can you describe all the ways…?”, such as Concept-RQ or 
“can you compare counts of all the ways?” Questions with a relational focus include at least two 
dimensions and are answered via claims that attend to the nature of the relationships among the 
dimensions rather than through numerical comparisons of variation within the dimensions. iGT 
procedures enable deep analysis of those relations and are suited to address research questions 
with foci like the meanings participants attribute to events or the influence of the social context 
on the events that unfold. These can include descriptive questions, which ask about “what 
happened” in terms of (potentially) observable (or inferable) behavior or events, interpretive 
questions, which ask about the meanings of these things ascribed by the people involved 
(involving thoughts, feelings, and intentions), or theoretical questions, which ask about why these 
things happened or how they can be explained (Maxwell, 1992).  Because there are many 
explanatory variables in qualitative research, a good heuristic is “to assume that different 
combinations of causes might land a set of analytic units in the same cell” and then seek to 
elaborate the set of causes leading to that outcome1 (Ragin, 2004, p. 137). To concretize an 
example in the RUME setting, consider the research question: 

• How does the questions instructors ask while orchestrating discussion in a calculus lesson 
support student engagement in authentic mathematical activity? 

This question includes a number of dimensions: an activity (orchestrating discussion), an event 
(a calculus lesson), acts (questions), and activity (student mathematical activity.) Taking a 
relation lens, we can further subdivide this question into context components (orchestrating 
discussion; calculus lesson) and focal relationship under investigation (questions; student 
mathematical activity). An adequate framework operationalizes question types and a series of 
acts or description of student mathematical activity. Then applying the framework can provide 
insight into how particular teacher questions may relate/promote/constrain students’ 
mathematical activity.  
 
Table 1 Spradley’s (1980)  dimensions of social contexts with examples from RUME contexts 

Dimension Definition RUME Example 
Space The physical space or places Classroom and its configuration 
Actor The people involved  Undergraduate Students 
Activity A set of related acts people do Orchestrating a Discussion 

About Derivatives 
Object/Knowledge  The physical or mental entities that 

are present 
Conceptions of Derivatives 

Act Single actions that people do Questions an Instructor Asks 
Event A set of related activities that people 

carry out 
A Calculus Lesson 

Time The sequencing that takes place over 
time 

Stages of Problem-Solving 
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Goal The things people are trying to 
accomplish 

Engender Students in Authentic 
Mathematical Activity 

Reporting Framework Studies with Warranted Claims and Substantial Contributions 
In this section, we provide some general reflection on ways that we have seen iGT 

methods reported with attention to making warranted claims and substantial contributions.   

Distinguishing between making framework and using a framework and reporting 
appropriately 

A simple heuristic is that inductive coding procedures create frameworks while deductive 
coding procedures apply them. The former is a set of inferences; the latter is a set of starting 
assumptions. The main distinguishing feature between inductive and deductive coding is that 
inductive procedures develop the codes from the data whereas deductive coding procedures are 
decided a priori, usually with an already-existing codebook, a set of codes developed from a 
thorough literature review, or using non-interpretive labels (e.g., correct/incorrect). In either 
case, the decision to code inductively or deductively should be justified in relation to prior 
literature and the focal research question. Inductive coding procedures are used to generate 
explanations of phenomena that are ‘close’ to the data, in the sense of Glaser and Strauss’s 
(1967) use of the term grounded theory, because the codes are generated from the text, the 
researcher’s descriptions of observations, or the participants’ own words.  Open (or in vivo) 
coding is only the first step of this bottom-up approach. Codes then usually need to be refined, 
combined, deleted, or supplemented. In Grounded Theory, and sometimes in iGT, open coding is 
followed by axial coding (developing a hierarchy, for example) and selective coding (choosing a 
category representative of the core or essence of the research topic). Reporting on an inductive 
coding approach should be accompanied with a rigorous description of how the codes and 
themes were developed. While axial and selective coding are not strictly necessary to generate 
interesting results (especially when using iGT procedures, rather than fully implementing a 
Grounded Theory methodology), we note that typically it not sufficient for publication to create 
a categorization scheme. In contrast, deductive coding procedures use an existing framework, or 
one developed from the literature, to analyze data. The deductive approach is appropriate when 
there is already active research in an area. For example, there are ample categories describing 
levels of sophistication of the mental actions essential to covariational reasoning (see Thompson 
& Carlson, 2017, for example). The definitions for the existing codebook can be compared to the 
data collected and applied in a systematic way. Given that previous work exists on the topic, it is 
likely neither necessary nor desirable to step back all the way to open coding when conducting a 
study about students’ covariational reasoning. More concretely, if the authors are using an 
existing framework, they are not open coding and so the methods should not be reported as such. 
The authors should be clear about the manner(s) that their coding procedure diverges from prior 
use of a framework, including amending definitions or grain-sizes, as well as tender a rationale 
for why the pre-existing theories are appropriate for their setting.  

Using (Relative) Frequencies as context, not claims 
Framework studies often report frequencies of observations for each of the categories in the 

framework. While they can provide context, comparison claims are unwarranted. For example, 
suppose that a set of differential equation lessons are coded with an observational protocol with 
several types of teaching moves categorized as high, medium, or low. Now, suppose a researcher 
records a single lesson from a sample of 10 instructors. In one lesson, they observe 𝑚 instances 
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low teaching moves with a total of 𝑁 coded teaching moves. Reporting that “𝑚/𝑁 percent of the 
time, the teacher did 𝑚” would only be true if all times in the classroom were coded. That is, 
only if there were full coverage of classroom time by the codebook. Similarly, one must take 
care when comparing 𝑚/𝑁 for different classrooms or even across multiple lessons, if those 
environments did not afford opportunities to exhibit all 𝑁 codes. Even less suitable are claims 
that teachers or classrooms or students could be assigned to a single category. If the grain size of 
analysis is “moves” (or “utterances”) it should be carefully considered how to transform the unit 
of inference to “teacher,” “student,” or “classroom.” 

Additionally, evidence for the existence of a code is not a strong argument for its centrality to 
a phenomenon since the code may exist only as an artefact of the researcher’s lens on the 
observations. Thus, we advocate for using frequencies to contextualize the data rather than as 
results. Without deploying a representative or exhaustive sample, frequencies are may be 
artefacts of the study rather than serve as data for claims. However, frequencies can serve an 
important role in exploring relationships between categories via co-occurrences of categories 
under investigation or identification of non-confirming cases. 

Sampling Purposefully to Answer an RQ 
The field often uses convenience samples because it is difficult to gain access to natural 

educational settings and because working in RUME, our population sizes are rather small to 
begin with. Yet, the power of an inference is limited by the sample and the educational 
environment that produced it. If a sample is not representative, the researcher should be 
transparent about sample selection and tender a rationale to warrant why this sample provides the 
appropriate insight. For example, purposeful sampling can be a very strong approach when the 
participants (or lessons or classroom sessions or tasks) are selected along dimensions important 
to the research question or because they are central to the theories or constructs under 
consideration. A purposeful sample can also serve to assure that any inferences or findings 
“adequately represent the entire range of variation” (Maxwell, 1996, p. 72) (p. 72).  Shadish, 
Cook, and Campbell (2002, p. 350) advocate for articulating the prototypical features of 
constructs, how the features relate to each other, and how the constructs of interest relate to other 
constructs similar and dissimilar to them. From such an analysis, a purposeful sample can be 
selected. Another approach to sampling is theoretical saturation which does not rely on a number 
of participants set in advance; data are collected from new participants (or additional task 
environments or additional classroom observations or additional scholastic contexts, depending 
on the analytic dimensions relevant to constituting the data set) until the researcher is confident 
that new information would produce few or no changes to the developing codebook (see Guest, 
Bunce, & Johnson, 2006, p. 65). Theoretical saturation can support claims that categories are 
exhaustive because additional data is not producing distinct categories.  

In any case, to produce a claim of any strength in answer to a research question that relies on 
counting occurrences of categories, the authors must provide some sense that the methods 
produced an accurate list of the categories and that the distribution of (relative) frequencies 
observed for those categories can reasonably be interpreted as usual. For counts to lead to 
meaningful comparisons, such as for variance or generalizing questions, an argument needs to be 
made that the sample is representative or exhaustive. This is pairing variance or generalizing 
questions with iGT methods and is rarely methodologically sound.  

Reporting “which people were included and why?” is not the only relevant consideration. 
Tasks, classrooms, and lessons are also sampled in any study. These are analytic choices which 
impact the strength of any resulting claims and therefore should be justified in the methods and 
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included in the discussion. Attending to these analytic choices is especially important when the 
research questions are about reasoning or activities or beliefs, because the learning environment 
or interview protocol will occasion the behavior, conceptions, or perceptions that can be 
observed. 

Making claims that can be generalized 
Finally, we briefly address the complex issues surrounding delimiting the study and 

characterizing its contribution. As we mentioned, in small-scale qualitative research, statements 
about generality are not derived from sample-to-population inference. We see a lot of papers, 
many conference proceedings, some manuscripts for review, and some even published, that 
conduct a thorough analysis, make important claims, and then apologize that “the sample wasn’t 
big enough to be able to generalize.” This kind of admission negates the entire study and betrays 
a misunderstanding of the relationship between sampling and generalization. Sample size is not 
what determines sample-to-population generalizability; representativeness of the sample 
determines the validity of statistical inference. When conducting an iGT study, statistical 
inference is rarely the purpose. The goal of a qualitative study is not to generalize to the 
population but to account for “as many of the temporal/contextual variables as may be necessary 
so that the generalization will hold” (Lincoln & Guba, 1985, p. 116) in other settings. Another 
approach to generating, testing, and generalizing the explanations and relationships observed in 
an iGT study is to base claims in arguments about necessary conditions to achieve a given 
outcome or on arguments about sufficient conditions for causal factors to lead to the outcomes 
(Ragin, 2004). A third approach, “analytic generalization”  (Firestone, 1993) seeks to elaborate 
threats to generalizability or to identify critical or deviant cases that may extend or challenge 
existing explanations. In this approach, it is the theory (an explanation) that is being tested rather 
than relationships among variables. 

Conclusions 
 Cai, et al. (2019a) recently reflected on methodological alignment suggesting that 
researchers begin with hypotheses and “claims that they want to make” in order to work 
backward to identify the appropriate methods and data needed. We suspect such an exercise 
would be generally useful to many of us in the field of undergraduate mathematics education. 
We hope in this theoretical piece we made a substantial case for increasing our attention to the 
alignment of research questions, methods, and claims. In a recent discussion with a colleague, he 
mentioned that “[paraphrasing] RUME is a young field. We are still just making categories of 
things.” While there is merit in considering the relative age of our field and certainly calling for 
additional foundational research, there is little need for more category papers. There is also risk 
of building the field upon methodologically shaky foundations. Rather, we advocate for research 
that operationalizes how questions not as “in what ways,” but rather pose questions that can 
provide theoretical insight into relations. iGT methods are at their best when serving to explore 
relationships between focal dimensions. Rather than asking, How do undergraduate students 
conceive of topic X? a researcher might ask: How do undergraduate students’ conceptions of 
topic X relate to their epistemological beliefs? How do undergraduate students’ conceptions of 
topic X develop over time? How do undergraduate students’ conceptions of topic X interrelate? 
How do undergraduate students conceptions’ of topic X relate to their mathematical activity Y? 
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Four Ways Students Interpret and Reason with Points and Portions of Graphs of Functions: An 
Intersection of Two Theoretical Frameworks 

 
 Erika David Parr Benjamin Sencindiver Rob Ely 
 Rhodes College CUNY Graduate Center University of Idaho 
 
In this theoretical report, we examine the intersection of two previously-recognized dimensions 
of students’ reasoning about how symbolic notations represent elements of graphs of functions. 
One dimension distinguishes location-thinking, where notations refer only to a point’s location 
on a graph, from value-thinking, where such a point is treated as a multiplicative object. The 
other dimension distinguishes a nominal interpretation of expressions, where expressions refer 
to positions in the plane, from a magnitude interpretation, where expressions describe a measure 
of length. Taken together these dimensions provide four distinct ways students reason about 
expressions, especially those involving function notation, on graphs. Each case reveals new 
meanings and affordances indicated by the interplay between the two dimensions. We provide 
both a theoretical account and empirical example of each case. 

Keywords: Mathematical Representations, Graphical Interpretations, Graphs of Functions 

The use of multiple representations, including visualizations, to illustrate concepts is a 
hallmark of mathematical thought. Indeed, the ability to use and connect multiple 
representations, including algebraic symbols and graphs, is central to the teaching and learning 
of mathematics (NCTM, 2000, 2014). However, the use of graphical representations, in 
particular, may pose challenges for students (Leinhardt et al., 1990), despite their widespread use 
in secondary and undergraduate mathematics. In extreme instances, students may avoid 
reasoning with graphs altogether, even when their use would afford more efficient solutions 
(Dawkins & Epperson, 2014). In order to better support student learning, researchers have begun 
to propose frameworks to characterize various distinctions in students’ understanding of 
graphical representations. Such frameworks include those that characterize how students create 
and reason with graphs, in terms of how they conceptualize coordinate systems (Lee et al., 
2019), the trace of a graph (Moore & Thompson, 2015), or even the intersection of these two 
frameworks (Paoletti et al., 2018). Although these frameworks tease apart important details of 
students’ reasoning with graphs, they do not account for how students may connect symbols to 
graphs and what such symbols represent, which may be significant. In fact, research has shown 
that students may not always make key connections among symbols and graphs of functions 
(e.g., Knuth, 2000). In this theoretical report, we consider two frameworks that account for two 
dimensions of students’ interpretations of symbols on graphs of functions, related to their 
conceptions of points and positions on graphs: (1) David et al.’s (2019) value-thinking and 
location-thinking framework which relates students’ interpretation of points and (2) Parr’s 
(2021) description of nominal and magnitude interpretations which distinguishes students’ 
interpretations of expressions to signify positions in graphs.  By examining these dimensions at 
their intersections, we uncover nuances in students’ graphical interpretations that may contribute 
to their difficulty in making sense of graphical representations or the concepts they illustrate. 

The Intersection of Two Theoretical Frameworks 
Inherent in both theoretical frameworks are notions of notation and interpretation. We frame 

these concepts using the language of semiotics (Barthes, 1957). A notation such as f(a) is a sign, 

24th Annual Conference on Research in Undergraduate Mathematics Education 842



comprised of the symbols (signifier) and that which they indicate or represent (signified). The 
signified can be a mental object, a mark, or collection of marks (each of which could be a 
signifier). An interpretation is then the association between the symbol and the signified. 

Value-Thinking & Location-Thinking: Two Ways to Reason about Points 
We draw on David et al.’s (2019) constructs of value-thinking and location-thinking to 

distinguish students’ reasoning about points on curves in the Cartesian plane. These terms refer 
to distinctions in students’ attention when reasoning about points along curves in the Cartesian 
plane. These constructs emerged in the context of students evaluating statements about functions 
from Calculus (real-valued functions of one variable). The symbolic elements related to 
functions, such as f(a), thus serve as signifiers. The two types of thinking are distinguished based 
on what the student treats these symbols as signifying on the graph.  

Value-thinking. A student engaged in value-thinking views points along a graph as 
representing a pair of values simultaneously, typically an input and output value of a function. 
This way of thinking entails conceiving of inputs and outputs as distinct from each other, and 
distinct from the point in space representing them. Students thinking in this way often represent 
input values on the input axis and output values on the output axis. Value-thinking is consistent 
with the notion of interpreting a point as a multiplicative object, as described by Saldanha and 
Thompson (1998) and Thompson and Carlson (2017). Evidence from several studies suggests 
that conceiving of points as multiplicative objects affords reasoning quantitatively and 
covariationally when working with graphs (Moore et al., 2019; Thompson et al., 2017). When a 
student uses value-thinking in the Cartesian plane, f(a) refers to the vertical component of the 
associated point on the graph from the horizontal axis, which can be denoted on the vertical axis. 

Location-thinking. A student using location-thinking refers to and focuses on the location of 
the point in the plane, rather than reasoning about it as a multiplicative object. While value-
thinking emphasizes the pair of values represented by a point, location-thinking emphasizes the 
location of the point in space. Because of this, students engaged in location-thinking often label 
outputs of a function at points along the curve, rather than along an output axis. Furthermore, 
these students will reason about the output as referring to the location of the point along the 
curve. In other words, they treat the signifier f(a) as referring to a point on the graph. 

When a student is location-thinking, this referent, the point, is a singular entity in the 
moment, not decomposable into components. When they are value-thinking, the point is 
multifarious—it represents a multiplicative object, a coordination of two components. This 
signification involved in value-thinking coordinates more meanings with the point on a graph, 
which more readily affords further analysis (David et al., 2019; Sencindiver, 2020). Figure 1 
(left) summarizes the signification involved in value-thinking and location-thinking. 

Magnitude & Nominal Interpretations: Two Ways to Interpret Expressions in Graphs 
A second framing of students’ understanding of graphs offered by Parr (2021) describes how 

students relate expressions, typically involving input or output variables (e.g., f(b)–f(a)), with 
graphs. We focus here on two of the four distinct ways Parr (2021) observed students 
interpreting symbolic expressions on graphs. These two ways of thinking are distinguished based 
on what the student treats these symbolic elements as signifying in the coordinate plane. 

Magnitude interpretation. Parr (2021) describes a magnitude interpretation as treating an 
expression as a measurement of a quantity, one that is based on particular positions represented 
in the plane. A magnitude interpretation of an expression often involves representing an amount 
of a quantity as a length of a segment on a graph from a reference point on an axis or curve.  
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Nominal interpretation. In contrast, Parr (2021) describes a nominal interpretation of 
expressions as referring to or used as labels without quantitative significance, much like the use 
of labels in an anatomical diagram.  A student who interprets expressions nominally may place 
an expression on a graph (on an axis or on a curve) to label a particular position in the Cartesian 
coordinate system. The nominal interpretation of an expression aligns with the use of the term in 
name only. That is, a student may place an expression at a particular position in the plane without 
reference to why the expression is placed where it is. When reasoning about the expression, 
though, the student reasons about the position labeled using the expression. Thus, a nominal 
interpretation may be limited to a comparison of equality between two expressions based solely 
on their spatial positions.  

When students use a nominal interpretation of a symbolic expression, its referent, a position 
in the plane, is a singular, non-decomposable entity. When they use a magnitude interpretation, 
this reference is multifarious. The symbolic expression signifies a position, which itself indicates 
a relevant endpoint for a measurement. A student using a magnitude interpretation mentally 
constructs a portion of a graph (e.g., a segment, an arc length) from a reference point to the 
relevant position and uses the expression to also signify the measurement of the length of this 
portion of the graph. This signification involved in a magnitude interpretation coordinates 
additional meanings for positions in the plane. Figure 1 (right) summarizes the signification 
involved in the magnitude and nominal interpretations of expressions in the plane. 

Figure 1. Signification in value and location-thinking (left) and magnitude and nominal interpretations (right). 

The Intersection of Interpretations of Expressions and Interpretations of Points 
Each of these frameworks describes distinct aspects of students’ interpretations of graphs. 

The value-thinking and location-thinking framework describes whether students uncouple a point 
as a multiplicative object, or treat a point’s location as synonymous with the output of a function. 
In contrast, the distinction between nominal and magnitude interpretations recognizes the 
differences in students’ meanings for the placement of an expression on a graph, and their 
subsequent reasoning with it. A nominal interpretation of an expression on a graph involves 
treating the expression as a label, indicating a position somewhere in the plane. A student with a 
magnitude interpretation of an expression on a graph uses the expression to indicate an amount 
of a quantity represented with distance. 

Table 1 shows how each of these two dimensions intersect to create four ways of thinking 
and uses function notation as an example in each case. To be clear, the four categories created 
are meant to characterize a student’s thinking with a particular task or in a particular instance, 
rather than characterize a student and all of the ways she is capable of thinking. In fact, we 
suspect that students may demonstrate thinking indicative of different ways of thinking within 
the same task, including having a nominal interpretation of one expression, such as a, and 
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magnitude interpretation of another expression, such as f(a). We provide a description of each of 
the four cases and illustrative empirical examples. 
 

Case 1 (Magnitude + Value-Thinking): 
Case 1 involves using both a magnitude interpretation of expressions and value-thinking 

about points. In this way of thinking, for the point (a, f(a)), a can mean the horizontal distance 
from the origin to the point, and f(a) can mean the vertical distance.  (These distances may not be 
along the respective axis, but could be parallel to the axis.) A student reasoning this way would 
coordinate two distances, forming a multiplicative object to comprise a position.  

 
Figure 2. Micah’s labels of magnitudes c, d, f(c) and f(d) while value-thinking (Parr, 2021, p. 22). 

As an example, we turn to an episode with Micah from Parr (2021). Micah explained from a 
graph of a linear function he drew (Figure 2) that, “c is less than d but f(c) is not less than f(d).” 
To justify this claim, he continued, “so…the distance here from 0 to c [draws in horizontal curly 
bracket from the origin to c on x-axis] is less than the distance from 0 to d [draws in horizontal 
curly bracket from the origin to d on x-axis]” (as quoted in Parr, 2021, p. 22). Micah reasoned 
similarly with f(c) and f(d). 

Although Micah labeled f(c) and f(d) at positions along the graph, Micah engaged in value-
thinking, decomposing these points into vertical and horizontal components. In other words, 
Micah did not conceive of f(c) and f(d) as points along the graph, as illustrated when he drew the 
vertical brackets and compared the distances. To reason about the expressions in this instance, 
Micah compared horizontal and vertical distances, which he measured from a reference point 
(the origin) to the positions he labeled. Thus, Micah interpreted c, d, f(c) and f(d) as magnitudes, 
distances from the origin along an axis, or parallel to an axis.  

Table 1. Four ways of interpreting function notation on graphs. 

  Ways of thinking about points (David et al., 2019) 
   Value-thinking  

(point as ordered pair) 
Location-thinking  
(point as output) 

Ways of 
interpreting 
expressions 
on graphs  
(Parr, 2021) 

Magnitude 
(Measures a 
length) 

Case 1 
f(a) means the measure of the 
vertical distance from the 
horizontal axis to the point 

Case 2 
f(a) means the measure of a 
distance to the point along the 
graph from a reference point 

Nominal 
(Focus solely 
on position) 

  Case 3 
f(a) means the vertical position 
of a point on the graph 

Case 4 
f(a) means the position of a 
point on the graph 
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Case 2 (Magnitude + Location-Thinking): 
Case 2 involves using a magnitude interpretation of expressions and location-thinking about 

points. In the moment, a student thinking in this way would interpret expressions as signifying 
lengths or distances in the graph, yet would not be thinking of points as multiplicative objects. 
After having identified a point in the plane, such a student would create labels and reason in 
ways that do not acknowledge the point as a multiplicative object (a, f(a)). For example, a 
student may associate magnitudes with the arc length of a curve between two points, or may 
measure in reference to other perceivable features presented in the graph. 

To illustrate this case, we provide the example of Lisa from Sencindiver (2020). Lisa 
conveyed a meaning of f(a) consistent with a measure of an arc length. Lisa represented f(a) by 
first marking the lowest point depicted on the curve with an ‘x’ (Figure 3), measuring a distance 
of a along the arc, and marking the end of the distance with another ‘x’. She then labeled the 
length along the curve ‘f(a)’, saying “yeah, it’d be like the whole distance from here [gesturing 
to the lowest blue ‘x’ in Figure 3] to here [gesturing to the other blue ‘x’ in the Figure 3]” (as 
quoted in Sencindiver, 2020, p. 121). In the moment, Lisa did not seem to be thinking of points 
on the curve as multiplicative objects, but rather as spatial locations in the plane, with f(a) 
representing the arc length between these markings. Further, Lisa continued describing f(a+h) as 
an arc length through a similar construction, and f(a+h)– f(a) as the difference of the two lengths. 

 
Figure 3. Lisa’s labels of magnitudes f(a), f(a+h), and f(a+h)-f(a) while location-thinking (Sencindiver, 2020, p. 

121). 

Case 3 (Nominal + Value-Thinking):  
Case 3 involves using both a nominal interpretation of expressions and value-thinking about 

points. Thus, a student using these ways of thinking interprets inputs and outputs, such as a and 
f(a), as labels for particular positions, and as horizontal and vertical components of the ordered 
pair of the point (a, f(a)). This student may reason with a point similar to one reporting battleship 
coordinates. To do so, the student coordinates two positions to give a third position, still forming 
a multiplicative object. However, this is not a multiplicative object of multiple distances. In other 
words, a and f(a) can be thought of as positions on the axes, without thinking about the distance 
that variable represents between the origin and the location on the axis. Likewise, a student can 
decouple a point into two positions by projecting vertically and horizontally to positions on the 
x-axis and y-axis, respectively. 

One example of a student using these ways of thinking comes from Martha in Parr (2021). 
She claimed that the f(c) and f(d) she labeled on a monotone decreasing graph were not equal and 
could never be equal (Figure 4). She explained this claim by saying,  

because f(c) and f(d) are separate values. So I know I can’t, they could be… maybe,?... 
No, I don’t think so. Yeah, I think f of yeah… c and d are gonna be, if they’re [c and d] 
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separate values, like they’re [c and d] labeled separately I think they’re [f(c) and f(d)] 
gonna be separate (Parr, 2021, p. 15). 

 
Figure 4. Martha’s labels of c, d, f(c) and f(d) interpreted nominally while value-thinking (Parr, 2021, p. 15). 

In this instance, Martha engaged in value-thinking and conceived of points as coordinates of 
two components, labeled on the appropriate axis (c appears to be labeled on the graph, but this 
was due to space constraints). Additionally, Martha was reasoning about c and d, (and f(c) and 
f(d)) as labels for positions on the graph. Her language of “labeled separately” indicates that she 
was thinking of c and d being labeled in two different places on the graph, presumably on the x-
axis, as she did in Figure 4. Martha then considered c and d to be unequal (“separate values”) 
because of how she was interpreting these expressions nominally.   

Case 4 (Nominal + Location-Thinking): 
Case 4 involves using both a nominal interpretation of expressions and location-thinking 

about points. Thus, a student using these ways of thinking interprets expressions as labels for 
particular positions, and points as outputs along the curve. Such a student may use an output 
label, such as f(a), for a position along the curve. This position may correspond with the input a, 
but is not an indication of a measurement along the curve. In reasoning this way, the student may 
coordinate an input a with an output label f(a) (thought of as a point), but in the moment, the 
student does not conceive of the point on the curve itself as a multiplicative object.  

 
Figure 5. Zack’s labels of f(a) and f(b) interpreted nominally while location-thinking, for which he claimed f(a)¹f(b) 

(David et al., 2019, p. 10). 

To illustrate this case, we provide the example of Zack from David et al. (2019). In this 
instance, Zack pointed to the endpoints of the graph, which he had labeled as f(a) and f(b) 
respectively (Figure 5), and claimed that “when I input a (points to left endpoint of the graph) I 
know that’s not going to be f(b) (points to right endpoint of the graph), so f(a) does not equal 
f(b).” As explained by David et al. (2019), Zack engaged in location-thinking, conceiving of the 
points he labeled on the graph solely as outputs. Further, by justifying that f(a) does not equal 
f(b) by indicating the ends of the graph, Zack interpreted f(a) and f(b) nominally. He considered 

 
Martha labeled an 
example of an 
f(c) and f(d) on 
the y-axis and 
claimed f(c) could 
never equal f(d). 
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them as labels for positions and reasoned about these positions, rather than any measurements 
associated with these positions, such as the height of the points, to reason about f(a) and f(b). 

Discussion 
Our theoretical findings shed light on students’ ways of interpreting expressions related to 

points and portions of graphs. By analyzing the intersection of two recent frameworks, we see 
four distinct modes of interpreting symbolic expressions on graphs, allowing us to tease apart 
details of the mental actions involved in each of the four cases. Further, applying a semiotic lens 
to each framework and considering them in light of each other advances our understanding of the 
frameworks independently. For instance, we offer an elaboration on the notion of “value” in 
value-thinking by contrasting Case 1 and Case 3. Although value-thinking as described in David 
et al. (2019) may be interpreted as only referring to Case 1 (i.e., students conceptualizing a point 
as a multiplicative object of a pair of values of measurements from the point to the axes or along 
the axes), this work highlights the reality that students may conceptualize a point as a 
multiplicative object of positions on the axes, without reference to measurements as in Case 3.  

The coordination of these two frameworks allows us to see important parallels and interplays 
between them. Location-thinking’s view of point is singular, while value-thinking’s view is 
multifarious. A nominal interpretation of position is singular, while a magnitude interpretation of 
it is multifarious. By overlaying these, multiple shades of meaning and signification become 
apparent. For instance, in Case 1 (magnitude+value), the meaning of point and position are both 
multifarious for the student, which allows us to see that the student has formed a multiplicative 
object of coordinated the distances from the axes to the point on the graph. 

Of the four cases, Case 1 provides the most robust and flexible combination, but all four 
cases reveal affordances and constraints for the mathematical activity potentially available to the 
students, and suggest ways instructors can support this activity. For instance, Case 4 
(nominal+location) may afford reasoning in geometric contexts where horizontal and vertical 
components are not privileged. Yet, a student using this reasoning will need to coordinate input 
and output components of the graph of a function before they can interpret more complex 
symbolic statements, such as the Mean Value Theorem. Likewise, aspects of reasoning with 
Case 2 (magnitude+location) afford conceptualizing quantities such as arc length along the curve 
as measurable, which is critical for multiple topics in Multivariable Calculus (e.g., line integrals 
of vector-valued functions), as well as reasoning about quantities within spatial coordinate 
systems (Lee et al., 2020). However, this sort of thinking may constrain students’ productive 
activity when a graph is representing information along orthogonal axes. Case 3 (nominal+value) 
may be sufficient for students in finding numerical values from graphs, if they do not need to 
reason within the graph further. 

The intersection of the two frameworks we described may help instructors account for 
differences in students’ reasoning about points and portions of graphs. In contexts that utilize 
graphs of functions in the Cartesian plane, such as Calculus, supporting students in 
conceptualizing points as multiplicative objects of coordinated distances (Case 1) may be 
considered along the two dimensions of the frameworks we described. If a student is not using a 
Case 1 (magnitude+value) conception of points and positions, distinguishing whether they are 
failing to conceptualize a point as a multiplicative object, or a position as indicating an endpoint 
of a length to be measured may be helpful. Further research in this area may include teaching 
experiments to study the extent to which students may be constrained to certain cases of 
thinking. Such studies may also shed light on what factors support student in transitioning from 
one way of thinking to another, such as those that are more productive in a given context.  
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Importance of a Shared Coherent Language for Mathematics Learning 
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Learning Progressions is usually connected with conceptual development and suggested as a 

way to bring coherence to how we think about learning and the curriculum.  In this session, we 

present our view that Learning Progressions is not sufficient for successful learning of 

mathematics without attendance to concept development through a shared coherent language. 

We draw on the conceptual change learning theory to show that the difficulties students 

experience in learning mathematics are also due to the inconsistent representation of a concept 

from lower to higher levels of mathematics education. We argue that investigation is needed into 

how treatment of a concept in a restricted context in high school CCSSM-aligned textbook may 

lead to a potential conflict and difficulty of concept development in the broader context, later in 

college. 

Keywords: mathematics learning, language, conceptual change, learning progressions 

Various studies have shown that about 59% of students in two-year colleges and 33% of 

students in four-year colleges are taking some type of developmental mathematics courses, with 

an average student taking two to three successive courses. Even more worrisome is that about 

50% of two-year and 58% of four-year college students enrolled in these courses do not 

complete all of their required developmental math courses. Furthermore, only about 20% of 

students who complete all of their developmental math courses successfully complete college 

level math courses (Brock et al., 2016). Such situation is mostly explained by the procedural 

nature of mathematics instruction in high schools (Zenati, 2019) rather than a conceptual 

development.  

Conceptual development is often linked with Learning Progressions (LP), and LP is 

suggested as a way to bring coherence to how we think about learning and the curriculum 

(Siemon, 2017). The LP is described as “successively more sophisticated ways of thinking about 

a topic that can follow one another as children learn about and investigate a topic” (The National 

Research Council [NRC], 2007, p. 214). Teachers rely heavily on standards and curricular 

materials in their instruction and assessment (Davis, 2009; Remillard, 2000; Schneider & 

Krajcik, 2002; Van Zoest & Bohl, 2002). In particular, as stated in Van Zoest and Bohl (2002), 

“historically mathematics textbooks have played the role of a mathematical authority and 

reference for students and teachers in mathematics classrooms” (p. 268). In this respect, one of 

the attempts to improve students’ learning of mathematics at K-12 levels—with a focus on LP, 

and by bringing coherence—was the development and implementation of Common Core State 

Standards for Mathematics (CCSSM) (2010). The developers of the CCSSM noted that “the 

development of the standards began with research-based learning progressions detailing what is 

known today about how students’ mathematical knowledge, skill, and understanding develop 

over time. The knowledge and skills students need to be prepared for mathematics in college, 

career, and life are woven throughout the mathematics standards” (p. 4).  

The development and implementation of LPs requires attending to students’ conceptual 

progress in order to promote intended learning (Tzur, 2008), i.e., building on their previously 

constructed conceptions. Therefore, an important focus of LP is suggested to be a shared 
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language around a set of topics that point to the underlying conceptual structure of the 

mathematics that is the focus of the LP (Siemon, 2017), so that students can develop a 

conceptual understanding and cognitive structure by building up concepts over the years through 

LP. Tall and Vinner (1981) also argue that the development of concepts includes all mental 

pictures and attributes and associated properties and processes of a concept, i.e., concept image, 

as well as a form of words that is used to specify that concept, i.e., concept definition. A conflict 

and/or incoherency within and between concept images and concept definitions that are formed 

over the years of LP can yield a cognitive conflict and difficulty of forming an appropriate 

concept image, which can seriously impede the development of the formal theory in the mind of 

the individual student. Therefore, our view is that LP is not sufficient for successful learning of 

mathematics without attendance to concept development through a shared coherent language. 

We draw on the conceptual change learning theory and attempt to show that the difficulties 

students experience in learning mathematics are also due to the inconsistent representation of a 

concept from lower to higher levels of mathematics education.  

In this paper, we, first, describe the conceptual change theoretical perspectives. Then, we 

present how conceptual change theory is used to identify mathematical concepts that require 

conceptual change as students progress through elementary, middle and high school. Last, we 

explain the shared coherent language theoretical perspective. 

 

Conceptual Change Theoretical Perspectives 

Conceptual change ideas have been used for explaining students’ difficulties with learning 

certain science concepts and for developing teaching strategies to initiate conceptual change of 

students’ understanding of science concepts. Since the 1980s many studies have shown that 

students come to classrooms with knowledge that is not consistent with formal views of science 

(Duit & Treagust, 2003). Conceptual change researchers thus focused on investigating the 

development of students’ previous knowledge toward intended science concepts. Consequently, 

their perspective of students’ knowledge structures was fundamental to this research. 

In general, two theoretical perspectives regarding knowledge structure could be recognized in 

literature (Ozdemir & Clark, 2007). According to one perspective, students’ knowledge structure 

is an ecology of quasi-independent elements (e.g., diSessa & Sherin, 1998). These researchers 

argue that students’ knowledge structure consists of multiple conceptual elements, which are 

spontaneously connected and activated according to the situation. Conceptual change process 

then involves revising and refining elements and their interactions by addition, elimination, and 

reorganization in order to strengthen knowledge structure. Another perspective assumes that 

students’ knowledge is best represented as a coherent unified framework of theory-like character 

(Chi & Roscoe, 2005; Posner, Strike, Hewson, & Gertzog, 1982; Vosniadou & Vamvakoussi, 

2006). These naïve theories develop through every day experience and require revolutionary 

change so that students acquire knowledge consistent with formal views of science. For the 

purpose of this paper, students’ prior knowledge is assumed to be a coherent framework of 

theory-like structure (Vosniadou & Vamvakoussi, 2006).  

While the conceptual change teaching approach has been used in science teaching since 1980 

(Duit & Treagust, 2003), mathematics education researchers have attempted to apply conceptual 

change ideas to the teaching and learning of mathematics as recently as 2002 (e.g., Merenluoto & 

Lehtinen, 2002). One of the arguments for not using conceptual change in mathematics was that 

there are no revolutions in mathematics like in science. The revolutionary change in science 

results in discarding the older theories in favor of the new one, which is not a characteristic of 
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conceptual change in mathematics where an old structure is retained as a substructure of the new 

one (e.g., enlarging number sets). However, Vamvakoussi and Vosniadou (2004) suggested that 

the answer to question “Are there revolutions in mathematics?” depends on the definition of 

“revolution”. They suggest that the conceptual change approach can be applied to mathematics 

learning if the focus shifts from the change of mathematical theories, to the development of 

mathematical concepts. For example, the change from understanding ratios of integers as 

operations to understanding ratios of integers as numbers can be interpreted as an ontological 

shift from the category of processes to the category of objects (Vamvakoussi & Vosniadou, 

2004).  

Greer (2004) also claims that there are revolutions in mathematics. For example, formal 

mathematics had not accepted negative numbers until the 20th century, even though their 

functional counterparts existed in the real world (e.g., debit and credit transactions). He quotes 

De Morgan (1910 [originally 1831], p. 103-104): “3 – 8 is an impossibility, it requires to take 

from 3 more than there is in 3, which is absurd” (p. 542), to illustrate his struggle with 

conceptual change. Other examples include rejection of the belief that the Euclidean geometry is 

a unique way to describe the space and the introduction of non-Euclidean geometries (e.g., 

hyperbolic and spherical geometry) in the 19th -20th century; or Descartes notation of exponents 

2x3 rather than in terms of geometrical roots 2A cubus, which allowed considerations of 

expressions such as x0, x-1, x-1/2 and of dimensions beyond three. All of these show “that there 

have been changes in mathematics at the meta-level whereby earlier views have indeed been 

displaced” (Greer, 2004, p. 542). 

 

Mathematical Concepts that Require Conceptual Change 

Mathematical concepts identified in research that utilized conceptual change include the 

density of rational and real numbers, the use of the minus sign in algebra, exponents, limits, 

continuity, and tangency. Most researchers examined students’ prior knowledge to identify ideas 

that are inadequate for learning the new information. Students’ experience with natural numbers 

in everyday life along with the early mathematics instruction supports the development of the 

notion of the discreteness of numbers. Thus, understanding that there are infinitely many 

numbers between any two real numbers is difficult for students to comprehend (Merenluoto & 

Lehtinen, 2004; Stafylidou & Vosniadou, 2004; Vamvakoussi & Vosniadou, 2005; Vosniadou & 

Vamvakoussi, 2004). The knowledge about the minus sign in arithmetic, which usually indicates 

an action ‘subtract two numbers’, appears to present an obstacle in learning algebra concepts, 

where the minus sign can assume more than one meaning at the same time (Vlassis, 2004; 

Christou & Vosniadou, 2005; Christou et al., 2007). The notion of exponents is another 

challenging algebra concept for students (Pitta-Pantazi et al., 2007). Students’ original 

understanding of powers with positive exponents in terms of ‘multiply a by itself as many times 

as the number in the exponent’, is not adequate in solving problems involving negative and 

rational exponents. Merenluoto and Lehtinen (2002) suggested that students come to calculus 

courses with an everyday understanding of the term ‘limit’ as ‘limiter’ or ‘something that ends’ 

and the term ‘continuity’ as ‘something that never ends’, which are not compatible with 

mathematical definitions of the terms ‘limit’ and ‘continuity’.  

Biza et al. (2008), however, used the conceptual change theoretical framework to analyze a 

sequence in which students learn about a tangent. They argued that the initial understanding of 

the concept of a tangent of a curve as ‘a line that touches the curve at one point, and divides a 

plane into two parts, one of which contains the whole curve’ is mismatched with the formal 
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definition of the tangent of a curve at the given point as ‘a line that has the slope equal to the 

derivative of the function at that point’.  

 

Shared Coherent Language Theoretical Perspective 

We conceptualize the shared coherent language as the use of consistent and accurate 

mathematical language through LP over the grade levels and mathematical content areas. 

Mathematical language includes precise mathematical phrases, mathematics terminology, 

definitions, properties, and rules as appropriate for the developmental level of the students. 

Siemon et al. (2017) explain that, although it is not appropriate to teach negative numbers to 

children in kindergarten, a basic understanding that there is no first number should be 

communicated. They argue that the phrase “the first number is 1” when counting or presenting 

numbers on the number line is problematic because students may develop an understanding that 

there are no numbers less than one. Clearly such an understanding may present an obstacle in 

students’ learning of negative, rational, and irrational numbers. Siemon et al. (2017) provide a 

list of mathematical phrases that are commonly used and corresponding phrases that should be 

used to support special education students to develop conceptual understanding. Additionally, 

Karp et al. (2015) described 12 mathematics rules (e.g., PEMDAS, FOIL, factor rainbow, etc.) 

that are commonly used by elementary school teachers that expire in the middle school. In our 

opinion, these are not mathematics rules, but mnemonics and "rules of thumb” that will interfere 

with students’ learning of advanced mathematical concepts. 

We believe that using appropriate mathematical phrases as well as accurate mathematical 

terminology, definitions, properties and notation is essential for learning of mathematics of all 

students. As described in the previous section, the conceptual change theoretical perspective is 

used to identify mathematical concepts that require conceptual change. We then propose to 

examine mathematical language used to present each identified concept in curricula and 

associated resources for teachers and students across grade levels and mathematical content 

areas. 

 

Conclusion 

In conclusion, although students can operate quite happily with the restricted notion of a 

concept initially in a restricted context, this can lead to an inappropriate concept development, 

and hence, they may be unable to cope with the concept in a broader context. As argued by Tall 

and Vinner, the teaching programme (i.e., curriculum) itself is responsible for this unhappy 

situation. Therefore, it is our view that LP is not sufficient for successful learning of mathematics 

without attendance to concept development through a shared coherent language. Given the 

number of mathematical concepts that require conceptual change coupled with teachers’ reliance 

on textbooks for content, we believe it is essential that researchers need to look at LP in 

textbooks for particular topics that students struggle with. Specifically, investigation is needed 

into how treatment of a concept in a restricted context in high school CCSSM-aligned textbook 

may lead to a potential conflict and difficulty of concept development in the broader context, 

later in the college. 

 

References 

Biza, I., Souyoul, A., & Zachariades, T. (2008). Conceptual change in advanced mathematical 

thinking. Retrieved from: http://cerme4.crm.es/Papers%20definitius/14/biza.pdf, on April 1st, 

2008. 

24th Annual Conference on Research in Undergraduate Mathematics Education 854



Brock, T., Mayer, A. K., & Rutschow, E. Z. (2016). Using research and evaluation to support 

comprehensive reform. New Directions for Community Colleges, 2016(176), 23-33. 

Chi, M.T.H. & Roscoe, R.D. (2005). The processes and challenges of conceptual change. In M. 

Limon and L. Mason (Eds.), Reconsidering Conceptual Change. Issues in  

Theory and Practice, 3-27. Netherlands: Kluwer Academic Publishers.  

Christou, K., & Vosniadou, S. (2005). How students interpret literal symbols in algebra: A 

conceptual change approach. In B.G. Bara, L. Barsalou, & M. Bucciarelli (Eds.), 

Proceedings of the XXVII Annual Conference of the Cognitive Science Society, pp. 453–458. 

Stresa, Italy. Mahwah, NJ: Lawrence Erlbaum Associates, Inc. Retrieved from 

https://escholarship.org/content/qt6jc1n7jd/qt6jc1n7jd.pdf, August 13, 2020. 

Christou, K.P., Vosniadou, S. & Vamvakoussi, X. (2007). Students' Interpretations of Literal 

Symbols in Algebra. In Vosniadou, S., Baltas, A. & Vamvakoussi, X., (Eds.), Re-Framing 

the Conceptual Change Approach in Learning and Instruction, 283-297. Advances in 

Learning and Instruction Series, Oxford: Elsevier Press.  

Common Core State Standards Initiative. (2010). Common core state standards for mathematics 

(CCSSM). National Governors Association Center for Best Practices and the Council of 

Chief State School Officers. 

Davis, E. A., & Krajcik, J. S. (2005). Designing educative curriculum materials to promote 

teacher learning. Educational Researcher, 34(3), 3–14. 

Davis, J.D. (2009).  Understanding the influence of two mathematics textbooks on prospective 

secondary teachers’ knowledge. J Math Teacher Educ 12, 365–389 

https://doi.org/10.1007/s10857-009-9115-2 

diSessa, A.A. & Sherin, B.L. (1998). What changes in conceptual change? International Journal 

of Science Education, 20 (10), 1155-1191. 

Duit, R. & Treagust, D.F. (2003). Conceptual change: a powerful framework for improving 

science teaching and learning. International Journal for Science Education, 25(6), 671-688. 

EdReports. (2018). Compare materials. https://www.edreports.org/compare/results/math-k8 

Greer, B. (2004). The growth of mathematics through conceptual restructuring. Learning and 

Instruction, 14, 541-548. 

Merenluoto, K., & Lehtinen, E. (2002). The “conflicting” concepts of continuity and limit – a 

conceptual change perspective. In T. Nanahara & M. Koyama (Eds.) Proceedings of the 24th 

Conference of the International Group for the Psychology of Mathematics Education, (3), 

23-27. Hiroshima, Japan: PME. 

Merenluoto, K., & Lehtinen, E. (2004). Number concept and conceptual change: towards a 

systemic model of change. Learning and Instruction, 14, 519-534. 

National Research Council (NRC) (2007). Taking Science to School: Learning and Teaching 

Science in Grades K-8. Washington, DC: The National Academies Press. 

Ozdemir, G., & Clark, D.B. (2007). An overview of conceptual change theories. Eurasia Journal 

of Mathematics, Science, and Technology Education, 3(4), 351-361. 

Pitta-Pantazi, D., Christou, C., & Zachariades, T. (2007). Secondary school students’ levels of 

understanding in computing exponents. Journal of Mathematical Behavior, 26, 301-311. 

Posner, G.J., Strike, K.A., Hewson, P.W., & Gertzog, W.A. (1982). Accommodation of a 

scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211-

227. 

Remillard, J. T. (2000). Can curriculum materials support teachers' learning? Two fourth-grade 

teachers' use of a new mathematics text. Elementary School Journal, 100(4), 331-350.  

24th Annual Conference on Research in Undergraduate Mathematics Education 855



Schneider, R., & Krajcik, J. (2002). Supporting science teacher learning: The role of educative 

curriculum materials. Journal of Science Teacher Education, 13(3), 221-245. 

Siemon, D, Horne, M, Clements, D, Confrey, J, Maloney, A, Sarama, J, Tzur, R and Watson, A 

(2017). Researching and using learning progressions (trajectories) in mathematics education. 

In Proceedings of the 41st Conference of the International Group for the Psychology of 

Mathematics Education, Singapore, 17-22 July 2017, 109-136. 

Stafylidou, S. & Vosniadou, S. (2004).  The development of students’ understanding of the 

numerical value of fractions. Learning and Instruction, 14, pp. 503-518. 

Tall, D. & Vinner, S. (1981). Concept image and concept definition in mathematics with 

particular reference to limits and continuity. Educational Studies in Mathematics, 12. pp. 

151-169. 

Tzur, R. (2008). Profound awareness of the learning paradox (PALP): A journey towards 

epistemologically regulated pedagogy in mathematics teaching and teacher education. In B. 

Jaworski & T. Wood (Eds.) The international handbook of mathematics teacher education: 

The mathematics teacher educator as a developing professional (pp. 137-156). Rotterdam, 

the Netherlands: Sense. 

Vamvakoussi, X. & Vosniadou, S. (2004). Understanding the structure of the set of rational 

numbers: a conceptual change approach. Learning and Instruction, 14, 453-467. 

Van Zoest, L. R., & Bohl, J. V. (2002). The role of reform curricular materials in an internship: 

The case of Alice and Gregory. Journal of Mathematics Teacher Education, 5, 265–288. 

doi:10.1023/A: 1019816329185. 

Vlassis, J. (2004). Making sense of the minus sign or becoming flexible in ‘negativity’. Learning 

and Instruction, 14, 469-484. 

Vosniadou & Verschaffel (2004). Extending the conceptual change approach to mathematics 

learning and teaching. Learning and Instruction, 14, 445-451. 

Vosniadou, S. & Vamvakoussi, X. (2006). Examining mathematics learning from a conceptual 

change point of view: Implications for the design of learning environments. In Verschaffel, 

L., Dochy, F., Boekaerts, M., & Vosniadou, S. (Eds) (2006). Instructional psychology: Past, 

present and future trends. Sixteen essays in honour of Erik De Corte (Advances in Learning 

and Instruction Series). Oxford: Elsevier. 

Vosniadou, S. & Vamvakoussi, X. (2007). How many numbers are there in a rational numbers 

interval? Constraints, synthetic models, and the effect of the number line. In Vosniadou, A. 

Baltas, & X. Vamvakoussi (Eds.), Re-framing the conceptual change approach in learning 

and instruction. Oxford: Elsevier, Ltd. 

Zenati, L. (2019). Implementing asynchronous discussion as an instructional strategy in the 

developmental mathematics courses to support student learning (Unpublished dissertation). 

Illinois Institute of Technology, Chicago, IL. 

 

  

24th Annual Conference on Research in Undergraduate Mathematics Education 856



A framework for analyzing students’ reasoning about equivalence across undergraduate 
mathematics 

 
 Zackery Reed John Paul Cook 
 Embry-Riddle Aeronautical University Worldwide Oklahoma State University 
 
 Elise Lockwood April Paige Richardson 
 Oregon State University Oklahoma State University 
 

Establishing and leveraging equivalence is a central practice in mathematics. Though there have 
been many studies of students’ uses of equivalence, much of the research thus far has been 
domain-specific, and the literature generally lacks coherence within and across mathematical 
domains. In this theoretical paper, we propose an initial unifying framework for capturing the 
different ways that students might establish equivalence. Using constructs born out of the K-12 
literature, we discuss how this framework can be applied to student reasoning in undergraduate 
settings. We do so by presenting the results of conceptual analyses of students’ possible uses of 
equivalence when thinking about vectors, isomorphisms and homeomorphisms, and single-
variable limits. We then conclude with a detailed analysis of student data from combinatorics 
that identifies productive aspects of their uses of equivalence when constructing permutations. 

Keywords: Equivalence, Conceptual Analysis, Student Thinking 

Equivalence is a pervasive mathematical concept that is fundamental to constructing 
relationships between mathematical objects at all levels (Carpenter, Franke, & Levi, 2003; Cook, 
2018; Hamdan, 2006; Kieran & Sfard, 1999; Knuth et al., 2006; Lockwood & Reed, 2020; 
Moore, 2013; Ni, 2001; Steffe, 2004; Stylianides et al., 2004). In postsecondary mathematics, 
equivalence is fundamental to students’ thinking about topics such as angle measure (Moore, 
2013), logic (Stylianides et al., 2004), combinatorics (Lockwood & Reed, 2020), and abstract 
algebra (Cook, 2012, 2018; Larsen, 2013).  There is, however, evidence that students throughout 
K-16 mathematics face difficulties in reasoning about equivalence (Chesney et al., 2013; 
Godfrey & Thomas, 2008; Kieran, 1981; McNeil et al., 2006; Weinberg, 2009). We propose that 
one reason for these difficulties is that equivalence is often treated in compartmentalized, 
context-specific ways that emphasize its utility within a context but not its common, overarching 
structure. This is significant because, as noted by Asghari (2019), “equivalence has had many 
different faces and […] many different names” (p. 4675). 

We note that very little has been done to develop a clear, unifying image of what is involved 
in productively reasoning with equivalence across domains in undergraduate mathematics. In this 
theoretical report, we seek to begin to address this need by presenting an initial theoretical 
framework that characterizes key aspects students’ reasoning with equivalence. Specifically, we 
first present theoretical analyses of the ways that students might operationalize equivalence when 
reasoning about (1) vectors, (2) isomorphisms and homeomorphisms, and (3) limits in single-
variable calculus. Then, we present an analysis of students’ mathematical activity in 
combinatorics that highlights how they conceived of various sets of outcomes as equivalent. In 
doing so, we demonstrate the utility of the framework for highlighting key aspects of students’ 
productive engagement with equivalence across multiple mathematical domains.   
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Background Literature 
As there is much more literature on equivalence at the K-12 level than at the postsecondary 

level, we draw on K-12 literature in situating our paper. Because of spatial restrictions, we only 
discuss the works that largely informed our framework. The K-12 equivalence literature holds 
two key implications for our theory-building objectives. First, there are a plethora of explicit 
calls for instruction to attend to equivalence (McNeil & Alibali, 2005; McNeil et. al., 2006; Ni, 
2001; Smith; 1995; Solares & Kieran, 2013; Stephens, 2006). While this has been somewhat 
achieved at the K-12 level, we have observed that equivalence in postsecondary domains often 
remains backgrounded. 

Second, the K-12 literature contains descriptions of various in ways in which students might 
interpret equivalence, specifically in the context of the equals sign. These descriptions provided 
an initial foundation for our framework. A fundamental distinction in K-12 involves students 
viewing the equal sign operationally (as a indicator to “do something”) or relationally (as an 
indicator that the objects in question are in some way the same) (Kieran, 1981; Knuth et al., 
2005). But what does a relational understanding of the equal sign entail? As an example, we 
consider the equivalent algebraic expressions 2𝑥 + 2𝑦 and 𝑥 + 𝑦 + 𝑥 + 𝑦: What does it mean to 
say that two objects are in some way the same?  Our framework stems from three possible ways 
to interpret the equivalence of these two expressions that appear in the K-12 literature 
(Liebenberg et al., 1999; Saldana & Kieran, 2005; Solares & Kieran, 2013; Zwetzschler & 
Prediger, 2013): 

1. Numerical:  these two expressions are equivalent because, for any real numbers 𝑥 and 𝑦, 
the expressions 2𝑥 + 2𝑦 and 𝑥 + 𝑦 + 𝑥 + 𝑦 have the same numerical value.   

2. Transformational:  these two expressions are equivalent because one can be transformed 
into the other using algebraic rules (e.g. associativity and commutativity of addition). 

3. Descriptive:  these two expressions are equivalence because they both describe the 
perimeter of a rectangle with sides 𝑥 and 𝑦.   

We propose more general, refined versions of these interpretations in the next section and 
illustrate how they capture key aspects of students’ reasoning across different domains. 

Theoretical Framework  
Our framework takes the form of a conceptual analysis, an explicit description of “what 

students might understand when they know a particular idea in various ways” (Thompson, 2008, 
p. 43). We find conceptual analyses to be useful for our theory-building objectives in three ways. 
First, conceptual analyses offer means to identify desirable interpretations of equivalence that 
can inspire targets of instruction (Thompson, 2008). Conceptual analyses can form unifying 
threads within and across courses and curricula (O’Bryan, 2018). Finally, conceptual analyses 
can also enable researchers to create models of students’ thinking (Clement, 2000; Steffe & 
Thompson, 2000). These models are useful for both researchers and instructors because they can 
be employed to explain students’ mathematical activity and render it sensible in some way.  

In this report, we shall illustrate how results of the cross-domain conceptual analysis of 
equivalence that we present serves these purposes. The conceptual analysis was informed by our 
analyses of (1) the K-16 literature on equivalence, and (2) data collected for teaching 
experiments that had been previously conducted in abstract algebra (Cook, 2018) and 
combinatorics (Lockwood & Reed, 2020; Reed & Lockwood, 2020). In this framework, we 
describe three interpretations of equivalence that we hypothesize are useful for reasoning about 
equivalence across mathematical domains (these are featured in Table 1).  
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Table 1. A framework for analyzing students’ reasoning about equivalence. 

Interpretation of 
equivalence 
 
Common 
characteristic  
 
 
 
 
Descriptive  
 
 
 
 
 
 
Transformational 

Description 
 
 

Interpreting or determining 
equivalence based upon a 
perceived attribute that the 
objects in question have in 

common.  
 

Interpreting or determining that 
objects are equivalent because 
they describe the same quantity 
or serve the same purpose with 

respect to a given situation. 
 

Interpreting or determining the 
relationship between equivalent 

objects in terms of the actions by 
which one object has been or 

might be transformed into 
another. 

Example from undergraduate 
mathematics 

 
Interpreting that parallel lines are 
equivalent because “the common 

property will be the slope” (Hamdan, 
2006, p. 143). 

 
 

Determining that -3 and 9 are 
equivalent modulo 12 because they 
both function as the additive inverse 

of 3 (Cook, 2012). 
 
 

Interpreting that two matrices are 
row-equivalent because one can be 
obtained by applying a sequence of 
elementary row operations to the 

other (Berman, Koichu, & 
Shvartsman, 2013). 

 

 
In the next two sections, we illustrate the utility of this framework by (a) elaborating 

theoretical analyses of how these constructs might capture relevant aspects of students’ reasoning 
about equivalence in the context of vectors and magnitudes, isomorphisms and 
homeomorphisms, and single-variable limits, and (b) using the framework to conduct a detailed 
analysis of students’ reasoning from a teaching experiment in enumerative combinatorics. 
Together, these will demonstrate ways in which the framework can contribute to a broader, 
unifying perspective on equivalence that may be applicable across domains. 

Using the Framework to Gain Insight into Equivalence Across Domains 
We now illustrate how the interpretations detailed above capture productive aspects of 

reasoning about equivalence in the contexts of vectors, isomorphisms and homeomorphisms, and 
single-variable limits.  

Vectors and Magnitudes 
Vector equations provide an example that extends work done at the K-12 level to the 

undergraduate curriculum. For example, consider the equation ‖5𝑣‖ = 5‖𝑣‖, where ‖⋅‖ denotes 
a vector norm. First, a student might employ transformational equivalence to consider that the 
equality ‖5𝑣‖ = 5‖𝑣‖ follows from allowable operations on vector norms. This transformation 
might be described as “pulling the 5 out.” More formally, the definition of a norm requires that 
the norm function satisfy the property ‖𝑐𝑣‖ = |𝑐| ⋅ ‖𝑣‖ for any real constant 𝑐 and vector 𝑣. In a 
common characteristic interpretation of the equation, a student might appeal to the fact that 
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given any vector 𝑣, ‖5𝑣‖ and 5‖𝑣‖ give the same numerical value1. Finally, a descriptive 
equivalence interpretation could involve reasoning with magnitudes. Following Thompson and 
colleagues (2014), the magnitude of a quantity 𝐴 is the size of that quantity measured with 
respect to a unit2. From this perspective, ‖5𝑣‖ = 5‖𝑣‖ could be interpreted descriptively as a 
statement that the measure of the length of 5𝑣 (when using the length of 𝑣 as a unit) is 5.   

Isomorphic and Homeomorphic Spaces 
Significant identifications commonly made in advanced mathematics establish spaces as 

equivalent in the sense of possessing the same essential features. The standard method of 
determining such an equivalence entails the finding of a (usually bijective) map between the 
spaces such that the map satisfies certain topological, analytic, or algebraic properties. A 
homeomorphism, for instance, is a bijective map, 𝑓, such that both 𝑓 and its inverse, 𝑓!", are 
continuous. A group isomorphism, 𝜙, is a bijective map such that 𝜙 preserves the group 
operation: 𝜙(𝑎 ∗ 𝑏) = 𝜙(𝑎) ⋅ 𝜙(𝑏), where ∗ and ⋅ are the binary operations of the two groups. A 
student using such mappings to change one space into another would employ transformational 
equivalence, as the maps are the means by which elements of one space are transformed into 
elements of another. The analytic, algebraic, and topological qualifications of the bijective maps 
afford other implications, however, that also constitute interpretations of equivalence. Given two 
isomorphic groups 𝐺 and 𝐻, 𝐺 is abelian if and only if 𝐻 is abelian. If 𝑀 and 𝑁 are 
homeomorphic metric spaces, then they share convergent sequences. Put another way, viewing 
the equivalence between spaces this way focuses on their common characteristics.  One benefit 
of this interpretation is that such fundamental results as those we have given above become 
intuitive (if not obvious). Another is that it can be leveraged to justify that certain spaces are not 
the same:  an abelian group cannot be equivalent (isomorphic) to a non-abelian group, and a 
connected topological space cannot be equivalent (homeomorphic) to one that is disconnected. 

Single-Variable Limits 
Limits underlie most curricular treatments of fundamental operations in single-variable 

calculus: derivatives, integrals, and series. One formulation of limits answers the question: At a 
given domain value, 𝑎, of a function, 𝑓, is there a single real number, 𝐿, that 𝑓 approximates to 
any desired error bound via domain restrictions of 𝑓 around 𝑎? The mathematical necessity of 
such a question can be seen by examining #

!!"
$"

, which does not admit a readily available output 
for all domain values. While numerical and graphical methods might allow determination of 
rather obvious limiting values, 𝐿, for certain functions, 𝑓, the most efficient way to determine the 
limits of functions - such as #

!!"
$"

 - at points of discontinuity is to find an alternate, continuous 
function 𝑓∗ that has the same limit as 𝑓 at 𝑎.  

For simpler functions, 𝑓∗ can be determined algebraically. For instance, 𝑥 + 1 can be used to 
determine the limit of $

"!"
$!"

  at 𝑥 = 1 by noting that $
"!"
$!"

= ($!")($(")
$!"

= 𝑥 + 1, so that lim
$→"

$"!"
$!"

=
lim
$→"

𝑥 + 1 = 2. We consider the determining 𝑓∗ in this way to be an example of transformational 

equivalence, specifically by obtaining 𝑥 + 1 from $
"!"
$!"

 through a series of algebraic 

 
1 Notice that numerical equivalence from the K-12 literature is subsumed in common characteristic equivalence. 
2 Symbolically, |𝐴| = 𝑚(𝐴) ⋅ |𝑢| where |𝐴| is the magnitude, 𝑚(𝐴) is the measure of 𝐴 in unit 𝑢, and |𝑢| is the 
magnitude of the unit. 
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transformations.  These operations by themselves, however, do not constitute the utility of 
interpreting 𝑓 and 𝑓∗ as equivalent for the purpose of limit calculations. Rather, 𝑓 and 𝑓∗ are also 
equivalent because of a common characteristic: they share the same output values in their 
common domain (that is, all real numbers except 1). Because of this common characteristic, the 
output 𝑓∗(1) = 2 is approximated by values of 𝑓 for any error bound given a sufficiently small 
domain interval around 𝑥 = 1, thus constituting the limit of 𝑓 at 𝑥 = 1. As such, the limit of 𝑓 is 
determined because of the common characteristic equivalence of 𝑓 and 𝑓∗, yet 𝑓∗ is likely to be 
originally determined transformationally.  

As functions, 𝑓, vary in complexity, engaging in algebraic transformations becomes 
increasingly insufficient, requiring new ways to determine suitable 𝑓∗. For instance, while many 
functions share the same limiting value as #

!!"
$"

 at 𝑥 = 0, #
!!"
$"

 admits no readily available 
algebraic transformations. From this perspective, limit theorems - such as L’Hopital’s rule or the 
squeeze theorem - can be viewed as providing the means of generating useful equivalent 
functions, 𝑓∗. While desired functions 𝑓∗ have a common characteristic with 𝑓 that their limits 
evaluate to the same number, there are many such functions, 𝑔, that have this same common 
characteristic. We consider that students might productively generate more robust 
understandings of limit theorems as ways to establish equivalence between 𝑓∗ and 𝑓 via 
applications of ideas fundamental to calculus, those of locality and approximation, for instance.  

An Analysis of Students’ Reasoning in Combinatorics 
We now demonstrate the utility of the framework for capturing key aspects of students’ 

reasoning with equivalence in combinatorics. Lockwood & Reed (2020) characterized an 
equivalence way of thinking to describe a general approach that students in teaching experiments 
(Steffe & Thompson, 2000) used to solve enumerative combinatorics problems successfully. 
Broadly, their equivalence way of thinking involved identifying outcomes of counting processes 
as the same and then using division to account for such ‘duplicate’ outcomes. Our analysis here 
furthers this work by explicating how the students employed equivalence in multiple ways.  
Specifically, we discuss the counting activity exhibited by novice counters (pseudonyms Carson, 
Anne-Marie, and Aaron) when solving the Horse Race Problem, which states: “There are 10 
horses in a race. In how many different ways can the horses finish in first, second, and third 
place?” 

The students first answered 10 · 9 · 8, enumerating the sequence of events in which 10 
horses finish the race, but only 9 horses remain after the first horse finishes, followed by 8 horses 
that compete for a third-place spot. The interviewer then introduced the notation "*!

,!
 as another 

way to express the solution and asked the students to justify why "*!
,!

 was also a solution. The 

students first argued that "*!
,!

 gave another way of writing 10 · 9 · 8 as "*⋅.⋅/⋅,!
,!

, yielding 
cancellation of 7!. This first response employed transformational equivalence, as the students 
enacted algebraic transformations in which "*!

,!
 transformed into 10 · 9 · 8. Wanting to give the 

students opportunities to make other – combinatorially based - connections, the interviewer 
asked, “can you explain why this answer might make sense aside from the fact that its 
numerically equivalent to 10 times 9 times 8?”  The following conversation ensued:  

 
Carson: So, the way I’m thinking about it, is that we know kind of the method to get the 

number of ways that 10 horses can finish a race, and that’s 10!. … So, there’s 10! total 
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outcomes, and then we know for any given first 3 there’s gonna be 7!, because that’s 
saying we know the first 3 horses have finished. How can the last 7 horses finish? So 
that’s gonna be 7!. But all we care about is how many given first 3s there are. So, if we 
divide the total number of outcomes by the number of potential of outcomes for the last 7 
horses - that will give us the potential number of outcomes for the first 3. If that makes 
sense?  

Interviewer: It makes sense to me. Are you guys following what he’s saying? 
Anne-Marie: I see why, like 10! would be looking at all 10 positions for each 10 horses. I just 

feel like it’d be more intuitive to subtract the 7! than it would be divide but I see why 
dividing works better.  

 
We note two complementary interpretations of equivalence that Carson engaged in for the 

Horse Race Problem. First, Carson employed descriptive equivalence to establish similitude of 
the expressions 10 ⋅ 9 ⋅ 8 and "*!

,!
. By establishing that 10 ⋅ 9 ⋅ 8 and "*!

,!
 counted the same total 

collection of the first three race finishers, Carson argued that the expressions described the same 
outcome set. This use of descriptive equivalence is commonly employed in combinatorial proof. 
Second, in the underlined portions, Carson argued that there were 7! orderings of 10 horses that 
represented each single desired ordering of the first three horses. This representation of the single 
outcome in 7! ways was the first time that the students identified what they would later call 
“duplicate” outcomes and set the foundation for what Lockwood & Reed (2020) called an 
equivalence way of thinking. For Carson, the assumption that there were 7! representations of the 
same desired outcome provided the impetus for the division of 10! by 7!, and constitutes another 
use of descriptive equivalence, as the 7! duplicates represent the same desired quantity. 

This discussion of the utility in dividing versus subtracting, initiated above by Anne-Marie, 
became a prevalent distinction for these students. While the students could articulate that there 
were 7! arrangements of the 10 horses for any specific arrangement of gold, silver and bronze 
medalists, at this point in the experiment only Carson could articulate why division meaningfully 
accounted for those 7! extraneous arrangements to produce a single desired outcome.  

 
Figure 1: Arrangements of A-E 

 
 
To elicit further reflection, the interviewer provided a printed list of the 5! arrangements of 

the letters A through E (Figure 1) and asked the students to find the 20 groups of letters that 
could represent first and second place finishers. Notice that the entries in the list were spaced 
apart according to the fixed first two letters. The students noticed this arrangement, and 
subsequently circled the 20 groups that reflected this spacing. Seeing that there were six 
elements to each grouping, Aaron asked why division by 3! made more sense than “getting rid of 
the other 5”. The following exchange occurred after the interviewer pointed out that 3! was 6:  
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Aaron: Well, since there are 6 options for each AB, then dividing by 6 would just mean you 
would get 1, because that’s all you’re looking for. But then 5! would give you the number 
of groups (i.e. arrangements of A-E) and 3! would give you the number of combinations 
in each group (i.e. arrangements of the 3rd-5th letters). 

Carson: Well, 3! gives you the number of ways you can arrange the last 3 letters given the 
first 2 letters. 

 
Anne-Marie similarly explained that she understood why division by 6 created the single 

desired outcome, and that the 6 was achieved by 3!. As with Carson in the Horse Race Problem, 
the students’ generation of a desired outcome from a collection of representative outcomes 
constitutes employment of descriptive equivalence. Accordingly, the students’ motivations for 
division were rooted in considering each of the 6 outcomes as a version of the desired singular 
outcome from which generation of the 1 desired from the 6 duplicates could follow.  

Following this activity, the students expressed solutions to permutation problems through 
division, and explained their process as “getting rid of unwanted” outcomes. In general, the 
students throughout the rest of the teaching experiment explicitly attended to whether certain 
outcomes generated by a counting process could be seen as duplicates of other outcomes under 
the constraints of the problem, thus continuing to employ descriptive equivalence. This was a 
notable component of students’ determination of when multiplication was appropriate and when 
addition was appropriate. As determining the operations appropriate for the constraints of a 
particular counting problem is an area of difficulty for students (e.g., Batanero et al., 1997), the 
students’ use of descriptive equivalence was productive for their overall counting.  

Conclusion 
In this report, we have presented and discussed an initial framework for analyzing students’ 

reasoning about equivalence across undergraduate mathematics. We exemplified the utility of 
this framework by demonstrating its constructs through a discussion of three different 
mathematical concepts, and by presenting student data from a combinatorial context. We are 
motivated by the fact that despite the fundamental nature of equivalence in K-16 mathematics, 
few frameworks offer constructs and language that span domains and levels of mathematics.  

As exemplified in our analyses, students might interpret established equivalences between 
objects and spaces in myriad ways, each of which might have implications for the ways students 
carry out goal-oriented activity with the objects. In addition to providing unifying accounts of the 
associations that students make between various mathematical objects, this framework also 
offers tools for identifying productive aspects of students’ engagements with equivalence, such 
as the productivity of the combinatorics students’ uses of descriptive equivalence to determine 
whether subtraction or division was appropriate in a permutation calculation.  

Our hope is that we and other researchers can refine this framework by applying it to 
empirical data in a variety of domains and topics. Moreover, conceptual analyses such as those in 
this report can serve as a foundation for design research that targets these concepts. We offer 
these theoretical analyses as inspiration for future conceptual analyses and empirical studies in 
which equivalence is considered to serve a key role in students’ reasoning.  
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Calculus Reconceptualized Through Quantities 
 

Jason Samuels 
City University of New York 

 
We delineate the historical evolution of Calculus as a subject. We reframe Calculus as a study of 
quantities, and reclaim for differentials the interpretation given by Leibniz, infinitesimal 
quantities. With a conceptual analysis, we create a framework in Calculus for relevant types of 
quantities and the relationships between them. We demonstrate how this framework is a coherent 
reconceptualization for Calculus and can be a powerful tool for instruction and understanding. 
 
Keywords: Calculus, Quantitative Reasoning, Infinitesimals, Differentials 
 

Introduction 
 Calculus has been an area of extensive educational research. Due to its role in the U.S. 
STEM curriculum, student success in Calculus has many stakeholders: in high school and in 
college, in mathematics and in other STEM fields (Bressoud et al., 2013). 
 What is Calculus? It has been summarized, particularly for Single Variable Calculus (SVC), 
as limits, derivatives, integrals, and the Fundamental Theorem of Calculus (FTC), although some 
exclude limits (Thompson, Byerly, Hatfield, 2013). Calculus as invented by Leibniz does not 
match Calculus as it is taught today. It was originally a study of varying quantities (Boyer, 
1949). One of the central notions of Calculus is quantities which are arbitrarily small. Leibniz's 
approach was to use infinitesimal quantities, such as dx, referred to as differentials, with which 

he constructed ratios such as 
��

��
 and infinite sums such as ∫ �(�)��. An alternate approach 

employed by Cauchy was to make dx arbitrarily small by being any value so that 0<dx<Δx for 
some specified Δx. Weierstrass used limits, and subsequently provided the first rigorous proofs 
of Calculus techniques (Boyer, 1949). In this formulation, which is the dominant pedagogy: dx is 

not a quantity but an indicator of a variable and its role; the derivative 
��

��
 is not a ratio of 

quantities but shorthand for a limit of a difference quotient; the integral ∫ �(�)�� is not a sum of 
quantities but shorthand for a limit of Riemann sums. 
 Presently for Calculus, in instruction and research, the overwhelmingly dominant perspective 
is to place limits early in the development of the material. The topic occurs first in most 
textbooks, and it is presented in the research as an essential step in understanding derivatives 
(Zandieh, 2000) and integrals (Sealey, 2014). Problematically, student difficulty with limits is 
extensive (Oehrtman, 2009).  
 Nearly a century after Weierstrass, Robinson (1966) provided the mathematical proofs for 
infinitesimals. Calculus textbooks by Keisler (1976) and Henle & Kleinberg (1979) adapted 
those proofs for an undergraduate audience. Instances of teaching Calculus interpreting 
differentials as infinitesimals (Sullivan, 1976; Ely, 2017; Thompson & Dreyfus, 2016) often 
include pleas to adopt the given method and seem to be isolated instances rather than the 
establishment of a new standard. 
 Recently, some researchers have called for an alternate approach for Calculus which is 
separated from Analysis and is centered on applications involving variable quantities with a 
central role for differentials (Augusto-Milner & Jimenez-Rodriguez, 2021). Some research has 
found that students can develop robust conceptions of the three main ideas of SVC without limits 
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(Tall, 1986; Samuels, 2012). In non-mathematical STEM fields, where practical considerations 
are paramount, differentials as infinitesimal quantities are used extensively (Fraser, 2015). 
 For this theoretical report, we revisit the literature on quantitative reasoning, and observe 
some theoretical gaps before filling them in. We perform a conceptual analysis of Single 
Variable Calculus, using the lens of quantitative reasoning, which produces a framework for 
relevant quantities and the relationships between them. We demonstrate how this framework is a 
coherent reconceptualization for Calculus and can be a powerful tool for instruction and 
understanding. 
 

Theoretical Lens 
 One stage of this work is a conceptual analysis of Single Variable Calculus. Conceptual 
analysis "can be employed to describe ways of understanding ideas that have the potential of 
becoming goals of instruction or of being guides for curricular development... [It is for] 
describing ways of knowing that might be propitious for students mathematical learning" 
(Thompson, 2008, p46). In this conceptual analysis, we particularly attend to quantitative 
reasoning. This mode of reasoning entails “conceptualizing a situation in terms of quantities and 
relationships among quantities” (Thompson & Carlson, 2017, p425), where a quantity is a 
measurable attribute combined with a way to measure that attribute (ibid.).  
 

Quantitative Reasoning 
 Schwartz (1988) identified two types of quantities: extensive and intensive. An extensive 
quantity can be measured directly and exists independently (i.e. it does not stand in relation to 
another quantity). An intensive quantity cannot be measured directly and expresses a 
multiplicative relationship between two quantities. Nunes et al. (2003) noted that extensive 
quantities can be combined in the original units. However, they did not address what the 
outcome of a combination could be. To resolve that question, we contribute two additional 
quantity types.  
 A disjunctive quantity is a subtractive combination of two quantities of like units which has 
the units of the original quantities. As with an intensive quantity, it is important to maintain the 
awareness that a disjunctive quantity is comprised of two extensive quantities while also forming 
a consolidated single quantity. Similar to an intensive quantity, it increases with increases in one 
or decreases in the other of its constituents. A conjunctive quantity is an additive combination of 
multiple quantities in the same units which operates in the units of the original quantities. It 
increases with an increase in any constituent quantity. The last three types are more complex to 
form than extensive quantities, as they require the coordination of multiple quantities, and 
collectively we call them compound quantities.  
 

Differentials as Infinitesimals 
 We interpret differentials as infinitesimals consistent with the conceptions of Leibniz and the 
proofs of Robinson. Here we present a brief explanation of some key ideas; for a full explanation 
see (Keisler, 1976). A positive infinitesimal is a positive number ε which is less than every 
positive real number: 0<ε<r, ∀r ∊ℝ+. One can visualize infinitesimals graphically, as in Figure 1. 
Given the real number line, infinite magnification at a point reveals only one real value a and an 
infinite number of values of the form a+ε (called hyperreals), each one infinitely close to the real 
number a. Every finite hyperreal number can be written with a unique real part (called the 
standard part), meaning it is infinitely close to a unique real number, which can be expressed as 
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a+ε ≈ a or st(a+ε)=a. One can do arithmetic with hyperreal numbers, just as one would do with 
real numbers. Typically, at the end of a calculation, one gets a final real answer by taking the real 
(standard) part. Note that st(ε)=0. Limit statements have equivalent hyperreal statements. 

 Infinitesimal rules provide procedures to calculate derivatives. Define � ′(�) = �� �
��

��
�. 

Sample exercise: for � = ��, find ��(�) 
��

��
=

�(����)��(�)

��
=

(����)����

��
=

����� ���(��)����

��
= 2� +  ��  

� ′(�) = �� �
��

��
� = ��[2� +  ��] = 2�  

 
Fig 1. Infinite magnification reveals values infinitely close to a real number (from Keisler, 1976). 
 

Conceptual Analysis of Calculus 
 To this point, we have argued for the primary role in Calculus of quantities, and briefly 
described how differentials operate as meaningful infinitesimal quantities. Next, we seek to 
develop a categorization of the quantities we encounter in (Single Variable) Calculus, and 
describe the ways they interact with each other. This opens the way for a quantitatively oriented 
reconsideration of the Calculus curriculum. 
 To begin, we consider one version of the central statement of Calculus, the FTC:  

�(�) − �(�) = ∫ ��(�)��
�

�
. We investigate which quantities are present in that formula. On the 

left side of the equation, there are two extensive quantities, which might be called amounts. They 
are combined into a disjunctive quantity, often referred to as the change in f(x). On the right side 
is an integral, which in Leibniz’ formulation was an infinite sum. This is a conjunctive quantity, 
commonly referred to as an accumulation. The terms being summed are each composed of an 
(infinitesimal) change in x, and the rate of change for f(x), an intensive quantity. The four types 
of quantities previously described in the section on Quantitative Reasoning are all present in the 
FTC. We state now, and will continue to support in the rest of the report, that the four essential 
quantities of Calculus are: Amount, Change, Rate, Accumulation. Those four quantities and the 
relationships between them form the ACRA Framework for Quantities in Calculus. 
 An amount is an extensive quantity which could take on any real finite value. In an applied 
situation, it would be the measured value of a quantified property (including units) (Thompson & 
Carlson, 2017). A variable is used to represent an amount, and Thompson & Carlson noted that a 
variable might be varying, a parameter, or constant. We can make statements about single 
amounts, or relationships between two or more amounts. The former can be represented 
graphically with a point on a coordinate axis, the latter with a point on a coordinate graph. 
 A change is a disjunctive quantity which is the difference between two amounts of the same 
quantity. It can be written for real quantities as Δy ≡ y2 – y1; if y=f(x), then Δy ≡ f(x+Δx) – f(x). 
Including infinitesimal quantities, we might have dx or dy; if y=f(x), then dy ≡ f(x+dx) – f(x). 
Graphically, it can be represented with a (directed) segment on (or parallel to) an axis. Real and 
infinitesimal versions are depicted in Figure 2a-b. 
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Table 1. The ACRA Framework for Quantities in Calculus. 

QUANTITY DESCRIPTION AND 
GRAPH 

VALUES 
INVOLVED

FORMULA 

Amount A magnitude or extensive 
quantity 
Graphically, a point on a 
coordinate axis or graph 

real x, y 

infinitesimal  

Change A difference between two 
amounts (of the same quantity) 
 

Graphically, a directed line 
segment on (or parallel to) a 
coordinate axis 

real Δx = x2 – x1 
Δy = f(x+Δx) – f(x)  

infinitesimal dx, dy 
dy = f(x+dx) – f(x)  

Rate A quotient of two changes (of 
different quantities) 
 

Graphically, the slope of a 
straight line 

real 
� =

Δ�

Δ�
=

�� − ��

�� − ��
 

infinitesimal ��

��
 

Accumulation A sum of consecutive changes 
 

Graphically, a directed line 
segment on (or parallel to) a 
coordinate axis, composed of 
subsegments 

real xn – xo = Σi (xi – xi-1) = Σi Δxi 
f(b) – f(a) = Σi (yi – yi-1) 
                = Σi Δyi = Σi mi·Δxi 

infinitesimal b – a = ∫ ��
�

�
 

f(b) – f(a) = ∫ ��
���

���
 

FURTHER 

RELATIONSHIPS

   

Rate Equation The product of two rates is 
another rate (focus on the case 
in which one denominator 
variable and one numerator 
variable match) 

real Δ�

Δ�
=

Δ�

Δ�
∙

Δ�

Δ�
 

infinitesimal ��

��
=

��

��
∙

��

��
 

Change 
Equation 

The product of a rate (of one 
varying quantity with respect to 
another varying quantity) with a 
change in the other quantity is a 
change in the first quantity 

real 
∆� =

Δ�

Δ�
∙ ∆� 

infinitesimal 
�� =

��

��
∙ �� 

       
Fig 2a. A graphical representation of a real change 
(Δx1), rate (mavg1), and accumulation ( ∑Δyi ) 

Fig 2b. A graphical representation of an infinitesimal 
change (dx), rate (f’(x)), and accumulation ( ∫ dy )
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 A rate is an intensive quantity which is the ratio of two changes (of different quantities) 

(Schwartz, 1988). For real changes, the rate is 
��

��
. For infinitesimal changes, the rate is 

��

��
. 

Graphically, it is a line’s slope. Real and infinitesimal versions are depicted in Figure 2a-b. 
 An accumulation is a conjunctive quantity which is the sum of consecutive changes. Note 
that an accumulation is itself a change, but specifically one for which we also consider all 
constitutive changes. It may involve only one amount or multiple related amounts, and only real 
changes or including infinitesimal changes. An accumulation may occur in multiple variations: 

• A finite sum of real numbers: xn – xo = Σi (xi – xi-1) = Σi (Δxi) 
• A finite sum of reals from an amount relationship y = f(x): yn – yo = Σi (Δyi) = Σi mi∙(Δxi) 

• An infinite sum of infinitesimal changes: b – a = ∫ ��
�

�
 

• An infinite sum of infinitesimals from an amount relationship y=f(x): f(b) - f(a) = ∫ ��
���

���
 

Graphically, the accumulation can be represented as a directed segment on (or parallel to) a 
coordinate axis, with marked subsegments which represent the constituent consecutive changes. 
 As it stands, we have elucidated the categories of quantities in Calculus. Now we describe 
the ways in which they interrelate. The first three are extracted from the definitions, the last two 
are additional relationships.  

• A difference of two amounts (of the same quantity) is a change 
• A quotient of two changes (of different quantities) is a rate 
• A sum of consecutive changes is an accumulation. 
• The product of two rates is another rate (we focus on the case where one denominator 

variable and one numerator variable match) 
• The product of a rate (of one varying quantity with respect to another varying quantity) 

with a change in the other varying quantity is a change in the first varying quantity. 
Note that the quantities and their defining relationships are hierarchical, in the sense that change 
is defined in terms of amount, and rate and accumulation are each defined in terms of change. 
 Here we make several observations. As noted by Johnson (2011), a situation involving rate 
can be understood two ways, either associating extensive quantities or constructing an intensive 
quantity. Within the ACRA framework, the latter aligns with the definition of rate, while the 
former matches a change equation. Thus we can expect that both interpretations are necessary 
and useful. 
 One can take a real accumulation equation and substitute using the real change equation to 

get: f(b) – f(a) = Σi mi·Δxi, where mi is 
���

���
, the average rate on the interval [xi-1, xi]. One can 

proceed similarly for an infinitesimal version: �(�) − �(�) = ∫ ��(�)��
�

�
, where f’(x) is the 

infinitesimal rate. This suggests that, if we want students to conceive of an integral as an 
accumulation, we can support that prior to Calculus courses by fostering a conception of 
accumulation with real values on which they can build. 
 If students meaningfully understand ACRA, the four quantities and the relationships between 
them, they can immediately construct the FTC using those meanings, as in Table 2. There is 
potential for students to conceive of the upper boundary as variable, which is conventionally 

indicated using the letter t, to form the FTC in function form: �(�) − �(�) = ∫ ��(�)��
�

�
. We do 

not underestimate the difficulty of students coming to possess this conception robustly; research 
shows extensive student difficulty (Radmehr & Drake, 2017). However, here lies a promising 
path to this key concept which builds on conceptions of quantities coherently connected 
throughout Calculus. 
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Table 2. A meaningful construction of the FTC using infinitesimals and ACRA. 

�(�) − �(�) = � ��
���

���

 = �
��

��
��

�

�

 = � ��(�)��
�

�

 

The total 
change 
(accumulation)

is The integral 
(infinite sum) of 
every 
infinitesimal 
change 

is The integral (infinite sum) of 
every infinitesimal change 
divided by infinitesimal input 
change times infinitesimal 
input change 

is The integral (infinite 
sum) of infinitesimal 
rate (as a function) 
times infinitesimal input 
change 

 
Examples of pedagogical implementation 

 We now give some examples of typical problems from a wide range of SVC topics to show 
how the ACRA framework can motivate meaningful student solution processes. 
 Chain rule. Some research has shown that student knowledge and application of the chain 
rule is weak (Clark et al., 1997), and that function notation interferes with student performance 
(Dunmyre & Fortune, 2018). In the ACRA framework, a chain rule calculation is simply variable 
substitutions (which represent relationships between quantities with amount equations) and a rate 
equation. Further, using arithmetic to cancel the differentials is justified. 

Sample exercise: for y = ln(tan(x2)), find 
��

��
. 

Make amount equations for substitutions:     y = lnu …  u = tanv …  v = x2 

Calculate infinitesimal rates:         
��

��
 = u-1 … 

��

��
 = sec2v …  

��

��
 = 2x 

Substitute in the rate equation:  
��

��
=

��

��
∙

��

��
∙

��

��
 = (u-1)(sec2v)(2x) = [tan(x2)]-1·sec2(x2)·2x 

 Related rates. Notoriously challenging for students are related rates questions (Engelke-
Infante, 2007). Using the ACRA framework, they can be solved by identifying the relevant 
quantities, then implementing an amount equation and infinitesimal change and rate equations. 
Sample exercise: Suppose you are filling a spherical balloon with water. The water is flowing at 
20 cm3/min. When the radius is 6cm, how fast is the radius increasing? 

Given: r = 6, an amount; 
��

��
 = 20, an infinitesimal rate … Requested: 

��

��
, an infinitesimal rate 

First construct an amount equation for r & V, a necessary precursor:   V = 4/3 πr3 
From this, generate an infinitesimal change equation:        dV = 4πr2 dr 

Divide by dt, creating an infinitesimal rate equation:         
��

��
= 4��� ��

��
 

Substitute known values and solve.  
 Integration applications. There is extensive documentation that applications of integration 
are difficult for students (Wagner, 2018; Jones, 2013, 2015). The most common conception of 
integral is antiderivative or area under a curve (Jones, 2015; Fisher & Samuels, 2016), which is 
of limited help for modeling. There are several frameworks for productive quantitative reasoning 
about integrals. Quantitative-Based Summation (Simmons & Oehrtman, 2019) and Adding Up 
Pieces (Jones, 2013) detail how Riemann sums and integrals can be conceived as a sum of 
quantities. Multiplicative-Based Summation (Jones, 2015) notes the importance of recognizing 
the multiplicative and additive structure in Riemann sums and integrals. ACRA builds on these 
because its relationship rules prescribe how to form the needed expressions. 
Sample exercise: For density function p(x) (kg/m), find the mass m (kg) between x=a and x=b. 

Recognize that density is an infinitesimal rate of mass per length: p = 
��

��
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The desired mass is an accumulation:     � = ∫ ��
���

���
= ∫

��

��
��

�

�
= ∫ � ��

�

�
 

 Integration applications in which the rate function given is not a derivative with the boundary 
variable are particularly challenging for students (Simmons & Oehrtman, 2017). Unlike the 
previous problem, it is not a straightforward application of the FTC. The ACRA framework 
suggests the solution method: use an infinitesimal change equation to match the variable of 
integration to the boundary variable while also aligning with the given information. 
Sample exercise: A hill has its mass m spread unevenly in a field, density p (kg/m2) is related to r 
(m), the distance from the center: p = 8e-r. How much mass is between 1m and 2m from center? 

[Note that ��(�) is not given, so it is impossible to use �(2) − �(1) = ∫ ��(�)��
�

�
.] 

Let A = area. Note that density is an infinitesimal rate of mass per area: p = 
��

��
 

The requested mass is an accumulation:      � = ∫ ��
���

���
 

Use an infinitesimal change equation … twice:     = ∫
��

��
��

���

���
= ∫

��

��
∙

��

��
��

�

�
 

Form an amount equation for A and r to find that infinitesimal rate: � = ��� →
��

��
= 2�� 

Substitute and solve           = ∫ 8��� ∙ 2�� ��
�

�
 

 
Discussion & Conclusion 

 We have described the interpretation of differentials as meaningful infinitesimal quantities, 
used a conceptual analysis to construct the ACRA Framework for Quantities in Calculus, and 
demonstrated the productive usage of that framework in a wide variety of problems from SVC. 
In the sample solutions, every step is drawn from ACRA, so it is accompanied by a foundation in 
a real equation and a meaningful interpretation. This approach can provide a robust, consistent 
backbone of meaning for students across topics and contexts in SVC. Future research could 
consist of devising a hypothetical learning trajectory (Larson et al., 2008) for each topic in SVC, 
enumerating goals, learning evolution, teacher role, and tasks. Future work could also seek to 
extend this conceptual analysis and framework to multivariable calculus. 
 This conception of Calculus is a striking departure from usual practice. However, in the 
standard curriculum, the hardest material (limits) is presented first as the foundation, and 
students often fail to connect it meaningfully to their subsequent Calculus conceptions. 
Conceptions of infinitesimal values occur spontaneously for students within their math classes 
without intentional instruction, or even with lessons to the contrary (Tall, 1992; Ely, 2010). From 
that, one could conclude that it is an achievable and desirable goal to build on these notions. 
 Wagner (2018) documented difficulties with integration applications for students without a 
quantitative conception of differentials. In fact, he found that the more successful students were 
those who utilized quantitative meanings learned in non-mathematics classes. Jones (2017) noted 
that student understandings of derivative were most robust in a narrow range of applications, and 
a wider variety should be introduced. More broadly, Ferguson (2012) documented the mismatch 
between Calculus taught in Mathematics Department courses and the use of the content in STE 
courses. The standard Calculus pedagogy discourages quantitative reasoning (Augusto-Milner, 
Jimenez-Rodriguez, 2021), and it eschews infinitesimals even though they are at the heart of the 
STE disciplines and have a rigorous mathematical foundation. This theoretical report suggests 
that one solution may be a Calculus curriculum organized by the ACRA framework and utilizing 
differentials as infinitesimal quantities. 
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Instructions and constructions in mathematical proof 
 

 Keith Weber Fenner Tanswell 
 Rutgers University Vriji Universiteit Brussell 

In mathematics education, proofs are often conceptualized as series of assertions connected by 
logical deduction. We argue that this perspective has had a considerable influence on how 
mathematics educators analyze proofs, conceptualize proof comprehension, and teach proof. 
However, in both mathematical practice and in undergraduate instruction, the sentences in 
proofs are not always assertions. Some sentences are instructions and some proofs are best 
viewed as constructions that explain how to build a mathematical object. As instructions have a 
different truth semantics from assertions, models of proof as a series of assertions are 
incomplete. We present a model of how we believe construction-based proofs should be validated 
and understood. We conclude by using process-object theories to explain why some proofs are 
intrinsically difficult for students to understand.  

Keywords: Proof; Proof comprehension; Proof reading 

Proof plays a central role in advanced mathematics classes. University mathematics students 
are expected to be able to write proofs (e.g., Karunakaran, 2018), check proofs for correctness 
(e.g., Selden & Selden, 2003), and learn from the proofs that they read (e.g., Conradie & Firth, 
2000). Unfortunately, as the previous citations illustrate, a large body of research demonstrates 
that many university mathematics students struggle with each of these tasks. Naturally, there has 
been considerable effort to understand why university students struggle with proof and how 
mathematics educations might ameliorate the situation.  

Any mathematics education research on proof presupposes (perhaps tentative working) 
answers to difficult epistemological questions: What is a proof? What does it mean for a proof to 
be correct? What does it mean to understand a proof? As Balacheff (2008) documented, 
mathematics educators notoriously disagree on what the answers to these questions should be. 
Nonetheless, we have found that many mathematics educators have conceptualized proof as a 
series of mathematical assertions, where each new assertion in a proof is either an acceptable 
starting point or a deductive consequence of previous assertions. We believe this perspective is 
limiting; we contend that many proofs in both mathematical practice and undergraduate 
mathematical textbooks are actually not of this type. 

We have four goals for this theoretical report. First, we hope to persuade our audience that 
many proofs, both in mathematical practice and in undergraduate mathematics, are not series of 
assertions. Instead, many proofs contain constructions, which are series of instructions that the 
reader is asked to apply to build mathematical objects. Second, because instructions have 
different truth semantics than assertions, we argue that the standards for evaluating construction-
based proofs differs from evaluating sequences of assertions. We describe what those standards 
are. Third, we provide a model of what it means to comprehend construction-based proofs. 
Finally, we use process-object theories of education (Tall et al., 1999) to explain why some 
construction proofs will be intrinsically difficult for students to understand. 
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Assertions and instructions in mathematical proof 

Assertions in proofs 
 
In this proposal, a mathematical assertion1 is a declarative statement that expresses a 

relationship between mathematical objects and their properties. Mathematical assertions may be 
assigned epistemological values. For instance, “5 is a prime number” is a true assertion and “p is 
a prime number” may be true, false, or indeterminate, depending upon how p is defined. There 
may be a logical relationship between assertions. In particular, one assertion may be a logical 
consequence of another. 

Many mathematics educators’ conceptualization and analysis of proofs treat proofs as a 
series of assertions. For instance, in a series of influential articles, Duval (1991, 2007) claimed 
that proofs are series of assertions in which specific attention is paid to the operational status of 
each assertion. Stylianides’ (2007) widely used characterization of proof begins with the premise 
that a proof is a special type of “connected series of assertions for or against a claim” (p. 291). 

To analyze the validity of a proof, mathematics educators often conceptualize proofs as a 
sequence of claims A ® B ® C ® D… where the validator is expected to understand how each 
new claim follows from previous assertions in the proof (e.g., Inglis & Alcock, 2012). This 
assumption is the basis for using Toulmin’s (2003) scheme to analyze proofs (e.g., Reid & 
Knipping, 2010), where a new assertion of a proof is viewed as the “conclusion”, previous 
assertions in the proof are viewed as “data”, and there is a (sometimes implicit) “warrant” that is 
itself an assertion for why the data necessitates the conclusion. Toulmin’s scheme has been 
commonly used to analyze the structure and correctness of student-generated arguments (e.g., 
Pedemonte, 2007), proofs in lectures (e.g., Fukawa-Connelly, 2014), and textbook proofs (Weber 
& Alcock, 2005). 

The most widely used models of proof comprehension also explicitly characterize proof as a 
sequence of assertions. For instance, Yang and Lin’s (2008) Reading Comprehension for 
Geometry Proof (RCGP) model was heavily influenced by Duval’s (1991, 2007) theoretical 
analysis of proof, and is comprised of four levels: Understanding the meaning of assertions in a 
proof, recognizing the operational status of each assertion (is it a definition, hypothesis, 
deduction, or conclusion?), justifying how a new assertion can be deduced from previous 
assertions, and encapsulating a string of assertions into a general method for deducing a 
conclusion from a set of premises. Finally, proof is often introduced to students as an argument 
that presents “statements” and “reasons”, as is encapsulated in a rather extremely literal way with 
the two-column proof format commonly used in high school geometry (e.g. Herbst, 2002). 

To avoid misinterpration, it would be inaccurate to say that all mathematics educators 
characterize proof as a series of mathematical assertions. Simon’s (1996) transformational 
reasoning and Harel and Sowder’s (1998) transformational proof schemes are two important 
alternative accounts of proof. We also do not claim that the authors that we cited here would 
claim that only assertions may appear in a proof. Our point is simply that the presumption that 
proofs are series of assertions undergirds much of the research on proof in mathematics 
education. 

 Instructions in proofs 
 

 
1 Throughout this proposal, we will treat “mathematical assertion” and “mathematical statement” synonymously. 
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In this proposal, we define an instruction in a proof as a prompt for the reader to engage in a 
mathematical action. Instructions are typically provided in two forms: as an imperative command 
or as a declarative sentence with “we” as the subject. A corpus analysis has found that 
instructions are commonly used in the proofs that mathematicians write for one another 
(Tanswell & Inglis, in press). We also claim that instructions are common in the proofs that 
undergraduate students read. To illustrate, consider the passage below from an undergraduate 
real analysis textbook. (We number the sentences in the proof to facilitate discussion, but 
otherwise the proof is copied verbatim). 

Theorem 3.57 (Bolzano-Weierstrass). Every bounded sequence of real numbers 
has a convergent subsequence. 
[1] Proof. Suppose that (xn) is a bounded sequence of real numbers.  
[2] Let M = supn∈N xn , m = inf∈N xn , 
[3] and define the closed interval I0 = [m, M]. 
[4] Divide I0 = L0 ∪ R0 in half into two closed intervals, where L0 = [m, (m + M)/2], R0 = [(m 

+ M)/2, M]. 
[5] At least one of the intervals L0, R0 contains infinitely many terms of the sequence, 

meaning that xn ∈ L0 or xn ∈ R0 for infinitely many n ∈ N (even if the terms themselves are 
repeated). 

[6] Choose I1 to be one of the intervals L0, R0 that contains infinitely many terms 
and choose n1 ∈ N such that xn1 ∈ I1.  
[7] Divide I1 = L1 ∪ R1 in half into two closed intervals.  
[8] One or both of the intervals L1, R1 contains infinitely many terms of the sequence.  
[9] Choose I2 to be one of these intervals and choose n2 > n1 such that xn2 ∈ I2.  
[10] This is always possible because I2 contains infinitely many terms of the sequence.  
[11] Divide I2 in half, pick a closed half-interval I3 that contains infinitely many terms, and 

choose n3 > n2 such that xn3 ∈ I3.  
[12] Continuing in this way, we get a nested sequence of intervals I1 ⊃ I2 ⊃ I3 ⊃ . . . Ik ⊃ . . . 

of length |Ik| = 2−k (M − m), together with a subsequence (xnk) such that xnk ∈ Ik. 
[13] Let e > 0 be given.  
[14] Since |Ik| → 0 as k → ∞, there exists K ∈ N such that |Ik| < e for all k > K.  
[15] Furthermore, since xnk ∈ IK for all k > K we have |xnj − xnk| < e for all j, k > K. 
[16] This proves that (xnk) is a Cauchy sequence, and therefore it converges by Theorem 3.46. 

  (Hunter, 2014, p. 89) 
Note that the reader is given a large number of imperatives where the reader is asked to build 

a sequence of terms and a sequence of intervals by acting upon mathematical objects that have 
been defined earlier in the proof. The reader is asked to divide intervals (see lines [3], [7], and 
[11]), choose points ([3], [9], [11]), pick intervals ([11]), and continue a process ([12]). We have 
found this is common in introductory textbooks. In set theory textbooks, the reader is asked to 
build models, well-order sets, extend partial orderings, and pick and choose objects (e.g., Kunen, 
1980). In graph theory textbooks, the reader is asked to partition vertices and color edges (e.g., 
Anderson, 2002). 

Some mathematics educators have noted the prevalence of imperatives in mathematical 
writing. Pimm (1987) remarked on the “common use of the imperative in mathematical 
discourse” and said this is a “topic worthy of considerable attention” (p. 72), an observation also 
made by Ernest (1998). However, Pimm and Ernest do not elaborate on the role of imperatives 
further. Rotman (1988) claimed that “mathematics is so permeated by instructions for actions to 
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be carried out, orders, commands, injunctions to be obeyed … that mathematical text seems at 
times to be little more than sequences of instructions written entirely in an operational exhortory 
language” (p. 8). However, there is little work on how imperatives (or instructions more 
generally) work in proof in terms of validity and comprehension. 

Constructions in proofs 
 
Many proofs in undergraduate education are of the form, “if you give me an object X with 

property P, I will show you how to construct an object Y with property Q”. The Bolzano-
Weierstrauss proof presented earlier is an example of a construction proof. Line [1] in the proof 
stipulates that (xn) is a bounded sequence  Lines [2]-[12] of the proof provide a construction that 
the reader is to execute (or imagine executing) to produce a subsequence. Lines [12]-[16] 
constitute a verification that the subsequence that the reader has produced is actually convergent. 
(Note [12] contains an implicit instruction “continuing in this way” and then makes observations 
about the objects that result). The construction is composed of imperative commands: the reader 
is asked to divide intervals in half, pick sub-intervals, choose an index of a sequence term in that 
subinterval, and continue doing this an infinite number of times. We use this proof to make three 
points about constructions. 

First, as the reader is reading the construction, we suggest she should be asking whether it is 
possible to carry out the steps in the construction. If it is not obvious to a mathematically 
knowledgeable reader why the instruction can be followed, the author is obligated to justify this 
in the proof. Note step [9] in the proof directs the reader to do two things: (i) “choose I2 to be one 
of these intervals”,  and (ii) “choose n2 > n1 such that xn2 ∈ I2”. The author justifies that (i) is 
possible in line [8] and that (ii) is possible in line [10].  

 Second, the author may ask the reader to obey instructions that a human being may not be 
able to actually carry out in practice. In our example proof, the reader is asked to execute an 
infinite number of steps, which no human being can do during their finite lifetime. In some 
cases, the reader will not be able to carry out even a single step in the proof. For instance, 
consider the sequence (xn) that is defined by:  

xn = 1    if n = 1 or there is an m ≤ n such that m is an odd perfect number, 
xn = 0 otherwise. 
The terms of this sequence will have an infimum of 0 and a supremum of 1. The sequence 

will have infinitely many terms in the interval [0, ½] if and only if there are no odd perfect 
numbers, and infinitely many terms in the interval [½, 1] if and only if there is an odd perfect 
number. It is presently unknown whether there are any odd perfect numbers, so someone 
following the construction in the proof could not be expected to decide whether to choose L0 = 
[0, ½] or R0 = [½, 1] as I1. The main point here is that executing an instruction may sometimes 
require a type of mathematical omniscience that no human mathematician has. 

Finally, in construction-based proofs, claims about the objects that were generated are 
justified by how the objects that were constructed—that is, from the construction itself. When we 
follow the construction up through line [12], we generate a sequence of intervals and a sequence 
of indices. Line [12] then asserts three claims about these objects: (i) “we get a nested sequence 
of intervals I1 ⊃ I2 ⊃ I3 ⊃ . . . Ik ⊃”, (ii) “length |Ik| = 2−k (M − m)”, and (iii) “a subsequence (xnk) 
such that xnk ∈ Ik”. None of these claims are justified in the proof. The implicit justifications for 
these claims comes from the construction itself. (i) follows because we are continually picking 
sub-intervals. (ii) follows because each sub-interval is chosen to be half the length of the original 
interval. (iii) follows because we are choosing our nk’s to be increasing and in Ik.  Lines [13]-[16] 
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constitute a straightforward proof as a sequence of mathematical assertions that if the sequence 
of intervals and indices had the properties given in [12], then (xnk) would be a Cauchy 
subsequence. 

How instructions and constructions differ from assertions 
 
The use of instructions poses challenges for accounts of how proofs should be understood 

and how we can decide whether a proof is correct. In some mathematics educators’ accounting, a 
step in a proof is judged to be correct by the reader if she can see how the assertion expressed in 
this step is a valid deductive consequence from previous assertions. Instructions differ from 
assertions in that they cannot be true or false. “p is a prime number” can sometimes be assigned a 
truth value; “double p” or “choose a divisor of p” cannot. Similarly, instructions cannot be 
deductive consequences of previous statements, which poses a challenge in performing Toulmin-
style analyses on construction-based proofs. 

One potential objection is that construction-based proofs do not differ significantly from 
assertion-based proofs because one can easily translate instructions to assertions. For instance, 
saying “Choose a Z with property P” can be viewed as two assertions: “There exists an object 
with property P” and “Z is assumed to be an object with property P” (with the second assertion 
justified by the first). We are not persuaded by this objection. We believe it is more parsimonious 
to take mathematicians’ language at face value and believe that they mean what they say. And 
even if every instruction could be translated into assertions, this implies that more attention in the 
classroom and the mathematics education literature needs to be paid to how one translates 
instructions into assertions. We now go further and argue that not all instructions can be 
translated into assertions in a straightforward manner. 

The proof that we presented uses the Axiom of Choice twice—both in picking the interval 
sequence and in choosing the subsequence term. The use of the Axiom of Choice was masked in 
line [12] by “continuing in this way”. (The Axiom of Choice is not necessary to prove the 
theorem; one can avoid it by saying “If the left interval contains infinitely many terms, choose 
that one. Otherwise choose the right interval” and “Let nk be the least index greater than nk-1 that 
is in the interval Ik”. But the Axiom of Choice was used in this proof). Mathematicians are often 
surprised to find that the Axiom of Choice is invoked in this proof. Indeed, some early 20th 
century mathematicians who opposed the Axiom of Choice published this proof in their 
textbooks (Moore, 1982)! Hence, we have the situation where mathematicians who oppose the 
Axiom of Choice and undergraduates who have not heard of the Axiom of Choice can be 
convinced by this proof. Clearly these individuals are not translating the proof into assertions to 
obtain this conviction. 

A model of validity and comprehension for construction-based proofs 
 
We distinguish between four levels of understanding in which the construction in a proof be 

understood: 
1. Understanding the literal meaning of each instruction in the construction; 
2. Being able to justify why it will always be possible to execute each instruction in the 

construction; 
3. Being able to justify why the output of the construction has specified mathematical 

properties; 
4. Interpreting the construction as being goal-directed. 
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Levels (1), (2), and (3) relate to checking that the claims about the construction are valid. 
Level (4) speaks to a broader understanding. Regarding level (1), it is worth noting that we 
cannot expect the reader to actually apply the instruction in any situation, for as we noted, this 
might involve the reader having knowledge that no current human being has. In these cases, it 
may be better to say a student understands a construction if she could apply each step if the 
knowledge needed to do so is either obvious or otherwise given to the student. 

Regarding Level 2, as we noted earlier, instructions do not have the same truth semantics as 
declarative mathematical statements. Ordering the reader to “choose n1 ∈ N such that xn1 ∈ I1” 
(line [6]) can neither be true or false. For an instruction to be permissible in a proof, it must 
always be theoretically possible for the reader to implement it, regardless of the previous actions 
she had taken in following the construction. This suggests two ways that the presence of an 
instruction may invalidate a proof. First, the reader may find herself in a situation in which it is 
impossible to follow the instruction. For instance, if the reader was asked to “pick a prime p > n 
that is even”, this instruction would be impossible to follow if n ≥ 2. Second, a proof might be 
invalid if the reader could implement an instruction, but it is unclear why this is so. In this case, 
the proof would have a gap in it. The gap could be bridged by giving more detailed instructions 
on how the broader instruction could be carried out.  

Regarding Level 3, the student needs to use the instructions in the construction to justify why 
the output of the construction has the properties that it does. We believe this is quite difficult, 
and we elaborate on this understanding shortly. Regarding Level 4, some scholars have remarked 
that part of understanding a proof is understanding the general method (e.g., Hanna & Barbreau, 
2008; Leron, 1983; Rav, 1999). Students who fail to understand the motivation behind a method 
may be perplexed and view steps in the proof as “pulling a rabbit out of a hat” (Leron, 1983). 
What we suggest is that this understanding can be achieved in construction-based proofs by 
viewing the constructions as goal directed. Each step in the construction is designed to ensure 
that future steps in the construction will be possible to execute or to ensure that the object that is 
constructed has a desirable property. In this sense, each instruction in the construction permits 
two types of justification. The first, which we discussed in Level 2, is that it is possible for the 
reader to carry out the instruction. The second is the motivation for including that instruction in 
the first place. How does this instruction facilitate the construction of an object with desirable 
properties? For instance, in line [9] of the proof above, the reader is asked to “choose n2 > n1 
such that xn2 ∈ I2”. The reader can ask why this is possible—a justification is given in step [10]. 
Or the reader can ask why this instruction was included. The answer to this question is that 
sequence of indices can form a subsequence (n2 > n1 ensures the indices are increasing) whose 
tails are within a fixed distance of one another. 

Why some construction-based proofs are hard to understand 
 
For the sake of brevity, this section will assume that the reader has some familiarity with the 

process-object theories of concept understanding in mathematics education (e.g., Tall et al., 
1999). We briefly highlight the main points. To fix our terminology, we will frame our 
discussion in terms of APOS theory (Cottrill et al., 1996). However, as Tall et al. (1999) 
discussed, the themes that we discuss are equally well supported by the panoply of other process-
object theories in mathematics education as well (e.g., Davis, 1984; Sfard, 1991). 

An individual may understand a procedure as an action if she can apply a set of mathematical 
transformations in response to an external stimulus. The individual may understand the same 
procedure as a process if she views the procedure as transforming inputs into outputs. She “can 
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describe and reflect upon the steps of the action without necessarily performing them” (Cottrill et 
al., 1996, p. 171). The key point here is that an individual who only holds an action 
understanding of a procedure cannot reason about the output of the procedure without actually 
performing its steps. An individual with a process understanding can anticipate the result of the 
procedure without actually performing each of the steps.  

In a construction-based proof, a Level 1 understanding of a construction requires an action 
level understanding of the construction. The reader only needs to have a literal understanding of 
each of the instructions of the construction. However, Level 2 and Level 3 understandings 
require having a process understanding of the construction. The reader needs to see why steps in 
the construction are necessarily possible to carry out and that the output will necessarily have 
some properties, for arbitrary inputs.  

Process-object theories posit that one gains a process understanding by applying a procedure 
and reflecting upon one’s actions. However, proofs simply state what the constructions are, but 
does not ask the reader to actually carry out the instruction. Furhter, some constructions, such as 
the one in the proof of the Bolzano-Weierstrauss Theorem presented in this proposal, may be 
impossible to actually carry out, either because they involve applying infinitely many steps or 
because some instructions require mathematical omniscience to carry out that no human being 
possesses. This suggests that some construction-based proofs may be extremely difficult for 
students to understand.  
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A Framework for Designing Intellectual Need-Provoking Tasks 
 

 Aaron Weinberg Steven Jones 
 Ithaca College Brigham Young University 

Intellectual need (IN) is a powerful way to support learning by engaging students and helping 
them view mathematics as less arbitrary. While IN has been developed theoretically, much less 
has been done to build frameworks for how to actually create IN provoking tasks – both in terms 
of what a task designer might attend to and how to attend to those things. In this theoretical 
paper, we review key premises in IN, from which we extract several components that should be 
taken up in IN task design. We then describe a process one can use to address these components 
systematically in constructing a task specifically meant to provoke IN. 

Keywords: Task Design, Intellectual Need, Learning Environments 

Introduction and Literature Review 
As instructors, we routinely look for ways to support our students’ learning. In particular, we 

want our students to “engage with mathematical content in ways that go beyond using known 
facts in standard procedural ways” (Mesa, Burn, & White, 2015, p. 84). Harel’s (1998) idea of 
intellectual necessity, as part of his DNR framework (Harel, 2008a; 2008b), is a powerful 
framework for conceptualizing and planning instruction. The theory of intellectual need (IN) has 
been widely used to design instructional tasks. For example, Harel (e.g., 2013b) has conducted 
numerous teaching experiments for various mathematical topics based on the necessity principle. 
Leatham, Peterson, Stockero, and Van Zoest (2015) used the idea to design and analyze effective 
“openings” for lessons, and Abrahamson, Trninic, Gutiérrez, Huth, and Lee (2011) used the idea 
to design “hooks” for their curriculum of mediated discovery. Other teachers and researchers 
have used the idea to conduct professional development workshops (e.g., Meyer, 2015), design 
instructional tasks (e.g., Koichu, 2012; Caglayan, 2015; Foster & de Villers, 2015) and analyze 
classroom instruction (e.g., Rabin, Fuller, & Harel, 2013; Zazkis & Kontorovich, 2016). Despite 
the numerous examples of IN-provoking tasks, there have not yet been descriptions of principles 
for designing such tasks. In this theoretical paper, our contribution is to synthesize ideas within 
IN theory and to organize them into a systematic framework for designing IN-provoking tasks. 

Theoretical Background 

Intellectual Need 
The instructional principle of intellectual need (IN) was originally suggested by Harel and 

Tall (1991), who proposed, “if students do not see the rationale for an idea... the idea would seem 
to them as being evoked arbitrarily; it does not become a concept of the students” (p. 41). This 
was formalized by Harel (1998) as the necessity principle: “For students to learn what we intend 
to teach them, they must have a need for it, where ‘need’ refers to intellectual need” (p. 501).  

Harel (2013b) defined the necessity principle as the perceived need to resolve “a 
perturbational state resulting from an individual’s encounter with a situation that is incompatible 
with, or presents a problem that is unsolvable by, his or her current knowledge” (p. 122). The IN 
of the individual is defined to be the aforementioned problematic situation. This perturbation is 
rooted in the individual’s experience within the discipline—in this case, of mathematics—and is 
based on the learner’s epistemological justification for the mathematical concept, where an 
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epistemological justification is “the learner’s discernment of how and why a particular piece of 
knowledge came to be” (Harel, 2013a, p. 8). 

IN is grounded in Piaget’s (1985) notion of disequilibrium and situated within Harel’s DNR 
framework for mathematics curriculum and instruction (e.g., Harel, 2008a). The DNR 
perspective is based on eight premises about learning mathematics, which we summarize and 
comment on here (the premises are italicized). Within the premises, we bold certain terms 
relating to learning environments and we underline certain terms relating to designing a task. 

● The epistemophilia principle asserts that all learners are capable of developing a desire to 
be puzzled and to solve puzzles. These puzzles can be embodied in the creation of tasks, 
and the process of task development is the central focus of our paper. 

● The knowing premise describes learning as a developmental process of resolving 
disequilibrium and the knowing-knowledge linkage asserts that all knowledge is a result of 
such a resolution. Thus, the goal of these tasks is to help students enter into a perturbational 
state that, when resolved, will foster construction of the target knowledge. This 
perturbation and its resolution are mediated by the tools and artifacts that determine 
whether a scenario is viewed as problematic, and avenues for resolving the perturbation. 

● The knowledge of mathematics premise asserts that mathematical knowledge consists of 
institutionalized ways of understanding (WoUs) and ways of thinking (WoTs), which are, 
respectively, products and characteristics of mental acts (see, e.g., Harel, 2008b). From a 
complementary perspective, the subjectivity premise asserts that students’ knowledge is 
personally constructed as they engage in various tasks and the interdependency premise 
describes the reflexive relationship between students’ actions and their views of the world. 
Thus, when designing tasks, it is essential to attend to both the institutionalized WoUs and 
WoTs, which we refer to as the “Math” (with a capital M), as well as the WoUs and WoTs 
of the students who will be engaging with the task. 

● The context dependency of learning premise proposes that the context in which the Math is 
learned influences what and how they are learned. Thus, when designing tasks, it is 
important to consider both the curriculum in which the learning is taking place and the 
students’ relationship with the context as part of the educational setting. 

● The teaching premise highlights the role of expert guidance and collaboration as part of the 
learning process. Thus, it is essential to consider the interactions between the teacher and 
students as the task is presented and the disequilibrium is resolved. 

The subjective nature of IN is of particular importance, because the situations that “constitute IN 
for one person may not be so for another” (Harel, 2010, p. 365). 

Harel (2008b, 2013b) also explained the relationship between psychological need and IN. 
Psychological need is the interest or willingness to engage in the problem in the first place 
(Harel, 2008b) and thus pertain to one’s motivation with respect to a task or context (Harel, 
2013b). This willingness is crucial before the student can ever personally interact with the 
problematic situation that provides the IN for the Math. For example, a student with interest in 
cars might find a task about cars engaging and be motivated to investigate it. Upon investigating 
it, they may be set up to encounter the problem within the task that is unsolvable by their current 
knowledge. Alternatively, a student might enjoy puzzles and be willing to work on a provided 
puzzle, leading to the mathematical problem within it. We view psychological needs as a key 
factor in designing IN-provoking tasks and incorporate them into our framework. 

Closely related to psychological needs are affective needs (Harel, 2013b), which also relate to 
whether one desires to engage with a problem or not. However, affective needs deal more with 
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social factors, such as desiring to get a good grade, to please the teacher, or to be seen as 
successful. While these affective needs can serve to help students engage in a problem, we 
consider psychological needs to be more powerful in creating motivation. Further, desiring a 
good grade or wanting to please the teacher are difficult to build into a task, and consequently we 
do not consider them in our task design framework. 

The theory of intellectual need has counterparts in other theorizations of teaching and 
learning. For example, it shares some ideas with Brousseau’s Theory of Didactical Situations 
(TDS) (Brousseau, 1997). TDS incorporates the idea of a “fundamental situation” in which a 
mathematical concept constitutes an “a priori optimal solution” for a problem (Artigue et al., 
2014, p. 49), which is very similar to the idea of an intellectual need-provoking task. However, 
in contrast to TDS and other theorizations, Harel’s DNR framework is unique in its particular 
focus on student cognition that is actively mediated by a teacher within an instructional context 
and with a specific relationship to the discipline. 

Task Design 
There are numerous theories and projects that have been developed to address issues related 

to the design and implementation of tasks. To organize the vast body of work, Kieran, Doorman, 
and Ohtani (2015) draw on Cobb et al’s (2003) perspective to distinguish between grand, 
intermediate, and domain-specific frames for task design. For example, constructivism (e.g., von 
Glaserfeld, 1987), in which Harel’s DNR framework is situated, is a grand frame in that it 
presents a general theory of learning that can be applied both in and outside of educational 
settings. A domain-specific frame would describe methods for task design in a specific content 
area, such as calculus or algebra. In contrast, intermediate frames, such as the DNR framework, 
“present the complex interactions between task, teacher, teaching methods, educational 
environment, mathematical knowledge, and learning” (Watson & Ohtani, 2015 p. 5). Although 
the principles of the DNR framework provide a method for thinking about and identifying these 
interactions, it does not operationalize a theorization of learning environments in a way that 
would guide an instructor through the process of creating intellectual need-provoking tasks. 
Thus, we see the creation of a framework for designing intellectual need-provoking tasks as a 
component of an intermediate frame of task design that can be used to connect that frame to 
various domain-specific frames. 

Theorization of Learning Environments 
Weinberg and Jones (2020) proposed a theorization of learning environments that can 

facilitate task design for IN-provoking tasks. The model (Figure 1) identified five nodes that 
correspond to the key aspects of the DNR premises as they relate to task design: The Math 
(grounded in the knowledge of mathematics premise), the curriculum (part of the context 
dependency premise), the students (related to the subjectivity, interdependency, context 
dependency, and teaching premises), the available tools and artifacts (grounded in the knowing-
knowledge linkage premise), and the teacher (part of the teaching premise). By making these 
nodes explicit, the model facilitates the task design process by structuring thinking about 
individual nodes and relationships between collections of nodes, which are illustrated by the 
lines, faces, and tetrahedra in the model.  

However, while this framework extracted key aspects of learning environments based on 
Harel’s work, there is still an important shortcoming. We believe it desirable for an IN task 
design framework to do more than just state what should be attended to, but to also provide a 
structure for how one might attend to the five nodes in the hexahedron (Figure 1). Harel’s work 
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only has general suggestions for how to design an IN-provoking task, including (a) recognizing 
what INs might be for one’s population of students, (b) transforming this need into a set of 
questions, (c) constructing a sequence of problems whose solutions make progress on the 
questions, and (d) helping students elicit the Math from the solutions (Harel, 2013b, p. 149). 
While these are useful recommendations, we find that they lack the detail that might be 
necessary in a guide for creating IN-provoking tasks. In the next section, we provide this needed 
detail. The individual aspects of our framework can be seen across Harel’s work (e.g., Harel, 
2008a; 2008b; 2013b), and our main contribution is to take the ideas woven within Harel’s 
premises and to organize the pieces into a systematic structure for designing IN tasks. 

 

 
Figure 1. Previous framework of learning environments. 

Beyond the “What”: The “How” of IN Task Design Process 
In this section we provide our main contribution by addressing the how of IN task design. We 

see designing an IN task as consisting of two main “stages,” which we call the development stage 
and the anticipation stage. The development stage corresponds to the bottom half of the 
hexahedron, including the curriculum, student, Math, and tools/artifacts nodes. It is the stage of 
design dealing with actually putting together potential task(s). The anticipation stage corresponds 
to the top half of the hexahedron, including the teacher, student, math, and tools/artifacts nodes. 
It is the stage of design that imagines how the task would play out, how the IN might be created, 
how it might be resolved, and how the knowledge can be seen by the students as the solution. In 
the remainder of this section, we unpack these two stages, explaining how they build from the 
pieces within Harel’s premises and how they attend to all of the nodes in the hexahedron. 

The Development Stage 
The development stage, which corresponds to the bottom half of the hexahedron (Figure 2) 

contains three components: considering the setting of the lesson, constructing a question context 
(or several candidate contexts), and identifying the mathematical problem (within the contexts). 

 
Figure 2. Development stage corresponding to the bottom half of the hexahedron. 
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Considering the setting. The setting is the broader educational setting of the lesson, 
including the type of class (e.g., a remedial class, a class for math education majors, a proof-
based class, etc.); the overall curriculum used and where the target Math fits into that curriculum; 
the students in the class and their interests, background, and identities; the course goals; and the 
class norms. This component comes out of Harel’s context dependency premise, though our 
description here of what constitutes the “setting” helps elaborate different aspects of this 
premise. The setting involves the curriculum node in terms of what ideas are available, how the 
Math connects to previous ideas, and what the goals are for the lesson. It also involves the 
student node by considering what kinds of interests, mathematical identities, and expectations the 
students have. It also considers the norms that have been established for the students. 

Constructing a question context. The question context is the scenario or context presented 
to the class that is used as a vehicle for exploring some idea that will lead to the relevant Math. 
The context can be about some real-world phenomenon like motion, money, or health, or about a 
purely mathematical context like different types of functions. The context would include some 
initial question that is posed to get the class going, such as “Which is the best business option?” 
or “How fast is the object going when it hits the ground?” This component originates in Harel’s 
psychological needs, which is crucial in deciding what context is ultimately used by the teacher 
in the classroom. The question context involves the Math node, because the context must 
“contain” the target Math knowledge. The initial question must lead toward this knowledge. The 
context also relates to the tools and artifacts that would be available. That is, does the context 
need to be introduced via a video or image? Does it require data? What computational tools are 
available? Do students need access to particular symbols or terminology to express or understand 
the question? Importantly, the question context also directly relates to the student node because it 
considers whether the students would find the context interesting or engaging, or 
comprehensible. Note that at this point in the process, a teacher might find several candidate 
contexts, and the remaining steps in task design might help determine which context is best. 

Identifying the mathematical problem. The mathematical problem is the moment the 
students in the class enter into a perturbational state—that is, the moment the students experience 
IN. It is how and when the mathematical issue arises that makes students feel the lack in their 
current knowledge and the need to create new knowledge to address the issue. Continuing the 
previous examples (in “Question Context”), an instructor might assume that students will not 
know how to guarantee an option is the best, or how to find a speed at a single instant in time. 
This component is the crux of an IN task, so it is critical for a teacher developing candidate tasks 
to identify where the mathematical problem exists within the context. Because the mathematical 
problem creates the IN for the intended knowledge, it is centrally based on the Math node, 
though it relates to the tools/artifacts and student nodes, as well. It relates to tools/artifacts in 
terms of the means that are needed to perceive the mathematical problem, such as a resulting 
expression or image that does not make sense. It relates to students in terms of whether they have 
the background to be able to reach and identify the problem. By identifying the problem within 
possible candidate contexts, a task designer might decide that some problems are more apparent 
or easily understood, thereby helping decide which context to use. 

The Anticipation Stage 
The anticipation stage, corresponding to the top half of the hexahedron (Figure 3) consists of 

taking candidate tasks created during the development stage and imagining how they might play 
out in the classroom and how the teacher might guide the class through the task. If one wishes to 
create an IN-provoking task, it is imperative to envision how the class will bump into the 
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mathematical problem and whether they have the tools to resolve it. This stage contains two 
components: presenting the context/problem and resolving the problem. 

 
Figure 3. Anticipation stage corresponding to the top half of the hexahedron. 

 
Presenting the context in order to reach the problem. The presentation includes both the 

content of the task (e.g., the background information that will be provided to the students and the 
phrasing of the questions) as well as the actions the teacher will take, how they expect students to 
proceed, and how they plan on encountering the problem. It also includes whether the context 
and initial question are understandable to the students, and if they’re presented in a way that 
might create psychological need (i.e., engagement in the question). This component is connected 
to the knowing premise and the teaching premise, in that one imagines the steps leading to 
perturbation and how the teacher will guide the students toward that perturbation. It also 
connects to psychological needs, in terms of whether the teacher presents the initial questions 
and highlights the problem in ways that might make the students more curious and interested in 
solving the question/problem. If one is considering multiple possible tasks, thinking through the 
presentation could illuminate if a certain context or task would be more understandable or if the 
problem would be more easily encountered, helping in deciding which context and task to use. 

Resolving the problem. Once the problem has been encountered and the IN created, the 
resolution is the teacher’s plan for helping the class navigate the solution to the problem in a way 
that develops the target knowledge. It involves thinking through the students’ and teacher’s 
potential actions to resolve the perturbational state. It also involves thinking about how the Math 
will be developed and used as the solution, as well as how competing ideas might be addressed. 
It must also anticipate whether the students, by the end, would be able to identify how the 
knowledge resolved the situation, building on the knowing-knowledge premise and the idea of 
epistemological justification. Thinking through the resolution might also help one decide if 
certain contexts and tasks might be better to use than others. 

Connection to nodes. Both the presentation and resolution components involve the teacher, 
student, tools/artifacts, and Math nodes. They both obviously relate to the teacher, because the 
teacher is the one that presents the context and question and guides the students through the 
problem and its resolution. The Math node is also a major part, as the whole purpose of the 
presentation is to guide to the mathematical problem, and the whole purpose of the resolution is 
to create the mathematical knowledge that resolves it. This stage also relates to the students, 
because the way the context might be made engaging depends on the students’ interests and 
knowledge, and the way the students can work up to and from the problem depends on their 
background and their expectations of their role in the classroom. Tools/artifacts are a key part of 
this stage because the tools available (e.g., calculator, ruler) and artifacts created (e.g., charts, 
figures, expressions) are needed components of the classwork leading to and from the problem. 
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Note about the Two Stages 
Lastly, we note that our description of these two stages, and their components, followed a 

“linear” order. While it would generally make sense for the development stage to precede the 
anticipation stage, because the development stage creates a candidate task and the anticipation 
stage imagines how it would play out, we wish to be clear that the components within each stage 
could be done in different orders. 

Discussion 
Harel’s work (2008a, 2008b, 2010, 2013a, 2013b) has provided the field of mathematics 

education with the important construct of intellectual need, which provides a way for us to think 
about how mathematics can be less arbitrary and more meaningful for our students. Our 
framework extends Harel’s theory by providing an explicit guide for creating tasks specifically 
meant to provoke IN in students. To do this, we took the ideas woven throughout Harel’s theory 
and systematically organized them into an approach for designing IN-provoking tasks. 

This framework has both theoretical and practical uses. Theoretically, our framework helps 
identify components that play a significant role in a task intended to induce IN. It separates out 
the question context from the mathematical problem, acknowledges the tools/artifacts necessary 
to present or make progress on the task, expects that notions of resolution be an explicit part of 
the task itself, and so on. For example, if a task is presented in the literature with a description 
only of how the mathematical problem can be reached but without a description of how it is to be 
resolved, that task might require elaboration or revision. Our framework also provides 
researchers with a tool for analyzing tasks intended to provoke IN. In fact, we believe empirical 
work examining tasks in light of this/framework is a key next step in this work. 

Practically, our framework gives instructors tools to be able to craft IN-provoking tasks. It 
helps them first develop candidate tasks by thinking through the setting, question context, and 
where the problem lies within the question context. It then walks through anticipating how it 
might play out and whether certain tasks might work better than others at either leading to the 
mathematical problem or from the problem to the resolution.  

While we believe our/framework makes a significant contribution to the area of task design, 
we also believe there is additional work needed in this area. One issue we have considered is 
cases when students think they already know the solution to a task and therefore do not honestly 
engage in it. For example, many students in college calculus courses have previously taken a 
calculus class. If a teacher creates a task for, say, optimization in calculus based on using 
derivatives, when the task is first presented a student might think, “Oh, I’ve seen this. You just 
take a derivative and set it to zero.” This belief might prevent the student from identifying and 
confronting their own incomplete understanding and from entering a state of disequilibrium. 
Another issue we have considered is distinguishing between curiosity and confusion, and how 
either relates to perturbation. That is, when a student experiences disequilibrium, they might 
interpret this as confusion—which can carry a negative connotation—rather than curiosity or 
wonderment. A final issue we have considered is the role of “good performance” from a teacher 
during the setup of a question context. We believe that the same question could be presented in a 
way that stokes psychological need in students, who become interested and vested in the 
question. However, the same question could be presented in a way that is not found interesting at 
all by students, limiting the psychological need that might propel them toward the mathematical 
problem. 
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This theoretical paper explores student conceptions of transformation as substitution 

equivalence by linking it to their definitions of substitution and equivalence. This work draws on 

the work of Sfard (1995) to conceptualize substitution equivalence and its components, 

equivalence and substitution, as a spectrum from computational to structural. We provide 

examples of students’ work to illustrate how student notions of substitution, equivalence, and 

substitution equivalence as an approach to justifying transformation may related to one another.  

Keywords: Equivalence, Substitution, Substitution Equivalence, Structural Thinking, Definitions 

Transformation has often been framed as a core mathematical activity (Kieran, 2004), and all 

mathematical calculation, whether arithmetic, simplifying expressions, or finding the solution 

sets of equations, can be viewed as a process of transformation. Thus, with the goal of exploring 

the core mathematical ideas that justify why particular transformations are mathematically valid, 

we view mathematical transformation through the lens of substitution equivalence, 

conceptualizing it as a process of replacing one symbolic object with an equivalent one, and 

naming this process substitution (Wladis et al., 2020). This also includes the process of 

identifying sub-objects and replacing them with equivalent ones in order to generate a new 

equivalent object. This process is non-trivial for many students, and we hypothesize that 

substitution equivalence may be intimately connected to many of the struggles that students have 

with symbolic mathematics at various levels and domains. Little attention has been paid formally 

to students’ notions of substitution equivalence, even though these notions may be intricately 

linked to the ways in which students think about and execute various types of mathematical 

transformation. In this paper we attempt to address that gap, by providing a model of student 

thinking around substitution equivalence. First we describe the model, including the theories and 

body of research literature which have informed its creation, and then we proceed to use the 

model to analyze a few vignettes of student work, in order to illustrate its potential affordances.  

Substitution Equivalence as a Lens for Mathematical Transformation 

In this paper, we focus specifically on student thinking around substitution equivalence, or 

the notion that two expressions, equations, or other mathematical objects are equivalent if one 

can be generated from the other through a sequence of substitutions carried out through a 

combination of correct interpretation of syntactic structure and appropriate use of mathematical 

properties (Wladis et al., 2020).  

Definition of Substitution: In order to see clearly how mathematical activity could be 

viewed through the lens of substitution equivalence, we define substitution more broadly than 

has been done explicitly in much existing research and curricula, as the process of replacing any 

mathematical object (or any unified subpart of an object) with an equivalent object, regardless of 

complexity. This includes the replacement of 𝑥 in 2𝑥2 − 2𝑥 + 1 with −3, but also, e.g., the 
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replacement of 𝑥2 − 6𝑥 = 1 with the equivalent equation 𝑥2 − 6𝑥 − 1 = 0 during solving. 

Definition of Equivalence: We note that the idea of substitution equivalence is wholly 

dependent upon an underlying equivalence relation of some kind and depends upon a specific 

stipulated definition of equivalence. This may be a particular context-specific definition of 

equivalence (e.g., two equations are equivalent if they have the same solution set), or a more 

generalized concept of equivalence (e.g., an equivalence relation); however, any definition of 

equivalence that satisfies the definition of an equivalence relation could be used. 

Definition of Substitution Equivalence: We define the domain of substitution equivalence as 

composed of two main ideas, which we illustrate in more detail in subsequent sections. 

According to our model, students who have a notion of substitution equivalence recognize: 

1. The general notion of substitution equivalence: They understand that we can 

replace an object with any other equivalent object when problem-solving.  

2. That substitution of unified sub-objects can be used to generate equivalent 

objects: They understand that objects can be broken into unified sub-objects, and that 

we can replace any unified sub-object with any equivalent unified sub-object (and the 

process of substitution leaves the rest of the structure of that object unchanged).  

The second notion leads us to another core definition: We use the term subexpression (or 

sub-object, more generally) to denote a substring of an expression (or other object) that can be 

treated as a unified object without changing the syntactic meaning of the original expression (or 

object). E.g., 𝑎 − 𝑏 is a subexpression of 𝑎 − 𝑏 − 𝑐, but 𝑏 − 𝑐 is not (because putting 

parentheses around 𝑏 − 𝑐 would change the syntactic meaning of the expression).  

Model of Operational and Structural Thinking about Substitution Equivalence 

Wladis et al (2020) described key features of student thinking around substitution 

equivalence on a spectrum from structural versus operational approaches. This paper aims to take 

this further by describing explicitly how student conceptions of substitution equivalence may be 

dependent upon student definitions of substitution and equivalence (see Figure 1). 

 

Figure 1: Model of Student Thinking about Substitution Equivalence  

In the model in Figure 1, holding well-defined and standard definitions of both substitution 

and equivalence are necessary but not sufficient conditions for students to develop a view of 

transformation justified by substitution equivalence. A student may have trouble thinking of 

transformation as substitution equivalence because (a) their definitions of substitution are too 

narrow; (b) their definitions of equivalence are ill-defined, unstable, or invalid; (c) they do not 

draw on their knowledge of substitution and/or equivalence when performing transformation; or 

a combination of all of these. We conceptualize student views of substitution, equivalence, and 

transformation as being on a continuum from operational to structural (Table 1). This model is 

based on the notion that the ability to conceptualize transformation as a process of substitution 

equivalence may be useful for students in developing deeper understanding of the justification 

behind their transformation work (and a way of checking the validity of that work).  
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Development of the Model 

This work draws on data collected from multiple classes across six years at a northeastern 

community college, including classroom observations, cognitive interviews, and open-ended 

questionnaires. These data were analyzed using conceptual analysis (Thompson, 2008) to 

generate and refine models of students’ thinking to explain their written work and utterances. We 

note that these models of students’ thinking are based on what the students communicate in the 

moment and are situated within the given task. Further, their strategies and responses may be 

impacted a myriad of factors, including but not limited to the wording of the question, the 

environment they responded in, or the established sociomathematical norms of the classrooms 

they participate (Yackel et al., 2000).  

This analysis was heavily influenced by the work of Sfard (1995), and existing literature 

about the students’ definitions of mathematical concepts (Edwards & Ward, 2004) and their 

understanding of equals sign (e.g., Knuth et al., 2006). Sfard (1995) describes that students can 

conceive of a mathematical concept as a combination of two ways: operationally (as a process, 

often of computation) or structurally (abstract entities in and of themselves; Sfard, 1995). In 

terms of equality, similar language and ideas are used in the literature to describe the students’ 

conceptions of the equals sign, often either operationally (as a ‘do something symbol’; Kieran, 

1981), or relationally (as a relationship between two entities; Knuth et al., 2006), though further 

refining these categories (Rittle-Johnson et al., 2011; Stephens et al., 2013) has been the focus of 

other research. Though research on equality is plentiful, research on substitution and substitution 

equivalence as a broader concept is comparatively minimal. For example, substitutive aspects of 

equivalence have been investigated in the context of arithmetic (Jones & Pratt, 2012), and 

Musgrave, Hatfield, and Thompson (2015) have found that secondary teachers had particular 

Table 1: Components of substitution equivalence model 

  Operational Thinking Structural Thinking 

View of 

Transformation 

Students see transformations of 

expressions and equations (or 

other objects) as a process of 

“operating on” the original object 

itself. They may or may not see 

this as linked to any notion of 

equivalence.  

Students see each step in a transformation 

as the process of replacing one object with 

an equivalent one through substitution, 

using properties and existing syntactic 

structure. They appear to have some 

notion of an equivalence class as an object 

(which need not be formally defined).  

Definition of 

Equivalence 

Students either ignore the notion 

of equivalence entirely, or appear 

to have only vague, ill-defined, or 

unstable notions of equivalence, 

or try to apply one definition of 

equivalence that works only in 

one context to another context.  

Students have a well-defined and 

relatively stable definition of equivalence, 

and recognize that it is context-dependent. 

They recognize that equivalence is a fixed 

trait (two objects are either equivalent 

under a particular definition or not—they 

do not “become” equivalent).  

Definition of 

Substitution 

Students see substitution only as 

plugging a number in for a 

variable (and then computing the 

result). They see variables as 

representing only numbers. 

Students see replacement of any object (or 

sub-object) with an equivalent one as 

substitution. They see variables as 

representing any valid mathematical 

object, including numbers or (potentially 

complex) expressions.  
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difficulty correctly applying a given substitution property to expressions when they found 

operations to be unfamiliar or had difficulty thinking of symbols simultaneously as both a 

process and an object. They argue that if teachers are having difficulties with these ideas, then 

these are likely stumbling blocks for students as well.  

Vignettes: A Model in Action 

We now provide examples of students’ written work to illustrate how one might use the 

model we present here. These are intended to highlight the continuum of the operational and 

structural views. To see how students’ views of transformation as substitution equivalence can 

vary along this spectrum, we present two developmental elementary algebra students’ responses 

about assessing whether or not two expressions are equivalent (Figure 2), where the first 

response (Figure 2a) exemplifies an operational view and the second response (Figure 2b) 

exemplifies a structural view. The first student’s response (Figure 2a) appears to foreground 

computation and symbolic manipulation. In cognitive interviews (not included here because of 

lack of space), students on similar problems have explained similar work by stating that they can 

only tell if two expressions are equivalent if they both simplify to the same final “answer”, so 

this approach may happen when students have an internal computational definition of 

equivalence as “expressions that simplify to the same thing”. Regardless, this student’s response 

foregrounds computation, and hence would be considered as an operational view of 

transformation. In contrast, the response in Figure 2b illustrates exactly how the two equivalent 

subexpressions are substituted into the larger expressions using arrows to indicate the 

relationship between each piece and to highlight the structure of the two expressions. They map 

each unified subexpression in the first expression to an equivalent unified-subexpression in the 

same place in the second expression, in order to illustrate how they know that the two 

expressions are equivalent. Though the student doesn’t explicitly use the substitution, we do see 

evidence that they are looking at the underlying structure and visualizing a replacement or 

exchange of one equivalent sub-part with another.  

 

  
(a)      (b) 

Figure 2: Examples of students’ responses rooted in an operational view (a) and structural view (b) of equivalence  

Students’ Definitions of Equivalence 

To see how students’ definitions of equivalence can vary along this spectrum, we refer to the 

previous two examples and consider the definitions of equivalence the students seem to be 

evoking. These responses exemplify operational and structural definitions of equivalence, 

respectively. In the first response (Figure 2a), the student attempted to simplify the expressions 

to determine whether they are equivalent, and then appeared to decide that they are not 

equivalent after they could not immediately simplify them both to the same expression. This 
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definition of equivalence appeared to be computational (e.g., “two expressions are equivalent 

only if they simplify to the same thing”), and their work doesn’t seem acknowledge the 

equivalence within their work. Because the student abandoned the attempt after this did not 

work, this suggests that they did not see a way to use the structure of the given expressions to 

determine equivalence beyond simplifying both sides to see if the results are the same.  

In contrast, the response in Figure 2b that the student may have a structural definition of 

equivalence. In this example, they are drawing on the structure of two complex expressions to 

show how they map to one another in such a way that each subexpression is either the same or 

equivalent, and leverage that equivalence to show that the final result will be equivalent. This 

apparent definition of equivalence appears to be well-defined and potentially could be a fixed 

trait of a set of objects. 

Students’ Definitions of Substitution 

To exemplify the differences along this spectrum, we look at two students’ definitions of 

substitution (Figure 3). Throughout data collection, the response in Figure 3a (“putting a number 

in for a letter”) is one of the most common given by students at all levels, from elementary 

algebra through linear algebra. This narrow definition of substitution would be considered 

operational, while the response in Figure 3b would be considered structural view of substitution. 

This is because their definition affords a greater variety of terms to be replaced for one another, 

which involves conceptualizing complex subexpressions as entities.  

  
(a)      (b) 

Figure 3: Examples of an operational (a) and structural (b) definition of substitution. 

In order to see how student views of substitution may impact their view of transformation of 

expressions, we further examined students’ responses to a task to identify instances of 

substitution, and found that their responses were typically consistent with their definitions (e.g., 

only recognizing transformation as substitution when it involved a number being substituted in 

for a letter if that was their stated definition); we include one example of this in the next section.  

Using the Framework to Analyze Student work longitudinally 

In order to illustrate the potential of this model for deeper analysis, we consider responses 

from an Algebra I student (whom we call Epsilon, like ε) across multiple tasks and points in 

time.  

Substitution: We first consider Epsilon’s definition of substitution (Figure 3a), where they 

have given an operational definition, rather than a structural one. This correlates with the extent 

to which they identify different computations as substitution in the following work (Figure 4).  

We can see in Figure 4 that Epsilon rarely identified computation as substitution when it was 

more complex or generalized. They notice, for example, that the expressions in the last example 

in Figure 4 are equivalent, but they do not see replacement of the subexpression 𝑥2 − 9 with 
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(𝑥 + 3)(𝑥 − 3) as an instance of substitution (“nothing is being replaced”), which is consistent 

with the more limited operational definition of substitution that they gave in Figure 3a.  

 
Figure 4: Epsilon’s interpretations of substitution in specific contexts  

Equivalence: Now we consider Epsilon’s definition of equivalent expressions (Figure 5).  

 
Figure 5: Epsilon’s definitions of equivalent expressions  

Epsilon provided a seemingly correct (if perhaps incomplete or ill-defined) definition of 

equivalent expressions. We cannot be sure the extent to which they understand that expressions 

have to have the same value for every possible combination of variable values or that this applies 

to algebraic and not just arithmetic expressions, and the word “answer” is also ill-defined; 

however, this definition is in line with the standard definition used in algebra, and they have been 

able to correctly identify equivalent algebraic expressions in last example in Figure 4 (as well as 

other questions not shown here), suggesting that their definition is at least somewhat standard. 

Their definition also appears to be operational, as it is rooted in computations with expressions.  

Substitution equivalence: Now we consider the extent to which Epsilon recognizes instances 

of substitution equivalence in certain algebra examples (see Figure 6).  

 
Figure 6. Epsilon’s recognition of substitution equivalence in some examples 

In Figure 6, Epsilon does not recognize either example as substitution equivalence. On the 

left in Figure 6, they attempt to simplify one of the expressions, but this does not help them to 

identify whether the two expressions are equivalent. They do not appear to draw on the given 

fact that 2𝑥2 − 𝑦 is equivalent to 8𝑧 when attempting to determine if the two expressions are 

equivalent. This suggests that they may not have a notion of substitution equivalence or are 

unable to draw on it in this problem context. Epsilon’s operational approach to determining if the 

two expressions are equivalent suggests that their operational conception of equivalence may be 

limiting Epsilon’s ability to recognize and use substitution equivalence when performing 

mathematical transformations. Another barrier to Epsilon developing a robust notion of 

substitution equivalence and linking this to their transformation work may be their narrow notion 

of substitution itself. Just as they do not recognize most of the transformations in Figure 4 as 

substitution, they likely do not recognize the transformations in Figure 6 as substitution either.  

Potential impacts of instruction: Epsilon was actually part of a cohort that took part in a 

semester-long classroom intervention in which students were taught broader structural 
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definitions of substitution, equivalence, and how to view transformation as substitution 

equivalence explicitly (as well as other concepts). One sample of Epsilon’s work after the 

intervention can be seen in Figure 7.  

 
Figure 7: Epsilon’s identification of substitution equivalence after an intervention that addressed it explicitly 

After the intervention, Epsilon was not able to identify substitution equivalence in all cases, 

but they were able to recognize it in cases similar to questions where they had not recognized it 

at the start of the term. In Figure 7 we see how they are able to see a complex equation as an 

equivalence relationship between two structurally identical expressions where one equivalent 

subexpression could be conceptualized as having been substituted for another. Epsilon’s use of 

the words “plugged in” are a common phrase often used by students to indicate substitute. We do 

note, however, that this language still suggests a computational approach. However, Epsilon is 

drawing on structural features of equivalent algebraic expressions through the lens of substitution 

equivalence, even if their approach still contains some computational elements. We have 

insufficient space to discuss the intervention at length here—we simply include this short 

example as a demonstration that more structural and well-defined definitions of substitution, 

equivalence, and substitution equivalence approaches to transformation can all be learned, even 

by students in developmental mathematics courses in college, given the right supports.  

Conclusion 

We have presented a model which describes how student definitions of substitution and 

equivalence may related to their ability to justify computational work through the lens of 

substitution equivalence. Using student examples, we have illustrated some of the affordances of 

this lens. We have demonstrated how students may struggle with substitution equivalence for 

different reasons, which may then require different instructional approaches. For example, if a 

student’s definition of equivalence is ill-defined, it mays be important to find ways for them to 

correct their internal definition; whereas if a student has broad and well-defined definitions of 

substitution and equivalence, a more effective intervention may be one which helps them to see 

the connections between this existing knowledge and the work that they do when they perform 

transformations. These are very different approaches to solving what might on the surface look 

like similar errors, but which actually stem from very different underlying patterns of student 

thinking about the mathematics. Thus, we hope that this model may aid us to better tailor 

instruction to respond to student thinking, and to better think about how definitions of 

substitution and equivalence are presented in instruction. We have also shown through one 

particular student example that students are able to learn to think about transformation through a 

substitution equivalence lens with the right kind of instructional approaches, even when they are 

in developmental math courses. Further research is needed to better understand what approaches 

may be most effective, as well as to investigate which ways of thinking may be most productive 

for students in different contexts.  
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Two Initial Schemes for Enumerating Permutations: A Preliminary Report 

 

 Joseph Antonides Michael T. Battista 

 The Ohio State University The Ohio State University 

In prior research, we proposed an initial learning trajectory resulting from analyses of two 

undergraduate students’ schemes for enumerating permutations. We explained the levels of this 

learning trajectory using an elaborated theory of levels of abstraction for both operations on 

combinatorial composites and, in more advanced levels, symbolic representations of 

computational reasoning about combinatorial composites. In this preliminary report, we 

elaborate on this initial learning trajectory by incorporating two additional permutation 

enumeration schemes, identified from subsequent data that were collected in a recent teaching-

experiment research study of students’ developing combinatorial reasoning. 

Keywords: Permutations, Combinatorics, Learning Trajectories, Schemes, Teaching Experiment 

The importance of combinatorics in K-16 curricula has been well documented in the research 

literature (cf. DeBellis & Rosenstein, 2004; Hart & Martin, 2018; Kapur, 1970; Lockwood et al., 

2020). Permutations and combinations—archetypical examples of “ordered” and “unordered” 

structures—are ubiquitous within combinatorics. Thus, supporting students to develop powerful 

means to enumerate permutations and combinations is a worthwhile instructional goal. In this 

preliminary report, we provide an initial analysis of data from a recent teaching experiment 

(Steffe & Thompson, 2000) with undergraduate students. This report elaborates an initial 

learning trajectory suggested in prior research (Antonides & Battista, under review a).  

Literature Review 

Drawing on the Realistic Mathematics Education principle of guided reinvention 

(Gravemeijer, 1999), Lockwood et al. (2015) conducted a teaching experiment with a pair of 

undergraduate students. Their goal was to guide the students to develop, or “reinvent,” an 

algebraically generalized formula for counting certain combinatorial structures, including 

permutations. Their students successfully came to suggest n! as the appropriate counting formula 

for counting permutations, but their suggestion came from looking at patterns in empirically-

derived numerical results rather than by appealing to structural or multiplicative reasoning. 

To investigate how students might construct combinatorial counting formulas with 

supporting conceptualizations-based reasoning, we conducted two one-on-one teaching 

experiments (Steffe & Thompson, 2000) with preservice middle-school teachers (Antonides & 

Battista, under review a). Our study also contained elements of design experiments (Cobb et al., 

2003) in that we aimed to develop both a domain-specific theory of student learning and an 

instructional means to support this learning, conceptualized as a learning trajectory (LT). In our 

view, a LT is “a detailed description of the sequence of thoughts, ways of reasoning, and 

strategies that a student employs while involved in learning a topic,” conceptualized as levels of 

sophistication, “including specification of how the student deals with all instructional tasks and 

social interactions during this sequence”  (Battista, 2011, p. 510).  

Transitions from one level of sophistication to the next were enabled by specific cognitive 

processes. Among these, abstraction and generalization were critical, and we described our 

students’ conceptual progress using a theory of levels of abstraction (Battista, 2007), which we 

elaborated and extended to the realm of combinatorics. This theory of abstraction is outlined in 
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the Theoretical Framework section. Instructionally, our study represented permutations as 

vertically-oriented “towers” of multiple colors of connecting cubes, without repeating colors in 

each tower—an adaptation of the instructional approach utilized in Maher and colleagues’ 

longitudinal research (cf. Maher et al., 2011). We found that starting with small numbers of 

cubes in which all permutations can be modeled, then progressing to larger numbers in which 

modeling all permutations is infeasible, and finally progressing to variables served as a viable 

means for students to progressively interiorize the relevant combinatorial structures and 

enumeration schemes. 

Due to space constraints, we provide only a brief overview of the levels of sophistication 

suggested in our initial learning trajectory for permutations. Levels 1, 2, and 3 of the learning 

trajectory are characterized by operating on spatial representations to generate permutation 

composites with no distinguishable system, a partial system, and a complete system 

(respectively). Levels 1 and 2 were hypothetical since they were not exhibited explicitly by the 

two students in the study, but these levels are supported by prior empirical research (e.g., 

English, 1993; Maher et al., 2011).  

The remaining levels involve progressively sophisticated schemes for enumerating 

permutations via operations on numerical/algebraic symbols. At Level 4, permutations were 

enumerated  recursively using a two-factor multiplicative structure; for example, if a student 

knew that there were 6 possible 3-cube towers that could be made with 3 different colors of 

cubes, then they might multiply 6 4  to enumerate towers 4-cubes-high each containing 4 

different colors of cubes. At Level 5, multiple two-factor multiplicative structures can be unified 

into a single recursive multiplicative structure; for instance, knowing that there are 120 possible 

5-cube towers each containing 5 different colors of cubes, a student might enumerate 9-cube 

towers each containing 9 different colors of cubes by multiplying (((120 6) 7) 8) 9    . At 

Level 6, these multiplicative enumeration structures have been reflected on, decomposed, and 

recombined to form a non-recursive multiplicative structure, such as 9 8 1  , which may be 

symbolized as 9!. At Level 7, such structures are algebraically generalized. At Level 8, 

conceptual operations can be performed on factorial-like structures; for example, a student at this 

level could make sense of and reason about the formula 
!

( , )
( )!

n
P n k

n k
=

−
. 

Theoretical Framework 

Following Battista (1999), we define a scheme to be an organized sequence of actions or 

operations that has been abstracted and, to some degree, generalized so that it can be applied in 

response to similar or analogous circumstances. A scheme includes a mechanism for recognizing 

a situation, a mental model that is activated to interpret actions/operations within the situation, 

and a set of anticipated or expected results of one’s actions.  

Abstraction is taken to be the mental process of selecting, coordinating, unifying, and 

registering in memory a collection of mental items (objects or actions) that an individual 

perceives or conceives (Battista, 1999). Moreover, abstraction occurs at multiple levels 

(Antonides & Battista, under review a; Battista, 2007; Steffe & Cobb, 1988). At the perceptual 

level, abstraction isolates an item from the experiential flow and grasps it as a unit, entering it 

into working memory. At the internalized level, an item can be re-presented (mentally visualized 

or re-enacted) in the absence of relevant perceptual material, enabling the item to be recurrently 

used in reasoning; it is at this level that a concept has been formed (von Glasersfeld, 1982). At 

the interiorized level, an item can be reflected upon, operated on, and analyzed. A more general 
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structure is abstracted, and the item can be recognized and used in novel situations. The second 

interiorized level is characterized by the construction of symbols that act as “pointers” to, and 

substitutes for, the abstracted material in reasoning. At the third interiorized level, these symbols 

can be used in novel and more complex operations.  

Context and Methods 

Five undergraduate students each participated in a one-on-one teaching experiment. The data 

discussed in this report relate to KC, AR, and EM (not the students’ real initials). KC 

(she/her/hers) was a first-year student majoring in psychology enrolled in a second-semester 

developmental mathematics course. AR (she/her/hers) was a third-year preservice elementary 

teacher, and EM (she/her/hers) was a first-year preservice elementary teacher. Both students 

were enrolled in a mathematics content course for future elementary teachers focusing on 

number and operations. EM had studied some combinatorics in a high school probability course.  

All data were collected remotely using Zoom. Each student used two electronic devices—a 

laptop and an iPad—so that the teacher-researcher (the first author) could see their inscriptions 

(on the iPad) and most of their gestures and expressions (on the laptop). The teacher-researcher 

also developed multiple digital learning environments using Geometer’s Sketchpad, and he gave 

students remote access to his computer when these programs were to be used. Drawing on the 

instructional findings of our prior study, we used multi-colored digital squares in Geometer’s 

Sketchpad as an alternative to physical multilink cubes to develop student reasoning about 

permutations.   

Findings 

The findings reported here are an elaboration of the preliminary learning trajectory proposed 

by Antonides and Battista (under review a) discussed in the Literature Review section. 

Specifically, we interpret our findings as an elaboration of the levels of sophistication prior to 

Level 4, and as an exposition of some of the initial ways students can enumerate permutations 

prior to abstracting relevant recursive spatial and numerical structures. 

Options-Focused Enumeration Scheme 

The form of reasoning that we have come to call an options-focused enumeration scheme  

was prevalent throughout this study. This scheme is activated by assimilating a situation as 

calling for the enumeration of permutations; their mental model includes abstractions of the  

composite of objects that are to be arranged and of the composite of positions into which these 

objects are to be placed. The activity of the scheme involves counting the options for the objects 

that can be placed in each position, then finding the sum of these values. The anticipated result of 

this activity is an enumeration of potential permutation composites. When a student uses an 

options-focused enumeration scheme, they do not conceptualize the construction of a given 

composite as consisting of multiple dependent steps—for instance, if a red square is placed in  

the bottom position of a 3-square tower, then it cannot reoccur in another position of the same 

tower. 

For example, to enumerate 3-cube towers each containing 3 colors of cubes, KC said she 

would multiply 3 3 . She reasoned that there are 3 colors that can go in the first position, there 

are 3 colors that can go in the second position, and there are 3 colors that can go in the third 

position, so there are 9 possible towers. In fact, all five students of this study initially said there 

were 9 possible towers—including the two students who had learned about permutations in a 

prior high-school course. EM, however, quickly modified her answer to 3!, which she explained 
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by linking this multiplicative structure to the decreasing number of options available in each 

successive step.  

Notably, one of the two students in our prior study solved an equivalent task (with physical 

multilink cubes rather than digital squares) by constructing each tower one-by-one, finding there 

to be 6 potential 3-cube towers. However, she said she thought the total number of towers would 

be found by multiplying 3 3 . She resolved her uncertainty by repeating her construction 

process and abstracting the spatial property that each color will appear in each position twice 

(e.g., in red-green-blue and red-blue-green towers, the red cube appears on top twice). This 

alternative spatial structuring enabled her to justify for herself that 6 is the correct number of 

potential 3-cube towers, each containing 3 different colors of cubes.  

Partial Spatial-Temporal-Enactive Enumeration Scheme 

A partial spatial-temporal-enactive enumeration scheme is activated by assimilating a 

situation as involving the enumeration of permutations, with a mental model that includes 

abstractions of composites of the objects to be arranged, the positions into which they are to be 

placed, and the permutation composites that are to be enumerated. The activity of the scheme 

involves (1) a sequence of actions on perceptual material oriented toward determining the 

number of potential positions into which one object may be placed, (2) performing a similar 

sequence of actions for each remaining object, (3) finding the sum of these values (or keeping a 

running total while counting), and (4) multiplying this sum by the number of objects being 

arranged. Students using this scheme, as with the previous scheme, do not conceptualize the 

construction of a given composite as consisting of multiple dependent steps, which often leads to 

inaccurate enumerations. However, the partial spatial-temporal-enactive enumeration is a 

conceptual step forward from the options-focused enumeration scheme in that students 

conceptualize and coordinate their actions around counting combinatorial composites, not 

options. 

For example, AR exhibited an instance of this scheme during her initial enumeration of 4-

square towers each containing 4 different colors of squares. AR initially predicted the number of 

towers would be either 16 or 20, using an options-focused scheme to produce the former, but she 

expressed stronger confidence in the latter. An excerpt of her explanation is given below; of 

note, while the task asked about the number of “towers” that could be made, AR chose to use a 

horizontal spatial orientation. 

AR: So if this was one, um, tower, then you would change—So this would be 1 possible way, 

and then the blue could go here and here. So that’s 2, 3. And then the green can go 4, 5. 

And I guess I forgot to count the black, because then I could just multiply the 5 different 

ways that this tower can be made, and then there’s still the other squares. So I would 

multiply that by 4. 

 
Figure 1. AR’s actions on squares to enumerate 4-square permutations 
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We hypothesize that when AR moved a square to the position of another square, such as 

moving the blue square to the position of the green square when she uttered “2”, AR mentally 

imagined the blue square taking the place of the green square, and the green square moving to 

the left. Similarly, when she uttered “3”, we hypothesize AR imagined the blue square taking the 

position of the black square, and the blue and black squares both shifted to the left.  

With this interpretation, we infer that AR’s enumeration consisted of the following 4-

square composites: (1) red-blue-green-black; (2) red-green-blue-black and (3) red-green-black-

blue; (4) red-green-blue-black [duplicate] and (5) red-blue-black-green; (6) red-black-blue-green 

and (7) red-blue-black-green [duplicate].  While she did not explicitly act on the black square, 

we infer from her statement, “and then there’s still the other squares,” that she would have 

performed the analogous set of actions using the black square, resulting in composites (6) and 

(7). Her enumeration would not have included red-black-green-blue. However,  as indicated by 

AR’s final statement, “So I would multiply that [the number of 3-square permutations] by 4,” her 

enumeration of 4-square permutations was a form of spatially-linked multiplicative reasoning. 

Conclusions 

In this preliminary report, we have outlined two schemes that students have used along their 

trajectories toward developing increasingly sophisticated schemes and concepts for reasoning 

about permutations. The two schemes outlined here—the options-focused enumeration scheme 

and the partial spatial-temporal-enactive enumeration scheme—provide an elaboration of the 

learning trajectory outlined in prior research (Antonides and Battista, under review a). However, 

in light of our findings and given the preliminary nature of this report, it is difficult to 

conceptualize the specific way in which these schemes fit into the initial learning trajectory as 

originally conceived. 

To resolve this issue, we reconceptualize the first three levels of sophistication to the 

following reformulations. Level 1 reasoning consists of an attempt to enumerate permutation 

composites, either symbolically or by using perceptual material for the units in the composites, 

but with no discernable structuring informing this enumeration. For instance, generating 

permutation composites seemingly at random, without an apparent system in place, would 

constitute Level 1 reasoning, consistent with findings from the youngest student populations 

included in studies by English (1991) and Piaget and Inhelder (1951/1975). Level 2 consists of 

an attempt to enumerate permutation composites, either symbolically or perceptually, with a 

discernable structuring but one that does not enable an accurate enumeration. The two schemes 

introduced in our Findings are both instances of Level 2 reasoning, since for both schemes 

students have a partial spatial-temporal-enactive structuring (Antonides & Battista, under review 

b) and thus their conceptualization leads to omitting certain composites while double-counting 

others. Finally, Level 3 reasoning is characterized by enumerating permutation composites, using 

perceptual material for the units in each composite, informed by an inferred structuring that 

enables systematic enumeration. 

Upon further analysis, additional insights regarding our students’ combinatorial schemes and 

concepts may emerge. We anticipate being able to provide a more fully elaborated learning 

trajectory for permutations, with descriptions of how to instructionally support this development, 

from our research findings. However, one potential avenue for future research would be to 

investigate additional combinatorial schemes that would fall under our reconceptualized version 

of Level 2 reasoning. 
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The Effect of Inquiry-Based Versus Lecture-Based Instruction on  
Calculus I Students’ Math Anxiety 

 
 Harman P. Aryal Gregory D. Foley 
 Ohio University Ohio University 

Math anxiety affects student learning and academic performance. Highly math-anxious 
individuals exhibit physical, mental, and emotional symptoms. These symptoms often have a 
short-term and long-term impact on students’ mathematics learning and their performance both 
inside and outside of school. Hoping to identify the possible measures to reduce math anxiety, 
this study investigated the effects of inquiry-based learning (IBL) on Calculus I students’ math 
anxiety, compared to lecture-based instruction (LBI). We used a short version of the 
Mathematics Anxiety Rating Scale (MARS-S) as a pre- and post-test to collect the data from 
Calculus I students. A total of 15 participants from the IBL group and 20 from the LBI group 
responded to both the pre- and post-tests. The results show that the IBL group's math anxiety 
slightly decreased and the LBI group's slightly increased; however, there was not enough 
evidence to conclude that both of these changes were statistically significant. 

Keywords: inquiry-based learning, lecture-based learning, math anxiety, collaboration 

Math anxiety affects student learning and academic performance. Highly math-anxious 
students exhibit physical, mental, and emotional symptoms. Physical symptoms include nausea, 
sweaty palms, and increased cardiovascular activity (Ashcraft, 2002; Chang & Beilock, 2016). 
Mental symptoms include an inability to concentrate and mind blanking (Plaisance, 2009; 
Ruffins, 2007). Emotional symptoms include extreme nervousness and apprehension (Mattarella-
Micke et al., 2011). These symptoms often have a short-term and long-term impact on students’ 
mathematics learning and their performance both inside and outside of school. In a short term, 
students may begin to dislike mathematics and take fewer mathematics courses, and in the long 
term, they tend to avoid mathematics and mathematics-related courses (Godbey, 1997; Hembree, 
1990).  

Due to the substantial impact of math anxiety on mathematics learning and mathematics 
performance, it is essential to diagnose the causes of math anxiety and to determine some 
potential interventions to reduce such anxiety. Therefore, we investigated the effects of inquiry-
based learning (IBL) instruction on Calculus I students’ math anxiety, with lecture-based 
instruction (LBI) used for comparison.  

 
Literature Review 

Math anxiety has been a part of the human experience for centuries. The verse, 
“Multiplication is vexation ... and practice drives me mad” goes back at least to the 16th century 
(Dowker et al., 2016). In 1957, Dreger and Aiken introduced the concept “number anxiety,” and 
math anxiety received increasing attention thereafter. Richardson and Suinn (1972) conducted 
the first formal study of math anxiety, who characterize math anxiety as “feelings of tension and 
anxiety that interface with the manipulation of numbers and the solving of mathematical 
problems in a wide variety of ordinary life and academic situations” (p. 551). Since then, studies 
on math anxiety have been substantially investigated.  

Traditional lecturing, which is a predominant mode of instruction in college mathematics 
courses across the United States (Stains et. al., 2018) and is ineffective in helping students learn 
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mathematics (Boaler, 2008), could be one of the possible reasons for evoking math anxiety 
among students. The LBI does not offer substantial opportunities for students to share each 
other’s ideas and experiences with their teachers and peers. On the other hand, IBL, which is an 
active learning pedagogy, provides extensive opportunities for students where they can work in 
pairs or groups to make conjectures, gather information for problem-solving, and present their 
work to groups and to the whole class (Kogan & Laursen, 2014). Through a comparative study, 
Laursen et al. (2014) reported that students in IBL math-track courses achieved greater learning 
gains than their non-IBL peers in cognitive, affective, and collaborative areas. Similarly, Laursen 
et al. (2011) found that the IBL students were involved more in interacting with each other, with 
the instructor, and they were more involved in setting the course pace and direction. It is also 
reported that IBL enhances students’ conceptual understanding (Jensen, 2006), communication 
skills, confidence, and self-efficacy (Laursen et al., 2011). Considering the benefits of IBL as a 
ground, this study sought to examine the relative changes in the scores of Calculus I students’ 
math anxiety, using a short version of the Mathematics Anxiety Rating Scale (MARS-S). 

 
Method 

Research Context and Participants 
The students, who were enrolled in Calculus I courses via IBL and LBI during Spring 2021 

at a university located in the Midwestern United States were the sample for this study. Students, 
who received the IBL instruction were IBL group and those who received the LBI were LBI 
group. In this study, about 65% (n = 15) of the students off the 23 from the two IBL sections and 
about 41% (n = 20) students off the 49 from one of the LBI sections responded to both the pre- 
and post-MARS survey. Table 1 shows the distribution of IBL and LBI participants by their 
gender and academic standing.  

 
Table 1. Distribution of IBL and LBI students by their major and academic standing. 

Characteristics IBL Group   Lecture-Based Group 
  Frequency Percentage    Frequency Percentage 
Gender 

     

Male/Man 5 33.3% 
 

8 40.0% 
Female/Woman 10 66.7% 

 
11 55.0% 

Non-Binary 0 0.0% 
 

1 5.0% 

Academic Standing 
     

Freshman 11 73.3% 
 

15 75.0% 
Sophomore 2 13.3% 

 
1 5.0% 

Junior 2 13.3% 
 

4 20.0% 
Senior 0 0.0%   0 0.0% 

 
Regarding the instructors, the IBL instructor has 15 years of experience in teaching Calculus 

I at the university and high school level via active learning, including an IBL. The LBI instructor 
has 2 and a half years of experience in teaching Calculus I at the university level and 14 years of 
experience in teaching undergraduate-level mathematics courses via a lecture-based approach. 
Both the instructors taught remotely using audio-visual conferencing; the IBL instructor taught 
using Microsoft Teams, whereas the LBI instructor taught using Zoom. Throughout the semester, 
both IBL and LBI classes had class meetings every Monday, Wednesday, and Friday. 
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The IBL instructor engaged students collaboratively in sequentially organized pre-tasks and 
tasks in and out of the class. Students were supposed to practice the pre-tasks before the class for 
a better understanding of the material during the next day’s class meeting. The instructor usually 
began the class by welcoming each student and briefly describing the tasks and activities for that 
day. Then, the students were sent to Teams breakout rooms, where they shared each other’s 
ideas, asked questions, made conjectures, and solved problems while they were working with 
their small group members. The instructor visited each group at least once, or as needed and 
prompted students if they had any questions or concerns. In the end, the students were returned 
to the main room, where the instructor facilitated whole class discussion. On the other hand, the 
LBI instructor began the class by asking students whether they had any questions or concerns 
from the previous class. If they had, then, the instructor solved the examples or explained the 
concepts as needed. After that, the instructor usually began the lecture by solving preselected 
examples using the Notability app from his iPad. Occasionally, the instructor paused during the 
lecture and asked some questions to the whole class. Students were never sent to breakout rooms 
and never provided opportunities for group discussions. 

 
Data Collection and Analysis 

Qualtrics online survey was used to collect the pre- and post-MARS data from both IBL and 
LBI groups after receiving an institutional review board (IRB) approval. The MARS-S survey is 
the 30-item anxiety measure instrument that was developed by Suinn and Winston (2003). It is a 
5-point Likert-type scale survey in which each item on the scale represents a situation that may 
arouse anxiety to the respondent. A score of 1 indicates that the respondent is not anxious at all 
by that situation, whereas a score of 5 indicates that the respondent is anxious very much. The 
pre-MARS survey, in conjunction with a demographic questionnaire, was administered during 
the second week and the post-MARS was administered during the eleventh week of the class. A 
link to the survey and consent form were posted on Blackboard and made available for students 
on the day of MARS administration soon after the class. On the very day, one of the researchers 
had joined each of the IBL and LBI classes remotely through audio-visual conferencing platform 
and read the consent form for students at the beginning of the class and requested them to 
respond to the survey if they elect to participate voluntarily. The data thus collected were 
analyzed using the SPSS 27.0 and Microsoft Excel spreadsheet. Initial data screening for the pre- 
and post-MARS scores of the IBL and LBI groups were conducted and assumptions for the t 
tests were checked, before running the full analysis 
 

Results 
First, the response to the 30 items of the pre- and post-MARS survey was analyzed to see the 

mean and standard deviations for each of the 30 items. The average of the anxiety scores and the 
standard deviations for all the 30 items in the MARS for the IBL pretest were 2.43 and 1.00 and 
posttest were 2.40 and 1.03; LBI pretest were 2.63 and 1.08 and posttest were 2.69 and 1.01, 
respectively. Table 2 shows the participants’ extreme math anxiety levels among the 30 items of 
the MARS. For the IBL group, item 3 received the highest level of math anxiety in both the 
pretest and posttest, whereas item 29 and item 27 received the lowest level of math anxiety in the 
pretest and posttest respectively. For the LBI group, item 4 and item 27 received the highest and 
lowest level of math anxiety in the pretest, and items 1 and 17 received, respectively, the highest 
and lowest level of math anxiety in the posttest. 
 

24th Annual Conference on Research in Undergraduate Mathematics Education 910



Table 2. Participants’ extreme math anxiety levels on the 30-item MARS. 

Items that received the highest and lowest levels of math anxiety from IBL and LBI groups  
  

 
Item  M(SD) 

IBL 
    

Pretest 

Highest Anxiety  3 Thinking about an upcoming 
mathematics test one day before. 

4.07(1.16) 

Lowest Anxiety 29 Being given a set of subtraction 
problems to solve. 

1.00(0.00) 

Posttest 

Highest Anxiety  3 Thinking about an upcoming 
mathematics test one day before. 

4.20(1.08) 

Lowest Anxiety 27 Watching someone work with a 
calculator. 

1.07(0.26) 

LBI         

Pretest 

Highest Anxiety  4 Thinking about an upcoming 
mathematics test one hour before. 

4.50(0.83) 

Lowest Anxiety 27 Watching someone work with a 
calculator. 

1.05(0.22 

Posttest 
Highest Anxiety  1 Taking an examination (final) in a 

mathematics course. 
4.45(0.89) 

Lowest Anxiety 17 Adding up 976 + 777 on paper. 1.25(0.55) 
 

Second, paired samples t tests were conducted to examine the changes in the math anxiety 
levels within and between the IBL and LBI groups. All the t test results were obtained at the 0.05 
level of significance. Although there are some changes in the math anxiety scores between and 
within the IBL and LBI groups, none of these changes were found to be statistically significant. 
Table 3 shows that the math anxiety score of the IBL students in the pretest was about 6 points 
lower and in the posttest was about 7 points lower than that of the LBI students, however, neither 
of these differences were statistically significant. These results suggest that the math anxiety 
levels of the students from both groups were about the same at the beginning of the semester and 
also at the end of the semester.  
 

Table 3. Paired samples t tests between IBL and LBI groups. 

Paired Differences 
  IBL   LBI       
  Mean SD N      Mean SD N t df p 
Pretest 73.00 19.56 15  79.00 15.46 20 –0.92 14 0.37 
Posttest 71.87 18.79 15    80.55 22.20 20 –1.03 14 0.32 

 
Table 4 shows the changes in the math anxiety scores of both IBL and LBI groups from pre- 

to post-test. Although the IBL students’ math anxiety scores slightly decreased by 1.13 points 
and LBI students’ math anxiety scores slightly increased by 1.55 points from the pretest to the 
posttest, neither of these changes were statistically significant. These results suggest that the 
math anxiety levels of the students from both groups did not change significantly from the 
beginning to the end of the semester. 
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Table 4. Paired samples t tests within IBL and LBI groups. 

Paired Differences 
  Pretest   Posttest       
  Mean SD      Mean SD N t df p 
IBL 73 19.56  71.87 18.79 15 0.38 14 0.71 
LBI 79 15.46   80.55 22.20 20  –0.35 19 0.73 

 
Discussions and Conclusions 

Math anxiety is a prominent issue in the United States and across the world. Research 
studies have found that it can begin at least as early in children attending first and second grade 
(Raver, 2014) and peaks in middle school and high school (Jackson & Leffingwell, 1999; Oxford 
& Vordick, 2006; Scarpello, 2007). Once established, it can impact peoples’ everyday activities 
involving numeracy and higher-level mathematics learning throughout their lives (Oxford & 
Vordick, 2006). Ultimately, it can have a significant impact on students’ overall performance in 
and out of the class.   

Therefore, it is essential to diagnose the possible causes of math anxiety and to determine 
some potential interventions to reduce such anxiety before students get into the tornado of math 
anxiety. As such, this study sought to investigate whether inquiry-based instruction significantly 
decreases the math anxiety among Calculus I students, compared to lecture-based instruction. 
Comparison of both the IBL and LBI groups’ pre- and post-MARS survey data after a semester-
long instruction revealed that there is not a significant difference in the math anxiety scores 
within and between these two groups. The IBL students were found to be a little bit less anxious 
than the LBI students at the beginning of the semester. IBL students’ mean score was slightly 
decreased from 73 to 71.87 from the beginning to the end of the semester, however, during the 
same period of time, the LBI students’ mean score was slightly increased from 79 to 80.55. 
Although there is some level of change in the math anxiety scores of the IBL students from pre- 
to posttest, we do not have enough evidence to conclude that inquiry-based learning reduces 
students’ math anxiety compared to lecture-based instruction. 

This unprecedented outcome could be the consequence of the small sample size. 
Although a fairly high percentage of IBL students, 65% (n = 15) responded to both the pre- and 
post-MARS survey compared to LBI students, 45% (n = 20), these numbers were not large 
enough to provide a desirable level of statistical power. 

 
Suggestion 

 Due to the COVID-19 pandemic during Spring 2021, most of the Calculus I classes were 
taught online. Due to the online settings, it was difficult to find a reasonably large number of 
participants for this study from both the IBL and LBI classes. Thus, we suggest replicating this 
research when the classes resume in-person with a reasonably large sample size over a span of at 
least a year. Nonetheless, the results of this study can be useful for researchers, Calculus I 
students and instructors, and professional development organizers to obtain a general picture of 
the relationship between IBL and math anxiety. 
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How 2020 (Didn’t) Change Calculus Instructors’ DEI Engagement 

 

 Naneh Apkarian Estrella Johnson 

 Arizona State University Virginia Tech 

 Jason Guglielmo Matthew Park Steven Ruiz 

 Arizona State University Virginia Tech Arizona State University 

Increasing diversity and advancing equity in postsecondary mathematics education is garnering 

much-needed attention. Efforts to diversify STEM fields, and in the longer term to dismantle 

systemic barriers, requires awareness and engagement on the part of mathematics faculty, 

particularly those who teach introductory courses to large numbers of students. A survey of 1064 

instructors of introductory STEM courses (305 mathematicians) captured data on their 

awareness and engagement with various diversity, equity, and inclusion (DEI) issues and 

initiatives. This preliminary report provides insight into how those instructors’ beliefs and 

behaviors regarding DEI shifted during 2020 – a year in which the status quo was interrupted by 

a global pandemic, and which saw nearly unprecedented national conversations about social 

(particularly racial) justice. We find changing beliefs were common, while changes in activities 

were uncommon. Ongoing qualitative analysis will reveal much about those beliefs and how and 

why they changed. 

Keywords: Diversity Equity Inclusion, Undergraduate STEM, Professional Practice  

Attention to diversity, equity, and inclusion (DEI) in STEM has steadily risen over the last 

few decades. Investigating and redressing systemic inequities in postsecondary mathematics are 

now widely (though not unanimously) acknowledged as a fundamental and urgent charge for 

researchers of undergraduate mathematics education. In this preliminary report, we describe 

responses from approximately 300 calculus instructors to multiple-choice questions about 

changes in equity-related activities (uncommon) and views about DEI (common). We provide 

sample natural-language text responses explaining these changes in views, and our plans for 

completing a directed content analysis of the full set of 199 written responses. The results of that 

analysis will be completed by the end of this semester (Fall 2021) and presented at the research 

conference in Spring 2022. Our research goals are to (a) document calculus instructors’ beliefs 

and activities as they relate to DEI issues; and (b) identify mechanisms by which views might be 

shifted toward higher engagement (or the reverse). While 2020 was full of events which cannot 

be recreated for the purposes of professional development or institutional transformation, we 

anticipate that many of the lessons learned from these queries will inform targets and processes 

for future work aimed at creating a more inclusive STEM environment. 

Methods 

Data collection occurred as a follow-up to a larger study of introductory chemistry, 

mathematics, and physics instructors (across ranks and titles) at postsecondary institutions across 

the United States. The larger study included a survey of instructional practices, related beliefs, 

contextual factors, and individual characteristics. The final question on an initial survey sent to 

thousands of instructors asked if we could invite them to participate in a follow-up survey 

focused on DEI issues in STEM. Of the 3,769 who took the initial survey, 2,229 agreed and were 

invited to participate in this study; 1,064 completed it. What began as a small pilot investigation 
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gathered enough data to warrant meticulous analysis and has real potential to increase our 

understanding of the DEI climate in postsecondary STEM. Of the respondents, we focus only on 

the 305 mathematicians, all of whom taught a single-variable calculus course in the 2017-18 

and/or 2018-19 academic years. 

The survey asked briefly about a range of beliefs about different race-gender groups, factors 

which might be used to explain existing gaps in representation within STEM, engagement with 

DEI initiatives, and personally experiencing and witnessing discriminatory behavior in 

professional settings. This paper reports on only the questions which asked about changes in 

behaviors and views of DEI during 2020 (see Preliminary Results for question text). This survey 

was completed electronically via the online Qualtrics platform (2018), and was approved by the 

Western Michigan University Human Subjects Institutional Review Board (#17-06-10). 

We employ a mixed-methods triangulation approach to understanding these data (Creswell & 

Plano Clark, 2007). In this study, we use quantitative methods to analyze responses to multiple-

choice survey questions and to explore relationships between variables. We use qualitative 

methods to analyze and understand the natural language data provided by respondents in an 

open-ended free response survey question asking them to explain their answer to a previous 

multiple-choice question. These analyses will be triangulated to provide more robust 

understandings of the underlying phenomena of interest: calculus instructors’ DEI views and 

related activities, and what (if anything) about those views and activities changed in 2020 (and 

why). Text data will be analyzed using qualitative content analysis, “a research method for the 

subjective interpretation of the content of text data through the systematic classification process 

of coding and identifying themes or patterns” (Hsieh & Shannon, 2005, p. 1278). More 

specifically, we engage in directed content analysis, in which initial coding categories are 

identified from existing theoretical framings and empirical research (relevant literature is briefly 

reviewed in the next section). The initial codes are not entirely prescriptive; new codes and 

subcodes are generated through iteration and constant comparison (Hsieh & Shannon, 2005; 

Miles & Huberman, 1994). At the later stages of the overall analysis, instructors’ personal and 

professional contexts will be incorporated. We omit these markers from the initial phases to 

minimize the impact of our own biases on the subjective interpretation of participants’ responses.  

Theoretical Framing & Relevant Literature 

We omit a review of literature indicating that instructor beliefs and activities about 

dimensions of identity and DEI issues/initiatives impact their students directly in favor of 

describing theories and research which inform our conceptual framing and initial coding scheme. 

Briefly, instructors are key actors in the development and evolution of STEM culture, in 

students’ introduction to that culture, and have the power to influence DEI through their 

professional activities (e.g., Busch et al., 2021; Canning et al., 2019; Gandhi-Lee et al., 2017; 

Rainey et al., 2019; Reinholz & Apkarian, 2018; Schein, 2010). Thus, understanding their 

engagement and views will support efforts (in the short-term) to create more inclusive 

educational experiences and (in the longer term) to engage in institutional transformation. 

When coding natural language data, we will attend to what (if any) dimensions of diversity 

instructors specify. In job applications, faculty have been documented as referring to unspecified 

diversity, federally defined categories (e.g., race, gender, disability status), and economic class 

with some variation depending on context and discipline (Lee Baker et al., 2016; Schmaling et 

al., 2015). The prominence of race-neutral rhetoric in American culture also contributes to an 

avoidance to name race at all and to the use of euphemisms for race (Carter et al., 2017; Vaught 

& Castagno, 2008).  
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Additionally, we will attend to what (if any) aspects of their views are mentioned as 

changing, and to what those changes are ascribed (if at all). For example, awareness of racial 

disparities does not necessarily lead to understanding, empathy, or behavioral changes (Vaught 

& Castagno, 2008). Support can also diminish rapidly, as evidenced by the massive decrease in 

support for the Black Lives Matter movement following a historic high. With regard to instructor 

behaviors, there is evidence that STEM instructors are heavily influenced by personal 

experience, and less influenced by empirical studies, when making decisions about pedagogy 

(Andrews & Lemons, 2015; Oleson & Hora, 2014). 

Finally, we will attend to broader ideologies, prose, and rhetoric related to dismantling or 

upholding systems of oppression in higher education. This includes a myth of meritocracy which 

masks differential accessibility and experience (Liu, 2011; Taylor & Shallish, 2019; Yosso et al., 

2009). Views of racism (and by extension, other discriminatory -isms) as an issue of individual 

pathology, as opposed to a systemic condition, impact how people view evidence of differential 

treatment as well as the solutions they might support (Carter et al., 2017; Patton, 2016; Vaught & 

Castagno, 2008). We will also, of course, monitor for explicitly discriminatory statements. 

Preliminary Results 

One set of survey questions asked participants whether they had engaged in four specific 

activities centering equity issues in 2020 and, separately, in 2019. The options were Yes; No, but 

I want(ed) to; No, and I do/did not plan to. Most respondents answered both items, and these are 

cross-tabulated in Table 1. 

 
Table 1. Cross-tabulated responses to “have you engaged in any of the following activities” in 2019 and in 2020. 

Responses reported only for those who responded to both 2019 and 2020 questions. Entries list counts and 

(proportion), calculated from the number of respondents who answered both questions. 

Attended nonmandatory talks/workshops focused on equity issues. (1) [N=294] 

 2019: No, no plan 2019: No, but wanted to 2019: Yes 

2020: No, no plan 45 (0.15) 0 (0) 15 (0.05) 

2020: No, but want to 8 (0.03) 25 (0.09) 24 (0.08) 

2020: Yes 14 (0.05) 14 (0.05) 139 (0.47) 

Organized a talk/workshop focused on equity issues. (2) [N=295] 

 2019: No, no plan 2019: No, but wanted to 2019: Yes 

2020: No, no plan 181 (0.61) 2 (0.01) 3 (0.01) 

2020: No, but want to 23 (0.08) 28 (0.09) 13 (0.04) 

2020: Yes 9 (0.03) 5 (0.02) 31 (0.11) 

Read books/journal articles, etc. focused on equity issues. (3) [N=295] 

 2019: No, no plan 2019: No, but wanted to 2019: Yes 

2020: No, no plan 32 (0.11) 0 (0) 6 (0.02) 

2020: No, but want to 8 (0.03) 13 (0.04) 7 (0.02) 

2020: Yes 12 (0.04) 15 (0.05) 202 (0.68) 

Was a member of a group or committee (including as an advisor) dedicated to taking action 

around equity issues. (4) [N=298] 

 2019: No, no plan 2019: No, but wanted to 2019: Yes 

2020: No, no plan 91 (0.31) 2 (0.01) 2 (0.01) 

2020: No, but want to 27 (0.09) 42 (0.14) 14 (0.05) 

2020: Yes 9 (0.03) 19 (0.06) 92 (0.31) 
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While the American consciousness about social justice was raised in 2020, our participants 

did not report much change in their behavior regarding these four activities (71%, 81%, 83%, 

and 76% reported no change regarding activities 1-4). The majority of our participants (68%) 

reported reading literature focused on equity issues in both 2019 and 2020; only 9% reported 

doing so in 2020 while not having done so in 2019, and 4% reported the opposite change in 

behavior. While 10% reported attending non-mandatory talks/workshops focused on equity in 

2020 without having done so in 2019, 13% reported a shift in the opposite direction; however, 

47% reported attending such events in both 2019 and 2020. Activities associated with a larger 

commitment, and perhaps being seen as having some expertise (committee work, workshop 

organizing) were less common in both 2019 and 2020, again with little reported change.  

Of the 305 survey respondents, 300 answered a yes/no question about changed views of DEI 

issues during 2020, and 199 of these answered an associated free response item asking them to 

explain their response. Of the 300 respondents, 128 (43%) reported that their views of DEI 

changed over the course of 2020, while 172 (57%) reported that their views did not change. 

Participants were asked to explain their response regardless of whether their views had changed, 

this was taken up more by those who reported a change (118, or 92% of changers) than those 

who reported no change (81, or 47% of non-changers). The 199 free responses range in length 

from 1 to 366 words, (M = 42, SD = 52). These open-ended responses are currently being coded 

by the research team, according to the process outlined in the methods section and informed by 

the reviewed literature. This analysis is far from complete, but we offer a few sample responses 

(Table 2) and early interpretations, based on documented phenomena and theories.  

 
Table 2. Sample quotes from recent/current calculus instructors explaining their (lack of) change in views of 

DEI issues and initiatives in 2020. These are reproduced in their entirety, with no corrections or edits.  

Explanations for changed views of DEI 

P1 I became aware of the systemic problems in education. 

P2 For many years now, I have felt that we need to actively battle equity gaps. This year, 

with the pandemic, I feel that I have made more exceptions personally for my 

students. Somehow, teaching during the pandemic has allowed me to reduce the 

professional distance between me and my students, and I am able to empathize more 

with their struggles. 

P3 After reading articles about the difficulties faced by Black and Latinx people in 

earning math degrees, I am more in favor of affirmative action admission policies for 

students and hiring policies for faculty. 

Explanations for unchanged views of DEI 

P4 I just would like to teach mathematics to my students, treating each person as 

infinitely precious in the eyes of God. I was hired to teach math, and I realize the 

extent of my influence, which is not going to solve the problems of the world. I treat 

everyone with love and respect where I can, on a very small scale, in my classroom, 

and that is all I can do. It is up to me to be an expert in my subject, not in politics. 

P5 It is actually annoying to see how this agenda gets pushed down people's throats. You 

can't get a PhD just because you are black or Hispanic, you have to be good at the 

subject. If one wants to be good at math then it all starts in grade 1 and has nothing to 

do with race. It is a cultural thing. 

P6 I am a member of a minority in mathematics, and I still believe that there is systemic 

racism and sexism in STEM and more diversity, equity, and inclusion is beneficial to 

everyone. 
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Participant 1 (P1) states simply that they have become aware of systemic problems in 

education, without specifying the dimension(s) of oppression to which they refer. This may 

reflect a discomfort naming racism, sexism, classism, ableism, and so on, which is a common 

avoidance mechanism. Awareness is valuable, but it does not necessarily lead to action (Vaught 

& Castagno, 2008). P2 reports how personal experiences connecting with their students, and 

making accommodations related to the pandemic, has brought them closer to their students and 

helped them empathize with students’ struggles. This echoes previous research on teacher 

decision-making, which suggests that personal experiences are a powerful driver for change. P2 

also does not name the specific dimensions of struggle or challenge. In contrast, P3 reports 

changing views brought about by reading articles about Black and Latinx experiences rather than 

personal interactions. We note that they mention only two (large and non-homogenous) racial 

groups in their response, and do not mention other characteristics. On a promising note, they 

indicate that their changed mindset incorporates a change in support for policies which were 

intended to redress historic inequities. While affirmative action has only been directly linked to 

increased diversity (Murrell & Jones, 1996), disrupting racialized power structures requires shifts 

in policy as well as mindset. 

There is also a range of ideas presented by the three whose views did not change. P4 

acknowledges “the problems of the world,” though they do not mention specific issues, and 

appears unaware of actions they could take within and outside their classroom; they also draw an 

inaccurate distinction between mathematics and politics (Barany, 2020). Interestingly, they seem 

to employ contradictory thinking. First, that “being good at math” starts in elementary school and 

has nothing to do with race. Of course, elementary school experiences have a lot to do with race 

(e.g., Carter et al., 2017; Ladson-Billings & Tate, 1995). And while strong, positive, early 

experiences with mathematics are likely beneficial for students regardless of their eventual 

interests, to suggest that someone who has not pursued math since the age of 6 cannot succeed is, 

frankly, a ridiculous statement and an insult to educators and students everywhere. This is 

followed by “it is a cultural thing,” which is often code for race – and in fact P5 references two 

racial groups (Vaught & Castagno, 2008). We expect such contradictions to arise elsewhere and 

will leverage extant literature to untangle their meanings. Finally, we note that individual 

identities and experiences will have an impact on participants’ views and responses. Though 

their identity is unspecified, P6 notes that, as a member of a minority group in mathematics, they 

were aware of systemic racism and sexism in STEM before it was trending. As we complete our 

qualitative content analysis, we will consider participants’ own identities and contexts, as 

volunteered on the survey, and examine patterns in responses. Rather than make sweeping 

statements about individuals based on a single short response to an online survey, we will 

consider broad patterns and the prevalence of particular sentiments and views. 

We hope that the RUME community will help us think about how these lessons can support 

future DEI initiatives in ways that support meaningful change, and in considering what lessons 

from an unprecedented year might be transferable to more precedented times. 
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Undergraduate’s Covariational Reasoning Across Function Representations 
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Covariational Reasoning is the mental actions, constructions, and processes used to coordinate 
two or more quantities and interpret the relation between them. While research has shown that 
covariational reasoning is critical in a variety of fields, there has been a lack of studies on three-
dimensional covariational reasoning. This study utilizes the Action-Process-Object-Schema 
(APOS) Theory framework to analyze how a student applies covariational reasoning to a 
parametric representation to model a real-life three-dimensional scenario. Preliminary results 
suggest that students’ focus on experiential time may inhibit their ability to reason about two or 
three quantities relating to each other irrespective to time.  

Keywords: Covariational Reasoning, APOS Theory, Calculus 

Introduction 
Covariational reasoning is the mental actions, constructions, and processes used to coordinate 

two quantities and interpret the relation between them (Carlson, Jacobs, Coe, Larsen, & Hsu, 
2002). Carlson et al. (2002) showed students with strong covariational reasoning ability, but no 
calculus background, were able to complete the same limits and differentiation tasks that a group 
of second semester calculus students struggled with. While research has shown that covariational 
reasoning is critical in a variety of fields, there are still unknowns such as: (1) the mental 
processes students enact to understand covariational reasoning, (2) the foundations students need 
to develop their reasoning abilities, and (3) how students are able to apply covariational 
reasoning in different environments. 

The goal of this study is to expand the existing literature by focusing on how students apply 
covariational reasoning in a different environment in comparison to previous studies. To 
accomplish this end, this study will focus on analyzing how students are able to interact and 
understand a three-dimensional model which utilizes a mixture of linear and nonlinear functions. 
The overarching question the study aims to answer is as follows: 

How are students able to use covariational reasoning to create a parametric representation 
to model a real-life 3-dimensional problem? 

Literature Review 
Over the past several decades, numerous articles and studies focusing on the role 

covariational reasoning plays in various contexts have been published, such as:  
● The initial study from Carlson et al. (2002) which focused on coordinating quantity 

changes related to instantaneous rate of change;  
● Using trigonometric functions to relate radian measures to arc lengths in a circle context 

(Moore & LaForest, 2014);  
● Reasoning about two quantities through time as a third parameter (Paoletti & Moore, 

2017); and 
● Examining the role of reasoning about magnitudes when graphically representing 

covarying quantities (Moore, Stevens, Paoletti, Hobson, & Liang, 2019). 
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As our study focuses on a three-dimensional model, we considered two forms of reasoning 
associated with covariational reasoning: simultaneous-independent reasoning and change-
dependent reasoning. Simultaneous-independent reasoning focuses on how two quantities vary 
with respect to a third quantity, which frequently is time (Stalvey & Vidakovic, 2015). This 
definition is particularly relevant to the discussion on parametric representations since the focus 
is describing how two or more functions vary relative to one another expressed through 
coordinates of the points. While these functions normally have the same input, the changes that 
occur in one function do not directly cause the changes in another function. Change-dependent 
reasoning focuses on how a quantity directly causes changes in a different quantity (Stalvey & 
Vidakovic, 2015), such as how the height of an object may change over time. 

Theoretical Framework 
 This study will utilize the Action-Process-Object-Schema (APOS) Theory framework to 

analyze and interpret our results. APOS Theory describes the mental structures (Actions, 
Process, Objects, and Schemas) that individuals construct to learn a mathematical concept. 
Developing these structures are considered stages in the learning process (Arnon, et al., 2013). 
We briefly describe each construct below using definitions from Arnon et al. (2013). 

When an individual first learns a new concept they start at the Action stage, which is 
described as when an individual can take a mathematical object and perform an explicit 
transformation based on external cues. These actions can be simple or complex, depending on 
the objects they are acting upon. After repeating an Action, individuals move away from relying 
on external cues and can control the procedure internally. At the Process stage, individuals can 
implicitly carry out the transformation and even deviate from the external cues they previously 
relied on. Students who can then act on this dynamic, internal procedure as a static object are 
said to be at the Object stage. These now-static objects can then be acted on by new external cues 
to continue developing the concept. Finally, a Schema is an ever-changing mental structure that 
an individual constructs and reconstructs. Schemas include Actions, Processes, Objects, and 
other Schemas about a single mathematical concept. Schema development occurs both through 
the stages an individual may take through a concept as well as through the connections between 
other mental structures related to the concept. 

Methodology 
To examine students’ covariational reasoning while modeling a real-life problem, we 

developed a virtual model of a bird flying in a helix pattern around a tower. The student could 
change their view of the tower without interrupting the bird flight by rotating horizontally and 
vertically around the tower. The student could pause the bird’s flight or leave it to loop. A flag 
was presented on the ground parallel to the tower to provide an additional landmark the student 
may use to reason through the variations in the bird’s horizontal, vertical, and height 
displacement. After being showed how to change the views of the model, a student was 
prompted to answer questions along two separate goals: (task 1) graph an individual quantity 
with respect to time and (task 2) graph two or three quantities irrespective to time.  

Prior to completing the task, students were asked to supply their personal definition for 
function and derivative. After completing the task and discussing their answers with the 
interviewer, students were again able to present their definitions for function and derivative to 
see if their definition had developed.  

Volunteers to complete the interview were solicited from a Calculus 1 course at a large 
southeastern university during Spring 2021. One student volunteered to participate: pseudonym 
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Jane. Jane was a first-year university student, who (at the time of the study) was taking calculus 
for the third time. This was her second time taking it on the university level, prior to which they 
had taken a first semester calculus course through the International Baccalaureate program at 
their secondary institution. 

Data Analysis 
At the action level understanding of a function, in the first task we would expect a student to 

be reliant on selecting specific moments in time and their corresponding height to create their 
graph and recognize a linear relationship. Whereas students possessing a process level 
understanding would abstract this point process to create a smooth representation and a 
continuous line. 

 For the second task, students who understand covariational reasoning at the action level 
would start graphing individual points and connecting them to create their parametric 
representation. Students with a strong definition of derivative could recognize that as they plot 
more points, if they were to plot infinitely many points, then a smooth representation could 
emerge, which students could internalize to recognize how changes in one function coordinate 
with another function and thus attain a process level understanding of covariation reasoning. 

After transcribing the interview, the authors analyzed Jane’s responses to the task to identify 
evidence for simultaneous-independent and/or change-dependent reasoning in terms of APOS 
Theory. We present preliminary results from this analysis. 

Results 
Based upon the student’s personal definition of function and their response to question 1, it 

was evident the student possessed an action level understanding of function. This caused them 
difficulties in coordinating each function to create a polar representation, which in conjunction 
with their definition of derivative, showed they also possessed an action level understanding of 
covariational reasoning. We present evidence for her level of conception through how she 
created a linear representation and a parametric representation of the bird’s flight. 

Creating a Linear Representation 
A feature of the instrument that was not implemented was an explicit measurement tool, 

whether for measuring time or for determining numerical values for the bird's position. This 
meant if students depended on having specific inputs for determining a function representation or 
constructing a parametric representation, students would need to create their own measurement 
tool, which is what Jane did. As shown in the following image, Jane not only measured the 
period of the bird’s flight around the tower, but also constructed ratios between the height of the 
bird to the flag to the tower. These ratios were indicated in her scratchwork and during the 
interview where she detailed using a piece of paper to measure the differences in height to create 
her ratio.  
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Figure 1: Scanned image showing Jane’s Scratchwork for task 1. Transcribed writing: 

1. Bird takes around 11 or 16 seconds to get from the bottom of the tower to the top 
2. Flag is approximately 6x height of the tower… tower is 5x height of flag* 

3. Tower is 156x height of the bird 

Jane used the flag, the tower, and the bird to create a measurement system based on the ratios 
between each. The flag specifically Jane used as a reference so that they could track the period of 
each cycle in the bird’s movement and identify points to construct her representation. As shown 
in the next section, Jane specifically used the flag to indicate the side of the tower the bird was 
on and create “snapshots” of the bird’s motion. Between finding a numerical value for the period 
of the bird’s flight and using the flag to create a measurement system of ratios, Jane needed a 
system of points to create a linear representation. 

Creating a Polar Representation 
Something to note about Jane’s solution to creating a parametric representation for the polar 

representation is that they misinterpreted the quantities to be coordinated and created a 
representation that showed the bird's height with the bird's horizontal translation. 

 
Figure 2: Scanned image showing Jane's Scratchwork for task 2. 

This was the closest Jane got to creating a parametric representation, which she accomplished 
by creating “snapshots”. Jane took her pre-existing relations between the bird’s height and 
horizontal position and connected them through time to describe the bird’s position. This is 
where students with a strong process level understanding of covariational reasoning would be 
able to begin interacting with simultaneous-independent reasoning. Specifically, they could track 
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and understand how the height and the horizontal position relate to each other, with time being 
implicit in their representation. 

In Jane’s response there was a clear change-dependent thought process being applied. In the 
interview Jane explained that she would start with the bird’s height at a given time, then 
determine its horizontal position at that time. In other words, Jane used time to move between 
each component of the position but could not separate time in the representation. This is where 
students’ definition of derivative is a factor since derivatives describe the relationship between 
different values. Jane described derivatives as, “rates of change that… pay respect to time”. 
Jane’s understanding of derivative is tied to how a value relates to time.  

Implications  
These results show that students with an undeveloped understanding of function and 

derivative face challenges applying covariational reasoning. Students with an action level 
understanding of function cannot continually interpret relationships between quantities over 
extended periods. More research should be directed into understanding the constructions students 
use to produce continuous parametric representations. This will in turn help students' 
covariational reasoning abilities because it will prepare students to interact with continuous 
representations, rather than the “snapshots” we saw in our results. 

On the other hand, the role of time in teaching derivatives may need to be de-emphasized. 
While authors such as Keene (2007) illustrated that students often incorporate time as they 
consider different attributes of a physical example changing, this may prohibit reasoning about 
quantities changing irrespective to time. The numerous examples of derivatives with time may 
encourage students to overgeneralize derivatives as a quantity changing over time. A stronger 
understanding of derivative would have helped Jane coordinate how the height and the horizontal 
translation changed relative to each other.  

Limitations and Future Work 
Despite the results the study was able to produce, there were multiple constraints that 

appeared. The most immediate was that as a pilot study there was a single participant in the 
study. This study was also conducted during the COVID-19 pandemic, which meant the study 
was conducted virtually. This meant that some of the physical actions that students produce 
when interacting with the instrument were difficult to observe. 

After observations during the study and feedback during the interview, the instrument and 
directions could use further development. For instance, different tools were built in for students 
to interact with the model which were largely unused. Some of the tools were specifically 
implemented to determine how students would reason with an invariant relationship, namely 
whether they would be able to recognize the presence of an invariant relationship and whether 
they would represent it in their graph. Emphasizing these tools could provide valuable data.  

Asides from technical corrections, there are other directions this research could go in future 
iterations. This target audience for this study were first semester calculus students, which is what 
led to focusing on students’ reasoning capabilities between linear and trigonometric 
representations since these are some of the first representations students interact with. While 
could be investigated further, beyond changing the target audience, future iterations could focus 
on how students are able to use covariational reasonings to interpret relationships with other 
functions such as exponentials, logarithmic, or even investigating how students recognize and 
analyze piecewise functions.  
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Mathematical Modeling as a Way of Expressing the Flexibility of Solution Strategies 
 

 Amy Been Bennett Ricardo Martinez Abigail D’Ovidio Long 
 University of Nebraska University of Nebraska University of Nebraska 
 
Mathematical modeling tasks connect authentic situations to classroom mathematics and allow 
for a variety of solution strategies. To this end, we designed a hybrid project that centered on a 
mathematical modeling task for elementary preservice teachers within an integrated content and 
methods module. Participants engaged in the Soccer Task as both students and teachers, 
individually and in groups, using multiple platforms and modalities. Using artifact analysis, we 
explored how the preservice teachers used mathematical strategies of varying complexities, drew 
on their funds of knowledge, and reflected on the meaning of fairness in different contexts. We 
present preliminary findings and suggest prompts for discussion.  
 
Keywords: mathematical modeling, preservice teachers, funds of knowledge, hybrid teaching 

Purpose and Background 
Teaching mathematical modeling requires a level of openness typically not found in 

traditional curriculum, resulting in a different, oftentimes more demanding, way of teaching 
mathematics (Bennett, 2017; Doerr, 2006). While there are several affordances of modeling in 
the teaching and learning of mathematics, this practice can be challenging to incorporate into 
preservice teacher (PST) preparation programs, particularly at the elementary level (Bartell et al., 
2010; Kaiser et al., 2017). To address this issue, we created the Hybrid Teaching Project (HTP), 
during which undergraduate PSTs experienced mathematical modeling from the perspective of 
both a learner and a teacher. Although the HTP was initially created in response to the COVID-
19 pandemic and the need for multiple teaching modalities, it provided PSTs the opportunity to 
engage in authentic mathematics situations via mathematical modeling in a hybrid structure. The 
research question guiding this project is:  

1. How do PSTs draw on their own funds of knowledge via multiple solution strategies 
when solving a modeling task?  

Conceptual Framework 
In the Common Core State Standards (CCSSI, 2010), the standard for mathematical practice 

“Model with Mathematics” states that “mathematically proficient students can apply the 
mathematics they know to solve problems arising in everyday life, society, and the workplace” 
(p.7). Mathematics education researchers have defined mathematical modeling as a process for 
connecting the real world to the world of mathematics (Blum & Borromeo Ferri; 2009; Blum & 
Leiss, 2007) or as “a process in which students consider and make sense of an everyday situation 
that will be analyzed using mathematics for the purpose of understanding, explaining, or 
predicting something” (Anhalt et al., 2018, p. 202). A modeling diagram, often in the form of a 
cycle, accompanies most definitions to illustrate the nonlinear, complex, iterative nature of 
modeling (see Figure 1). 

Mathematical modeling tasks can connect multiple content areas and, in this way, can 
augment existing K-12 curriculum as a replacement or extension of problem-solving tasks 
(Mousoulides et al., 2008). Indeed, the work of Doerr and English (2003) demonstrated how 
students could not only find a solution to an authentic mathematics problem, but could also 
create a generalized solution, a procedure or model, that would be transferable to many similar 
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situations. The research on mathematical modeling in the early grades (K-5) is limited (Lyn 
English’s (2006; 2008; 2012) work in Australia is an exception) but has gained prominence in 
recent years in the U.S. (e.g., Turner et al., 2021; Carlson et al., 2016; Suh et al., 2017).  

Examples of mathematical modeling tasks at the elementary grades level include tasks that 
introduce complex systems via tables of data, such as the Olympic Swimming Team Selection 
task (English, 2008). Similar tasks related to selecting sports teams (e.g., M2C3, 2018), have the 
goal of connecting to students’ prior experiences and funds of knowledge. The notion of funds of 
knowledge views households as wellsprings of cultural resources, skills, and knowledge that 
children can leverage to make connections between their school and home learning (Civil, 2002; 
Moll et al., 1992). Recent research has explored how mathematical modeling tasks can draw on 
elementary students’ funds of knowledge to help them connect classroom mathematics to 
authentic situations in their school, family, home, and community (e.g., Civil et al., 2021; Turner 
et al., 2021; Wickstrom et al., 2017). However, few studies examine the mathematical thinking 
and strategies of elementary PSTs engaging in modeling in their undergraduate courses.  

Methods 

Context and Participants 
The project reported in this paper spanned two courses, a mathematics content course and a 

mathematics teaching methods course for elementary PSTs. At this institution, the content and 
teaching methods courses are integrated as part of a STEM block for elementary PSTs (see 
Heaton & Lewis, 2011; Homp & Lewis, 2021), meaning they have a shared syllabus and some 
shared projects. Additionally, during typical semesters, PSTs taking both courses participate in a 
practicum experience in elementary schools two days a week. Participants of the first iteration of 
this project were 62 elementary PSTs across two sections in the first semester of their 
preparation program. In this paper, we focus on the work of one section of 30 students, of which 
the first two authors were the instructors for the content course and the teaching methods course, 
respectively. 

 
Figure 1. The mathematical modeling cycle and the Soccer Task, as presented to PSTs 
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Structure of the Hybrid Teaching Project 
The HTP consisted of multiple scaffolded parts. As mentioned, we re-designed this project 

since PSTs participated in class via a hybrid format and were not able to interact with elementary 
students in their classrooms. We initially provided PSTs with the modeling cycle diagram shown 
in Figure 1 (from Anhalt et al., 2018), as well as the Soccer task prompt (M2C3, 2018). In Figure 
2, we share a small portion of the player information table from the task. To see the complete 
task, including the table with soccer player skills, visit the M2C3 project site. 

 
Figure 2. Portion of soccer player information table, as presented to PSTs 

The first component of the HTP asked PSTs to individually solve the Soccer task, in which 
they were given data on 12 soccer players and told to create two fair teams (M2C3, 2018). The 
information table in the task included three skills: speed, shots on goal (scoring), and defensive 
blocks (see Figure 2); thus, PSTs first had to make sense of the task and decide what skills they 
deemed important. PSTs’ assumptions changed based on their funds of knowledge and lived 
experiences. For instance, a PST familiar with playing soccer might make the assumption that a 
“blocked” shot indicates a higher skill level than a “wide” shot. Furthermore, in designing the 
HTP, we purposefully chose a modeling task and reflection assignments that emphasized PSTs 
multiple mathematical knowledge bases (Turner et al., 2012) and funds of knowledge. 

The second component of the HTP was a task analysis which required PSTs to work in a 
group to compare each other’s individual solutions, as well as compare their solutions to how 
they think an elementary student would solve the task. The third component of the HTP 
prompted PSTs to modify the original Soccer task; they had the flexibility to alter the task in 
multiple ways. PSTs were required to adapt the task to a specific grade level by connecting to 
appropriate mathematical content and possibly changing the complexity of the information table. 
For example, if the task was modified for first grade, then the data for sprint speed should be 
modified to display whole numbers rather than decimal representations up to the hundredths 
place. PSTs were also allowed to change the sports context (e.g., change soccer to volleyball) 
and change the skills and variables as necessary (e.g., change “speed” to “vertical jump”).  

Preliminary Findings 
We present our preliminary findings from artifact analysis (Hatch, 2002) of the first 

component of the HTP project: the mathematical solutions and strategies from the Soccer Task. 
Additionally, we explored PSTs’ notions of “fairness” and their use of funds of knowledge in 
their written work through Concept and Focused coding techniques (Saldaña, 2016).  

Flexibility of Task Solutions 
Overall, 28 PSTs explicitly stated their final two teams for the Soccer task, and 26 of these 

were unique solutions. In other words, there was a high level of flexibility of solutions and very 
little repetition of team configurations for the 12 players. Note that there are 924 (or “12 Choose 
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6”) possible team configurations in this task. The variability of possible solutions indicates a 
variety of avenues for further analysis. For instance, we could analyze how PSTs placed pairs of 
players on the same or opposing teams: Annette (player A) and Brianna (player B) were two of 
the fastest soccer players with similar “shots on goal” outcomes (see Figure 2). Of the 26 unique 
solutions, 13 placed players A and B on the same team, and 13 placed A and B on different 
teams. This analysis of team configurations could be repeated for other pairs of players and 
emphasizes the ability of this task to generate multiple solutions and strategies.  

Flexibility of Mathematical Strategies 
A variety of team configurations for the Soccer task leads to questions about the strategies 

used to create the teams, (i.e., the models). We first analyzed the 30 solution strategies based on 
the mathematical concepts used (e.g., summing, ranking/comparing, calculating averages), tools 
and representations used (e.g., Excel spreadsheets, tables), and the soccer skills attended to (i.e., 
speed, shots on goal, defensive blocks). Then, we grouped and sorted the models based on their 
level of complexity, similar to the work of Anhalt et al., 2018. We created a continuum of 
complexity ranging from low complexity (one mathematical strategy and/or one skill focused on) 
to high complexity (two or more mathematical strategies and/or three skills focused on).  

Models that had aspects of randomness, rather than specified methods or rationales, were 
generally considered less complex. Five models that were on the low complexity end of the 
continuum seemed to consider multiple soccer skills but did not use a mathematical strategy to 
rank or assign players to teams. For example, PST5 found the top two players in each category 
and divided them between the two teams, but then distributed the remaining players without a 
specified mathematical method. However, PST5 added authenticity to his model by leveraging 
his knowledge of soccer as a sport to guide some of his decisions, such as giving each team a 
“good defender”, placing the fastest players “at midfield”, and placing the “best scorers at 
forward”, which created, in his opinion, fair teams. He noted, "As someone who plans on being a 
coach as well as a teacher, I tried to separate them by equal levels of talent." The evidence of 
PSTs’ funds of knowledge is summarized in Table 1. 
 
 Table 1. Mathematical complexity of PST models paired with evidence of funds of knowledge 
 Low Mathematical 

Complexity 
Low-Moderate 
Complexity 

Moderate-High 
Complexity 

High Mathematical 
Complexity 

PST PST5 PST16 PST27 PST30 
Evidence 
of Funds of 
Knowledge 

knowledge of 
soccer positions 
and interest as 
future coach 

opinion of most 
important skills 
for soccer 

related “strength” 
in sports context 
mathematical 
average 

notion of “fair” was 
validated by the 
modeling process 

 
Moving toward more mathematically complex models, 10 PSTs created models that focused 

on only one soccer skill (e.g., “blocks”), then created a ranking to distribute players to each team. 
PST16 ranked and ordered players based on their number of “blocks” and considered the number 
of goals scored as a tiebreaker. She deliberately chose to focus on defensive blocks, stating, “my 
reason for this is that defense is the most important aspect...defense is most important because 
the better your team is at defense the less goals the other team scores." Then, PST16 matched 
players on opposite ends of the list (i.e., 1 and 12, 2 and 11, etc.) and placed pairs on opposing 
teams. Other PSTs used this distribution method and called it “the rainbow method” due to the 
concentric arc shapes formed during the pairing process. 
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Two of the high complexity solutions considered all three skill categories in their models, but 
in different ways. Both PSTs based their models on their knowledge and assumptions about what 
it means to be “strong” or a “good player” in soccer. PST27 calculated an average for each of the 
three skills and created three categories: strong runners, strong “shooters”, and strong blockers, 
where “strong” was defined to be above the average. Then, she placed players that were strong in 
one category first, so that they "can participate in the game in the way they are strongest." 
Finally, she distributed players that were strong in two categories based on what skills she 
determined the teams were lacking.  

PST30 ranked players across all three skills and considered the top and bottom two players in 
each category, assigning one of each pair to a different team. Then, PST30 placed the remaining 
players on teams in three different ways, calculating “average skill levels” for both teams on all 
three attempts. She ultimately chose the configuration for which the two teams had the closest 
averages to each other. Although this model incorporated a modified guess-and-check method, it 
utilized the validating and revising steps of the modeling process to verify that the teams created 
were as fair as possible. 

Based on these findings related to the flexibility and complexity of mathematical strategies, 
we present some themes and suggest prompts for audience discussion.  

Discussion Prompts 
The HTP and the Soccer task provided opportunities for PSTs to explore the modeling 

process and the benefits of flexible, open-ended tasks. The Soccer task highlighted the often-
ambiguous nature of authentic mathematics in real-world situations and how assumptions impact 
final answers.  What assumptions did PSTs make when solving the Soccer task and how did these 
assumptions influence their mathematical models?  

Within the modeling process, an important part of making sense of the situation and making 
assumptions is to simplify the situation so that a model is feasible. While we explored the 
complexity of models, how could we also explore the “degrees of simplicity,” in other words, the 
extent to which PSTs simplified the task to create a more manageable model? 

We deemed several models to be quite mathematically complex. However, while some PSTs 
suggested giving more importance to one skill over the others, no models explicitly mentioned 
“weighted averages” or used this mathematical concept in their solution strategies. This presents 
an opportunity to revisit the Soccer task later in the semester (or possibly in future semesters) 
and let PSTs revise their previous models to incorporate other mathematical tools and concepts. 
How can the revision process be a powerful tool in undergraduate mathematics courses? 

The examples of high complexity solutions came from students who would not be placed at 
the top of the class in the traditional sense, both in terms of class participation and grades. 
However, they created sophisticated mathematical models and successfully engaged in this task. 
How can mathematical modeling tasks promote a growth mindset for PSTs and provide space for 
them to showcase their diverse ways of understanding and doing mathematics? Furthermore, 
how can mathematics education researchers leverage modeling tasks to highlight anti-deficit 
narratives in research on student learning? 
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Linear Algebra as a Prerequisite: A Pilot Study 
 
 Anna Marie Bergman Dana Kirin 
 Simon Fraser University Portland State University 

It is well known to anyone who teaches introductory linear algebra that it is often populated by 
students from across the STEM disciplines. However, as a research community we don’t have a 
more systematic understanding of where exactly these students are coming from. In this report, 
we present findings from a preliminary investigation aimed at identifying fields of study, often 
referred to as client disciplines, that depend on introductory linear algebra as an important 
component of their undergraduate curriculum. By conducting a direct survey of undergraduate 
course catalogs from thirty colleges and universities across the United States we created a list of 
undergraduate majors requiring some kind of introductory linear algebra course as a 
requirement for degree completion. This report details and explores the variation between and 
within various majors and fields of study. Initial analysis revealed 60 distinct majors, nested 
within 15 fields of study. 

Keywords: Linear Algebra, Prerequisites, Client Disciplines, Applications 

Introduction 
Historically, linear algebra has played an important role in the undergraduate mathematics 

curriculum, providing students majoring in mathematics with an introduction to more abstract 
concepts and preparing them for higher-level mathematics courses. As the mathematical sciences 
have become increasingly integrated with other disciplinary fields (National Research Council, 
2013) there has also been an expansion in the applications of linear algebra outside of 
mathematics and, in turn, an increase in the number of students from client disciplines taking 
Linear Algebra courses at the undergraduate level. Despite the changing student population, 
applications of linear algebra concepts are generally not a primary component in the curriculum 
(Bergman & Kirin, under review), potentially creating “significant difficulties for students who 
struggle to grasp the more theoretical aspects of the course (Stewart, Andrews-Larson, & 
Zandieh, 2019).  

At the same time, recommendations have been put forth by the research community that 
recognize the changing role that linear algebra plays in today’s society. For instance, the 
Committee for the Undergraduate Mathematics Program (CUMP) states that “Every linear 
algebra course should incorporate interesting applications, both to highlight the broad usefulness 
of linear algebra and to help students see the role of the theory in the subject as it is applied” 
(Diefenderfer, Hill, Axler, Neudauer, & Strong, 2015). Similarly, when the Linear Algebra 
Curriculum Study Group, an NSF funded working group composed of both mathematicians from 
across the country and consultants from a variety of client disciplines, came together to produce 
a set of recommendations for a first course in linear algebra, their very first recommendation 
was: “The syllabus and presentation of the first course in linear algebra must respond to the 
needs of client disciplines” (p.41, Carlson et al., 1993). 

More recently, in an article surveying research in linear algebra, Stewart, Andrews-Larson, 
and Zandieh (2019) point out that future research needs to focus on how linear algebra is applied 
in other fields, suggesting that such research could inform the design and selection of 
applications and topics in the classroom. We agree with these researchers that more attention 
needs to be paid to identifying, designing, and incorporating realistic applications of linear 
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algebra into the classroom. In response to this, we feel that a natural first step is to systematically 
document what other disciplines rely heavily on linear algebra. Thus, we ask:  

1. What undergraduate majors and fields of study require introductory linear algebra as part 
of their curriculum?  

2. How common are these majors and fields of study across institutions? 

Methods 
We would like to begin the methods by defining both a field of study and a major. A field of 

study is a branch of knowledge (e.g., art, mathematics, philosophy) and we use the term 
interchangeably with disciplines. Whereas a major is defined as a program that results in a 
bachelor's degree upon completion (e.g., Bachelors of Science in applied physics).  

In order to investigate how introductory linear algebra (200-300 level) is serving as a 
prerequisite, we chose to look at undergraduate majors that listed introductory linear algebra as a 
requirement for degree completion. For this pilot study, our data set consists of a sample of 30 
institutions, including doctoral, masters, and bachelors-granting colleges and universities from 
across the United States. A direct survey method was used to obtain degree requirements as 
listed in the most recently available course catalog from each institution. Direct survey methods 
make use of available material that exists online or in printed format (Stefanidis & Fitzgerald, 
2014) and allow for data collection in a systematic way (Kung, Yang, & Zhang, 2006). In other 
words, a direct survey method can help to provide a comprehensive snapshot of specific 
undergraduate programs of interest in the United States (Bell, 2012). 

For this study we utilized university web sites and course catalogs as the primary source of 
information for the survey data. We began by searching course catalogs for mathematics courses 
currently offered at each institution in order to determine the specific course numbers for 
introductory linear algebra courses. We then searched the entire undergraduate course catalog at 
each institution for both the term “linear algebra” and specific course numbers. This search 
produced a list of all majors at each of the institutions that noted linear algebra as a requirement 
for completion. Note we did not list majors that listed linear algebra as an elective although nor 
did we list specific courses that required linear algebra, although, these are both dimensions of 
data collection we feel are worth exploring in a follow-up study. Once we had a list of majors, 
we then grouped like majors into their more general fields of study. In doing this our hope was to 
highlight the commonalities among the various majors while also recording the variation in 
focuses and specializations. 

Results 
As analysis is ongoing, in this preliminary report we share findings with respect to our first 

research question: What undergraduate majors and fields of study require introductory linear 
algebra as part of their curriculum?  

Our results organize the 175 instances where an introductory linear algebra course was listed 
as a requirement for degree completion across the 30 institutions. These 175 instances were then 
grouped into 15 fields of study and collapsed into 60 unique majors. Table 1 shows the variation 
in the types of fields of study. These fields of study provide an overview of the types of 
disciplines that are leveraging linear algebra. Note that if a single institution offered both a 
Bachelor of Arts, BA, in mathematics and a Bachelor of Science, BS, in mathematics only one 
“mathematics” major was counted. However, if a single institution offered both a BS in 
mathematics and a BS in applied mathematics, they were counted as two different majors. 
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Table 1. Fields of Study 

Fields of study  

Mathematics  
Engineering  
Computer Science     
Statistics  
Physics  

Data Science  
Dual Programs  
(i.e. math/physics) 
Economics  
Chemistry  
Neuroscience  

Astrophysics  
Geoscience   
Cognitive Science 
Industrial Technology 
Sociology 
  

 
Again there were 60 unique majors across the 15 fields of study. Table 2 highlights how the 

60 majors were distributed across the 15 fields of study. If a single institution offered both a BS 
in mathematics and a BS in applied mathematics, they were counted as two different majors. 
  
Table 2. Fields of Study and types of majors 

Fields of study (and # of unique majors within) 

Mathematics (10) 
Engineering (15) 
Computer Science (3)     
Statistics (5) 
Physics (5) 

Data Science (4) 
Dual Programs (4) 
(i.e. math/physics) 
Economics (4) 
Chemistry (3) 
Neuroscience (2) 

Astrophysics (1) 
Geoscience (1)   
Cognitive Science (1) 
Industrial Technology (1) 
Sociology (1) 
  

  
While the fields of study can provide us with a general overview of the client disciplines 

using linear algebra, it is also important to consider the variation of concentrations within each 
field. This offers a more specific understanding of the applications that require linear algebra. Of 
the 15 fields of study, 10 had variation in the types of majors offered. Table 3 further illustrates 
this variety within a single discipline, engineering.  
  
Table 3. Unique Engineering Majors within the Field of Study: Engineering 

Unique Engineering Majors 

Bioengineering 
Bioengineering: Pre-med 
Chemical Engineering 
Civil Engineering 
Computer Engineering 
Cyber Security Engineering 

Electrical Engineering 
Electronics Engineering 
Financial Engineering 
Industrial Engineering and 
Management 
  

Manufacturing Engineering 
Mechanical Engineering 
Nuclear Engineering 
Systems Engineering 
Software Engineering 
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For our presentation we will further describe other fields of study and the various majors 

within them. Additionally, we will share results related to how these fields of study and majors 
are distributed across our sample of institutions. Such findings can help provide insight into how 
common these fields of study and majors are as well as differences that may exist across 
institutional types (e.g., doctoral, masters, bachelors granting).  

Discussion and Implications 
While some of our results were expected, others we found quite surprising. For instance it 

seemed obvious that many mathematics majors would require introductory linear algebra. From 
the existing research literature, and our own experience with the course, fields of study beyond 
mathematics such as engineering, physics, and chemistry were also fully anticipated. However, 
we were not expecting such a wide variety of disciplines, and we found some of the fields of 
study such as sociology and astronomy to be particularly interesting. We were also surprised by 
just how many unique majors required linear algebra (60) across the 30 institutions. The 
diversity of fields identified in these preliminary results and the large number of majors requiring 
linear algebra further support the notion that this kind of systematic study of the applications of 
linear algebra is both informative and worthwhile.  

A systematic understanding of how linear algebra is being used as a prerequisite can be 
utilized in at least three different ways. First, it can be particularly helpful for curriculum 
designers who want to heed the calls to incorporate interesting applications (Diefenderfer et al., 
2015) and to respond to the needs of client disciplines (Carlson, et al., 1993). Second, a better 
understanding of the majors requiring linear algebra can help linear algebra instructors better 
understand and serve their students’ needs. Carlson, et al. (1993) claim that since most students 
currently take only one course in linear algebra, it is imperative that the course syllabus contain 
the topics and concepts needed most by the majority of the students. Lastly, this research can be 
leveraged by educational researchers by starting to identify topics that might be appropriate for a 
second course in linear algebra, one which includes more abstract topics, as we continue to 
document, and serve, industry needs (Stewart et al., 2019).  

Directions for Future Study and Questions for the Audience 
Again the results presented in this preliminary report are from a pilot study of 30 institutions. 

We have already begun to outline a larger study looking at a much larger data set of institutions. 
We are sharing these preliminary findings with the research community in order to foster 
discussion that can provide us with valuable insight as we decide how to move forward with our 
study. Some of the questions we would like to discuss with the audience are: 
  

○ Q1: In terms of adding to the research knowledge base, what would be the 
benefits (drawbacks) of focusing on introductory linear algebra (300 or below) 
versus any undergraduate linear algebra course? 

○ Q2: In terms of populations, we’re considering R1 and R2 universities. What 
advantages or disadvantages might this and/or other populations have? 

○ Q3: What about courses that require linear instead of just majors? This would be a 
much larger data set but would also give much more insight on how linear algebra 
is being used as a prerequisite. Would this be worth pursuing and, if so, how? 
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Generalizing in the Context of a Generic Example 
 

David Brown 
Portland State University 

Generalizing is a keystone of mathematics instruction at all levels. The goal of this preliminary 
report is to begin articulating the ways in which students generalize in the context of a generic 
example. The study takes place in a university introduction to proof classroom, and follows one 
group as they seek to first explain why a sequence converges and then come up with more 
general conjectures. Using transcript data and Ellis’ (2007) generalizing taxonomy I describe 
student activity while generalizing, and frame the data according to the process of generalizing 
with a generic example.  

Keywords: generalizing, generic example, real analysis 

Generalizing is a keystone of mathematics instruction at all levels. Generalization can be 
thought of as the broadening the context of a particular argument or claim (Harel & Tall, 1991). 
Many scholars have studied generalization (e.g., Ellis, 2007; Park & Kim, 2017) and continue to 
express a need for better understanding how students generalize, and can be supported in this 
venture. One way that mathematicians generalize is through reasoning generically about a 
specific example, this is referred to as a generic example. Mason and Pimm (1984) define a 
generic example as a concrete example in which one can see the general. They give a number of 
examples in everyday life, such as Kleenex. Kleenex is facial tissue, but the name is synonymous 
with the object. It is a specific example of facial tissue, but one may be predisposed to consider 
all things called Kleenex as a facial tissue. Similarly, Harel and Tall (1991) define a generic 
example as a specific example seen by an educator as representing an abstract idea (pp. 41).  

In the case of proof specifically, Balacheff (1987) describes a generic example as an attempt 
by a student to prove a general claim. Cassabut et al. (2012) describe Balacheff’s 
conceptualization of generic example (since the original manuscript is in French), “the generic 
example makes the reasons for the truth of an assertion explicit by operations or transformations 
on an object that is a characteristic representative of its class” (pp. 173). In other words, generic 
examples are descriptions of students’ attempts to prove a conjecture in general, but doing so in 
the context of a specific example, which is often seen as a naïve proof construction.  

I view a generic example similarly to Mason and Pimm (1984), and Harel and Tall (1991), in 
that a generic example is something specific that one can use to reason more generally. I seek to 
expand on these definitions of generic examples by viewing them as processes through which 
one can reason generically about the specific. I do not believe that there are examples that exist 
that are purely generic, but rather it describes a large class of examples that can be reasoned 
about in a generic way to make sense of general behavior. This study examines the nature of 
generalizing in an introduction to proofs course taught using curriculum materials developed 
using the design heuristics of Realistic Mathematics Education. In particular, this preliminary 
report focuses on how students generalize in the context of generic examples, and the processes 
one goes through while reasoning generically about an example. 

Theoretical Perspective 
There is a growing body of literature on student thinking on generalizing in mathematics. 

Ellis (2007) reviews a large body of research and contributes a student-centered approach to 
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generalizing. Ellis (2007) presents a taxonomy for student generalizing actions and the reflection 
generalizations that are produced. Ellis argues that the actions involved in generalizing include 
relating, searching, or extending. Relating involves a student making a connection between two 
scenarios. Searching involves reviewing a number of examples in order to find some common 
property, this action needs to be repeated in order to count as searching (pp. 238). Extending 
involves a student noticing a common property or relationship and then also goes on to expand 
the pattern to capture more cases (pp. 241). These then result in reflection generalizations which 
are identifications or statements, definitions, or influences. When a student makes an 
identification or statement they verbally or in writing express a general statement in the form of a 
rule, pattern, or property (pp. 245). In order for a reflection generalization to count as a definition 
the student’s statement (verbal or written) must communicate the “fundamental character of a 
pattern, relation, class, or other phenomenon” (pp. 248). Lastly, influence applies a previously 
developed generalization to a new context (pp. 249).  

Using Ellis’ (2007) framework allows the researcher to have a student-oriented perspective 
when studying generalizing activity. However, Ellis does not explicitly attend to the notion of 
generic examples. This study seeks to contribute to the growing body of student thinking on 
generalizing by illustrating how students generalize in the context of a generic example. In 
particular this study seeks to address the question: What are the features of student activity when 
generalizing in the context of a generic example? 

Methodology 
Data for this study comes from a larger, ongoing NSF-funded project (ASPIRE in Math, 

DUE 1916490) that is developing Introduction to Proof curricula and accompanying instructor 
support materials for the guided reinvention of the foundations of real analysis. The ASPIRE in 
Math project curriculum is being implemented in several university and community college 
courses across the West Coast of the United States as well as other community colleges across 
the country. The data for this preliminary study is from an implementation at a university 
Introduction to Proofs course. This course was taught remotely by two instructors (one faculty 
member and one doctoral student) assisted by another doctoral student. The class had 14 students 
whose demographics were representative of the university at large. The class met synchronously 
over Zoom for 10 weeks, twice a week for 1 hour and 50 minutes.  The class activities were 
captured using screen recording technology, zoom recording, and Google Docs. This particular 
study focuses on one class day and follows the assisting doctoral student (the teacher-researcher 
for this study or TR) and his small group of 4 students as they were working on a generalization 
task and culminates with the students coming up with general conjectures.  

Due to space constraints only the relevant portion of the instructional sequence is presented 
here. For more details see Larsen, Alzaga Elizondo, et al. (submitted), Larsen, Strand et al. (in 
progress), and Strand, et al. (in progress). In this episode students were working with a sequence 
generated by a root approximation method called the Bisection Method. Students develop this 
method by determining an algorithm one might use to approximate a root of a continuous 
function that has a sign change. The method involves first determining an interval where there is 
a sign change, the left endpoints are labeled with 𝑎! and the right endpoints are labeled with 𝑏! 
(where 𝑛 ∈ 	ℕ). Then, one finds the midpoint between 𝑎" and 𝑏", with 𝑎" < 𝑏", called 𝑐", test the 
output of 𝑐", and replacing 𝑎" or 𝑏" with 𝑐" depending on the output sign, and then repeating 
until desired accuracy of the root is obtained. The students are then reoriented by the instructors 
to no longer assume there is a root, but to prove that one exists. This method generates the left 
endpoint sequence denoted by 𝑎! and this sequence serves as a generic example of a sequence 
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that is increasing and bounded above. The episode analyzed below follows almost immediately, 
and involves two tasks: (a) why does the left endpoint sequence converge, and (b) come up with 
general conjectures to explain why the left endpoint sequence converges.   

From the video data collected, a transcript of the day was created. This transcript was 
analyzed using Ellis’ (2007) taxonomy for generalizing actions and reflection generalizations. In 
order to identify instances of generalizing, the transcripts were coded according to utterances by 
students that evidenced generalizing activity based on the framework. Once the coding was 
complete, an analytic memo was written to recreate the story of the classroom interactions and 
patterns describing how students reasoned with a generic example were identified.  

Initial Results 
The analysis of the data revealed that these two tasks represent three phases of student 

activity while generalizing with a generic example: (a) make sense of the example, (b) figuring 
out what makes the example tick, and (c) generalizing and conjecturing further. I will illustrate 
these phases below.  

Make Sense of the Generic Example 
In order to generalize from a generic example one first needs to make sense of the example 

itself.  Below, I will give instances of two students offering generalizations about why the left 
endpoint sequence converges. The two instances seek to illustrate the ways students generalize 
when they have and have not yet identified the left endpoint sequence as a generic example. 

The teacher researcher starts the task by asking the students to come up with a reason for 
why the left endpoint sequence must converge. Leah begins by offering the following 
generalization: 

Well, I, when I was doing the homework, I was just thinking about, if you start with a 
point, an “𝑎” value that has a positive outcome, and a “𝑏” value that has a negative 
outcome, there’s going to be some point where that switches over and depending on the 
function, the first few values you have aren’t going to be exactly where the switch is 
going to happen. So, you just have to keep narrowing it down. 

Leah explains that one starts by determining where the sign change occurs, and that the first 
values aren’t necessarily near the location of the root, so one continues to iterate the method – 
but she does not explicitly attend to how she knows the left endpoint sequences converge. She is 
relating different situations in which she has encountered the bisection method. In this way, Leah 
is still working to make sense of the example of the left endpoint sequence because she has 
described the bisection method but not the sequences that are generated. In contrast, Maya has 
already made sense of the left endpoint as an example:  

So, when you’re doing this method, each next term of the left endpoint sequence that 
you’re making is either going to be the same as the term you were on because the other 
one changed, or it’s going to go halfway to the other term, right? So um, you’re either 
adding zero to it, if it stayed [sic] the same, or you’re adding the difference between [𝑎!] 
and 𝑏#$%&	!. 

Maya’s contribution starts with her orienting herself with the bisection method as Leah did, 
except that she also searches across various examples (mentally) and identifies a common 
pattern that is specific to the left endpoint sequence. Maya says “when you’re doing this 
method” demonstrating that she has identified the process from a number of examples she’s 
worked with in the course. She’s generalized that the left endpoint sequence either stays the 
same or the terms move to the right along the number line, as evidenced by her statement 
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“each next term of the left endpoint sequence that you’re making is either going to be the 
same as the term you were on … or it’s going to go halfway to the other term.”  

These excerpts reveal two different ways students may work to identify the example they are 
asked to consider. While both of the students worked to come up with reasons why the left 
endpoint sequence converges, Leah’s contribution really told the story of how she was trying to 
make sense of the task. Whereas Maya identified the left endpoint sequence and also reasoned 
about it generally to come up with a reason that it must converge. The next subsection explores 
the different reasons the small group came up with to explain why the left endpoint sequence 
converges.  

Figuring Out What Makes the Example Tick 
In this phase the students identify the salient properties of why a particular phenomenon 

occurs within the context of the generic example. As evidenced in the way Maya discusses why 
the left endpoint sequence converges (see above) one can see that Maya has already worked to 
understand what the general features of this sequence are that convince her it must converge. A 
few minutes later Maya offers another reason for why the left endpoint converges.  

 Maya: I suspect you might be looking for something like it’s increasing, and it has an upper 
bound of 𝑏!. 

TR: So 𝑎! is increasing. And it has an upper bound of 𝑏!. And so, what is... 
Maya: or 𝑏… or first 𝑏? 
TR: Okay, 𝑏". 
Maya: Yeah, 𝑏" works. 

Maya generalizes by extending since she has removed all context except for the salient features, 
and results in the identification of a general rule (i.e., that the sequence is increasing and 
bounded above by 𝑏"). What follows is Leah making sense of Maya’s contribution.  

Leah: I like [the increasing and bounded statement], I didn’t really think about how - I mean, 
it’s kind of implied when you do the bisection method, but I didn't really think about 
using that it has an upper bound of 𝑏" to prove why it converges. I found that interesting. 

TR: Yeah, that is interesting, right? Because what does that actually mean? What does this 
mean? If we have an upper bound of 𝑏", what does it mean about our sequence? 

Leah: That our 𝑎! will never cross that point? And in a lot of cases, it’s not even going to get 
very close to it, because the 𝑏’s are going to get closer to that convergence point 

TR: I see. Okay. All right, does it so what is this purpose here of this increasing component, 
then? Because if I’m bounded, right, why does it matter that I’m also increasing? 

Leah: Because it’s gonna approach that point, but never cross it? 
Maya’s second contribution was important for at least two reasons. First, Maya sees that the left 
endpoint sequence is both increasing and bounded above by 𝑏" which are both salient properties 
of the left endpoint sequence that can be used to develop more general conjectures. Second, 
Maya’s contribution assisted Leah in identifying the general properties that she struggled to 
articulate earlier in the task. Leah is now making sense of these concepts as helpful to justify 
why the left endpoint sequence converges. The next phase proceeded almost immediately.  

Generalizing and Conjecturing Further 
In this phase the students are reflecting on the properties they found previously and 

generalizing further so that the properties are no longer tied to the left endpoint sequence and can 
now explain general phenomenon. This phase was signaled by a shift to a new task by the 
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teacher-researcher. Namely, “Write a general conjecture of the form ‘Let 𝑥! be a sequence. If 
____, then 𝑥! converges.”  

The statement that the left endpoint sequence is increasing and bounded above by 𝑏" was 
easier to generalize for the group. They were able to capture the property in the following way: if 
a sequence is increasing and bounded above, then 𝑥! converges. The first statement that Maya 
gave was harder to generalize. Recall that Maya’s initial contribution was that “you’re either 
adding zero to [𝑎!], if it stayed [sic] the same, or you’re adding the difference between [𝑎!] and 
𝑏#$%&	!.” Leah attempts to reframe this conjecture more generally “can we say that if (𝑏" 	−
	𝑎")/2! goes to zero, then we know that 𝑎! converges?” Leah has identified that the distance 
between consecutive terms of the left endpoint sequence can be expressed by (𝑏" 	− 	𝑎")/2!. 
This is not fully general yet, because Leah is still relying on the context of the bisection method. 
A few minutes later, Maya offers a generalization that builds on Leah’s thoughts: 

Okay, I have something for this one. I was just waiting so people can [sic] think. If the 
limit of basically the difference between steps goes to zero. So, if the limit of 𝑎!(" 	−
	𝑎!, because you’re just dealing with the… or I guess 𝑥!, so 𝑥!(" 	− 	𝑥! goes to zero, 
then the sequence converges.  

Here, Maya’s generalization is again extending by removing context to apply to broader cases, 
these include changing the symbol 𝑎! to 𝑥!, and she further generalizes the (𝑏" 	− 	𝑎")/2! goes 
to zero property to the property that the distance between consecutive terms is decreasing. At this 
point the students have used the left endpoint sequence as a generic example of a sequence that is 
increasing and bounded above, as evidenced by their final generalizations.  

Discussion and Conclusion 
In this study I sought to identify the features of student activity when generalizing in the 

context of a generic example. This study starts to articulate a process for generalizing from a 
generic example which includes three phases: (a) make sense of the example, (b) figuring out 
what makes the example tick, and (c) generalizing and conjecturing further. The utility of these 
phases requires more research, but initially there is promise for instructional heuristics to support 
students at all levels to generalize with a generic example. 

Furthermore, the collective generalizing that takes place in these episodes indicate that 
providing students opportunities to work on this generic example in small groups has promise. 
For example, Maya and Leah collaborated to make sense of the example and to come up with the 
general conjectures in the end. Ellis (2011) refers to the actions taken by Leah and Maya as 
generalizing-promoting actions. Therefore, this suggests that collective generalizing takes place 
in the complex interactions in the classroom between students and instructors and between 
students and other students.  

The presentation will include an expanded data set to further articulate the process by which 
one reasons generically with an example. The presentation will also further explore the notion 
collective generalizing. 
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More Than Just the Math: Embedded Tutors May Provide More Than We Hoped For 
 
 Anne Cawley Jose Contreras Eva Fuentes López 
 Cal Poly Pomona Cal Poly Pomona Cal Poly Pomona 

Developmental math (DM) courses historically and disproportionately affect the persistence and 
success of minoritized students. Embedded tutors (ET) have been utilized in many classrooms as 
a way to support student learning in such courses (Hayes, 2021). We analyze interviews and 
classroom observations of a DM course to understand how an ET is utilized in the classroom. 
The data show that the tutor was mainly used to support mathematics learning, yet he possessed 
a wealth of cultural capital that could support students holistically. We plan to discuss with the 
audience ways that tutoring centers and faculty can amplify such assets of ETs in the classroom.  

Keywords: Embedded tutor, Equity, Developmental Mathematics 

Community colleges serve a large number of historically minoritized, first-generation, and 
low-income students (Bahr, 2010; Baum et al., 2016). Many community colleges offer a pathway 
for students to develop foundational knowledge of mathematics through a series of 
developmental mathematics (DM) courses, which provide the “skills necessary to perform 
college-level work at the level required by the institution” (Parsad & Lewis, 2003, p. 1). Students 
enrolled in these courses may be required to complete multiple semesters before they can 
officially enroll in college-level mathematics. It has been found that Black and Latina/o students 
are more likely to be placed into DM class (Bahr, 2010) and less likely to pass the class 
compared to their White peers (Hayes, 2021), causing delays to completion as well as increased 
financial strain (Larnell, 2013). The mismatch between the purpose of DM courses and student 
outcomes in such courses brings critique of the overall effectiveness of the DM pathway.  

To compensate for overall student performance in DM courses, some community colleges 
have heavily relied on tutoring with the hope that it will increase student passing rates. Hayes 
(2021) found that students are more likely to pass DM courses for every additional hour of 
tutoring as well as more likely to enroll in the next math course. Many mathematics departments 
have created well-structured tutoring centers to provide specialized content help for students in 
all courses. In this study, we discuss the use of embedded tutoring, in which an individual 
“works in the classroom under the instructor’s guidance to help students understand course 
concepts and enhance student engagement” (Hayes, 2021, p. 27). Many institutions utilize 
embedded tutors (ETs) in classrooms to provide immediate support in the moment of learning. 

Because DM courses have such low success rates (Bettinger, Boatman, & Long, 2013), many 
institutions have begun to place ETs into the classroom to increase student engagement, aiding 
the instructor by increasing one-on-one support for students during their learning. Oftentimes it 
is seen as an equitable answer to the challenges of high classroom enrollment and providing 
students with more sources of expertise. In this paper, we analyze the ways in which an ET was 
incorporated in a DM course, and other ways an ET can support student success.  

Conceptual Framework 
We use two frameworks to guide this study: the four constructs of mentoring framework 

(Nora & Crisp, 2007) and the asset-based community cultural wealth framework (Yosso, 2005). 
Nora and Crisp (2007) realized that mentorship was a key component to student persistence, 
creating four constructs to mentorship. Similar to Henry, Bruland, & Sano-Franchini (2011), we 
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adopt these four constructs and use it to encompass the role of an ET. In the context of the study, 
we define an ET to be a more experienced student at the institution who has completed the 
course that they are supporting, attending and engaging in every class meeting.   

The first construct outlines academic subject knowledge, what is traditionally considered as 
the main role of a tutor. Psychological and emotional support describes a relationship between 
the tutor and a student where the student feels that their emotions are being listened to, 
encouragement is being provided, or when a student feels more comfortable with the tutor. Goal 
setting and career paths is a construct that describes how a tutor may be able to assist a student 
and provide advice for academic or career goals. The final construct is to be a role model. A tutor 
has their own lived experience as a student at the institution, often different than an instructor, 
from which students can gain insight, guidance, and awareness about being a successful student.  

Because the ETs are also current students at the institution, they may have accumulated a 
wealth of knowledge different than an instructor may be able to provide for their students. Yosso 
(2005) stresses the importance of considering the non-traditional forms of capital that 
underrepresented students bring to their learning including linguistic, familial, social, 
aspirational, resistant, and navigational capital. Linguistic capital refers to the ability and skill 
needed to speak in more than one language/dialect, which can help bridge the gap in learning 
that is not caused by the content knowledge itself. Familial capital can form cultures of 
community and bring with it lessons of caring and expanding definitions of family. Social 
capital is the knowledge and ability to draw on social content and resources to best navigate 
educational institutions. Resistant capital refers to skills gained through challenges to inequality. 
This type of knowledge flows from generation to generation and teaches students to understand 
their value in a system that often devalues them. Aspirational capital is the “ability to maintain 
hopes and dreams for the future, even in the face of real and perceived barriers” (p. 77). 
Navigational capital is the practical knowledge gained from having to interact with institutions 
that were not built to support communities of color, and to be able to utilize such knowledge 
within the institution in order to navigate successfully to completion of a college degree. 

We consider the purpose of an ET to be more than just academic support. ETs spend as much 
instructional time with students as the instructor, positioning the tutor differently than if the tutor 
was just in a tutoring center. Therefore, we want to know how an ET can be leveraged to 
holistically provide support for students in a DM class. This paper focuses on the following two 
research questions: 1) How is an ET utilized during instruction in a developmental mathematics 
classroom? 2) In what ways is an ET able to support students, beyond content support?  

Methods 
Data for this paper were collected during Fall 2016 as part of a larger study that focused on 

the student instructional experiences of nine Latinx students in a developmental mathematics 
course (Cawley, 2018) supported by an equity grant at an HSI-designated community college in 
Southern California. The researcher observed 25% of all course meetings for one section of 
intermediate algebra, Math 5, and interviewed students, the instructor, and the ET using semi-
structured interview protocols. Alberto was assigned as the course ET. His duties included 
attending every class meeting and supporting the instructor and students. Alberto was a 23-year-
old Latino male, a first-generation college student in his fifth year at the institution, majoring in 
Civil Engineering with plans to transfer. Alberto described being trained by the tutoring center, 
being instructed to have the least amount of impact on the thought process of the students and 
was expected to avoid direct answers by responding to students’ questions with a question. He 
was not provided with any other ways to interact with students.  
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This paper focuses on the use and implementation of an ET in a DM course, as well as the 
opportunities in which an ET could support students outside of mathematical content. The data 
analyzed and discussed in this paper include one 90-minute interview with Alberto, triangulated 
by classroom observations/fieldnotes and focal student interviews. Alberto was interviewed to 
discuss his background, his role as an ET, and his views as a Latino studying in a STEM field. 
Nine students (Nancy, Raquel, Santiago, Teresa, Layana, Chris, Guillermo, Adriana, and Marisa) 
were interviewed about their instructional experiences, and specifically about their interactions 
with the tutor.  

The data were analyzed using two frameworks through deductive coding. To answer RQ1, 
we use Nora and Crisp’s (2007) four constructs that comprise mentoring. First, we reviewed the 
classroom observations, fieldnotes, student interviews, and tutor interview to provide a 
description of how the tutor was utilized in the classroom. We then reviewed these data sources 
again and applied the four codes whenever we saw the tutor providing academic support, 
psychological/emotional support, goal setting/career support, or acting as a role model. To 
answer RQ2, we use Yosso’s (2005) community cultural wealth framework to analyze the tutor’s 
interview transcript. We coded the transcript for moments when specific capital is referenced. 
Authors met to discuss the findings and discussed disagreements we had of application of codes.   

Findings 

How was Alberto utilized in the classroom? 
Alberto sat in the back of the class in a row of seats near the door, behind all of the students. 

On the first day, the instructor thought he was going to inform students on the tutoring center and 
then leave. When she asked him to give his pitch, he had to clarify that he was actually going to 
be an ET for the class and that he would stay for the entire semester. She quickly repeated what 
he said to the class, and moved on. During this exchange, the instructor did not ask the tutor 
come to the front of the class and none of the students turned to look at him. His role continued 
to be unclear, and the instructor did not intentionally incorporate him into the class. In fact, he 
was not used by students in the first few weeks of class; on the seventh class meeting the 
instructor asked him, again, what his role was and he replied that he was there to help students 
with questions. For the remainder of the class, he assisted students during short periods of 
individual practice time, and only if students in the back row beckoned him over. Throughout all 
of the observations, most students did not interact with him.  

Because of this structure, Alberto was mainly utilized to support students’ mathematical 
understanding. Alberto only worked with a few students in the class, mainly those who were in 
the back rows. During these interactions, he would provide mathematical steps for students to 
follow. Alberto felt this class was different than others, less interactive. “I’m stuck in a situation 
where I can’t interfere unless they ask. They don’t ask as many questions…other classes are 
much more open and it’s much easier [for students] to ask without feeling pressure.” Oftentimes 
he would spend the entire classtime working with one student. He often helped Raquel; she 
stated that she would call on him to help her begin a problem or ask him to check her work, 
which she found very helpful. Nancy said she avoided getting tutoring because many times tutors 
showed you a different way to attempt problems than what the teacher shows, which would 
confuse her. Given that Alberto sat in on every class, this was a missed opportunity for academic 
support. Both Nancy and Santiago did not engage with Alberto because he sat in the back of the 
room and they were positioned in the front of the room. Santiago acknowledged that an ET is a 
major resource, “The tutor knows more than me, obviously. A tutor will probably tell me how to 
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do it and I’ll remember it for sure. He’s more of a hands-on. I’m more of a one-on-one person 
than a one-to-twenty person”. Teresa would not call on the tutor because she did not want to 
appear to need help, but sat next to another student who regularly called Alberto for help. She 
would wait for Alberto to help her peer so she could overhear the his suggestion. Two other focal 
students mentioned often going to the tutoring center, but not engaging with Alberto in the class.  

The remaining three mentoring constructs were not as obviously present. Alberto provided 
psychological support for Raquel. Raquel stated that she felt part of the classroom community as 
long as she did not feel like she was ignored. She indicated that she preferred receiving help from 
Alberto because she felt more comfortable around him, and he always helped her when she 
needed it. While Alberto did not feel like he was a role model, he did feel that he needed to share 
his story with students, but did not share his story with students in Math 5. He indicated that as 
an ET in other math classes he was better integrated into the course, which provided him 
opportunities to share his story with students. He would tell students that he used to be in their 
position, and that he never imagined himself tutoring math. “Just by saying something so simple, 
I want to let them know that they can do it.” Alberto nor the students indicated giving/receiving 
support with goal setting or advice on career paths. Similar to the previous two constructs, this 
may not have occurred because of the limited amount of time he was able to engage with 
students or not being trained to provide such advice. 

How can a tutor support students beyond the math content? 
Of the six forms of cultural capital, Alberto described moments that strongly relate to 

resistant, social, aspirational, and navigational capital. Familial and linguistic capital were not as 
prevalent in his discussion of his educational experience and support as a tutor. 

Alberto demonstrated a strong understanding of his position as a Latino male in a STEM 
field, in which we found many instances of resistant and aspirational capital. All throughout 
schooling, Alberto saw scientists and mathematicians who were White, which he felt translated 
to implicit messaging, making someone who is different feel like they “aren’t part of this 
developed world” which could be “discouraging in math…it’s a super hard subject”. Alberto 
explained that Latinos are often portrayed in the media as a day laborer or some other low-level 
worker, and that these types of messages often made Latinos in his community feel like “why 
try?” because no matter what they did, they could not change society. This created two groups of 
Latinos in his eyes: those who tried, and those who did not. He wanted to try.  

It seeps into all aspects of society, work, school…going into the classroom, I kind of just 
realized that I was going to have a lot of adversity with that…So just being aware of what 
you’re going to face is going to help you more so you won’t be surprised or disappointed.   

Alberto’s resistance to falling into the stereotype amplified his aspiration to succeed.   
Alberto was originally placed in a lower-level DM course, requiring him to complete eight 

courses to arrive at Differential Equations, rather than six. His aspirational capital supported his 
determination to complete these courses successfully, admitting the path he needed to traverse 
would be lengthy. At times he felt like giving up, “There were points in time where I just thought 
I was done with school. I would just think about how much more I had still left. I would get very 
discouraged.” In some instances, he had to drop or repeat classes, extending his time to over five 
years at the two-year institution. He did not think he was good at math. “It wasn’t until Trig or 
Precalc that I started to realize it’s not only Asians or Whites or anything. It’s other people…they 
say race is a social construct. It’s just about determination.” His experience bolsters strong 
navigational capital and self-awareness. He began to understand that he could do math, but did 
not realize this until later in his journey. Had he not continued on to college-level math, he would 
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not have experienced that realization. He also came to understand when he could and could not 
complete a class successfully; he withdrew from Precalculus once and from Differential 
Equations twice and also recognized moments when he needed to stop out for a semester. He 
learned to understand the system in which he was positioned and how to best support his learning 
while not giving up. 

Alberto had people in his life that provided avenues of support for a career in STEM, which 
strengthened his social capital, and positioned him to be a support for others. His new step-
mother and other Latino family members were in the engineering field. He recalled a Latino high 
school teacher who had a degree in mechanical engineering who provided a lot of mentorship 
and emotional support for his Latino students. While his teacher did not point out race or 
ethnicity directly, “he [would say] ‘you guys can do it’. He would just use implicit 
encouragement so it can just be instilled for us to later use and we were told it is in us as well.” 
Alberto found this encouraging because his teacher also struggled in math throughout his 
education, yet was a successful high school math teacher. Alberto acknowledged that as a 
student, hearing his type of support from accomplished Latinos impacted him greatly, which is 
why he felt the need to also share his story with students.    

We did not find evidence to support linguistic capital, though Alberto’s mother learned 
English as he was growing up, which was similar to the experiences of the students' he supported 
in Math 5. He spoke Spanish, but did not discuss this as something he used when tutoring. While 
he stated that he did not really care if students learned the material or not (contradicting familial 
capital), he did discuss how he would stay after hours to help students, and even described his 
relationship with some students in Math 5. For example, he talked about Raquel; he felt that she 
was not putting in as much time into her studies as she should, yet he still worked with her 
regularly throughout the class to support her learning, even encouraging her to go up to present 
her work at the board. His concern for her indicated that he did feel an obligation to her learning. 

Discussion and Questions 
As can be expected, tutors are trained to provide academic content knowledge support, yet 

can also act as models of academic success through lived experience and encouraging social 
interaction and well-being (Gordon et al., 2006). We see that the implementation of an ET in one 
section of Math 5 was structured in such a way to minimally allow for math support, and did not 
provide the opportunity for other important supports that the tutor demonstrated as necessary to 
thrive in DM courses. We argue that an ET brings with them more than just mathematics 
knowledge. Alternative forms of capital (e.g., resistant, aspirational) may supplement other areas 
of mentorship. While we recognize that ETs’ main goal is to provide academic support, students 
also need social support to succeed (Tinto, 1975). Studies show that students often establish a 
meaningful connection with tutors, which in turn helps students feel more integrated to the 
campus which affects their learning (Reinheimer & McKenzie, 2011). We recognize that a tutor 
may not be prepared to fully take on important topics such as psychological well-being or career 
advising (Henry et al., 2011). Trainings can incorporate tools and resources so that ETs are 
equipped with current resources to best direct/support a student. Further, we recognize that the 
introduction/integration of an ET in the classroom needs to be carefully planned and maintained 
as students need multiple and regular opportunities to work with their ET. We would like to learn 
from the audience ways to capitalize on these additional ET supports in the classroom.  

24th Annual Conference on Research in Undergraduate Mathematics Education 949



References 
Bahr, P. R. (2010). Preparing the underprepared: An analysis of racial disparities in 

postsecondary mathematics remediation. The Journal of Higher Education, 81(2), 209-237.  
Baum, S., Ma, J., Pender, M., & Welch, M. (2016). Education pays 2016: The benefits of higher 

education for individuals and society. Trends in Higher Education Series. College Board. 
Bettinger, E. P., Boatman, A., & Long, B. T. (2013). Student supports: Developmental education 

and other academic programs. The Future of Children, 23(1), 93-115.  
Cawley, A. (2018). The instructional experiences of Latinx community college students in a 

developmental mathematics course taught by an adjunct faculty at a Hispanic-serving 
institution (Doctoral dissertation). University of Michigan, Ann Arbor, MI. Available at 
https://deepblue.lib.umich.edu/handle/2027.42/145887  

Gordon, E. E., Morgan, R. R., O'Malley, C. J., & Ponticell, J. (2006). The tutoring revolution: 
Applying research for best practices, policy implications, and student achievement. Lanham, 
MD: Rowman & Littlefield Education.  

Hayes, F.R. (2021). Embedded Tutors for Remedial Math (Doctoral dissertation). Sam Houston 
State University, Huntsville, TX. Available at  https://shsu-
ir.tdl.org/bitstream/handle/20.500.11875/3016/HAYES-DISSERTATION-
2021.pdf?sequence=1&isAllowed=y  

Henry, J., Bruland, H. H., & Sano-Franchini, J. (2011). Course-Embedded Mentoring for First-
Year Students: Melding Academic Subject Support with Role Modeling, Psycho-Social 
Support, and Goal Setting. International Journal for the Scholarship of Teaching and 
Learning, 5(2). 

Larnell, G. (2013). Toward reforming non-credit-bearing remedial mathematics courses in four-
year universities. UIC research on urban education policy initiative policy brief, 2(2), 1-11.  

Nora, A., & Crisp, G. (2007). Mentoring students: Conceptualizing and validating the multi 
dimensions of a support system. Journal of College Student Retention: Research, Theory & 
Practice, 9(3), 337-356. 

Parsad, B., & Lewis, L. (2003). Remedial Education at Degree-Granting Postsecondary 
Institutions in Fall 2000. Statistical Analysis Report. Jessup, MD. 

Reinheimer, D., & McKenzie, K. (2011). The impact of tutoring on the academic success of 
undeclared students. Journal of College Reading and Learning, 41(2), 22-36. 

 Tinto, V. (1975). Dropout from higher education: A theoretical synthesis of recent research. 
Review of educational research, 45(1), 89-125. 

Yosso, T. J. (2005). Whose culture has capital? A critical race theory discussion of community 
cultural wealth. Race Ethnicity and Education, 8(1), 69-91. 

 
 
 
 

24th Annual Conference on Research in Undergraduate Mathematics Education 950



Why do students rely on online homework over lecture? 
 

 Allison Dorko John Paul Cook 
 Oklahoma State University Oklahoma State University 

We observed student exam responses that used an approach from online homework that differed 
from the lecture approach. In this preliminary report we focus on three interviews investigating 
why. One student found learning from homework faster. Another found examples more 
memorable than concepts. We argue these students approached the exam as a didactical 
situation, adopting the role of students in a formal education setting whose job is to demonstrate 
an ability to solve a problem in exchange for recognition of this ability. This differs from an 
adidactical frame in which students engage with the mathematics in ways that demonstrate little 
to no consideration of the formal education setting.  The third student began in an adidactical 
frame but switched to memorizing the homework formula because he viewed his attempts to 
understand the lecture approach unsuccessful. More data collection will occur in fall 2021.  

Keywords: online homework, instructional triangle, didactical situation, adidactical situation 

Our study begins with an observation made by the second author (SA) in spring 2020 
regarding the multivariable calculus exam problem shown in Figure 1:  

 

 
Figure 1. A problem from a multivariable calculus exam. 

 
In class, SA had led students through a derivation of the formula for the component of 𝐴 in the 
direction of 𝐵$⃗  shown on the left in Figure 2.  The derivation was quantitative in nature and 
emphasized that the component of 𝐴 in the direction of 𝐵$⃗  is a specific magnitude (specifically, a 
length) whose measure can be obtained by computing the dot product of 𝐴 with the unit vector in 
the direction of 𝐵$⃗ . Part A was designed to assess students’ computational fluency, whereas part 
B was designed to determine if students had developed notions of the aforementioned 
quantitative understanding. While some students solved part A of the exam problem using that 
formula, others used the formula shown on the right in Figure 2; this formula only appeared in 
the ‘Practice Another Version’ feature in the online homework (with no derivation) and was not 
presented or discussed in class. 
 

Component of 𝐴 along 𝐵$⃗ = 𝐴 ∙ '
$⃗

|'$⃗ |
 

 

The component of u along v is )*𝒖∙𝒗
𝒗∙𝒗
-𝒗) 

Figure 2. Left: formula presented in class. Right: formula from online homework 
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This raised the question that motivated this study: why did some students use the formula from 
the online homework instead of the one presented in class?  We see this question as an 
opportunity to gain insight into more general questions about students’ engagement with lecture 
and online homework, which we discuss in the next section.   
 

Literature on Student Learning from Homework and Lectures 
 Undergraduate students spend more time doing homework than they do in lecture (Ellis 
et al., 2015; Krause & Putnam, 2016; Lew & Zazkis, 2019). In a nationwide study of calculus 
classes, White and Mesa (2014) found that, on average, 78% of the mathematical tasks assigned 
in a term were homework tasks. Additionally, students report homework tasks are often more 
useful for their learning than lecture (Glass & Sue, 2008). However, few studies exist that 
provide insight into what students learn from homework. Lew et al. (2016) state the field also 
needs to understand more about what students learn from lectures. They found that students in an 
advanced mathematics class did not understand the ideas in a lecture that the professor intended 
for them to learn. Students’ difficulty learning concepts from lectures is particularly problematic 
given that they are unlikely to experience significant conceptual development from homework 
problems (Dorko, 2021, 2020, 2019; White & Mesa, 2014).  We addresses both of the gaps 
identified above by studying how students might learn from both homework and lecture.   

 
Theoretical Perspective 

 We draw upon Dorko’s (2021) adaptation of the instructional triangle (Cohen et al., 
2003; Herbst & Chazan, 2012).  Instruction is conceptualized as interactions between a teacher, 
the knowledge at stake (content), and the student. Students experience instruction in various 
milieu, or counterpart environments that provide resources for and feedback on work. Lectures 
are one milieu in which students interact with the teacher and knowledge at stake. Online 
homework is another and an exam is a third. The didactic contract, the set of mutual, implicit 
expectations about the roles and responsibilities the teacher and students have to one another, 
governs these interactions (Brousseau, 1997; Herbst & Chazan, 2012).  Brousseau (1997) 
theorized that when students interact with teachers and/or with content, the situation can be 
characterized as didactical or adidactical. In a didactical situation, “the student acknowledges 
that while the teacher may assume they are asking a mathematical question, the student’s 
response may be more determined by the obligations of the schooling environment than 
mathematical sense-making” (Dawkins, 2014, p.91). In an adidactical situation, the student 
engages with the mathematics “without apparent recourse to the schooling environment that 
enveloped it” (Dawkins, 2014, p. 91). We employ the instructional triangle part of the theory as a 
way to position lectures, homework, and exams as distinct (but connected) environments 
(milieu). This implies a need to research student learning in each environment and to consider 
how the environments and connections between them afford and constrain student learning. The 
language of didactical and adidactical situations offers a way to make sense of students’ activity 
in various milieu.  
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Figure 3. Dorko’s (2021) version of the instructional triangle 

  
Methods 

The methods include two phases of data collection and three phases of analysis, as 
described below. The data come from three online sections of calculus III in fall 2020 and spring 
2021, with more data collection planned in fall 2021.  
Data Collection Phase 1: Written data 
1. Video recording of the relevant class period: the online students watched a pre-recorded 

lecture video. Each relevant in-person lecture will be recorded in Fall 2021. 
2. Students’ lecture notes: all students, regardless of course format, uploaded lecture notes to 

the online course management site.  
3. Students’ scratchwork from relevant online homework: students uploaded their scratchwork 

from the relevant online homework. 
4. Students’ responses to exam problems: the first author photocopied responses to Question 3 

(Figure 1) for all students who consented to participate in the research. The exam took 75 
minutes and students were allowed a single 3 inch by 5 inch notecard.  

Data Analysis Phase 1: Sort students’ work from (3) and (4) above into categories: 
(a) lecture method on both HW and exam, (b) online homework method on both HW and exam, 

(c) lecture method on HW, online homework method on exam, (d) online homework method 
on HW, lecture method on exam, and (e) other 

Data Collection Phase 2: Interview1 students from categories a, b, c, d above 
i. Show students their work from exam Q3 and ask them to explain what they did and why 
ii. Show students their lecture notes; ask what they understood of that formula and its derivation 
iii. If students used the online formula on their homework, ask what they understood about it 
iv. Ask why they used the online homework method (or vice versa as applicable)  
Data Analysis Phase 2: Employ a constant comparative analysis (Strauss & Corbin, 1994) to 
seek themes in the data regarding why students employed one method over the other 
Data Analysis Phase 3: Conduct a final phase of analysis in which the data (and the themes 
identified in Phase 2) are viewed through the lens of the constructs in the instructional triangle.  
This might include statements in which students express expectations, goals, or ideas about their 
relationships with the instructor, content, or milieu.  

 
Results 

                                                
1 Interviews were conducted by the first author, who was not an instructor of the course. The interviews took place 
as soon as possible following the exam, which was the first exam in the semester. 
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We conducted interviews with John, Sarah, and Henry, all of whom watched the video 
recording of the lecture, submitted notes that included the “lecture formula” and its derivation, 
then used the online homework formula on their homework and on the exam (due to space 
constraints, we focus only on responses to exam question (a), Figure 1). John mentioned that he 
focused on the homework because it was faster than re-watching lecture: 
John: Prior to this exam I just went and started looking over the homeworks…I just went and 

committed to memory the important equations, or whatever I felt was going to be most 
relevant on the exam… the homework’s faster for me to go through. It’s a lot easier for me to 
go and read down a whole bunch of homework problems than it is for me to go rewatch 
multiple 45 to hour minute long lectures. This exam actually went a little more rough because 
the review did not have everything that was on the exam on it. 

We interpret John’s statement that the exam was difficult because the review was not 
comprehensive as expressing an expectation (a “clause” in the didactic contract). Taken together, 
these statements suggest John viewed learning in this course as a didactical situation. John 
appeared to expect that the instructor was responsible for identifying the important knowledge by 
putting it in the exam review, and John’s role as a student was to complete the review, then 
demonstrate the knowledge on the exam. John’s activity (memorizing formulae) fulfills the 
obligations of the school environment, making it didactical activity. In terms of the research 
question, John relied on the online homework instead of the lectures because the homework was 
“faster”. Speed was important to him because he saw mathematical learning as a didactic 
activity. 
 Henry2 and Sarah contrast John in that they began in an adidactical frame. Henry 
described he wanted to understand the formula from lecture and asked for help. He was unable to 
understand it. When he got to the exam he was only able to solve the problem because he 
remembered the homework formula:  
Henry: I try to understand what does, how does that [lecture formula] mean like in real life…. 

But I don’t know why it’s like this… I would like to know but I don’t understand because 
every time I ask some other student like what is like this one… they say maybe if when you 
work or you have advanced courses then you will understand…why it is this way. Okay you 
have to know just how to solve it… It’s confusing and annoying but yeah… I was really 
stuck honestly…so what I did here [on the exam], honestly, I remember one of the 
homework.  

We take Henry’s comments as evidence of an adidactic focus. In particular, Henry did not say he 
wanted to understand the formula so that he could do well on the exam, but rather he wanted to 
understand what it meant “in real life.” However, Henry did not understand what had been 
presented in lecture. He used the formula from online homework because it stood out in his 
memory more. We take the comment about using that in hopes of obtaining partial credit as a 
brief shift to a didactical situation in which he hoped to exchange remembering a formula he did 
not understand for partial credit; like John, this activity met the obligations of the school 
environment. However, Henry did not find this satisfying: he commented that he still “wanted to 
know” the mathematics of the problem.  
 Like Henry, Sarah tried unsuccessfully to understand the formula from lecture and 
ultimately found that she remembered the online homework formula stuck because she did more 
examples with it than she did with the lecture formula:  

                                                
2 English is not Henry’s first language.  
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Sarah: It took me awhile for, to take from the lesson notes to the homework I had to get some 
help and ask about it because I was, kept trying to find like, it just didn’t click from the 
notes to that [lecture] formula, and finally I came to this [online homework] formula and 
was like oh that makes sense and I got the same thing with these numbers. I kind of just 
memorized [the online formula], I’m not going to lie. I learn math from examples. Like I 
have to do tons of examples. Just looking at lecture notes and having all of these like, not 
to be like words, but words, words and sentences kind of gets confusing sometimes. So 
the homeworks help me the most I think in like memorizing or like remembering.  

We view Sarah’s initial activity as adidactical because she tried to understand the formula from 
lecture, including asking for help. When she could not, she turned to the online formula. Her 
memorization of it indicates a didactic focus of trying to obtain good grades. We note that our 
interpretation hinges on interpreting Sarah’s “it just didn’t click” as indicating she was trying to 
understand and use the lecture formula (adidactical). An alternative explanation is that Sarah’s 
activity was totally didactical in nature, and it is possible that she could not figure out how to use 
the lecture formula for all the problems but the online homework formula gave her the right 
answers. In support of this, it was important to Sarah that she “got the same thing” with both 
formulas, and she admitted to memorizing (didactical). Without knowing more about what Sarah 
meant by “it just didn’t click” and the online formula “making sense”, it is impossible to say 
whether her activity was adidactical then didactical, or complete didactical.  

 
Discussion 

Our provisional results align with and extend those of prior studies.  Specifically, they 
affirm Dorko’s (2021) assertion that students’ use of examples during homework often supports 
procedural learning. Additionally, the students in this study turned toward memorizing the online 
formula because they did not understand the explanation in lecture, which echoes the Lew et al. 
(2016) findings. These results also suggest that students may rely on procedures from online 
homework because they consider them to be easier or more efficient.  This finding is significant 
because it adds nuance to other findings about students’ preference for procedures, such as those 
that students cling to procedures because they believe the nature of mathematics is procedural 
rather than conceptual (e.g., Spangler, 1992).  

An alternative explanation for students’ affinity for the online homework formula is that 
students obtain immediate feedback on online homework and try problems multiple times when 
given that option (Dorko, 2020). These students may have been more comfortable with the 
methods the homework suggests because they could use that method, then obtain feedback about 
it immediately. For instance, this could explain Sarah’s preference for the online formula. 
Students may also have spent more time using the online homework formula than the one they 
used in class. Whether or not either of these factors influenced students’ preference for the online 
homework formula is an area for future research.  

One implication for instruction is that instructors realize online homework may provide 
students with different formulas than the instructor presented. Although these students were 
aware the two formulas served the same purpose, we hypothesize other students might be 
confused by seeing two different formulas. In particular for this study and the formula presented 
in class, the results suggest that some students may have gained little from the in-class lecture. 
Instructors might consider what assessment questions in their own classes might reveal about the 
way they taught particular topics, and use that data to alter their instruction in ways that are more 
understandable or memorable to students.  
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Searching For The Math: Undergraduate Students’ Strategies For Using the Internet to Learn 
About Novel Mathematical Concepts 

 
Ander Erickson 
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Students make extensive use of online resources to support their learning in college-level 
mathematics courses (Erickson, 2020) but little attention has been paid to the specific strategies 
that students employ when using search engines to discover the meaning of novel mathematical 
concepts. This preliminary report offers a series of case studies that illustrate contrasting 
strategies used by students to understand the meaning of an unfamiliar mathematical notation. 
The results of this analysis demonstrate that information-seeking strategies are an important 
mediating factor in mathematical learning particularly with respect to mathematical content that 
is not directly addressed by the instructor. I discuss implications for supporting students’ study 
skills in undergraduate mathematics courses.     

Keywords: Technology, Information-Seeking Strategies, Case Studies  

Introduction 
Recent examinations of undergraduate students’ experiences with self-directed use of online 

resources reveal that students taking the same mathematics course may have radically different 
experiences as they study due to the different ways that they engage with the online environment 
outside of the classroom to support their learning (Erickson, 2019, 2020). While past research on 
mathematics education and the internet have been centered largely on interventions created by 
the institution (e.g. mobile tools, digital libraries, and collaborative learning tools) and online 
instruction for math educators (Borba, Askar, Engelbrecht, Gadanidis, Llinares, & Aguilar, 
2016), there has been a recent push for mathematics education researchers to seriously 
investigate how students make use of online tools under their own initiative (Puustinen, 
Volckaert-Legrier, Coquin, & Bernicot, 2009; van de Sande, 2011, Anastasakis, Robinson, & 
Lerman, 2017; Erickson, 2019, 2020; Higgins & Minners, 2020). The present report contributes 
to this body of work by presenting an analysis of episodes in which students are asked to narrate 
their actions as they use the internet to learn about an unfamiliar mathematical notation, a 
process recorded with screen-capture technology. The preliminary analysis of this data provides 
examples of the different strategies that students can adopt with the same online tools and how 
these different approaches may help or hinder a student’s understanding of newly-encountered 
mathematical concepts.  

Online Information-Seeking Strategies 
When confronted with an information problem-solving task (i.e., a problem that requires that 

the student seek out, evaluate, and make use of information) students have been shown to have 
difficulties choosing search terms, evaluating the credibility of information sources, and deciding 
when they have adequately brought their search to a close (Walraven, Brand-Gruwel, & 
Boshuizen, 2008). It is also the case that the difficulties that students encounter vary depending 
on their familiarity with the academic discipline in question and that it follows that these skills 
are domain-specific to some extent (MaKinster, Beghetto, & Plucker, 2002; Brand-Gruwel, 
Wopereis, & Vermetten, 2005). Thus it is important to study information-seeking practices in the 
context of the discipline in which they are employed.  
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Students’ Use of Online Tools for Studying Mathematics 
Students in lower-division mathematics courses extensively use online resources to support 

their mathematical studies (Erickson, 2020). Previous research has found that students’ use of 
these resources primarily takes two forms: online answer engines like Symbolab and 
instructional videos such as those offered by Khan Academy. Crucially, though, these are both 
used to navigate homework assignments and study for tests, whereas there is little known about 
how students engage with online resources when they try to understand a new concept that is not 
introduced by a textbook or an instructor. Ironically, the latter situation is more characteristic of 
the types of information-seeking tasks that an individual may encounter in their everyday post-
collegiate life and so a better understanding of students’ use of online tools in those situations 
could help support the development of a more practical and empowering mathematics 
curriculum. 

Context and Methodology 
The present data comes from a larger explanatory mixed methods study (Creswell & Clark, 

2017) in which over 250 students from over 25 US and Canadian colleges were surveyed about 
their use of online resources, particularly those that were not prescribed by the instructor, to 
support their study in lower-division mathematics classes. These surveys were supplemented 
with two sets of follow-up interviews, the first was a semi-structured interview in which students 
were asked to elaborate on their responses to the initial survey and the second was an extended 
interview in which students were asked to answer several mathematics question. The questions 
were chosen to be difficult enough to encourage the interviewees to make use of the internet 
while not being too difficult to solve. The interviewees were not required to make use of the 
internet, but if they did then they were asked to narrate the reasons for the actions they were 
taking with the computer as it happened.  

The analysis presented below is based on the responses to the following question: “Rewrite 
the following expression using exponential notation: 2↑↑3”. This problem employs Knuth’s up-
arrow notation, a method of extending exponentiation that can be employed to represent numbers 
that would be unwieldy using exponential notation. A single up-arrow represents exponentiation, 
i.e., iterated multiplication. Analogously, two up-arrows represent iterated exponentiation which 
is called tetration and three up-arrows would represent iterated tetration. The notation was 
chosen for this task because it is not part of the curriculum in any typical undergraduate 
mathematics course. Thus, a student confronted with the task would be expected to make use of 
the internet in order to find out what the notation means. 

As predicted, it proved to be the case that each of the interviewees (n = 7) were both 
unfamiliar with the notation and decided to use the internet in order to find out what the notation 
meant. The actions they took, however, varied dramatically and the analysis reported here is 
intended to unpack those differences. As a final note, the participants all used the Google search 
engine, so it can be assumed throughout that Google is the tool being used whenever there is a 
reference to an internet search. 

Results 
I will first present two contrasting case descriptions of the approach that a pair of students 

took in their exploration of the up-arrow problem. The case of Jason (all names are pseudonyms) 
is a student who was able to successfully and efficiently find the correct answer to the problem 
while the case of Ken presents a student who also found the correct answer but who took much 
longer to arrive at the solution. I will then briefly describe how the remaining participants in the 
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extended interviews relate to these two cases and discuss important distinctions between 
students’ information-seeking approaches. 

Trust Exercise: The Case of Jason 
After copying down the problem, Jason says “I don’t know what that means.” He does not 

seem chagrined by his lack of knowledge even though he has taken the calculus sequence and 
statistics. Rather, he immediately types Two up arrows in math into the search engine. The 
resulting search result screen highlights the Wikipedia entry on Knuth’s Up-Arrow notation (see 
Figure 1) and Jason does not even bother to scroll downward.  

 
This looks pretty good, Wikipedia I look at a lot. Some people say it’s not trustworthy 
[…] but Wikipedia, I think it’s fine. 
 

He reads through the Wikipedia entry which conveniently uses the problem he is supposed to 
solve as an example. To J’s credit, he takes a little time to confirm that he understands how 
tetration works, as described by Wikipedia, rather than simply repeating the provided answer. 
Once he does confirm the correct answer, about 5 minutes in total have elapsed. 

 
Figure 1. Google search result for “Two up arrows in Math” on February 2, 2021. 

“I Don’t Trust..”: The Case of Ken 
Ken also copies down the problem and confirms that he has not seen the notation before. He 

goes on to say, “usually I would ask the professor or a tutor however that is not a tool at the 
moment. Looking at this, I think it is saying 2 cubed however I’m not sure.” He then searches for 
Different math symbols and clicks on the first link which states that it is an exhaustive list of 
math symbols. He spends a minute scrolling through the entire list, “right now I’m just scrolling 
through this random website to see if I can find that notation”. He does not find anything that 
matches and goes back to the search engine to look up double arrow up symbol math. Despite the 
similar search terms, the result of this search is slightly different than in Jason’s case (see Figure 
2). Fortunately, the first excerpt is still information on Knuth’s Up-Arrow notation. Rather than 
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click on that first link, he scrolls down a little bit then scrolls back up to the top remarking that 
he doesn’t know whether any of these entries are correct.  

 
Figure 2. Google search result for “Double Arrow up Symbol Math” on February 8, 2021. 

At this point, Ken might have clicked on the blog that was the first entry on the search results 
screen and found an explanation of Knuth’s Up-Arrow notation, but instead he pressed on Image 
Search which brought up a number of lists of mathematical notation. He looked through these, 
commenting that they were difficult to see. He then went back to the excerpt seen in Figure 2, 
read it, and stated that “it still looks like 2 cubed but I haven’t seen an example” while scrolling 
further down through the search results. He then clicked on a Youtube video but this was an 
explanation of the “if and only if” double arrow. Fortunately, Ken understood that this was not 
the operation in question and so he went back to the excerpt and finally clicked on the link. After 
looking through the example, he decides that is initial guess was correct that that the value of 2↑
↑3 is 2^3 or 8. However, he notes that this is “just one website” and looks for a second website 
for corroboration. The first search result is Wikipedia, but Ken says “That’s Wikipedia, I don’t 
trust Wikipedia” and continues to scroll down to an .edu website with an explanation of the 
notation. After looking at another example on this website, he concludes that he was actually 
incorrect and that the correct answer is 16. This process took approximately 20 minutes.  

Variations on the Themes: The Remaining Cases 
The other five cases all contained elements of the two cases described above with two of the 

seven participants failing to generate the correct answer. Mary, much like Ken, produced the 
same blog entry with her initial internet search, chose not to click on the link because she did not 
feel certain that it was the notation in question and so clicked on image search instead. She also 
looked at lists of mathematical notation and was unable to locate the Up-Arrow notation. She 
then went further and searched for the term math symbols and looked through a glossary of math 
notation on Wikipedia. After failing to find the Up-Arrow notation there, she gave up. She never 
chose to return to that first search result which would have provided her with the definition she 
sought.  

Another participant, George, used Google to search, came up with the Wikipedia article as 
the first search result, clicked on the article and was able to arrive at the correct solution. A fifth 
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participant initially looked through a list of symbols but then proceeded to search for 
mathematical arrow symbol up arrow. This led them to the Wikipedia article as well and they 
were able to proceed to the correct answer – although in this case, the participant subsequently 
double-checked their understanding by looking up a video on the topic using YouTube. The sixth 
participant was initially unsure of how to proceed, stating that “since I can’t put arrows in the 
search bar, I can’t find it. The only way I could figure it out is by going to Google and to put 
arrow math symbols”. However, she shortly searched for math symbol two arrows pointing up 
which led to the search result screen previously seen in Figure 2. She was then able to find the 
correct answer after looking at the blog. The final participant found the same blog by searching 
for Two arrows pointing up between two numbers but came to the incorrect answer of 2^16 or 
65,536. Most remarkably, each of these subsequent cases relied on the same search engine and 
made use of or at least encountered the search results that were found by the first two 
participants.  

Discussion 
There is a tension between the information seeking strategies recommended by experts in the 

field (Scott & O’Sullivan, 2005) and the strategies described above. Generally, students are 
advised to look across various sources for corroboration rather than relying on a single source 
and they are have historically been told to distrust Wikipedia although there has been a shift 
toward greater reliance on that information source in recent years (Minguillón, Aibar, Lerga, 
Lladós, & Meseguer-Artola, 2018). However, in the cases recounted above, the most efficient 
students were those that were willing to immediately engage with Wikipedia as a source of 
relevant information. This suggests that an important aspect of information-seeking is the 
willingness of students to click on an information source and engage with the content contained 
within rather than skimming the search results in hopes of encountering a summary that more 
definitively signals that it contains the desired information. There was also an element of chance 
given that very similar search terms could return the Wikipedia excerpt as a first result which 
depicted a numerical example of the notation or they could return an excerpt of a blog entry that 
did not display an example of the notation. One strategy suggested by the frustrations 
encountered by some of these students could be for instructors to model information-seeking in 
their own classrooms. They could talk about how they seek out information online when they 
encounter an unfamiliar math term and which sources they judge to have reliable information.   

Questions for the Audience 
1. What is your information-seeking strategy for a task such as the one described above? 

When, if ever, would it be appropriate to discuss your own approach to this sort of 
information-seeking with students in an undergraduate mathematics course? 

2. How might these students need to be making use of their mathematical knowledge? How 
might we analyze the way in which content knowledge interacts with information seeking 
in tasks like these?  
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Mathematics Graduate Teaching Assistants (MGTAs) often have a significant role in teaching 

undergraduate mathematics courses, but typically have little prior teaching experience. 

Professional development (PD) for MGTAs is typically limited and often does not focus on 

evidence-based practices, but on departmental idiosyncrasies. This project responds to calls for 

implementation of equitable and inclusive practices by designing an MGTA professional 

development program to equip MGTAs with evidence-based teaching practices that are proven 

to support diverse groups of learners in engaging mathematical activities. Although department 

supports exist, this paper specifically reports on the barriers identified in one department’s 

culture for developing such a professional development program. 

Keywords: Graduate Teaching Assistants, Professional Development, Equity, Inclusivity 

Introduction 

Given mathematical graduate teaching assistants’ (MGTAs’) impact on undergraduate 

learners (Ellis, 2016; Miller et al., 2018; Selinski & Milbourne, 2015), it is critical that 

departments of mathematics attend to MGTAs’ development as teachers. Developing MGTAs’ 

teaching beliefs and practices is vital for improving student learning outcomes and fostering 

supportive learning environments. Instruction of post-secondary mathematics classes is often 

inequitable and harmful to underrepresented groups of students. Mulnix, Vandegrift, and 

Chaudhury (2016) contend that instituting active learning is necessary for “progress toward 

equity and inclusion” in STEM fields (p. 8). Students’ positioning in their academic 

environments, such as having more opportunities to express their voice, can impact their learning 

and the development of their identities in significant ways (Adiredja & Andrews-Larson, 2017; 

Boaler, 2002). Professional organizations and national agencies, including the American 

Mathematical Society (AMS), the Mathematical Association of America (MAA), the National 

Science Foundation (NSF), and the National Research Council (NRC), have called for 

implementing teaching practices that actively engage students in post-secondary mathematics 

classrooms (Saxe et al., 2015).  

The multi-institution, multi-stage study from which the data of this report originates responds 

to these calls for equity and inclusivity by designing and implementing a sustainable MGTA PD 

program that focuses on engagement, inclusivity, and equity. We focus our implementation at the 

department level for several reasons. First, mathematics departments are not a monolith, as each 

has local contexts that include serving populations with unique aspirations and needs, working 

within programs and networks with differing goals, and contending with varying cultural and 

institutional issues. It is necessary to examine this context to learn how innovation efforts can 

support or influence these local frameworks. Secondly, departments are relatively coherent units 

of culture (Reinholz & Apkarian, 2018); this coherence can support the influence of innovation 

efforts more broadly, leading to more sustainable and impactful implementations (Reinholz et 

al., 2020). Transformation within these cultures requires “exploring clashes of values that may 
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lie at the heart of institutional resistance to change” (Reinholz et al., 2020, p. 3) in order to unite 

stakeholders in an ongoing and cyclical process to adapt to changing contextual factors 

(Reinholz & Apkarian, 2018).  For these reasons, the initial stage of this larger study focuses on 

collecting baseline data to better understand the participating departments’ cultures. In this 

report, we address one of the research questions that guide the project: What identifiable aspects 

of departmental cultures inhibit extended MGTA PD that is focused on equity and inclusivity? 

Framework 

This project explores, and is informed by, two dimensions of change: cultural and individual. 

For this report, we focus on the former. Cultural change refers to aspects of departmental or 

institutional cultures that inhibit or support the innovation efforts of implementing an MGTA PD 

program. It is necessary to study the local contextual factors that influence the sustainability of a 

PD program, as both the program and the participating MGTAs are embedded within the 

department culture.  

Our project utilizes Reinholz and Apkarian’s (2018) adaptation of Bolman and Deal’s (2008) 

four-frame model of organizational change. This adaptation focuses on the context of higher 

education and allows us to understand how aspects of department cultures support or constrain 

improvement initiatives. The four-frame model views culture as a “historical and evolving set of 

structures and symbols and the resulting power relationships between people” (Reinholz & 

Apkarian, 2018, p. 3). This analytic tool specifies four frames for understanding systemic 

change: structures, symbols, power, and people. Reinholz and Apkarian (2018) further defined 

these constructs: 

 

Structures are the roles routines and practices of a department; their enactment and 

meaning are dependent on symbols, which are the norms, values, and ways of thinking in 

a department; changes are ultimately enacted by people whose individuality impacts their 

intentions and perceptions; and the distribution of power determines who makes certain 

decisions and influences interactions (p. 7) 

Data Sources and Methods 

We report on preliminary analysis of baseline interviews with mathematics department 

leadership at a large, PhD granting public university (LPU), which we studied because of the 

potential to implement MGTA PD at this site. The Mathematics Department employs MGTAs in 

class support or instructor roles. The LPU is located in a racially and ethnically diverse city, 

which the institution celebrates. At the time of data collection, the Mathematics Department was 

undergoing review and having ongoing conversations about its response to national discussions 

regarding equity and inclusivity.  

We recruited department leaders who we identified as power-brokers, based on roles and 

hierarchies in the department, with abilities to influence department decisions for interviews. 

These are important figures in innovation efforts, as a “change effort requires sanction from the 

appropriate power holders to succeed” (Reinholz & Apkarian, 2018, p. 5). In particular, the 

department chair, the graduate coordinator, experienced instructors and coordinators, and those 

who contribute to existing MGTA PD within the department received invitations for interviews. 

Five department leaders accepted the invitation and were interviewed; interviews were audio 

recorded and transcripts were generated.  

Our research team designed a protocol for semi-structured interviews that focused on 

learning about departmental culture, particularly regarding the roles, values, and perceptions of 
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MGTAs and equitable, inclusive, and engaging teaching practices in the department. We 

expected that the interviewees’ responses to these questions would provide us with insights into 

potential barriers for developing a sustainable MGTA PD program focused on engaging, 

equitable, and inclusive teaching practices.  

Analysis and Preliminary Results 

Our team used an inductive open coding method that included sequences of summarizing 

interview transcripts to discuss and resolve codes (Miles & Huberman, 1994). During our second 

phase of analysis, we adopted an axial coding method to construct and connect emerging 

categories from our codes that related to aspects of the department's culture that may inhibit the 

implementation or sustainability of a potential MGTA PD program. We used the four-frame 

model as a lens to help illustrate some barriers that emerged. In our results below, we describe 

three themes and unpack their connection to and impact on MGTA PD using the four frames. 

Instructors’ Choice 

We observed an unwritten policy of “instructors’ choice” regarding faculty members’ 

teaching that permeates the department’s culture. Instructors’ choice was construed as a symbol 

of the department, as it seems an integral and influential aspect of the department’s identity. 

Besides a few explicitly pre-structured courses, instructors and coordinators have the freedom to 

determine their classroom pedagogy, what PD opportunities they want to pursue, and their own 

course structures. With respect to the people frame, instructors and coordinators have 

considerable agency within the department. This agency flows into power: instructors and 

coordinators are provided wide-ranging decision-making capacity, which includes the roles and 

responsibilities of MGTAs associated with their classes. We found that MGTAs have extremely 

different teaching experiences depending on the instructor or coordinator that they are assigned 

to.  

MGTA PD Program. Ideally, an MGTA PD program would be a centralized structure 

within the department, which is antithetical to the notion of individual choice. Without having 

department structures to build from, such as a Diversity, Equity, and Inclusivity (DEI) 

committee or departmental incentives or responsibilities regarding use of engaging, equitable, 

and inclusive practices, developers and implementers of PD programs would need to create 

structures to unite stakeholders for this sustainable innovation effort. Thus, valuing individual 

choice may make collective efforts for MGTA PD difficult to enact. 

Developers and implementers of PD programs would need to establish collective goals, a 

structure, for instructional staff that exercise their pedagogical freedom (agency recognized by 

the people frame) in a variety of ways. In particular, the interviews depicted instructors providing 

various roles and teaching experiences to MGTAs. Some MGTAs are incorporated as 

collaborators in various aspects of coordination planning while some interviewees expressed that 

other MGTAs are utilized as limited classroom support, “another set of eyes and ears,” to a “sage 

on the stage.” This represents a challenge for the PD program to be successful and sustainable, as 

the program’s design would need to facilitate opportunities for MGTAs to enact practices that 

are still respectful of instructors’ and coordinators’ agency.  

Lack of Internal Communication 

One cost of instructors’ choice is a lack of communication structures in the department. For 

example, it is not typical for instructors and coordinators to share their practices or work within 

the department outside of their course. Because of this, collective best practices do not emerge 
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effectively - as even department leaders are working on shared problems in isolation, seemingly 

unaware of each other’s work. This is also applicable to faculty PD, as one leader reflected, “our 

department doesn’t know how many of us are doing this and whatnot.” 

MGTA PD Program. A sustainable PD program would need to be integrated with 

communication lines between department members, particularly those involved with MGTAs in 

their classrooms or under their coordination. Actively coordinating with participants of the PD 

and stakeholders of the innovation efforts is vital for the efficacy of the program. This is 

reflected in the people frame, which describes the usefulness of attending to shared visions and 

goals; communication would need to be a departmental responsibility that is properly 

incentivized.  

The lack of internal communication structures appears to hinder a cultural consensus about 

the roles and responsibilities of MGTAs in the department. Even department leaders provided 

conflicting descriptions. This ambiguity and confusion would need to be addressed for a PD 

program to train and prepare MGTAs for their role. Without this shared vision, the uncertainty of 

MGTAs’ roles represents a challenge to link the PD to all MGTAs’ experiences, diminishing the 

effectiveness of the program. Again, inherently needed in the effort to clarify this confusion are 

communication structures which currently do not exist. 

Another potential challenge that emerged from the interviews was the ability to coordinate 

availability of the PD. Many department leaders were unaware of PD for MGTAs, and it was not 

clear if anyone had the role of disseminating these opportunities. When PD is offered to graduate 

students within the department, it is not effectively communicated to other faculty members as 

one department leader recounted, “Our workshop was short this year just because we only 

actually had one graduate student and then the others were attending a workshop by [another 

faculty member] that overlapped … I was like, ‘I wonder where that person is.’”  

This challenge also impairs sustainability efforts; without means to disseminate information, 

a PD program would struggle with maintaining support. It is important to communicate and 

demonstrate progress early in the innovation process to participants and stakeholders (Reinholz 

& Apkarian, 2018). Otherwise, those with power to sanction change may waver in their support. 

Addressing DEI Collectively as a Department is Not Currently a Priority 

At the time we conducted interviews, the department was in the midst of internal 

conversations about their responsibility regarding DEI, for which there was broad disagreement. 

The formation and role of a centralized DEI-focused committee (a structure) was contentious, as 

some faculty members favored development of a collective mission statement (which can be 

construed as a structure or a symbol) to describe the department’s values. This seemed to relate 

to the principle of instructors’ choice, as one department leader described, “We don’t need 

someone outside checking on whether or not we’re promoting diversity in our classrooms 

because it’s our mission.” Even the need to respond to DEI was questioned, as one interviewee 

recounted, “Among the many things, some people ... felt that we should stay out of social justice 

issues, because it runs the risk of entering the political realm and that sort of stuff that should be 

separate from our academic responsibilities and our subject in mathematics.” Another 

interviewee compared diversity statements to the anti-communism statements of the 1950s. 

However, some department leaders expressed concern about their lack of awareness regarding 

DEI, and expressed uncertainty about their individual and collective awareness of best practices.  

Several interviewees described the incentives and faculty PD offered by the college; these 

values were not clearly reflected within the department. One department leader described the role 

of PD as “another one of those contentious questions that I've heard people bring up,” as they 
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shared skepticism regarding the nature of PD focusing on equity and inclusivity. They 

questioned PD providers’ motives by referring to them as an “industry that’s arisen with 

organizations and people making tons of money off of institutions.”  In general, the department 

leaders did not share a collective need for DEI practices. When asked about active DEI-related 

efforts within the department, instead of discussing specifics of collective efforts, all 

interviewees referred to a single untenured, tenure-track faculty member’s work. 

MGTA PD Program. Given the department’s uneven stance on their role in responding to 

equity and inclusivity issues, it may not be an opportune time to institute a program focused on 

these issues. Similar to the formation of a DEI committee, an MGTA PD program focused on 

equitable and inclusive teaching practices could foster further discord. Additionally, since DEI is 

not collectively prioritized within the department, as indicated by missing structures, it is 

intuitive to anticipate that it will not become a priority, a centralized structure, for MGTAs.  

Promotion protocols (another structure) in the department do not factor in equity and 

inclusivity. As one department leader stated, “I perceive that to be an area that’s very sensitive. 

Because, again, it’s not part of someone’s job description,” and shared, “there has been no 

conversation in the university whatsoever about that.” Given that equitable and inclusive 

practices are not incentivized within the department, the potential lack of support for an MGTA 

PD program that focuses on these core principles and practices is a concern for the program’s 

sustainability.  

In conjunction with the developing stance on DEI, the department also identifies more with 

its research responsibilities. Given the increased expectations of faculty to conduct and publish 

research, it was generally accepted that they would focus less on teaching. Many graduate 

students and program goals were also focused on research or industry-oriented careers. 

Consequently, one department leader described that time is a barrier for MGTAs to pursue PD. 

PD would need to align with the goals and aspirations of those involved, faculty and MGTAs.  

Conclusion and Questions for the Audience 

We observe that instructors’ choice and freedom may come at the cost of collective action, 

even in the case of prominent national and international issues. Additionally, our analysis 

showed that in departments with MGTA training, the providers and facilitators of the PD are not 

always able to communicate with other department members who have power over MGTAs’ 

future teaching experiences. As a result, MGTAs do not necessarily have the opportunity, or the 

support, to perform the behaviors espoused by an MGTA PD program. And lastly, dissonant and 

developing value systems within the department make it difficult for an MGTA PD program to 

connect with the internal structure of the department that it is embedded within. Until a culture 

stabilizes, the innovation project would face a troubling task of uniting not just differing visions, 

but conflicting ones. We conclude with two questions for the RUME community: How can we 

leverage a department’s existing people, power, structures, and symbols to foster more cultural 

support for a PD program focused on equity and inclusivity? What local barriers do you perceive 

towards implementing a sustainable PD program? 
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Using the Four Frames 

*Rachel Funk Deborah Moore-Russo 

University of Nebraska Lincoln University of Oklahoma 

Karina Uhing Molly Williams 

University of Nebraska Omaha Murray State University 

It is well known that pedagogical transformations are difficult to sustain. To address this issue, 

more researchers are focusing on understanding change processes across a variety of contexts; 

however, to understand the complexities of change more research in this arena is needed, in 

addition to research that uses existing change theories to contribute to a collective 

understanding of the change process. This study addresses this need by examining the starting 

point of one “successful” institution’s change efforts through the Four Frames, a theoretical 

framework for understanding change in STEM departments. Preliminary analysis identified key 

components within this institution’s plan that may explain their success, including choosing to 

involve faculty perceived to be influential in the department, as evidenced by our analysis of 

their social network. These results support further analysis of change at this institution over 

time, as well as cross case comparisons with other institutions’ change efforts.  

Keywords: change, active learning, leadership, four frames model 

Introduction 

Mathematics departments are planning and executing changes that are altering teaching and 

learning practices. Many of these changes involve a focus on student engagement, such as active 

learning, which are responses to national calls for improving student success by moving away 

from passive teaching and learning practices (Conference Board of the Mathematical Sciences, 

2016; PCAST, 2012). It has been substantiated that changing teaching and learning practices is 

difficult and that successful change for a department involves systemic thinking (Smith et al., 

2021; White et al., 2020). There has been some focus on studying change within mathematics 

departments (e.g., Smith et al., 2021; numerous articles in three consecutive issues of 2021 

PRIMUS), but a recent commentary from editors of IJRUME have declared an “urgent need for 

a systems approach that can account for this complex landscape of change” (Reinholz, 

Rasmussen, & Nardi, 2020, p. 155). They argue that research on change in a mathematics 

department needs to focus on four critical areas: 1) analyzing historical artifacts, 2) studying 

ongoing efforts, 3) creating new efforts, and 4) issues of equity and social justice (Reinholz, 

Rasmussen, & Nardi, 2020). With these foci, researchers can develop more contextualized and 

cohesive theories that will in turn help the mathematics education community enhance its ability 

to implement and sustain change (Reinholz, Rasmussen, & Nardi, 2020). Further, such research 

should draw from common change theories. In a review of 97 studies of change in STEM higher 

education settings from 1995 to 2019, Reinholz et al. (2021) found that 40 distinct change 

theories were used. This lack of a theoretical base makes it difficult for such studies to contribute 

to a growing understanding of change. Our study aims to support this need for more research into 

change by using an established change theory, the Four Frames, to analyze the starting point of 

change efforts at one institution.     

*All authors contributed equally to this submission, and as such are listed in alphabetical order.
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Theoretical Framing and Research Questions 

Our work is guided by the Four Frames for organizational change originally conceptualized 

by Bolman and Deal (2008), and adapted by Reinholz and Apkarian (2018) for use in analyzing 

change in STEM departments. The four frames: structures, symbols, people, and power serve as 

lenses to analyze the cultures of STEM departments, and institutions more broadly. Structures 

are elements of a department that determine how individuals interact; this may include positions, 

incentives, and coordination systems. Symbols are the abstract cultural tools of the department 

that shape how the department gives meaning to structures. These include the values, beliefs, 

practices, and narratives that the department generates over time. The people frame emphasizes 

that departments are composed of individuals with their own needs, wants, identities, and sense 

of agency. The power frame emphasizes that differences in power influence how individuals 

interact within a department. The model can both be used as an analysis tool for understanding 

change and as a tool for enacting it. In this study we use the model to analyze the starting point 

of change efforts within one mathematics department. 

To understand the potential for pedagogical change in a department, the research team used 

the Four Frames to generate the following research questions: 

RQ1: What initiatives were proposed to drive pedagogical change? 

RQ2: How did institutional and departmental efforts to improve student success align 

with these change initiatives?  

RQ3: Which people were proposed to lead these initiatives?  

RQ4: How were these people perceived by the department? In what ways were they 

positioned to create and sustain the change initiatives? 

RQ1 and RQ2 deal with the structures and symbols involved in making departmental 

changes, while RQ3 and RQ4 deal with the people and power driving those changes. In our 

findings, we discuss RQ1 and RQ2 as a pair, followed by RQ3 and RQ4. As noted by Reinholz 

and Apkarian (2018), structures and symbols work together as a pair: “The structures are the 

visible signs of how a culture works, but the symbols determine how the structures are actually 

enacted” (p. 5). Similarly, the people and power frames work together as a pair since “[t]he 

people frame focuses on the importance of individuality, while power draws attention to the way 

that all of these individuals are linked in a political system” (pp. 5-6).  

Methods 

Data for this proposal come from SEMINAL (Association of Public and Land-Grant 

Universities, n.d.), a multi-case research project focusing on understanding how mathematics 

departments and institutions support the initiation, implementation, and sustainability of active 

learning in Precalculus through Calculus 2 courses. SEMINAL had multiple phases. During the 

second phase of the project, SEMINAL sent out a request for proposals from institutions looking 

to transform their Precalculus through Calculus 2 courses by institutionalizing active learning. 

Nine selected institutions received funds of approximately $50,000-100,000 to support their 

efforts. One of the participants of Phase 2 selected was a large, Southeastern, public university 

with two campuses, which we will call SEU. SEU has several part-time faculty, many of whom 

teach the lower division mathematics courses. A focus of SEU’s efforts has been on building and 

expanding its coordination system in Precalculus through Calculus 2 courses as a way of 

supporting the use of active learning. As part of SEMINAL, we conducted two site visits during 

which we spoke with a wide range of SEU stakeholders: mathematics faculty and instructors, 

department chairs (of mathematics as well as client disciplines), administrators, learning 

assistants, and provosts. SEU also completed a climate and culture survey, which includes 
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questions about their social network as it pertains to teaching. This preliminary study focuses 

only on SEU’s plan of action to incorporate active learning into their mathematics courses, with 

the future goal of analyzing site visit data later to understand how their plan was enacted.   

Analysis of Proposal 

First, we created a summary sheet to identify evidence from the proposal that fit within each 

frame. This summary sheet included questions, based on the four frames, that guided our reading 

of the text of the proposal. For example, for the structures frame we asked questions such as 

“What roles/positions were discussed in the proposal? What routines are in place (e.g., monthly 

brown-bag lunches)? What practices does the department share (e.g., use of worksheets)? What 

new roles, routines, practices are being proposed?” At least two of the authors independently 

read through the proposal and filled in the summary sheet for each frame, before meeting to 

discuss what should be included in a reconciled version of the summary sheet. (Creswell & Poth, 

2018). As a team this summary sheet helped identify pivotal structures, connect them to the 

people involved, and analyze evidence of symbols/power related to them. We augmented this 

analysis with social network survey data to better understand the role of the leadership team. 

Social Network Analysis 

We used in-degree centrality from social network analysis (Borgatti, Everett, & Johnson, 

2013; Scott, 2000) to examine responses to three different items, that asked: 1) who they discuss 

instructional activities with, 2) who they go to for advice, and 3) who they go to for instructional 

materials. In-degree centrality is the number of people who report that they discuss instructional 

activities with a particular person. While other indices are available, we present only the in-

degree centrality to highlight the roles of leaders in the change process as “the in-degrees of the 

vertices in the network indicate respective status by popularity, potential for influence or 

leadership, and so on” (Bandyopadhyay et al., 2011, p. 11). 

Preliminary Findings 

Change Initiatives 

To address RQ1 and RQ2, we now consider the primary initiatives proposed by SEU and 

how they aligned with institutional and departmental efforts to support student success.  

Coordination system. The primary initiative put forth in SEU’s proposal was course 

coordination. The motivation behind this change initiative was to create a “stable cadre of faculty 

to regularly teach the [Precalculus through Calculus 2] courses who employ effective learning 

opportunities in the classroom” (SEU Proposal, p. 1). Previously, all general education 

mathematics courses were coordinated in the sense that they used the same textbook and learning 

outcomes. In addition, one person was designated to loosely oversee this coordination. Their goal 

was to develop a much more robust coordination system for their Precalculus and Calculus 1 

courses by aligning the curriculum within and across the courses, creating additional coordinator 

positions, curating active learning resources into a common repository, setting up a system of 

peer-to-peer observations, using common assessment items, and holding pre-semester 

coordination meetings. To lead this effort, the PI and Co-PIs on the proposal planned to rotate as 

coordinators through Precalculus and Calculus 1. 

Alignment with existing efforts. To support the development of a course coordination 

system for active learning, SEU proposed leveraging several existing departmental, college, and 
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institutional programs. We discuss two particularly impactful college-level programs here: the 

Learning Assistant Program and Faculty Learning Communities. 

Learning Assistant Program. The college had developed a learning assistant (LA) program, 

which was created to “support students in developing the knowledge, beliefs, and practices that 

will help them be successful in their first year courses” (SEU Proposal, p. 5). In particular, LAs 

were introduced in the classroom to support active learning. In 2017, the College of Science and 

Mathematics formalized its LA Program, which included a pedagogy seminar and regular 

instructor-LA meetings. The LA program was based on the University of Colorado, Boulder 

model. At the time of submitting the proposal, six math faculty were working with eight LAs, 

impacting approximately 300 students. Interest in using LAs in mathematics courses is relatively 

recent at SEU. After participating in a faculty learning community (FLC) involving chemistry, 

biology, and mathematics, a subset of mathematics faculty became interested in using LAs. 

Elements of the LA program are designed to support alignment in the course, and, with the 

instructor; “[t]he regular meetings with their faculty mentor help to ensure that LAs are 

supporting students in ways that align with the course learning objectives and the instructor’s 

intentions” (SEU Proposal, p. 8).   

Faculty Learning Communities. At the time of writing the proposal, SEU had already 

implemented a college-supported structure called faculty learning communities (FLCs). Twelve 

mathematics faculty had participated in a year-long FLC that was focused on expanding active 

learning in their courses; nine faculty members were slated to participate in the next round of 

FLCs, including four faculty teaching Precalculus and five faculty teaching Calculus 1. The three 

PI/Co-PIs involved in the instruction of mathematics courses at SEU were also part of this cohort 

of faculty. The purpose of these FLCs was to help faculty align course components, design 

meaningful assessment practices, create and implement active learning activities, and support 

students in adjusting to new learning expectations. 

People Involved in Change Initiatives 

In this section, we discuss how the leaders identified in the proposal were positioned within 

the department and aim to address RQ3 and RQ4. The PI and Co-PIs listed in the proposal 

consisted of three tenured Associate Professors of Mathematics, who regularly taught 

Precalculus and Calculus 1, and an Assistant Dean in the College of Science and Mathematics, 

who was involved in mathematics education research. We used in-degree centrality to analyze 

how these individuals were perceived by the department and to identify any other influential 

individuals in the department. We summarize these data in Table 1. 

Table 1 displays the in-degree centrality of individuals for all three social network analysis 

items. We chose to include only the top nine individuals in the table, as the difference between 

the sums of the in-degrees values for the three items for 9th and 10th place individuals was 

substantial. These data suggest that the four leaders listed in the proposal were perceived to be 

influential in the teaching community at SEU. As these data were collected at the start of this 

project at SEU, this suggests that the PI and Co-PIs were well-positioned in the department to 

implement the proposed changes. This table also suggests that there might have been other 

influential people within the department, including people in power like the department chair and 

assistant department chair. From the analysis of the proposal, these particular people were in 

support of the plans. In addition, the most influential person, according to these data, appears to 

be the General Education Math Coordinator. Thus, there were other potential leaders within the 

department who were not among the four leaders in the proposal. 
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Table 1. In-degree centrality values for three items. 

 Discuss 

Median = 4 

Response rate = 

58% 

Advice 

Median = 2 

Response rate = 

49% 

Materials 

Median = 1 

Response rate = 

39% 

General Education Math Coordinator 18 12 13 

Lecturer involved in College Algebra 

improvement efforts 
20 11 6 

PI and faculty member* 19 8 5 

Department Chair 19 9 3 

Co-PI and faculty member* 17 7 7 

Co-PI and College Administrator* 
16 9 1 

Co-PI and faculty member* 14 5 5 

Lecturer 16 5 2 

Assistant Department Chair 14 5 0 

*Leaders of the local SEMINAL project as identified in the proposal 

Discussion and Questions for Audience 

This analysis indicates that SEU developed a robust plan for changes that takes advantage of 

existing structures and values at the department, college, and institutional level, and emphasizes 

alignment across these structures to support their goals of incorporating active learning into 

mathematics courses. Furthermore, the social network analysis demonstrates that the people put 

forward as change agents in this process already had influence within the department. Future 

analysis will focus on the roles of these change agents as the plan was enacted, and whether 

others identified as influential in the department will become involved in change efforts. To 

support this work, we ask the audience the following questions: 

• We selected SEU for analysis because they were able to “successfully” implement 

several of the changes they described in their original proposal. Our hope is to 

eventually expand this analysis to include more institutions, as well as analyze change 

across various points in time. As we engage in this analysis, what part of this analysis 

should we continue? How might we change our analysis for other institutional plans 

or for looking at how institutions enacted their plans?  

• We are particularly interested in thinking about people as change agents. Is there 

additional data or analysis we could be doing to identify and track these change 

agents within these stories of change? 
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Characterizing How Undergraduate STEM Instructors Do and Do Not Leverage Student 
Thinking 

 
 Jessica Gehrtz Molly Brantner Tessa C. Andrews 
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 San Antonio 
 
At the K-12 level, there is evidence that instruction that leverages student thinking can lead to 
increased conceptual understanding and success for students. Yet the ways in which instructors 
leverage student thinking in undergraduate STEM context remains largely unexplored. To 
investigate our research question examining the extent to which, and how, STEM instructors 
leverage student thinking in their teaching, we collected data from faculty who taught courses in 
biology, physics, chemistry, and math. We interviewed participants before a lesson, filmed the 
lesson, and conducted a stimulated recall interview using video clips from the filmed lesson. 
Transcripts were analyzed using thematic analysis. Initial results highlight differences in how 
instructors access student thinking, their efforts to interpret student thinking, and how they 
leverage student thinking to inform instruction.    

Keywords: Leveraging student thinking; Instructor practice; STEM education 

There have been calls for increased attention to the teaching of introductory undergraduate 
science, technology, engineering, and mathematics (STEM) courses, and professional 
development (PD) for those who teach these courses, in an effort to improve enrollment and 
retention rates in STEM disciplines (Bok, 2013; Holdren & Lander, 2012). In K12 contexts, 
there is evidence that effective instruction is enabled by an instructor’s attention to student 
thinking (e.g., Erickson, 2011). In particular, instruction that leverages student thinking can lead 
to increased conceptual understanding and more positive learning experiences for students 
(Carpenter et al., 1989; Thornton, 2006). However, few studies at the post-secondary level have 
examined how undergraduate instructors are leveraging student thinking in their teaching.  

Teacher noticing is a useful framework from the K-12 level that has informed our research 
design, analysis, and interpretation of findings. This framework has two key premises: (1) the 
heart of teaching is action in the midst of the complex social environment of the classroom, and 
(2) student thinking is productive and resourceful to teaching (Sherin et al., 2011). It is important 
to note that the noticing required for effective teaching is specialized and goes beyond simply 
being observant (Ball, 2011). Most scholars agree that teacher noticing consists of attending to 
and making sense of particular events during instruction (Sherin et al., 2011). Jacobs, Lamb, and 
Philipp (2010) narrow this scope and describe professional noticing as three interrelated skills: 
attending, interpreting, and deciding how to respond to students’ mathematical strategies.  

Research on teacher noticing has been leveraged in both mathematics and science contexts. 
This points to the translatability of this work across disciplines. For example, there is evidence at 
the K-12 level that both science and mathematics teachers attend to students’ process skills or 
errors as novices and can develop skills for better noticing the disciplinary substance of student 
thinking (e.g., Stockero, 2014; Barnhart & van Es, 2014). Examining teacher noticing across 
STEM disciplines at the post-secondary level affords the opportunity to consider disciplinary 
similarities or differences that may arise and would be beneficial to consider in designing and 
implementing PD to support instructor noticing and leveraging of student thinking.  
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The goal of this research was to investigate the extent to which, and how, instructors leverage 
student thinking in introductory STEM courses. That is, how the substance of student thinking 
informs instructors’ teaching. We adopted this fairly broad definition of what it means to 
leverage student thinking in order to capture the variety of ways STEM instructors might draw 
on information about student thinking to inform their instruction. We asked the following 
research question: In what ways do college STEM instructors leverage student thinking in their 
teaching? Since this is a relatively unexplored area, we examined the thinking and practices of 
instructors as they planned, enacted, and reflected on a lesson, with the goal of richly 
characterizing instances of leveraging student thinking.  

Methodology 
Seven faculty from various STEM departments, including Mathematics, Biology, Physics, 

and Chemistry, who were recognized by their colleagues as individuals who made thoughtful 
decisions about their teaching, were invited and agreed to participate in this study. Participants 
were experienced instructors who regularly taught introductory STEM courses. For this proposal, 
we focus on two participants, Dr. Bio (full professor in Biology) and Dr. Chem (career-line 
instructor in Chemistry) who taught large enrollment (70 and 270, respectively) introductory 
STEM courses. In the talk we will discuss all seven participants. 

To investigate the extent to which, and how, participants leveraged student thinking in their 
teaching, participants were interviewed before and after a class period which they selected to 
have filmed (the target class). The pre-instruction interview was a semi-structured interview 
designed to elicit the instructor’s goals for class, knowledge of student understanding regarding 
the topic to be covered, and how this knowledge impacted their planning for class. Clips from the 
target class (2-5 clips) were selected for use in the post-instruction interview to stimulate 
discussion about student thinking and instructional decisions. The selected clips highlighted 
moments when the instructor had access to student thinking and the interviews prompted 
participants to discuss how student thinking informed their planning and real-time decision-
making. Interviews were transcribed and analyzed using open coding and thematic analysis 
(Braun & Clarke, 2006). At least two researchers coded each transcript. We met regularly to 
discuss coding decisions, to come to consensus about what and how segments were coded, and to 
create and refine codes as necessary. This allowed us to identify emergent themes related to the 
ways in which instructors notice and leverage student thinking.  

Results: STEM Instructors Leveraging of Student Thinking 
This work has illuminated instructors’ thinking and practice related to the ways that they 

leverage student thinking, highlighting some of the variation that exists across introductory 
college STEM classes and the dimensions on which they vary. Specifically, our highly 
contextualized data revealed how instructors got access to information about student thinking 
while teaching, how they attended to and interpreted student thinking, and how they leveraged 
student thinking to inform their instruction. The following sections describe these three main 
themes.  

 
Accessing Student Thinking 

Dr. Bio and Dr. Chem differed in the extent to which they had access to student thinking 
during the target class. They both incorporated times in their class when they stopped lecturing 
and provided an opportunity for students to work on questions individually or in small groups. 
However, Dr. Chem actively sought out information about student thinking using a variety of 
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strategies, whereas Dr. Bio relied on very few strategies for accessing student thinking. Dr. 
Chem frequently accessed student thinking by eavesdropping on student conversations, looking 
at student written work, asking students to share their thinking, and by asking students to explain 
their reasoning during whole class discussions. In the following excerpt, Dr. Chem describes 
how she uses students’ facial expressions as an indicator that students are confused. She said: 

Oh, it's easy, really easy [to tell by their faces if they’re getting it]. You're going to get 200 
people looking at you with this blank look on their face. Or the talking gets louder because 
they're talking back and forth because they work together on these problems. Their talking 
back and forth gets louder because they're not getting it, and they're not actually working 
the problem. They're talking to each other, trying to figure it out, and they're just not getting 
it. You can very easily tell by looking at your class … And so you get to know who's sitting 
where, and you get to learn to read their expressions. I rely a lot on that and just looking at 
them and seeing, you know, are they getting in or not? 

This highlights that Dr. Chem can read her students’ expressions, getting access to some 
information about student thinking, and then she uses that information to draw conclusions about 
whether or not students are “getting it”.  

In contrast, Dr. Bio accessed information about student thinking much less frequently and 
used fewer strategies to do so. Dr. Bio primarily accessed student thinking through clicker 
questions and through students volunteering their answer to a question during a whole class 
discussion. Dr. Bio expressed that he thought that clicker questions were the only way to access 
student thinking in a large class. He said: 

I mean, again, the kind of feedback that you get really is - in a class that size, can only be 
measured quickly on the responses to [clicker question]. And that's why I do use [clicker 
questions]. As not just as an engagement tool, but as a way of kind of measuring, ‘okay, 
how are they doing with that?’ … But it's hard to gauge where they are in their thinking. I 
think it's an iterative process where I really won't be able to gauge that until I re-engage 
them on a comparable question tomorrow and see if they've got it now. 

Further, Dr. Bio acknowledged that he might not have sufficient access to information about 
student thinking. He commented that he often relied on end of semester surveys for feedback on 
which topics students felt were challenging in the class. 

 
Attending to and Interpreting Student Thinking 

Dr. Bio and Dr. Chem had different goals for when they encountered student thinking during 
the target class. Dr. Chem attended to student thinking and aimed to make sense of or interpret 
student reasoning, even when it was incorrect or incomplete. She carefully listened to what 
students were saying and worked to make sense of their thinking. Her goal for doing this was to 
diagnose where students were at in their progress toward the learning objectives, and then to use 
this information to help her decide how to respond. In the following excerpt, Dr. Chem described 
what she was thinking during an interaction with a student who was having trouble making 
progress on a problem. Dr. Chem asked the student to explain their work, and then said the 
following when reflecting on this interaction during the post-instruction interview: 
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I figured out [what she was thinking] pretty quick. As soon as she said that's sodium, then 
I said, ‘okay, I see what you're doing and you're just completely screwed up’. So yeah, I 
understood perfectly what she needed and so I explained it to her. 

In addition to making sense of individual student’s thinking, Dr. Chem also frequently 
attended to the whole class’s progress by interpreting the information she accessed from multiple 
students through eavesdropping and clicker questions. She used this information to gauge where 
the class was at with their understanding, and then adjusted her plans and pacing for class 
accordingly. 

In contrast, Dr. Bio demonstrated that he had goals other than interpreting when he 
encountered student thinking. In particular, he often focused on using information about student 
thinking to gauge students’ level of participation instead of to gauge their level of understanding. 
Further, Dr. Bio frequently corrected or redirected student thinking instead of trying to make 
sense of it. In the following quote, Dr. Bio describes what was on his mind when he heard two 
sentences of a student sharing their thinking. Instead of reasoning through the student’s thinking, 
it seems as though Dr. Bio immediately concluded the student’s thinking was tangential and 
incorrect, and then moved on to explain the connection that he wanted students to make. In the 
interview, Dr. Bio said the following in response to this interaction: 

So that student … gave a kind of a tangential answer and instead of going to another student 
or another student, I went straight to the answer. But what I was thinking is that later on I 
want them to be thinking about gene selection, before and after passing on your genes. And 
so it was such an important point I guess that I wanted to make sure it was made, that I just 
went ahead and made it. 

Leveraging Student Thinking 
Dr. Bio and Dr. Chem differed in the immediacy and the extent to which they leveraged 

student thinking in the target class. Dr. Chem regularly leveraged student thinking during class, 
made changes from one class period to the next, and made changes each semester based on 
student thinking. Specifically, Dr. Chem planned for instruction based on students’ current 
understanding of the material, stating, “I won't move forward if they're not getting it. There's no 
reason to. I actually wanted to get farther on Tuesday then I did, but the class wasn't ready to go 
farther.” Dr. Chem frequently added clicker questions for the next class to provide students more 
opportunities to engage with key concepts. She made the following comment after discussing a 
topic her students were currently struggling with: “I have a new question that will address it. … 
I've posted the annotated slides so they can see how to do it, but … we're going to do another 
question that's similar to that [in class].” Notably, Dr. Chem also made changes from semester to 
semester. She said, 

I'll take notes of like - ‘I'll need to spend more time on this’, or ‘[students] really struggled 
with this’. Then when I get ready for class the next semester, I go back to that and that's 
what prompts me to make new slides. 
In contrast, Dr. Bio did not leverage student thinking frequently, but instead tended to 

respond to information about student thinking by providing explanations about the content or 
slightly adjusting the pace of a single class period. Dr. Bio described how he adjusted the pacing 
of class, saying: 
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For instance, with one of these [clicker questions] or something along those lines, that the 
majority of the class gets it, and gets it fairly quickly, then I feel that, okay, they did make 
that connection. They came along with me on that. … But also if a large number of students 
do put down an incorrect answer, then that tells me, okay, they didn't make that connection. 
They didn't make that conceptual leap. And so I need to either go back and address that 
differently the next time I try to teach it or I need to explain to them why. 

This segment also illustrates that when Dr. Bio recognizes that students do not understand 
material, his response might be to give an explanation immediately or he might, instead, adjust 
instruction the next time he teaches. In fact, Dr. Bio never discussed making changes from one 
class to the next, but instead he focuses on making adjustments from semester to semester. This 
then would mean that his current students would not benefit from these changes. Further, it 
seems that since Dr. Bio did not take advantage of opportunities to access and interpret the 
substance of student thinking, he was constrained in his ability to make more immediate changes 
(besides adjusting the pacing of class) that were rooted in students’ understanding.  

Discussion 
Both Dr. Bio and Dr. Chem were both experienced instructors, but they differed in the extent 

to which they accessed student thinking, attended to and interpreted student thinking, and how 
they leveraged student thinking. One reason for this might be their exposure to substantive 
student thinking. Dr. Chem capitalized on nearly every opportunity when she had access to 
information about student thinking. As such, Dr. Chem was in-tune with her students’ thinking, 
demonstrating that she valued student thinking and saw it as central to her instruction. Dr. Chem 
discussed that this exposure to student thinking helped shape the knowledge that she relied on 
while teaching. Dr. Bio, on the other hand, focused on the sequencing and timing of the lesson 
and so he was not able to focus on making sense of student ideas or recognize that some student 
contributions could be leveraged to make a lesson point. It seemed as though Dr. Bio did not 
recognize student thinking as a valuable resource that could be leveraged to inform his teaching. 
As such, Dr. Bio did not have as many opportunities to learn and develop the knowledge that 
seems to be necessary for leveraging student thinking. This suggests that disciplinary knowledge 
alone is insufficient for leveraging student thinking since Dr. Bio was a content expert, a finding 
that has also been documented by other researchers (e.g., Speer & Wagner, 2009).  

Dr. Chem’s and Dr. Bio’s perspective on how students learn seemed to impact their ability to 
access information about student thinking, which then, in turn, impacted the opportunities they 
had to interpret and leverage student thinking. Dr. Chem viewed her course as an opportunity to 
challenge common student errors and to support students in developing a more complete and 
normative way of thinking about the content. She facilitated student learning by giving them a 
chance to solve problems and get feedback from their peers and instructor. Dr. Bio, on the other 
hand, seemed to think that students learn best when they hear clearly articulated accurate ideas. 
Dr. Bio’s goal for instruction was to facilitate learning by helping students recognize the 
connections between the content through the sharing of his knowledge. Together this highlights 
that it could be important to discuss how students learn and work to foster a responsive 
disposition that values in-progress student thinking when developing PD to support faculty in 
accessing, attending to and interpreting, and leveraging student thinking.  
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Decisions, Decisions: Mathematics Instructors’ Decision-Making about Content and Pedagogy 

when Teaching with IBL 

 

Saba Gerami 
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In this paper, I explore the kinds of decision-making situations undergraduate mathematics 

instructors finds themselves in and the decisions they make when teaching with inquiry-based 

learning (IBL) methods. I first provide a brief review of research on teacher decision-making, by 

which this exploration is guided. I then use survey responses from 20 instructors from 12 

different universities across the United States, who reflected on decisions they had made or were 

anticipating making about content and pedagogy in lower-division mathematics courses they had 

taught or were going to teach using IBL. After classifying the decision-making situations that 

instructors reported, I discuss the findings and the next steps of this exploration.  

Keywords: teacher decision-making, university mathematics teaching, inquiry-based learning 

Inquiry-based learning (IBL) methods—a teaching approach that promotes ‘active learning’ 

for students—have become increasingly popular among practitioners in undergraduate 

mathematics education in the United States (Haberler et al., 2018; Laursen & Rasmussen, 2019). 

IBL is often used as an umbrella term to encompass various mathematics instructors’ ways of 

engaging students (Ernst et al., 2017; Laursen & Rasmussen, 2019; Yoshinobu & Jones, 2012). 

Because IBL is not research-based and it has instead emerged from mathematicians’ teaching 

practices, research in this area is still conceptualizing IBL, characterizing its different ways of 

implementation (e.g., Laursen & Rasmussen, 2019; Mesa et al., 2020; Shultz, 2020), theorizing 

its effects, and informing the ways it can be improved in a variety of environments, such as 

courses and institutions. My larger research goal is to conceptualize IBL through teacher 

decision-making in various situations. By investigating how and why instructors make decisions 

in specific situations, we can enhance our knowledge of IBL and the resources instructors 

teaching with IBL need when using these methods (e.g., knowledge, institutional and societal 

resources). As a preliminary step, I conducted a study on IBL instructors’ decision-making, 

during which I asked instructors to describe decision-making situations in a course taught with 

IBL. The study was primarily designed to collect decision-making situations that instructors 

encounter while teaching an undergraduate lower-division course using IBL methods, for the 

purposes of generating situations in future studies of teacher decision-making in IBL. This paper 

serves the very early stages of this investigation. To explore IBL instructors’ decision-making, I 

attempt to answer the following research questions in this report: What kinds of decision-making 

situations about content and pedagogy do instructors find themselves in when teaching with IBL, 

and what kinds of decisions do they make in these situations?  

Background on Research on Teacher Decision-Making 

Cognitive-based research on teacher decision-making has mostly focused on modeling 

teacher’s routines and what teachers do when a routine is interrupted due to an unexpected event 

(i.e., modeling teacher’s decision-making schemas for different scenarios), categorizing those 

scenarios and decisions, comparing novice versus expert teachers’ teaching schemas and 

routines, and finding connections between decision-making and individual constructs, such as 

beliefs, and knowledge (Borko & Shavelson, 1990; Bishop, 1976; Bishop & Whitfield, 1972; 
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Schoenfeld, 2010; Shulman & Elstein, 1975). In particular, Schoenfeld’s (2010) theory of 

teacher decision-making states that teacher’s decisions are filtered through and are functions of 

their goals, orientations, and resources. These approaches assume that teachers make decisions 

based on personal and idiosyncratic schemas (e.g., what has worked in the past) and as such, 

focus on individual teachers rather than on teachers as a group.  

Schoenfeld (2010) assumes that when placed in a contextualized situation with various 

options available to them, the teacher as an individual with a pre-existing set of goals, 

orientations, and resources, makes decisions (i.e., chooses an option) consistent with their goals. 

There are two types of situations: in familiar situations, making a decision is more automatic 

because existing routines and scripts are accessed and activated to reduce cognitive load; in 

unfamiliar situations, the subjective expected value of each available option is calculated and the 

option with maximum expected value is picked (see Gerami, 2021 for detailed example of such 

analysis). In this paper, I am interested in the situations instructors report finding themselves in 

and the decisions they make (or the options they choose) in these situations. Although the 

framework focuses on individual teacher decision-making, here I use the framework to study 

teacher decision-making across teachers by identifying similar decision-making situations that 

teachers find themselves in and comparing them. 

Methods 

The data for this study comes from a preliminary study that explored mathematics 

instructors’ decision-making in IBL lower division courses via a survey and a follow-up 

interview. The data were collected from 20 instructors from 12 different institutions across the 

United States over Fall 2019 and Winter 2020. In this paper, I primarily focus on data from a 

section of the survey that elicited decision-making situations from the instructors. This section of 

the survey asked instructors to choose a lower-division course that they have taught or were 

going to teach with IBL methods and to describe five situations where they made or anticipated 

making a decision: about the content, about the course materials, about the assignments and 

assessments, about methods of teaching, and while teaching. For each situation, participants were 

asked to (1) list all options available to them when making the decision, (2) the desirable and 

undesirable outcomes of each option, (3) explain what they chose and why, and (4) identify the 

use and frequency of various teaching methods (e.g., lecturing, student small group work) and 

their learning objectives for their students. The remaining sections of the survey inquired about 

instructors’ background and demographic information, their definition of IBL, reasons for using 

IBL, and personal gains and concerns about IBL. I followed up the instructors’ responses to the 

survey questions via a semi-structured hour-long interview. 

Here, I only use data from two decision-making situations—about the content and about the 

methods of teaching—because of lack of space and that the situations instructors provided about 

content and methods of teaching seemed complementary. Table 1 shows the instructors’ 

characteristics organized by the lower-division courses they chose to describe the decision-

making situations from. All names used in this report are pseudonyms. All instructors, except T5 

and T7, had used IBL methods to teach their courses before participating in the study; T5 and T7 

stated that they were going to use IBL methods in the future in their Calculus I course. On two 4-

point Likert scale questions about being comfortable with IBL methods and being 

knowledgeable of IBL methods, all instructors indicated that: they were either fairly comfortable 

or slightly comfortable with IBL methods, and they were knowledgeable or slightly 

knowledgeable of IBL methods. 
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Table 1. Study participants by course 

College Algebra/Pre-Calculus Introduction to Proofs 

T1: Greg T12: Isabel 

T2: Leah T13: Bill 

Calculus I/Differential Calculus Introduction to Proofs and Linear Algebra 

T3: Simon T14: Emanuele 

T4: Christina Linear Algebra 

T5: Kara T15: Sebastian 

T6: Kyle T16: Michael 

T7: Lynn T17: Harvey 

Calculus II/Integral Calculus  Abstract Algebra 

T8: Matthew T18: Ruth 

T9: Luke Mathematics for Elementary Teachers 

T10: Sam T19: James 

Calculus III/Multivariable Calculus  Probability and Statistics 

T11: Elaine T20: Tim 

 

To identify the types of situations and decisions instructors reported about content and 

pedagogy, I first summarized each scenario they described in a table. For example, Table 2 is the 

summary table of Leah’s (T2) decision-making situation about the mathematics content in her 

pre-calculus course. To explain the situation, Leah wrote: “[W]hen we were studying 

trig[onometry] functions, I had to basically skip tan[gent] all together so that we could better 

cover cos[ine] and sin[e]. I showed one single example of a graph of the tan[gent] function.” 

Leah listed four available options, ranging from skipping Tangent graphs altogether to covering 

them in depth in class, and described desirable and undesirable outcomes of each of her option. 

She chose option (1) in the end: “I gave a short lecture/example and didn't include it in any of 

their assessments ... I did this so that we could spend the extra time on graphs of sin[e] and 

cos[ine] instead. We needed more time on this.” I labeled the situation as “whether and how to 

cover graph of Tangent functions,” and characterized it as unfamiliar because this was Leah’s 

first time teaching pre-calculus with IBL. As the survey elicited one content-related situation and 

one pedagogy-related situation from each instructor, this process resulted in total of 40 tables 

(two from each instructor) divided into two categories: 20 decision-making situations about the 

content, and 20 decision-making situations about methods of teaching (pedagogy). I then 

categorized the decision-making situations by open coding the labels. Within the same decision-

making categories, I used the tables to find patterns among chosen options when the options 

were comparable.  

 
Table 2. Summary table of T2’s decision-making situation about content in her pre-calculus course 

Decision-making situation label: whether and how to cover graph of Tangent functions 

Options Desirable Outcomes Undesirable Outcomes 

(1) Cover Tan graphs 

via mini lecture [chosen] 

students see some new examples, 

allows more time on Cos and Sin  

short lecture likely results in 

the students not learning 

(2) Skip Tan graphs 

altogether 

more time to spend on Cos and 

Sin graphs 

students do not see examples 

of the Tan graph, problematic 

for calculus series 

24th Annual Conference on Research in Undergraduate Mathematics Education 984



(3) Ask students to learn 

Tan graphs on their own 

more time to spend on Cos and 

Sin graphs 

have to follow up (only a 

couple students would read the 

book), students not learning 

(4) Cover Tan graphs in 

class  

reinforce ideas from the Cos and 

Sin graphs 

No more time to spend on to 

better learn Cos and Sin 

graphs  

Preliminary Findings 

When asked to describe a decision they made about the content in their IBL course, 15 of the 

20 instructors provided situations where the content was mentioned in their decision-making, 

with eight of the situations coded as familiar. These situations were divided into three groups: 

whether and how to cover specific topics, how to introduce a new topic, and how to clear 

students’ confusions or misconceptions about the content. The other five instructors mentioned 

no specific (e.g., Riemann sums) or generic (e.g., proofs) content (T8: “I had to decide what 

group projects to use. There are many published examples of possible projects, or I could have 

written my own, or adapted published projects”; T18: “I could have had the students carry out 

calculations using technology”).  

Twelve instructors described situations about whether and how to cover specific topics given 

the lack of time to cover all topics in the ways they desired (e.g., T15: “I usually have to make a 

choice between covering an application or two or instead picking another "core" topic, like 

Gram-Schmid and orthonormal bases.”). These 12 instructors chose four different options: to 

cover the content via lecturing, to cover the content via student-led teaching methods (e.g., group 

work, class discussion, student presentations), ask students to learn the content on their own 

outside of class, and skip the content altogether.  

Three instructors described situations where they had to decide how to introduce a new topic 

so that it could help students gain better understanding: 

T9: Deciding how to discuss using rectangles to approximate the area under curves (eg: using 

right-endpoint approximation with four rectangles). I had to make a decision how I 

wanted to introduce this topic to students so they would be able to grasp ideas like more 

rectangles produces a better approximation. 

One of the instructors describing a situation involving introducing a new topic, also wanted 

to decide how to clear students’ confusions or misconceptions about the content: 

T1: We were starting our section on compound interest (in the sense of banking). This topic 

can lead to some confusion, because interest compounded more than once leads to an 

overall interest rate greater than the nominal rate. I wanted to build understanding of this, 

and think some about why this happens. 

The three instructors contemplating about how to introduce new topics to their students (T9, 

T11, and T1) all decided to have students work on problems that would make them think about 

the upcoming material and follow up their work by having class discussions.  

When asked to describe a decision they made about methods of teaching in their IBL course, 

17 instructors provided situations where methods of teaching were mentioned in their decision-

making, with 14 of the situations coded as familiar. One instructor described a situation about 

assessment prior to a lesson without mentioning methods of teaching and two instructors did not 

provide a situation. 

Most instructors who described a situation about their methods of teaching acknowledged 

making such decisions often and instead of picking one specific situation that they found 

themselves in once, they described a generic situation where they had to make a similar decision 
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frequently. These situations were divided into two groups: choosing among various teaching 

methods, and deciding how to proceed when students are at an impasse.  

Fourteen of the 17 instructors described situations where they had to choose among various 

teaching methods (e.g., group work, lecture, student presentation). Among these situations, the 

instructors were often choosing: between lecturing and other student-centered teaching methods 

(e.g., T8: “I had to decide how much time to devote to lecture vs. class discussion vs. group 

projects.”), or among various student-centered teaching methods (e.g., T10: “I had to decide how 

to balance student group work while efficiently being able to have students present their work to 

their peers.”). A few instructors also wondered how to arrange students to work: individually, in 

groups, or as a whole class (T7: “When having my students work on a problem in class I always 

have to decide if I want them to try it on their own, in a group, or as a whole class first.”). Most 

of these instructors explained that in these situations their decision-making is not 

straightforward, as they have experimented and chosen different options depending on the 

specific situation. 

Three instructors described situations where students were at an impasse working on the 

materials on their own in class and the instructors had to decide how to proceed (e.g., T13: 

Essentially whole class is at an impasse and presentations are stalled out.”). Two of these 

instructors said that they often bring all students together for a whole class discussion to help 

students move forward; the other instructor explained she chooses among two options depending 

on the day (sending them home to think, show them the solution). 

Discussion 

The findings show that the instructors had a difficult time reflecting on decisions about 

content, as five of them provided situations where the content was not discussed, and when the 

content was mentioned, it was not always obvious how it played a role in making the decisions; 

most instructors ended up discussing how to teach instead. This shows that IBL instructors may 

not be fully aware of the decisions they make about the content (e.g., sequencing problems to 

teach a specific topic, choosing a problem with specific representations), or that they do not often 

make such decisions. Moreover, analyzing the decision-making situations about the methods of 

teaching showed that these decisions were more familiar and automatic and that teachers used 

complex routines to choose the right method in the moment. Future studies are needed to unpack 

these routines and examine other factors teachers consider, besides time economy, when they 

have to decide among the various teaching methods used in IBL. Concerns about coverage in 

IBL and the relationship between lecturing when under time pressure have been previously 

raised (Johnson et al., 2016; Yoshinobu & Jones, 2012). However, this study shows that 

instructors use other options when under time pressure, such as delegating the content to students 

to learn on their own through use of portfolios and homework and assigning some topics as extra 

credit. The analysis also shows that instructors in IBL may feel the need to introduce the content 

to students differently when they are not lecturing, and to think through how they would respond 

to student difficulties to the materials in class. 
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Examining Elementary Prospective Teachers Use of Visuals in Fraction Addition and 
Subtraction Problems  

 
 Sayonita Ghosh Hajra Topaz Wiscons Kimberly Elce 

California State University, Sacramento 

Mathematics learning is enhanced when students use visual and intuitive mathematical thinking. 
Visual representations create an integration between conceptual understanding and formulaic 
mathematics that allows the student to make sense of the underlying mathematics.  In this study, 
we examined elementary prospective teachers’ (PTs) use of visual models in making sense of 
fraction addition and subtraction concepts. We found that at the beginning of a math content 
course PTs relied on computational rules.  As the course progressed, they incorporated more 
visuals in their solutions and improved their use of the visuals. We analyzed the types of visual 
models used and PTs’ sense-making progression. 

Keywords: fraction addition, fraction subtraction, prospective teachers, representations, visuals 

Introduction 
The role of visual representations in the problem-solving process is well studied (Boonen, 

Reed, Schoonenboom, & Jolles, 2016; van Essen & Hamaker, 1990; van Garderen, Scheuermann 
& Poch, 2014). Not only are visual representations teaching tools, but they also serve as a 
process developed by students to make sense of a problem (Stylianou, 2011) and hence are 
components of the problem-solving process. Visual representations provide a visual description 
and connect numerical, linguistic, and spatial quantities (Pape & Tchoshanov, 2001; Woodward 
et al., 2012). Once the problem structure is clear, visual representations can facilitate 
understanding of the problem, identification of a problem solution, self-monitoring the progress, 
and self-checking the accuracy of the solution (Boonen et al., 2014; Krawec, 2014; van 
Garderen, 2007). In addition, visual representations also help students explore multiple strategies 
and understand why mathematical rules work (Boaler, 2016). 

A recent study has found pre-service teachers with high spatial skills can generate structured 
schematic representations showing a relationship between parts of the object correctly whereas 
those with low spatial skills tend to generate pictorial representations in terms of shape, color, or 
brightness (Özsoy, 2018). The use of appropriate visual representations to support the 
understanding of the problem and the improvement of problem-solving performance depends on 
how the teacher uses these visual representations. Incorrect or incomplete representation may 
confuse the students which may have an adverse affect on students’ problem-solving process 
(Özsoy, 2018). Also, research (Thompson, 1985) suggests that beginning teachers’ conceptions 
and practices are influenced by their schooling experience. Therefore, if teachers did not have 
experience with visual representation in their schooling, how can they be expected to teach the 
same to their students.  

Given the importance of visual models in elementary curriculum and advanced mathematics 
thinking, mathematics teacher educators (MTEs) need to understand what knowledge in-coming 
prospective teachers (PTs) have and how they can support PTs to gain a conceptual 
understanding of mathematics through visual representations. Hence, we explore the question: 
What types of visual models do elementary PTs use to make sense of fraction addition and 
subtraction concepts, and how does their use of these models change throughout the semester? 
How does PTs’ use of visual models contribute to their sense-making and problem-solving? 

24th Annual Conference on Research in Undergraduate Mathematics Education 988



Theoretical Framework 
Our study employs two theoretical frameworks: conceptualization of representation and 

conceptualization of mathematical pedagogical content knowledge.  

Conceptualization of Representation 
Representations are essential components used in describing problem solving processes in 

mathematical learning (Cifarelli, 1998). A representation is a configuration of signs, objects, or 
characters that stand for something other than itself (Goldin & Shteingold, 2001).  The term 
representation refers to “the act of capturing a mathematical concept or relationship in some form 
and to the form itself” (NCTM, 2000, p. 67). In other words, representation is not just the final 
solution of a problem but is a process to capture student thinking in obtaining the solution (e.g., 
Ball 1993; Cai 2005). Pape and Tchoshanov (2001) argue that representations “refer to both the 
internal and external manifestations of mathematical concepts” (p. 118). External representations 
include conventional symbol systems of mathematics such as base-ten systems, numerals, 
diagrams, equations, etc. to structured learning environments such as manipulatives, computer-
aided systems, etc. that support understanding of mathematical concepts (Goldin & Shteingold, 
2001). Internal representations include mental images or abstractions of mathematical ideas 
constructed by the learner. These include students’ own symbolization, language, visuals, and 
spatial representations that they have assigned to make sense of the mathematical constructs. 
These two representations interact and influence each other (Pape and Tchoshanov, 2001). For 
example, a PT can use a discrete model to internalize one and one-half of the whole. Similarly, a 
PT who internalizes 3/2 as 3 parts of size ½ can create a continuous model to externalize the 
mental image. Hence a conceptualization of representation is a two-way process; first 
internalizing external representations and second externalizing mental images (Figure 1). This 
interplay between the external and internal representations facilitates learning when PTs come to 
use various representations to understand abstract mathematical concepts. 

 
Figure 1. A picture showing the two different types of representations and their zone of interaction. 

Pedagogical Content Knowledge  
Our work is situated within Ball and colleagues’ conceptualization of mathematical 

Pedagogical Content Knowledge (e.g., Ball, Thames, & Phelps, 2008; Hill, Ball, & Schilling, 
2008), which is the knowledge of effective teaching including teachers’ conceptual knowledge 
about the content, knowledge of curriculum, knowledge of teaching and instructional tools, and 
knowledge of students’ learning. Examining PTs’ visual representations can help to inform 
MTEs on how to incorporate multiple visual representations in their K-8 content courses, 
strengthening PTs in content as well as in their readiness to teach and address children’s 
mathematical conceptions. 
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Methodology 
For this study, our participants were prospective teachers enrolled in the second semester of a 

two-semester math content course for elementary teachers in a large public university. A total of 
289 PTs participated in the study: 103 in Spring 2020, 58 in Fall 2020, and 128 in Spring 2021. 
Each semester of the study, a subset of the three researchers were the instructors of the course. 
All three semesters, the data collected from a pre-and post-assessment on fraction addition and a 
final exam question on fraction subtraction consisted of both the visuals used and the written 
explanations of the solution (Figure 2).  

 
Figure 2. Pre-and post-assessment on fraction addition and final exam on fraction subtraction. 

For our study, visual models include schematic representations such as arrays, number lines, 
and diagrams. Also, we have used visuals, and visual models interchangeably in this paper. We 
used a descriptive coding process (Miles et al., 2014) and used descriptive statistics, namely 
frequency statistics to analyze the data.  

Results 
Here we present our results on our exploration of the research questions.  
Research Question 1: What types of visual models do prospective elementary teachers use 

to make sense of fraction addition and subtraction concepts, and how does PTs’ use of visual 
models change throughout the semester? 

Participants utilized a variety of visual models. Table 1 shows the percentage of solutions 
using the listed visual model in each of the three assessments. We observed that PTs included a 
visual model in 47.3% of pre-assessment solutions and 69.6% of post-assessment solutions.  
Meanwhile, 63.1% of pre-assessment and 41.2% of post-assessment solutions included fraction 
rules or decimals.  This percentage is heavily weighted in the Spring 2019 pre-assessment as PTs 
interpreted the problem as, “what would a child who is unaware of the rules do?”, e.g., add 
straight across numerators and denominators.  Directions were modified and a total of 3 PTs 
added straight across numerators and denominators over subsequent semesters.  For the final 
assessment, which explicitly asked PTs to use a visual, visuals were included in 90.4% of 
solutions and 18.5% of solutions included fraction rules. We observed that discrete strip 
diagrams and number lines were used more frequently over the course of a semester. 

Research Question 2: How does PTs’ use of visual models contribute to their sense-making 
and problem-solving? 

The fraction addition problem used in the pre- and post-assessments required PTs to create 
equal size pieces in the whole since the denominators in the two fractions were not equal. Table 
2 lists the visual process of PTs in the pre- and post-assessments, and the percentage of each 
occurrence. Over the semester, the percentage of clear and complete solutions that used a visual 

24th Annual Conference on Research in Undergraduate Mathematics Education 990



model increased from 7.5% on the pre-assessment to 34.1% on the post-assessment.  However, 
by the end of the semester, nearly a third (32.2%) of solutions in the post-assessment still had no 
visual component or no indication of how to use a suggested visual. Examples of some of the 
ways PTs use their visuals in making sense of the addition problem are shown in Figure 3. 

Table 1. Percentage of participants using a particular type of visual model in three assessments. 

Visual used* 
 

Pre (%) 
N=281 

Post (%)  
N=211 

Final (%) 
N=276 

Discrete strip diagram 21 14.7 54.3 
Continuous strip diagram 10 18 6.5 
Number line 2.5 25.6 21.3 
Pies 8.5 2.8 2.2 
Array 4.6 8.5 0 
Discrete objects and grouping 0.7 0 4.7 
Place value blocks  0 0 1.4 
Suggested a visual with words 7.5 8.1 0 

*Some participants used more than one model in their explanation. 
Table 2. Descriptive statistics on PTs’ visual solutions to make sense of fraction addition. 

PTs’ visual process for sense making* Pre (%) 
N=281 

Post (%) 
N=211 

a) Entirely visual solution with clear representation or explanation 7.5 34.1 
b) Entirely visual solution with less clear representation or explanation  7.1 9.5 
c) Initial visual set up to get equal pieces, but then added arithmetically 0 0.5 
d) Visually attended to addition/acknowledged the need for equal size 
pieces visually, but did not show how to get an answer visually 

 
6.4 

 
10.4 

e) Visually represented one or both fractions but did not alter the 
fraction visually to perform addition 

 
17.4 

 
10.4 

f) Visually attended to addition; did not acknowledge the need for equal 
size pieces visually, and didn't complete solution visually 

 
4.3 

 
1.9 

g) Explained what to do visually but didn’t show 1.4 2.4 
h) No indication of a visual or how to use suggested visual 56.6 32.2 

*Some solutions contained more than one process. 

 
Figure 3. (a) An entire visual solution with a clear explanation. (b) A PT acknowledged the need for equal size 

pieces but did not show how to alter the visual representation to achieve equal size pieces. 
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The final assessment considered a problem with like denominators. PTs’ visual process for 
the final assessment and the percentage of each occurrence is shown in Table 3. Figure 4 shows 
an example of a PT’s process which is entirely visual with clear representation. In the final exam, 
71% of PTs had an entirely visual solution with a clear representation or explanation. 

Table 3. Descriptive statistics on PTs’ visual solutions to make sense of fraction subtraction. 

PTs’ visual process for sense making* Final (%)  
N=276 

a) Entirely visual solution with clear representation or explanation 71 
b) Entirely visual solution with less clear representation or explanation 7.2 
c) Initial visual set up to make subtraction easy, then subtracted arithmetically 2.5 
d) Converted given fractions to improper fractions, then subtracted visually 3.3 
e) Visual set up but didn’t show subtraction of 2 2/7 visually 0.7 
f) Visually represented one or both fractions but did not perform subtraction 3.3 
g) Attempt to show subtraction visually but didn’t complete visually 1.4 
h) No visual 10.9 

*Some solutions contained more than one process. 

 
Figure 4. A PT’s work showing solution entirely visual with clear representations. 

Discussion 
The results from the pre-assessments provided some immediate pedagogical implications. 

We found that very few PTs used a number line as their visual model on the pre-assessment. 
Studies have shown that a student’s ability to work on a number line contributes to the 
development of numerical knowledge and correlates to improvements in estimation accuracy 
(Siegler & Booth, 2004; Schneider et al., 2009). With the conceptual gains that arise with the use 
of number lines, we hope that these future teachers will use them with their students. Therefore, 
we need to build up these future teachers’ comfort level working with number lines. This is not 
to say that other models are not important, but rather the rarity of number line use requires 
specific attention.  

The comparison of the pre-assessment to the post and final clearly shows that PTs get better 
at conceptualizing fractions and using visuals to communicate that understanding. Those results 
should not be surprising as that is one of the purposes of the course. The more interesting 
question is to find out the extent to which this learning persists. We plan to follow up with a 
group of these PTs while they are in their credential program and then again when they are in-
service teachers to track how their conceptual understanding of fractions and their 
communication of that understanding changes over time. Our data showed much better 
performance on the final than on the post. This is not surprising as the final was high stakes 
whereas the post was only graded for completeness. When following up with groups of students, 
we will also be analyzing which of the culminating formats is a more accurate indication of 
future understanding. 
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Undergraduate Calculus Students’ Perceptions of the Characteristics of Good Responses 

 

 Duane Graysay Brian Odiwuor 

 Syracuse University Syracuse University 

We conducted preliminary research on effectiveness of contrasting examples in supporting 

students in introductory calculus to conceptualize explanation as a genre of mathematical 

writing. Drawing on principles from Variation Theory (Marton, 2014) we constructed sets of 

mathematical responses, each designed to contrast along a critical dimension. Participants 

compared responses, identified similarities and differences, and ranked responses from better to 

worse. Participants discerned dimensions of variation that were consistent with our intentions 

and positioned clarity and efficiency as particularly valuable features. However, we conclude the 

report by problematizing the limitations of variation theory as an instructional design based on 

the ways that such design is likely to perpetuate norms and expectations for communication in 

mathematics that risk marginalizing students. 

Keywords: Learning to write in mathematics; Mathematical explanations; Variation theory; 

Mathematical communication 

Learning to write in ways that reflect the norms and expectations of a mathematical 

community is fundamental for students’ growth as members of that community. There is little 

research on how to support students in learning to write in mathematics. However, the few 

available studies suggest benefits of student’s exposure to writing in the discipline (Bicer et al., 

2011; Linhart, 2014). Due to the importance of learning to write in mathematics, Bicer et al. 

(2013) argued for a need to understand how to design instruction that helps to improve students’ 

ability to write and construct meaningful mathematical responses. 

This study uses Variation Theory (Marton, 2014) as a lens for investigating how students’ 

experiences of contrast across examples of mathematical writing might support their 

development of an understanding of mathematical explanations as a genre of writing. By 

exposing students to sets of constructed examples we intended to support their development of a 

conception of good mathematical explanations. 

Theoretical Framing 

Writing in mathematics has not been well conceptualized (Quealy, 2014; Sumner, 2016; 

Wilcox & Monroe, 2011). Several scholars have advanced the argument, however, that 

mathematical writing is valuable as an instrument of learning and as an outcome of learning. For 

instance, Quealy (2014) argued that writing helps students build deeper connections to the 

subject by inviting students to reflect on their own reasoning and extend their understanding. 

Meaningful writing promotes positive attitude and understanding of mathematics and contributes 

to construction of new knowledge (Fung, 2010; Linhart, 2014; Seo, 2015). Writing promotes 

opportunities for students to practice mathematical inference, to communicate mathematical 

ideas, organize thinking, make connections, and interpret results (Fung, 2010). 

Writing is a constructive activity that not only reinforces understanding but also allows for 

constructing new meanings (Seo, 2015). According to Seo (2015), engaging in writing is useful 

to students as a way of discussing assumptions, justifications, providing explanations, and 

criticizing mathematics ideas. Colonnese et al. (2018) found that including intensive writing in 

mathematics courses is one strategy for engaging students in critical thinking thus enhancing 
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students' own critical thinking. Colonnese et al. (2018) posit that writing mathematical responses 

creates a higher level of cognitive demand for students by challenging them to explore 

mathematical relationships among ideas in their responses. 

The argument for engaging students in writing is reflected in the Common Core, which calls 

for students to write about mathematical ideas to analyze and self-evaluate their thinking and that 

of their peers (National Governors Association et al., 2010). Using mathematical language to 

convey ideas precisely is essential to strengthening conceptual understanding. Students should 

learn to construct arguments, critique others’ mathematical reasoning, explain the process of 

solving problems, and adopt clear definitions and vocabulary in mathematics. In addition, the 

writer’s choice of text, structure, grammar and lexis is determined by the writer's role, purpose, 

context and the target audience (Nesi, 2012), including their disciplinary community. Therefore, 

every student can benefit from learning to write like members of their disciplinary community. 

Using Variation Theory to Support Students’ Learning to Write 

Variation theorists argue that there are necessary conditions for meaningful learning to take 

place. Specifically, Marton (2014) argues that learning requires interacting with instances “that 

have . . . [some] meaning in common, though differing otherwise” (p. 45). In other words, 

learning happens when the learner is aware of both sameness and difference across experiences. 

A learner notices a critical feature in one situation when it differs from at least one other feature 

of a similar situation along some dimension of variability (Marton, 2014). Multiple features in 

the same dimension must be experienced simultaneously because discernment cannot occur 

without learners’ awareness of other features on a common dimension. Thus, meaning is created 

based on how experiences differ from one another, and the difference is determined by the 

possible features in each dimension. 

The implications for instruction are that an instructor must identify objects of learning (such 

as a specific concept or skill) (Marton & Pang, 2006) and critical features of those objects that 

learners should discern. The instructor must then construct opportunities for learners to contrast 

examples with the critical features against examples that do not share those features. In theory, 

this contrast will support learners to develop the intended object of learning. 

Our goal in this pilot research was to respond to the following questions: 

1. What dimensions of variability do learners discern among contrasting examples of 

mathematical responses to typical calculus problems and which features do they perceive 

as critical features of a “good” response? 

2. How do the dimensions discerned by students relate to those that the designers intended? 

Methods 

We conducted this study in the context of an introductory Calculus I course. We developed a 

list of four critical features to define our object of learning: a mathematical response that 

includes exposition, that presents understanding and capacity related to a solution process even 

when the individual is stuck on a particular stage, that includes descriptions of erroneous solution 

paths, and that acknowledges in first-person language the human agent behind the solution. We 

designed sets of examples intended to make each dimension visible by varying constructed 

examples with respect to the intended dimension but otherwise holding features constant (see 

Figure 2 and Figure 3). We asked students to compare examples in each set, identify similarities 

and differences across the examples in each set, and state which example they preferred. We 

collected de-identified responses to in-class work, quizzes, exams, discussion posts, and 

recordings of class meetings as data sources. 
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Analysis 

The second author coded inductively through open coding data (Emerson et al., 1995; 

Bogdan & Biklen, 2007) by noting the features and contrasts that students explicitly mentioned 

as they compared, contrasted, and ranked examples within each set. Codes were either direct 

phrases from the data or represented the researchers’ interpretation of the data. We inferred, 

based on the features that participants explicitly mentioned, the corresponding dimension of 

variation that the student discerned. The process led to 13 distinct codes, seven of which we 

found across more than one participant’s data. We validated codes by a second researcher 

applying the codes as an a priori scheme on the same data. We found consistency between the a 

priori coding and the inductive coding, indicating reliability for the code set. 

Findings 

The codes that emerged from the coding and data analysis are illustrated in Figure 2. We 

include only those codes that appeared in data from more than one participant. We developed 

four profiles detailing dimensions of variation, specific features along those dimensions, and the 

valorized features identified by four participants. In the following section, we illustrate those 

findings using Adam’s profile. We compare the discerned dimensions identified by Adam to the 

intended dimensions on which we had based the examples. 

 

Discerned Features Participants 

Adam Bobbi Carl Dina Erin 

Clarity / // // / // 

Efficient use of words / /   / 

Organization /  /  /// 

Explanation /  /// /  

Content knowledge/ understanding    / // 

Use of Labeling   // /  

Accessibility  /   // 

Figure 1. Dimensions of Variation discerned by participants based on examination of contrasting examples. 

Participant 1: Adam 

As shown in Figure 1, Adam discerned clarity of communication as a dimension of variation 

across the different examples, with some examples identified as “clearer” and others as “less 

clear”. Other dimensions that Adam discerned included efficient use of words, organization, and 

length of the response. According to Adam, the features of a good response include providing 

just enough well-organized information to make communication clear. For example, in 

comparing the examples in Figure 2, Adam wrote that “the best response is response B because . 

. . response A has way too much. . .. Response B shows the same thing in a much more efficient 

way.” Here we infer Adam discerning the amount of exposition as a dimension of variation and 

valorizing an economical response over a more descriptive one. 
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Figure 2. Responses that contrast with respect to representing the human agency responsible for the mathematics. 

 
Figure 3. Example responses to “Find the largest possible volume of a cylinder inscribed in a sphere of radius 7”. 

Adam also responded to a set of examples designed to illuminate different ways of 

responding to a problem when one is unsure of a critical detail – in this case, as shown in Figure 

3, a hypothetical situation in which respondents have not yet found a relationship between radius 

of the sphere and height of the cylinder in the inscribed cylinder problem. The responses differ in 

the amount of insight provided regarding how the respondent would use that relationship if they 

could express it. Adam clearly discerned the intended dimension of variation, and valorized the 

response that most fully illuminated the scope of the respondent’s knowledge of the process and 

capacity to carry it out: 

C was the best response because it showed some work, that they knew was wrong, but 

that was right with the equation they used. Response B was the next best because they 
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illustrated what they would do, but they didn’t actually show themself doing it. And, 

finally, response A showed nothing besides saying that they were stuck. 

We note that in this instance, the valorized feature that Adam identified – showing that one 

could carry out a process in spite of knowing that a component is incorrect – was consistent with 

our intended critical feature. 

Discussion 

Writing in mathematics benefits students’ development of mathematical understanding and is 

a useful skill for students who pursue mathematics as an academic or professional path. In this 

research, we sought to determine whether comparing examples designed to draw attention to 

particular features of mathematical writing could be effective at supporting students to develop 

understanding of qualities related to effective writing in mathematics. Our preliminary analysis 

found that participants who examined our sets of responses identified dimensions of variations 

that were consistent with those that we had intended, which according to Variation Theory is a 

necessary first condition for developing a systematic approach to supporting students in 

developing understandings of mathematical writing that is descriptive, narrative, and that creates 

opportunities to demonstrate knowledge even in contexts when the student has not yet fully 

solved the problem about which they are writing. For example, the dimensions of variation and 

critical features that Adam valorized, including clarity, efficiency, and demonstrating capacity in 

spite of a missing component, were consistent with our intended object of learning. However, we 

note that no students identified the dimension of human agency or the feature of responding in a 

way that identifies the first-person agent in the response, which was one of our intended 

dimensions and features for the set shown in Figure 2. It seems that example sets, when designed 

appropriately, can be effective at making visible the dimensions of variation and critical features 

that the designer perceives as characteristic of good mathematical writing.  

However, a problematic aspect of this instructional design is that the object of learning, the 

dimensions of variation embedded in the examples, and the critical features valorized by 

instruction represent the norms and expectations that the instructor holds, as a representative of 

an existing mathematical community. For examples designed to support the development of 

mathematical concepts, this does not seem problematic. For examples designed to support more 

subjective concepts – such as the nature of good mathematical writing – this approach risks 

perpetuating the status quo by pushing students to write and communicate in ways that are 

associated with those groups that are most centrally represented in mathematics. We know that 

the status quo marginalizes students whose forms of expression -- grounded in their historical, 

social, and cultural backgrounds – differ from the forms of expression that are valorized by the 

culture of mathematics, which is itself dominated by white men. Knowing that students in this 

research discerned the dimensions of variation intended by instructors suggests that such 

examples could be effective at helping students develop a concept of mathematical writing that 

would be aligned with the instructor’s values. However, if we want to broaden access to 

mathematical meaning and mathematical success, and if we intend to honor and respect the ways 

of writing and communicating that incorporate students’ personal historical and cultural assets, 

then it will be necessary to find ways to support instructors to critically examine their 

assumptions about the nature of effective writing in mathematics and the critical features that 

differentiate effective writing from less effective writing. 
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Female Students’ Increased Belonging in Active Learning Calculus 

 

Casey Griffin 

University of Delaware 

Women continue to be underrepresented in undergraduate science, technology, engineering, and 

mathematics (STEM ) majors, presenting a lack of diversity that limits the field of scientific inquiry. 

Prior studies identify low sense of belonging as a key contributor to women’s decisions to leave 

STEM. Incorporating active learning into introductory STEM courses offers promise in increasing 

female students’ sense of belonging, and in turn, their persistence in STEM. The purpose of the 

current study is to explore to what female students in an active learning Calculus course attribute 

an increased sense of belonging. Findings suggest that while most female students did not 

experience increased feelings of belonging, 8% (N=3) did. Ongoing analysis is being conducted 

to investigate the experience of these three students more deeply. 

Keywords: sense of belonging, active learning, undergraduate calculus, gender 

Science, technology, engineering, and mathematics (STEM) fields continue to be male-

dominated. Females are especially outnumbered in math-intensive fields such as computer science, 

engineering, and the physical sciences (Bui, 2014; Wang & Degol, 2017). This STEM gender gap 

is due at least in part to students’ college major decisions (Carmichael, 2017; Chamberlain, 2017). 

Fewer females than males enter undergraduate STEM majors as freshmen (Eagan et al., 2016), 

and females are 1.5 times as likely as males to switch out of STEM majors (Chen, 2013; Ellis et 

al., 2016). Therefore, far more males are persisting and graduating with STEM degrees than 

females, resulting in a STEM workforce that lacks diversity. 

Diversity benefits any field for a number of reasons. First, with more perspectives comes more 

and different approaches to solving problems (Gibbs, 2014). A diverse workforce opens up the 

possibility of identifying and tackling new types of problems that may not have been noticed by a 

more homogenous workforce. As Blickenstaff (2005) states, with a homogenous STEM 

workforce, “the field of scientific inquiry will be narrow and inbred” (p. 383). Additionally, 

research indicates that diverse groups are better at problem solving and hold more complex 

discussions than homogenous groups (Antonio et al., 2004; Hong & Page, 2004). STEM fields are 

missing perspective and ideas from talented females, and thus the problems and approaches to 

solving those problems remain male-centric. 

One main reason females are fleeing STEM is because they feel a low sense of belonging 

(Seymour & Hunter, 2019; Shapiro & Sax, 2011). Sense of belonging is “one’s personal belief that 

one is an accepted member of an academic community whose presence and contributions are 

valued” (Good et al., 2012, p. 701). While sense of belonging can be an issue for all students, 

research suggests that female students typically report a lower sense of belonging than their male 

classmates in STEM (Rainey et al., 2018; Shapiro & Sax, 2011). 

Calculus can be an especially critical leak in the STEM pipeline and thus is a good site to study 

the role of females' sense of belonging and retention in STEM. Calculus is a required course for 

STEM majors and is often taken early in students' STEM education. In addition, it is often a 

prerequisite or corequisite for other STEM coursework, and so students who perform poorly may 

be prevented from taking other courses in their major. Consequently, Calculus is a key junction at 

which students, especially females, decide whether to persist in STEM (Ellis et al., 2016; 

Rasmussen et al., 2019; Seymour & Hunter, 2019). 
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One way that instructors might be able to support their students' sense of belonging is by 

incorporating active learning opportunities into the instruction. Active learning is a broad term to 

describe having students participate in the learning process instead of passively listening to an 

expert (Bonwell & Eison, 1991). Research suggests students typically prefer active learning to 

lecture, and active learning has been shown to benefit student performance and persistence more 

than lecture (Seymour & Hunter, 2019). 

The current study is part of a larger study investigating connections between students’ sense 

of belonging and the type of Calculus instruction they experience. In the current study, I address 

the following research questions: To what extent does female students’ sense of belonging change 

over the course of one semester of participating in an active learning Calculus course? For those 

female students who report an increase in their sense of belonging, to what factors do they attribute 

this change? Feminist theorists argue that comparing experiences between genders tends to 

position the male experience as the “norm,” however examining the female experience is important 

in its own right (Du Bois, 1983; Kitzinger & Wilkinson, 1997). Understanding factors that might 

boost female students’ sense of belonging, and bringing those factors to the attention of Calculus 

instructors could provide female students with opportunities to further develop a sense of 

belonging and perhaps persist in STEM. 

Related Literature and Theoretical Perspective 

Sense of Belonging 

One feels a sense of belonging when they feel connected to a particular environment, or feel 

accepted and appreciated by others in that environment (Rosenberg & McCullough, 1981). 

Strayhorn (2012) claims that sense of belonging can be so essential that one cannot complete other 

processes until this basic human need is satisfied. For students, this might mean they have trouble 

listening to a lecture or studying for a test without feeling that sense of belonging. Therefore, 

feeling or not feeling a sense of belonging in class can influence how students behave and perform 

in that class. Good et al. (2012) conceptualize sense of belonging as “one's personal belief that one 

is an accepted member of an academic community whose presence and contributions are valued” 

(p. 701). The current study adopts this definition of sense of belonging. 

Good et al. (2012) quantified this construct by developing a Mathematical Sense of Belonging 

(MSoB) survey to measure students’ sense of belonging in the mathematics community. After 

distributing the survey to 997 undergraduate Calculus students, a factor analysis revealed five 

distinct factors that make up students’ sense of belonging. They are Acceptance (e.g., “I feel like 

I fit in”), Affect (e.g., “I feel tense”), Desire to Fade (e.g., “I wish I could fade into the background 

and not be noticed”), Trust (e.g., “I trust my instructors to be committed to helping me learn”), and 

Membership (e.g., “I feel like I am a part of the math community”). They found that the MSoB 

had good test-retest reliability and that Sense of Belonging to Math proved to be a significant 

predictor of students’ intentions to pursue math in the future. 

Research also suggests that one’s sense of belonging is manipulable and can be impacted by 

what happens in the classroom. Hausmann and colleagues (2007, 2009) surveyed students on their 

sense of belonging to their institution at the beginning of their first semester, and the beginning 

and end of their second semester. In their 2007 study, Hausmann et al. found that instances of 

increased sense of belonging were associated with above average academic integration (Tinto, 

1975), which is comprised of students' intellectual development and faculty concern for students' 

development. In fact, declining sense of belonging was attenuated by academic integration. Other 

studies confirm that social integration (Tinto, 1975), or interactions with peers and with faculty, 
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has shown to support students' sense of belonging (Hausmann et al., 2007; Hoffman et al., 2003). 

Further, Hausmann et al.’s (2009) study revealed a link between social integration, sense of 

belonging, institutional commitment, and intention to persist. Finally, according to Anderman 

(2003), students’ sense of belonging could be protected against decline by instructor practices that 

promote mutual respect and academic risk-taking. These studies suggest that sense of belonging 

is not a static construct and can potentially be impacted by how students perceive their classroom 

experience, specifically their academic and social integration, and the instruction they experience. 

Active Learning 

Active learning can be broadly thought of as any form of instruction that engages students in 

the learning process (Prince, 2004). More specifically, active learning is “the process of learning 

through activities and/or discussion in class, as opposed to passively listening to an expert” 

(Bonwell & Eison, 1991, p. iii). Some examples of instructional strategies that support active 

learning include having students work on problems in groups or individually, engaging students 

in class discussions, and soliciting student questions. Research indicates students who engage in 

active learning opportunities have higher levels of achievement, sense of mastery, and persistence 

than students without these opportunities (Freeman et al., 2014; Lahdenperä et al., 2019; 

Rasmussen et al., 2019). In fact, the President’s Council of Advisors on Science and Technology 

(PCAST) 2012 report recommended implementing instruction that supports active learning to 

retain more undergraduate STEM students. 

Incorporating active learning into Calculus instruction offers promise in providing 

opportunities for students to feel more socially and academically integrated in their Calculus 

course. First, instruction that supports active learning offers opportunities for students to interact 

with their classmates and with their instructor, thus creating potential for social integration. 

Academically, with more student-to-faculty interaction might come a stronger perception of 

faculty concern for student development. This, in conjunction with active learning’s benefits for 

student learning and achievement, might leave students feeling more academically integrated as 

well. As prior research indicates, feeling socially and academically integrated is associated with 

feeling a stronger sense of belonging, and thus, incorporating active learning into Calculus could 

potentially support students’ feelings of belonging early in their STEM education. 

Finally, research suggests that active learning can be especially beneficial for female students 

(Rainey et al., 2019; Shapiro & Sax, 2011). Rainey et al. (2019) found that females who leave 

STEM reported experiencing lecture-based instruction while preferring active learning 

environments. Their results also linked experiences with active learning, perceptions of professor 

care, and sense of belonging. Those students who experienced more active learning had greater 

perceptions of professor care, which was in turn related to a greater sense of belonging in STEM. 

In addition, publicly sharing and critiquing student work has been shown to support self-efficacy 

and connect mathematical success with effort rather than innate talent, which is counter to 

patriarchal ideologies (Leyva et al., 2020). Thus, active learning might be especially important for 

female students’ academic integration, and in turn could positively impact their sense of belonging. 

Based on this literature review, I hypothesized that students who experienced active learning 

in their Calculus course would report an increase in their sense of belonging over the course of the 

semester. Further, I hypothesized that students who experienced an increase in sense of belonging 

would attribute the increase to both academic and social integration. 
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Methods and Data 

Participants and Setting 

This study was conducted at a mid-sized R1 research university in the mid-Atlantic region of 

the U.S. during the Fall 2020 semester. The university offers a two-semester Integrated Calculus 

course designed to incorporate frequent opportunities for students to engage in active learning, 

primarily small-group work and whole-class discussions. The first semester develops differential 

Calculus and the second semester (which is not the focus of this study) develops integral Calculus. 

Necessary precalculus topics are woven throughout each semester as needed. The course uses the 

Stewart, Clegg, and Watson (2021) textbook, as well as a second textbook specifically designed 

for integrating Calculus and Precalculus. The course is highly coordinated – in addition to common 

textbooks and exams, the instructors teach from a shared curriculum detailing which math 

problems to use each class and when group work will be employed. Thus, students’ learning 

opportunities are virtually identical across different sections of this course. The students are 

typically freshmen considering a STEM major. In the Fall 2020 semester, each section was capped 

at about 50 students. Typically, this course is taught in a classroom furnished with circular tables 

to facilitate students working in small groups. However, due to the COVID-19 pandemic, this 

course was taught in a synchronous virtual format over Zoom. To maintain opportunities for group 

work, Zoom’s breakout room functionality was used in most class meetings. 

Participants were students enrolled in both sections (N=91) of this integrated course in the Fall 

2020 semester. Because course rosters do not indicate students' gender, all students in the two 

sections were invited to participate in the study. These students received an email during Week 3 

and Week 11 of the fourteen-week semester inviting them to participate by completing a survey 

about their experience in the course. For this study, only students who completed both surveys, 

were freshmen, and self-identified as female were considered. The total response rate of the survey 

was 88% (N=80), and of these respondents, 37 students self-identified as female. 

Data Collection 

The survey was administered twice – once in Week 3 (Survey 1) and again in Week 11 (Survey 

2) of the semester – using Qualtrics, a web-based survey tool. To collect information on students’ 

sense of belonging, Good et al.’s (2012) MSoB instrument was embedded in the survey. The 

MSoB consists of 30 Likert items asking students to indicate the extent to which they agree with 

statements about their feelings of belonging in the course on a scale of 1 (Strongly Disagree) to 8 

(Strongly Agree). Recall that Good et al.’s (2012) factor analysis on the MSoB identified five 

factors of Acceptance, Affect, Desire to Fade, Trust, and Membership. This portion of the survey 

(i.e., sense of belonging and its associated factors) is the focus of the current study. 

Female participants who exhibited significant change in their sense of belonging between 

Survey 1 and Survey 2 were invited to participate in one-on-one interviews which were conducted 

during Weeks 12 and 13. The purpose of the interviews was to identify factors to which the female 

students attributed the change in their sense of belonging. Six students were invited, three of whom 

had experienced a significant increase in sense of belonging. Of these three students, two agreed 

to be interviewed. Each interview lasted about 45 minutes, was conducted and video-recorded via 

Zoom, and was transcribed. 

Data Analysis 

To investigate whether female students’ sense of belonging changed over the course of the 

semester, mean responses were calculated for sense of belonging and tested using IBM SPSS 

24th Annual Conference on Research in Undergraduate Mathematics Education 1004



 

Statistics 27 software. Dependent samples t-tests were used to determine any change in means 

between Survey 1 and Survey 2 with p<0.05. Effect size was calculated using Cohen’s (1988) 

benchmarks for d. To inform interview participant selection, individual students’ sense of 

belonging scores were compared between surveys using a dependent samples t-test with p<0.05 to 

determine a sample of students who showed a significant change in sense of belonging between 

the two surveys. In cases when sense of belonging increased significantly, dependent samples t-

tests will be used to examine changes in factors associated with sense of belonging with p<0.05. 

Analyzing the interview transcripts involved first chunking the transcripts by protocol 

question. To code the data, I read each transcript individually and developed an initial set of codes 

based on what the two female students said about their increased feelings of belonging. I am now 

at the stage of refining my codes and preparing to test for interrater reliability.  

Preliminary Findings 

There are two main results from the quantitative analysis. First, there was no significant change 

in female students’ sense of belonging or its associated factors between Survey 1 and Survey 2, as 

shown in Table 1. 

Table 1. Comparison of average scores (standard deviations) on the MSoB portion from Survey 1 and Survey 2. 

Construct 

Sense of Belonging 

Acceptance 

Affect 

Desire to Fade 

Trust 

Membership 

Survey 1 

5.965 (1.34) 

6.171 (1.42) 

5.796 (1.58) 

5.375 (1.68) 

6.392 (1.55) 

5.915 (1.65) 

Survey 2 

6.945 (1.07) 

7.189 (0.96) 

6.479 (1.59) 

6.284 (1.71) 

7.466 (0.75) 

7.291 (1.03) 

t(36) 

0.703 

0.377 

0.484 

0.601 

1.297 

0.904 

Note: Since the results to the paired samples t-test were not significant, effect size is not shown. 

Second, only 16% of female students (N=6) reported a significant change in sense of belonging 

(three increased, three decreased) as compared to the total sample average. Those who increased 

will be referred to as Annie (t=2.13, df[36], p=0.02), Carrie (t=1.71, df[36], p=0.04), and Maggie 

(t=1.78, df[36], p=0.04). Two of these three students (Annie and Carrie) agreed to participate in 

individual interviews. To understand their increased sense of belonging more deeply, quantitative 

and qualitative analyses are being conducted to determine contributors to these changes. 

Preliminary qualitative analyses indicate that professor concern for students’ development might 

be especially influential in their increased sense of belonging. 

Conclusions 

This study investigated female students’ sense of belonging in an integrated Calculus course 

that provides opportunities for students to engage in active learning, especially group work. Prior 

research indicates that sense of belonging is not static, but more work is needed to investigate 

contributors to increased feelings of belonging. Preliminary results indicate that while the whole 

sample of female students did not report a significant change in sense of belonging, certain students 

did experience a significant increase. Providing Calculus instructors with ways to positively 

influence their students’ sense of belonging could potentially lead to more students persisting in 

STEM majors, and thus more students, especially female students, graduating with STEM degrees.  

24th Annual Conference on Research in Undergraduate Mathematics Education 1005



 

References 

Anderman, L. H. (2003). Academic and social perceptions as predictors of change in middle 

school students’ sense of school belonging. The Journal of Experimental Education, 72(1), 

5–22. 

Antonio, A. L., Chang, M. J., Hakuta, K., Kenny, D., Levin, S., & Milem, J. F. (2004). Effects of 

racial diversity on complex thinking in college students. Psychological Science, 15(8), 507–

510. 

Blickenstaff, J. C. (2005). Women and science careers: Leaky pipeline or gender filter? Gender 

and Education, 17(4), 369–386. 

Bonwell, C. C., & Eison, J. A. (1991). Active learning: Creating excitement in the classroom. 

School of Education and Human Development, George Washington University. 

Bui, Q. (2014). Who studies what? Men, women and college majors. Retrieved from NPR 

website: https://www.npr.org/sections/money/2014/10/28/359419934/who-studies-what-

men-women-and-college-majors 

Carmichael, S. G. (2017). Women dominate college majors that lead to lower-paying work. 

Retrieved from Harvard Business Review website: https://hbr.org/2017/04/women-dominate-

college-majors-that-lead-to-lower-paying-work 

Chamberlain, A. (2017). The pipeline problem: How college majors contribute to the gender pay 

gap. Retrieved from Glassdoor website: 

https://www.glassdoor.com/research/app/uploads/sites/2/2017/04/FULL-STUDY-PDF-

Gender-Pay-Gap2FCollege-Major-1.pdf 

Chen, X. (2013). STEM attrition: College students’ paths into and out of STEM fields (NCES 

2014-001). National Center for Education Statistics, Institute of Education Sciences, U.S. 

Department of Education. 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: 

Lawrence Erlbaum Associates, Inc. 

Du Bois, B. (1983). Passionate scholarship: Notes on values, knowing, and method in feminist 

social science. In G. Bowles & R. D. Klein (Eds.), Theories of Women’s Studies. London: 

Routledge and Kegan Paul. 

Eagan, Kevin; Stolzenberg, Ellen Bara; Bates, Abigail K.; Aragon, Melissa C., Suchard, Maria 

Ramirez; Rios-Aguilar, C. (2016). American Freshman: National Norms fall 2015. 

Ellis, J., Fosdick, B. K., & Rasmussen, C. (2016). Women 1.5 times more likely to leave stem 

pipeline after calculus compared to men: Lack of mathematical confidence a potential culprit. 

PLoS ONE, 11(7), 1–14. https://doi.org/10.1371/journal.pone.0157447 

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & 

Wenderoth, M. P. (2014). Active learning increases student performance in science, 

engineering, and mathematics. Proceedings of the National Academy of Sciences of the 

United States of America, 111(23), 8410–8415. https://doi.org/10.1073/pnas.1319030111 

Gibbs, K. (2014, September). Diversity in STEM: What It Is and Why It Matters. Scientific 

American. Retrieved from https://blogs.scientificamerican.com/voices/diversity-in-stem-

what-it-is-and-why-it-matters/ 

Good, C., Rattan, A., & Dweck, C. S. (2012). Why do women opt out? Sense of belonging and 

women’s representation in mathematics. Journal of Personality and Social Psychology, 

102(4), 700–717. https://doi.org/10.1037/a0026659 

24th Annual Conference on Research in Undergraduate Mathematics Education 1006



 

Hausmann, L. R. M., Schofield, J. W., & Woods, R. L. (2007). Sense of belonging as a predictor 

of intentions to persist among African American and white first-year college students. 

Research in Higher Education, 48(7), 803–839. https://doi.org/10.1007/s11162-007-9052-9 

Hausmann, L. R. M., Ye, F., Schofield, J. W., & Woods, R. L. (2009). Sense of belonging and 

persistence in white and African American first-year students. Research in Higher 

Education, 50(7), 649–669. https://doi.org/10.1007/s11162-009-9137-8 

Hoffman, M., Richmond, J., Morrow, J., & Salomone, K. (2003). Investigating “sense of 

belonging” in first-year college students. Journal of College Student Retention, 4, 227–256. 

Hong, L., & Page, S. E. (2004). Groups of diverse problem solvers can outperform groups of 

high-ability problem solvers. Proceedings of the National Academy of Sciences of the United 

States of America, 101(46), 16385–16389. https://doi.org/10.1073/pnas.0403723101 

Kitzinger, C., & Wilkinson, S. (1997). Validating women’s experience? Dilemmas in feminist 

research. Feminism and Psychology, 7(4), 566–574. 

https://doi.org/10.1177/0959353597074012 

Lahdenperä, J., Postareff, L., & Rämö, J. (2019). Supporting quality of learning in university 

mathematics: A comparison of two instructional designs. International Journal of Research 

in Undergraduate Mathematics Education, 5(1), 75–96. https://doi.org/10.1007/s40753-018-

0080-y 

Leyva, L. A., Quea, R., Weber, K., Battey, D., & López, D. (2020). Detailing racialized and 

gendered mechanisms of undergraduate precalculus and calculus classroom instruction. 

Cognition and Instruction, 39(1), 1–34. https://doi.org/10.1080/07370008.2020.1849218 

President’s Council of Advisors on Science and Technology (PCAST). (2012). Engage to excel: 

Producing one million additional college graduates with Degrees in Science, Technology, 

Engineering, and Mathematics. Washington, DC: The White House. 

Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering 

Education, 93(July), 223–231. 

Rainey, K., Dancy, M., Mickelson, R., Stearns, E., & Moller, S. (2018). Race and gender 

differences in how sense of belonging influences decisions to major in STEM. International 

Journal of STEM Education, 5(10). https://doi.org/10.1186/s40594-018-0115-6 

Rainey, K., Dancy, M., Mickelson, R., Stearns, E., & Moller, S. (2019). A descriptive study of 

race and gender differences in how instructional style and perceived professor care influence 

decisions to major in STEM. International Journal of STEM Education, 6(1). 

https://doi.org/10.1186/s40594-019-0159-2 

Rasmussen, C., Apkarian, N., Hagman, J. E., Johnson, E., Larsen, S., & Bressoud, D. (2019). 

Characteristics of precalculus through calculus 2 programs: Insights from a national census 

survey. Journal for Research in Mathematics Education, 50(1), 98–111. 

https://doi.org/10.5951/jresematheduc.50.1.0098 

Rosenberg, M., & McCullough, B. C. (1981). Mattering: Inferred significance and mental health 

among adolescents. Research in Community & Mental Health, 2, 163–182. 

Seymour, E., & Hunter, A.-B. (Eds.). (2019). Talking about leaving revisited: Persistence, 

relocation, and loss in undergraduate STEM education. Boulder, CO: Center for STEM 

Learning. 

Shapiro, C. A., & Sax, L. J. (2011). Major selection and persistence for women in STEM. New 

Directions for Institutional Research, 14(7), 5–18. https://doi.org/10.1002/ir 

Stewart, J., Clegg, D., & Watson, S. (2021). Calculus: Early transcendentals (9th ed.). Boston, 

MA: Cengage. 

24th Annual Conference on Research in Undergraduate Mathematics Education 1007



 

Strayhorn, T. L. (2012). College students’ sense of belonging: A key to educational success for 

all students. New York, NY: Routledge. 

Tinto, V. (1975). Dropout from higher education: A theoretical synthesis of recent research. 

Review of Educational Research, 45(1), 89–125. 

Wang, M. T., & Degol, J. L. (2017). Gender gap in science, technology, engineering, and 

mathematics (STEM): Current knowledge, implications for practice, policy, and future 

directions. Educational Psychology Review, 29, 119–140. https://doi.org/10.1007/s10648-

015-9355-x 

 

24th Annual Conference on Research in Undergraduate Mathematics Education 1008



Emerging Mathematics Education Researchers' Conception of Theory in Education Research 
 Christopher A. F. Hass Shams El-Adawy 
 Kansas State University Kansas State University 

 Emilie Hancock Eleanor C. Sayre Miloš Savić 
Central Washington University Kansas State University University of Oklahoma 

While some faculty follow a traditional path into mathematics education through a graduate 
program or post-doctoral studies, some enter mathematics education research without formal 
training. These emerging mathematics education research faculty face unique challenges in 
setting up a research program. In this paper we explore the challenges that theory poses to 
emerging mathematics education researchers. We articulate three ways that emerging 
mathematics education researchers struggle with theory, and suggest that learning about theory 
and overcoming this struggle can be transformative to their work within and perspective on 
mathematics education. 

Keywords: Professional-development, faculty, perspectives, theory 

Introduction 
Mathematics education research interests many faculty - both with and without formal 

backgrounds in it. Faculty may have studied mathematics education in graduate school or 
pursued post-doctoral work in the field before obtaining faculty positions. This prepares them for 
research through formal training in and practical exposure to ideas, theories, methods, and 
common practice within the field. 

Many faculty, however, become interested in mathematics education after obtaining a faculty 
position (often, but not always a teaching-focused position) (Bush et al, 2017) sometimes after 
tenure and promotion. These faculty rarely have formal training in mathematics education, nor 
do they have much practical experience in the education research field (even as they may have 
varied experience as educators). As a result, they struggle to catch up with the field’s 
understanding of theory, methods, and research practice. These emerging mathematics education 
faculty may have unique struggles as they attempt to set up a research program within the field. 
In this paper, we focus on a particular area of concern: theory. Despite attempts within the field 
to make theory more accessible (which we discuss more in the next section), theory remains a 
significant challenge for emerging mathematics education faculty. 

Many emerging mathematics education faculty express confusion or worry around the 
complexity and usage of what researchers term theory, theoretical frameworks, analytical 
frameworks, and theoretical perspectives. In this paper, we discuss these terms and the literature 
surrounding them as part of our discussion of confusion among emerging education researchers. 
We present three ways in which participants in the Professional development for Emerging 
Education Researchers (PEER) program (Franklin et al, 2018) struggle with theory. For some 
faculty, learning about theory is transformative for their research within and perspectives on 
mathematics education. 

Conceptual Framing and Literature 
Cresswell and Cresswell (2018, p. 95) quoted Kerlinger to provide a definition of theory 

within social sciences as “a set of interrelated constructs, definitions, and propositions that 
presents a systematic view of phenomena by specifying relations among variables, with the 
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purpose of explaining natural phenomena.” As argued by Stinson (2020), our choices of theory 
and how we use it are strongly influenced by our philosophical perspectives and worldviews as 
researchers. Many have attempted to write concise introductions to particular theories and 
theoretical frameworks, as well as attempting to distinguish between their various uses and how 
they all fit into the broader literature (e.g. Simon, 2009, Spangler & Williams, 2019, Lester, 
2005, Silver & Herbst, 2007). Others have made an effort to make theory more accessible to 
emerging education researchers (e.g., Doroudi (2021)). For example, Schoenfeld (2000) offers a 
practical set of standards with which to judge theories and results in mathematics education, 
grounded in the notion that research and theory in mathematics education is more similar to the 
physical and life sciences, as opposed to the proof as the standard in mathematics. Even as these 
authors work to provide detailed introductions to the theory of mathematics education research, 
they all recognize, as do we, that the roles theory plays in research can vary. The process of 
making decisions about what role theory plays in your research, and which theory or theories to 
use can be very confusing and intimidating to emerging mathematics education researchers. 

The authors of this paper take a parallel process view of research, seeing the selection of 
theory, literature review, data analysis, writing, and formation and revision of claims as ongoing, 
overlapping parallel processes. Different parts of research are not conducted in separate stages, 
but occur together and inform each other. Theory is considered at all stages of a research project, 
and choices of theory and its place within a project are constantly deliberated, in line with Simon 
(2009). We also agree with Stinson (2020) that personal worldviews and philosophical alignment 
play an important role in the selection and interpretation of theory and data. As we present our 
findings here, it is important to note that the PEER program teaches theory as something that is 
inextricably attached to researchers' worldviews, personal and academic philosophies, and which 
influences and is influenced by their whole research programs. 

Study Context: The PEER Program 
This study was conducted as part of a grant for improving and expanding the Professional 

development for Emerging Education Researchers (PEER) program (Franklin et al, 2018).  The 
PEER program brings together emerging education researchers at an extended, experiential 
workshop for intensive writing and thinking about research questions and research design. The 
program also covers selected topics in research based on participants' needs (e.g. workshop 
sessions focused on particular methods or theories, authorship, ethics, etc.). The bulk of the 
program centers on participants working together and sharing and refining research ideas 
together with the support of PEER coordinators. PEER facilitators intersperse groupwork 
activities with instruction and guided discussion around subject matter and research design.  

Our data for this paper are drawn from participants in the PEER-Chicago 2021 workshop. 
This workshop occurred over Zoom through spring 2021 and was attended by 45 emerging 
mathematics and physics education researchers from a variety of research and teaching 
institutions across the country. The workshop consisted of a kickoff session, three two-hour 
sessions spread over 6 weeks, and then a three-day intensive at the end of June. Before the 
workshop we conducted pre-interviews with fourteen participants. During the workshop sessions 
all participants were encouraged to record their "burning questions" about workshop topics in a 
Padlet1 document, which we collected. Finally, during post-interviews with 8 participants we 
followed up on their experiences during the workshop. 

                                                 
1 See their website for more information https://padlet.com/.  
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Results 
Using the data drawn from PEER we were able to identify three different ways in which 

participants are confused about theory. We also noted that learning about theory appears to be 
transformative for PEER participants. Our analysis is presented below. 

 Participants are confused about theory 
In the pre-interviews, discussion of theory by participants was rare. Because the semi-

structured interviews focused on participants’ past experiences, we didn’t initiate discussion of 
theory. Several participants discussed theory during their pre-interviews. It's worth noting that all 
participants had prior experiences in projects conducted by mathematics education researchers. 
Ryan and Lily2 piqued our interest with their comments on theory. 

In his pre-interview, Ryan stated: “[There are so many] different theoretical perspectives that 
one can adopt when you’re looking at your data…” and went on to say: “Where you just kind of 
do what you know and if you don’t know it, you can’t do it.” Ryan's statement was early 
confirmation that participants find theory overwhelming to confront. In particular, he struggled 
with finding theory that is a good fit for his project because there are so many kinds of theory. If 
you don’t know what you’re looking for or where to look, good theory is hard to find. 

Ryan continues, asking for: “[A] handful of references that I can go to in the literature and 
read some more about over the next, you know, three or four months [would be very helpful].” 
This statement highlighted the value of linking Ryan to the community’s conversation on theory. 
Many emerging mathematics education faculty expressed a similar sentiment to Ryan: having a 
few curated sources to look at would be highly valuable. Several examples of such sources can 
be found in the paper’s citations and were provided to participants at the workshop. 

References may not be sufficient, however. As Lily said about theory: “... [A]t the beginning, 
the whole idea of a theoretical framework was totally mind boggling to me.” and “I was talking a 
lot with like my grad student friends at the time in sociology and things like this, and like that’s 
their bread and butter”. Lily highlighted the importance of having someone to hold a 
conversation with and bounce ideas off of when trying to understand theory. She also showed a 
second way in which our participants struggle with theory: participants aren’t sure what 
theory and all of the terminology surrounding it means within mathematics education. 

When the interviewers (in pre-interviews) explicitly asked participants about different parts 
of a research project/design in mathematics education research, theory rarely came up. Lily and 
Ryan provided us with our first glimpse into why interview participants so steadfastly avoided 
the topic: because it is overwhelming. The meaning of theory and the web of terminology 
surrounding theory in mathematics education can be very confusing to emerging education 
researchers. Secondly, even for those who have developed an understanding of what theory is in 
mathematics education, it can be very difficult to source theory and learn about new theories 
without guidance. 

Echoing Lily and Ryan's challenges in the pre-interviews, participants expressed similar 
challenges in their Padlet questions during the workshop; however, the Padlet questions also 
illuminated a third kind of challenge. During the workshop, theory and its role in education 
research became an emergent topic in response to participants' questions and facilitators' 
observations of participants' ideas. This focus on theory afforded robust conversations and 

                                                 
2 All names are pseudonyms chosen either by participants themselves or by researchers to reflect participants' 
pronouns and ethnicities.  
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elicited many confusions and concerns from participants, some of which were recorded 
anonymously in the "burning questions" Padlets.  

Within the Padlet data, a common confusion was how and where to source theory. One 
Padlet question was “How much of your theories should be based on other work (lit review) vs. 
your own new ideas?” Participants are often uncertain about how their own ideas interact with 
theory in mathematics education research. They wonder whether theory comes from other 
published research or if they should develop it themselves. Others similarly wonder where theory 
should derive from, and how to appropriately build one’s own ideas into theory. One Padlet 
question said “How is it distinguishable from a lit review? Don't the theories come from 
published research?”, and another asked, “How does one *develop* a theory from data?” It is 
clear to our participants that theory must be generated by someone somewhere, however, 
participants are uncertain about community norms around who is allowed to generate theory and 
how. Where to source theory and how to do it appropriately is a stumbling block for participants.  

Perhaps one of the most illuminating questions asked by a participant was “Does the "theory" 
for a paper necessarily need to be a complete ~theory~, or can it be a framework or even just a 
Frankenstein of ideas you were thinking about when looking at your data? Does every paper 
need a "theory"?” The first part of this comment echoes confusion that we had already heard 
about from Lily and Ryan. The asker is uncertain about what theory is, what theory means in 
mathematics education. They are also (as a consequence) uncertain about where it comes from, 
who makes it, and how. However, this participant is not merely confused about what theory 
means, or where it should be sourced. The second question here “Does every paper need a 
theory?” speaks to a deeper concern: what is the purpose of theory? 

A participant asks this explicitly: “Why do you even need a theory? This theory stuff is super 
intimidating, what’s the best way to ease yourself into it?” Our emerging education 
researchers struggle to understand the role of theory in our research. What do we use it for? 

The questions asked by participants during the workshop reinforced comments by Ryan and 
Lily. Participants are confused about where theory comes from, and what theory means. 
However, the Padlet questions also made clear a related confusion. Participants struggle to 
understand the role of theory in mathematics education research. 

PEER can transform participants' thoughts about theory 
After the PEER-Chicago workshop we conducted follow up interviews with 8 participants. 

These interviews focused on their experiences during the PEER workshop, and the development 
of their understanding and perceptions of education research as well as their professional 
identity. Several participants spoke about the how learning about theory during PEER-Chicago 
had impacted their understanding of education research. 

In discussing learning about theory, Peter noted: "The idea of using part of this theoretical 
framework and combining it with that one, I'd never considered it before". Learning about theory 
at PEER transformed how Peter thought about implementing theories in his own research. Earlier 
in his interview he commented: "I know enough about theoretical frameworks to know that there 
are constructivist theoretical frameworks, and you know there are varieties of those, and then 
there are other theoretical frameworks which are not constructivist. And I can read about both of 
those, and I can see what I'm doing in each, and that just doesn't make sense to me." During 
PEER his thinking on theories moved away from an image of theories as mutually exclusive 
descriptions of the world to theories as potentially complementary descriptions of the world. 

Another participant, Olivia discussed how learning about theory has transformed her view of 
mathematics education research: "Well I think the most pointed, that first reading specifically 
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addressed the value of a more theoretical approach to math education, how that can inform a 
more practical approach." Olivia goes on to say: "I tended to come at things as I want to know if 
this works, I want to know how to tell if it's going to work. Which is implicitly dismissive of 
people who want to simply ask questions like, you know 'exactly what do students leave with 
from this particular approach to describing a logical construct?' and I am less dismissive off that 
[now]." Olivia has become more open to questions which aren’t directly about measuring 
classroom success, and curriculum implementation. 

Finally Penelope commented: "The theories, I still don't have a good handle on the theories, 
but I found that for me, [...] my focus is more like 'let's make this really good' versus some 
people who are like 'let's make theory really good' if that makes sense. And so I did get some 
understanding of where I am and why I'm there and being ok with why I'm there." Penelope’s 
view of their own place in mathematics education research and the acceptability of what they do 
was transformed by taking the time to learn more about theory. 

These comments from our post-workshop interviews suggest that for some participants 
learning about theory is transformative. It has a large impact on their views of mathematics 
education, and their understanding of how to conduct research. It’s very exciting for us to see 
that learning about theory can have a deeper impact on participants than simply providing a 
theory paragraph in their paper. 

Concluding Remarks 
Theory is deeply important to math education research, informing research projects at all 

stages of development. A researcher’s use of theory is impacted by their own worldviews, 
personal philosophies, and experience. For many emerging math ed researchers, theory is very 
intimidating, and difficult to approach or understand. In this paper we have explored several 
ways in which emerging math ed researchers participating in the PEER program struggle with 
theory. These researchers struggle with 1) understanding what theory means in math ed, 2) what 
role theory should play in their research, and  3) where and how to source theory. 

    We also found that after participating in PEER a number of our participants discussed how 
learning about theory has impacted their engagement with math education. While it was 
unsurprising that some participants discussed the application and use of theory in their research, 
their discussion was not limited to this. Some of our participants discuss an important and 
transformative effect on their personal identity or perception of math education research. Thus, 
we find that while emerging education researchers may struggle with theory, the process of 
learning about theory and attempting to overcome that barrier can be transformative. 

Questions for the audience.  
1. What does theory mean to you? How do you use theory in research?  
2. Do our participants' journeys with conceptualizing theory resonate with your personal 

journey? With what you've noticed in your students / colleagues? 
3. Do you have comments or suggestions for us as we extend this work and analysis? 
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Investigating the Impact of Training in Metacognition on the Academic Success of a First-Year 

Student Enrolled in an Entry-Level College Algebra Course 
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Research has shown that metacognition is related to mathematics performance and that explicit 

training in metacognition can be used to help students develop metacognitively. Studies also 

show that as metacognition develops, mathematical problem-solving improves. A large 

population of postsecondary students begin in remedial mathematics courses; institutions across 

the United States are wrestling with the best approach to educating these students. This paper 

reports on Julia, a student enrolled in an entry-level college algebra course, who participated in 

a 15-week training in metacognition designed to support her in her mathematics course. 

Training in metacognition, contextualized in mathematics content, may be a successful approach 

to supporting these students’ academic success in their mathematics courses.  

Keywords: metacognition, college algebra, remedial, self-regulated learning 

Introduction 

The importance of metacognition in the learning of mathematics has been well-established by 

researchers (Baten & Desoete, 2019; Schneider & Artelt, 2010; Schoenfeld, 1992; Veenman et 

al., 2006). Broadly, metacognition can be understood to mean “thinking about one’s thinking,” 

(p. 393, Dinsmore et al., 2008). Research suggests that metacognitive knowledge and skills do 

not always develop automatically in learners during cognitive activity and that explicit training 

can be used to help learners develop these knowledge and skills (de Jager et al., 2005). Desoete, 

et al. (2003) also found that as metacognitive knowledge and skills develop, mathematical 

problem solving improves. Veenman (2006) determined that, while both intelligence and 

metacognitive skills influenced mathematics performance, metacognition was a more significant 

predictor of mathematics learning performance in secondary school than intelligence was.  

It is known that there is a large population of students who begin their undergraduate career 

in remedial or developmental mathematics courses. Chen (2016) reported that 59.3% of 

postsecondary students at 2-year institutions and 32.6% of postsecondary students at 4-year 

institutions who were beginning postsecondary students in 2003-2004 took “remedial math” at 

some point between 2003 and 2009. 51% and 41% of remedial coursetakers (of any discipline) 

do not complete their remedial coursework at 2- and 4-year institutions, respectively. (Chen, 

2016). From this, it can be concluded that placement in a remedial mathematics course can 

significantly impact a student’s ability to successfully complete the mathematics or quantitative 

reasoning requirements for their degree program; in fact, students who begin in remedial courses 

are less likely to earn a college degree (Chen, 2016). According to Chen (2016), “[r]emedial 

courses are generally associated with such terms as developmental, remedial, precollegiate, and 

basic skills in the course name and/or description,” (p. iv). Chen includes a detailed definition of 

remedial math courses in an appendix of his report; included in this definition is “any 

mathematics course that deals with the topic of intermediate algebra, precollegiate algebra, 

elementary algebra, basic algebra, preparatory algebra and/or pre-algebra math.” (Appendix D, p. 

2). 

The purpose of this study is to investigate the impact of training in metacognition, 

contextualized in mathematical content, on the academic success of a first-year student who was 
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enrolled in an entry-level college algebra course that covered precollegiate algebra content. 

Reported here are preliminary results. 

Review of Metacognition and Mathematics 

Many researchers conceptualize metacognition as encompassing two domains: metacognitive 

knowledge and metacognitive skills (Baten et al., 2017). Metacognitive knowledge includes a 

person’s knowledge of their own cognitive strengths and weaknesses, resources and strategies to 

address cognitive challenges, and how and when to use those resources and/or strategies. 

Metacognitive skills including planning, monitoring, control, and self-regulation before, during, 

or after a cognitive event. Research has shown that metacognitive skills play a larger role in 

learning than intellectual ability (Veenman et al., 2006). In particular, metacognition has been 

shown by several researchers to correlate with mathematical performance (Baten & Desoete, 

2019; Schneider & Artelt, 2010). Pennequin, et al. (2010) found that third graders who 

participated in metacognitive training had significantly higher post-test metacognitive 

knowledge, metacognitive skills, and mathematical problem-solving scores. These researchers 

also examined the differential impact of this training on children with “low achievement” and 

“normal achievement” in mathematics; these groups were initially determined by their teacher 

and confirmed via a mathematical problem-solving pre-test. While all participants in the training 

improved in all three of their post-test scores, children who participated in the training and were 

in the “low-achievement” in mathematics group improved substantially more in their 

metacognitive knowledge, metacognitive skills, and mathematical problem-solving post-test 

scores when compared with children in the “normal achievement” in mathematics group.  

While many students do spontaneously develop metacognitive skills, there is a large number 

of students who do not, either because they have not been presented with the opportunity or they 

have not seen a value in developing these skills (Veenman et al., 2006). Studies suggest that 

through metacognitive instruction, students can improve in both metacognition and in learning 

(Cornoldi et al., 2015; Donker et al., 2014; Pennequin et al., 2010; Schneider & Artelt, 2010). 

Veenman et al. (2006) claims that effective metacognitive instruction rests on three principles: 

“a) embedding metacognitive instruction in the content matter to ensure connectivity, b) 

informing learners about the usefulness of metacognitive activities …, and c) prolonged training 

to guarantee the smooth and maintained application of metacognitive activity,” (p. 9). Thus, the 

skills and knowledge covered in a metacognitive training for students in a mathematics course 

should be integrated with mathematics and that course, rather than taught in isolation.  

Theoretical Framing 

The terms metacognition, self-regulation (SR), and self-regulated learning (SRL) are 

sometimes used interchangeably in literature (Lajoie, 2008). According to Lajoie (2008) there 

are, however, distinctions between these terms. Metacognition has been used more broadly to 

refer to “thinking about thinking” and is often conceptualized by metacognitive knowledge and 

metacognitive skills. SR encompasses metacognitive skills (not knowledge) and the interaction 

between a person, their environment, and their behavior. SRL integrates motivational and 

contextual factors with the cognitive domain. This study adapts Pintrich’s (2004) framework for 

assessing motivation and SRL in college students for the purpose of investigating metacognition. 

Pintrich’s original framework includes four areas for regulation: (1) cognition, (2) 

Motivation/Affect, (3) behavior, and (4) context. As this preliminary study is focused solely on 

metacognition, I have only included regulation of cognition in the adapted framework. Table 1 

illustrates the adapted framework. 
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Table 1. Framework for metacognition; adapted from Pintrich, 2004. 

 Area for regulation 

Phases and relevant scales Cognition 

Phase 1  

Forethought, planning, and activation Target goal setting 

 Prior content knowledge activation 

 Metacognitive knowledge activation 

Phase 2  

Monitoring Metacognitive awareness and monitoring of control 

Phase 3  

Control Selection and adaptation of cognitive strategies for 

learning, thinking 

Phase 4  

Reaction and reflection Cognitive judgments 

 Attributions 

 

Phase 1 includes targeted goal setting for cognitive tasks, as well as prior content knowledge 

activation, and metacognitive knowledge activation. Phase 2 involves monitoring one’s progress 

on, understanding of, and knowledge for cognitive tasks. For example, this phase includes an 

individual’s self-assessment of whether they understand graphing quadratic equations or not. In 

Phase 3, an individual chooses and implements cognitive strategies for learning or thinking. 

Phase 4 involves an individual’s assessment of their performance of a task and their attributions 

for their performance. While the four phases that an individual would go through often occur in 

the order presented here, Pintrich argues that later phases can still occur if earlier phases do not 

happen. Pintrich (2004) also notes that most models for SRL allow for monitoring, control, and 

reaction processes to occur simultaneously as an individual’s goals and plans often evolve based 

on feedback from these phases.  

Methodology 

Participants for this study were enrolled in an entry-level college algebra course at a regional 

public institution in the western United States in Fall 2019. Students were placed into this course 

via scores on an online mathematics skills test. Students who were intending to major in a 

discipline that required some form of calculus course and either 1) did not take this skills test or 

2) scored below the first cutoff score were placed in this course. While students received 

baccalaureate credit for this course, this course did not satisfy their general education 

quantitative reasoning requirement. According to Chen’s (2016) definition, even though this was 

a baccalaureate credit-bearing course, this course would be considered “remedial” as the content 

was pre-collegiate algebra.  

In Fall 2019 four students currently enrolled in sections of the aforementioned college 

algebra course (three women, one man; enrolled in different sections) participated in a 15-week 

long mathematical metacognitive training, which met for 1 hour each week (except for two 

weeks), for a total of 13 one-hour meetings. These trainings were designed and implemented by 

the researcher. While some meetings did involve applying metacognitive skills and knowledge to 

specific algebra tasks, instruction was primarily focused on metacognitive skills and knowledge 

more broadly for academic success in a college algebra course. Table 2 contains an outline of 

what was covered during these trainings over the course of the semester.  
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Table 2. Outline of metacognitive training 

Meetings Activity 

1-3 

planning for regular studying 

academic support resources (on-campus tutoring, instructor’s office hours, etc.) 

reflecting on past experiences/imagining future experiences with mathematics 

4-13 

Planning for exams 

discussing strategies for preparing for exams 

reflecting on exam preparation/strategies after students received their scores 

revising plans/goals/strategies for next exam 

practicing applying metacognitive strategies to sample problems on exam reviews 

 

The last two weeks were spent preparing for the final and planning for the next mathematics 

course participants would be taking the following semester. Throughout the semester, 

metacognition was defined and discussed explicitly and students were asked to reflect on and 

participate in conversations about what they learned mathematically and metacognitively. 

Additionally, during Meeting 3, students were given “the locker problem” (Kimani et al., 2016) 

and asked during that meeting and subsequent meetings through Meeting 13, to apply various 

metacognitive strategies to this problem and share their experiences applying these strategies 

with the group.  

Each student was given a journal and asked to write reflections to various prompts in their 

journals during meetings. Students kept the journals in between meetings for reference or for 

recording information. Data for this study includes video- and audio-recordings of the 13 training 

meetings, student journals, other student artefacts, such as worksheets and reflections, and 

student grade data. This preliminary paper reports on one participant, Julia, using artefacts from 

her journal and her grade data; Julia’s journals were transcribed for analysis. 

Using the four phases in the above framework as a priori codes, Julia’s journal transcriptions 

were coded for evidence of regulation of cognition. Her final grade was also examined in the 

context of her journal data. 

Preliminary Results 

Presented below are excerpts supporting Julia’s development of metacognition; for space and 

ease of reading, pictures of her journal are shown rather than transcriptions. 

Figure 1 shows two entries from Julia’s journal from Meeting 4. She lists strategies for 

preparing for exams (Phase 3) and monitors her understanding of course topics (Phase 2). 

 

 
Figure 1. Evidence of Julia engaging in Phase 3 by listing cognitive strategies and Phase 2 by monitoring her 

understanding course topics 
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Figure 2 shows two entries from Meeting 6. Julia begins by reflecting (Phase 4) on her 

performance on and preparation for Exam 1. From this reflection, she makes plans (Phase 1) for 

preparing for future exams. 

 

 
Figure 2. Evidence of Julia engaging in Phase 4 by reflecting on her preparation for Exam 1 and engaging in Phase 

1 by making plans for future exams. 

Discussion and Future Work 

Explicit instruction in metacognition has been shown to improve metacognitive skills and 

knowledge and mathematical problem-solving skill (Pennequin et al., 2010). Julia’s case 

suggests that metacognitive training may be an mechanism for increasing academic success for 

students enrolled in entry-level college mathematics courses. Data from Julia’s journal indicates 

that Julia experienced all four phases of Pintrich’s (2004) framework for regulation of cognition. 

Julia also noticed herself developing metacognitively. From her journal:  

 

I have noticed my ability to understand certain weaknesses and strengths. For instance I 

know when I am under any time pressure I tend to do worst on test and quizes (sic) but 

when I use different methods to take a test I do better. 

 

Julia also earned an A in her college algebra course in Fall 2019. In response to the question, 

“What have you learned this semester in this training?” Julia wrote: “Not to focus on the clock 

(time pressure) by not looking or focusing on the time my scores have actually gone up. And 

being able to talk to the people in this group has helped.” While it is not possible to show a 

causal relationship between the metacognitive training and her performance in her course with 

the data presented here, it is possible that the training contributed to her success in the course. In 

the future, I plan to analyze video- and audio-recordings collected from these trainings in order 

to more deeply understand how participation in this training impacted participants and their 

experience in their college algebra course. I also hope to collect new interviews with the 

participants in order to determine if this training had a long-term impact.  

Intended Question for the Audience 

A question that I would appreciate feedback on: If I am able to collect new interviews with 

these participants, how do I frame this training and its impact in relation to the disruptions from 

the COVID-19 pandemic?  
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Conceptions of the Derivative: A Natural Language Processing Approach 

                    
                      Michael Ion                                                               Pat Herbst 
              University of Michigan                                            University of Michigan 

In this preliminary report, we present a novel approach to study student conceptions of the 
derivative at scale using automated conversation disentanglement and natural language 
processing (NLP). Using conversation data from an open-access, online mathematics tutoring 
platform, we use a preliminary process to find conversations pertaining to the derivative. In this 
report, we introduce two examples of how Balacheff and Gaudin’s (2003) conception model will 
be used to label conversations with conceptions of the derivative. In future work, we aim to 
extend this work to techniques from machine learning to code the rest of the conversations and to 
find connections between different conceptions of the derivative.  

Keywords: big data, calculus, derivative, machine learning, natural language processing 

 This study offers two analytic methods from machine learning, automated conversation 
disentanglement and natural language processing (NLP), which reveal the potential to study 
students’ mathematical conceptions using text data. Addressing concerns that prior work on 
student conceptions has often relied on small samples of students, automated conversation 
disentanglement and NLP provide a way to analyze mathematical conversations at scale, allow 
for patterns in conversations to emerge, and can help identify relationships between emerging 
conceptions. Analysis of conversations from a tutoring platform focusing on calculus is used to 
exemplify the methods. This study has the potential to: (1) show how descriptive research on 
mathematical conceptions can be taken to scale; and (2) show how machine learning methods 
(NLP, more specifically) can play a role in mathematics education research. 

Two main research questions emerge from this study: 
1. What are the ways in which methods from machine learning can be amenable for 

studying student conceptions? 
2. What are the conceptions of the derivative that students share in this tutoring platform? 

Background  

How Conceptions of the Derivative Have Previously Been Studied 
The conceptions of the derivative remain important yet understudied. In a seminal report, 

Zandieh (2000) developed a theoretical framework for analyzing students’ understanding of the 
derivative concept. This study used cognitive interviews with nine high school students to 
describe their understandings of the derivative. Many studies of the derivative concept follow 
this same methodological approach—studying a small number of students within the same 
course of study and asking them to perform a task or answer an interview question (see 
Aspinwall and Miller, 2001; Park, 2015; Vincent et al., 2015). As mathematics education 
researchers, our ability to collect large amounts of rich data has become easier in the 
technological age, and in turn, the methods we employ to analyze such data are becoming more 
advanced. Studies such as Althoff et al.’s (2016) have provided evidence of large-scale analysis 
of conversation data (in their case, text-message-based counseling conversations). Work of this 
type that combines the power of natural language processing with rich text-driven data sources 
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provides a new opportunity for mathematics education researchers to grapple onto these 
techniques to study mathematics knowledge outside normal classroom settings. As described in 
the data section, we argue that the work of this study offers such an opportunity, in which student 
conceptions of the derivative can be studied within the context of a large online tutoring 
platform. 

Theoretical Framework 
Balacheff and Gaudin (2003; 2009) proposed the notion of conception as a local knowledge 

of a learner in a specific situation. Important to note here is that conception is not synonymous 
with concept or how one understands a concept. Rather, conceptions are the different thoughts 
that people can have about something. Further, it provides a way to describe conceptions by 
taking into consideration the interactions between students and the milieu. More formally, 
Balacheff and Gaudin (2003) call a conception C a quadruplet (P, R, L, 𝛴) in which: 

 𝑃 refers to a set of problems that require particular use of a concept, and this family gives 
a conception its meaning and its usefulness; 

 𝑅 refers the set of operators, tends to express all the techniques that enable the 
transformation of the problem; 

 𝐿 refers to the way in which the problem is represented; 
 𝛴 is a control structure, which validates the use of certain operations and representations 

to solve a particular problem. It could also be said to describe the components which 
support the monitoring of the equilibrium of the [𝑆 ↔ 𝑀] system. 

With this model, Balacheff and Gaudin (2003) create connections between abstract mathematics 
(concepts), what is taught (knowledge), and what is used and understood by subjects 
(conceptions). 

Operationalizing the Conceptions of the Derivative 
We operationalize Balacheff and Gaudin’s (2003) theoretical framework in six related 

conceptions of the derivative. We summarize it in Table 1. The first five conceptions are 
identified in Zandieh (2000) through her interviews with students. These conceptions are also 
consistently described across the literature (as shown below in parentheticals next to each 
conception), as well as appear in conversations in our dataset. We expand Zandieh’s framework 
with a sixth conception—graphical conception of the derivative—as it is discussed in the 
literature as well as appears in conversations in our dataset. In the next section, we discuss how 
we conceive of studying student conceptions and operationalizing them in our study. 
 
Table 1. Conceptions of the Derivative 
Conception Main Citations 
Taking Derivative Symbolically  Chappell & Killpatrick, 2003; Maciejewski & 

Star, 2016; Santos & Thomas, 2003 
Derivative as a Slope  Christensen & Thompson; 2012; Park, 2013 
Derivative as a Velocity Bingolbali et al. 2007; Chappell & Killpatrick, 

2003 
Derivative as a Rate or Rate of Change  Bezuidenhout, 1998; Dreyfus, 1991; Orton, 

1983; Park, 2012 
Graphical Conception of the Derivative  Ubuz, 2007 
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Formal Definition or (limit of) Difference 
Quotient  
 

Hähkiöniemi, 2005 

Data and Methodology 

Data  
The data for this project comes from an open-access, online mathematics tutoring platform 

(MTP, hereafter). To organize the conversations, the platform organizes the text channels by 
school level—ranging from pre-university courses like precalculus, up through university 
courses like calculus, linear algebra, and abstract algebra. As we are interested in students’ 
conceptions of the derivative, we have chosen to focus on conversation that happened in the 
calculus channel. Since 2015, there have been over 700,000 messages shared by thousands of 
users in the calculus channel. 

 
Automated Conversation Disentanglement 

The conversations that take place in the MTP happen within channels as part of one long-
flowing chat log, with no indication of separate conversations. There are advantages and 
disadvantages to this, but one glaring disadvantage is that it is not clear how the conversations 
are divided up between participants. This is where the work of automated conversation 
disentanglement comes in. Conversation disentanglement enables the identification of separate 
conversations within a single stream of messages. Kummerfeld et al. (2019) have developed and 
released an annotated large-scale dataset of Internet Relay Chat (IRC) logs (77k+ messages), as 
well as code to reproduce their disentanglement experiments. The model considers the author, 
timestamp, and content of the message when deciding which conversation a message belongs to. 
We have converted the messages in the MTP to the same format as these IRC messages, and the 
first author is working with the Kummerfeld et al. (2019) team on finalizing the implementation 
of the disentanglement process. 

Finding Useful Conversations 

 
Figure 1. Example conversations from the platform. 

Once the conversations are disentangled, it is important to determine which of the 
conversations pertain to conceptions of the derivative. One simple case could be to run a search 
for the term, ‘derivative’. However, if we are to look Figure 1 above, we would want to filter 
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Conversation #1 as a relevant conversation and Conversation #2 as an irrelevant one. However, 
if we were to only search for the term ‘derivative’, Conversation #1 would be left out. This 
means there are several search terms associated with each conception of the derivative. For 
example, including terms such as ‘product rule’ and ‘quotient rule’ will likely pick up 
conversations where students are bringing in problems where they are asked to find the 
derivative of a product or quotient of two functions.  

Once the disentanglement is finished, and assuming we have a large set of conversations 
associated with conceptions of the derivative, the next step will be to use Balacheff and Gaudin’s 
(2003) conception model to code the conversations with the various conceptions of the 
derivative, as well as the problems, operators, and controls of each of those conceptions. In the 
next section, we provide a glimpse into how the coding process will look by discussing two 
examples that illustrate how the process will be operationalized. This coding process aims to 
train a machine learning model to classify a conversation based on the features of its text.  

Preliminary Coding 

Example 1 

 
Figure 2. Example conversation between two users involving the problem of taking the finding the derivative of 

y=x^2-2x^3 using the limit definition of the derivative. 

 Conception: Formal Definition or (limit of) Difference Quotient 
 P (Problem(s)): Finding Derivative Using Limit Definition (tagged by "how to find 

derivative using limit definition") 
 R (Operators): Plugging function into limit definition of derivative (tagged by "$$\lim_{h 

\to 0} \frac{f(x+h)}-f(x)}{h}$$, "need to substitute {function}", "find the limit as h 
approaches 0") 

 𝛴 (Control Structure):  No controls present in this conversation 
Example 2 
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Figure 3. Example conversation between 3 users involving the problem of finding equation of a line perpendicular 

to a curve at a point. 

 Conception: Derivative as a slope 
 P (Problem(s)): Finding equation of line perpendicular to a curve at a point (tagged as 

“equation of the line which is perpendicular to the curve y=arcsinx”). 
 R (Operators): Differentiate the function (tagged as “Differentiate arcsin(x)”) and 

evaluate the function at 0 (tagged as “evaluate it at zero”), take the negative reciprocal to 
find the slope (tagged as “negative reciprocal of that value”). 

 𝛴 (Control Structure): In the example above, the tutor’s advice of drawing a picture, as 
well as the student remarking that they checked their work by graphing are indicators of 
the controls. 

 
By implementing a coding strategy like the ones above, the first author aims to develop a 

training set (using a sample of a semester’s worth of conversation data pertaining to the 
derivative) to train a machine learning model to classify the remainder of the conversations from 
the dataset.  

Concluding Thoughts 
In this preliminary report, we have provided a glance into two ways methods from machine 

learning can be amenable for studying student conceptions: (1) given large scale, disentangled 
conversation data from the MTP, we aim to show how automated disentanglement models can be 
trained and then deployed to disentangle into separate conversations, and (2) using Balacheff and 
Gaudin’s (2003) conception model, we aim to show how student conceptions of the derivative 
arise through conversations in the MTP. As this study is in its preliminary stages as the work of 
the first author’s dissertation study, we look forward to engaging with the larger undergraduate 
mathematics education research community on how this study can be improved as the 
dissertation progresses. Additionally, as the coding is in its early stages, we anticipate that it 
might be possible for other conceptions of the derivative to show up in the data--- we are eager to 
have conversations about these additional conceptions with our audience. 
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Investigating Individual and Collective Value within a Network of Communities of Practice

Paula Jakopovic Kelly Gomez Johnson Nina White
University of Nebraska-Omaha University of Nebraska-Omaha University of Michigan

This report examines the value-add of mathematics faculty participating in regional communities
of practice (CoPs) embedded within a larger Math CoP network. The CoPs and the network are
aimed at fostering the use of teaching with inquiry practices in undergraduate mathematics
courses. We examine value found at the individual participant level as well as at the CoP level
within the larger network. We present themes identified using Wenger, Traynor and de Laat’s
(2011) value framework to illustrate how individuals and CoPs find value within the network. In
this paper we provide an initial look at how the network can support both regional communities
and individual members in finding value and sustaining interaction within the CoP.

Keywords: Community of Practice, Networking, Inquiry, Active Learning

Supporting the achievement of secondary and post-secondary students in mathematics is an
ongoing area of concern, particularly due to its impact on recruiting and retaining students in
STEM fields (Fayer et al., 2017; Rose & Betts, 2001). One effort to address this is a focus by
mathematics faculty on the use of evidence-based teaching practices, such as active learning, to
support undergraduate student success. Despite evidence that lecture style instruction is not
effective for many students, particularly those from underrepresented populations, it is still
frequently used by many undergraduate STEM faculty (Jaworski & Gellert, 2011; Laursen et al.,
2019; Stains et al., 2018). Faculty who attempt to employ evidence-based, effective teaching
practices often find themselves doing so in isolation, which can make sustained implementation
difficult (Banta, 2003). For the purpose of this paper, we use the term “teaching with inquiry” to
encapsulate many forms of evidence-based teaching strategies that include: active learning,
inquiry-based learning (IBL), project-based learning,  problem-based learning, student-centered
teaching, ambitious teaching, and team-based learning. Communities of practice (CoPs) provide
one avenue of support for like-minded mathematics faculty as they pursue effective teaching and
professional development. CoPs focused on teaching with inquiry are positioned to provide
support systems by connecting faculty members with common goals and a vision for teaching.

Theoretical Framework
In order for sustainable change to occur, a number of systems need to be in place.

Understanding these systems and their influence of the complex nature of teaching and teacher
development can be a challenging undertaking. We frame this study by examining CoPs through
the lens of value-add, or access to things like funding, resources, and specialized knowledge and
expertise (Campbell, 2005), to investigate the ways in which individual members of CoPs and
how the broader connecting network facilitates supporting this work.

A community of practice (CoP) is a group of people with common interests who engage in
shared learning via ongoing, regular interactions (Lave & Wenger, 1991; Wenger-Trayner &
Wenger-Trayner, 2015). CoPs are coordinated around individuals who collaborate toward a
common goal, and typically have strong social bonds, active engagement, shared meaning and
identities (Henri & Pudelko, 2003). CoPs are often ephemeral- they develop organically out of
shared need, but often dissolve, particularly when they do not exist within a formal organization.
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Kezar and Gehrke (2017) examined issues with the sustainability of CoPs, particularly those that
exist outside the bounds of formal organizations. They found that, “To be sustainable, they
[STEM CoPs] had to move from being a loose entity typical of networks and CoPs toward being
more like an informal organization...this became a point of tension between becoming more
sustainable and losing the value of the loose, informal peer community” (p. 345).

This study examines the Math CoP Network [blinded pseudonym], a National Science
Foundation funded project (No. XXXXXXX), aimed at understanding how a network might
support, sustain, and promote teaching with inquiry to mathematics faculty participants through
engagement in regional CoP activities and interactions. Unique to the research on CoPs, this
project examines a group of individual CoPs nested within a larger network. Engel and van Zee
(2004) identify elements needed for a successful network, which include having a shared goal,
common interests, added value and commitment, capacity to access and contribute to the
network, and clarity in planning and management- all focuses of the CoP Network.

Value Framework for Examining CoPs
We utilize the value framework developed by Wenger et al. (2011) to position CoPs within “a

dynamic process in which producing and applying knowledge are tightly intertwined and often
indistinguishable” (Wenger et al., 2011, p. 21). As Figure 1 illustrates, the framework employs
five cycles of value creation - immediate (in the moment resources, information, connections),
potential (for the future), applied (tested implementation), realized (actualized implementation),
and transformative (broader dissemination to others). In addition to the cycles, value at the CoP
level is also supported by strategic value (clarity of the context and vision, ability to engage in
strategic conversations) and enabling value (support processes that make network life possible).

Figure 1. Adaptation of Wenger et al. (2011) Value Framework for CoPs.

Understanding the value-add of individual CoPs and the network that connects them will
help identify concrete structures needed to create sustainability. Unpacking the types of value,
along with the embedded systems and structures needed to facilitate this value, is therefore vital
to supporting active, thriving CoPs. In the first year and a half of this project, our research team
has gathered data to identify what individuals find valuable as they engage in activities within
their regional CoPs. Moving into the second half of year two of the project, we have expanded
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our investigation to also examine the types of value regional CoPs find in the network.
Therefore, the research questions for this study are: 1) Where do individuals find value
participating in Network activities? 2) Where do regional CoPs find value within the larger
Network? This preliminary data investigates these layers of value in isolation. In the future, we
aim to integrate our findings to provide a more holistic view of how the Network of CoPs impact
both individuals and institutions over time.

Methods

Data Collection and Analysis
We utilized two layers of data collection for this study. The first was survey data from faculty

who engaged in one or more regional CoP activities between October 2019 to October 2020.
Participants submitted 227 voluntary surveys, where 156 individuals provided identifiable
information, representing 115 unique faculty responses. The survey consisted of open-ended
responses where questions were aligned to gather evidence of specific value types. The second
form of data collected was derived from 20, semi-structured CoP leader interviews representing
eight regional CoPs (four regions original to the grant, and four added after year 1). The
interview questions were framed around value in terms of structures and systems in place for the
regional CoPs and the larger Network. Following the interviews, we compiled regional reports
that summarized the key activities, strengths, areas of improvement, and future opportunities or
threats of the CoP. Through a member checking process (Lincoln & Guba, 1985), each report
was verified by interviewees to increase the trustworthiness and validity of the summary.

We adapted the value framework developed by Wenger et al. (2011) to inductively and
deductively code open-ended survey responses for evidence of value across three value types:
immediate, potential, and transformative. The survey is administered immediately after
participation and therefore only these three value types are able to be coded since participants
have not had the opportunity to apply their experiences to practice yet. Qualitative data analysis
allowed us to interrogate “how people interpret...and attribute meaning to their experiences
(Merriam, 2009, p. 5). We initially coded the data concurrently to calibrate and ensure intercoder
reliability (Bradley et al., 2007; Krippendorff, 2004). In the second round of coding, we utilized
a priori codes where we identified responses aligned with the Four Pillars (Laursen &
Rasmussen, 2019). We determined that these codes did not completely encapsulate all participant
responses, therefore we conducted a third round of descriptive coding (Miles et al., 2014;
Saldaña, 2015) to identify additional emergent codes. For the leadership report summaries, we
used an adapted value framework to deductively code, this time for the two contextual factors:
strategic and enabling value. Using Nvivo software, we simultaneously dual coded (Miles et al.,
2014) the summaries to reconcile evidence of value for both enacted and future (anticipated)
strategic and enabling value.

Preliminary Results

Individual Participant Value
At the individual level, survey coding showed three types of individual value (immediate,

potential, and transformative) in three, key areas: support with resources to improve practice,
support through belief shifts in theory and practice, and support of a community of peers. These
preliminary results provide baseline data for CoP members’ perceptions of value.
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Participants often reported the value of  resources to support their implementation of teaching
with inquiry (TWI). Learning the “Basics of TWI”  was coded 64 times within the 227 survey
responses including comments like “Lots of tips and ideas for setting up my first IBL classroom”
indicating immediate value. In terms of specific resources and content, technology integration
and assessment strategies were frequently mentioned as resources that provided both immediate
and potential value for participants. Particularly beginning in Spring 2020 at the onset of the
pandemic, immediate and potential value coding became prominent.

Participants also highlighted the value of thinking about teaching using new methods that
challenged traditional beliefs of what it means to teach mathematics. For example, participants
identified new ideas, such as,  “... making the environment conducive to feeling ok to take risks
and make mistakes”. Participants reflected on how their involvement in CoP activities helped
them experience TWI from the student perspective. One participant noted, “The activity itself
was not novel, but discussing the activity as a student was the real value. I don’t have much
opportunity to discuss higher mathematics with others.” Participant comments such as this
highlight that changing faculty beliefs often includes experiences learning with and from others.

A final and prominent theme from the data emerged around the value in being a part of a
community of peers. Participants found immediate and potential value in support from
“like-minded peers” where they could be vulnerable sharing their experiences. Although present
in the survey results across the full year of data collection, the conditions created by the
pandemic intensified the desire for peer support. Participants valued knowing others experienced
similar struggles teaching online and commented, “it’s a shared experience and a shared concern
with other dedicated people.” Another participant added, “This was so helpful to learn about
strategies for implementing IBL online. I felt like in the winter I was teaching in a vacuum.”

Collective Regional CoP Value
The first type of data examined what individuals found valuable participating in Network

activities, which aligns to the horizontal value types in Figure 1. From the Network level, we
aimed to understand the systems and structures supporting the regional CoPs and so took a
broader view. To do this, we identified instances where leaders expressed enabling value
(processes that make network life possible) as well as strategic value  (promotion of the
network’s  common vision and structures that can make each CoP sustainable long term) as
illustrated in Figure 1. Table 1 below shows the coding counts for enabling and strategic value
that have been enacted as well as opportunities for future value creation.

Table 1. Coding Counts for Strategic and Enabling Value

Regional
COMMIT
New CoP 1
New CoP 2
New CoP 3
New CoP 4
Original CoP 1
Original CoP 2
Original CoP 3
Original CoP 4

Future Enabling
Value

2
5
4
3
4
2
5
2

Enacted
Enabling Value

2
4
6
3
8
13
3
6

Future Strategic
Value

0
2
3
1
2
4
3
3

Enacted
Strategic Value

3
0
2
4
1
0
1
1
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The regional summaries are, for the most part, focused more on enabling value than strategic
value. This perhaps is to be expected as regional CoP leaders spoke more often on what made
their regions function rather than the larger network structures. Enabling value focused on the
qualities of the leadership team, professional development offerings, and how CoPs are assessing
their needs. Original CoPs identified enacted enabling value most often, whereas the majority of
New CoPs saw this as a future opportunity. New CoPs are just beginning to create processes to
organize leadership teams and consistently implement activities and regional events. They may
not yet be positioned to identify features that move toward sustainability. Original CoPs have had
more time to develop systems necessary to run a CoP that can sustain as new leaders transition in
and out. Preliminary analysis indicates that leaders identified enabling value in having a CoP
team composed of other “experienced leaders”. Additionally, we found that collaboration was a
consistent element of each CoP where participants and leaders are able to seek and share ideas,
build relationships with like minded individuals, and through those relationships, develop rapport
and trust to engage in vulnerable conversations. In terms of anticipated future opportunities for
enabling value, nearly all regional leaders described goals of making connections and
collaborating across CoPs, along with finding ways to expand and diversify their membership.

While less prevalent, strategic value was evident in all eight CoPs. All but two CoPs reported
finding enacted strategic value in their region, and six of the eight CoPs identified more
opportunities for future strategic value than enacted value. Three preliminary themes emerged
from the enacted strategic value coding- that of the importance of hosting regular meetings and
events within the Network, the role of building common knowledge/vision, and the importance
of common structures (e.g., websites, listservs, onboarding tools) in maintaining a functioning
Network. Similar to themes around future enabling value opportunities, future strategic value
opportunities included devising structures to incentivize and recruit participants, refining
communication methods, and identifying systematic ways to enhance cross-CoP collaboration
(e.g., hosting a national networking event). This preliminary analysis suggests that CoPs are
beginning to share systems and structures in addition to a common vision. However evidence of
future strategic value indicates that the Network continues to have areas of improvement for long
term sustainability.

Discussion and Questions about the Research
For the MathCoP Network to make intentional and meaningful steps toward sustainability,

Network leaders and researchers must understand both individual and regional CoP needs. Thus
far, our research has identified a number of individual and regional CoP supports where faculty
found value as they work to implement TWI practices into their undergraduate mathematics
courses. As we continue to gather data, we are focused on integrating potential value themes
from the individual and regional levels to inform Network stability and structures. Our future
research will focus on gathering additional, longitudinal data to examine trends over time. Our
preliminary results lead to several questions for discussion: 1)  Is the value framework an
appropriate tool for measuring CoP supports and structures for long-term network sustainability?
and 2) In addition to the analysis reported here, we utilize social network analysis to examine
social capital and the overall health of the network. Are there additional data worth considering
to understand the role of the network for maintaining sustainable CoPs?

24th Annual Conference on Research in Undergraduate Mathematics Education 1032



References
Banta, T. W. (2003). Quality and accountability in higher education: Improving policy,

enhancing performance. Journal of Higher Education, 76(1), 112–114.
https://doi.org/10.1080/00221546.2005.11772279

Bradley, E.H., Curry, L.A., & Devers, K.J. (2007). Qualitative data analysis for health services
research: Developing taxonomy, themes, and theory. Health Services Research, 42(4),
1758-1772. https://doi.org/10.1111/j.1475-6773.2006.00684.x

Campbell, A. (2005). The evolving concept of value add in university commercialisation.
Journal of Commercial Biotechnology, 11(4), 337-345.

Daly, A. J. (2010). Mapping the terrain: Social network theory and educational change. In A. J.
Daly (Ed.), Social network theory and educational change (pp. 1–17). Harvard Education
Press.

Engel, P., & van Zee, A. (2004). Networking for learning: What can participants do? European
Centre for Development Policy Management.

Fayer, S., Lacey, A., & Watson, A. (2017). STEM occupations: Past, present, and future. U.S.
Bureau of Labor Statistics.
https://www.bls.gov/spotlight/2017/science-technology-engineering-and-mathematics-ste
m-occupations-past-present-and-future/pdf/science-technology-engineering-and-mathema
tics-stem-occupations-past-present-and-future.pdf

Henri, F., & Pudelko, B. (2003). Understanding and analysing activity and learning in virtual
communities. Journal of Computer Assisted Learning, 19(4), 472–487.
https://doi.org/10.1046/j.0266-4909.2003.00051.x

Jaworski, B., & Gellert, U. (2011). Educating new mathematics teachers: Integrating theory and
practice, and the roles of practicing teachers. In A.J. Bishop, M.A. Clements, C. Keitel, J.
Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics
education (pp. 829-875).

Kezar, A. (2013). How colleges change. New York, NY: Routledge
Kezar, A., & Gehrke, S. (2017). Sustaining communities of practice focused on STEM reform,

The Journal of Higher Education, 88(3), 323-349.
https://doi.org/10.1080/00221546.2016.1271694

Krippendorff, K. (2004). Content analysis: An introduction to its methodology (2nd Ed.). Sage.
Laursen, S., Andrews, T., Stains, M., Finelli, C. J., Borrego, M., McConnell, D., Johnson, E.,

Foote, K., Ruedi, B., & Malcom, S. (2019). Levers for change: An assessment of progress
on changing STEM instruction. American Association for the Advancement of Science.

Laursen, S., & Rasmussen, C. (2019). I on the prize: Inquiry approaches in undergraduate
mathematics. International Journal of Research in Undergraduate Mathematics
Education, 5(1), 129-146. https://doi.org/10.1007/s40753-019-00085-6

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Learning
in doing. Cambridge, UK: Cambridge University Press.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Sage.
Merriam, S. (2009). Qualitative research: A guide to design and implementation. John Wiley &

Sons.
Miles, M., Huberman, A., & Saldaña, J. (2014). Qualitative data analysis: A methods

sourcebook (3rd ed.). Sage.
Rose, H., & Betts, J. R. (2001). Math matters: The links between high school curriculum, college

graduation, and earnings. Public Policy Institute of California.

24th Annual Conference on Research in Undergraduate Mathematics Education 1033



Saldaña, J. (2015). The coding manual for qualitative researchers (3rd ed.). Sage.
Stains, M., Harshman, J., Barker, M. K., Chasteen, S. V., Cole, R., DeChenne-Peters, S. E.,

Eagan Jr., M.K., Esson, J.M., Knight, J.K., Laski, F.A., Levis-Fitzgerald, M., Lee, C.J.,
Lo, S.M., McDonnell, L.M., Mckay, T.A., Michelotti, N., Musgrove, A., Palmer, M.S.,
Plank, K.M., Rodela, T.M., Sanders, E.R., Schimpf, N.G., Schulte, P.M., Smith, M.K.,
Stetzer, M., Van Valkenburgh, B., Vinson, E., Weir, L.K., Wendel, P.J., Wheeler, L.B., &
Young, A. M. (2018). Anatomy of STEM teaching in North American universities.
Science, 359(6383), 1468-1470.

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge
University Press.

Wenger, E., Trayner, B., & de Laat, M. (2011). Promoting and assessing value creation in
communities and networks: A conceptual framework. Open University of the
Netherlands.

Wenger-Trayner, E., & Wenger-Trayner, B. (2014). Learning in a landscape of practice: A
framework. In E. Wenger-Trayner, M. Fenton-O’Creevy, S. Hutchinson, C. Kubiak, & B.
Wenger-Trayner (Eds.), Learning in landscapes of practice: Boundaries, identity, and
knowledgeability in practice-based learning (pp. 13-29). Routledge.

Wenger-Trayner, E., & Wenger-Trayner, B. (2015). Introduction to communities of practice.
https://wenger-trayner.com/introduction-to-communities-of-practice/ 

24th Annual Conference on Research in Undergraduate Mathematics Education 1034



Engaging Problem Contexts in Calculus Textbooks  

 

Kamalani Kaluhiokalani                                              Douglas Lyman Corey 

Brigham Young University                                       Brigham Young University 

Research has shown that a majority of students gain negative attitudes about mathematics as 

they progress through courses, but we have not explored carefully what might be the main 

source of these negative attitudes, the problems presented to students, and the ones they are 

asked to solve. We analyze contextualized problems from two popular textbooks to explore the 

prevalence of features of engaging problem contexts. Of the 7 research-based features, 2 were 

not found, and 2 more were found in less than 6% of problems. This is an early attempt at trying 

to measure features of engaging contexts building on students’ perspectives, but not using 

students to judge individual problems.   

Keywords: Interesting Problems, Student Attitudes, Engaging Problem Contexts, Calculus 

Students often develop negative feelings towards mathematics, even students majoring in 

STEM disciplines (Bressoud, Mesa, & Rasmussen, 2015). Researchers have found two possible 

reasons that students develop these negative feelings. First, students do not see a connection 

between the mathematics they learn in class and the real world (Boaler, 2015; Boaler & Selling, 

2017). Second, few problem contexts are engaging to students (Boaler, 2015; Crespo & Sinclair, 

2008. Van den Heuvel-Panhuizen, 2003). Recent research has begun to look at what features of 

problem contexts help students to engage in the problem and find the problem motivating (Stark 

& Jones, 2020). However, we do not know to what extent these features are found in textbook 

problems, in-person instruction, or online instructional videos. Understanding the current state of 

problem contexts helps us to know how to improve these problem contexts to make them more 

motivating for students which, we hope, will turn the tide of negative attitudes of so many 

students. Additionally, there is has been little work on evaluating engaging contexts directly 

from textbooks so there are methodological issues to be explored as a basis for further research.  

Literature Review 

Many students see mathematics as hard, boring, and useless and stop taking mathematics 

classes as soon as possible (Osborne et al. 1997; Nardi & Steward, 2003). Since so much of a 

student’s time associated with school mathematics is spent solving mathematics problems, 

students’ views of mathematics may largely be developed from the kinds of problems they are 

asked to solve and how they work on those problems. However, relatively little research has 

explored problems and problem contexts from a student perspective compared to the central role 

that problems play on school mathematics and the extent that they shape students’ attitudes. The 

work that has been done uses a variety of constructs, so it is hard to understand findings across 

studies. Some of the constructs used include fun (Brown et al., 2008); challenge and control 

(Bibby, 2008); depersonalization and tedious (Nardi & Steward, 2003); realistic (Blum, 1993; 

Boaler, 2015; Gravemeijer & Doorman, 1999); importance (NCTM, 2000); and interest and 

enjoyment (Schukajlow & Krug, 2014). Moreover, many of these don’t focus on problems or 

problem context characteristics, but general experiences with school mathematics.  

One study that did some consolidation and characterization of problem context 

characteristics is Stark and Jones (2020). Based on common and related constructs in the 

literature, they created an interview protocol to better understand what made a problem context 
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engaging (their overarching construct). They interviewed 13 calculus students and found that 

engaging mathematics contexts came in two categories: realistic-and-motivating, and enjoyable-

and-motivating. Students discussed features of the problems related to these two categories. We 

discuss these in detail as part of our theoretical framework.   

Research Question 

Since research is starting to develop an understanding of students’ views of problems and 

problem contexts, we can begin to use these results as lenses to view the characteristics of 

problems that students typically encounter in their classes. Our main research question is: What 

characteristics of engaging problem contexts do typical calculus problems present? 

One notable aspect of this question is that it has some methodological challenges, namely 

trying to validly measure or identify constructs/characteristics of problems that originally 

emerged from student perspectives.     

Theoretical Framework  

We largely built our ideas from the work of Stark & Jones (2020), using their framework and 

results. A diagram illustrating their framework and findings is found in Figure 1. The diagram 

illustrates the two flavors of engaging contexts and the six characteristics mentioned earlier 

during the discussion of this work in the literature review. We focused on looking at the six 

characteristics, but also added one more that emerged in our analysis: real-life narrative. Some 

problem contexts were based not on personal or absurd stories, but events that actually happened, 

often in a historical context. We included these as another characteristic in enjoyable-and-

motivating since these were also stories.  

 

 
Figure 1. Framework for Engaging Contexts    

 

 The definition of each of these seven characteristics are:  

• Expansion of Awareness: Context that permits students to see mathematics being used in a 

way they did not previously know it could be used. 

• Need for Math: Context in which a student can perceive the mathematics as being a 

necessary tool that a person would use in such a situation. 

• Explicit Purpose: A specific reason given as to why the answer to such a problem would be 

useful or beneficial. 

• Insertion into Problem: A feature of a context that lends itself well to imagining oneself 

inside that context. 

• Teacher’s/Author’s Personal Story: A story whose context comes from the context of the 

instructor's or writer's life. 
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• Absurd Story: A story whose context comes from a ridiculous situation that is often 

unbelievable. 

• Real-Life Narrative: Historical account or description of a sequence of actual, specific events 

or people that prompts a mathematical problem. 

Methods 

We selected two popular college textbooks to analyze (Stewart, Clegg, & Watson, 2020; 

Briggs, 2018). For each book, we looked at all problems that were presented as part of the 

instructional and explanatory text. We did not analyze the exercises since, from our experience, 

students are only asked to work a small percentage of the contextualized problems in the exercise 

sets. Thus, we focused on the problems that students were most likely to see, either from reading 

the text or from being presented by the instructor from the textbook. Any problem that had a 

non-mathematical context was coded according to the seven characteristics. Explanations for 

coding some of the characteristics are below. Not all measures are discussed because we felt 

identifying the stories and real-life narrative were straightforward.  

Expansion of Awareness 

To make reasonable guesses about whether a guess would expand the awareness of a student 

we coded problems from 4 other textbooks. Two of the textbooks were at the college 

algebra/precalculus level. Two were at the intermediate algebra level. All problems in the 

expository section (not including the exercises) were coded for a main topic (population, finance, 

sports, projectile, manufacturing, chemistry, etc) and a subtopic. For example, in the finance 

category, there were subcategories such as sales, investing, salary, interest rates.  

We used this baseline data from previous mathematics courses to make judgments about 

whether a problem context expanded the awareness of students. If a problem context in calculus 

was likely to be seen by students in a previous course, we thought it would not be an expansion 

of awareness. Our rule was that if the context in the calculus book was in 3 of the four lower-

level mathematics books, then it was not an expansion of awareness. We developed two possible 

measures of expansion of awareness, one based on the main category and one based on the 

subcategory. The main category measure only looked at the main category of problem contexts 

in the calculus book and lower-level mathematics books, whereas the subcategory measure had 

to match the main category and the subcategory.    

Need for Mathematics 

A judgment was made about the problem context to decide if the answer to the question 

could be found without using the mathematics from that section of the textbook. For example, if 

a problem had some information that was to be used to find other information, but the 

information to find would have been easily collected when gathering the initial information, then 

it was coded as a “no” for needing mathematics. Similarly, if it was a common real-world 

situation where there were other readily available methods for working through the situation, 

then it was not considered as having needed the mathematics.  

Explicit Purpose 

We only considered problems having an explicit purpose if the reason for solving the 

problem was described in the problem. The purpose had to be a purpose outside of the world of 

mathematics. We considered reasons such as “minimizing cost” or “maximizing revenue” to be 

sufficient.  
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Insertion Into Problem 

Our coding of this characteristic used three levels: Yes, No, and Possibly. We looked at 3 

features of the problem that were inviting for students to imagine themselves in the context or 

that would make it easier for students to do so. If a problem had none of the three features, then 

we coded the context as a “no”, meaning it was not easy for students to insert themselves into a 

system. One feature of three received a code of “possibly” and two or more received a code of 

“yes”. The three features were: if a problem context was accompanied by a picture or drawing 

(not including a graph or basic geometric object), if the context was a common topic that a 

typical student most likely could have seen in person or through media (i.e. not specialized like a 

chemical reaction between two solutions and common like going to the store or the speed of a 

car), and if the context gives an explicit invitation to students to think of themselves performing 

the action or being in a certain situation. 

Results 

The first thing of note is that there is a relatively small number of contextualized problems in 

our data set. There were 174 total contextualized problems across both books, which include 

chapters often covered in both Calculus I and II. This was only about 20 percent of problems in 

each book. We sampled two chapters from each book, chapter 3 on Derivatives and chapter 6 on 

Applications of Integration. The percentages of contextualized problems for each chapter were 

20.6% and 17.8% respectively for Stewart et al. (2020) and 16.9% and 22% respectively for 

Briggs (2018).  

The percentage of problems with each characteristic is shown in Table 1. Unless specified 

otherwise, the percentage represents the percent of problems with that characteristic. We 

highlight just a few of the results. There are strong similarities between the two books, with most 

measures being within 5% of each other. The two measures of expansion of awareness are quite 

different from each other, so budding into lesser-known main categories only happens about 28% 

of the time but to new sub-categories about 74% of the time. About one-third of the problem 

contexts don’t require the mathematics that is the focus of the section. There are rarely explicit 

purposes given for solving the problems or drawn from real-life narratives, and no contexts were 

from personal or absurd stories.  

  
Table 1. Percentage of problem contexts containing each feature.  

Characteristic Stewart, N=102 Briggs, N=72 Total, N=174 

Expansion of Awareness (Main) 29.4% 26.4% 28.2% 

Expansion of Aw. (Sub) 75.5% 70.8% 73.6% 

Insertion Y=32.4%,  

Y or P=84.4% 

Y=36.1%,  

Y or P=100% 

Y=33.9%,  

Y or P=90.8% 

Need for Math 61.8% 66.6% 63.8% 

Explicit Purpose 7.8% 2.7% 5.7% 

Teacher/Author Story 0% 0% 0% 

Absurd Story 0% 0% 0% 

Real Life Narrative 4.9% 1.4% 3.4% 

We searched for the problems with the most characteristics. Four problems, each from 

Stewart et al. (2020) had four features. One problem explained how Kepler had used data to 

describe the motion of the planets and led up to a problem to find the polar equation of the 

elliptical path of the earth around the sun. Another problem found was the pressure of water on 

24th Annual Conference on Research in Undergraduate Mathematics Education 1038



the bottom of the swimming pool. The others were an optimization of a cylindrical can and the 

velocity of blood flowing through a blood vessel.   

Discussion 

Our results can help explain previous research findings. Many students find mathematics 

useless (Osborne et al., 1997). An analysis of these two calculus textbooks shows that only about 

one-fifth of the non-exercise problems contain a non-mathematical context. With about a third of 

these contextualized problems not actually requiring mathematics to solve and only about 6 

percent done for an explicit purpose, it is little wonder why so many students don’t view 

mathematics as useful.  

The four contextualized problems with the most features did not strike us very compelling. 

For example, they don’t seem to prompt the same engagement as the specific problems that 

students in Stark & Jones (2020) volunteered as engaging problems:  

 

One student explained, “My calculus teacher gave us this problem about his son who was 

trying to make the lantern from [the movie] Tangled. He needed to figure out how to 

maximize the surface area… Even though I don’t like calculus, I thought, ‘this is a really 

interesting problem. I kind of enjoy this.’” Another student brought up a situation where 

his teacher described a “potato gun” his family had and how someone thought it would 

shoot higher than it really could and ended up making a mess of a gazebo in a park. (p 6). 

 

Both of these examples are personal stories from instructors. Such stories of using 

mathematics in a real-life context has the potential to capture many of the other characteristics of 

engaging problem contexts, and tie them together into a coherent experience. It is revealing to 

see such a lack of personal stories about mathematics used in calculus textbooks, even though 

calculus is widely used in applications and can be used to make sense of so many everyday 

situations. If the author, who presumably knows the mathematics well, is not using this 

mathematics in contextualized situations, how do we expect students to do so? Perhaps personal 

stories by instructors or authors could combat the depersonalized nature of learning mathematics 

(Nardi & Steward, 2003). 

In this research, we faced a challenge of trying to measure characteristics of contexts that 

originated from individual student perspectives. We need to do more research to investigate their 

validity. We have also not privileged any one characteristic, or combination of characteristics, of 

engaging contexts, but it is reasonable to assume that these characteristics do not have the same 

effect in making the context engaging. For example, based on the previous paragraph we would 

hypothesize that a personal story may be a more compelling characteristic (or combination of 

characteristics) than others.   

Questions for Audience 

The most questionable measures were for expansion of awareness and insertion into the 

problem. How do these measures come across to you? Do you have other suggestions on 

measuring these without asking students directly?  

We plan on doing similar analyses on other instructional materials, such as available class 

videos (MIT OpenCourseWare, for example, or our own classes) to measure the extent there are 

engaging problems in classes. Are there other places that would be interesting to know about the 

problems students experience?    
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Justifications of Justifications: Episodes of Meta-theoretic Discussion in Class 

 

 Brian P Katz Vanessa Hernandez 
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Inspired by Brown’s (2018) work assessing the role of a meta-theory in student conviction from 

indirect proofs, we explore the negotiation of meta-theoretic ideas in classroom discussions of 

proofs. We use Toulmin analysis to identify episodes in which meta-theoretic topics become 

overt, and then we present preliminary analysis of themes and patterns in these episodes. 

Keywords: meta-theory, proof, Toulmin analysis, geometry 

Brown (2018) gives an overview of four hypotheses for students’ supposed dislike of or lack 

of conviction from indirect proofs. The constructive hypothesis (Leron, 1985) asserts that 

learners construct a mental entity that corresponds to a mathematical object or its symbols on a 

page and that this construction is harder for indirect proofs because the mental objects cannot be 

built up directly. The socio-accultural hypothesis (Brown, 2018) asserts that proving is a social 

practice in a community, a community that has many artifacts that communicate to learners that 

indirect proofs should be less convincing. And the consistency hypothesis (Sierpinska, 2007) 

asserts that theoretical thinking requires learners to be sensitive to coherence of the whole 

system, coherence that is at odds with the semantic interpretation of statements in a proof that 

uses contradiction. The metatheoretical hypothesis (Antonini & Mariotti, 2008) asserts that 

mathematical theorems are situated in a reference theory of logic and that indirect proofs are 

distinctive in requiring learners to use metatheorems in this reference theory, such as the 

equivalence of a statement and its contrapositive. 

During the discussion after Brown’s 2016 CRUME presentation about these ideas, it was 

suggested that only indirect proofs require metatheorems. At that time, the first author 

hypothesized instead that all proofs require metatheorems but that discussion of this meta layer is 

suppressed in direct proofs because the structure of these metatheorems is taken as default and 

normative. Upon further reflection, the first author realized that they taught a course that 

emphasized epistemological issues in mathematical proof and hence was a promising place to 

look for examples of students negotiating meanings of metatheorems in both direct and indirect 

proofs. Returning to Brown’s work (2018) more recently while exploring recordings from this 

course, we realized that the themes from all four hypotheses were overt topics of discussion in 

this course, a meta-discourse about mathematics. This brings us to our research questions: 

1. What is the content of the meta-discourse in this course? 

2. How are students negotiating the meaning of the content of this meta-discourse? 

Theoretical Perspective 

Antonini & Mariotti (2008) model indirect proof as follows. In general, a theorem is a triplet 

of a statement S, a proof P, and a reference theory T (S,P,T). An Indirect proof of a principal 

statement S is instead direct proof, C, of a secondary statement S* (such as the contrapositive of 

S); a meta-theorem of the statement MS=S->S*, a meta-proof MP, and a meta-theory MT; and a 

principal theorem consisting of S, an indirect proof of S, and both the theory T and metatheory 

MT. Importantly, the theory T for (S*,C,T) is a theory for a mathematical domain, perhaps an 

axiomatic framing of Geometry or Algebra, and the meta-theory for (MS,MP,MT) is usually 

classical logic. This last point is key for how we will generalize Antonini & Mariotti’s model for 
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our theoretical perspective: some justifications in this classroom will use a theory of geometry 

and others will use a theory of mathematics. This analysis will focus on meta-statements and 

their associated meta-justifications that use a theory of mathematics. 

Because our focus is on justifications and the associated theory, we will use Toulmin’s 

(1969) model of argumentation. In this model, an argument consists primarily of a statement that 

is being asserted, called a claim, previously established information, called data, and a general 

principle that explains why the data necessitate the claim, called a warrant. For our purposes, an 

argument may also include support for the warrant, called backing, and expressions of concern 

about the data or the ways that the warrant is applied, called qualifiers or rebuttals. Building on 

Antonini & Mariotti’s model, within the Toulmin analysis of a justification of a theorem, we can 

separate individual argumentation triples into the domain and meta-layers based on whether the 

warrants are in the theory or meta-theory. We also anticipate that qualifiers can require the 

discussion of the justification to shift from the domain to meta-layer. 

Our first goal is to describe the content of the meta-layer discussions. We are sensitized to 

some potential themes in this layer by our teaching and learning experiences, but we are building 

a grounded theory (Strauss & Corbin, 1994) from the data and do not have an a priori framework 

for this content. We will look for themes drawn from Brown’s (2018) four hypotheses, but we do 

not assume that these themes would constitute a framework to describe all of the content of this 

layer. 

Our second goal is to notice patterns in learners’ negotiations of the meaning of the meta-

layer content in course discussions. The emergent perspective (Yackel & Cobb, 1996) frames 

this negotiation as happening in the reciprocally related sociological and psychological realm. In 

particular, we expect to see evidence of the class negotiating and eventually establishing 

sociomathematical norms whose content refers to the meta-layer of the class discussions. We 

follow Yackel et al. (2000) by using two kinds of changes in the role of items in the Toulmin 

analysis across time as evidence of sociomathematical norms. When a claim initially needs an 

explicit warrant but then later that claim is accepted without warrant, it has become normative; 

similarly, when a statement that is initially a claim that requires a warrant and later is accepted as 

a warrant, it has become normative. 

Methods 

Data from this course are taken from video recordings of a full course in college geometry. 

Details of the course structures can be found at (Author, YEAR). There were 11 students 

enrolled in the course. All were junior mathematics majors, with 10 on the track for secondary 

mathematics education and one who identified primarily as a chemistry major. All students 

consented to the videos being used for research purposes, and the data collection was approved 

by the IRB for the institution hosting the course, which was the first author’s institution at the 

time. 

These recordings were made for another, related project before the generation of the 

hypotheses and research questions of this paper. As a result, these data represent a convenient 

source that was expected to allow the researchers access to the phenomena in question, not a 

representative sample or otherwise general context that would support generalizations to other 

contexts. 

The entire course was recorded from a single camera, including both small group work and 

full class congress presentations and discussions. The congress phases in which the class was 

discussing theorems and proofs was transcribed by an external transcription service, and then the 

second author corrected these transcripts using her greater mathematical expertise. These 
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transcripts represent more than 10 hours of group discussion of proofs across more than 15 class 

sessions. 

Both authors independently analyzed the transcripts of these discussions using Toulmin’s 

model of argumentation. We then came together to compare our analyses. We do not believe that 

it is possible determine a “correct” Toulmin analysis of an utterance in many situations; markers 

of a speaker’s intention are often suppressed, different listeners can have different interpretations 

in the moment, and there may be a sustained difference between individual understandings and 

the ones that are taken as shared based on the group discourse. The research discussions of these 

analyses therefore focused on whether the analyses were consistent with the transcript data, and 

when multiple consistent interpretations were generated, we kept them both for the next phase of 

analysis. 

We used these Toulmin analyses to create a corpus of claim-data-warrant triples that refer to 

the meta-theory. We added to this corpus any associated qualifiers, rebuttals, or other transcript 

elements outside the Toulmin analysis, maintaining the labels for their role in the Toulmin 

analyses. Then we began coding this corpus. Initial passes involved open coding, sensitized by 

the themes from our theoretical perspective. Subsequent passes involved attempts to define and 

organize themes around axial codes. This paper is submitted as a preliminary report because this 

work is ongoing. 

Results 

This section will give examples of episodes in which the meta-layer became overt in 

discussion that will illuminate themes in our analysis. 

Example 1: Angle-Angle-Side 

This first example comes from a student presentation that Angle-Angle-Side is a congruence 

theorem. 

 

We were going to begin ... because we're trying to say that these 2 triangles are 

congruent, and the only ways that we know thus far that triangles are congruent is by 

side-side-side or side-angle-side, so we want to seek a contradiction, so we're going to 

assume that segment AD is not congruent to ED. OK, well, see, when I did [the 

immediately previous proof of theorem] 44 [Angle-Side-Angle] I then said that WOLOG 

[with-out loss of generality] one has to be longer than the other. 

 

The presenter asserts that there are only two results that could conclude that triangles are 

congruent. Initially, statements like this are prompted by the instructor, but in this presentation, 

the student makes this statement without any prompting, and it is accepted without issue by her 

peers, indicating that it is a normative form of reasoning by this point in the course. This 

statement is a claim about the possible warrants in the proof, so we interpret it as a claim in the 

meta-theory: if the proof is going to be possible in the current axiomatic system (base theory), it 

will need to use one of two previous results, which happen to be axioms. Significantly, this move 

requires the presenter to assess the entire set of accepted theorems in the base theory, which is an 

example of Sierpinska’s (2007) theoretical thinking about the coherence of a system; the 

presenter then uses this coherence to explain why the proof will “seek a contradiction”. 

WOLOG? 
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Example 2: Hypotenuse-Leg 

This second example comes from a student presentation that two right triangles with a 

corresponding congruent leg and hypotenuse are congruent. In the class theory, a right angle is 

defined as an angle that is congruent to its supplements. Significantly, the students believe that 

all right angles are congruent, but it has been established that this is not yet a result in the 

accepted axiomatic system for the class. The proof proceeds by mirroring each triangle across 

the other leg to produce two larger triangles that are provably congruent. 

 

So it's kind of like the first phase. So these two are congruent here. We don't yet know 

that this side is congruent to that side, but we still have reflexivity, and we also know that 

for the same reasons that this angle is congruent to that one. So then by SAS again, these 

two angles, or triangles are also congruent. So because these two triangles are congruent 

now, we know that by CPCFC, we know that these two sides are also congruent, so they 

can share a hash. And because this is congruent to that, which is congruent to that, which 

this side is congruent to this because of CPCFC, and we can add that mark there. 

 

This presenter makes an interesting move asserting that we “don’t yet know” a congruence, 

and she goes on to repeatedly use the word “know” to describe the results of her sequence of 

claims and warrants. Viewed through the lens of the constructive hypothesis, this presenter 

appears to be holding a mental entity related to these congruent triangles. In particular, she 

appears to hold two versions of that entity, one that exists for her and one that is being 

constructed toward her personal version in public using only collectively accepted pieces. This 

move is also normative in this class at this point in the semester. Many of the earlier discussions 

about diagrams invoked the idea of drawing a generic object that avoids special properties or 

intentionally makes the target congruences look false. For example, the class proved that any 

angle that is congruent to a right angle is a right angle using an image of two angles, each with 

their supplements, only one of which appeared to be a pair of congruent supplements. 

Example 3: Squares 

In end-of-term reflections, the students identified the day in which they attempted to 

construct a square as the most memorable. Squares cannot be constructed in neutral geometry. 

This episode comes after students have identified unwarranted claims in all of their attempts to 

justify their constructions of a square, and those constructions were implemented in NonEuclid, a 

dynamic construction environment for the Poincaré disk model of hyperbolic plane geometry. 

 

Instructor: Yes, there are no squares here. Not only is this not working, there are no squares 

here. What does this mean about what must happen next? That's a more philosophical 

question. 

Student 1: You need like more stuff, like more theorems for it. 

Instructor: Not theorems, axioms. We need a new axiom. We need a new thing that says 

[Geogebra and NonEuclid] are both examples of what we currently have but it's too 

general. We need to specify more. 

Student 2: If we had [theorem] 60 before [this exercise] 58, could we do it? 

Instructor: Yes, but the thing that happens between 58 and 60 is? 

Student 2: Axiom Five. 

Instructor: Axiom Five. Axioms in general should seem like bonfires. They should attract 

your attention like you're a moth, like woo, an axiom. One of the things I really like about 
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this book is that it waits to give these axioms. This would not be clear, this sort of 

intellectual hygiene the idea that we haven't used, we haven't used it, now we definitely 

believe that we need a new axiom. That would not have been clear if we stated 

everything in the beginning. We'll use these words again later but what we've doing up to 

now is what's called neutral geometry. Basically, both these examples follow it and we're 

about to move into actual Euclidean geometry. 

 

In this episode, the instructor overtly shifts the discourse from the base theory into a 

discussion of why and how that base theory will need to be changed in order for squares to be 

constructible in that system. Two different students engage in this discussion explicitly 

suggesting that if the class could add a tool to the current theory, they could prove the result. 

This episode includes the instructor voice, so the evidence of student negotiating is not clear, but 

it is a very clear moment of discussing ideas outside of the base theory in class. The first author, 

as instructor, intended episodes about this topic to help learners view axioms as artifacts of 

human choices and thereby be acculturated into a way of viewing axioms like that held by many 

professional mathematicians. 

Discussion 

We see evidence of meta discussions of the elements of Toulmin’s model in the transcripts. 

Example 1 includes a meta discussion of the warrants that need to be present in a proof in the 

base theory. In many examples, this appeared as foreshadowing about a warrant or claim that a 

presenter asserted would need to appear later in a proof. Example 2 includes meta discussion of 

data: being careful to separate what is believed from what is known. Perhaps the role of diagrams 

is distractive in a straight-edge and compass axiomatic system for constructing geometry. Not 

shown in these examples, the transcript includes discussions of how a given claim did not 

contribute to the proof. Example 3 can be interpreted as a discussion of qualifiers or rebuttals 

that steps outside of the base theory and into a discussion of changing that theory. Also not 

shown in these examples, the transcript includes multiple discussions in which students make 

claims about parallels between the structures of different proofs. In particular, they overtly 

negotiate about the meanings of “without loss of generality” and “similarly” in proofs. 

Many of the meta-layer discussions were initiated by an instructor qualifier or rebuttal, who 

regularly problematized meta-layer ideas that were otherwise implicit in the discussion. Future 

work will explore instructor moves that supported students in engaging with these concerns and 

negotiating them as individuals and a group until their resolutions became sociomathematical 

norms in the classroom. 

Finally, a metaphor emerged through our analysis that models the classroom discourse by 

tying together individual thinking, collective warranting, and classroom facilitation. Each 

individual has a personal transcript that records their thinking, some of it in pen and some more 

tentatively in pencil. The class as a whole also has an official transcript as well as an open 

transcript for what has been said out loud, with entries that can also be written tentatively or 

permanently. The function of congress discussions is to move ideas from individual transcripts 

into the collective open transcript and to legislate as the assembled congress about which ideas 

get moved into the official transcript and why. The content of these transcripts lives in the base 

theory, and discussions that look at the structure of the transcripts or at the processes for working 

with the transcripts live in the meta theory. 
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Can discussion boards disrupt gendered and racialized discussion patterns in math classes?

Minah Kim                             Christine Andrews-Larson
Florida State University                     Florida State University

Social Network Analysis is a method to analyze individuals’ social accessibility and power.
We adapt it to change inequitable issues in STEM postsecondary education. Equity issues in
mathematics education, such as underrepresented women and racial disparities, are
prevalent. With the social capital perspective, we investigate the demographic characteristics
of influential students and their social networks. Seventeen participants are undergraduate
students in an inquiry-oriented linear algebra course. The number of nominations on
discussion boards as “Shout-out” is data to measure influence and map the social network.
By analyzing data with UCINET, we found that (1) the most influential students are non-White
males and the principal components of the network are male-dominant, and (2) there is a
female-dominant small cluster and female students have reciprocal networks. This study
suggests further discussions of (1) how discussion boards position students with the social
capital perspective and (2) intersectionality, especially for women of color.

Keywords: Social Network Analysis, Equity, Classroom Discussions, Discussion Boards,
Linear Algebra

Introduction
Social Network Analysis (SNA) connotates analysis with the perspective that “individuals

are tied to one another by invisible bonds which are knitted together in a criss-cross mesh of
connections” (Scott, 1988, p. 109). Also, SNA has been used in various areas such as social
mobility, corporate power, and class structure (Scott, 1988). Henderson et al. (2018) suggested
using SNA for “change” Science, Technology, Engineering, and Mathematics (STEM) fields
in higher education. Specifically, Henderson et al. (2018) argue to improve the dearth of
historically underrepresented groups in STEM by using SNA. As a tool and theory, SNA can
facilitate uncovering social structure, analyzing engagement of targeted participants, and
supporting quality teaching with postsecondary education reform efforts. Thus, we speculate
to examine a link from SNA to ways of analyzing student interactions in classrooms and
considering issues of equity. On the other hand, Linear Algebra is one of the most important
and core courses for STEM undergraduate students. Thus, our assumption is that students’
(in)equitable experiences especially regarding race and gender in a linear algebra class are
associated with persistence and/or academic achievement. This study aims to answer the
following research question: What are the characteristics of influential students, as identified
by student nominations, in discussion board posts—with regard to demographic
characteristics, especially race and gender in a linear algebra class?

Literature Review
In mathematics education, “equity issues” are a hot topic (Gutiérrez, 2009), especially in

terms of race and gender. According to Borum and Walker (2012), “Mathematics is
historically a White male-dominated field, so the norms or standards created to center on the
ideologies of that specific group” (p. 374). Also, undergraduate mathematics classes are
gendered and racialized spaces in general (Leyva et al., 2021).
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Women are underrepresented in STEM (Ceci & Williams, 2007; Hill et al., 2010) and it
has been an issue especially in higher education (Ong et al., 2011). Around 50% of the U.S.
Bachelor’s degrees and Master’s degrees in mathematics were earned by women in 2014, but
only 28.9% of the population of the U.S. doctorate degrees are women (National Science
Foundation, 2017). Women keep disappeared through the higher level of education, and this
implies that women in mathematics have intensively and gradually underrepresented
experiences. This is explained by the phrase ‘a leaky pipeline’, which refers to “the loss of
capable women from more senior roles in STEM disciplines” (Resmini, 2016, p.3533). Also,
STEM fields have “chilly” social climates for female students, which means unwelcoming
and hostile to women (Ferreira, 2002). Still, sexism in STEM majors exists, and it can be
either explicit and flagrant but also implicit and subtle (Ernest et al., 2019). In particular, it has
been documented that women sometimes speak less, especially in a public place in
inquiry-oriented and/or discussion-based mathematics classes (Leyva et al., 2021).

Furthermore, in terms of race, mathematics is White and Asian dominant. Also,
historically STEM is the white-dominant field, so racial disparity is also a crucial challenge
(Lee et al., 2020A). As compared to white male students, the women and/or non-white
students leave more from STEM majors (Kokkelenberga & Sinha, 2010). Plus, the
hierarchical shapes by stereotypes of Black and Latin college students in STEM are perceived
to have a lack of innate ability in their major (McGee, 2016). Racial stereotypes are prevalent
in mathematics and these stereotypes cause Black undergraduate students in mathematics not
persistent by facing lower academic expectations, limited opportunities to engage, and lacked
encouragement in STEM fields (McGee & Martin, 2011). Similar to sexism in STEM, racism,
particularly racial microaggression is an influential factor in the underrepresentation of
college students of color in STEM (Lee et al., 2020B).

On the other hand, we adapted the social capital perspective to examine student ties and
influence in the linear algebra class with consideration of possible equity issues in terms of
race and gender. The social capital theory refers to inform the value of social connections in
“families, youth behavior problems, schooling and education, public health, community life,
democracy and governance, economic development, and general problems of collective
action” (Adler & Kwon, 2002, p. 17). The social capital theory also views social ties “as
avenues through which resources of many different kinds are shared and accessed”
(Henderson et al., 2018, p. 4). Between actors, ties provide access to ideas, power, and
resources. Thus, actors can look for strategies to be accessible to the new resources and/or
power (Henderson et al., 2018). In the linear algebra class, the actors are students, and we
assume that the actors will build up ties as their strategical access to other actors as resources.
If a student is traditionally privileged or dominant in mathematics, then they may be more
accessible, which means they may achieve more strengthened networks.

Study Context, Data Sources, and Methods of Analysis
While the benefits of active approaches to learning are well established (Freeman et al.,

2014), the way in which these approaches can be implemented to consistently support
different minoritized populations of students remains an open question (Theobald et al.,
2020). One particular form of active learning that is popular in undergraduate mathematics is
inquiry-based or inquiry-oriented instructional approaches. Such approaches feature student
inquiry into mathematics through collaborative problem-solving (see e.g. Laursen &
Rasmussen, 2019). However, there is evidence that in some inquiry-based settings students’

24th Annual Conference on Research in Undergraduate Mathematics Education 1048



experiences and learning systematically vary by gender (Laursen et al., 2014; Johnson et al.,
2020; Ernest et al., 2019), and we believe that similar variation may exist based on race.

This study was conducted as a part of a broader project aimed at developing curricular
materials for inquiry-oriented linear algebra. The linear algebra class was taught in the 2020
Fall semester, as an online-formatted course due to the COVID pandemic, and the application
for the synchronous online-formatted classes was Zoom. When students had group activities,
they went to the breakout rooms on Zoom so that they discuss. Participants of this research are
undergraduate students who took the course “Applied Linear Algebra 1” at a public university
in the southern United States. Thirty-six students enrolled in the course, and 17 students
consented to use their data. Four of the participants who consented are female, and the other
13 participants are male. More than half of the participants (10 students) are White, including
all four female students. Thus, seven non-White participants are all male.

The main data source is discussion boards on Canvas. The discussion boards were
assigned biweekly, involved posting an individual write-up to problems they had worked on in
groups during previous classes. Particularly, one of the reflection questions includes making a
“Shout-out” that aims to celebrate the good ideas and successes of one another. The shout-out
does not necessarily have to mention another student in the class, but it can include former
teachers or helpful materials in the class. We counted the number of nominations for shout-out
of a total of three discussion boards, whose scope was a single unit of instruction. On these
“Shout-out” posts, a student can shout out to multiple students. Then, we used UCINET
(Borgatti et al., 2002), which is an application to analyze and map networks, to visualize the
social network in Linear Algebra class.

Findings

Figure 1. Social Network in Applied Linear Algebra 1 Class

Note. Blue dots and pink dots represent male and female students, respectively. Other students are students who
did not consent to use their data, and instructional actors mean outer actors such as asynchronous video or a
student’s former instructor.

24th Annual Conference on Research in Undergraduate Mathematics Education 1049



Figure 2. Principal Components of the Social Network in Applied Linear Algebra 1 Class

Figure 3. The Reciprocal Network in the Applied Linear Algebra 1 Class

Among students, two students were nominated most, S-0008 and S-0025 (See Figure 1).
Two students were nominated a total of 8 times out of 37 through three discussion boards,
including one time of self-nomination by S-0025. To discuss demographic information of two
students, (1) two students are both male and (2) they are non-white students. Specifically,
S-0008 is Hispanic who came from a South American country and S-0025 is Black. This
racial information is reversed to that of traditionally dominant in mathematics–White and
Asian. Also, the principal components (See Figure 2), which show the largest number of
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nominations, mainly involve nominations of male students including the two most influential
students.

Besides, in the social network, we see a small female-dominant cluster among females
S-0001, S-0010, S-0026, and one male S-0031 (See Figure 1). As we already discussed, the
mainstream was flowing through the male-dominant networks. Though this small female
cluster is less principal than male-dominant nominations, they shout out to each other and
build up their network. Particularly, S-0001 shout out to S-0010 once and S-0026 twice, and
S-0010 and S-0026 shout out to each other once. We could not document how race affects
female students because all female students who consented to participate are White.

Overall, the nominations were one-way, rather than reciprocal. Figure 3 shows the
reciprocal network and the number of reciprocal ties 6 among the total of 37 ties of the social
network. One interesting point from the reciprocal network is that three female students out of
four were involved in the reciprocal network. The reciprocal ties connect either male
students—A female student S-0036 is connected to two male students S-0020 and S-0030 as
reciprocal ties, or another female student—S-0010 and S-0026 nominated each other at
separate discussion boards.

Discussion
In this class, it seems racial issues among male students may not be a big deal. This is

because the most nominated students have racial diversity—Latino and Black, compared to
the traditionally dominant group—White and Asian. However, we think that gendered issues
can be discussed more because (1) according to the number of nominations, female students
may be less influential in the whole class, and (2) female students have a lack of racial
diversity since all female participants are White. However, (1) the small female group implies
that “Women Helping Women” and (2) the nominations are more reciprocal than male
students so it may be interpreted that female students would attempt to “reciprocate” rather
than to “receive”.

We speculate that discussion boards may function as a way to interrupt some of the ways
in which discussions are gendered and raced, as the mathematical content of
posts/contributions is foregrounded since everyone has equal space to contribute, and there
may be social positioning that precedes the post when everyone is expected to post and there
may be less social positioning that precedes an online post when everyone is expected to post,
as compared to speaking during a whole-class discussion. However, still, the finding may
indicate less racial diversity among female students than one of the male students, and even
female students of color in the course did not consent to use their data for research. This
reminds us of the potential discussion of “intersectionality”, which means an individual’s
experience of discrimination or privilege is explained by the intersection of an individual’s
various identities such as race, gender, class, sexual orientation, and others (Crenshaw, 1989;
Coaston, 2019). Our future work can be relevant to the evidence of the following question
with the intersectionality perspective: Can the discussion boards reorganize access to social
capital in a math class?

24th Annual Conference on Research in Undergraduate Mathematics Education 1051



References

Adler, P. S., & Kwon, S.-W. (2002). Social Capital: Prospects for a new concept. The
Academy of Management Review, 27(1), 17–40.

Borgatti, S.P., Everett, M.G. and Freeman, L.C. 2002. Ucinet 6 for Windows: Software for
Social Network Analysis/ Harvard, MA: Analytic Technologies.

Borum, V., & Walker, E. (2012). What makes the difference? Black women’s undergraduate
and graduate experiences in mathematics. The Journal of Negro Education, 81(4),
366–378.

Ceci, S. J., & Williams, W. M. (2007). Why aren’t more women in science? Top researchers
debate the evidence. Washington, DC: American Psychological Association.

Coaston, J. (2019). The intersectionality wars. Vox.

Crenshaw, K. (1989). Demarginalizing the intersection of race and sex: A Black feminist
critique of antidiscrimination doctrine, feminist theory, and antiracist politics (pp.
57-80). Routledge.

Ernest, J. B., Reinholz, D. L., & Shah, N. (2019). Hidden competence: Women’s mathematical
participation in public and private classroom spaces. Educational Studies in
Mathematics, 102(2), 153-172.

Ferreira, M. M. (2002). The research lab: A chilly place for graduate women. Journal of
Women and Minorities in Science and Engineering, 8(1).

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., &
Wenderoth, M. P. (2014). Active learning increases student performance in science,
engineering, and mathematics. Proceedings of the national academy of sciences,
111(23), 8410-8415.

Gutiérrez, R. (2009). Framing equity: Helping students “play the game” and “change the
game.”. Teaching for Excellence and Equity in Mathematics, 1(1), 4-8.

Henderson, C., Rasmussen, C., Knaub, A., Apkarian, N., Daly, A. J., & Fisher, K. Q. (Eds.).
(2018). Researching and enacting change in postsecondary education: Leveraging
instructors' social networks (Vol. 28). Routledge.

Hill, C., Corbett, C., & St Rose, A. (2010). Why so few? Women in science, technology,
engineering, and mathematics. American Association of University Women. 1111
Sixteenth Street NW, Washington, DC 20036.

Johnson, E., Andrews-Larson, C., Keene, K., Melhuish, K., Keller, R., & Fortune, N. (2020).
Inquiry and gender inequity in the undergraduate mathematics classroom. Journal for
Research in Mathematics Education, 51(4), 504-516.

Kuchynka, S. L., Salomon, K., Bosson, J. K., El-Hout, M., Kiebel, E., Cooperman, C., &
Toomey, R. (2018). Hostile and benevolent sexism and college women’s STEM

24th Annual Conference on Research in Undergraduate Mathematics Education 1052



outcomes. Psychology of Women Quarterly, 42(1), 72-87.

Laursen, S. L., Hassi, M. L., Kogan, M., & Weston, T. J. (2014). Benefits for women and men
of inquiry-based learning in college mathematics: A multi-institution study. Journal
for Research in Mathematics Education, 45(4), 406-418.

Laursen, S. L., & Rasmussen, C. (2019). I on the prize: Inquiry approaches in undergraduate
mathematics. International Journal of Research in Undergraduate Mathematics
Education, 5(1), 129-146.

Lee, M. J., Collins, J. D., Harwood, S. A., Mendenhall, R., & Huntt, M. B. (2020A).
International Journal of STEM Education.

Lee, M. J., Collins, J. D., Harwood, S. A., Mendenhall, R., & Huntt, M. B. (2020B). “If you
aren’t White, Asian or Indian, you aren’t an engineer”: racial microaggressions in
STEM education. International Journal of STEM Education, 7(1), 1-16.

Leyva, L. A., Quea, R., Weber, K., Battey, D., & López, D. (2021). Detailing racialized and
gendered mechanisms of undergraduate precalculus and calculus classroom
instruction. Cognition and Instruction, 39(1), 1-34.

McGee, E. O. (2016). Devalued Black and Latino racial identities: A by-product of STEM
college culture? American Educational Research Journal, 53(6), 1626–1662.

McGee, E. O., & Martin, D. B. (2011). You would not believe what I have to go through to
prove my intellectual value!”: Stereotype management among academically successful
Black mathematics and engineering students. American Educational Research
Journal, 48(6), 1347–1389.

National Science Foundation, National Center for Science and Engineering Statistics. (2017).
Women, minorities, and persons with disabilities in science and engineering.

Ong, M., Wright, C., Espinosa, L., & Orfield, G. (2011). Inside the double bind: A synthesis
of empirical research on undergraduate and graduate women of color in science,
technology, engineering, and mathematics. Harvard Educational Review, 81(2),
172-209.

Resmini, M. (2016). The ‘leaky pipeline′.

Scott, J. (1988). Social network analysis. Sociology, 22(1), 109-127.

Theobald, E. J., Hill, M. J., Tran, E., Agrawal, S., Arroyo, E. N., Behling, S., ... & Freeman, S.
(2020). Active learning narrows achievement gaps for underrepresented students in
undergraduate science, technology, engineering, and math. Proceedings of the
National Academy of Sciences, 117(12), 6476-6483.

24th Annual Conference on Research in Undergraduate Mathematics Education 1053



Group Reflection on Mathematical Creativity in Proving 

 

 Amanda Lake Heath Sarah K. Bleiler-Baxter Jordan E. Kirby 

 Middle Tennessee State  Middle Tennessee State Middle Tennessee State 

Proof and creativity are recognized as foundational elements of mathematics, so as university 

mathematics courses incorporate more collaborative learning strategies, it is essential to 

support the creative growth of students in group proving settings. We investigate the 

implementation of a modified version of the Creativity-in-Progress Rubric on Proving (CPR; 

Savic et al., 2017) as a group reflection tool in an Introduction-to-Proof course. Preliminary 

results include observations regarding the reflection process of two groups using the CPR. 

Keywords: mathematical creativity, proving, reflection 

Mathematical creativity is widely accepted as a crucial component of mathematics (Karakok 

et al., 2015; Mann, 2006; Nadjafikhah et al., 2012; Sriraman, 2004; Zazkis & Holton, 2009). 

Educators in undergraduate settings have also recognized the importance of creativity to a 

mathematics education. In particular, the Committee on the Undergraduate Program on 

Mathematics (Schumacher & Seigel, 2015) asserts that encouraging students to think creatively 

is essential to successful mathematics major courses. 

The domain of mathematics is relatively new to the world of research on creativity (Sriraman 

& Haavold, 2017), yet the field has grown rapidly in recent years (Heath, 2021; Sriraman, 2017). 

Despite the rapid growth in research on mathematical creativity, most studies have investigated 

the creativity of an individual rather than the creativity of a collaborative group or the influence 

of collaboration on creativity. Mathematicians report that social interaction is an important 

aspect that influences their creative work (Sriraman, 2004). In the classroom, students’ ideas and 

work are often influenced through collaboration with peers and instructors (Campbell & Hodges, 

2020), so it is possible that social interaction also influences the creative work of students. Thus, 

as mathematics classrooms evolve to incorporate more active learning, it is crucial to understand 

the relationship between collaboration and mathematical creativity. 

  Proof is essential to the work of professional mathematicians (e.g., Karakok et al., 2015; 

Sriraman, 2004) and is often conducted in a social setting (Sriraman, 2004). Proof classrooms 

may incorporate active learning techniques wherein students work collaboratively on proving 

tasks (e.g., Bleiler-Baxter & Pair, 2017). It has also been conjectured that student reflection on 

the proving process can foster mathematical creativity (Savic et al., 2017). Thus, the relationship 

between collaboration, reflection, and creativity in proving is natural to investigate. 

Background 

The Creativity Research Group (CRG, 2021) has suggested future research on the influence 

of socialization and collaboration on creativity in proof (Savic, 2016) using the Creativity-In-

Progress Rubric on Proving (CPR; Savic et al., 2017). The CPR was designed as a formative 

assessment and reflection tool for university students engaged in proving. Although the CPR was 

designed for individual student use, we have previously investigated the potential 

implementation of the CPR in a group setting and have posited three suggestions for adapting the 

CPR: (a) add a category on collaboration, (b) expand the subcategory on Posing Questions to 

include the act of making conjectures, and (c) ask students to reflect upon their proving process 

first by viewing the group as a unit and then by evaluating their individual contribution (Heath, 
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2021). Although these suggestions were grounded in audio and video data analysis of groups 

working collaboratively on a proving task, we have not yet implemented the suggestions for the 

modified use of the CPR within a classroom setting. Before we can investigate the impacts of 

group reflection on creativity in proving, we must determine whether the CPR, with suggested 

modifications, can be successfully used by students engaged in group proving. Thus, this study 

seeks to answer the question, how do undergraduate students use the CPR (with modifications) 

to reflect upon their experiences in collaborative proving? 

Theoretical Perspectives 

Within the theoretical framing of this study, we address our theoretical perspective on 

mathematical creativity as well as intersubjectivity and social metacognition. 

Mathematical Creativity 

Creativity has been notoriously difficult to define. Mann (2005) claimed that there are over 

100 existing definitions of creativity in the literature. It has not only been difficult to reach a 

consensus definition of creativity, but research on creativity also takes many different 

perspectives. Sriraman (2004) described six categories of approaches used in the study of 

creativity: mystical, pragmatic, psychodynamic, psychometric, cognitive, and social-personality. 

Although the focus of our study is on the development of students’ mathematical creativity (i.e., 

the pragmatic approach), our rationale for implementing the CPR in collaborative groups is 

motivated by the psychodynamic approach. The psychodynamic approach is based on the idea 

that the tension between one’s conscious reality and unconscious drives spurs creativity. By 

investigating the use of a reflection tool, we hope that the participants will be able to make 

connections between their unconscious minds and contributions with the conscious reality of 

participating in the group and that this will spur growth in creative thinking. 

In addition to the joint use of the pragmatic and psychodynamic approaches, we must address 

a few factors concerning the definition of creativity. In mathematical creativity literature, 

creativity can be thought of as a process or product, static or dynamic, and relative or absolute 

(Savic et al., 2017). Aligning with the assumptions of the CPR (Savic et al., 2014; Savic et al., 

2017), we assume that mathematical creativity is a process, domain-specific, dynamic, and 

relative. Note, creativity as a relative construct allows for student work to be considered creative 

if it is novel to them or their class, but not necessarily novel to the greater mathematics 

community (Kaufman & Beghetto, 2009). 

Intersubjectivity and Social Metacognition 

The psychodynamic approach to creativity investigates the tension between unconscious 

drives and conscious reality (Sriraman, 2004). We contend that in a group setting, this 

phenomenon can be scaled up to a multi-party scenario to investigate the tension between 

individual subjective experience and the objective reality of actions within a group. This 

interplay between multiple parties' subjective experiences is known as intersubjectivity 

(Matusov, 1996; Sawyer, 2019). For the purpose of this study, we adopt a lens of participatory 

intersubjectivity, which defines intersubjectivity to be a “process of coordination of individual 

contributions to joint activity rather than as a state of agreement” (Matusov, 1996, p. 34). This 

view enables one to account for how something new could be created by group interaction 

(Sawyer, 2019). Therefore, in a proving setting intersubjectivity can help describe how although 

students may have different expectations for how their proof will evolve, eventually, students 

can create a coherent proof despite the differences among their subjective experiences. 
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Theoretically, reflecting upon the proving process will reveal how individual participation 

and perception differs from the collective group process in proving, and thus, students can 

observe how their individual experiences relate to the creation of a proof. These observations 

will enable students to make their unconscious drives and conscious subjective experiences 

apparent, to adapt their behavior while engaging in proving, and thus to improve their 

mathematical creativity. Our theory is that revealing the tensions of intersubjectivity through 

social metacognition (Chiu & Kuo, 2009) will promote learning and the development of creative 

skills. Further, the continued use of a reflection tool will promote self-regulation and encourage 

students to maintain standards and expectations of themselves (Savic, 2016).  

Methods 

Study Context, Participants, and Data Collection 

This study was conducted in an undergraduate Introduction-to-Proof course at a large public 

southeastern university in the United States. This course facilitated an inquiry-based learning 

environment centered around small group work on proving tasks and the social construction of 

establishing norms regarding what constitutes a mathematical proof. Data were collected from 11 

students: six white males, three white females, one Asian female, and one white/Asian female. In 

addition to the demographic survey, data consisted of audio and video recordings of group 

proving interactions and reflections, completed copies of the group and individual CPR, and a 

survey to assess students’ experiences using the CPR in their groups. Data were collected in the 

third week of the course. Students were still becoming comfortable with proof and proving; 

however, classroom norms of collaboration and negotiation were established. 

Procedure 

Students in the class under study were assigned with reading Savic et al.’s (2017) book 

chapter, which provides an accessible, detailed description of the categories of the CPR as well 

as two case examples of implementing the CPR with individual student work. After reading, 

students provided written reflections on the chapter wherein they described the subcategory of 

the CPR they found most interesting, a new idea they learned, how they think the CPR might 

translate to a group setting, and questions they had about using the CPR. 

During the next class, the lead author led a discussion with students addressing their written 

reflections, answering student questions, and redirecting misunderstandings about the CPR. 

Following this discussion, the instructor of the course facilitated a lesson on logical statements 

and logical equivalence and then tasked students to work in their assigned groups to prove the 

statement, “(The Distributive Property). Let A, B, and C be logical statements and prove the 

following: (A∧B)∨C is logically equivalent to (A∨C)∧(B∨C).” The main mathematical tools 

they had at their disposal were the definitions of logical statement, conjunction, disjunction, 

negation, and logical equivalence. The instructor never provided a sample proof for a similar 

conjecture, so there was room for creativity in students’ collaborative proof constructions.  

Following this discussion, students participated in a four-part classroom proof and reflection 

activity (see Table 1). Eleven students consented to be participants in this research, and they 

were grouped into two groups of four and one group of three. The six remaining students who 

did not consent to the research were placed into two alternative groups and engaged in the same 

classroom activity. (Due to space constraints, we have not provided a copy of the modified CPR; 

however, we refer the reader to Heath (2021) for a detailed description of the original CPR as in 

Savic et al. (2017) and the suggested modifications for group use.) 
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Table 1. Description of the four-part classroom proof and reflection activity. 

Activity Description Time Allowed 

Group Proving Groups worked together on the proving task. 20 minutes 

Group Reflection 

with CPR 

Groups discussed and came to a consensus on group 

placement on the CPR in each subcategory.  

10 minutes 

Individual 

Reflection with 

CPR 

Participants privately reflected upon their individual 

contributions to their group’s proving process and 

reflected upon their strengths according to the CPR.  

5 minutes 

 

Group Debrief 

 

Groups reconvened and discussed their individual 

reflections and strengths.  

5 minutes 

 

 

Following the four-part activity, students completed a post-reflection survey where they 

described their experiences using the CPR, the challenges they encountered during group 

reflection, and whether they think reflecting on group proving experiences is helpful.  

Data Analysis 

Recall, in this study we seek to understand how undergraduate students use the CPR (with 

modifications) to reflect upon their experiences in collaborative proving. At this stage in our 

analysis, we have holistically reviewed the video data of two of the three research groups (i.e., 

group 1 and group 2) as they worked to assess their group’s creativity using the CPR.  Note: 

Group 3 did not have sufficient time to complete the group reflection, so we have omitted them 

from this analysis. Analyzing this video data allows us to gauge student experience using the 

CPR in groups and to identify any major difficulties. We compare the approaches used by group 

1 and group 2 as they worked to reach consensus regarding their placements within each of the 

subcategories of the CPR. We describe the groups’ discussions regarding their placement on the 

CPR and identify similarities and differences between the discussions of the two groups. 

Throughout analysis, we viewed all data collected through the lenses of intersubjectivity and 

social metacognition. Although intersubjectivity is present throughout all group interactions 

during this study, including group proving and group reflection, for the purpose of this study, we 

are interested in analyzing how the tensions of intersubjectivity during the proving process can 

be revealed through the social metacognition facilitated by group reflection. 

Discussion of Preliminary Results 

In our initial review of the group reflection process, we noticed two features worthy of 

attention in this preliminary report. First, we noted a general difference in approach between 

group 1 and group 2 with respect to how they reached a consensus regarding how to score the 

group on the CPR. Second, both groups had instances wherein one group member doubted the 

group’s engagement with a subcategory (e.g., tools and tricks, posing questions/making 

suggestions) of the CPR and another group member reminded the group of a moment in the 

group’s proving process when they did engage with that subcategory. 
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Two Groups’ Contrasting Reflections 

In group 1’s discussion of most of the subcategories of the CPR, after one student read the 

descriptions of the levels of a subcategory aloud, she would either ask what her group thought or 

give her own opinion about where the group should be placed within the subcategory. For each 

subcategory, the members of group 1 engaged thoughtfully by referring back to specific 

moments during their group proving process to support their argument for where the group 

should be placed in the CPR category. All four participants thoughtfully engaged in some way. 

In contrast, group 2 typically did not support their placements on the CPR with references to 

their proving process. In most subcategories, group 2 silently read the category descriptions and 

then one student would suggest a level of “beginning,” “developing,” or “advancing” and the 

other group members would silently nod their heads or quietly agree with little discussion. 

Although infrequent, when group 2 made references to their proving process to support their 

placement, it was only one student doing so.  

According to the theory of social metacognition, one might hypothesize that group 1 will 

benefit more from their reflection than group 2 because group 1 made explicit observations about 

one another’s ideas during their proving process. One potential implication of this observation is 

that groups that engage in thoughtful social metacognition and make explicit recollections of one 

another ideas using the CPR can further their creativity and proving abilities.  

Tensions of Intersubjectivity Revealed by Social Metacognition 

The second observation made through our preliminary analysis is that both groups had a 

similar experience: when discussing a subcategory of the CPR, one group member asserted that 

their group did not engage with that category during their proof, and another group member 

responded with an example of a moment related to that subcategory that advanced their group’s 

proof. In group 1, this occurred during their discussion of the Tools and Tricks subcategory, and 

in group 2 this occurred during their discussion of the Posing Questions/Making Suggestions 

subcategory. In both cases, reflection using the rubric enabled one student to reveal to another 

how a contribution of one of their peers advanced their proof and provoked new ideas. In this 

way, social metacognition revealed the tensions of intersubjectivity present in the group proving: 

even though during the proving process group members perceived a contribution differently, 

reflecting upon and monitoring one another’s ideas opened the door for those different 

perceptions to be revealed and the learning to be advanced.    

Conclusion and Future Directions 

In this preliminary report, we have described initial observations regarding how students use 

the CPR as a group reflection tool and used these observations to hypothesize how group 

reflection on collaborative proving experiences may influence student learning. In our future 

analysis, we plan to further analyze data of group reflections as well as compare the group 

reflections using the CPR to students’ self-evaluations using the CPR. We also plan to use survey 

data to inform the continued refinement of the CPR as a group reflection tool. 
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What is a Vector to Students? 
 

Inyoung Lee 
Arizona State University 

This study presents linear algebra students’ vector conception found in the least-squares solution 
context through an IOLA (Inquiry-Oriented Linear Algebra) CTE (Classroom Teaching 
Experiment). Students’ reflection writings after the CTE are the data source. Using a previously 
found student conception of vector in another study as a basic framing, the CTE data have been 
analyzed to investigate how students used the word ‘vector’ and what they referred to. This study 
offers a framework, a tool to be useful in a wide range of describing student conception of a 
vector emphasizing their natural way of thinking of a vector and their use of the vector.  

Keywords: Vector, Linear Combination, Span, Linear Algebra, Student Thinking 
 
Vectors are widely used in mathematical sciences. In Calculus, a vector is represented by an 

arrow or a directed line segment which has both magnitude and direction. Students work with 
functions of two or more variables incorporating vectors in that course. In linear algebra, vectors 
are extensively used as students learn the key concepts such as linear (in)dependence, span, 
basis, and vector spaces. While a significant body of studies have explored student conception of 
domain-specific contents, less study on student thinking of vectors has been done in linear 
algebra. This proposal foregrounds vectors and investigates students’ notion of vectors to answer 
the research questions: How do linear algebra students think of a vector?  And how do they use 
the vector and what do they refer to? 

Literature  
There is little literature exploring students’ thinking of a vector in mathematics. Hillel (2000) 

identified three modes of vector representation: directed line segments (geometric mode), n-
tuples (algebraic mode), and elements of vector spaces (abstract mode). In the geometric mode, 
students interpret a vector as an arrow having the magnitude and the direction with initial and 
terminal points. In the algebraic mode, students perform vector operations component-wise. In 
the abstract mode, a vector is described as an element of a vector space, and its vector operation 
is performed according to the axioms of that vector space.  Along the similar strand, Sierpinska 
(2000) defined the terms, “synthetic-geometric thinking” that mathematical objects are given to 
students’ mind directly being seen as a shape lying in space, and “analytic-arithmetic thinking” 
and “analytic-structural thinking” that mathematical objects are being component-coordinatized 
in a given dimension. Watson et al. (2003) found that students have the imagery of “a journey” 
when adding vectors. For example, students think that the equality in =  holds because it 
is moving from A to B and finally to C. But this may become problematic when students 
interpret the commutative property for addition such as  since the right side does 
not give a satisfying meaning to them with the journey reasoning. Kwon (2011, 2013) focused on 
the progress students make from embodied vector to abstract vector and provided a vector 
framework attending to the ontological and epistemological aspects. It incorporated Hillel (2000) 
and Siepinska (2000)’s modes of description and reasoning into the framework. Appova & 
Berezovski (2013) identified students’ misconceptions and error patterns about vector 
operations. The students in their study did not distinguish between a vector and a scalar in 
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operations, for example, a vector minus a scalar equaling another vector or a scalar. Mikula and 
Heckler (2017) developed a framework to design essential skills on vector math and 
implemented an online training for introductory physics students. They categorized the skills 
required for vector operations such as addition, subtraction, dot products, and cross products 
using both i,	j,	k and arrow representations.  

Theoretical Framework 
This study is grounded in the theoretical perspective which makes a distinction between 

students’ mathematics and mathematics of students (Steffe & Thompson, 2000). Students’ 
mathematics refers to the students’ mathematical reality which we cannot access directly, 
whereas our interpretation of the students’ mathematical reality is referred to as mathematics of 
students. Even though models constructed in this study are not representing their mathematics 
perfectly, it is still worth constructing the models because students’ mathematics is indicated by 
observable behaviors such as the students’ gestures, written work, and discourse occurring in 
their mathematical activities. In this paper, the hypothesis that various ways a student thinks 
about a vector are closely related to their written description of the vector and to their use of the 
vector in task setting, is the theoretical foundation in developing the conceptual framework and 
analyzing data.  

The conceptual framework used to analyze data in this study was developed as a tool to be 
useful in a wide range of describing student conception of a vector. It was initially the result of 
the author’s unpublished class project in which task-based clinical interviews were conducted 
with students who had no or little experience with linear algebra at that time. The initial 
framework consists of five different vector conceptions: Vector as a point, Vector as a 
displacement, Vector as a direction, Vector as an equivalence class, and Vector as a linear 
combination of other vectors. Its geometric description of the categories is shown in Figure 1. 
Even though a vector can be in any dimensional space, the descriptions of the categories are 
illustrated in because the interview tasks mainly included 2D vectors. Vector as an arrow is set 
as a default because it was the initial description of vector most students made in the study.  

 
Figure 1. Geometric description of vector conception 

Using the initial framework as a basic lens, the author began coding students’ data from a 
classroom teaching experiment (CTE) implementing a recently designed unit about least squares 
method in linear algebra. The framework was further developed by the author as the vectors in 
the task of the CTE include various aspects categorized under “student conception of a vector” 
and “how they use the vector” in the problem context.  

Vector conception categories 
Vector as an arrow: Students describe the tip of a vector as referring to a line segment. 
Vector as a point: Students use the word ‘point’ to describe a vector or they attend to the tip 

of a vector considering the tail as if it were at origin. 
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Vector as a segment: Students describe a vector as a connected segment between two 
locations. 

Vector as a direction: Students use the word vector referring to the span of the vector or the 
direction of the vector. 

Use of vector categories 
Over and up alternations: Students use vectors in over and up process alternately. 
Scaling: Students use vectors in scaling process. 
Constructing a space: Students use vectors in generating a space such as a line or a plane. 

Methods 
This study reports students’ notion of vector and their use of vector in a classroom teaching 

experiment (CTE) conducted as a part of a broader NSF-funded linear algebra project aimed at 
developing instructional sequences. A team of mathematics education researchers designed a 
new unit about least squares methods in linear algebra adopting the instructional design 
heuristics of Realistic Mathematics Education (RME) informed by Freudenthal (1991). The 
classroom teaching experiment (CTE) was used as a method to test the instructional sequence of 
the domain-specific mathematical activities and to see how students in the classroom reason and 
how the reasoning evolves with the task sequence (Cobb, 2000).  

The Task “Meeting Gauss” 
The designed task referred to as “Meeting Gauss” begins with an experientially real situation: 

you want to meet Gauss using three modes of transportation- carpet (𝒗𝟏), hoverboard (𝒗𝟐), and 
jetski (𝒗𝟑). However, there is no way for you to reach Gauss because Gauss (𝒈) is located off the 
plane spanned by the transportation vectors. Now, Gauss also needs to move to meet somewhere 
you can reach, but he wants his trip to be the shortest as possible (Figure 2). The big guiding 
questions students were asked in the task are (a) Where should Gauss meet you? (b) Along what 
vector would Gauss travel to get to your meeting point? (c) What distance would Gauss’s trip 
be? (d) How would you get to your meeting point using your modes of transportation? To answer 
these questions, students need to think of vectors and use them in various ways. The instructor in 
the CTE notated the Gauss travel vector as e and the vector from the origin (Home) to Meetup as 
p.  

 
Figure 2. Illustration of Meeting Gauss task in GeoGebra 

Data Source and Analytic Method  
 The CTE was conducted with students in two introductory linear algebra classes (33 

students, 38 students) separately at a large public university of the Southeastern United States. 
The students were STEM majors who had taken Calculus 1 or 2 as a prerequisite. The CTE 
lasted for four consecutive class days on Zoom at the end of semester. Students’ reflection 
writings on the first two days of CTE is the data source. Students wrote reflections each day after 
the CTE. The reflections were transcribed into a spreadsheet, and the author highlighted the word 
vector whenever students mentioned it in their writing. Their reflections were coded line by line 
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using the initial framework, a new set of codes emerged, the author used the updated framework 
to complete the coding. The author specially focused on students’ explanation before and after 
the word vector when coding. When students used the symbolic notations from previous math 
classes to refer to a vector such as < 𝑎, 𝑏, 𝑐 >, (𝑎, 𝑏, 𝑐) or 𝑎𝒊 + 𝑏𝒋 + 𝑐𝒌,	their meaning is also 
analyzed. All the names used in Results are pseudonyms. 

Results 
As shown in Figure 2, the e vector that Gauss travels and the p vector from Home to Meetup 

are important pieces in answering the questions of the task sequence of least squares. While 
Gauss can travel around freely to meet you, your movement is restricted by the transportation 
vectors given in the problem context. The analysis on students’ reflection writings revealed that 
their conception of a vector and their use of a vector are multifaceted. In this section, their notion 
of vector and their use of vectors in the Meeting Gauss task will be briefly presented focusing on 
the two vectors e and p.  

Vector Conception- Describing the e vector that Gauss travels. 
Vector as an arrow: In the initial framework, this category was defined as a default, 

however, the author noticed that vector as an arrow conception is a way of thinking characterized 
when students describe the tip of a vector as referring to a line segment. For example,“Gauss 
should meet you at the shortest point from the tip of his vector line to you”(Anton). Anton 
describes the path Gauss travels referring to it as an arrow.   

Vector as a point: Students use the word ‘point’ to describe a vector or they attend to the tip 
of a vector considering the tail as if it were at origin. Damien wrote,“Gauss should meet us at the 
point (1.35,0.06, 2.21) …the vector (Gauss travels) should be [1.35; 0.06;2.21] as that is the 
point he needs to reach anyways”. Damien found the coordinates of Meetup using the 
GeoGebra applet and used them as the coordinates for the Gauss travel vector e. The tail of the 
vector e is at the Gauss location, not at the origin. Vectors and points have the same coordinates 
only if the vector has a tail at the origin. Another student, Annalisa noted “I understand 
everything up until we had to actually find the point/vector to meet at”. Annalisa interprets the 
Meetup in two ways, a point and a vector. She did not mention anything other than this quote in 
her writing, but still this is an indication that a vector could be identified as a point or vice versa. 

Vector as a segment: Students conceive a vector as a connected segment between two 
locations. Specifically, they use the word ‘displacement’ or ‘magnitude’ to describe a vector 
attending to the length of the vector. For example, Owen noted,“Gauss will travel along (-1-a,1-
b,4-c) which is the displacement vector between Gauss's old and new location.” Owen seemed to 
write the Meetup as (a,b,c) and subtract it from the 𝒈 vector to describe the Gauss travel vector e. His 
description of a vector includes two locations and a line segment connecting them. Another student, 
Luka wrote “We described the entire situation as a right triangle, where the hypotenuse is the 
vector between the origin and Gauss, the vertical component is the vector between the plane and 
Gauss, and the horizontal component is the net distance travelled via hoverboard and magic 
carpet”. Luka’s description illustrates that each side on the right triangle is a vector which connects 
the locations among Home, Gauss, and Meetup.  

Vector as a direction: Students use the word ‘vector’ referring to the span of the vector or 
the direction of the vector.  Span of a vector refers to a line scaled either extended or shrunk 
along the vector. Consider the following examples, “Gauss would need to move to a point that is 
along the line of the vectors given”(Bianca) “The direction he'd travel can be found with the 
cross product: [[i j k] [1 1 1] [6 3 8]] = 5i - 2j - 3k = [5 -2 -3] <- so either that direction or 
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reversed.” (Vaki). Their description for the e vector indicates that they attend to the scaled line 
or the direction Gauss travels rather than the length of the vector or the vector itself.  

Use of Vector- Traveling from Home (origin) to Meetup 
Over and up alternations: Students use vectors to get to Meetup stair-wise. Hanora 

noted,“Sometimes it might be shorter if I moved a certain distance so he can reach me without 
using many modes of transportation to make zig-zags.” and Dilon wrote “Gauss should meet us 
along one of our vectors. If he wants the shortest trip he should meet. He would use V1 to get 
there and his distance would be very short, only 1 unit in each direction..” Hanora and Dilon 
seemed to understand the task context differently than intended, but Hanora’s description on the 
use of transportation vectors indicates that vectors move in over-and-up manner to get to the 
Meetup. Also, Dilon’s explanation reveals that he recognizes 𝒗𝟏 = [1,1,1] consists of stair-wise 
movement 1 unit in each direction. 

Scaling: Students use vectors to get to Meetup by scaling. Vaki noted, “We would get to the 
meeting place by using the hoverboard for 1.5 hours and the carpet for 0.5 hours.” The hours 
are the amount spent on each transportation, which indicates that Vaki’s vector moves in scaling 
manner. Iliana answered, “I would get to the meeting point by using a combination of my 
transportation methods, or by using a linear combination of the given vectors.” Also, Lurenya 
mentioned, “Since Gauss is getting to the plane that is the span of the three modes of 
transportation, a linear combination of the three vectors will get us there as well.” In Iliana and 
Lureyna’s description, they would use three vectors to reach the Meetup using the span or linear 
combination of the transportation vectors, which indicates that they find vectors varying in 
length. 

Constructing a space: Students use vectors in generating a space such as a line or a plane. 
Ani noted, “The way I am thinking about this is to locate a spot that is within the area that the 3 
vectors span and that Gauss could go to. To do that, I would find the plane that the 3 vectors 
together span…” and Cecil “What I'm imagining is that if we created a "basis plane" with these 
two vectors then we can map that plane as well as the point Gauss is at”. There were many 
students who wrote the plane to be generated by the transportation vectors when they use the 
word linear combination and/or span.  

Discussion 
This study, to investigate student conception of vectors and their use of vectors, began as 

students’ data were analyzed with a different focus. The author noticed that the Meeting Gauss 
task scenario entails various ways of thinking with vectors as exploring ways to answer the 
guiding questions. By foregrounding vectors, student conception and its use were briefly 
presented using the conceptual framework developed as analyzing their data. The author finds 
this study important in developing instructional sequence of least squares and even linear algebra 
because vector is often backgrounded in studies even though student thinking of vector is 
multifaceted. 
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Using Proof Comprehension Tests in-class to Encourage Student Engagement and Improve 
Proof Comprehension 

 
 Kristen Lew Lino Guajardo 
 Texas State University Texas State University 

This study considers the use of proof comprehension tests (Mejia-Ramos et al, 2017) as the topic 
of an in-class student-led discussion. After completing the test, students discussed the items as a 
group to decide the best answers. Preliminary analysis shows high-levels of student engagement 
– offering opportunities for questions, discussions, and debates related to the proof and proving 
in general. As a result of the discussion, students’ proof comprehension test scores improved.  

Keywords: proof comprehension, classroom discussion, student engagement 

Mathematical proof plays an important role in professional mathematical practice and as such 
in mathematical practice at the advanced undergraduate level. Meanwhile, the undergraduate 
mathematics education literature has shown time and time again that students struggle with all 
aspects of engaging with mathematical proof, including but not limited to proof constructing, 
proof validating, and proof comprehension. While this list of activities is by no means 
comprehensive nor are these activities mutually exclusive, much of the research regarding the 
teaching and learning of proof can be classified by one or more of these three activities 
(Stylianides, Stylianides, & Weber, 2017). Proof construction and validation research is 
relatively rich with studies considering both experimental and more naturalistic settings, as well 
as comparing mathematicians’ and students’ actions while engaging in these activities. Research 
regarding students’ comprehension of proof, however, has focused mostly on the assessment of 
students’ proof comprehension. In this proposal, we explore the use of a proof comprehension 
test as an in-class activity.  

Literature Review and Theoretical Perspective  
Mejia-Ramos et al (2012) presented the proof comprehension assessment framework, 

building on the work of Yang and Lin (2008), suggesting proof comprehension can be measured 
in both local and global understandings–meaning some understandings can be inferred from a 
small portion of a proof, say one or two sentences in a proof, whereas some understandings 
require a more holistic treatment of larger portions of a proof. Mejia-Ramos et al then offered 
examples of question types to assess the various ways in which one might comprehend a proof. 
Question types for local comprehension include: meaning of terms and statements, logical status 
of statements and proof framework, and justification of claims. Question types for global 
comprehension include: summarizing via high-level ideas, identifying the modular structure, 
transferring the general ideas or methods to another context, and illustrating with examples.  

Mejia-Ramos et al (2017) then developed and validated short-form multiple choice 
comprehension tests using these question types focused on three particular proofs at the 
introduction-to-proof level. These proof comprehension tests (and others created using the same 
framework) have been used by researchers as a measure of success for various interventions (see 
for example: Alcock et al, 2015; Hodds et al, 2014; Davies et al, 2020). Meanwhile, we believe 
that proof comprehension is also an activity that should be enacted within the classroom, rather 
than solely an assessment. As such, this proposal reports preliminary findings from using one of 
the three tests developed by Mejia-Ramos et al (2017) as the focus of an in-class activity.  
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Student Engagement in Proof-Based Classes  
The study of the in-classroom engagement of undergraduate mathematics students in proof-

based courses is a relatively limited, albeit growing, avenue of research. That is not to say that 
prior studies have ignored the importance of student engagement, in fact, student-centered 
instruction models, such as inquiry-oriented learning (Rasmussen & Kwon, 2007; Kuster et al, 
2018), are built upon perspective that value students’ social construction of knowledge.  

Meanwhile, the literature also suggests some caution should be taken when lauding the 
student-centered classroom, as some have found that these approaches may be less equitable than 
once believed (Johnson et al, 2020). Common concerns in the learning science literature 
regarding the equity of inquiry-oriented learning and other student-based learning models 
include that these learning models may favor the already-privileged, already-successful students 
and that such students may dominate the conversations in-class (Esmonde, 2009). Further, 
research suggests that student discussions dominated by these stronger students can lead to lower 
learning gains across the class or group (Theobald et al, 2017).  

Research Questions and Hypotheses 
In this paper, we explore the following research questions: (1) To what extent can multiple-

choice proof comprehension tests be leveraged to encourage student discussion and engagement? 
(2) To what extent does student discussion around multiple-choice proof comprehension impact 
students’ proof comprehension? We hypothesize that allowing students to discuss the multiple-
choice proof comprehension tests will provide an open forum for students to discuss a variety of 
topics related to not only the specific proof included on the test, but also general proving-related 
topics. Moreover, by providing these specific items along with concrete answer choices we 
believe the test offers easier access to the discussion for students who maybe struggling with the 
material or may be hesitant to engage.  

Methods and Analysis 
The present study was conducted in a single session of an introduction-to-proof course at a 

large, public, research university in the United States. The course was taught in a moderate 
lecture style (Johnson et al, 2019), in which lecture took between 25%-75% of the course time 
with non-lecture course time spent with students working in small groups on tasks, giving 
occasional presentations of completed work, and having students explaining their thinking.  

On the day of the study, seventeen students were present. Each student was given a copy of a 
proof comprehension test of the theorem: “Every third Fibonacci number is even. That is, 𝑓!" is 
even for every 𝑛 ∈ ℕ.” (Where the Fibonacci sequence is defined by 𝑓# = 1, 𝑓$ = 2, and 𝑓" =
𝑓"%# 	+ 	𝑓"%$ for all 𝑛 > 2 and 𝑛 ∈ ℕ.) The proof comprehension test included the theorem and 
proof, as well as 12 multiple-choice items developed and validated for measuring students’ 
comprehension of this particular proof (Mejia-Ramos et al, 2017). Students were given 20 
minutes to read the proof and complete the comprehension test before they were instructed to 
talk through the test as a class – identifying what answers were chosen, discussing why they 
chose those answers, and which answer they believed to be correct following their discussion on 
the previously-selected answers. The student discussion occurred without teacher intervention or 
participation and lasted 33 minutes.  

Prior to beginning their discussion, the instructor-researcher provided pens and asked 
students to switch their writing instruments to a new color so any notes or changes made in their 
answer selections as a result of the discussion could be documented. The entire discussion was 
video and audio recorded and the students’ tests were collected for analysis.  
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For the purpose of analysis, we graded the tests, tracking students’ responses and scores prior 
to and following the class discussion. Analysis of the video data is ongoing, however we have 
transcribed the discussion surrounding two items of the comprehension test and have begun 
identifying key moments of the discussion to highlight student engagement in the discussion as 
well as instances of the students learning from each other in this discussion. In the following 
section, we present results from our preliminary analyses.  

Results 
The student discussion followed the test in a linear fashion, discussing each of the items in 

order. While some students spoke more than others during the discussion, each of the 17 students 
participated in the discussion to some extent. For each question, a student (not always the same 
student) would ask what answers were selected. Then students were asked to explain why they 
chose each of the selected choices. Occasionally, a short debate would occur between factions 
who selected different choices. After agreeing on a best answer choice (or agreeing that they had 
reached an impasse), the class would move on to the next item. As a class, they came to a 
consensus on what they believed to be the best answer choice for 9 of the 12 problems and chose 
the correct answer for 8 of those 9 items. In this section we first discuss the test scores as 
impacted by the student discussion, then look closer at the discussion surrounding one test item.  

Test Scores 
Figure 1 shows the scores of the students pre- and post-whole class discussion. Before the 

discussion, we can see a spread of student scores. Eleven of the 17 students answered 6 or fewer 
answers correctly, meaning they initially scored 50% or lower on the 12-item test.  

 

 
Figure 1. Each of the 17 students’ scores before and after their discussion of the test. 

Meanwhile, 15 of the 17 students had a higher score following the whole class discussion, 
with the remaining two students showing a score decreasing by only one point. Across the class, 
there was a 3.11-point increase in the students’ average scores. Thus, almost all students directly 
benefited from the discussion in terms of their test scores, getting on average three more 
questions correct in comparison to before the discussion. Moreover, we see an average increase 
of 4.09 points for the students who initially scored 6 or lower, while the students who initially 
scored higher than 6 had an average increase of 1.33. Thus, there is a clear benefit of the whole 
class discussion to students’ comprehension of the given proof in terms of their test scores.  

Table 1 shows the number of students who indicated an answer choice for each question, 
both before and after the discussion, as well as the number of students who changed their answer 
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choices due to the discussion, indicating total changes as well as changes to the correct answer. 
We make several observations from this table. First, not all students answered all questions and 
the number of answered questions decreased further into the test – suggesting four students did 
reach the end of the test. Next, nearly every student answered every question post-discussion. 
Those questions not answered by all 17 students include Q9, Q10, and Q12 – which are the three 
questions for which the students were not able to come to a consensus on a final answer.  

 

Table 1. The count of students who answered each question (pre/post discussion) and who changed their answers. 
Number of students who... Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 
Answered pre-discussion  16 17 17 17 17 16 16 16 14 14 13 13 
Answered post-discussion 17 17 17 17 17 17 17 17 15 16 17 16 
Changed answers 3 5 6 13 4 5 2 10 3 8 12 5 
Changed to correct answer 3 5 6 10 4 4 2 9 0 -2 12 0 

 

Finally, many students chose to change their answer choices due to the discussion. However, 
not all students changed their answers to the agreed upon answer even when the class’s chosen 
answer was correct (such as Q6 and Q8). Moreover, despite the class’s failure to agree on a final 
answer choice on Q9, Q10, and Q12, some students still changed their answers. We interpret 
these occurrences as evidence that students were not blindly following the talkative students and 
accepting their answers – rather we see students thinking about the answer choices and the 
reasons their classmates gave for all answer choices in order to select a new answer. 

 
Figure 2. Problem 8 and its answer choices.  

Student Engagement in Discussion of Problem 8 
Of the 16 students who initially answered problem 8 (shown in Figure 2), two chose answer 

A, five chose answer B, five chose answer C, and four chose answer D. The students remarked 
on the wide distribution of the answers then argued the merit of each choice, in order from A to 
D. For this question, one student took up a leadership role, asking his classmates to discuss why 
they chose their answers, asking “A’s, what’s up with A? Why did you like A?”, “What about 
B?”, and so on. During this discussion, 10 of the 17 students participated. Through the 
discussion, the students came to a consensus with answer choice C (the correct choice).  

The discussion of choice C lead to an interesting interaction. Student J disliked C because of 
the word “whenever”. Student J stated, “But it says whenever 𝑓!&'# is odd. Whenever is like 
implying that like it may be odd or it may be even.” He continued, “But the question is asking 
for, ‘is always odd’.” That is, Student J focused on the use of “whenever” and struggled with this 
alternative presentation of a conditional statement. He believes the “whenever” implies the 
opportunity for  𝑓!&'# to be even which contradicts the desired conclusion.  
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Several of his classmates responded to Student J’s concerns. One student said the choice was 
written “in a weird way to say that we’re assuming the 3𝑘 + 1 is odd”, explaining that “it’s just 
putting the inductive step after how you’ve proved the inductive step”. Another student notes 
that it was simply the word choice confusing Student J, “it’s the whenever, you just don’t like the 
whenever”. Finally, another student commiserated with Student J offering this description, 
“Yeah, C feels like the proof that you already wrote and it’s like ‘that proves that this is, 
whenever this is’.” In this interaction, Student J took the discussion as an opportunity to question 
not the mathematical content of the item, but the language used in the answer choice. Moreover, 
we see his classmates working to help him understand the statement, despite its wording.  

During the discussion of D, Student R explains, “I just picked D because if 3𝑘 is even, then if 
you add 1 to that, regardless of the multiple... (crosstalk).” Another student chimed in supporting 
Student R’s reasoning before another student offered the retort “You see, I don’t think that 
you’re adding 1 to the actual Fibonacci number. You’re adding it to the 𝑘”, with another student 
adding “Because that’s what--you’re adding 1 to the 𝑓!&.” The students who chose D seemed to 
believe the answer choice was implying an addition of 1 to 𝑓!&, rather than the index of 𝑓!&. 
However, after some students reminded their classmates the 1 is added to the index 𝑘 during the 
induction step, the original student understood their error adding “Oh, that makes sense.” 

Discussion 
Overall, we see an increase in scores following the students’ classroom discussion, especially 

for those students who originally scored below 6 on the proof comprehension test. Similarly, we 
believe the student dynamics and engagement in the discussion is important to note. Despite the 
common expectation that students known for their mathematical prowess may overtake the 
conversation, this data suggests the discussion around this multiple choice test was much more 
inviting to all the students in the class. Moreover, we saw some of the stronger students helping 
their fellow classmates better understand the material – as we saw with Student R’s and Student 
J’s classmates offering help. We also saw some of the more traditionally quiet students speak up. 

When asked what they thought of the test, students attributed the test to be challenging and 
even exhausting at the end. However, they also remarked that the test caused them to think 
deeply about the proof in ways they had not done previously. One student remarked that when 
writing proofs he often did not know where to start, but with the test, “like you can see different 
ideas and see actually which one makes sense to you.” In this way, we believe these multiple 
choice tests offer many access points for students to engage in discussion and learn from their 
peers – not only with regards to the mathematical material at hand, but also in regards to 
mathematical conventions and language choices. In Student R’s case, by offering his reasoning 
for choosing an answer, he had the opportunity to revisit the use of indices in sequences and how 
that relates to inductive arguments. In Student J’s case, the test helped him to question the 
language used in a mathematical text and potentially learn from his classmates about an 
alternative presentation of a conditional statement.   

This analysis is still in progress and this project is not without limitations. The study in 
question involves a single activity used in a course taught by the researcher. It is possible that the 
style of the course primed the students to be particularly conversational. Meanwhile, this project 
does seem to highlight some advantages of having students discuss full mathematical texts, as 
opposed to focusing only on producing them from scratch. Some avenues for future research 
include developing additional activities to help students better comprehend the proofs they read. 

24th Annual Conference on Research in Undergraduate Mathematics Education 1071



References 
 
Alcock, L., Hodds, M., Roy, S., & Inglis, M. (2015). Investigating and improving undergraduate 

proof comprehension. Notices of the AMS, 62(7), 742-752. 
Davies, B., Alcock, L., & Jones, I. (2020). Comparative judgement, proof summaries and proof 

comprehension. Educational Studies in Mathematics, 105(2), 181-197. 
Esmonde, I. (2009). Mathematics learning in groups: Analyzing equity in two cooperative 

activity structures. The Journal of the Learning Sciences, 18(2), 247-284. 
Hodds, M., Alcock, L., & Inglis, M. (2014). Self-explanation training improves proof 

comprehension. Journal for Research in Mathematics Education, 45(1), 62-101. 
Johnson, E., Andrews-Larson, C., Keene, K., Melhuish, K., Keller, R., & Fortune, N. (2020). 

Inquiry and gender inequity in the undergraduate mathematics classroom. Journal for 
Research in Mathematics Education, 51(4), 504-516. 

Johnson, E., Keller, R., Peterson, V., & Fukawa-Connelly, T. (2019). Individual and situational 
factors related to undergraduate mathematics instruction. International Journal of STEM 
Education, 6(1), 1-24. https://doi.org/10.1186/s40594-019-0175-2 

Kuster, G., Johnson, E., Keene, K., & Andrews-Larson, C. (2018). Inquiry-oriented instruction: 
A conceptualization of the instructional principles. Primus, 28(1), 13-30. 

Mejia-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An assessment 
model for proof comprehension in undergraduate mathematics. Educational Studies in 
Mathematics, 79(1), 3-18. 

Mejía-Ramos, J. P., Lew, K., de la Torre, J., & Weber, K. (2017). Developing and validating 
proof comprehension tests in undergraduate mathematics. Research in Mathematics 
Education, 19(2), 130-146. 

Rasmussen, C., & Kwon, O. N. (2007). An inquiry-oriented approach to undergraduate 
mathematics. The Journal of Mathematical Behavior, 26(3), 189-194. 

Stylianides, G. J., Stylianides, A. J., & Weber, K. (2017). Research on the teaching and learning 
of proof: Taking stock and moving forward. 

Theobald, E. J., Eddy, S. L., Grunspan, D. Z., Wiggins, B. L., & Crowe, A. J. (2017). Student 
perception of group dynamics predicts individual performance: Comfort and equity 
matter. PloS one, 12(7), e0181336.  

Yang, K.L. & Lin, F.L. (2008). A model of reading comprehension of geometry proof. 
Educational Studies in Mathematics, 67(1), 59-76. 

24th Annual Conference on Research in Undergraduate Mathematics Education 1072



Understanding the Developmental Mathematics Research Landscape: A Critical Look at 

Intended Audience and Outcomes 
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Although a wide variety of reports on developmental math exist, to date there has not been a 

large-scale examination of existing work from a math education point of view. Towards this 

goal, we analyzed 426 reports and peer-reviewed journal articles relating to developmental 

math published between 2000 and 2020. In report, we quantify the publishers and intended 

audience, examine the types of outcomes reported on and, where possible, examine the type of 

developmental math model discussed. We find that over the last decade, less than 20% of reports 

on developmental math have been aimed at math education audiences. While math education 

publications more frequently examine math knowledge and student experiences, the overall 

number of reports, compared to those examining pass rates, is relatively small. 

Keywords: developmental math; literature analysis; outcomes 

Developmental courses, which are taken by college students who have been identified as not 

yet ready for “college level” courses, enroll a large portion of undergraduate math students (Blair 

et al., 2018) and pose a conundrum to math education researchers. On one hand, developmental 

courses generally cover content traditionally labeled as “high school level.” On the other hand, 

these courses take place in postsecondary environments with different norms, structures, and 

levels of access than high schools. Low success rates, particularly for students from marginalized 

populations (Chen, 2016), provide additional complexity to conversations about these classes.  

Arguably, as experts in both education and math content, the math education research 

community is well positioned to contribute meaningfully to conversations about the value and 

equity of student outcomes and experiences in developmental math, and there is much to 

understand. The low success rates, combined, perhaps, with increased attention thanks to then 

President Obama’s “American Graduation Initiative” in 2009, have resulted in a variety of 

developmental math initiatives. Some of these initiatives provide a mechanism for students to 

progress through the required content more quickly, including Bridge, Acceleration, 

Modularization, Corequisite and Emporium models (c.f., Parker, 2012, Twigg, 2003). Other 

initiatives change or restructure the required curriculum by removing algebra content and 

focusing more on quantitative reasoning or statistics, with the aim of better aligning the content 

with students’ ultimate goals, such as the Carnegie Pathways (e.g., Hoang et al., 2017) model. 

Lastly, some initiatives remove requirements for developmental instruction entirely, such as 

legislation in California (A. B. 705, 2018) and Florida (S. B. 1720, 2013). However, we have 

noticed that math education journals rarely publish in this area.  

As scholars concerned with developmental education, we were curious as to whether our 

impressions are reflective of the field. We have thus set out to critically analyze published 

literature on developmental math. Although many reviews related to developmental math exist, 

they tend to examine the efficacy of developmental math education (e.g., Davis & Palmer, 2010; 

Melguizo et al., 2011) or describe developmental initiatives (e.g., Jaggers & Blickenstaff, 2018). 
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In her comprehensive review, Mesa (2017) provides a discussion of the existing literature on 

developmental math through 2014, but only reviews documents within math education on 

community college students. In this review, we aim to understand the developmental math 

literature landscape across all sectors, with a focus on the extent that existing literature examines 

questions of interest and importance to math education researchers. While a variety of entities 

write about developmental education, as researchers we specifically focus on original reports. 

Towards this end, we examine a combination of peer-reviewed journal articles and reports 

published between 2000 and 2020 by agencies concerned with developmental math to 

understand: 

1. Who is the intended audience of original research on developmental math?  

2. To what extent does existing research define the developmental model examined?  

3. Which types of developmental math outcomes are the most widely considered?  

For these three questions, we also examine how, if at all, the answers have evolved over time and 

to what extent the body of existing work seems to contribute to an increased understanding of 

students’ mathematical learning in these courses. Ultimately, our aim is to unpack how 

researchers define developmental math; analyze the types of outcomes typically discussed, 

particularly as they relate to learning; and build a foundation for new types of questions about 

developmental math to be investigated by math education researchers moving forward. 

Methods 
Our initial sample of records was drawn from the EBSCOhost database, which curates 

documents from a variety of sources, in the summer of 2021. Given the diversity of stakeholders 

in developmental education, the wide net provided by the EBSCOhost database was well-suited 

to our purpose. Our final search criteria included documents with a publication date between 

2000 and 2020 (inclusive) and a system-listed document type of journal or report. In addition, 

the associated abstract needed to include either the word “developmental” or “remedial”, a word 

with the stem “math”, and one of the following words: college, university, post-secondary, 

postsecondary, or undergraduate. These search criteria yielded 1,442 documents. 

 Initial review of the records suggested some of the documents were unrelated to our interests 

(e.g., developmental psychology). In addition, some records were duplicates or were published in 

non-journal periodicals. Thus, we engaged in a review of the abstracts for probable inclusion in 

our final data set. Our final inclusion criteria for this stage of review included articles and reports 

with abstracts that indicated the document related to developmental math students, instructors or 

instruction. Articles concerned with broader examinations or descriptions of course delivery 

options or curriculum pathways that altered or removed developmental coursework for students 

were included. We included historical treatments or reviews when the focus of the document 

otherwise fit our inclusion criteria. To keep the focus on postsecondary settings, we did not 

include reports or articles that examined initiatives that took place while students were still 

enrolled in high school (e.g., dual enrollment). We also did not include articles that described 

students entering developmental math, with no other results provided, as these do not shed light 

on what happens in developmental math, only on the population enrolling in the courses. 

After reviewing abstracts, 488 records were identified as meeting the inclusion criteria or 

needing further review. We then engaged in coding of the abstracts. Because coding demanded 

that we read abstracts deeply, we often picked up on nuances we had not previously noted and 

thus sometimes marked a record as incorrectly included. After discussion of these records, we 

removed an additional 62 documents. This left 426 records in our sample for analysis. 
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Initial Document Coding 

We coded the document abstracts and publishing agencies. Here we discuss only those codes 

used in this report: Publication Agency, Audience, Outcomes and Developmental Model. 

A single team member coded the publication agency and peer-review audience using data 

within the EBSCOhost record. The remaining three authors coded the abstracts for outcomes and 

the developmental model. Codes were developed iteratively through collective discussion. Fifty-

three percent of the abstracts were coded independently by two team members. The remaining 

47% of the abstracts were coded by a single team member. Initial agreement between all double-

coded records was greater than 80% (and often greater than 90%) with the exception of coding 

for “other” categories on the outcomes and developmental model codes, where individuals had to 

describe what belonged there. Prior to the RUME conference, we intend to reconcile all coding 

disagreements and update our methods and results.  

Publication agency. Publication agency was coded based on publisher information provided 

by EBSCOhost. In cases without information, we included the record if the abstract met our 

inclusion criteria and left the publication agency code blank. Six publication agencies were 

identified and coded for: Federal government agency, school or state agency, non-profit 

organization, professional society, institute or center, or peer-reviewed journal. 

Math education audience. For records that were identified as a peer-reviewed journal, we 

examined the journal and determined the primary audience of the journal, making note of 

whether the journal was primarily geared towards a math education audience or not.  

Outcomes. Abstracts were coded for the nature of the results, outcomes, or products 

presented. These outcomes fell into seven categories. Passing was assigned to reports examining 

students’ course grades or student success rates in a math class, inclusive of either developmental 

or non-developmental classes. Finish was assigned when outcomes related to students’ 

completion of a math class sequence, a degree, a transfer, or the student was retained. We 

assigned Performance when the outcome related to students’ scores on assessments such as tests 

or final exams. Knowledge was assigned when the outcome related to assessing student 

understanding of mathematical ideas or concepts. Student outcomes was assigned when the 

outcome related to the students’ attitudes or referred to students’ success or outcomes, but did 

not provide enough detail to be coded as any other category. Student experiences was assigned 

when the outcome related to students’ perceptions or to the climate of their program or school. 

Faculty/Instruction was assigned when the outcome had anything to do with the developmental 

faculty or instruction generally (e.g., students were not the population of interest). For this report, 

we omit discussion of “Other”, but will clarify this variable prior to the conference. 

Developmental model. A variety of developmental math content delivery models have 

emerged over the last 20 years. We coded for named initiatives, including Pathways, 

Accelerated, Online (Emporium), Corequisite, or Bridge. In addition to these named initiatives, 

we had additional model codes: Traditional, Online (Regular), Policy change, Not Stated, or 

Other. We only assigned Traditional when the abstract explicitly used “traditional” to describe 

the developmental classes discussed. This decision reflects the fact that traditional is often used 

to describe instruction as teacher centered and lecture heavy. However, instructional practices 

can vary widely (e.g., Mesa et al., 2019), even within named initiatives. When the developmental 

model was not named or described, we assigned “Not Stated”. When the model was described, 

but did not fit one of the other categories, we assigned “Other”. 
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Results 

Research Question 1: Intended Audience 

We first considered the proportion of research on developmental math by publication type, 

graphed in Figure 1. As expected, given our search criteria, a large proportion of research 

appeared in peer-reviewed journals; however, roughly 40% of the research on developmental 

math appeared in reports instead (Figure 1a). We note also that the peer-reviewed journals in this 

category included not just journals intended for a research audience, but also a large number of 

journals for practitioners (in future analysis we plan to further break down our analysis based on 

the intended audience of the journal, e.g., researchers vs. practitioners). Of the research on 

developmental math published in peer-reviewed journals over the last decade, less than 20% has 

been published in math education journals, even when including practitioner journals in this total 

(Figure 1b). Accounting for reports, the total proportion of developmental math research 

published in math education journals (practitioner- or researcher-focused) is then roughly 10%.   

Research Question 2: Developmental Models Examined 

Next, we considered the specific developmental math model mentioned in research reports 

over time (Figure 1c). The proportion of research articles on developmental math that did not 

name the developmental model decreases over time, which is likely explained by the various 

initiatives sparked by the American Graduation Initiative (The White House, 2009). While we 

might expect some “types” of developmental math to go out of fashion and others to emerge as 

more dominant over time, this does not seem to be the case. Rather, there currently appears to be 

no dominant model of developmental math in the literature, and the landscape appears to be 

getting more complex over time. We also note that the focus of most of these models is on 

providing different instructional approaches, modes of instruction, or curricular sequencing at the 

institutional level (e.g., how many courses do students need to take, or how many credits are 

attached?) rather than on the content students engage with. The Carnegie Pathways models 

(Hoang et al., 2017) come the closest to engaging with learning, by modifying the content 

students were taught (primarily removing algebra content that was viewed as difficult); however, 

even for this model we noticed that in our analysis of outcomes that the focus of published 

reports was primarily on course completion and college progress. Measures of students’ learning 

(e.g., of specific mathematical concepts) have been less prominent.   

Research Question 3: Outcomes Examined 

Our examination of the proportion of outcomes shows that the most commonly measured 

were passing and finishing, which made up roughly half of the outcomes; the next most common 

was student “outcomes”, with all three combined making up 71.7% of the total (Figure 1d). Only 

3.2% of studies overall measured student mathematics knowledge (i.e., specific mathematical 

concepts or ideas). However, when considering outcomes just for peer-reviewed journals based 

on discipline (Figure 1d), we noted interesting differences. Articles from math education journals 

focused attention on students’ performance or knowledge, whereas articles for other audiences 

tended to focus on passing and completion rates (Figure 1d). In math education journals, roughly 

14.3% of research measured student learning, compared to only 1.6% in other journals. We note 

that the focus on learning in math education journals is relatively low compared to other 

outcomes; however, it is almost 9 times higher than at non-math education journals where the 

bulk of the research is currently published. Therefore, increasing coverage of developmental 

math research in math education journals could increase reforms focused on student learning.  
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Figure 1. Audience, Developmental Model, and Outcomes Over Time 

Discussion, Next Steps, and Questions 

All together, these combined results suggest that many models for delivering developmental 

math content are being implemented, which are perhaps under informed by research on how and 

what students are learning within development math courses. We are intrigued by these initial 

results and the questions they raise. As our research continues, we intend to add additional codes 

where necessary after recognizing the repeated use of “other” codes for the same topics (e.g., 

credits, enrollment); if anything, this may mean that the incidence of reports which focus on 

learning are actually currently overcounted. We are currently coding the data for measures of 

equity, use of deficit language, and how developmental math is defined and operationalized.   

Audience Questions 

• Are there other analyses that we should consider that we haven’t done yet? 

• If you currently do research in developmental mathematics, what kind of analysis of 

existing research would most help further your research?   

• If you have not yet done developmental mathematics research, what kind of analysis of 

existing research would be most helpful to you in starting to work in this area? 
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In this preliminary report, I describe the instructional task sequence and initial findings of a 

teaching experiment that explores how computing can be leveraged as a way to facilitate and 

strengthen the connection between set theory and logic. As such, I address the national call for 

modernizing the undergraduate curriculum to reflect the growing importance of computing and 

programming. In particular, I examine how programming may support student reasoning and 

learning of mathematical set theory and logic, with the goal of characterizing students’ 

advancing mathematical activity and growth over the course of a multi-session long teaching 

experiment. The ultimate results of this study will inform how we may be able to infuse 

computing into an Introduction to Proofs course in a new and innovative way. 

 

Keywords: Computing and Coding, RME, Set theory, Logic 

 

In this study, I focus on the development and use of ideas commonly taught in an 

Introduction to Proofs (ITP) course regarding set theory and mathematical logic. The conjecture 

that I explored in connecting these two topics is that programming/computing can be leveraged 

as a way to facilitate and strengthen the connection between set theory and logic. In particular, I 

detail one aspect and preliminary findings of a larger dissertation study which consists of three 

main research foci: (a) how Python may influence student reasoning and learning; (b) students’ 

advancing mathematical activity and growth over the course of a multi-session teaching 

experiment (TE); and (c) the impact of programming on students’ sense of confidence and 

enjoyment when doing mathematics. For the purposes of this report, I will highlight one aspect 

of my second research focus, which is driven by the following research question: How could an 

instructional task sequence, built around the use of Python, be used to help develop ideas related 

to mathematical logic and set theory? Specifically, the goal of this particular question is to 

understand the ways in which students develop ways of reasoning about the logical operators 

`and` and `or,` and how they are able to flexibly use these operators in Python to understand 

introductory concepts of set theory such as set intersection. The findings presented here 

complement prior ITP research (which has often focused on the challenges and difficulties that 

learners’ encounter) by exploring the prospects and possibilities for students’ successful 

mathematical progress. 

 

Theoretical Perspective 

Freudenthal’s (1971) work on mathematics as a human activity of mathematizing realistic 

situations eventually led to the development of the instructional theory known as Realistic 

Mathematics Education (RME) (Freudenthal, 1991; Gravemeijer, 1999; Gravemeijer, 2020a; 

Treffers, 1987). I draw on this theory in the development of the tasks that were used to guide my 

TE. From a RME point of view, the design of instruction should be realistic in the sense that the 

material is imaginable by the students and/or relevant to their experiences (van den Heuvel-

Panhuizen, 2003). Foundational to the RME approach for the teaching and learning of 

mathematics are three main heuristics: (a) guided reinvention, (b) didactical phenomenology, and 
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(c) emergent modeling (Gravemeijer, 2020b). In broad terms these three heuristics reflect the 

importance of reinvention and ownership of mathematics by the students through their own 

mathematical activity. In order to characterize students’ increasingly sophisticated ways of 

reasoning, I highlight the third heuristic, emergent modeling, in more detail below. 

Emergent modeling is the gradual process in which learners construct sophisticated 

mathematical conceptions through the development of models as they shift from “model-of” 

methods for solving informal mathematics to “model-for” methods used for more sophisticated 

ways of reasoning. Zandieh and Rasmussen (2010) define a model as:  

Student-generated ways of organizing their activity with observable and mental tools. By 

observable tools we mean things in their environment, such as graphs, diagrams, explicitly 

stated definitions, physical objects, etc. By mental tools we mean the ways in which students 

think and reason as they solve problems—their mental organizing activity. (p. 58) 

Gravemeijer (2020b) explains that meaning is not embedded within the mathematical symbols 

themselves, but is created by the learner through the development of models of mathematics. 

Additionally, each model is made up of smaller more-comprehensible sub-models. The 

relationship between sub-models and models can be described as a recursive one in which a 

smaller model is developed to lead to more mathematics that requires another smaller model that 

leads to more mathematics and so on. In a sense, one may think of the development of sub-

models and models as the transition from a model-of specific, or more informal problem tasks, to 

a model-for more formal mathematics. An important aspect to highlight here is that each sub-

model is built from the previous sub-model. The model-of/model-for transition is described in 

more detail by Gravemeijer, et al. (2000) as levels of activity, with the four levels being 

situational, referential, general and formal. In the next section I describe the four levels of 

activity in more detail, as they will be used for the primary method of analysis.  

 

Methods 

Participants were recruited from a four-year Hispanic-Serving Institution and were 

purposefully selected (Patton, 1990) in that they had already taken, or are currently enrolled in, 

differential calculus and not enrolled in an ITP course. A pilot study was conducted with two 

students, in which I conducted three one-hour long TE sessions. The main study data consisted 

of five one-hour sessions with four groups of students. There were 10 students for the main 

study, two to three students in each group. Due to the ongoing COVID-19 pandemic, the TE 

sessions were conducted and recorded via Zoom. For each session, I shared my screen which 

displayed two windows. The first window was a Jamboard slide deck to present the tasks to the 

students, and to capture their ideas and diagrams. Jamboard is a Google interface that serves as a 

collaborative and interactive canvas. In a window next to Jamboard, I had an Integrated 

Development Environment (IDE) that was used to run the Python code. 

Data analysis included both (a) ongoing and preliminary, and (b) retrospective analysis of the 

data corpus (Confrey & Lachance, 2000). Ongoing and preliminary analysis consisted of 

frequent (after each TE session) and summative reflections of emerging issues throughout the TE 

related to the conjecture of how computing might be leveraged to connect set theory and logic 

and be responsive to the students’ needs from one TE session to the next.  

For retrospective analysis, I am utilizing the four levels of activity as the primary analytic 

framework to answer the research question that is the focus of this report. While the emergent 

modeling heuristic and levels of activity were initially developed to provide insight into 

instructional design, it has also proven to be useful as an analytic tool to frame the model-
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of/model-for transition (Rasmussen & Blumenfeld, 2007). By documenting the levels of activity, 

it is possible to gain insight into students’ mathematical understanding and growth. The first 

level, situational activity, describes a situation in which students are engaged in an activity that is 

grounded in an experientially real context. By experientially real, I mean a problem scenario that 

the students can imagine in their mind’s eye. This problem context is the first step in which 

students develop sub-models to describe a model-of method for solving a problem. Additionally, 

the situational activity should be something that the students can come back to as they progress 

in more sophisticated ways of reasoning. This is where the next level comes in, referential 

activity. This activity describes a scenario in which students are expected to move away from the 

context-specific model and take a slightly more abstracted perspective of the mathematical 

activity. However, any abstraction must not be too far removed from the situational activity so 

that the students can still see the relationship with, or refer back to, the model-of approach. The 

next step is to present the students with other problem scenarios that are context-free. This is 

known as general activity where students use their model composed of sub-models to reason 

about a mathematical idea without being grounded in any particular context. Formal activity 

describes a situation in which students are reasoning abstractly about mathematics; they are 

using their previously established ideas as a model-for higher-level activity. As is usually the 

case, each group in the TE found their own path through the study, which resulted in not being 

able to reach the formal activity that I had originally anticipated. 

 

Instructional Task Sequence 

Here I provide the instructional task sequence that was developed to support students’ 

reasoning about introductory concepts of set theory and the logical operators `and` and `or.` 

Given the space constraint of this report, and the preliminary nature of the results, I provide an 

overview of the most influential tasks for the students in the TE. Along with the tasks, I present 

some student work representing their responses to the tasks and activities. The primary focus of 

this report is on the sequence of instructional tasks as they relate to the four levels of activity.  

To begin, I introduced the idea of a logical proposition (an expression that can take on the 

truth value of True or False) through the concepts of set inclusion and set cardinality. In Figure 1 

I provide the code that the students were asked to consider.  

 

 
Figure 1. Code defining two sets, with three propositions to be printed. 

 

In Figure 1, lines 4 and 5 will produce a True output and line 6 will produce a False output.  

Lines 4 and 6 are checking to see if the given element is a member of the given set, and line 5 is 

verifying that the cardinality of setB is equal to five. These propositions were then assigned to 

variables, `p = (“dog” in setA),` `q = (len(setB) == 5),` and `r = (“San Francisco” in setB).` The 

students were then asked to consider what `print(p),` `print(q),` and `print(r)` would produce. 
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The students were also asked to create their own propositions based on the characteristics of setA 

and setB and were asked to verify the truth value of the propositions that they created. For 

example, one student verified a false output by suggesting `m = (“LA” in setB)` and then running 

`print(m).` For the next step, I asked the students to consider the two propositions in the context 

of the logical operators `and` and `or.` All of the students came to a similar understanding of the 

function of the operators by running the various combinations of print statements such as `print(p 

or q)`, `print(m or q),` `print(p or r),` and `print(m or r).` By executing the various print 

statements in Python for `or` and `and,` all of the students in the study determined that the `or` 

operator only needed one true premise to produce a True output and the `and` operator needs two 

True premises to produce a true output (when in the form `print(s `and`/`or` t)` where s and t are 

propositions. At this stage, the students’ mathematical activity would be classified as situational 

in which the students were able to develop sub-models of how the propositions were taking on 

either a True or False value through the execution of a print statement as well as developing an 

understanding of the functionality of the logical operators. 

Once the groups felt comfortable with the operators, we moved onto compound propositions 

where they were asked to create print statements that contained multiple logical operators and 

multiple propositions. Groups 3 and 4 provided the following two print statements, respectively: 

(a) print(p and r or q and r), and (b) print(((r and m) or p) and (q and r)). Figure 2 showcases the 

work that each group was able to arrive at after some initial discussion. 

 

 
Figure 2. Screenshots of Group 3’s work on the left and Group 4’s work on the right. 

 

I still consider the students’ work in Figure 2 to be situational activity, as they are working 

with the same propositions. The transition to referential activity occurred when I asked the 

students to consider two unknown propositions. That is, what would happen if we had s `or` t? 

After some discussion of what an unknown proposition is, all of the groups arrived at some 

variation of a truth table as presented in Figure 3. 

 

 
Figure 3. Screenshot of Group 2’s work. 
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The students’ work would be classified as referential activity as they were working with a 

slightly more abstract idea of unknown propositions and logical operators without context, but 

still close enough to what is seen in Figure 2. Due to space constraints, I will skip the tasks used 

to introduce the concept of a For Loop and jump straight to the task asking students to find the 

common elements across three sets. In other words, to find the intersection of three sets. Figure 4 

highlights the work that was done by Group 1 as they chose to represent the intersection of three 

sets using a Venn diagram (shaded in blue).  

 

 
Figure 4. Group 1’s Venn diagram with the corresponding Python code. 

 

Creating the code corresponding to each shaded region in the Venn diagram was as far as we 

were able to progress through the TE with Groups 1 and 2. Groups 3 and 4 were able to take this 

idea a bit further with a number theory problem. Although, what is important to highlight here is 

that in lines 21 and 27 in Figure 4, the students were able to use propositions with the logical 

operator `and` to produce a new set, F, that contained the elements of the set intersection 

between A, B, and C. They also generated set G, which contained elements in A intersect B, not 

C. This would be an example of general mathematical activity as the students were able to use 

their sub-models that they created for their understanding of the logical operators in the context 

of a more abstract problem scenario where the truth values of the propositions were changing. 

For example, some of the values of x may have made the proposition `(x in B)` False, while other 

values of x made the proposition True.  

 

Concluding Remarks 

I anticipate that future work will show that Python will be able to support students in their 

reasoning of mathematical logic as well as other concepts in set theory. In addition, I conjecture 

that utilizing programming as a means to teach mathematics proved to be a tangible and 

accessible onramp for all of the students in my study. More broadly, the empirically and 

theoretically grounded instructional sequence detailed here contributes to the “learning 

trajectory” research agenda, which is one of four nascent areas of inquiry-based mathematics 

education research that Laursen and Rasmussen (2019) identify as important for researchers and 

practitioners to explore in higher education settings where inquiry approaches hold promise. 

Next steps for this work are to highlight the students’ developmental progression through the 

learning trajectory designed to help support students’ understanding of set theory and logic in the 

context of computer programming.  

24th Annual Conference on Research in Undergraduate Mathematics Education 1083



References 

Confrey, J., & Lachance, A. (2000). Transformative teaching experiments through conjecture-

driven research design. In R. Lesh & A. E. Kelly (Eds.), Research design in mathematics and 

science education (pp. 231- 265). Hillsdale, NJ: Erlbaum. 

Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational Studies in 

Mathematics, 3(3), 413-435. 

Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Springer Netherlands. 

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal 

mathematics. Mathematical Thinking and Learning, 1(2), 155-177. 

Gravemeijer, K. (2020a). A Socio-constructivist elaboration of realistic mathematics education. 

In Van den Heuvel-Panhuizen M. (Ed.), National reflections on the Netherlands didactics of 

mathematics (pp. 217-233). Springer. 

Gravemeijer, K. (2020b) Emergent modeling: An RME design heuristic elaborated in a series of 

examples. Educational Designer, 4(13), 1-31. 

Gravemeijer, K., Cobb, P. & Bowers, J. Whitenack. (2000). Symbolizing, modeling and 

instructional design. In P. Cobb, E. Yackel & K. McClain (Eds.), Symbolizing and 

communicating in mathematics classrooms: Perspectives on discourse, tools, and 

instructional design. (pp. 225-273). Lawrence Erlbaum Associates. 

Laursen, S., & Rasmussen, C. (2019). I on the prize: Inquiry approaches in undergraduate 

mathematics education. International Journal of Research in Undergraduate Mathematics 

Education, 5(1), 129-146. 

Patton, M. Q. (1990). Qualitative evaluation and research methods. SAGE Publications, inc. 

Rasmussen, C., & Blumenfeld, H. (2007). Reinventing solutions to systems of linear differential 

equations: A case of emergent models involving analytic expressions. Journal of 

Mathematical Behavior, 26(3), 195-210. 

Treffers, A. (1987). Three Dimensions: A model of goal and theory description in mathematics 

instruction - the wiskobas project. Springer. 

van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics 

education: An example from a longitudinal trajectory on percentage. Educational Studies in 

Mathematics, 54(1), 9-35. 

Zandieh, M., & Rasmussen, C. (2010). Defining as a mathematical activity: A framework for 

characterizing progress from informal to more formal ways of reasoning. The Journal of 

Mathematical Behavior, 29(2), 57-75. 

  
 

24th Annual Conference on Research in Undergraduate Mathematics Education 1084



 

A Case Study of an Exemplary Active Learning Mathematics Instructor 
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Understanding the student experience in active learning calculus classes requires listening to 
student voices. This report elevates students’ lived experiences in one exemplary active learning 
mathematics instructors’ Calculus I and Calculus II courses. We use a mixed-methods approach 
to analyze survey data (both free response and numerical items) about students’ interpretation of 
and affective reaction to their current mathematics instruction. The results show that students in 
this active learning class relate their identity to their ability to do or learn mathematics, and 
recognize instructional practices that attend to issues of diversity, equity, and inclusion. These 
results are also compared in reference to other sample populations of students from the same 
university. 

 
Keywords: Calculus, Student Experience, Active Learning, Instructional Practice, Case Study 
 

Research has found that active pedagogical strategies can be effective for learning and 
narrowing opportunity gaps (Freeman et al., 2014; Theobald, 2020). However, active learning 
should not be treated as a monolithic experience for students in every classroom. As research has 
demonstrated, students in active learning classrooms are most at risk for marginalizing and 
anxiety-producing experiences (Aguillon et al., 2020; Cooper et al., 2018; Cooper & Brownell, 
2018; Shah et al., 2020). This is not entirely surprising given that students in active learning 
classrooms are generally provided with more opportunity to engage with one another through 
small group discussions. However, this implies that research still needs to be done to better 
understand what types of active learning classrooms foster inclusive learning environments for 
all students. Moreover, there is very little research on how students are reporting their 
experiences in active learning classrooms.  

In this preliminary report, we investigate one active learning classroom taught by a university 
professor, Professor S, who was recognized within the state’s university system as being on the 
cutting edge of innovative pedagogy and leadership. Professor S was highly committed to the use 
and implementation of active learning strategies and at the time of the study was leading local 
professional development efforts to infuse active learning in introductory math courses. Through 
the use of survey analysis, we describe how students in Professor S’s active learning classroom 
are reporting their time in class, and importantly, compare the survey results from students 
enrolled in courses with other instructors. The research questions that we will address in this 
report are the following: (1) How do students characterize the instructional approaches being 
used in a course taught by an active learning instructor? (2) How are students interpreting and 
describing the instructional approaches in relation to their sense of math identity? 

 
Methods 

The student postsecondary instructional practice survey (SPIPS-M) was administered to 
several Precalculus, Calculus I, and Calculus II courses at Professor S's university. The SPIPS-M 
specifically targets students’ interpretations of instructional practices, what they found helpful, 
changes in attitudes towards learning and doing mathematics, and their perceptions of the climate 
in the classroom (Apkarian et al., 2019). Along with the nearly two dozen 5-point Likert scale 
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items, there are several free response items that include: instructional practices that students 
found helpful (“Helpful”), practices they found unhelpful (“Unhelpful”), how issues of diversity 
and equity were being addressed through instructional practices (“Diversity Equity and Inclusion 
(DEI) Strategies”), and if their identity affected their ability to do or learn mathematics (“Identity 
Free Response”). Over the Fall 2018 and Spring 2019 semesters, 75 of Professor S's students 
responded to the survey. 

While these 75 students provided an in-depth look into the student experience in Professor 
S's classroom, a stratified random sample of 80 students outside of Professor S's classroom was 
created as a frame of reference to contextualize the student experience within the norms of the 
institution. Both of these samples were analyzed separately with two different approaches: 
quantitative analysis to determine the results of Likert-scale items and qualitative analysis 
methods to synthesize and thematically group answers to free response questions. For the 
qualitative methods, we employed a coding scheme that summarized the student responses into 
thematic groups based on the given free responses to each of the 6 items. 

In addition to the free-response questions on the survey a number of Likert questions asked 
about instructional practices, activities and attitudes. A prior factor analysis (Creager, et al., 
under review) identified relevant constructs that are summarized in table 1 along with their 
construct reliability measures. 

Table 1. Survey items from the SPIPS-M that Craeger et al (under review) developed into relevant constructs, 
with their corresponding Cronbach number. 

Relevant Constructs of Practices, Activities, and Attitudes 

Construct Name Description Survey Items Cronbach 

Peer-to-Peer Students collaborate to process 
mathematical ideas 

P6, P7, P8, P10, 
P15, P16, P20 

.87 

Math Engagement Students engage with 
meaningful mathematics 

P1, P2, P5, P11, 
P12, P17, P18, P19, 
P22 

.87 

Instructor Inquiry Students contribute their 
mathematical ideas during class 
and receive immediate feedback   

P3, P4, P20 .66 

Class Participation A wide variety of students 
participate and form community 

P13, P16, P21 .82 

Math Attitudes 
Beginning 

Students reflection on their 
affect and attitude towards math 
at the beginning of the course 

A1, A2, A3, A4, A5 .77 

Math Attitudes End Students report their current 
affect and attitudes. 

A6, A7, A8, A9, 
A10 

.80 

 
Preliminary Results 
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Class Time Spent, Instructional Activities, and a Change in Attitude 
Drawing on the quantitative data, we examined how students in Professor S’s courses were 

reporting the percentage of instructional activities that occurred in the class over the whole term 
(e.g., lecture, whole class discussion, small group, and individual) compared to all other students 
surveyed as seen in Figure 1. This analysis, which addresses our first research question, provides 
a broad description of the types of instructional activities that students report experiencing and 
provides evidence of Professor S’s use of active learning approaches. A Welch’s two sample t-
test demonstrated that students in Professor S’s courses reported statically less lecture [t(154) = 
18.1, p<.001, Mean=53% versus 21%], more whole class discussion (t(96)=-3.42, p<.001, 
Mean=20% versus 14%) and more small group work (t(85)=-13.46, Mean=40% versus 11%). 
There was no significant difference in students’ report of time spent working individually 
[t(102)=1.39, p=0.16, Mean = 18% versus 21%]. 

 
Figure 1. Students reported percent of instructional activities used over the whole term. Turquoise represents 
Professor S’s students and orange represents students in all other classes.  
 

Transcending beyond the rough categories of instructional activities, we examined how 
students reported various instructional practices to be descriptive of their experiences in the 
mathematics courses (See Figure 2). These instructional practices are aligned with the pillars of 
inquiry based mathematics education (Laursen & Rasmussen, 2019) and are detailed in Table 1. 
Students in Professor S’s courses reported statistically greater reports of math engagement 
[t(103)=-6.1, p<.001]. Peer-to-peer interaction [t(117)=-13.7, p<.001], class participation[t(97)=-
7.40, P<.001], and instructor inquiry [t(105)=-8.6, p<.001]. 

Furthermore, we wanted to examine the impact that this course had on students’ 
mathematical identity (Confidence, Interest, Enjoyment, and Ability). We asked students on the 
survey to respond to several items related to affect as they perceived or reflected from the 
beginning of the course and now (see Figure 2). Students in Professor S's course reported 
statistically lower levels of math identity at the beginning of the course [t(85)=3.40, p=.001] and 
there was no significant difference at the end of the course [t(96)=-1.26, p=0.21]. 

Student Interpretations and Descriptions of Active Learning Practices 
The following themes emerged from Professor S’s student responses. We also compared 

each theme with what we found in the 80 students outside of Professor S’s class.  
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Group work viewed favorably. Students in Professor S's class who responded to the 
“Helpful” item, 63.9% (47 students out of 72 total responses) of them thought that group work 
was particularly helpful in their learning of mathematics. While group work remained the most 
helpful strategy by frequency, Professor S's extended office hours and explanatory videos, online 
collaborative platforms such as Voicethread and Titanium, and school resources such as 
Supplemental Instruction (SI) and tutoring all played a role in helping students succeed in his 
Calculus courses. Students not in Professor S’s class frequently mentioned tutors, SI, lecture 
notes, and other students in the class as resources but they hardly mentioned group work, 
specifically in-class group work. 

 

Figure 2. Student experience with instructional practices and students’ reported change in mathematical attitudes. 
Turquoise represents Professor S’s students and orange represents students in all other classes.  

Some students offered explanations for why they thought group work was a practice that was 
helpful to them. Out of the 47 respondents for this item, six students mentioned that it was a 
good way to meet other students and collaborate and another six students reasoned that they had 
peers to help with questions when they needed help. An additional three students said that it was 
helpful to see how others think about a problem. One student said that, “if someone didn’t feel 
comfortable asking the professor for help they were more likely to do it in the groups.”  

Students recognizing DEI strategies. More than half of the respondents to the “DEI 
Strategies” item also attributed group work as a way to attend to diversity and equity in the 
classroom. Out of the 22 students who thought that group work helped to address issues of 
diversity and equity, six of them said that it was because everyone was able to participate. This 
sense of inclusivity in groups extended to another six students who said that being in a group 
encourages students to meet and talk with peers. One student specifically mentioned the practice 
of assigned group roles as well, which is a practice that Professor S employs often. Professor S's 
attention to diversity, equity, and inclusion manifested in students experiencing positive group 
work situations and increased opportunities to contribute in class, which were both backed up by 
Professor S’s encouragement and support. Students feel that Professor S knows their name, that 
Professor S cared about them, and that their contributions were valued. Students outside of 
Professor S’s class did not have much to say about instructional practices that attend to issues of 
DEI. The most prevalent response for these students was a reference to how their professor 
“treated everyone the same”. 
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Identity as salient. Out of the 44 students that responded to the “Identity Free Response” 
item, a dozen students made some connection between a personal trait that they have and their 
ability to learn or do mathematics. The most prevalent trait was shyness or introversion, which 
has the potential to be a difficult trait to overcome in a class with added social pressures that 
emerge from so much group work. However, one of these students explained, “I'm introverted 
and shy, and this course helped me overcome those obstacles in various ways when I had to 
discuss the course material with my instructor, or with peers.” Another student followed a similar 
rationale when they said, “I typically keep to myself a lot of the time, but this class forced me to 
participate more and work with others, something I would normally not do, however, I'm glad I 
had that experience.” While several students inside and outside of Professor S’s class commented 
on their math identity, students not in Professor S’s class did not share any instances developing 
their identity through the instructional practices such as the examples above.  

 
Discussion  

Out of the thematic groups of instructional practice constructs in Figure 2, all of these 
instructional practices were greater in Professor S's course. This suggests that these practices are 
not part of a zero-sum game where a gain in one implies a loss in the other. Also in Figure 2, we 
see that students in Professor S's class reported statistically lower levels of math affect at the 
beginning of the course and there was no significant difference at the end of the course. This 
result may suggest that upon reflection, students in Professor S’s course perceived a level of 
growth in their math affect and thus reported lower levels at the beginning of the course. 
Alternatively, students who enroll in Professor S’s course may have had lower math affect, but 
after the course experience, they report similar levels as their peers in other courses.  

Our qualitative results show that almost two thirds of Professor S’s students mentioned group 
work as a helpful instructional practice, while students enrolled in other professor’s classes often 
relied on lecture notes and more resources outside of the classroom. This suggests that students 
outside of Professor S’s class require more university resources to be successful in Calculus. 
Since resources like math and science centers, tutoring, and supplemental instruction are directly 
tied to university funding, our results suggest that traditional lecture in calculus courses could be 
costing universities more than just adverse student experiences.  

Inclusivity was a significant theme that ran through the student experience in Professor S’s 
class. Whether it was group work supporting a general increase in student contributions or the 
various modalities these contributions could be performed (online, in person, text, or voice), 
students in Professor S’s class recognize that their voice is valued. In terms of identity 
development, some students in Professor S's class felt that a personal trait such as shyness, which 
is potentially damning in an active learning class, could be overcome with instructor support and 
genuine encouragement. Professor S's students know that he cares about them and thus would 
not engage in instructional practices that would harm them.  

Every aspect of Professor S's active instructional approach has the foundation of empathy 
and positivity, promoting this instructor from a vehicle for dissemination of content to a vital 
support structure for success. This instructor put in the time and the effort to establish and 
maintain instructional practices that align with the pillars of active learning, but we know that 
Professor S is not a superhero. They are just an instructor who recognizes the assets that all 
students bring to their class and knows that active learning pedagogy capitalizes on what little 
precious time instructors have with their students in class. 
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Isomorphism and Homomorphism in Abstract Algebra Textbooks 
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Despite isomorphism’s dual nature as both a property of objects (e.g., groups) and a function, 

most research has examined “isomorphism” as a singular concept. We analyze how common 

introductory textbooks structure and relate the ideas of isomorphic objects, isomorphism 

function, and homomorphism. We incorporate a discussion of the informal descriptions of these 

constructs and highlight most texts’ use of the concept of isomorphic objects to motivate defining 

the isomorphism function. However, despite the consistency in informal language for isomorphic 

objects, we observe variety in the informal language used to discuss the isomorphism function 

and homomorphism.  

Keywords: abstract algebra, isomorphism, homomorphism, sameness 

Mathematics educators have identified isomorphism and homomorphism as key concepts in 

introductory abstract algebra worthy of further study (Melhuish, 2015). However, isomorphism 

is often treated as a single idea despite the word “isomorphism” referring to the property of two 

structures being isomorphic and the function that witnesses two structures are isomorphic (the 

isomorphism function). Certainly, there is a connection; two groups (rings, fields) are isomorphic 

if and only if there exists an isomorphism between them. We might also say that the concept of 

isomorphism function precedes the concept of isomorphic objects; the isomorphism function 

must be mentioned (not necessarily by name) in order to rigorously define the concept of 

isomorphic groups (rings, fields).  

This isomorphic-isomorphism duality does not extend to the notion of homomorphism; there 

is no meaningful interpretation of homomorphic when applied to whole groups, rings, and fields. 

However, the relationship between homomorphism and isomorphism (as functions) has an 

implicit ordering; an isomorphism is a bijective homomorphism, and any definition of 

isomorphism must therefore mention homomorphism (although not necessarily by name).  

Using the above reasoning, one might argue that a student ought to learn the concepts of 

homomorphism, isomorphism (function) and isomorphic (objects) in that order. However, this 

logical ordering does not necessarily entail a conceptual ordering. Some mathematicians prefer 

to teach isomorphism before homomorphism, while others prefer the opposite ordering (Rupnow 

et al., 2021). More generally, Tall (1991) suggests that students learn new concepts by 

generalizing from more specific concepts. Gilbert and Gilbert (2009) explain “Isomorphism is a 

special case of homomorphism, while homomorphism is a generalization of isomorphism. 

Isomorphisms were placed first in this book with the thought that ‘same structure’ is the simpler 

idea.” (p.137). Their reference to “same structure” suggests that they think of the idea of 

isomorphic objects as conceptually more intuitive or “simpler” than the isomorphism function 

and as a motivation for defining isomorphism. In this preliminary report, we investigate: How do 

common introductory abstract algebra textbooks structure and order the introduction of 

isomorphism functions, isomorphic objects, and homomorphisms? 

Background Literature 

Student understanding of isomorphism has been studied for over twenty-five years 

(Dubinsky et al., 1994). Leron et al. (1995) described an intervention in which students were 
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initially taught a “naïve” version of isomorphism, wherein sameness was emphasized by 

renaming one object to produce a copy that is the “same” (p. 154). Rupnow (2021) and Weber 

and Alcock (2004) confirmed that many students and professors consider isomorphism as a type 

of sameness. Various metaphors for isomorphism and homomorphism have been examined, such 

as “relabeling” for isomorphism and “structure preservation” for homomorphism (Hausberger, 

2017; Rupnow, 2021; Weber & Alcock, 2004). 

Nevertheless, research on the isomorphism concept has not directly addressed the 

interrelationship of isomorphic objects and isomorphism functions. For example, Dubinsky et al. 

(1994), Leron et al (1995), and Melhuish (2018) examine how students determine whether 

groups are isomorphic, suggesting a focus on isomorphic objects. Melhuish et al. (2020) studies 

students’ use of their function concept to draw conclusions about isomorphism and 

homomorphism, indicating a function focus. Rupnow (2021) highlights aspects of both 

isomorphic objects and isomorphism functions without explicitly distinguishing between these 

concepts nor analyzing their relationship. Notably, these studies do not attend specifically to how 

the isomorphism function is used to understand the idea of isomorphic objects. We build on 

Melhuish (2015), who provides an analysis of four common introductory abstract algebra 

textbooks in which she discusses isomorphic objects. Our work extends Melhuish’s analysis by 

also examining homomorphism and the isomorphism function separately and by examining 

connections between isomorphic objects, the isomorphism function, and homomorphism.  

Theory and Methods 

Our analysis aligns with Thompson’s (2008) description of textbook analysis as a form of 

conceptual analysis in the sense that it investigates the conceptual coherence of curriculum. Our 

work fits in Son and Diletti’s (2017) category of “content analysis”, particularly the subcategory 

of “introduction and development of concepts and procedures”. Similar to Cook et al.’s (2019) 

textbook analysis on the structure of logic, sets, and proof techniques, we use our conceptual 

framing of the relationship between isomorphic objects, isomorphism function, and 

homomorphism to examine the textbooks’ structuring of these concepts. Like Cook et al. (2019), 

our methods align with constant comparison methodology (Creswell, 2007). 

We examined the textbooks that Melhuish (2015) identified as the most common 

introductory texts: Gallian (2009), Fraleigh (2003), Gilbert and Gilbert (2009), and Hungerford 

(2012). We identified where each text first formally defines the notions of “homomorphism” and 

“isomorphism”, regardless of the type of object (group, ring) it defined first. We note that all of 

these texts except Hungerford introduce groups before rings. We examined where each text 

informally introduced these concepts; this includes Melhuish’s construct of Example Motivating 

a Definition (EMD) to analyze how textbooks frame their introduction of the isomorphism 

concept. We also visited every instance of “equivalence relation” to see how (or whether) the 

idea of isomorphism was included.  

Results 

We discuss the structuring of isomorphic objects, the isomorphism function, and 

homomorphism within the formal presentations of the definitions and then in informal contexts. 

We also examine how the books relate the concept of equivalence relations with isomorphism.  
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Formal Definition 

In all four texts, isomorphism is defined before homomorphism. See the definitions of 

“isomorphism” and “homomorphism” presented by Gallian (Figures 1 and 2) as an archetypical 

structuring example.  

 
Figure 1. Gallian’s (2009) definition of group isomorphism, p. 128. 

 

Figure 2. Gallian’s (2009) definition of group homomorphism, p. 208. 

Hungerford and Gilbert & Gilbert address homomorphism as the next topic in the text after 

isomorphism. Fraleigh uses the phrase “homomorphism property” in the definition of 

“isomorphism” but does not expand on “homomorphism” as a separate concept until several 

chapters later. Gallian does not even use the word “homomorphism” until several chapters after 

introducing isomorphism. All textbooks include isomorphic (objects) and isomorphism 

(function) (e.g., Figure 1) under the same definition label. However, all textbooks except 

Hungerford’s define the isomorphism function before the isomorphism property. This is not due 

to Hungerford introducing rings before groups – the same pattern is followed in the group 

isomorphism section. As we will see throughout, the Hungerford text tends to be the outlier. 

Informal Counterparts 

Melhuish (2015) quotes portions of each textbook that she describes as informal 

characterizations of isomorphism. In all textbooks except Gilbert & Gilbert, they appear in the 

context of EMDs and precede the formal definition of isomorphism. In Gilbert & Gilbert, such 

characterization comes after the formal definition and is described as the “fundamental idea 

behind isomorphisms” (p. 178). For each textbook, these portions focus on isomorphic objects, 

such as the status of equivalence between the structures (e.g., rings) portrayed through general 

statements of sameness (e.g., isomorphic rings are “essentially the same”, Hungerford, p. 70). In 

all these texts, this informal description of isomorphic objects as portraying sameness is used as 

justification for formally defining isomorphism functions.  

Before continuing, we explain that there are two broad senses in which the isomorphism 

function has informal descriptions. The first sense only applies to isomorphism functions and 

involves an informal description of the function itself: we can exhibit a correspondence 

(function), wherein we align and rename elements between structures to prove structures are 

isomorphic (i.e., create a matching or relabeling). We refer to this as the correspondence sense. 

The second involves an informal description of attributes of the function (i.e., “preserve the 

operation(s)”, Gilbert & Gilbert, p. 177). This aligns with the homomorphism property and, thus, 
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we identify operation preservation as the informal description of the homomorphism concept 

which can also be used in an isomorphism function context.  

Informal versions of the correspondence sense of the isomorphism function occur in the same 

block of text as the quotes highlighted by Melhuish (2015). This occurs most prominently in the 

Hungerford and the Fraleigh texts; for each text, the Melhuish example is in the context of a 

larger example (EMD) involving Cayley tables. Hungerford and Fraleigh use these examples to 

highlight the “relabeling” aspect of isomorphism and clarify that one needs to see the relabeling 

(alignment of elements highlighted by the function) before recognizing that the structures are 

isomorphic. In other words, there is an informal counterpart (relabeling one table to get another 

table) to the isomorphism function, and this counterpart is positioned as necessary for 

understanding isomorphic objects. We contrast this with Gallian and Gilbert & Gilbert, who do 

not accompany their informal description of isomorphic objects with informal counterparts to 

isomorphism functions. Gallian provides an example of isomorphic groups and states that the 

reader should recognize via inspection that these groups are “the same”, while Gilbert & Gilbert 

do not provide an example to accompany their informal description.  

Instead, Gallian and Gilbert & Gilbert focus on operation preservation as an informal 

description of the isomorphism function and homomorphism. Gallian uses this phrase within the 

formal definitions of isomorphism and homomorphism, whereas Gilbert & Gilbert use the phrase 

afterwards to explain both definitions. Since both Gallian and Gilbert & Gilbert introduce the 

definition of isomorphism before homomorphism, they are essentially introducing the informal 

notion of homomorphism prior to the formal definition. We can contrast this presentation with 

Fraleigh and Hungerford; neither use an informal description of homomorphism in the 

isomorphism section. Hungerford uses no informal descriptions for homomorphism in the 

homomorphism section either, while Fraleigh refers to homomorphisms as “structure-relating 

maps” (p. 125) throughout the homomorphism chapter.  

Equivalence Relations 

Equivalence relation sections are another place to see how textbooks discuss isomorphic 

objects, since “is isomorphic to” is an equivalence relation on any set of groups (rings, fields). 

Hence, we wish to see how textbooks explain isomorphic as an equivalence relation.  

Fraleigh, Gallian, and Gilbert & Gilbert, describe “is isomorphic to” as an equivalence 

relation. Hungerford instead focuses on the properties of functions (isomorphisms) themselves, 

such as the fact that a composition of isomorphisms is an isomorphism, without ever mentioning 

how these properties of isomorphisms relate to isomorphic structures (e.g., without mentioning 

transitivity of “is isomorphic to”). This function focus is consistent with the fact that “is 

isomorphic to” is not one of the many equivalence relations mentioned in the equivalence 

relation section. Both Fraleigh and Gilbert & Gilbert use the equivalence relation notion when 

describing how “is isomorphic to” is a type of sameness. Fraleigh explicitly links “group 

identification”, “up to isomorphism” and “equivalence relation”, whereas Gilbert & Gilbert use 

equivalence relations to describe the notion of sameness captured by “is isomorphic to”. In other 

words, all texts except Hungerford use the notion of equivalence to describe isomorphic 

structures, with Fraleigh and Gilbert & Gilbert additionally using it in their informal 

characterizations surrounding sameness. Instead of characterizing “is isomorphic to” as an 

equivalence relation, Hungerford focuses on the analogous properties of isomorphism functions.  

24th Annual Conference on Research in Undergraduate Mathematics Education 1094



 

Summary and Discussion 

Textbook analyses have an important role in research on instructional practice; Zhu and Fan 

(2006) explain that several researchers have cited the need for further work in this area. We have 

provided such work by focusing on how commonly-used textbooks relate and structure facets of 

the isomorphism concept. We expanded on Melhuish’s (2015) analysis of abstract algebra texts 

by distinguishing between isomorphic objects and isomorphism functions. Creating this 

distinction allowed us to carefully consider how textbooks structure and relate the ideas of 

isomorphic objects, the isomorphism function, and homomorphism. A common pattern was 

found in which all textbooks introduced isomorphism prior to homomorphism, and all three texts 

except for Hungerford defined the isomorphism function prior to isomorphic objects.  

In addition to the discussion of the formal definitions, we delineated various ways textbooks 

informally described isomorphic objects, the isomorphism function, and homomorphism. This 

expands on Melhuish’s (2015) work, which treats the informal introduction of isomorphism as a 

singular concept. We found that, although all texts used sameness language to describe 

isomorphic objects, there are differences in how the isomorphism function and homomorphism 

were presented informally in textbooks. Gallian and Gilbert & Gilbert used metaphors 

illustrating the operation-preserving sense of the isomorphism function and homomorphism but 

did not address the correspondence sense; Hungerford used metaphors illustrating the 

correspondence sense of the isomorphism function but not the operation-preserving sense (for 

isomorphism or homomorphism); and Fraleigh used metaphors illustrating the correspondence 

sense of the isomorphism function and operation-preserving sense of homomorphism, but not the 

operation-preserving sense of isomorphism. Here we see that while there is some consensus on 

informal interpretations of isomorphic objects (sameness), interpretations vary around the 

isomorphism function and homomorphism. Future research should examine how these 

differences of presentation impact instructors’ teaching, if at all, and students’ understandings. 

While textbooks provide an intended curriculum for a course and often “have influence on 

teachers’ teaching and students’ learning” (Zhu & Fan, 2006, p. 622), they also provide potential 

alternatives to instructors’ conceptualizations of material; for this reason, it makes sense to also 

consider the relationship between how instructors envision the curriculum and the intended 

curriculum embodied in the textbook. Accordingly, our analysis occurs in tandem with empirical 

investigation. Prior work examining instructors’ language for isomorphism and homomorphism 

showed that instructors viewed sameness as the essence of isomorphism (Rupnow, 2021), which 

suggests an isomorphic focus. However, ongoing research with algebraists has shown a greater 

variety of perspectives. Some, like the instructors, emphasized sameness of structure, whereas 

others emphasized exhibiting the isomorphism function. This research highlights the importance 

of both isomorphic objects and the isomorphism function. Furthermore, this raises questions 

about how sequencing of instruction and language choices in instruction might differ and 

potentially impact students’ understanding of different facets of the isomorphism concept.  

Several professors’ view of the isomorphism property as the conceptual center of the 

isomorphism concept and motivation for defining the isomorphism function aligns with our 

findings in textbooks. As discussed in “informal counterparts”, multiple textbooks use the idea of 

isomorphism communicating sameness of object (isomorphic) to motivate formalizing 

isomorphism functions. Future research should examine whether isomorphic objects are 

commonly used to establish intellectual need (Harel, 2013) for the isomorphism function in other 

textbooks. Furthermore, research could examine justifications professors give for foregrounding 

the isomorphism function and how that could inform textbook construction.  
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Distinguishing between Isomorphism and Equality in Abstract Algebra Texts: This Sameness is 
not the Same as that Sameness 

 
 Alison Mirin Jodi Frost 
 University of Arizona Indiana State University 

Isomorphism and equality are important aspects of mathematics and are both types of sameness. 
However, these are not identical concepts; objects can be isomorphic without being equal. We 
discuss the difference between equality and isomorphism as types of sameness and the way that 
popular introductory abstract algebra textbooks distinguish between and conflate these 
concepts.  

Keywords: sameness, isomorphism, abstract algebra, group theory, textbook analysis 

Sameness is an important aspect of mathematics. This is especially evident when we consider 
the prevalence of the equals sign. Isomorphism, which can be considered as a type of sameness, 
is crucial to various fields of mathematics such as abstract algebra, graph theory, and logic. In 
this preliminary paper, we distinguish between these two notions of sameness and examine how 
mathematics textbooks distinguish between them. This paper has both theoretical and empirical 
goals, the first of which is to orient the reader to the nuances surrounding equality versus 
isomorphism, the second of which is to provide a textbook analysis concerning these nuances.  

Literature Review 
There are different types of sameness. In the strictest sense, we have the notion of true 

equality. Colloquially, we use the phrase ‘the same’ to describe equality (Rupnow & Sassman, 
2021). In modern mathematics, 𝑥 = 𝑦	if and only if x and y are identical, which is the case if and 
only if ‘x’ and ‘y’ denote the same object (Mendelson, 2009). For example, 𝑒!"and −1	are 
identical (equal) because ‘𝑒!"’ and ‘−1’ both denote the same object, the number −1. It bears 
mentioning that such equations are informative because the names or labels of these objects are 
different. For example, ‘𝑒!"’ and ‘−1’ look different and bring different things to mind (Mirin, 
2020). Here, we have the same thing (the number −1) with different names (the names ‘𝑒!"’ and 
‘−1’); changing a name or label of an object does not change the object itself. Alternatively, we 
could use the name ‘7 − 8’, and it would still denote the same object as ‘𝑒!"’ and ‘−1’ despite 
having a different label. Less strict notions of sameness are also captured by various non-equality 
equivalence relations. For example, the numbers 0 and 4 are equivalent with respect to the 
equivalence relation of having the same parity, but 0 and 4 are still different numbers.   

One important aspect of sameness is that it allows us to make powerful inferences in 
mathematics. Leibniz’ Law of Indiscernibles (Leibniz, 1846/1992) states that two objects x and y 
are equal (𝑥 = 𝑦) if and only they share the same properties. For example, since 𝑒!" and −1 are 
equal and since −1	has the property of being real, it follows that 𝑒!"  has the property of being 
real. Non-equality equivalence relations allow for some inferences, but not as many. For 
example, consider the equivalence relation ≡# defined on the integers by 𝑥 ≡# 𝑦 if and only if x 
is congruent to y modulo 2. Then we have that 0≡# 4, which allows us to make some inferences 
but not others. For example, we can conclude that both 0 and 4 are one more than an odd integer. 
Clearly, 0 and 4 do not share all properties. For example, 4 has the property of being positive, but 
0 does not. We can make similar statements about the equivalence relation of isomorphism. As 
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Fraleigh (2003) highlights, some properties (which he calls “structural properties”) are preserved 
by isomorphism, whereas others are not. This role of inferences concerning property preservation 
highlights the crucial difference between true equality and other forms of equivalence. In 
algebraic structures such as groups, we have the notion of equality (identical groups), but we also 
have the weaker notion of isomorphism.  

While there is sparse literature on the topic of sameness and equality, there is a little 
literature that distinguishes between types of sameness. However, as Mirin (2019) notes, the bulk 
of this literature tends not to differentiate between true equality and other equivalence relations. 
In fact, the word “equivalence” is often used without specifying an equivalence relation. Wladis 
et al., (2020) observe that the Common Core Standards (National Governors Association, 2010) 
often use the word “equivalence” to refer to strict equality, and many other equivalence relations 
are not labeled as such.  

We now move to the literature on isomorphism and how it relates to distinguishing between 
strict equality and other types of sameness. Interestingly, the notion of “relabeling” and 
“renaming” to describe isomorphism is mentioned in multiple articles (Dubinsky et al., 1994; 
Leron et al., 1995; Rupnow, 2021; Weber & Alcock, 2004). This notion has the potential to 
conflate isomorphism with equality - as discussed above, renaming or relabeling an object does 
not change the underlying object. In fact, Randazzo & Rupnow (2021) confirm this interpretation 
when they refer to “renaming” using the following language:  “renaming of an object or a change 
of perspective that does not change the object itself” (p. 240). Rupnow and Sassman (2021) 
discusses the ways that algebraists view the notion of sameness as harmful and helpful when 
referring to understanding the concept of isomorphism. Some participants noted that it was 
important for students to distinguish between isomorphism and equality. For example, one 
participant explained a harmful way of thinking of isomorphism as sameness: “Maybe thinking 
that sameness = identical in every aspect? ”. (p.TBD). Additionally, some of the mathematicians 
interviewed in Randazzo and Rupnow (2021) are careful to distinguish between true equality and 
isomorphism. Dubinsky et al’s (1994) study gives an existence proof that some students do 
indeed conflate isomorphism with equality. In this study, students were given questions about 
isomorphism wherein the concept of isomorphic groups was described as “the same except 
renaming”, which appears to be a conflation of equality with isomorphism (since isomorphisms 
can change underlying objects, not just rename them). The authors report on students confusing 
the notion of subgroup with isomorphic subgroup, which we view as a conflation between 
equality and isomorphism. This confusion highlights the importance of distinguishing between 
the concepts of equality and isomorphism.  

Methodology and Theoretical Background  
In this paper, we investigate the following: How do common introductory abstract algebra 

textbooks use the notion of sameness to introduce the concept of isomorphism? How do 
textbooks distinguish or conflate the notions of identical groups and isomorphic groups? 

The textbooks examined were those identified by Melhuish (2015) as the most commonly-
used texts in introductory abstract algebra classes. In order from most popular to least popular, 
they are: Gallian (2009), Fraleigh (2003), Gilbert and Gilbert, 2008, and Hungerford, (2012). 
Optimal Character Recognition was used to find all portions of the text that used the string “iso” 
(in order to capture “isomorphic” and “isomorphism,” and “equ” (in order to capture “equal” and 
“equivalent”). Additionally, we examined every instance of what Melhuish (2015) calls an 
“Example Motivating a Definition” (EMD) and every instance of an “Example Following a 
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Definition” (EFD) for the definitions of “isomorphism” and “isomorphic”.1 In the Fraleigh text, 
there were two introductions of isomorphism - one introduced more informally in an example 
within the text, and the other later but more formally. The blocks of text quoted by Melhuish 
(2015) as involving informal characterizations of isomorphism were also examined and included 
with the EMDs and EFDs depending on the position of the informal characterizations; i.e., 
whether they appeared before or after the formal definition. 

This analysis can be understood as a conceptual analysis of textbooks as described by 
Thompson (2008). Similar to the textbook analysis of Cook et al. (2019), it describes the way 
that textbooks relate similar concepts (in this case, isomorphism and equality). Analyzing 
commonly-used textbooks provides a way of examining the “intended curriculum” (Son & 
Diletti, 2017) and reflects the way that a topic is taught and hence the way that a student might 
learn (Zhu & Fan, 2006). Our analysis is consistent with thematic analysis (Rossman & Rallis, 
2016). 

Before moving forward with our textbook analysis, it is worth clarifying for ourselves the 
distinctions between equality and isomorphism. For simplicity, we use groups as an example, but 
rings, fields or other objects to which isomorphism can apply could be used to have the same 
discussion. Recall the definition of a group; a group 𝑮 = 〈𝐺,∙〉 is a set 𝐺 together with a binary 
operation ⋅	on G satisfying certain axioms. As Mirin (2017) notes, the way a class of objects (in 
this case, groups) is defined is closely related to the equality criteria within that class of objects. 
Hence, a group 𝑯 = 〈𝐻,×〉 is equal to 𝑮 if and only if 𝐺 = 𝐻	and ⋅	=	× (i.e. ⋅	and ×	agree on all 
elements in 𝐺). With that in mind, consider the following question: How many groups are 
defined in Figure 1? 

 

 
Figure 1. Two different groups of order two. 

There are two distinct groups,	𝑮𝟏and 𝑮𝟑. Observe that 𝑮𝟏 and 𝑮𝟐 are identical. They have 
the same elements, and the same group operation. This is despite the fact that the elements in the 
group table for  𝑮𝟏 are written differently than the elements in the group table for 𝑮𝟐; note that 
we know that 𝑮𝟏 = 𝑮𝟐 because we know (by stipulation) that the element a is identical to 0 and 
b is identical to 1. If there were no stipulation, then we would not be able to conclude that 𝑮𝟏 =
𝑮𝟐, nor could we conclude the negation. It is clear that 𝑮𝟐 and 𝑮𝟑 are different groups; elements 
of 𝑮𝟐 are integers, and elements of 𝑮𝟑 are infinite sets.2 So, among 𝑮𝟏, 𝑮𝟐, and 𝑮𝟑, there is one 

 
1 For all texts except Hungerford (2012), groups were introduced before rings, so these results pertained to 
isomorphic groups. For Hungerford (2012), we examined the ring section, since that is where the concept of 
isomorphism is first introduced.  
2 It is not uncommon to see someone name the set of even integers “0”. However, when people do this, they are 
usually explicit that they are adopting this convention. Furthermore, we are not adopting this convention; we defined 
the group 𝐺! to have only the integers 0 and 1 as members. 
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isomorphism class, two groups, and three group definitions. How is the “sameness” between 𝑮𝟏 
and	𝑮𝟐 different from the “sameness” between 𝑮𝟏and 𝑮𝟑? The answer is that 𝑮𝟏and 	𝑮𝟐	are 
identical, whereas 𝑮𝟏 and 𝑮𝟑 are merely isomorphic. Our analysis investigates how common 
introductory abstract algebra textbooks conflate and distinguish these types of sameness.  

  Results and Discussion 
All four texts use the notion of sameness to describe isomorphism. In all the textbooks, the 

notion of sameness is used to establish intellectual need (in the sense of Harel, 2013) for defining 
isomorphism (see Table 1). This is done prior to formally defining the notion of isomorphism, 
and in all four texts is used in the context of Examples Motivating Definitions (EMDs) 
(Melhuish, 2015). 
 

Table 1. Sameness language textbooks use to motivate the isomorphism concept. 
Text Phrase Locations 
Fraleigh “Same algebraic properties”, “structurally 

alike” 
EMD, p.16; EMD, p.28 

Hungerford “Essentially the same”, “have the same 
structure” 

EMD, p.71 

Gilbert & Gilbert “Same structure” Intro, p.137 
Gallian “Same group is described with different 

terminology” 
EMD, p.127 

 
Now that we have established that the notion of sameness is used to motivate and describe 

isomorphic structures, we turn to investigating the ways in which isomorphic structures are or 
are not distinguished from identical structures. While all the texts use the adjective “same”, the 
extent to which they mean truly the same (identical) is a matter of investigation.  
The following table (Table 2) provides a breakdown of each EMD and EFD for “isomorphism” 
in all four texts and how they do or do not distinguish between isomorphism and equality. This 
table delineates by both percentage and total number of occurences whether these examples 
conflate isomorphism with equality (Conflation), whether they distinguish them (Distinction), or 
whether neither happens (Neutral).  
 
Table 2. Conflation vs. Distinction in EMDs and EFDs. 
Type Conflation Distinction Neutral 
EMD 68.42% (13) 26.32% (5) 5.26% (1) 
EFD 16.13% (5) 6.45% (2) 77.42% (24) 
Total 36.00% (18) 14.00% (7) 50.00% (25) 
 

The Neutral instances do not have the potential to conflate or clearly distinguish in the sense 
that no sameness language is used, nor is there any clarification about lack of sameness. These 
mostly include formal language about isomorphism and mostly take place in EMDs. For 
example, Gallian’s Example 1 (2009, p. 129) provides a formal proof that the positive reals 
under addition is isomorphic to the reals under multiplication. Since there is no sameness 
language, and no language comparing these groups, we classify this as “neutral”. The Distinction 
instances clearly differentiate between isomorphism and equality. For example, Gallian provides 
a distinction when they write “It requires somewhat sophisticated techniques to prove the 
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surprising fact that the group of real numbers under addition is isomorphic to the group of 
complex numbers under addition”. By referring to this result as “surprising”, the authors are 
implying that these groups are truly different and not just the same group named differently. 

 Conflations occur in all the texts; every text had an EMD that was a conflation. All the texts 
except for Gilbert & Gilbert use the notion of different names for the same number to 
characterize isomorphism. For example, Gallian writes “The American says, ‘one, two, three, 
four, five,....,’ whereas the German says ‘eins, zwei, drei, vier, fünf,..’. Are the two doing 
different things? No. they are both counting the objects, but they are using different terminology 
to do so”. Recall the earlier discussion about equality versus isomorphism; isomorphic groups do 
not necessarily have the same objects with different names - generally speaking, they actually 
have different objects (the same objects is a special case of isomorphism) and hence are different 
objects. Therefore, by using the idea of same object different name as a motivating example for 
isomorphism has the potential to conflate isomorphism with equality.  

Of course, examples (EMDs, EFDs) are not the only occasion that textbooks have to conflate 
or distinguish isomorphism from equality. There is also plenty of verbiage surrounding informal 
characterizations of isomorphism. For example, Gallian includes a section where they clearly 
distinguish between isomorphism and equality and then announce that they will refrain from 
distinguishing:  “(...) algebraists speak of isomorphic groups as ‘equal’ or ‘the same.’ 
Admittedly, calling such groups equivalent, rather than the same, might be more appropriate, but 
we bow to long-standing tradition.” (2009, p.127). Gilbert and Gilbert implicitly differentiate 
between isomorphism and equality by explaining that they use different names for the operations 
of isomorphic groups (in the context of defining “isomorphic groups”) to clarify that these 
groups have different operations. Although Gilbert and Gilbert do not explicitly state that these 
groups are not identical, they are heavily suggesting it by clarifying that the group operations are 
nonidentical. However, the textbooks tend to use language in informal characterizations of 
isomorphism that conflate isomorphism with equality. For example, Gilbert and Gilbert write the 
following in their informal characterization of isomorphic groups: “They are algebraically the 
same, although details such as the appearance of the elements or the rule defining the operation 
may vary” (2008, p.178). By suggesting that it’s only the appearance of the elements - rather 
than the underlying elements themselves - that change, Gilbert and Gilbert are conflating the 
notion of isomorphism with equality. Fraleigh and Hungerford make similar conflations in their 
informal characterizations of isomorphism, also using the “relabeling” and “renaming” language. 
It seems possible that, when making such a conflation, such authors might be thinking of 
relabeling an isomorphism class rather than an individual group. Case in point, Gallian quotes R. 
Allenby as defining an algebraist as “a person who can’t tell the difference between isomorphic 
systems.”(2009, p. 127). The fact that all four textbooks do not seem to agree on the definition of 
𝑍'	(Hungerford defines its elements as equivalence classes of integers, whereas the remaining 
texts have its elements as integers) corroborates R. Allenby’s characterization. The reader might 
be wondering - if algebraists conflate isomorphism class (of groups) with groups, why shouldn’t 
students? We answer this question with two points: 1) there are other fields of math, such as 
model theory, in which mathematicians do carefully distinguish between isomorphism classes 
and groups (Hodges, 1997) and 2) why introduce “isomorphism” as a concept if equality 
suffices?  Why, then, define the notion of “isomorphism class”? 

Further study of how students interpret these different types of sameness is needed.  In 
particular, would better articulation of the different samenesses produce better results in a real 
world abstract algebra class, and how could that be integrated into effective pedagogy? 
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Disability Accommodations in College: Alarming Discrimination in Mathematics 
 

 Alison Mirin Paulo Tan  
 University of Arizona Johns Hopkins University 

Academic disability accommodations are essential for providing equitable access to education. 
This study examines the barriers that college students face in obtaining their disability 
accommodations in mathematics classrooms. It shows that even when a student has school-
approved disability accommodations, implementing them is often not a straightforward process. 
In particular, the results of this study suggest that college instructors -- including mathematics 
instructors -- are a barrier to students receiving the accommodations to which they are entitled.  

Keywords: disability, equity, discrimination, accommodations 

The SIGMAA on RUME Position Statement on Equity states “An important step towards 
inclusivity involves identifying and removing barriers for full participation (...). These groups 
include but are not limited to: people of color, women, people living in poverty, people with 
disabilities (hidden or otherwise) [emphasis added] (...)” (Committee on Equity and Mentoring, 
2018). Accordingly, our research examines the following research question: what barriers do 
disabled college students - in particular, mathematics students - face accessing their student-
approved disability accommodations? 

Background and Literature 
The Americans with Disabilities Act (ADA, 1990) and Section 504 of the Vocational 

Rehabilitation Act (1973) mandate that tertiary institutions provide reasonable accommodations 
for students with disabilities. With 10% of college students having a disability (U.S. Department 
of Education, National Center for Education Statistics, 2009), these accommodations are relevant 
to a large subset of students. Kim and Lee (2015) confirmed that disability accommodations do 
indeed improve college students’ grade point averages. Mamiseishvili and Koch (2011) found 
that using disability accommodations during their first year in college increased first-to-second-
year retention rate amongst disabled students. Considering this fact, it is paramount that disabled 
math students have access to their accommodations.  

There is literature that, although not specific to mathematics, addresses the various barriers 
that disabled students face. Sometimes students choose not to implement their accommodations 
due to having perceived instructors’ negative attitudes toward such accommodations or having 
had past negative experiences with instructors regarding their accommodations (Hartman-Hall & 
Haaga, 2002; Marshak et al., 2010). Rao (2003) explores the various attitudes that college 
instructors have towards students with disability accommodations. Although mathematics was 
not considered specifically, the study found that the faculty of engineering - a field closely linked 
with mathematics - were less likely than other faculty to report being willing to provide 
accommodations. While Rao’s (2003) study addresses self-reported faculty attitudes, it does not 
examine student experiences, nor does it specifically address the attitudes of mathematics 
instructors. Hence, our research aims to narrow this gap by examining what happens when 
students attempt to implement their school-approved accommodations, with a focus on 
mathematics classrooms.  
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Methods  
Data were collected via an anonymous online survey during the last week of August, 2021. 

To be eligible for the survey, participants had to be at least 18 years of age and have or have had 
school-approved disability accommodations through a US college. Recruitment was done 
primarily through posts on social media (Facebook, Twitter, Reddit, Google Groups). Special 
effort was made to recruit within online communities that were focused on disability (e.g., 
Facebook groups for learning disabilities, neurodivergence, illness, and other disabilities). 
Additional recruitment was done via announcements from one public university’s disability 
services office, as well as requests to professional and personal connections to distribute the 
survey via email and social media. In total, 117 eligible participants completed the survey. 

The first set of questions concerns demographic information, the second set includes 
information about academic background (time in school, number of math courses taken, 
information about in which courses they requested accommodations), and the third set asks 
specific questions about experiences implementing college-approved disability accommodations. 
The third set ends with following question meant to capture a range of negative experiences (this 
question will hereafter be referred to as overall): “True or false: every time that you have 
requested your college/university-approved accommodations from an instructor for any course in 
the USA, that instructor has complied without resistance or hesitation, and without making any 
negative remarks or invasive questions regarding your disability(ies) or accommodation(s)?” 
(Table 1).  

Several questions in the third set allowed the participants to account for experiences 
specifically in mathematics courses. These included negative instructor experiences when 
attempting to implement accommodations (refusal, difficulty, skepticism, remarks, Table 1) 
These questions were placed prior to the culminating overall question in order to encourage 
participants to reflect carefully on different types of experiences before having to simultaneously 
reflect on the multitude of experiences captured by the overall question. Additionally, there was 
a question (disclosure, Table 1) regarding students’ refraining from using their accommodations 
due to fear of their instructor’s perception or response. 

Table 1. Instructor experience questions and their abbreviations. 

refusal 
 

Has an instructor ever refused to comply with your college/university - approved 
accommodations? 

difficulty Has an instructor ever made it difficult for you to receive your college/university 
- approved accommodations? 

skepticism Has an instructor ever expressed skepticism about your disability(ies) or 
disability accommodation(s)? 

remarks Has an instructor ever made a disparaging or negative remark about your 
disability(ies) or your disability accommodation(s)? 

disclosure Have you ever refrained from mentioning your disability accommodation(s) to 
an instructor due to concern over the instructor’s perception of you, your 
disability, or use of accommodations? 
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overall True or false: every time that you have requested your college/university-
approved accommodations from an instructor for any course in the USA, that 
instructor has complied without resistance or hesitation, and without making any 
negative remarks or invasive questions regarding your disability(ies) or 
accommodation(s)? 

The survey ended with an open-ended question prompting the participants to “share anything 
else you would like to about your experience having disability(ies) or disability 
accommodation(s). What do you want your instructors to know? What do you want your math or 
statistics instructors, in particular, to know?”  

Results 
Of the 117 participants who completed the survey, three who reported that they did not ever 

attempt to enact their accommodations were excluded from the analysis. Our findings suggest 
that instructors, including math instructors, often impose barriers to students’ accessing their 
accommodations. We consider the results for two populations: the general population (114 
participants), and the “math population” (44 participants). Before going to the specific results, it 
is worth noting that the average number of years the general population participants spent in 
college is 5.39, their average number of math classes taken is about1 4.27, and the average 
number of math classes in which they attempted to implement school-approved accommodations 
is about 3.07. Also, 34 members of the general population (29.82%) had not ever attempted to 
implement their accommodations in a math course and had hence likely never had the 
opportunity to have a negative experience regarding accommodations with a math instructor. The 
math population includes only those participants who have completed at least three math courses 
and have requested to implement their accommodations in at least three courses. Of the math 
population, their mean completed number of years in college/university is 5.86, the mean number 
of math courses taken is about 7.30, and the mean number of math courses in which the 
participants attempted to implement school-approved accommodations is about 6.80. These 
numbers provide us a sense of how often students have opportunities to have certain experiences 
in implementing their accommodations, particularly in math classes.  

For the overall question (Table 1), 42.98% (49 participants) of the general population 
answered “true”. That means that fewer than half of students answered that they have 
unproblematically been able to implement their accommodations. Additionally, 15.79% (18 
participants) report that an incident leading them to answer “false” occurred in a math course. 
When we narrow to the math population, we have that 16 out of 44 students (36.36%) answered 
“true”. Twelve students (27.27%) answered “false, and at least one incident occurred in a math 
or statistics course”. For this specific question, we look at a third population: students who have 
taken at least one math class and have requested accommodations in at least one math class. For 
this question and population, we have alarming results: 31.25% of this population answered “yes, 
and this happened at least once with a math or statistics instructor”. Due to space constraints, we 
do not explore this population further. However, the fact that the rate of negative experiences 
with math instructors is higher for a single math class rather than three is worthy of further 
exploration.  

 
1 This is a possible slight underestimate. Two people chose “20+” for “number of math courses taken” and “number 
of math courses in which accommodations were attempted to be implemented”, which were coded as “20”.  
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We now move to perhaps the most severe form of disability discrimination discussed in this 
study: instructor refusal to implement or allow college-approved accommodations (the refusal 
question in Table 1). Only 64.91% (74 participants) out of the general population claimed that 
they have never had an instructor refuse their school-approved accommodations. A total of 
5.26% (6 participants) have been refused accommodations in a math course. When we narrow it 
down to the math population, we see that the situation is somewhat worse; 11.36% (5 
participants) were refused accommodations in a math class, and 59.06% (26 participants) 
claimed that they had never encountered a refusal from any instructor. For example, one student 
reports on a math instructor who refused to allow them to take an exam in the school’s testing 
center (to satisfy an accommodation of a distraction-free environment). There are less severe 
situations than refusal that still should not occur, such as instructors imposing any difficulty in 
the accommodation process. Unfortunately, 41.23% (47 members) of the general population 
answered that an instructor has never made obtaining an accommodation difficult, and 14.91% 
(17 participants) answered that this happened at least once in a math course. For the math 
population, 34.09% (15 participants) answered that an instructor had never made it difficult to 
obtain their accommodations, while 29.55% (13 participants) report that a math instructor did 
made it difficult. One student explained that a math instructor initially refused to allow her to use 
her accommodations of recording lectures and taking extra time on exams. 

A student is theoretically protected from revealing their specific disability and disability 
documentation to their instructor. Instead, a school’s disability office vets and approves these 
accommodation requests through documentation from the student’s medical provider(s). Despite 
this rigorous process, some students encounter skepticism from their instructors and might even 
be asked to reveal personal information. Only 64.91% (74) of the participants of the general 
population answered that they had never had an instructor express skepticism about their school-
approved disability accommodations. A total of 8.77% (10 participants) reported on such an 
incident occurring with a math instructor. Amongst the math population, 63.64% (28 
participants) answered “no”, and 18.18% (8 participants) claimed that this occurred with a math 
instructor. One participant explained that a statistics instructor would question them in front of 
their entire class about why they needed their accommodations and claimed that such a 
successful student would not need accommodations. Another participant wrote: “[math 
instructor] said I was lieing [sic] and couldn’t be in a PhD program with my disabilities”.  

In addition to the various immediate obstacles in implementing their accommodations, many 
students faced disparaging remarks from their instructors regarding their disabilities or 
accommodations. Only 57.89% (66 members) of the general population had not encountered any 
disparaging or negative remarks, while 7.89% (9 members) had experienced such remarks from 
their math instructors. Only a minority (47.73%, 21 members) of the math population reported 
that an instructor had never made disparaging or negative remarks about their disability(ies) or 
disability accommodation(s), while 11.36% (5 members) reported that this had happened with a 
math instructor. One participant wrote “I tried to explain my disability to a [math] teacher, and 
they said I should not talk about my disability, because they thought it was something to hide”. 
While a minority of students encountered such negative and disparaging remarks from math 
instructors, the size of this minority is still concerning. 

So far, we have documented a multitude of negative experiences in utilizing 
accommodations. Although a disparaging remark from a faculty member is not necessarily an 
immediate hindrance to using accommodations (a faculty member could make a disparaging 
remark but still not resist a student’s accommodation), Hartman-Hall and Haaga (2002) suggest 
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that perceived negative attitudes of faculty members concerning disabilities and accommodations 
make a student less likely to attempt to implement their accommodations in the future. Hence, 
such disparaging remarks from instructors can indirectly act as a barrier to students having 
access to their accommodations. The results of this study show that 61.40% (70 members) of the 
general population answered “no” to disclosure (Table 1, “Have you ever refrained from 
mentioning your disability accommodation(s) to an instructor due to concern over the 
instructor’s perception of you, your disability, or use of accommodations?”), and 10.53% (12 
members) answered that they had refrained from disclosing in a math or statistics course. Only 
65.91% (29 members) of the math population answered “no” to disclosure, with 13.64% (6) 
specifying “yes, and this happened at least once with a math or statistics course”. One participant 
explained “I was afraid that the professor would think I was making up disabilities or that I was 
lazy. I ended up barely passing the [math] class”. As we can see from the results of skepticism, 
this student’s fear might not have been unfounded. Expectedly, we see a ripple effect; students 
who have had negative experiences in implementing their accommodations (as measured by 
overall) are more likely to have refrained from requesting accommodations (as measured by 
disclosure); 12.2% of students without negative experiences have refrained from implementing 
their accommodations, whereas 49.1% of students with negative experiences have refrained (chi-
square = 16.4474, p<.05). 

Conclusion and Discussion 
This study shows that, even when college students have gone through the documentation and 

vetting process of obtaining college-approved academic disability accommodations, utilizing 
these accommodations can be a problematic process. Specifically, the results suggest that only a 
minority of students always had a straightforward experience in implementing their 
accommodations (as measured by overall), and many of these students had barriers imposed by 
their math instructors. Students experience widespread discrimination from faculty and math 
instructors. This discrimination takes many forms and includes direct barriers to receiving 
accommodations, such as refusal, as well as indirect barriers, such as disparaging remarks and 
skepticism. When a student has a negative experience with an instructor, that negative 
experience has the potential to hinder the student from implementing their accommodations in 
future classes (Marshak et al., 2010). These results are especially concerning in light of the fact 
that accommodations help disabled students succeed by providing access to education. It seems 
that, based on the skepticism question, some instructors might not truly believe that students are 
disabled. 

We end this paper with a participant’s response to “What do you want your instructors to 
know? What do you want your math or statistics instructors, in particular, to know?”: 

“I would like instructors and administrators to know that if they refuse to accommodate a 
student's disability and they don't hear anything else from that student again, it's not 
because everything was fine after that. It's because that student quietly swallowed the 
damage to their dignity and their passion and their trust in the institution, and did their 
best to move on and work around the problem because they simply didn't have the energy 
and resources to fight about it. And their education likely suffered because of it.” 
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Examining the Effects of a Math Intervention Program Designed for Entry Level Undergraduate 

Mathematics Courses  

 

Brooke Mullins 

The University of Virginia’s College at Wise 

This study is an examination of my work as a math intervention coordinator at a small liberal 

arts college. As part of the Strategic Investment Fund, a math intervention coordinator position 

was created at our college to provide support for students in entry level undergraduate 

mathematics courses, often College Algebra. Some students in these courses typically do not 

have the prerequisite skills to be successful otherwise. As the math intervention coordinator, I 

worked one-on-one with students to develop a plan for becoming successful and to track 

students’ progress. The purpose of this report is to present results of this intervention program 

after one semester and to reflect upon its success. Analysis from 15 participants shows that most 

students reported higher grades, better study and time management skills, and overall more 

positive attitudes. 

Keywords: Math Intervention, College Algebra, Student Success 

Oftentimes, students enter college not prepared for what lies ahead of them. Specifically, 

many students are not prepared to take college mathematics courses. As Tague et al. (2020) note, 

many colleges and universities require a placement exam to determine which mathematics course 

students can enter. This often results in students being placed in remedial college algebra 

courses, due to lacking the necessary prerequisite skills from high school. In addition, these 

remedial courses sometimes do not count towards college credits and often limits students from 

completing their degree. Further supporting this concept, Wilkins et al. (2021) found that 

“students who begin their study of mathematics with a College Algebra course or a Precollege 

Algebra course have less than a 50% chance of graduating with a degree in engineering even if 

they receive an A in the course, 40% and 41%, respectively” (p. 628). This means that simply 

being placed in a College Algebra course lowers students’ odds of completing their degree by 

50%. Combined with the issue of not being prepared for College Algebra, the chances of these 

students completing their degree are low. 

At our college, similar to others, students are placed in appropriate mathematics based on 

ACT and/or placement test scores. Although some college and universities have replaced the 

remedial pre-requisite model with the co-requisite model (Rodriguez et al., 2018; Tague et al., 

2020), our college halted both models in Fall 2021 due to state changes and faculty resignations, 

making College Algebra the entry level course. Because many students come to college not 

prepared to take College Algebra, as part of the Strategic Investment Fund (SIF; University of 

Virginia, 2019), a math intervention coordinator (MIC) position was created at our college to 

provide support for students in those entry level courses. The goal of the MIC was to work one-

on-one with students to develop a plan for becoming successful and to track students’ progress. 

The purpose of this study is to examine the effects of implementing this program for one 

semester and to reflect upon its success, as determined by students’ course grade as well as 

faculty and student feedback.  
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Relevant Literature 

College readiness has been at the forefront of educational research for many years. Much of 

this research has focused specifically on the mathematics content, since it was a major predictor 

of student success in the STEM field (Bettinger et al., 2013). In 2018, the National Council of 

Teachers of Mathematics (NCTM) highlighted the deficiencies of our current high school 

mathematics programs. In their book, NCTM (2018) argue that many students leave high school 

underprepared for college. In fact, they claim that 59% of students are not prepared for college 

math. For example, students in a Virginia high school are only required to complete three 

mathematics courses to graduate with a standard diploma (VDOE, 2021). This can be a 

combination of Algebra I, Geometry, Algebra Function and Data Analysis, and/or Algebra II. 

Students can also substitute an approved computer science course for one of these mathematics 

courses (VDOE, 2021). This means that some students who enter college may not have taken a 

mathematics course since their sophomore year, or the highest mathematics course they may 

have taken is geometry. As a result, college and universities are tasked with supporting these 

students’ needs. 

Throughout the literature, there are several supports and interventions that have demonstrated 

increased success in entry level undergraduate mathematics courses. These supports can be 

grouped into two categories: content related supports and non-content related supports. Content 

related supports are those focused on supporting students’ content knowledge and understanding 

of math. These include supports such as tutoring, remediation, and recitation courses (Bettinger 

et al., 2013; Rodriguez et al., 2018; Tague et al., 2020). For example, remediation and remedial 

courses have proven success for students who are underprepared for college math. However, as 

mentioned above, these courses often do not count towards college credit. In addition, co-

requisite or recitation courses have proven success, but finding faculty available or willing to 

teach these courses is often difficult (Rodriguez et al., 2018). Xu et al. (2001) also emphasized 

the benefits of a tutor center, which helped increase students’ College Algebra final exam scores.  

Non-content related supports address concerns such as studying, time management, attitudes, 

and motivation (Credé & Kuncel, 2008; Lane et al., 2017). For example, Downing (2020) noted 

that some students enter College Algebra with positive attitudes about math, and some enter with 

negative attitudes. However, after the use of an intervention, focused on culturally relevant 

pedagogy, many of the students who disliked mathematics changed their attitudes to more 

positive ones. These students left the class finding more value and enjoyment in math. 

Furthermore, Lane et al. (2017) noted that oftentimes, students do not know how to study or are 

afraid to ask for help. Therefore, by creating study habits, developing time management skills, 

and “normalizing help-seeking behaviors” (p. 172), they were able to effectively support students 

who were not prepared for college mathematics. From these studies, it is clear that not only do 

students need support in content, they also often need support in non-content related skills.   

Methods 

The college at which I work is a small liberal arts college in the Southeastern United States. 

There are currently 15 faculty members in the mathematics and computer science department. 

Every student enrolled at the college must take at least six mathematics credits, regardless of the 

major. The lowest mathematics course offered in Fall 2021 was MTH 1010 College Algebra. In 

previous years, students could be placed in a lower mathematics course, MTH 0900 

Mathematics, a credit/no credit only course, which served as a remedial course to prepare 

students for College Algebra. Students could also place in MTH 1010 with the one-hour co-

requisite course MTH 1011 College Algebra Recitation, also offered as credit/no credit. 
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However, due to state changes and faculty resignations, these options were removed for the Fall 

2021 semester. Therefore, the focus of this study will be on MTH 1010 College Algebra.  

In Fall 2021, there were 8 different sections of MTH 1010 College Algebra offered with a 

total of 125 students. Of these 125 students, 53 had placed into MTH 0900 or MTH 1011 based 

on their Act scores and/or the department placement test.  

Data Collection 

The Math Intervention Program. As part of the SIF112 Wise Innovation Ecosystem grant 

(UVA, 2019), a MIC position was created in 2018 in our mathematics and computer science 

department to provide support for students in entry level undergraduate mathematics courses. In 

previous years, the MIC taught and supported students in the MTH 0900 and 1011. However, in 

Fall 2021, with all students being placed in MTH 1010 and with no opportunities for remediation 

or recitation, the department had to develop other ways to support those students. The goal for 

the MIC in Fall 2021 was to revise the old intervention program, increase the number of 

participants in this program, and to promote student success by helping students improve their 

course grades. 

As the new MIC of 2021, I reflected upon the previous intervention program and found that 

in 2018-2019, there were three major factors that were identified as negatively impacting student 

success: (a) life events outside of academics, (b) motivation and not quite understanding how to 

be a college student, and (c) prerequisite knowledge. To address these areas, students were 

offered content related supports through the MTH 0900 and 1011 courses from 2018-2019. 

Students were also offer non-content related supports such as creating weekly schedules and 

developing personal and academic goals. In 2021, I felt these factors were still relevant and the 

interventions were still needed. However, they needed to be revised to accommodate the 

departments new course requirements. 

Student Referrals. Whereas before these students were placed in the MIC’s courses, faculty 

needed a way to refer students to me so I could offer them extra support. As a result, I created 

three options for student referrals: (1) faculty completed a form and emailed it to me, (2) faculty 

submitted the same form on our department’s Moodle page, or (3) use the math intervention 

webpage to complete an online submission form for student referrals. Students could also access 

the online form on the webpage and refer themselves if they felt they needed additional support.  

Student Interviews. Once a student was referred to me, I emailed the student to schedule an 

initial meeting. During this time, I interviewed students to identify their weaknesses, areas for 

improvements, short- and long-term goals, as well as establish a baseline of their current study 

habits. This helped me to determine content related and non-content related supports that would 

need to be implemented. 

Interventions. Reflecting upon the literature, interventions were categorized as content 

related and non-content related supports. The content related supports that I used were tutoring, 

faculty office hour visits, online resources such as Khan Academy, as well as online 

manipulatives. The non-content related supports that I used included creating short- and long-

term goals, as well as developing weekly schedules consisting of time for class, homework, 

tutoring, and studying. I also had students keep a log of their hours so they could track their daily 

progress and ensure they were meeting their goals.  

Tracking Student Progress. From the initial referral, I recorded the intervention 

information in an excel spreadsheet. I then met with each student once a week or every other 

week to reflect upon their progress and re-evaluate their interventions. These meeting notes were 

added to their initial interview document, and general information included in the spreadsheet. 
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Feedback from Faculty and Students. At the end of the semester, I gathered feedback from 

faculty and students about the intervention process. I asked faculty for feedback on the referral 

process and areas for improvements to evaluate its success. I also asked students for feedback 

about the intervention process and areas for improvements. Finally, I revisited each students’ 

goals and determined if they were met or not. 

Data Analysis 

Preliminary data analysis consisted of analyzing the data in the excel spreadsheet. I first 

calculated the total the number of students referred, the number of referrals by instructor, the 

number of referrals made by individual students, the number of meetings per student, as well as 

the number of tutoring sessions they attended. I also analyzed the different interventions used, 

evaluating the most commonly used ones, as well as the ones associated with the greatest 

improvements in grades. In addition, I examined students’ goals to determine if they were met. 

Finally, I reviewed the feedback from faculty and students, identifying the successes and 

weaknesses of the program. This feedback will then be combined with the aforementioned data 

to evaluate the overall success of the intervention program. 

Results 

Initially, there were 25 MTH 1010 students involved in the intervention program. There were 

22 students who were referred by three different faculty members as needing intervention 

support (1, 5, and 16 respectively). There were also three other students who referred themselves. 

Of the 22 faculty referrals, 4 students were referred for attendance, 2 were referred because they 

lacked prerequisite skills, 15 were referred for low quiz/test scores, and 1 was referred for 

“other” reasons: “She seems confident when answering questions in class. This may just be a 

case of a little math phobia....hoping she just needs some positive reinforcement.” Of the three 

student self-referrals, one student referred themselves for low quiz scores and the other two 

indicated “other” reasons, including the following comments: “I have extreme difficulty with 

math to begin with, and this teacher has not been super helpful. I don’t think it is possible for me 

to pass this class without help” and “Feel like I need extra support”. However, five students 

never responded to my emails requesting an initial meeting, five responded but never showed up. 

And 3 dropped MTH 1010 before meeting with me. This resulted in 15 students actively 

participating in the intervention program. 

Although 12 of the 15 referrals were for content related concerns, when looking at faculty 

and student comments, 7 students were noted as having low confidence, “math phobia”, poor 

“planning and management” and poor test taking skills. After interviewing 15 students, I felt that 

12 needed non-content related supports in addition to content-related supports. The other three 

students needed only content-related supports. For these students, I referred them to tutoring 

services. For the other 12 students, we worked on making weekly schedules to better manage 

their time. I also referred them to tutoring services as an additional resource and scheduled 

tutoring time in their week. Then, each week I met with students to revise their schedule to fit 

their needs. For example, just after one week, one student, Erin, wanted to schedule more time in 

her schedule for studying. She wanted even more structure than the first iteration we developed. 

Another student Ona wanted a bit more flexibility in her schedule that would allow her to study 

for specific classes as assignments developed. In this case, we scheduled hour time slots 

dedicated for studying that she could use for whatever assignments, quizzes, or tests she needed 

to complete. In addition to developing a weekly schedule, four students needed support with 
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math and test anxiety. For these students, I gave them resources on how to deal with test anxiety, 

helped them develop study habits, as well as referred them to the counseling. 

Overall, the most commonly used intervention was developing a weekly schedule. These 

students needed structure and specific time designated to studying, doing homework, and 

attending tutoring/office hours. Having this schedule held students accountable for their actions 

as they were required to log and track their activities. For example, Erin improved her weekly 

work and became a better time manager. She noted that she used to stay up until eight o’clock at 

night reading and studying. When she fell asleep she would have to catch up on her overdue 

work the next morning. However, after developing her weekly schedule, she found herself 

becoming more productive and more engaged in her classes. She also noted that logging her 

hours held her accountable and made her more diligent about work. Erin also reported having a 

more positive attitude towards math (faculty noted she had “math phobia” in the beginning). Her 

grade had improved from a C in the beginning to an A as a result of the interventions. 

Looking at students’ grades, 7 of the 15 students reporting having a F in MTH 1010 when we 

first met, 2 had a D, 2 had a C, 2 had a B, and 2 did not know their current grade. Of the seven 

students who reported having an F, at midterm, four still had a F, two had a D and one had a B. 

Of the two that had a D, one dropped to a F and one improved to a B. Of the two that had C, one 

dropped to a F and one improved to an A. Of the two that had B, one maintained a B and one 

improved to an A. Of the two that did not know their grade, one had a D and one had an A. Final 

grades were not posted at the time of this report but will be analyzed in future analyses.   

From student feedback, the interventions helped them become more confident overall. 

Tutoring helped with the content, but having someone to talk to was beneficial for them. Many 

students stopped by during the week just to say hello or to discuss serious personal concerns. 

Students reported that having me as an extra support made their college life less stressful. This 

then impacted their work and engagement in the classroom. Faculty also reported improvement 

not only in students’ content knowledge but also overall attitudes. One faculty member stating 

seeing major improvements in some students’ test scores as well as class participation.     

Discussion 

Many students come to college underprepared for the courses they will soon take. At our 

college, College Algebra is the lowest mathematics course students can currently take. Although 

some students placed into a lower course, everyone was placed in College Algebra. As the MIC, 

it was my job to ensure that these students were supported and could be successful. After 

interviewing students, working one-on-one with them, as well as coordinating tutoring services, 

results of the math intervention program are positive. Students reported better study skills, time 

management, and overall more positive attitudes. Although the majority of students were 

referred for content related issues, many students needed support in other areas outside the 

classroom.   

Questions for the Audience 

(1) How are your students placed into mathematics courses? What is the best approach to 

placement (e.g., ACT scores, placement exam)? 

(2) How do you support students who lack the prerequisite skills for College Algebra? 

(3) What other supports and resources do you think would be helpful to include in this 

intervention program? 
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Comparing the Mathematical Beliefs of Tutors and Teaching Assistants

Vu Pham Erica R. Miller
Virginia Commonwealth University

In this preliminary report, we discuss our efforts to compare the mathematical beliefs of tutors
and teaching assistants. This proposal grew out of our larger project that has focused primarily
on developing a research instrument to measure the mathematical beliefs of tutors. In conducting
that research, we realized that a portion of our population not only works as tutors but also
teaches classes themselves or provides other types of in-class support for students as teaching
assistants. We conjectured that teaching assistants might have a more personal relationship with
the students they support (in comparison to tutors) since they work consistently with the same
group of students. Due to these differences in job responsibilities and interactions with students,
we are curious to know if there are also differences in their mathematical beliefs.

Keywords: tutors, teaching assistants, beliefs, social constructivism

Often, people find mathematics to be difficult. From learning how to solve an algebra
problem to learning theorems and proofs, people of every age have struggled with mathematics.
Helping students overcome these struggles is the main responsibility of mathematics tutors and
teaching assistants. Tutors may work privately with a single student or in a tutoring center
helping many students, while teaching assistants are often responsible for working closely with a
single class. In either case, tutors and teaching assistants help students who are lost and
struggling to understand the material. However, what exactly do tutors and teaching assistants
believe about teaching and learning mathematics? And why do their beliefs matter? We propose
that examining their mathematical beliefs is important because it allows departments, tutoring
centers, and universities to see what their tutors and teaching assistants value when they are
interacting with students. With this information, they help tailor training and professional
development programs to better prepare tutors and teaching assistants to serve their students.

The purpose of this preliminary report is to describe our study comparing the mathematical
beliefs of tutors and teaching assistants (TAs). For the purposes of this study, we use Pajares’
(1992) definition of beliefs as “an individual's judgment of the truth or falsity of a proposition, a
judgment that can only be inferred from a collective understanding of what human beings say,
intend, and do” (p. 316). To help form a collective understanding of our participants’
mathematical beliefs, we collected both qualitative and quantitative survey data and are currently
analyzing the responses to determine if there is a difference between tutor and TA beliefs. This
work stems from a larger project (Pilgrim et al., 2020; Hill-Lindsay et al., 2022) that has focused
on modifying Luft and Roehrig’s (2007) and Stipek et al.’s (2001) surveys of teacher beliefs. Our
hope is that tutors and TAs beliefs align more with a social constructivist view of tutoring as
opposed to a more traditional view of tutoring as the transmission of knowledge. Through this
study, we aim to answer the following research questions:

1. What are the mathematical beliefs of mathematics tutors and teaching assistants?
2. How well do their beliefs align with social constructivism? And does this depend upon

whether they are working as a tutor or a teaching assistant?
3. In what other ways are the beliefs of tutors and teaching assistants similar and different?
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Related Literature on Beliefs

Mathematics Teacher Beliefs Instruments
Initially, we went in search of research instruments designed for studying tutor beliefs. When

we struggled to find one , we expanded our literature search to look at studies of teacher beliefs.1

As a result of our search, we chose to modify teacher beliefs instruments developed by Luft and
Roehrig (2007) and Stipek et al. (2001). We chose Luft and Roehrig’s (2007) Teacher Beliefs
Interview (TBI) protocol because of the open-ended nature of the questions and the underlying
framework. The TBI was designed for science teachers and was based on different views of
science (as rules or facts; as consistent, connected, and objective; or as a dynamic structure in a
social and cultural context). In addition, each question was designed to align with either belief
about learning or beliefs about knowledge. Building on this underlying framework about views
of science, Luft and Roehrig developed a coding scheme to categorize interview question
responses. In AUTHOR (DATE), we took the questions from the TBI along with the coding
scheme and adapted them to fit the context of mathematics and tutors.

After testing our modified questions from the TBI, we realized that coding open-ended
survey questions limited the number of questions we could ask. We also wanted to capture some
additional beliefs that were not addressed by the TBI. So, we returned to the literature in search
of a closed-response instrument to supplement the open-ended questions we had developed.
After reviewing several instruments (Stage & Kloosterman, 1992; Dweck, 1999; Mukina, 2017;
Sandman, 1980; Sun, 2015; Tapia & Marsh, 2002; Gow & Kember, 1993), we decided to modify
the Likert-scale questions from Stipek et al.’s (2001) teacher beliefs survey. While this survey
was designed for middle-grade teachers, it focused specifically on their mathematics beliefs. We
were drawn to this survey because it addressed some beliefs that were missing from the TBI
(e.g., beliefs about the nature of mathematics) but was also built on an underlying framework
that was like Luft and Roehrig’s (2007) view of science. Stipek et al. (2001) constructed their
questions to differentiate between teachers with a more traditional “conception of mathematics
as a static body of knowledge” versus a more inquiry-oriented conception of mathematics as “a
discipline that is continually undergoing change and revision” (p. 214).

Mathematics Tutor and Teaching Assistant Beliefs
Before the development of their TBI instrument, Luft and Roehrig’s research group

conducted a study on the attitudes and conceptions of chemistry graduate TAs (Kurdziel et al.,
2003) and found that most of their participants believed that “students learn by having the
material digested, organized, and clearly presented to them” (p. 1209). Jelfs et al. (2009) adapted
Gow and Kember’s (1993) questionnaire and found that many of the mathematics tutors in their
sample were less oriented towards knowledge transmission but rather had a task-oriented
conception of tutoring. Goertzen et al. (2009; 2010a; 2010b) published several papers on the
beliefs of physics graduate TAs. Through their study, they found that beliefs are
multidimensional and not easily modified (2009), but they also advocate for respecting the
beliefs and experiences of TAs (2010a). Finally, Youde (2020) published a recent study on tutor

1 We did find one survey that was designed to measure tutor’s self-efficacy beliefs (De Smet et al., 2010). However,
this survey was designed for tutors that worked in a remote, asynchronous environment (answering student
questions posted on a discussion board).
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perceptions, beliefs, and practice within blended learning environments and found that
“perceptions and beliefs provided a valuable insight into the actions and motivations of tutors”
(p. 1). However, we have yet to identify a study that has conducted a comparison of the
mathematical beliefs of tutors and teaching assistants, which is what we aim to do.

Theoretical Framework
As we searched for instruments to measure teacher beliefs, we found that Luft and Roehrig

(2007) and Stipek et al. (2001) constructed their instruments based on similar frameworks. We
were drawn to these frameworks because they aligned with our own conception of different
views or approaches to tutoring. While they used different terms, we have decided to use the
ideas of traditional tutoring and social constructivism to describe our theoretical framework.

Traditional Tutoring
On one end of our theoretical spectrum, we define traditional tutoring as focused on the

transmission of knowledge, particularly mathematical rules or facts. While the term “traditional
tutoring” is not often used in literature, we chose to use it as it mirrors the more popular term
“traditional teaching.” A tutor or teaching assistant who has more traditional beliefs would value
efficiency in performing mathematical procedures and manipulating symbols, regardless of
whether the student demonstrates understanding. Because of this, traditional tutors are more
likely to focus on answering student questions quickly, instead of helping the student understand
the mathematics and connect what they are learning now to what they learned previously or will
learn in the future. Traditional tutors would also view mathematics as an innate ability and
categorize some individuals as a “math person.” Traditional tutors usually control the
conversation between themselves and the students, give step-by-step explanations to answer the
students' questions, and expect the student to sit and listen quietly. Though traditional tutoring is
not all bad, the foundations of these beliefs do not reflect what our discipline has learned about
best practices for teaching and tutoring mathematics.

Social Constructivist Tutoring
On the other end of our theoretical spectrum, we describe tutoring beliefs that align more

with social constructivism (Vygotsky, 1980). Again, we have not found other references that use
the term “social constructivism” to apply to the tutoring setting, but we feel that this concept best
fits the underlying foundations of Luft and Roehrig (2007) and Stipek et al. (2001). A tutor
whose beliefs align more with social constructivism would encourage students to work together
while the tutor provides minimal guidance. Social constructivist tutors would believe that the
best way to learn mathematics is to work collaboratively and discuss their ideas. They would act
as a guide, helping bring students together and assisting them if they are stuck or struggling to
proceed. These tutors also strive to help students understand the connection between the content
that they are learning now to the content that they learned previously or in the future. Social
constructivist tutors also believe that anyone can be successful at mathematics and deny the
notion of being a “math person.” While social constructivism is not the only theory of learning, it
is supported by the literature and aligns with our own personal beliefs concerning best practices
for teaching and tutoring mathematics.
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Methods
In the first phase of our project (Pilgrim et al., 2020), the research team modified the

open-ended questions from Luft and Roehrig's (2007) and administered a survey to
undergraduate and graduate tutors and teaching assistants. Using a modification of Luft and
Roehrig's coding scheme, we coded the open-ended survey responses from participants into five
categories: instructive, flexible, transitional, responsive, or adaptive. As a result, we were able to
plot tutors' and TAs' beliefs as heat maps to see how each participant's answers varied from one
another. In the second phase (Hill-Lindsay et al., 2022), we used cognitive interviews to continue
refining our open-ended questions and began adapting Likert-scale questions from Stipek et al.
(2001). For the third phase of the project (which is the focus of this preliminary report), we
administered an online survey in the summer of 2021 that included the modified questions from
Luft and Roehrig (2007) and Stipek et al. (2001).

Participants
Initially, we planned only to administer the survey at one institution and compare responses

from tutors who worked in the mathematics help center with TA who supported our precalculus
classes. However, our response rate was low (N=3), so we decided to send the survey out to tutor
center directors across the United States. As a result, we ended up with 66 responses. However,
39 of our respondents either left all open-ended questions blank or responded to them with a lack
of serious intent to respond genuinely (e.g., responding to every question with “a”). We also had
one incomplete response that was an obvious repeat of the subsequently complete response (the
open-ended responses were almost identical). We assume that this individually accidentally
ended the survey before finishing and started over. An additional four responses were incomplete
and removed from our final data set. This left us with only 22 complete responses to analyze.
Demographic information from these 22 participants can be seen in Table 1.

Table 1. Participant demographic information

Demographics Count

Degree Level (Select One)
Undergraduate
Graduate

13
9

Current or Recent Job (Select All that Apply)
Tutor
Teaching Assistant
Learning Assistant
Instructor

18
9
4
4

Job Responsibilities (Select All that Apply)
I work with students outside of the classroom (in tutoring centers, office hours, etc.)
I work with students during class, but don’t teach the main lecture or lead breakout
discussion sections
I don’t teach the main lecture, but I lead breakout discussion sections for students
I teach the main lecture for the entire class

21
9

4
7
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Data Analysis
For the open-ended questions, we are currently conducting a qualitative analysis to

categorize responses using Pilgrim et al.’s (2020) coding scheme. Once we have completed our
coding, we will group responses in the following ways and look for similarities/differences: by
questions, constructs, individual responses, and subgroups (tutor versus TA). For the Likert-scale
questions, we plan to conduct a quantitative analysis to calculate basic descriptive statistics (e.g.,
mean, median, mode, frequency, standard deviation, spread). Like our qualitative analysis, we
will group responses and look for similarities/differences. Finally, we hope to have a large
enough sample size so that we can use inferential statistics to test our hypothesis that the
mathematical beliefs of tutors and teaching assistants are different.

Preliminary Results
Although we have not yet coded all our responses to the survey, we were able to analyze the

first three open-ended questions for Participants 1-3. Participants 1 and 3 were both graduate
students, while Participant 2 was an undergraduate. Participants 1 and 3 were either currently
working or had worked recently as both tutors and the instructor of record for their own course,
so we classified them as both tutors and teaching assistants. On the other hand, Participant 2 was
just a tutor. Although this sample size is small, it provided us with the opportunity to conduct a
preliminary comparison of their responses and begin to gain insight into how tutors’ and teaching
assistants’ beliefs are similar and different. One interesting preliminary result we found was in
regard to our question on how they facilitate student learning when they are working with a
student. Participants 1 and 3 (the graduate TAs) responded in ways that aligned more with social
constructivist beliefs, as they mentioned “reassuring [students] when they make mistakes” and
connecting mathematical concepts to everyday life to help the students understand what they are
learning. However, they did not talk about encouraging students to collaborate with each other,
so we coded their beliefs as transitional. Participant 2, on the other hand, had a more traditional
approach to facilitating learning. This participant was very focused on knowledge transmission,
stating that they would work out the problems step-by-step and ask the student to listen and
repeat once finished. Therefore, we coded Participant 2 as having more traditional beliefs. As we
code our remaining responses, we are curious to see if this trend of TAs having more beliefs that
align with social constructivism (in comparison to tutors) continues.

We look forward to discussing the following questions with the audience:
1. What types of statistical analyses could we run on our Likert-scale questions, given that

we have a small sample size (N=22)?
2. What are the consequences of categorizing participants who have worked recently as the

instructor as a “teaching assistant”? Are they “too different” from tutors because they
have classroom experience as a teacher of record?

3. Is it reasonable to categorize participants who work as both tutors and teaching assistants
as just “teaching assistants”?
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Using Network Analysis Techniques to Probe Student Understanding of Expressions Across 
Notations in Quantum Mechanics 

 
 William Riihiluoma Zeynep Topdemir John R. Thompson 
 University of Maine University of Maine University of Maine 

One important outcome of physics instruction is for students to be capable of relating physical 
concepts and phenomena to multiple mathematical representations. In quantum mechanics 
(QM), students are asked to work between multiple symbolic notations, some not previously 
encountered. To investigate student understanding of the relationships between expressions used 
in these various notations, many of which describe analogous physical concepts, a survey was 
distributed to students enrolled in upper-division QM courses at multiple institutions. Network 
analysis techniques were shown to be useful for gaining information about how students relate 
these expressions. Preliminary analysis suggests that students view Dirac bras and kets as more 
similar to generic vectors than to their physically analogous wave function counterparts, and 
that Dirac bras and kets serve as a bridge between vector and wave function expressions. 

Keywords: Network Analysis, Quantum Mechanics, Notation 

There has recently been a focus in research at the boundary of physics and mathematics in 
upper-division quantum mechanics (QM) (e.g., Wawro et al., 2020), including a focus on the 
three mathematical notations (Dirac, wave function, and vector-matrix) used to describe identical 
or analogous physical concepts and phenomena (Gire & Price, 2015; Schermerhorn et al., 2019). 
A comprehensive understanding of how expressions in these notations interrelate and how to 
translate between them is crucial for a deep understanding of QM (Wawro et al., 2020). One 
challenge facing upper-division education research is the relatively low sample size when 
compared to research conducted in the lower division, as this affects the generalizability of 
claims. This is particularly true in quantum mechanics, where the order in which these different 
notations are introduced—based primarily on the instructor’s choice of textbook—can drastically 
affect the focus of instruction and thus the eventual conceptual understanding of the students. We 
have implemented network analysis techniques to probe students’ conceptual connections 
between symbolic expressions, allowing for much larger sample sizes than is typically feasible 
for this research context. To that end, we address the following research questions: How can 
network analysis techniques be leveraged to study students’ conceptual connections between 
expressions in quantum mechanics, and what are the connections that these techniques show? 

Prior Research on Quantum Notations and Network Analysis  
The various notations used in upper-division quantum mechanics have different affordances 

and limitations for computation, both from an expert point of view (Gire & Price, 2015) as well 
as in students’ work (Schermerhorn et al., 2019). Additionally, incorrect translations between 
wave function and Dirac expressions causes students to struggle when developing models for 
determining probabilities (Wan et al., 2019). The ability to reason between and among different 
mathematical representations has been linked to understanding of QM concepts (Wawro et al., 
2020), and work has been done to create instructional materials to aid students in working fluidly 
among multiple representations (Kohnle & Passante, 2017). 

Network analysis techniques such as community detection and cluster analysis have recently 
been used extensively to study response groupings for various conceptual inventories in physics 
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education research (Brewe et al., 2016; Wells et al., 2019; Wells et al., 2020; Wells et al., 2021; 
Wheatley et al., 2021; Yang et al., 2020). Members of the research in undergraduate mathematics 
education community have used social networks among teachers to study community and 
coaching among educators (Hopkins et al., 2017; Smith et al., 2017), while students’ social 
networks have been studied across multiple fields to study how they impact academic 
performance, persistence, self-efficacy, and anxiety (Hopkins et al., 2017; Thomas, 2000). 

Study Design and Methodology 
The survey was designed with two primary goals in mind: to easily collect and analyze 

responses from many students, and to create a dataset that allows for analysis of students’ 
conceptual connections between mathematical expressions commonly used in QM—particularly 
those used to express probability concepts. To achieve the first goal, the number of free-response 
text entry questions were minimized to reduce participant attrition. This meant that the second 
goal would need to be achieved without much in the way of written responses showing explicit 
student reasoning. The questions therefore were designed as sorting tasks, where students were 
given a list of expressions as well as a single concept and asked to select all of the expressions 
which could represent that concept—see Figure 1 for an example. The survey consisted of 11 
different concepts, with the same 16 expressions to choose from. This entirely relation-based 
dataset—between both expression-concept pairs as well as pairs of expressions used for a given 
concept—makes network analysis an ideal choice. The survey was distributed to three different 
institutions, including two public land-grant research universities in the American northeast and 
one private midwestern liberal arts college, for a total of 27 participants. Of these participants, 20 
were in classes that taught Dirac notation prior to wave function notation (“spins first”), and 
seven were taught wave functions prior to Dirac notation (“functions first”). 

 
Figure 1. Example of the survey task for the “Dot Product” concept. 

Data Analysis and Results 
The first step in data analysis was the creation of a weighted network with the 16 expressions 

as nodes, with the connections between them—known as edges—weighted by the number of 
students that used the two expressions for the same concept at least once in the survey (Figure 2). 
The larger network was then broken into communities of more closely connected expression 
nodes. The method chosen for detecting these communities involved measuring the number of 
geodesic paths between every pair of nodes in the network that pass through each edge, known 
as the edge’s betweenness (Girvan & Newman, 2002). The edges with highest betweennesses are 
those that connect communities within the larger network. This is because if two communities 
exist within a network there will, in general, be fewer edges connecting between the two than  
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Figure 2. Network with expressions as nodes and occurrences of students using two expressions for a concept as 
edges. Edge weights are visualized with color, where red corresponds to higher weight and yellow to lower weight. 

there are within each community—thus those few connecting edges will bear the load of all the 
geodesics traveling between the nodes in each community, causing them to have large 
betweennesses. In this community-detection algorithm, the betweenness of each edge in the 
network is calculated, and then the edge with the largest betweenness is removed. This 
calculation and subsequent removal of the edge with maximum betweenness repeats until all of 
the edges in the network are removed, eventually leaving all nodes fully disconnected. The 
process of removing one edge at a time gives a cascading hierarchy of communities in the 
network, with larger communities eventually being divided into constituent sub-communities 
that are themselves more strongly connected to their own members. The hierarchical structure of 
the communities found using this method can be visualized by a dendrogram (Figure 3). 

 
Figure 3 Dendrogram displaying the community structure of the network shown in Figure 2. Vertical height is 
proportional to number of edges removed between community divisions. Letters correspond to those on Figure 5. 

Figure 3 suggests that the first distinction students drew was morphological: the first division of 
the network was into “single-term” and “double-term” communities. Individual functions, 
vectors, Dirac bras and kets, and quantum mechanical operators were grouped together, while 
expressions that contained Dirac bra-ket pairs, two vectors, or two functions—inner products—
all shared their own community. However, these community separations clearly have conceptual 
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distinctions to the students as well. Almost immediately upon dividing into single- and double-
term communities, the z-component spin operator (𝑆መ௭) was excluded from the other single-term 
expressions. This is of interest for two reasons. First, both physically and mathematically 
speaking, an operator is very much unlike any other single-term element. Second, 𝑆መ௭ and 𝚥̂ share 
many wholly morphological similarities; the fact that they were clearly not viewed as similar to 
students is an encouraging sign that the students were attending to actual physical and 
mathematical meaning and not merely focusing on morphological distinctions. 

Figure 3 also gives insight into the relative strengths of conceptual connections between 
notations. The second division to occur within the single-term community is that of the two wave 
functions (𝜓(𝑥), 𝜑ଷ(𝑥)) splitting off from both the Dirac bras and kets and the generic vector 
expressions. These edges and communities are, due to our survey design, entirely based on 
expressions that students view as conceptually similar, suggesting that Dirac bras and kets may 
be more closely associated with vector ideas than with concepts associated with wave functions. 

Aside from the information to be gleaned from the hierarchical community structure alone, 
the structure within the communities as they are being separated into their sub-communities can 
also be used to investigate how certain expressions are connected, as well as what that means for 
the expressions’ conceptual connections. This connective structure can be teased out by 
investigating the minimum vertex cut sets (MVCSs) between expression pairs throughout this 
cascading network decomposition. The MVCS between two nodes in a network is the smallest 
set of nodes that need to be removed to entirely disconnect the two nodes in question, and can be 
used to see which nodes tend to connect any pair of nodes. At the stage of the network 
decomposition shown in Figure 4a, for example, there are two single-node (size-1) MVCSs 
between ⟨𝜓|𝜓⟩ and | ∫𝜓(𝑥)∗𝜓(𝑥)𝑑𝑥 |ଶ: {⟨𝐸ଷ|𝜓⟩} and {|⟨𝐸ଷ|𝜓⟩|

ଶ}. Likewise, in Figure 4b the 𝚥̂ 
and 𝜑3(𝑥) nodes have one MVCS of size 3, made up of the Dirac bras and kets: {|𝐸ଶ⟩, |𝜓⟩, 
⟨𝐸ଵ|}. This is reflective of the apparent symmetry in the community’s structure, where the Dirac 
expressions appear to serve as a sort of bridge between the wave function and Dirac expressions. 
The size, number, and elements contained within the MVCS(s) between any two nodes is liable 
to change as the edge-betweenness algorithm plays out and in fact the metric becomes entirely 
meaningless if the two nodes in question ever become connected directly, as at that point the 
only vertex that can be removed to separate the two would be one of the two nodes themselves. 

 
Figure 4. Network partway through betweenness algorithm showing (a) double- and (b) single-term communities. 

To investigate whether this apparent Dirac-bridging is meaningful beyond the single cross-
section of the betweenness algorithm shown in Figure 4, the MVCS between wave function and 
Dirac expressions can be examined throughout the community detection process. Moving 
upwards from the bottom of the dendrogram, where all edges have been deleted and thus all 
nodes are disconnected, can be thought of as playing the edge-betweenness algorithm 
backwards; this allows for the MVCSs between the pairs of vector and wave function 
expressions to be observed as the communities are being “formed.” The MVCSs between the 𝚥̂ 
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and 𝜑3(𝑥) nodes serve as an illustrative example of this, as shown in Figure 5. The 25th edge 
added into the network provides the first connection between 𝚥̂ and 𝜑3(𝑥) (point A on Figs. 3 and 
5), and the very next then expands the MVCS between the two from {|𝜓⟩} to {|𝜓⟩, |𝐸ଶ⟩}. This 
remains the only MVCS for three more edge-additions before the MVCS expands again to {|𝜓⟩, 
|𝐸ଶ⟩, ⟨𝐸ଵ|}. This remains the stable MVCS as the next 21 edges are added, during which the two 
double-term communities merge (B), 𝑆መ௭ rejoins the single-terms (C), and even the single- and 
double-term communities reconnect (D). The next edge added directly connects 𝚥̂ and 𝜑3(𝑥), 
thus making the MVCS between them meaningless. The 𝚥̂–𝜑3(𝑥) pair serves as an illustrative 
example: the Dirac expressions are always the most prominent connectors between the function 
and vector expressions, and remain so after all of the communities have connected. 

 
Figure 5. Graph displaying MVCSs for the 𝚥̂-𝜑ଷ(𝑥) node pair. Letters correspond with those on Figure 3. 

Conclusions, Discussion, Implications for Further Research 
Our survey and analysis using network techniques appears to be able to isolate students’ 

conceptual knowledge as it applies to expressions in the various notations used in QM. This 
combined with the scalability of both the data collection and analysis methods is an encouraging 
sign of the ability of these techniques to study a large number of students at a large number of 
institutions. The methods described above will only improve with a larger sample size, and so 
there is likely more to be learned about students’ conceptual connections between expressions 
across notations in QM if these techniques are applied more broadly. Our data suggests that 
students think of Dirac bras and kets as a blend of wave function and vector ideas. This is an 
encouraging finding, as that is effectively exactly why Dirac invented the notation in the first 
place. What is interesting, however, is that students appear to more closely link the Dirac bras 
and kets to vector ideas—likely due to their mathematical utility—than to ideas associated with 
wave functions, the connection to which is almost entirely grounded in a physical understanding. 

Within this QM context, network analysis could be used to expose differences in students’ 
thinking about various expressions due to either institutional context or pedagogical focus. We 
suspect that the networks formed by students in courses where Dirac notation is introduced first 
would differ greatly from those in courses focused largely on wave functions. Our current data 
pool is not large enough to make claims in this regard, but future work may show whether any 
distinctions become apparent. There are a number of areas where this type of data collection and 
analysis could bear future use, such as with expressions associated with integrals and sums, both 
in calculus as well as in physics contexts such as electromagnetism or thermodynamics.  
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Connecting Sameness in Abstract Algebra: The Case of Isomorphism and Homomorphism 
 

 Rachel Rupnow Rosaura Uscanga Anna Marie Bergman 
 Northern Illinois University Mercy College Simon Fraser University 

Despite the importance of seeing connections across courses, limited work has examined how a 
common mathematical theme, sameness, is understood across disciplines. In this paper, we 
examine how fifteen abstract algebra students explained the nature of mathematical sameness 
and contextualized isomorphism and homomorphism. Results include students’ explanations of 
sameness, mainly by use of examples, as well as the aspects of homomorphism and isomorphism 
that the students highlighted when describing the concept to people unfamiliar with it. 

Keywords: Abstract Algebra, Sameness, Homomorphism, Isomorphism 

Mathematicians recognize and have defined a variety of ways to convey sameness of 
mathematical objects, including equality, isomorphism, and homomorphism. Furthermore, they 
specifically identify these relationships as types of sameness and recognize subtleties in the 
differences among these types of sameness (Rupnow, 2021; Rupnow et al., 2021). However, it is 
not known whether math majors, including students in abstract algebra, recognize and 
distinguish between types of sameness in similar ways or to what aspects students attend when 
considering mathematical sameness. In this paper, we examine the following research question: 
How do abstract algebra students describe sameness, isomorphism, and homomorphism? 

Background Literature and Theoretical Perspective 
Equivalence is threaded throughout the foundations of mathematics (Asghari, 2009; Asghari, 

2019) and notions of equality are central to students’ early schooling and beyond (e.g., National 
Governors Association Center for Best Practices, 2010). However, students do not always have a 
deeply conceptual understanding of equality, which impacts their ability to engage with algebraic 
topics (e.g., Alibali et al., 2007; Kieran, 1981). As students reach college mathematics, more 
complex ideas of equivalence arise such as isomorphism in abstract algebra. Early work on 
isomorphism understanding showed students and researchers associate isomorphism and 
sameness, whether through direct instruction on this connection (e.g., Leron et al., 1995) or 
independently by students (e.g., Dubinsky et al., 1994), and subsequent research has confirmed 
references to sameness in the context of isomorphism by students and professors (e.g., Rupnow, 
2019; 2021; Weber & Alcock, 2004). However, despite early work on students’ understanding of 
mathematical sameness (e.g., Melhuish & Czocher, 2020), how students understand 
mathematical sameness and draw upon it to understand concepts like isomorphism is not as 
clear.  

In this study, we drew on the notion of example space (e.g., Watson & Mason, 2005) to 
characterize how abstract algebra students viewed mathematical sameness as well as 
isomorphism and homomorphism. Example spaces can be viewed as a collection of examples 
intended to highlight both the dimensions of possible variation and the range of possible 
variation of a particular topic (e.g., Goldenberg & Mason, 2008; Mason & Watson, 2008). For 
example, to have a robust example space of operations, one would want to attend to dimensions 
of variation like the number of inputs, while the range of variation includes the different options 
in the dimensions (e.g., unary, binary, trinary). Here we provide a composite example space 
generated by students to highlight dimensions of variation and the range of variation of 
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mathematical sameness as well as ways that isomorphism and homomorphism explanations 
related to these notions of mathematical sameness. 

Methods 
We conducted an open response survey at three doctoral-granting institutions across the 

United States to gain insight on students’ understanding of sameness. Students actively 
registered in abstract algebra were invited to participate. At each institution the algebra course 
offered during data-collection was listed in the course catalogs as available to both 
undergraduate and graduate students. Therefore, participants were either undergraduate or 
graduate students. We are sharing responses to four of fifteen survey questions that best capture 
students’ ideas about sameness. Data consists of fifteen students’ responses amongst the three 
institutions.  

Two researchers simultaneously coded the responses based on dimensions of variation 
highlighted in Rupnow et al. (2021). This coding generated groupings of students’ descriptions 
of isomorphism and homomorphism. In a second round of analysis, all the researchers came 
together to refine the previous coding, focusing on identifying subcomponents of and/or holistic 
approaches to isomorphism and homomorphism that were highlighted by the students.  

Results 
We categorized students’ descriptions of sameness from their responses to “What does it 

mean to be the same in a math context?” and “How do you know two things are the same in 
abstract algebra? Is this the same or different from other classes?” Highlighting five dimensions 
of variation used to describe what it means to be the same in math: concept, type of object, 
properties, discipline, and levels of strength. The subsequent section focuses on students’ 
descriptions of types of sameness, isomorphism and homomorphism, to a ten-year-old. 

Sameness 
A majority of students (11) referred to defined mathematical concepts to describe 

mathematical sameness. Numerous students highlighted isomorphism (6) or equality (6): 
The meaning of “same” in a math context is a vague one. We can say two groups are the 
same if there exists an isomorphism between them, but the elements of the respective 
groups may be different. We may also say things are equal which is a different meaning 
than isomorphism but also implies a form of sameness. 
Others focused on equivalence relations (3), equivalence classes (2), homeomorphism (2), 

identicality (2), categorical equivalence (1), homomorphism (1), or bijection (1). For instance: 
We can say two groups are the same if they are isomorphic, meaning there is a bijective 
homomorphism between the two ... In topology for example we can find a 
homeomorphism between two topological spaces which is a kind of equivalence relation 
... In general we can talk about equivalence of categories. 

Notice this participant highlighted a number of concepts, including equivalence relations and 
categorical equivalence. Most participants who used concepts only focused on one or two; 
nevertheless, collectively we can see they attended to a variety of concepts. 

Other dimensions of variation that arose were related to underlying objects and properties 
conveying sameness. Seven students noted types of objects to which sameness considerations 
can be applied: “Same does not just mean identical sets, or spaces, or rings, etc. Same means 
there exists a bijection between the sets so that one element of a set is mapped onto an element of 
the second set.” This response lists multiple objects (sets, spaces, rings) that could be permitted 
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to vary and still convey a notion of sameness. Other participants highlighted groups, other 
spaces, and categories. Six students mentioned properties as relevant to sameness--one 
highlighted cardinality and truth value, and another commutativity and identity, but the other 
four students did not describe what was meant by “properties.” For instance: “Having a common 
structure and common properties [sameness in math] … They are isomorphic. They have the 
same structure. I think the concept is different if you look into set theory for instance” [sameness 
in algebra]. While we might infer relevant properties given the isomorphism response to the 
second question, which properties exactly should be the “same” were left unspecified. 

Given the set-up of the second question, we expected to receive responses contrasting 
abstract algebra’s and other disciplines’ versions of sameness. However, while seven participants 
alluded to disciplines in some way, most provided a general contrast between abstract algebra 
and other math courses, such as: “In abstract algebra, when two things are the same, it does not 
necessarily mean that they are equal as it would in other math classes. Rather, it means that their 
algebraic structures are equivalent.” This student seems to be drawing a contrast between 
isomorphism and equality, which does convey different types of sameness; however, this student 
did not expand on why we might attend to different types of sameness in different contexts. 

Finally, students also attended to different levels that sameness might possess (3). One 
provided an extended response (multiple paragraphs including five axioms, three definitions, and 
some additional commentary) in which they attempted to rigorously define their understanding 
of sameness and in their conclusion noted that the level of sameness we talk about can vary: 

We often discuss sameness without meaning “exactly the same”. Here, we reduce our 
scope to specific properties and check to see if two things have these specific properties 
in common. Then we call them the same in some sense. Other times, if two things have 
exceptionally close property values we might call them (knowing that it is strictly untrue) 
the same. So, in a math context, when one declares two things to be the same, one may 
mean they are exactly the same. See above. Or, one may mean only some of their 
properties are the same. This is almost always intuited, or explicitly given, in context. 

Notice this student highlights a distinction between being “exactly the same” and “the same” and 
these notions can be defined on the properties of interest in the given context.  

In summary, students highlighted a variety of aspects of sameness, including types of 
concepts that convey sameness, different levels of sameness, and underlying objects that may be 
of interest, though some students were more specific than others. We use this characterization of 
sameness to inform how students interpreted the notions of isomorphism and homomorphism. 

Isomorphism and Homomorphism 
Turning our attention to the responses to the isomorphism and homomorphism prompts, we 

expected there to be fewer dimensions present. Due to the questions asked, we anticipated the 
type of object and discipline dimensions to be absent, and the concept was obvious since each 
question was specifically focused on a single concept. Therefore descriptions of isomorphism 
and homomorphism were primarily analyzed for their use of properties and levels of strength. 

Isomorphism. When describing an isomorphism to a ten-year-old, students provided a range 
of responses. Some responses (7) attended to only part of the isomorphism concept: either the 
bijection or the homomorphism property. For example, two students focused primarily on the 
bijection without any reference to the homomorphism property, such as the following: 
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Consider a collection of dogs and a collection of glasses. If we can find a way to put a 
pair of glasses on each dog with no dog getting more or less than one pair of glasses, then 
we have a set isomorphism between the set of glasses and the set of dogs. 

The focus here is on matching each dog to exactly one pair of glasses, thus highlighting the 
bijection. The other responses (5) attended to the homomorphism aspect of isomorphism without 
explicit attention to the bijection, usually focusing on shared behavior as seen below: 

You are isomorphic to your reflection. Everything you do, the reflection does also, but 
backwards. … if I first consider the motion, then its reflection, or I consider the reflection 
first, and then perform the equivalent motion, the result I get is the same. 

Observe the notion of operate then map or map then operate of the homomorphism property is 
modeled in the reflection example as reflect then move or move then reflect. 

Some responses (6) attended to both the bijection and homomorphism property. For example:  
Imagine you and your friend open your lunch boxes. You have a peanut butter and jelly 
sandwich, they have a turkey sandwich. You have carrot sticks, they have celery sticks. 
You have a cookie, your friend has a brownie. You both start by eating your sandwich, 
then your vegetable sticks, then … you eat your desserts. You both had the same type of 
things in your lunch and ate them in the same order, even though the exact items were not 
identical. Your lunch is isomorphic to your friend’s lunch since each of your lunch items 
behaved the same compared to the other items in your lunch, and you had the same 
number of items. 

The bijection appears through matching parts of the meal (e.g., each have a sandwich) and the 
homomorphism property through the purpose of each part of the meal (e.g., each have an entree). 

The remaining two students focused on relabeling, as can be seen by this response: “An 
isomorphism allows you to rename everything in a group of things but everything in that group 
will still interact with each other in the same way.” This relabeling could be interpreted as 
attending to same behavior (related to the homomorphism property) but was not explicit in the 
component(s) of the isomorphism definition being attended to.  

Homomorphism. When describing a homomorphism to a ten-year-old, students struggled to 
articulate examples that captured the mathematics accurately while remaining relatable to 
children. Some (5) made no attempt or provided unclear explanations: “I would just give them 
the basic definition f(x + y) = f(x) + f(y). Then go through some basic examples.”  

Students who provided context-appropriate examples (10) offered descriptions that varied in 
their mathematical accuracy while highlighting sometimes multiple approaches to the prompt. 
Five students incorporated a levels of strength argument as they contrasted their isomorphism 
and homomorphism understandings: “a homomorphism is when two things might not have the 
same amount of things or look the same, but still have the same properties. A good example of 
this would be scrambling an egg or cooking it like an omelette.” In their isomorphism response, 
this student said isomorphic objects “have the same amount of things and same properties but 
may not look the same” but here weakened the cardinality requirement. Some students (4) 
focused on same properties or behavior:  

Two things are homomorphisms when they look different, and in fact are different things, 
but they both do the same thing. For instance, you could have a toy car and a toy truck. 
They both look different and are indeed different things. But both of them drive! 

Notice this student seems focused on behavior invariance, though the specific properties that 
remain invariant under the homomorphism are no longer evident.  
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Others (3) attempted to attend to partition creation under a homomorphism. For instance: 
A homomorphism exists from A to B if A can be folded up and fit inside of B. This is 
most visually obvious for graph homomorphisms, but showing how Z_8 folds up to fit 
inside of Z_2 can also be a good way to approach the idea.  

While the accessibility of graph homomorphisms to children is a bit questionable, this student 
made a collapsing analogy to explain what happens under a homomorphism. One student 
modified their prior isomorphism example with reflections (above) by using shadows instead:  

You are homomorphic to your shadow. It’s really similar to your reflection, but unlike 
your reflection, other things can impersonate your shadow--like cardboard cutouts. In the 
end, though, moving my hand, and then looking at my shadow will give the same result 
as looking at my shadow, and then moving my hand. 

Similar to their isomorphism response, the homomorphism property arises in their discussion of 
being able to move and then look at their shadow or look at their shadow and then move. (Notice 
this also relates to levels of strength, as they contrast isomorphism and homomorphism.) 

Discussion and Future Work 
Using the theoretical framing of example spaces, we found students’ descriptions of 

sameness were comparable to those of mathematicians (e.g., Rupnow et al., 2021). The same 
codes that were present in mathematicians’ descriptions (concept, type of object, properties, 
levels of strength, and discipline) were present in the students’ responses. Students used a variety 
of mathematical concepts to describe sameness (e.g., equality, isomorphism, and equivalence 
relations) across a variety of mathematical objects (e.g., rings, sets, and spaces). Responses 
highlighted properties such as cardinality along with levels of strength distinguishing exactly the 
same from just the same. Lastly, several disciplines were mentioned (e.g., algebra and topology). 

Based on the set-up, we largely forced students to try to engage with the isomorphism and 
homomorphism prompts by highlighting levels of strength or properties. Most students were able 
to describe some properties of isomorphism (thirteen represented the homomorphism property 
and/or bijection clearly), and all engaged with the prompt. In contrast, students struggled to 
articulate mathematical properties of homomorphism through examples that were both relatable 
to children and mathematically correct. While it is possible the students could have identified 
problems with their analogies in an interview setting, we found it troubling that many could not 
find a way to engage meaningfully (five unclear/definition-focused responses) or focused on 
what a homomorphism is not (e.g., lacking the bijection requirement, shown by comparing to 
isomorphism). This may also be a widespread struggle. Prior work examined two instructors who 
attended to both the bijection and homomorphism property for isomorphism but struggled to find 
a relatable example maintaining equal partitions for homomorphism (Rupnow, 2021). Moreover, 
relatable examples exist. One could modify the isomorphism lunch example given above by 
having one meal consist of four pieces in each case (a sandwich in lunch one and four chicken 
nuggets in lunch two, one brownie in lunch one and four cookies in lunch two, etc.), which 
would maintain the equal partitions and a type of “same behavior” in the meal. Further work 
should examine how mathematicians and students understand properties of isomorphism and 
homomorphism, both to help clarify individuals’ understandings of these properties and to 
examine how these properties do or do not permit variation, in keeping with notions of sameness.  
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Transitioning from Location-Thinking to Value-Thinking: The Case of Colin 

 

 Benjamin Sencindiver Cameron Byerley 

 CUNY Graduate Center University of Georgia 

This report begins documenting how students transition from one way of thinking to another 

when reasoning with graphs. We describe students’ understanding of graphs and graphed 

quantities using the constructs of location- and value-thinking (David et al., 2019). We draw on 

constructivist learning theory (von Glasersfeld, 1995) to account for how one student, Colin, 

transitions from location-thinking to value-thinking. We describe Colin’s activity with a task, and 

highlight key points that supported him in accommodating his graphing schemes. 

Keywords: Graph, Location- and Value-Thinking, Representational Activity, Schemes, 

Accommodation 

In precalculus and calculus, students often reason with graphs and link graphs with 

algebraically defined expressions such as difference quotients. Past research highlighted how 

students can think about graphs of functions (David et al., 2019; Monk, 1994; Moore & 

Thompson, 2015) and points on a graph (David et al., 2019; Thompson & Carlson, 2017). 

However, the research literature has paid less attention to how students transition from one way 

of thinking to another. 

We focus on how a student transitioned between location- and value-thinking (David et al., 

2019) using constructivist learning theory to account for changes in the thinking of one student, 

Colin. In analyzing Colin’s thinking, we investigate the question “What aspects of Colin’s 

thinking supported him in transitioning from location-thinking to value-thinking?” 

Theoretical Perspective 

We understand learning as the process of a person assimilating information to their schemes 

and accommodating their schemes to make sense of new experiences (Steffe & Thompson, 2000; 

von Glasersfeld, 1995). A scheme is “an organization of actions, operations, images, or 

schemes—which can have many entry points that trigger action—and anticipations of outcomes 

of the organization's activity” (Thompson et al., 2014, p.11). Assimilation involves a learner 

recognizing information fits into their existing schemes, while accommodation of a scheme 

involves a learner modifying their scheme to account for new information (Steffe & Thompson, 

2000). In a given moment, a learner’s scheme for a concept is the result their past 

accommodations, that is, the reorganization of their previous schemes in ways that the learner 

has found helpful in their experiences. Hence, a student’s thinking that may seem non-standard 

to an expert has likely proven productive for the student in the past.  

We also use research on students’ quantitative reasoning-- a form of reasoning about 

situations where students conceptualize the quantities involved and relationships between them 

(Thompson, 2011; Thompson & Carlson, 2017). Graphs represent pairs of quantities, where the 

graphed quantities can be represented as the measures of directed magnitudes in reference to the 

coordinate axes (Joshua et al., 2015; Lee et al., 2019).   

Location-Thinking and Value-Thinking 

We draw on the constructs of location- and value-thinking (David et al., 2019) to describe 

Colin’s understanding of outputs of functions on a graph. According to David and colleagues 
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(2019), students engaging in value-thinking think of the output of a function for a given input 

value as a single value. These students further understand a point on a graph as a pair of values 

[e.g. (input, output)], and a graph of a function as a set of input/output pairs. Students engaging 

in value-thinking think about points in reference to the axes, conceiving of points as comprised 

of two quantities measured in orthogonal directions. Students engaging in location-thinking think 

of the output of a function for a given input value as a point lying in the Cartesian plane along 

the graph of the function. Further a student engaging in location-thinking treats a point on a 

graph as indistinguishable from the resulting output for a given input value and a graph of a 

function as a collection of spatial locations in the Cartesian plane. A student engaging in 

location-thinking tends to focus on the spatial aspects of a graph, such as the position of points, 

without focusing on the measured distance between the point and each axes.  

One feature David and colleagues (2019) used in their coding scheme was based on where 

students placed labels for outputs in a graph. For example, placing a label f(a) along the vertical 

axis is indicative of value-thinking, as is labeling a point on the graph as a coordinate-pair (a, 

f(a)). Placing a label f(a) on a point along the curve is indicative of location-thinking, as this 

conveys that the point on the curve is the output. David and colleagues (2019) provided two 

graphs of a function with labels indicative of value-thinking ( 

Figure 1a) and location-thinking ( 

Figure 1b) to illustrate the differences in students’ labeling activity in  

Figure 1 below. 

 

 
          (a)                       (b)   

Figure 1: A visual model of student work indicative of value-thinking (a),  

 and location-thinking (b). (David et al., 2019) 

Methods 

Data for this study were collected as part of a larger study that aimed to understand how 

students’ understanding of a graph of a function impacted their thinking about the derivative of a 

function for a fixed input. We focus on Colin’s activity on one task he solved during the first 

week of classes before his calculus course covered material about instantaneous rate of change. 

Colin was chosen for this analysis because he showed a productive transition from location- to 

value-thinking that helped him better understand the difference of two outputs. He illustrates the 

productivity of value-thinking, and the possibility of students to engage in it with relatively 

minor intervention. The other students in the study did not appear to change their approach to the 

task or the interviewer intervened in a major way. 

The task used Cartesian axes oriented in the conventional manner and asked students to 

represent both the outputs of two inputs and the difference between those outputs. The task, 

inspired by Thompson and colleagues (2014), is in the figure below (Figure 2). 
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 Consider the graph of the function 

f(x). The lengths of colored line segments 

represent the quantities a and h. Both the 

x- and y-axes have the same scale length. 

 

Represent the following quantities. 

I. f(a) 

II. f(a + h) 

III. f(a + h) - f(a)  
 

 
Figure 2: The interview task  

The task is intended to provide information about the schemes that a student uses when 

reasoning with a graph in non-numerical, non-computational ways. This task does not provide 

algebraic expressions for the function nor numerical or algebraic labels along the axes (besides 

the independent and dependent variables) in order to help funnel students into using their 

graphing schemes. These choices were purposefully made so that students’ understandings of 

output in the graphical context were at the forefront of their mathematical reasoning, instead of 

computation. Analysis from earlier versions of this task revealed that some students computed 

outputs and differences of outputs of functions numerically and only then matched the computed 

numerical value to a label presented on the graph rather than reasoning with magnitudes 

represented in the graph. For this reason, inputs of the function were represented as lengths of 

line segments to further support students in reasoning with magnitudes depicted in the graph. 

These decisions also provided practical affordances to our research. Since students needed to 

reason with the magnitudes represented in the graph and create labels and markings themselves, 

this allowed the interviewer to inquire about new markings that the student created. Hence, 

students’ resulting activity would support the research team in categorizing students’ thinking 

about the output of functions in terms of location-thinking and value-thinking. 

To further investigate the relationship between students’ understanding of output and 

differences of outputs, students were asked to represent f(a+h)-f(a). We anticipated that students 

using value-thinking would be able to productively represent the difference of the two outputs, 

particularly where the ‘y-coordinate’ of a point was a vertical directed distance, either 

represented from the x-axis to the point on the curve or from the origin along the y-axis. We 

expected students using location-thinking when representing f(a+h)-f(a) to either have trouble 

conceiving of ‘the difference of two points’ or to accommodate their graphing schemes (about 

outputs).  

Data was analyzed using theoretical thematic analysis (Braun & Clarke, 2006) where we 

coded instances of students’ reasoning about output as either location-thinking or value-thinking. 

Colin’s activity on the task was divided into two episodes because his understanding of f(a) had a 

marked change during the task. We used thematic analysis to capture keys aspects of Colin’s 

thinking that seemed to support him in transitioning from location- to value-thinking.   
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Results 

Colin’s First Episode: Location-Thinking 

When beginning his work on the task, Colin’s conveyed meaning of output aligned with 

location-thinking. To represent f(a), Colin first labeled a along the horizontal axis by measuring 

a rightward distance of a from the origin and creating a dot labeled ‘A’ (see Figure 3). Colin then 

represented f(a) by identifying the point on the curve “straight above that (A)”. He used a similar 

process to represent f(h) and f(a+h), specifically measuring the input length along the horizontal 

axis from the origin and identifying the output of the given input as the point on the curve above 

the corresponding marking. Colin constructed the length a+h by concatenating the lengths a and 

h. Colin also conveyed a meaning aligned with location-thinking verbally when he was 

describing his work when representing f(h), saying “so this down here is the value of h as an 

input, and the output using h is right there”, where he then created the dot on the graph 

corresponding to f(h). Both Colin’s labeling activity and his descriptions suggest that Colin is 

engaged in location-thinking. 

 
Figure 3: Colin’s work after having plotted f(a), f(h), and f(a+h) 

When first describing the difference of the outputs f(a+h) and f(a), Colin temporarily 

understood f(a+h)-f(a) as the point f(h). However, after reflecting on his work, Colin revised his 

meaning of difference of outputs as a difference of coordinates pairs. 

Colin: But if you’re doing this [gestures to the point f(a+h) on the curve] minus this [gestures 

to the point f(a)], then you’re subtracting two… coordinates. Cause this [gestures to the 

point f(a+h) on the curve] is a coordinate. It’s standing in for an ‘x-comma-y-value’. So 

I’m wondering how would you take, um, ‘x1, y1’[writes ‘(x1, y1)’] and subtract ‘x2, y2’ 

[writes ‘-(x2, y2)’]. 

Colin’s Perturbation – Reorganizing his Schemes 

When asked about whether he had subtracted coordinate-pairs before, Colin said that this was 

not a familiar process to him and indicated that he wanted pairs of values for the points. The 

interviewer then provided numerical coordinates and asked the student what f(a+h)-f(a) would 

mean to him. Colin then accommodated his graphing schemes. He indicated that he had labeled 

his graph incorrectly, saying “I marked these [pointing to the point labeled ‘f(a)’] as if they were 

the outputs, but if they were the outputs, it would just be the y.” Colin began reflecting and 

revising his previous responses, and gestured to the prompt f(a). He said,  

Colin: This [f(a)] should be equal to a y-value, because that’s the x … so like, ‘y=f(x)’, and 

since a is what we’re putting in the x, this [gesturing to f(a)] should be the y-value, so 

then I should only be worried about that value [y-coordinate of the point currently labeled 

f(a+h)] minus that value [y-coordinate of the point currently labeled f(a)]. 

 

24th Annual Conference on Research in Undergraduate Mathematics Education 1140



When asked to represent this graphically, Colin at first said that he was not sure how to 

represent the difference of outputs graphically, but later he drew a vertical line segment from the 

point (a+h, f(a+h)) down to the height of the point (a, f(a)). While reflecting on why he 

represented the difference in this way, he expressed his commitment to sense making, saying “I 

was just drawing it out and trying to think about some answer that made any sense.” 

After being perturbed when considering f(a+h)-f(a) as a difference of coordinates, Colin 

began to consistently think of the output as the y-coordinate of the point he had been thinking 

about, that is, engaging in value-thinking. At the end of this interview, Colin confirmed this. 

Colin: If you’d asked me at the beginning, having not just thought about it for a long time, [I] 

would have said that it [f(a)] was the point. But now that I think about, like, it’s like y= 

f(x), and all we did was substitute the a there, so I would say that this [f(a)] is the y-value.  

Discussion 

During Colin’s transition from location-thinking to value-thinking, there were several 

features of his thinking that seemed critical. The first was Colin’s expectation that his activity 

would align with his prior mathematical experiences. This was clear when Colin became 

perturbed when considering the difference of two coordinate points, given that he said that 

subtracting coordinate pairs was not familiar to him, and expressed that he was used to working 

with numbers. We suspect that Colin had seen and reasoned with quantities written in function 

notation in prior coursework, particularly with algebraically defined expression and with graphs 

with number axes. Hence Colin was seeking for his graphical activity to align with his prior 

mathematical knowledge. In other words, Colin expected that his graphing schemes would align 

with his other mathematical schemes. This desire to connect his current activity with his 

knowledge helped Colin become perturbed and reject his current understanding of f(a). 

The second key feature was Colin’s recognition throughout the task that points in the plane 

were measured in reference to the axes. When talking about points, Colin would mention 

coordinates, and these normative frames of reference seemed to support him in leveraging the 

equation as y=f(x) as a useful tool. We suspect that his measurement activity within these frames 

of reference also supported him in coming to represent quantities productively. The third feature 

we’ll highlight was Colin’s ability to draw on his knowledge of algebraic symbolism to navigate 

through his state of perturbation and root his activity in his prior mathematical knowledge. Once 

perturbed, Colin began accommodating his graphing schemes when he revisited how he 

represented f(a) and connected it to his meaning of the equation y=f(x). Colin justified that f(a) 

had to be a ‘y-value’, and then contended that f(a) was the y-coordinate of the point he had been 

talking about.  

Conclusion 

While there is much research about students’ understanding of graphs and quantities 

represented in graphs (David et al., 2019; Lee et al., 2019; Moore et al., 2019), less work has 

been done to understand how students transition between these different ways of thinking. This 

case study adds to the literature by providing a task that can perturb students thinking in an 

productive way and beginning to document what features of students’ thinking appear to support 

students in this change. Further work is needed to understand if there are commonalities between 

these factors or if these factors vary across grade levels. Future research may look to understand 

how students connect multiple representations, and what sort of teacher moves can help instill 

dispositions to unite students’ mathematical knowledge across different representational systems. 

24th Annual Conference on Research in Undergraduate Mathematics Education 1141



Acknowledgments 

We would like to thank Janet Oien and Jess Ellis Hagman for their support in collecting these 

data and their additional guidance with this work. 

References 

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in 

Psychology. https://doi.org/10.1191/1478088706qp063oa 

David, E. J., Roh, K. H., & Sellers, M. E. (2019). Value-thinking and location-thinking: Two 

ways students visualize points and think about graphs. Journal of Mathematical Behavior, 

February. https://doi.org/10.1016/j.jmathb.2018.09.004 

Joshua, S., Musgrave, S., Hatfield, N., & Thompson, P. W. (2015). Frames of reference. 

Proceedings of the 18th Annual Conference on Research in Undergraduate Mathematics 

Education, 31–44. https://doi.org/10.7208/chicago/9780226317267.003.0002 

Lee, H. Y., Moore, K. C., & Tasova, H. I. (2019). Reasoning within quantitative frames of 

reference: The case of Lydia. Journal of Mathematical Behavior. 

https://doi.org/10.1016/j.jmathb.2018.06.001 

Monk, G. S. (1994). Students’ Understanding of Functions in Calculus Courses. Humanistic 

Mathematics Network Journal, 1(9), 21–27. https://doi.org/10.5642/hmnj.199401.09.07 

Moore, K. C., Stevens, I. E., Paoletti, T., Hobson, N. L. F., & Liang, B. (2019). Pre-service 

teachers’ figurative and operative graphing actions. Journal of Mathematical Behavior, 

February 2018. https://doi.org/10.1016/j.jmathb.2019.01.008 

Moore, K. C., & Thompson, P. W. (2015). Shape thinking and students’ graphing activity. 

Proceedings of the 18th Annual Conference on Research in Undergraduate Mathematics 

Education, 782–789. 

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying 

principles and essential elements. In R. Lesh & A. E. Kelly (Eds.), Research design in 

mathematics and science education (pp. 267–307). Erlbaum. 

Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. Hatfield, 

S. Chamberlain, & S. Belbase (Eds.), New perspectives and directions for collaborative 

research in mathematics education. (WISDOMe Mo, Vol. 1, pp. 33–57). University of 

Wyoming. 

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational 

ways of thinking mathematically. In J. Cai (Ed.), Compendium for research in mathematics 

education (1st ed., pp. 421–456). National Council of Teachers of Mathematics. 

Thompson, P. W., Carlson, M. P., Byerley, C., & Hatfield, N. (2014). Schemes for thinking with 

magnitudes: A hypothesis about foundational reasoning abilities in algebra. In Epistemic 

algebra students: Emerging models of students’ algebraic knowing (pp. 1–24). 

von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. Falmer 

Press. https://doi.org/10.4324/9780203454220 

 

 

24th Annual Conference on Research in Undergraduate Mathematics Education 1142



 
 

Ways of Thinking and Ways of Understanding in the Formal World: 
Students’ Perspectives on Nature of Proofs in Second Courses in Linear Algebra    
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Many mathematics departments offer a second course in linear algebra. However, research on 
teaching and learning the topics in second courses are scarce. To help fill this gap in the 
literature, in this study, we interviewed 18 students taking a second linear algebra course in both 
the USA and Ireland. The theoretical framework is based on Tall’s (2008) formal world of 
mathematical thinking and Harel’s (2008) ways of thinking and ways of understanding. The goal 
of the study was to gain an understanding of the teaching and learning of linear algebra proofs. 
This paper examines the nature of linear algebra proofs from students’ perspectives.  

Keywords: proof, definitions, formal world, ways of thinking, ways of understanding  

Background 
 Linear algebra is an important topic for many mathematics majors. In a survey paper by 

Stewart, Andrews-Larson, and Zandieh (2019), the authors summarized some advances in many 
areas of linear algebra education (e.g., span, linear independence, eigenvectors, and eigenvalues). 
These studies highlight students’ thought processes and difficulties while making sense of these 
concepts. The authors also identified areas needing more research and revealed some gaps in the 
literature. For example, research on how students make sense of linear algebra proofs is scarce. 
Research on topics in second courses of linear algebra, which contain more abstract content, is 
also desperately needed. The Linear Algebra Curriculum Study Group (LACSG) recommended 
that “at least one second course in matrix theory/linear algebra should be a high priority for every 
mathematics curriculum” (Carlson, Johnson, Lay, & Porter, 1993, p.  45). The LACSG 2.0, 
which was formed in 2018, recommends that mathematics departments offer a variety of second 
courses (e.g., numerical linear algebra) and include wider topics (Stewart et al., 2022). We have 
no data on how many mathematics departments in the US offer a second course. 

The current literature on linear algebra proofs is in the context of both first and second 
courses. For example, a study by Stewart and Thomas (2019) aimed to uncover the perceptions 
that first-course linear algebra students held of proofs. Data were collected through student 
interviews, and the study discovered that students viewed proofs differently than 
mathematicians. The authors concluded that the rigor and structure of certain proofs might hinder 
students’ understanding, although those same traits are preferred by mathematicians. It was 
suggested that the goal of researchers and linear algebra educators should be to find a better 
method to bridge this knowledge gap between seasoned mathematicians and mathematicians-in-
training. In another study, Cronin and Stewart (under review) analyzed 227 feedback comments 
from 44 tutors over a period of six years about their interactions in a math help center with 82 
students taking second courses in linear algebra. Their findings indicated that the most common 
areas of difficulty were basis, vector space, subspace, span, and proof. Britton and Henderson 
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(2009) performed a study focused on students’ views on proofs about subspaces (in the context 
of a second course). They noted that “most researchers agree that it is the abstract and highly 
theoretical nature of [linear algebra] that is the primary cause of [the course’s] difficulty” (p. 
964). In particular, students had difficulty moving “from the abstract mode in the definition to 
the algebraic mode in which the question is framed” (p. 966). Both Hannah (2017) and Britton 
and Henderson (2009) agreed that the number of new definitions which linear algebra students 
must learn to begin writing proofs is overwhelming and makes learning proofs more difficult. 
Malek and Movshovitz- Hadar (2011) used interviews and one-on-one workshops to determine 
the effect of using their “Transparent Psuedo Proofs,” or TPPs, in teaching first-year linear 
algebra proofs. Their results showed that, for non-algorithmic proofs, students who learned using 
the TPPs wrote more in-depth and satisfactory answers than students who learned proofs 
traditionally. For algorithmic proofs, both groups of students performed equally. In their words, 
the use of TPPs is successful because the “TPP serves as a mediator between the abstract level of 
the proof and students’ abstraction ability, being a concrete model of the flow-of-ideas in the 
proof, or, in a way, a worked-out example of the problem of proving the theorem” (p. 55). Malek 
and Movshovitz-Hadar (2011) reflected on “three assertions [which] constitute meta-linear-
algebra-knowledge or meta-proof-knowledge that mathematics education researchers and 
practitioners alike keep searching for...” (p.55). These assertions “have to do with the gain in 
reconstructing a proof, in explaining the main idea underlying the proof and in constructing a 
(somewhat similar) new proof” (p. 55). Malek and Movshovitz-Hadar developed a method of 
teaching proofs that utilized the unique nature of non-algorithmic linear algebra proofs while 
remaining focused on students’ understanding of these proof techniques. Likewise, Uhlig (2002) 
developed a novel teaching technique compared to the traditional Definition, Lemma, Proof, 
Theorem, Proof, Corollary (DLPTPC) to teach linear algebra proofs. His technique includes the 
following questions: “What happens if? Why does it happen? How do different cases occur? 
What is true here?”  (p. 338). In his view, “subject specific ‘What, Why, and How?’ sequence of 
exploratory questions generally gives students a deep conceptual understanding because this 
enforces the first principles of linear algebra and gives them the tools to master the subject 
matter” (p. 338). 

Theoretical Perspectives 
 As part of the framework of three worlds of mathematical thinking, Tall (2008) asserted that 

the formal world of mathematical thinking, which is based on formal definitions and proofs, 
“reverses the sequence of construction of meaning from definitions based on known objects to 
formal concepts based on set theoretical definitions” (p. 7). Harel (2008) introduced the notion of 
a mental act as actions such as interpreting, conjecturing, justifying, and problem solving, which 
are not necessarily unique to mathematics. Harel (2008) also defined the notion of a way of 
understanding as “a particular cognitive product of a mental act carried out by an individual” (p. 
269), and a way of thinking as “a cognitive characteristic of a mental act” (p. 269). For example, 
“proof schemes are ways of thinking associated with the proving act” (p. 271), and a proof is a 
way of understanding. Harel asserts that the ability to reason abstractly, generalize, structure, 
visualize, and reason logically comes under the umbrella of ways of thinking. Considering Tall’s 
views on the formal world of mathematical thinking in conjunction with Harel’s (2008) ways of 
thinking and ways of understanding, as our theoretical framework, the overarching research 
question for this project is: What are some ways of thinking and ways of understanding 
necessary for grasping linear algebra proofs in the formal world?  

24th Annual Conference on Research in Undergraduate Mathematics Education 1144



The overall goal of this study was to understand the teaching and learning of linear algebra 
proofs. In this paper, we examined the nature of linear algebra proofs from students’ perspectives 
and what makes linear algebra proofs arguably different from proofs in other areas of 
mathematics.  

Method 
This case study is part of a more extensive study on proofs in linear algebra. The authors 

were both teaching a second course and collaborated on this study. The research team consisted 
of a researcher in mathematics education specializing in linear algebra education, a research 
mathematician working on linear algebra and linear algebra education, and two undergraduate 
research assistants. The team interviewed 18 undergraduate students after completing the second 
course in linear algebra, six students from the US, and 12 from Ireland. The goal was not to 
compare the students from different countries but rather to gain as much understanding as 
possible by considering both groups of students.  

The linear algebra course in the US was proof-based and used the text Linear Algebra Done 
Right (Axler, 2015). Abstract Linear Algebra course is the only second course in linear algebra 
offered at this mathematics department. As the name of the course indicates, this proof-based 
course is highly theoretical. The course is also slash-listed, meaning that graduate students can 
also take it since many do not have an adequate background in linear algebra and often benefit 
from taking this course. A second course in linear algebra usually attracts mathematics majors 
primarily. However, because of the increasing importance of linear algebra in business and 
industry, some computer science, meteorology, and physics majors (to name a few) also take the 
second course in linear algebra. The US students in this study were all seniors who had taken one 
other advanced course, such as abstract algebra or analysis. The course covered the following 
topics: Vector spaces and their properties (including special Vector Spaces such as Isomorphic 
Vector Spaces and Invertibility), subspaces, span, and linear independence, bases, dimension, 
linear maps, polynomials, eigenvalues, eigenvectors, and invariant subspaces, inner product 
spaces/ operators on inner product spaces (The Spectral Theorem, Self-Adjoint, and Normal 
Operators, etc.), and trace and determinant. The course was taught as a mixture of lectures and 
group work, as students rearranged the room to sit in groups of 3-4. The instructor handed out 
several theorems with their proofs and engaged the students in a variety of activities, including 
evaluating proofs for clarity, elegance, and other criteria. On occasions, students were given 
paper cuttings of a proof to reassemble. Students also came to the front of the class and presented 
their own proofs or explained an existing one. Students were also given homework assignments 
to unpack a proof in their own words and sometimes came up with different proofs and presented 
them to the class. Both undergraduate research assistants in this study have taken this course in 
the past with the first author. 

The course in Ireland introduced the theory of vector spaces and linear transformations, with 
an emphasis on finite dimensional spaces. The main topics were: vector spaces over a field, 
axioms of a vector space, subspaces, spanning sets, linear independence, bases, dimension, linear 
transformations and matrices, isomorphism, the rank-nullity theorem, eigen theory, 
diagonalization, inner-product spaces, and orthonormal bases. There was no prescribed text for 
the course. Lectures were delivered through the straight-lecture route of definition-theorem-
proof. For example, the treatment of the concept of basis in lectures followed a traditional 
approach: (i) introducing the definition of the span of a set of vectors as the smallest subspace 
containing that set of vectors, (ii) linking in with the previous notion of subspace; and (iii) 
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proceeding to the definition of linear (in)dependence and the definition of basis as a linearly 
independent spanning set. 

The interviews took about 40-45 minutes. They were audio-recorded and later transcribed. A 
sample of the interview questions was: Which of the following proofs are convincing to you and 
why (Pythagorean theorem; Gram-Schmidt procedure; Characterization of Isometries, Complex 
and Real Spectral Theorems)? What is the purpose of the proofs in linear algebra? Describe the 
nature of the proofs in linear algebra. Is there a difference between linear algebra proofs and 
abstract algebra or real analysis proofs? How can we best teach linear algebra proof in order to 
enhance your learning experiences? What were the best techniques that were presented in class 
that helped you with proofs? 
Open coding (Strauss & Corbin, 1998) was performed to analyze the data. The common themes 
for the question related to examining the nature of linear algebra proofs and some initial codes 
are shown in Table 1.  
 
Table 1. An initial list of themes and codes for students’ perspectives on the nature of linear algebra proofs. 
Connections to 
other concepts; 
many definitions 
and theorems;  
 

Visualization and 
intuition 
 

Similarities or 
differences of 
concepts/proof topic 
regarding other 
branches of math 

Style of proof 
 

Spiderweb of 
concepts 

 
Linear algebra proofs 
rely on 
other/prerequisite 
knowledge  

 
Definition heavy 
 

Less algebraic than 
other branches of 
math 
 
Spatial intuition  

  
“Logical leap” vs. 
trial and error for 
proof-writing 
 

Unique 
 
Self-contained 
subjects and 
definitions (not 
reliant on other 
branches) 
  
Conceptually difficult 
 
Different from 
Applied Math courses 
and proofs 
 
Progressively getting 
to the destination 

Length of proofs 
 
The ratio of words to 
symbols 
 
Level of difficulty 
 

 

Preliminary Analysis   
Our preliminary data analysis suggested that students pinpointed some specific aspects of 

proofs in second linear algebra courses. For example, according to student 1 from the US 
(S1US), definitions play a significant role in a second course of linear algebra. Also, one needs 
several definitions together. 

 
  S1US: to me, this was a lot more reliance directly on the definitions and using several 

definitions together rather than, in prior classes we’ve just done like this equals this 
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because of this rule, which equals this view of this rule…working with definitions is, is 
sort of a new, like we, we saw a little bit in discrete math, and then again in linear algebra 
a little bit, but, um, with like, this was definitely the most intense definition heavy, math 
that I’ve taken. 

 
Student 3 from the US mentioned the structure of proofs and the ability to progressively 

reach the destination without worrying about small things along the way.   
  
S3US:  It’s like a lot of structure with a lot of linear algebra stuff.   
       I enjoyed like being able to, to really not have to worry about the fact that or not    
      having to worry about any type of convergence or doing epsilon delta proofs like you 

would an analysis. They’d get kind of messy, and you’re just trying to almost like the 
little, the little thing that makes everything fall. It didn’t feel the same with Linear 
Algebra. It felt much more like you’re progressively getting to your destination rather 
than how can I find the one little key that or one little like modification to this Delta or 
Epsilon to make this work. And I thought that was pretty enjoyable. 

 
Student 5 from Ireland used the analogy of spiderwebs to express his views on linear algebra 

proofs.  
 
S5IR: Well, in linear algebra, we start with definitions, right? We, we start by defining some 

things. Now in most cases, it’s from, we have some prior knowledge of what we’re trying 
to describe here. So then we have, we, we form our definitions based on these things. 
Um, then we make other, maybe in the background, again, we’re having other 
observations about what’s is how these definitions are interacting or whatever, and we 
maybe have some conjectures in their heads. Do we want to prove, so in that case, you 
just take these, you take these definitions, and then you come up with that theorems and 
proofs and it just kind of spiderwebs outgrows far more complicated. Yeah. Just from 
where we started.  

 
 As we continue on this new terrain of research, we plan to develop the theoretical 

framework further, complete the coding of the data, and analyze the data by employing the 
framework. Our analysis will also include some recommendations for teaching proof in seconds 
courses.  

Discussion Questions 
1. How to successfully network Tall’s (2008) and Harel’s (2008) theories? 
2. We are in the process of gathering more classroom data. What other additional data 

should we collect from students?   
3. We are also in the process of performing a series of in-depth studies with several 

instructors of the second course in linear algebra. What are some research questions 
we should consider as we plan these studies?   
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Unpacking a Gateway Mathematics Change Initiative in Response to a State Mandate
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Postsecondary institutions nationwide continue to grapple with issues related to retention and
completion within gateway mathematics courses. Many states have put forth legislative mandates
to address this pressing issue. The MPIE project investigates the change initiative at one
two-year institution, SCHSI, while assisting local stakeholders in developing and facilitating
professional development. This article discusses the initial findings from the first year of the
project, highlighting silos of knowledge that exist across groups committed to supporting student
success in gateway mathematics courses at SCHSI. Recommendations are suggested for how
de-siloing might occur within and beyond the MPIE project with the goal of promoting
sustainable change in gateway mathematics courses.

Keywords: Gateway Mathematics, Systemic Change, Professional Development

Introduction
Southern California Hispanic Serving Institution (SCHSI) is a two-year Hispanic serving

institution geographically located near the southern border of the U.S. Like many two-year
colleges, SCHSI has been working on ways to address problems related to student retention and
completion. Developmental education has been cited as a pervasive obstacle for students, and a
deterrent for future participation in the science, technology, engineering, and mathematics
(STEM) fields (Ngo & Park, 2020). Many students begin their SCHSI academic journey by
enrolling in developmental mathematics courses which do not provide transfer-level credit. Of
these students, less than 10% of them graduate within three years, while 40% of them never
complete the developmental sequence (The Campaign for College Opportunity, 2018).

In accordance with state Assembly Bill 705 (AB705), SCHSI has reduced their
developmental course offerings which has allowed for students to enroll directly into
transfer-level mathematics courses (e.g., for STEM-intending students this includes College
Algebra, Trigonometry, and Precalculus). AB705 mandates that two-year colleges “maximize the
probability” that students will attempt and complete these courses within their first year of
enrollment (AB705, 2012). In addition, this mandate, which was first implemented at SCHSI
during the Fall 2019 semester, instructs institutions to eliminate placement exams and instead use
multiple measures (e.g., high school GPA, high school grades, previous course enrollments) in
student placement.

Mathematics Persistence through Inquiry and Equity (MPIE) is a National Science
Foundation-funded project focused on redeveloping gateway mathematics courses at SCHSI.
While prior research have documented change initiatives and best practices for implementing
sustainable change within organizations (Bolman & Deal, 2008) and departments at four-year
institutions (e.g., Reinholz & Apkarian, 2019; Quan et al., 2019), there is little research on how
these methods can be adapted or reimagined for the two-year college context. Thus, the primary
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goals of the MPIE project are (a) to study SCHSI’s response to AB705 and provide insight into
the classroom environments in gateway mathematics courses, (b) attend to equity in student
experiences as they relate to classroom engagement to course outcomes, and (c) study the
systemic change effort at the institution and how various institutional stakeholders (e.g.,
administrators, advisors, instructors, and students) contribute to this effort.

The Six Principles for Department-Level Interventions is an organizational framework that
has been used in prior research (Ngai et al., under review; Quan et al., 2019) to guide a group’s
work towards sustainable educational change initiatives. The six principles include (Quan et al.,
2019, p. 2-3):

1. Students are partners in the educational process;
2. The group’s work focuses on achieving collective positive outcomes;
3. Data collection, analysis, and interpretation inform decision-making;
4. Collaboration between group members is enjoyable, productive, and rewarding;
5. Continuous improvement is an upheld practice among the group members; and
6. The group’s work is grounded in a commitment to equity, inclusion, and social

justice.
While there is no apparent “group” or task-force devoted to the institutional change at SCHSI
motivated by AB705, there is an alignment of goals among the various institutional stakeholders
at SCHSI that have participated in the MPIE project thus far. In this paper, we highlight how
instances of the first three principles were apparent across the interviews of various institutional
stakeholders.

Methods
The data were collected through the MPIE project at SCHSI, which has high proportions of

racially minoritized students (85%) and Latinx students (86%). The MPIE project consists of
three phases. Phase 1 consisted of collecting and analyzing data at SCHSI during the 2020-21
academic year to establish a baseline of the institution’s response to AB705. Findings from Phase
1 are currently informing Phase 2, the design and implementation of professional development
(PD) aimed at transforming instruction in gateway mathematics courses that are more focused on
equity, inquiry-oriented instruction, and sustainability. In Phase 3, the project team will
investigate the impact and sustainability of the PD. In this paper we discuss results from
interviews conducted in Phase 1 with 11 institutional leaders (e.g., administrators and leaders of
student support programs), 18 students, and 9 instructors. The purpose of these interviews was to
gain a variety of perspectives regarding SCHSI’s response to AB705.

Interviews focused on understanding SCHSI’s change efforts in response to AB705. Using
Quan et. al’s (2019) six principles for department-level interventions as a priori codes (Miles &
Huberman, 1994), we identified and synthesized instances of each of the principles in the
interview data from different stakeholders (students, instructors, advisors, and administrators).
So far, the data we collected is rich enough to make claims about Principles 1-3. Interview
protocols were not originally designed with the six principles in mind, but future data collection
could reflect this in light of our findings. Thus, we focus our discussion on Principles 1, 2, and 3.

Findings and Discussion
Principle 1: Students as Partners
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Due to AB705 mandates, SCHSI replaced their mathematics placement exam with a
self-assessment questionnaire, shifting the decision of course selection to students. While this
afforded students with more agency as stakeholders in their own educational experiences, there
also seemed to be confusion in the advising process. In interviews, many students expressed
widely varying experiences for how they enrolled into their current mathematics course. While
some students partnered with advisors to make choices about their schedules, others chose
classes without that guidance. One student’s understanding highlights some of the confusion that
several students are experiencing:

So um typically, I know it’s like kind of hard and like I mean, I have my student plan.
And that's what I'm going off of. So I'm gonna, I'm hoping to meet with the, you know,
counselor/advisor. Um, but basically, I'm going to go off of the student plan we had
made. But I do know that some of the students have been saying that they haven't been
able to get a hold of them. So um I'm not quite sure about that. I haven't tried myself.

With this newfound student agency in choosing classes, instructors are seeing a wider range of
ability in their classrooms. This instructor highlighted a commonly expressed concern:

They’re not coming in with the skills they need to pass. There are some who come in
poor and do whatever they need to do to catch up, but for the most part those ones who
do not come in with the correct skills somehow filter out.

While many faculty members expressed concerns about a greater number of students
lacking prerequisite skills to succeed in classes, students generally expressed that they felt that
both they, as well as their peers, had been placed in the correct courses. While some students did
express feeling less prepared at the beginning of the semester, they cited their hard work and
seeking help in order to succeed as reasons for being placed in the right course. These
contrasting perspectives between students and instructors may indicate a tension between deficit
and asset approaches to teaching and learning. Further, this highlights the disconnects that can
occur between teachers and students.

These findings demonstrate that SCHSI’s responses to AB705 mandates are moving them
closer to alignment with Principle 1, because their changes afford students more power as
stakeholders in their educational experiences. This is an example of taking an asset-based
approach to student placement. It also indicates a culture-shift opportunity for the college to
partner students with other stakeholders so that the student experience is more fully considered in
the decision making process.

Principle 2: Achieving Collective Positive Outcomes
While all groups at SCHSI are doing what they can to best support students, silos of

knowledge exist that limit the impact of their efforts. In particular, advisors tend to have a more
bird’s eye view on student success at the college while instructors have a more local view on
student success. Through interviews with academic leaders, we learned about some of the main
concerns that advisors focus on when counseling students. They are trained to consider credit
creep that might occur if students are enrolling in prerequisite or support courses. Credit creep
occurs when a student’s credits approach or go beyond what is transferable to a four-year
institution or constrains financial aid awards. One administrator shared some of the concerns
they consider from their perspective in relation to support courses - courses taken concurrently
with a gateway course to provide students in need with additional academic support:
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So what I mean by that is that the way the discipline faculty have set it up is they have the
transfer level course plus the support course. So, and it’s a two unit support course which
has implications for students’ financial aid package. So how do we start really looking at
the data to possibly reduce the number of units for the support course. Or if something
that could happen at the curricular level to completely eliminate the support course so
that what students need, they're getting an regular three to four unit course right.

Advisors are focused on making all of the puzzle-pieces fit in a student’s schedule so that they
are on track to graduate or transfer in a timely manner. Thus advisors are typically not aware of
specific course content and nuanced relationships between courses in the same way that
instructors are..

Instructors, on the other hand, expressed a focus on helping students succeed in the courses
they are teaching. They are concerned about the prior knowledge that students have coming into
a course, and whether their students will leave their course prepared for the next one. Instructors
tend to be more focused on the success of students one course or sequence of courses at a time,
as highlighted by this instructor’s goals for teaching: “So that's what I'm trying to do—
understand more of a concept rather than the step-by-step memorizing. So that's kind of my…
goal. By the end of the semester, they get out of my class. Next level [math] course, they are
ready.” Instructors do not necessarily have knowledge of where students are in their respective
degree programs, but they are considering their student’s trajectories as it relates to mathematics
courses.

These findings demonstrate that advisors are making decisions based on long term goals
whereas instructors are making decisions based on short term goals. This highlights an important
cultural shift that needs to occur at SCHSI that de-siloes the knowledge between advisors and
instructors so that both the short and long term needs of students are being considered in tandem.

Principle 3: Data-Informed Decision Making
Various stakeholders at SCHSI use different metrics to measure the success of AB705,

creating what we call the paradox of throughput. Instructors are concerned about higher failure
rates after the implementation of AB705 while administrators simultaneously are expressing
positive feelings about higher throughput rates (i.e., more students are attempting and completing
gateway courses), which are outlined in Table 1. While more students are taking gateway courses
explains both increased failure rates and increased throughput, these different emphases of the
data highlight the values of different stakeholders.

School administrators and advisors generally expressed positive feelings with the increased
number of students successfully passing gateway mathematics courses. For example, one
administrator stated, “Well, some of the positive outcomes [of AB705], is that we're noticing,
and forgive me, I don’t know the exact details of the throughput rates, but we're noticing that
yeah, our students are succeeding.” Some administrators also expressed these data trends as hope
for the future, citing increased throughput being linked to success in future mathematics courses,
while others expressed concerns, asking questions like “how many of them actually are
succeeding in terms of the domino effect? How many are actually able to do the follow up
coursework …?”. Some administrators who work more closely with instructors expressed their
awareness of a very different perspective on AB705, and how some have emotionally expressed
their feelings of personal failure when students have struggled in their courses.
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As instructors have noticed a greater diversity of ability in their classes after the
implementation of AB705, some have called AB705 “the worst thing ever.” Many have
expressed concerns for students “wash[ing] out because they felt overwhelmed because they felt
they were not in the correct course.” One instructor expressed the lack of support they have felt
in response to AB705. While instructors continue to teach as they have in the past, they are now
witnessing more student failure and withdrawal, which has left a bad impression of AB705 and
the measures the college has taken to implement the mandate.

These findings also highlight a culture shift that needs to occur at SCHSI as the college
continues to move forward from its early years of AB705 implementation. While it is positive
that some administrators are aware of the concerns that instructors have, it will be vital for
these perspectives from both groups of stakeholders to be more widely shared so that as a
collective, SCHSI can make data-informed decisions that consider the different values of various
stakeholders.

Table 1. First attempts and pass rates in College Algebra at SCHSI per academic
year

College Algebra
First attempts
Passed

17-18
121
58

18-19
177
85

19-20
474
203

Conclusion
Using principles for institutional change, we identified silos of knowledge across different

groups of stakeholders: between students and instructors (Principle 1), between advisors and
instructors (Principle 2), and between instructors and administrators (Principle 3). This highlights
the need to connect these groups of stakeholders in ways that bring their values and approaches
together more effectively. One recommendation for de-siloing these varied perspectives may be
for the institution to create a group or task-force specifically devoted to the institutional change
at SCHSI. Although the Six Principles were initially conceptualized for a department (or a group
within a department), this paper highlights an application to a broader group of individuals that
have some shared vision.

The MPIE project team can leverage these findings specifically through PD efforts in Phase
2. One way we can do this is by helping instructors foster asset-based mindsets to de-silo student
and instructor perspectives. A second approach the team has discussed is to find a way to
incorporate advisors into our PD efforts. Both of these considerations can contribute to the
sustainability of student success initiatives at SCHSI. As we move forward in our project, we
invite the audience to consider these questions on our minds:

1. What other ways might the MPIE project team facilitate de-siloing efforts to bring
different stakeholder groups together?

2. In what ways can Principles 4, 5, and 6 be leveraged to support this group of institutional
stakeholders enact systemic change within their gateway mathematics courses?
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Comparing Authenticity in Proof Activity in an In-Person and Online Setting 

 

 Anthony Tucci Kathleen Melhuish 

 Texas State University Texas State University 

The extent to which online course delivery allows students to engage in authentic mathematical 

activity has yet to be explored. In this preliminary report, we use the Authentic Mathematical 

Proof Activity (AMPA) framework to analyze data collected in a larger design-based research 

project. This data consisted of videos of the same lesson implemented online and in-person.  Our 

results show that while it is possible to provide students with opportunities to engage in 

authentic mathematical activity in an online course, opportunities were limited compared to in-

person courses. Researchers may want to use this framework to continue to explore how the 

dimensions of authenticity are similar or different across online and in-person course settings. 

Keywords: online instruction, authentic proof activity 

The transition to online courses necessitated by the COVID-19 pandemic has allowed for 

new exploration into online instruction (e.g., Jung & Brady, 2020). Many courses, such as those 

in advanced mathematics, are currently being offered online. The efficacy of online mathematics 

courses is generally poor (Trenholm, et al. 2019); although the majority of this literature focuses 

on asynchronous courses. Student perceptions of online courses range from quite positive to 

quite negative (Dobbs, Waid & del Carmen, 2009). For example, 40% of students surveyed by 

Jacqueline and Smita (2001) indicated higher participation in online courses than traditional 

courses. However, O’Malley and McCraw (1999) found that students found it difficult to 

contribute to discussions online whether synchronous or asynchronous. Recent work in the 

mathematics setting points to ways that “rich dialogic interactions” can be maintained by having 

students share strategies and engage with them using unique features of online settings such as 

shared Google Docs and breakout rooms for small group discussion (Jung & Brady, 2020). 

Further, Öner (2008) suggested the online setting may be particularly conducive to engaging 

students in authentic proof activity through collaboration and exploration using dynamic 

geometry software. Similarly, Yopp (2014) illustrated how asynchronous online discussions may 

serve as a productive space for authentic engagement with quantifiers and tasks via examples and 

example-generation.  The literature further points to ways in which online collaboration may be 

different and need different support as students engage with features like text-based chat (e.g., 

Stahl, 2006) or Zoom (e.g., Jung & Brady, 2020). 

We aim to contribute to this literature base by situating our study as a direct comparison 

between a lesson implemented in-person and implemented online. The lesson was developed 

through an iterative design-based research approach with an explicit focus on engaging students 

in authentic proof activity defined broadly as engagement in formal mathematics in ways that is 

consistent with the work of mathematicians. This includes not just creating formal proofs, but the 

informal activity and alternate goals such as comprehension and validation. The lesson is part of 

a standard introductory undergraduate abstract algebra course and focuses on comparing between 

two common proof approaches and analyzing proofs and statements (see Melhuish, et al., 2022 

for an outline of the lesson goals.) As our overarching goal was to promote authentic proof 

activity, we share an analysis of these two lessons to explore how authenticity may have played 

out differently in the two contexts. We conclude with conjectures as to why the online setting 

may have led to different instructional choices and different opportunities for students. 
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Theoretical Framing 

Underlying our work is the assumption that advanced mathematical courses provide an 

opportunity for students to apprentice into the mathematical work of research mathematicians. 

To this end, we have developed a literature-based framework to describe the activity of 

mathematicians that has potential for adoption to the undergraduate classroom (Melhuish, et al., 

2021). We broadly use activity theory (Engeström, 2000) to frame our approach where activity 

can be decomposed into goal-directed actions consisting of tools (materials, concepts, 

procedures) used in service of an objective (including a motive and focal object). Activity occurs 

in systems that are historically (such as where tools originate) and socially situated (communities 

with rules and norms divide up labor). Our overarching framework includes three objects: 

proofs, propositional statements, concept/definitions and three motives: constructing, 

exploring/comprehending, testing/validating. In service of these goals we include tools: 

analyzing/refining, formalizing, deformalizing, warranting, analogizing/transferring, examples, 

diagrams, logic, structure/frameworks, and existent objects (definitions, proofs, statements). We 

then operationalize authenticity along a number of dimensions to capture multiple, often 

competing (e.g., Dawkins, et al., 2019; Herbst, 2002; Lampert, 1992) notions of authenticity 

guided by ideas of content, practice, discipline, and students. See Table 1 for the authenticity 

dimensions of the Authentic Mathematical Proof Activity (AMPA) framework. 

Table 1. Dimensions of Authenticity Defined by Tool Use 

Dimension Description Characteristic 

Variety The degree of variety of tools in use including formal, 

informal, generating, and translating tools 

Disciplinary Tool 

Use 

Complexity The degree to which tools and outcomes are used in 

conjunction and succession versus in isolation 

Disciplinary Tool 

Use 

Accuracy The degree to which tools and outcomes are accurate to 

discipline standards 

Discipline Tools 

and Outcomes 

Agency The degree to which students are the ones generating 

and using various tools 

Student Role in the 

Division of Labor 

Authority The degree to which students are the ones connecting 

tools and objectives to determine whether a goal is, or 

will be, met  

Student Role in the 

Division of Labor 

Alignment The degree to which tools and outcomes reflect student 

contributions 

Student Tools and 

Outcomes 

Methods 

This study is part of a larger design-based research project (Design-Based Research 

Collective, 2003). The focal lesson was developed through an interactive design process and 

included creating a hypothesized trajectory of student activity linked to particular tasks features 

and instructional moves. The lesson was developed, evaluated by a panel of experts, and tested 

and refined over two iterations with a small group of undergraduate students. The goal of this 

lesson is for students to comprehend two different approaches to proving the structural property: 
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if G is abelian and isomorphic to H, then H is abelian. By comparing approaches (one that begins 

with elements of the domain and concludes that the image of these elements commute; one that 

begins with elements of the codomain and concludes these elements commute), students are 

positioned to attend to structural features of the proof and engage in analysis of which      

assumptions from the statement are needed and why. This then leads to a discussion of 

modifying the proofs and the statements through a process of analysis and refinement. 

The data for this report comes from two classroom implementations in consecutive 

semesters. Both implementations were facilitated by the same instructor at the same institution. 

The class consisted of a relatively even distribution of mathematics and mathematics education 

majors with less than 20 students in each class. The first implementation, in-person, was 

videotaped using Swivl. The second implementation was conducted over Zoom and was 

recorded using the Zoom interface. In both implementations, members of the research team 

observed small groups and took field notes. We conducted a retrospective video analysis using 

the AMPA framework to guide analysis. One researcher repeatedly viewed the videos and 

identified comparable episodes for the two lessons. This researcher and another member of the 

team independently viewed selected episodes and created analytic memos attending to the 

various features of the AMPA framework identifying tools at use, objectives (motives/objects), 

and describing authenticity across the six dimensions. The respective analyses were compared 

with discrepancies resolved through discussion. 

Preliminary Results 

The goal of this lesson was for students to analyze and comprehend two different proof 

approaches for the statement: if G is abelian and isomorphic to H, then H is abelian. For the 

scope of this report, we focus on two episodes. In the first episode, students spent time in their 

groups coming up with similarities and differences between each proof approach. These were 

then shared with the whole class to form a list of all the similarities and differences identified by 

the students. In the second episode, students were asked to discuss with their group whether they 

thought each assumption (abelian, homomorphism, one-to-one, and onto) was needed. After 

discussion in groups, the instructor had students share their ideas in a whole class discussion.  

The similarity/differences episode consisted of students spending time in their groups 

attempting to identify similarities and differences between the two proof approaches. In the 

online section, this was done via breakout rooms on Zoom. After each group was allowed time to 

discuss, the instructor brought all of the students back to the main room. The instructor then 

asked the students to state some of the similarities and differences they observed between the 

two proof approaches. Most of the students’ responses were typed in the chat. We observed 

evidence of students deformalizing a proof to explore its components as they used informal 

language to describe the similarities and differences between two formal proof approaches. We 

also saw one example of warranting: identifying that both proof approaches use isomorphism, 

and one example of using structure by identifying the difference: one proof starts in the domain, 

while the other starts in the co-domain. The instructor wrote each of the similarities and 

differences onto a shared document. Therefore, this segment had a high level of alignment with 

student contributions. Additionally, the instructor was not confirming or correcting any of them. 

Thus, in this segment, students had a high level of agency as during the comparison they were 

spontaneously warranting and identifying proof frameworks (tools), and maintained most of the 

authority as the instructor was not evaluating or linking the students’ contributions to the larger 

motive (in service of exploring/understanding the proofs). At this point, accuracy was high as 

most of the students’ noticings were valid, complexity was low (different tools/outcomes were 
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not being used consecutively/together to achieve a goal), and variety was mid as a number of 

tools were in play, although they stayed largely formal. 

 
Figure 1. Public Record Documents of similarities and differences in online and in-class setting, respectively 

The similarities/differences episode of the in-person section shared many of the same 

characteristics as the online counterpart. However, we note this occurred earlier in the lesson. 

Both episodes began with the instructor prompting students to share similarities and differences 

they observed across the two proofs. The instructor recorded each suggestion on the chalkboard, 

so this segment also had a high level of alignment. However, the instructor also prompted 

students to explain where each contribution was present in the proof. Thus, students were given 

slightly more opportunities to warrant in the in-person section than they were in the online 

section. The frequency of warranting appeared to be the only difference in authenticity across the 

two lessons. The authenticity dimensions in the in-person section were all comparable to those in 

the online section. 

The assumptions episode consisted of students attempting to determine which assumptions 

were used in each proof. The online section spent time discussing the assumptions in breakout 

rooms based on a list of assumptions developed from a poll earlier in the class. When they 

returned as a whole class, the instructor used the poll function on Zoom to find out which 

assumptions the students thought were being used. The results of the polls were written down, 

and the instructor did not endorse any particular answer over another. Thus, students had some 

agency (although highly directed) to analyze the proofs, and the segment had a high level of 

alignment. However, due to the use of polls, the variety and complexity of contributions the 

students were able to make was limited. They were not given the opportunity to discuss where or 

why each assumption was being used (warranting). In general, students in the online section had 

limited opportunities to use authority -- connect their tools to the larger exploring proof motive -- 

in this episode Alignment remained high as the students' voting was recorded by the instructor in 

contrast to accuracy as many students did not respond in normative ways. 

Students' opportunities to engage in authentic mathematical practices differed across the 

online and in-person sections in the assumptions episode significantly more than they did in the 

similarities/differences episode. In the in-person section, not only did the students state whether 

or not they thought each assumption was being used, but they were also asked to point out where 

each assumption was being used. For example, the students came to a consensus that the 

assumption that G is abelian is being used in the proof. The instructor then asked them to point 

out where it was being used in the proof. One student pointed at the proof being displayed on the 

projector and stated, “a operated with b equals b operated with a.” Asking students to point out 

where each assumption was being used resulted in students having more authority as they took 
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opportunities to warrant in service of exploring the proof . Additionally, allowing students to 

point to the proof (warranting), describe why each assumption is necessary (analyzing), and 

explain lines of a proof in their own words (deformalizing), increased both the variety and 

complexity of students’ contributions. After some discussion, the class emerged with two 

conjectures about the assumptions needed for each proof: abelian and homomorphism, and 

abelian, homomorphism, one-to-one, and onto. The instructor wrote these down, formalizing 

them into conjecture form, and asked the class to discuss them in groups (increasing complexity). 

Therefore, the episode ended with mid alignment (as the instructor formalized the students’ 

ideas), but low accuracy (as neither conjecture was valid.) 

 

Discussion 

Our results suggest that it is still possible for an instructor to provide students with 

opportunities to engage in authentic mathematical activity in an online setting. This was 

observed in both episodes we described above. The instructor was successful in giving students 

agency by providing them with opportunities to warrant and analyze. We also observed that 

online students had a high level of authority in both episodes, as it was their responsibility to 

determine what was valid and why. These results are important because they provide evidence 

that an online setting does not preclude authentic mathematical activity. 

Although our results suggest that it is possible to provide students with opportunities to 

engage in authentic mathematical practices in an online setting, they also provide evidence that 

the extent to which this can be done may be limited compared to an in-person setting. The first 

major difference we saw across the sections was that in the online section the instructor tended to 

invite contributions by using polls and the chat window. This reduced the variety and complexity 

of students’ contributions. Additionally, we saw that the use of the poll and chat in the second 

episode resulted in students having less opportunities to warrant and less overall authority. 

However, the use of these features meant that all students contributed, rather than just more 

vocal students in class. In some sense, this may serve the role of increasing student engagement 

in activity that parallels the in-class mechanism of a “turn and talk” which is not readily available 

online. Some of the differences may also be accounted for by pace. In the online version, the 

group work components of the lesson took more time. This may be partially due to the nature of 

going between a main room and a breakout room, as well as the time involved for the instructor 

to move from group to group. The instructor may have opted for polling rather than conversation 

with warranting due to time constraints. The slower pace accounts for the online version 

concluding with the assumptions task without further exploration of a conjecture that occurred 

after this episode in the in-person version. As this work is preliminary and situated in a particular 

lesson, we hesitate to make global claims about authenticity in activity online. We also 

acknowledge the difficulty of differentiating between constraints inherent to the course delivery 

mode and choices made by the instructor as a limitation of this report. However, the common 

setting, lesson, and instructor provided at least one case that points to similarities and differences 

across the contexts. Future researchers may want to use a similar approach to analyze 

authenticity to further understand the affordances and constraints of different class settings. 
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Students’ Perspectives on Instructor-Modified Pedagogical Proofs 
 

 David Varner Katrina Piatek-Jimenez 
 Central Michigan University Central Michigan University 

Mathematical proofs are an integral part of teaching undergraduate mathematics. However, 
interpreting mathematical proofs is known to be a difficult topic for students to grasp. In the 
study described in this paper, which is part of a larger study, we asked seven mathematics 
students to compare several real analysis proofs that had been modified by instructors so that 
they might be better understood by students.  The student participants in our study determined 
that the proof modifications that they found most useful were when the instructors provided more 
details within the proofs, gave accompanying examples and diagrams, rearranged the ideas of 
the proofs, and used colloquial transitions within the proofs. The results of this study have 
implications for the teaching and learning of proof. 

Keywords: Real Analysis, Proof, Advanced Mathematical Thinking 

It is evident from the research (Almeida, 2000; CadwalladerOlsker, 2011; Hanna, 1990; 
Hersh, 1993; Mills, 2011; Weber & Mejia-Ramos, 2014) that mathematical proofs are difficult 
for many undergraduate students to understand. This may be partially due to the fact that, barring 
a few exceptions, most mathematics students are generally not exposed to mathematical proofs 
until enrolling in an introduction to proofs course, most often taken during their second or third 
year of undergraduate studies (Almeida, 2000). Given the significant role that proofs play in the 
field of mathematics, we believe that it is critical to investigate ways to improve the teaching and 
learning of mathematical proof at the undergraduate level. The work described in this paper is 
part of a larger study and focuses on which instructor-modifications made to proofs that 
undergraduate students found most useful.  

Theoretical Framework 
Using the ideas of communities of practice (Lave & Wenger, 1991; Wenger, 1998), we can 

view mathematicians as forming a community of practice by having their own common 
activities, thought processes, beliefs, and values. Through participation in community activities, 
mathematicians solidify their membership to the community by sharing common norms, 
expectations, understandings, views, beliefs, definitions, symbols, and objects. While conducting 
these activities, mathematicians reify ideas and experiences into physical artifacts such as 
textbooks, journal articles, lecture notes, and solutions to problems. Proofs are the most prolific 
of these objects, being used in nearly every mathematical task that a mathematician performs. 
These dual actions of participation and reification both help mathematicians situate themselves 
into the community of mathematicians and helps the community define itself.  

Undergraduate mathematics students do not identify as full members of the community of 
mathematicians, as they do not participate in many of the community activities, and they often 
do not create reified objects for the community. Rather, they are peripheral members, some of 
whom are on a trajectory to become full members of the community of mathematicians. As 
peripheral members, similar to apprentices, students are given small tasks that simulate parts of 
the practice within the community. From this peripheral perspective, newcomers can see the 
entire practice and gradually familiarize themselves with all the parts of the practice. As their 
experience increases, the newcomer is given more tasks to learn that are central to the practice, 
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also providing a more central perspective from which to observe the practice as a whole. To 
students, instructors act as brokers to the common activities, thought processes, beliefs, and 
values shared by the community of mathematicians. As brokers, instructors are tasked with 
demonstrating those shared ideas to boundary members in a way that the boundary members can 
understand. Similarly, proofs act as boundary objects, providing a link to the practices of full 
members of the community of mathematicians. When reading a proof in a textbook or written by 
a professor, students can see the way a mathematician thinks about the task of proving a theorem, 
and thus learn more about theorems, proofs, and the field of mathematics in general.  

Literature Review and Objective of the Study  
Proofs serve as boundary objects between students and the community of mathematicians, 

communicating the ideas of the community with the students. However, scholars have argued 
that proofs serve many purposes, and some proofs may not be suitable for the classroom (Hanna, 
1990; Hemmi, 2010; Hersh, 1993; Weber & Mejia-Ramos, 2014). These proofs vary from 
simply validating the truth of the theorems, to proofs that explain why the theorems are true. 
Proofs that help systematize mathematics may be of great use to mathematicians but of little use 
to a mathematics student. Selecting proofs for their explanatory power, as opposed to only 
selecting proofs based on conciseness and validity, helps students to better understand the ideas 
communicated by the proof. For example, while a graphical argument may not be considered a 
proof by the mathematics community, students can gain understanding from such an argument. 
Further, students do not necessarily understand the purpose or use of proofs, either in the 
classroom or in mathematics research (Alemida, 2000; Knuth, 2002; Weber & Mejia-Ramos, 
2014). Rather students and mathematicians often have different beliefs and ideas about what 
proofs are and how they are used.  

To better communicate the ideas of a proof, and to mitigate some of these differing beliefs, 
previous research has examined how proofs are presented in the classroom (Hemmi, 2010; Mills, 
2011; Movshovitiz-Hadar, 1988; Weber, 2004). These studies suggest new ways to present 
theorems and proofs or categorize proofs and their presentations by looking at what they focused 
on. Some proof presentations found in the literature focused on the logical structures of the 
proofs; others focused on how the proof works through several examples; still others focused on 
the theorems that made up the proofs. Another way to categorize proofs uses several axes to 
measure different aspects of the proofs, by looking at how inductive or deductive the proof is, 
how formal the proof is, and how visible the proof is (Hemmi, 2010).  

One particular study (Lai et al., 2012) asked several instructors to modify two calculus-level 
proofs to improve student understanding. These instructors were told to prepare the proofs for 
students who were in their second or third years of their undergraduate degree. The study found 
that instructors provided various additions, changes, and deletions to the original proofs. Then, 
this study surveyed 110 mathematicians, providing feedback to the original and modified proofs. 
The results of the survey suggest that the larger community of mathematicians agreed that the 
changes made to the proofs by the original instructors should improve student understanding of 
those proofs.  

However, the results of this study may not provide a complete picture of which proof 
modifications help students understand proofs. Another study (Lew et al., 2016) explored why 
students struggle in upper-level undergraduate mathematics classes. They studied several factors 
that might contribute to why students sometimes struggle to understand a mathematics professor, 
even one that is highly regarded as an outstanding instructor and an excellent lecturer. After 
having both students and mathematics experts view an advanced mathematics lecture, the 
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students struggled to identify the key points that the lecturer was trying to make. Meanwhile, the 
mathematics experts were able to identify all of the key points. This implies that members of the 
mathematics community may not always be able to judge what is accessible to students.   

The purpose of the larger study is to fill this gap in the literature. Our goals for the larger 
study are: 1) to better understand how instructors modify textbook proofs in real analysis to 
make them clearer to undergraduate students and 2) to capture from undergraduate students 
which instructor modifications they find most helpful. The first of these goals has been presented 
previously (Authors, 2021). This paper will continue where the other part of the study concluded, 
focusing on the second goal.  

Method 
Seven student participants were recruited through solicitation presentations in junior and 

senior level mathematics classes. Students then emailed the researcher to volunteer for the study. 
Participants self-reported a wide variety of understanding of the topics of real analysis: three 
students had not yet had an analysis course, one student reported to struggle in their analysis 
course, and the other three reported to have a strong understanding of the topics discussed in the 
proofs in this study. One student was an applied mathematics major, one was a preservice 
mathematics teacher, two were double majors in physics and mathematics, one was a pure 
mathematics major, and the last two were in their first year of mathematics graduate school.  
Only one of the seven student participants identifies as a woman, two are of Middle Eastern 
decent, and one identifies as African American. 

The researcher conducted a two-hour interview with each of the participants. Due to the 
Covid-19 pandemic, interviews were conducted through virtual meeting software. After a few 
questions to establish the students’ comfort with the topics in analysis, the students were 
presented with several original and instructor-modified proofs.  In the first stage of the study, we 
collected 12 instructor-modified proofs, but for this portion of the study we presented each 
student participant with up to nine of these modified proofs. The instructor-modified proofs that 
were selected to be given to the student participants included a wide variety of modifications. 
Some proofs were selected because the instructor introduced new diagrams or examples, others 
were selected because the instructor restructured the order of the proof. One proof was selected 
because the instructor used an alternate definition of a set within the proof. The instructor-
modified proofs were each placed on a separate sheet of paper, as were the four original proofs. 
The students were first asked to read the original version of a proof and to comment on elements 
of the proof that they either found to be confusing or helpful. Then, students were asked to read 
modified versions of the same proof and again comment on elements of the proof that they either 
found to be confusing or helpful. Additionally, students were to compare the versions of the 
proof with each other. These interviews were audio recorded and transcribed. The transcripts 
were coded inductively using an open coding method (Corbin & Strauss, 2014), with extra 
attention given to the types of modifications that students mentioned. A second coder was 
utilized on a subset of the transcripts to ensure coding reliability, as recommended and described 
by Campbell and colleagues (Campbell, et al., 2013).  

Initial Results and Discussion 
The researcher used how well the students reported to understand the original proofs to place 

students on a spectrum from low initial understanding of the proofs to high initial understanding 
of the proofs. Our analysis found that students with low initial understanding reported to gain 
understanding from longer modified proofs that contained more explanations, while students 
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with higher initial understanding preferred proofs that were shorter and required them to study 
the proof in more depth. 

Students with low initial understanding struggled to understand some mathematical objects 
that were defined within a proof. For example, one proof introduced a subset of a sequence that 
is strictly decreasing. Most students needed to spend time piecing together the definition of that 
set, and several of the students who were unfamiliar with real analysis did not try to understand 
the set definition without being prompted to do so. When asked to describe the set, which the 
proof named P, one student responded, “That's a good point. I don't know what P is. Is it the 
sequence?... I guess, um, knowing what P is, that'd be pretty helpful.” Meanwhile, the students 
who had the most comfort with analysis proofs recognized that understanding the set definition 
was a key step to understanding the proof and they immediately tried to understand the definition 
after an initial reading of the proof. All of the modified versions of this proof contained 
additional descriptions of this set. One instructor included a diagram and example, one changed 
the set itself to something they felt was easier to understand and included a colloquial 
explanation, and the last included a more detailed description of the elements of the set. Different 
students preferred different modifications. The students who had the lowest initial understanding 
preferred the diagram and example, students in the middle preferred the simpler set definition, 
and the students who understood the original proof preferred the proof that included the more 
detailed description. One of the students that preferred the detailed description said: 

They explain what this set is rather than just trying to interpret what it means…. It's a fun 
exercise to understand what it means, but also that isn't it just reading the description of 
what it means is always much easier. 
All student participants talked about how important it is for a proof to be “easy to read.”  For 

example, they felt that proofs that were too dense were difficult to read because they required the 
reader to keep a lot of information in their head at one time. One student commented: 

So at one [sentence], it has three parts. You have to think of it at one [time]. It's like when 
you're, when someone says as like three negatives in a sentence, … it's like a lot of things 
that I have to keep track of my head at one point, and it makes it difficult to keep it keep 
tracking. 
However, proofs that were very long were overwhelming, and students found themselves 

easily lost. Similarly, students mentioned that long symbolic expressions can be difficult to 
understand without a colloquial explanation. One student said, “It's harder for me to understand 
multiple stage inequalities.… that [long inequality] can be hard, and that took me a minute to 
generally understand what that means…. So when possible having simpler inequalities are 
useful.” Another student had similar comments about a definition with a lot of symbols. “I like 
the [colloquial English] one on the left more. I think having that one helps to break it up [instead] 
of having all these symbols mashing together on the right.”   

Another finding is that sentences that indicate transitions between parts of proofs in 
colloquial English were considered very helpful by all students. These phrases often connect 
ideas from the proof and theorem to each other. This included phrases such as, “this proves part 
1 of the theorem,” and, “as shown above.” Additionally, students found it helpful when proofs 
included small phrases or symbols that indicate parts of a proof, such as the directional arrows in 
a biconditional proof. Some of these indicators were subtle. In one proof with four parts, the 
original proof was written in three paragraphs. Students indicated that this was difficult to follow 
because they struggled to find which parts of the theorem corresponded to the paragraphs of the 
proofs. Students preferred a modified version of the proof where each of the four parts of the 
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theorem was proved in a separate paragraph. To quote one of the students, “Trying to equate 
lines [of the theorem] and paragraphs [of the proof] to [each] other, given I say they split the 
group into two parts, you can add two paragraphs that very clearly equate to what part.” 

Possible Implications 
With one exception, the student participants felt that the instructor-modified proofs were 

easier to understand than the original proofs. This implies that the modifications that instructors 
make to textbook proofs in the classroom are an important part of helping the students succeed in 
their mathematics courses. Some changes, such as connecting mathematical ideas with colloquial 
English explanations, seem to help students of all initial understandings to better understand the 
logical structures of the proofs. Separating a proof into logical paragraphs that match the theorem 
also seem to universally help the students.  

Overall, student participants had a wide variety of opinions on what helped them understand 
the proofs in this study. Since different students believed that different modifications helped 
them better understand, it is important for instructors to have a wide variety of tools available to 
improve or accompany proofs. Where one student might benefit from an example, another might 
need to see a diagram. However, including all of these tools into every proof will make the 
proofs too long, which is overwhelming for some students and has the risk of losing the interest 
of students looking for a challenge in understanding the proofs.  Therefore, it is important to find 
some middle ground. As brokers, instructors can better explain the proofs to peripheral members 
by adapting the proofs to their students.  

It is also important to notice the differences in perspectives between the students who had 
substantial previous experience with proofs and proof-writing and the students who were more 
novices to proofs. The student participants who had low initial understanding of the topics in real 
analysis were also the students who had had the fewest proof-based mathematics courses. These 
students tended to prefer more examples, diagrams, and longer explanations. This is similar to 
the introductory mathematics courses that rely on examples and practice instead of proof. 
Student participants that had more experience with proofs tended to prefer proofs that were 
closer to a formal proof that a mathematician would use. In practice, the target audience for the 
proofs in this study would be somewhere in the middle because they would be part way through 
the course. They would have some exposure to the ideas of analysis but would be seeing these 
theorems and proofs for the first time. 

As peripheral members of the community of mathematicians, students cannot be expected to 
fully understand proofs as they appear in research. Overall, the results of our study seem to 
suggest that if one goal of upper-level undergraduate mathematics courses is to recruit and 
maintain more individuals as members of the community of mathematicians, then it is important 
for mathematics instructors to include features in their classroom proofs such as colloquial 
explanations, transitional statements, and diagrams, even if these features would not traditionally 
show up in their research publications. Introducing such features to novices will enable more 
students to have access to the cultural practices of mathematicians. As students become more 
experienced members of the community of mathematicians, their exposure to the common norms 
and practices increases, these modifications become less important, and instructors can model 
proofs that are more like the proofs in mathematics research.  
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Performing (with) Mathematics through Drawing
in Mathematics Education Research

Sofía Abreu
Michigan State University

Alternative Understanding of  Drawing

Drawing with/in mathematics 
education research tends to be 
understood through 
representationalist approaches.

Representationalism—the 
belief that epistemology is 
separate from ontology (Barad, 
2003)—is strongly tied to 
colonizing worldviews that rely 
on ‘othering,’ on hierarchical 
notions of knowledge and 
being, and on the erasure of 
the ‘other’ (Bell, 2013; Gutiérrez, 2017; 
Martin, 2017; Million, 2015; Minh-ha, 1988; 
Santos, 2007; Tuck & Yang, 2014). 
The lack of philosophical 
questionings of the 
representationalist forces 
guiding our field favors the 
reification of these worldviews 
as well as judgmental 
practices. 
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This poster shares an alternative understanding of drawing that can 
help educators move away from judgmental practices that are 
reinforced through representationalism and can help embrace the 
liveliness and uncertainty of the world, attuning to other possibilities, 
continuities, and complexities.

Motivation

1. Rather than a projection of a pre-conceived mental image 
onto paper or a mediating tool used towards a pre-
established goal, the act of drawing is indeterminate—with 
no pre-established end (de Freitas & Sinclair, 2013; Ingold, 2013).

2. Mathematical knowledge emerges inseparably from the 
localized phenomenon of drawing and from the human-
more-than-human-bodies-drawing-mathematics-emotions-
discourse amalgamations and, thus, does not exist 
independently from a drawing encounter. Rather, it is 
continuously transformed and (re)configured. 

3. Drawing can be perceived as a dynamic performance open 
to not only knowing, but also expressing reciprocity and 
experiencing joy and connection through emerging 
patterns and mathematical concepts (Gutiérrez, 2017).

4. A mathematical drawing has its own agency and is never 
‘finished.’ That is, it is not frozen ‘evidence’ of a person’s 
thought but is an active force that continues to transform 
and to be transformed by the world (de Freitas & Sinclair, 2012). 

Theoretical F(orces)ramework
o Barad’s (2003) agential realism: Offers important philosophical shifts that resonate with feminist new materialisms:

a) matter is agentic;
b) concepts are material;
c) all entities, including knowledge, are inseparable in the becoming of the universe;
d) the actualized and the virtual are indeterminate (Barad, 2003; de Freitas, 2017)

o Gutiérrez’s (2017) mathematx: Offers a dynamic ontology of mathematics:
• mathematics as performance and attuned to relationality and uncertainty—consistent with agential realism 
• mathematx as “a way of seeking, acknowledging, and creating patterns for the purpose of solving problems 

(e.g., survival) and experiencing joy” (p. 12), as well as a way of expressing one’s sense of beauty and of 
connecting with others—human and more-than-human—through interconnectedness, kindness, and reciprocity. 
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 A Survey on Students’ Perceptions of Racialized and Gendered Classroom 
Events in Calculus and Precalculus

Megumi Asada    Brittany L. Marshall      Keith Weber       Dan Battey
Contact: megumi.asada@rutgers.edu

Introduction
Undergraduate calculus instruction has an equity problem. Calculus 
courses have frequently “weeded out” or otherwise discouraged Black 
students, Latin* students, and white women students from pursuing STEM 
degrees (e.g. Ellis et al., 2016; Leyva, 2016), and these groups of students 
have reported having marginalizing experiences (McGee, 2016). Larsen et 
al. (2017) has called for more research into how calculus instruction can 
cause inequities, a call our poster will address.

Prior work
In our prior work, we conducted small qualitative studies (student 
journaling, individual interviews, and focus groups) to investigate Black 
students, Latin* students, and white women’s (heretofore referred to as 
students from historically marginalized groups) perceptions of marginalizing 
events in the calculus classroom. The primary output of our research is 
theoretical accounts of how commonplace events in calculus classrooms 
can be especially marginalizing to underrepresented student groups (Leyva 
et al., 2021) and the impact that this has on students’ affect and cognition 
(Battey et al., 2022). However, from this work, we generated two more 
general hypotheses:

(H1) There are commonplace events in college calculus classrooms, such 
asking students to drop down a class or ignoring a student contribution, 
that are discouraging to students from historically marginalized groups.
(H2) Students from historically marginalized groups are more likely to see 
these events as discouraging and gendered/racialized than white men 
peers.

Methods
Data Collection
• Student journaling of instructional events perceived as marginalizing, 

turned into 9 stimulus events
• Individual interviews around 4-5 of the stimulus events
• Follow-up interviews as member checks for theme analysis
• 9 group interviews with students of same race or same gender focused 

on 5 stimulus events

• National Survey - 4-year state universities with at least 10% African 
American and/or 10% Latin* students 

We tested our hypothesis with a survey. In Fall 2019 and Fall 2021 (the gap 
was due to COVID), we solicited participation from students at 108 state 
colleges and universities with similar demographics to the state university 
where the qualitative study occurred. To date, 800 students have 
responded. Students were first asked demographic information, including to 
identify their race and gender. The student then read three instructional 
events that our prior work identified as marginalizing (Leyva et al., 2021). 
Students were then asked (i) if they witnessed this type of event in their 
calculus course, (ii) if the event would make them feel discouraged, (iii) if 
they felt the professor had acted appropriately, and (iv) if the event would 
make them consider dropping the course.

Place & Participants
Context
First Study - Qualitative
• Large, public research university
• Diverse student population (46% white, 26% Asian, 14% Latin, 9% Black, 5% 

multiracial or some other race. 52% female and 48% male)
Second Study - Quantitative
● National Survey - Sent to the largest state universities with at least 10% 

Black and/or 10% Latin*

This material is based upon work supported by the National Science 
Foundation under DUE Grant Nos. 1711553 & 1711712 Any opinions, 
findings, and conclusions or recommendations expressed in this material 
are those of the authors and do not necessarily reflect the views of the 
National Science Foundation.

Theoretical Framing
We extend Acker (1990) and Moore’s (2008) constructs of mechanisms and 
emotional and cognitive labor to show how organizational logics lead to 
inequitable practices. Therefore, the results extend our understanding of how 
color-evasive and gender-neutral ideologies intersect with instructional practices 
to discourage students from historically marginalized groups. This in turn 
contributes to the function of P-16 mathematics courses as gatekeepers to more 
advanced coursework and STEM careers.

Ignored Student Event
The professor was going through a problem on the board, and I was sitting 
towards the front of the classroom. In the middle of the problem, I raised my 
hand to ask for clarification on a portion of the problem. After two minutes 
with my hand up, I gave up on asking the question having been completely 
ignored. This also occurred 6 minutes prior, when I tried to ask a question.

“The scenario it’s self [sic] is 
bad to begin with and adding 
that the student who was 
being ignored was a person 
of color makes it worse. The 
student was already being 
singled out and if I was in a 
situation like that, I would 
immediately assume the 
reason behind it was either 
my gender or my skin color. 
The professor should have 
stopped and answered the 
question.” - Latina student

Course Drop Event
The professor asked the class to work on a problem that required multiple 
steps. After giving some time for the class to solve the problem, the professor 
said, "If you do not know how to do these steps quickly, you might want to 
consider dropping down to a lower class or consider not taking Calculus 2".

“When being discouraged in 
the classroom, it then 
causes you to think about 
whether or not it has to do 
with the kind of person you 
are. This specific person 
must have felt as though 
they were specifically 
targeted and then became 
extremely discouraged by 
what their professor said.”
- Latina student
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PRELIMINARY FINDINGS

 White Black Latin* Asian

Man1 35% 40% 45% 37%

Woman 51% 64% 63% 51%
Table 1. Percentage of participants who said they would find this event “extremely discouraging”

 White Black Latin* Asian

Man 25% 23% 23% 23%

Woman 31% 31% 43% 35%
Table 2. Percentage of participants who “strongly agreed” that they would consider dropping the 

class after this event

 White Black Latin* Asian

Man 23% 43% 35% 31%

Woman 39% 52% 43% 40%

Table 3.  Percentage of participants who said they would find this event “extremely discouraging”

Table 4. Percentage of participants who “strongly agreed” that they would consider dropping the 

class after this event

 White Black Latin* Asian

Man 23% 43% 35% 31%

Woman 39% 52% 43% 40%

Table 1 supports H1. For each of the six intersections underrepresented in STEM 

(Black men, Latin* men, and each women group), at least 40% of the participants 

found this event “extremely discouraging”. Table 1 also provides suggestive 

evidence for H2. Each of the underrepresented intersections found the event 

more discouraging than White men (although we caution that our analysis is 

descriptive and exploratory). Table 2 demonstrates this event could have an 

impact on retention.

Table 3 supports H1. For each of the six intersections underrepresented in STEM) 

Black men, Latin* men, and each women group), at least 35% of the participants 

found this event “extremely discouraging”. Table 3 also provides suggestive 

evidence for H2. Each of the underrepresented intersections found the event 

more discouraging than White men by at least 12% (although again we caution 

that our analysis is descriptive and exploratory).

1: Data in these tables are based on cisgender groups; we are still exploring data for gender expansive groups
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Background Preliminary Results

16 tertiary pre-calc students randomly assigned to one of 

three feedback groups:

1) Knowledge of Correct Results (control) 

2) Elaborated Feedback with connections

3) Elaborated Feedback without connections

Measures: Feedback Perception Inventory (FPI) & 3 question 

content post-test

1. How does tertiary pre-calculus students’ perceptions of 

feedback with connections compare to students’ 

perceptions of feedback without connections? 

2. Does the type of feedback (and perception) influence their 

score on a post-test? 

Research Questions

Framework

• Feedback Type/Taxonomy (Shute, 2008; Trenholm et 

al., 2015)

• Mathematical Tasks Framework (MTF) which 

elaborates on high- and low-level mathematical 

thinking (Stein et al., 2000)

• Web-based homework is now more common than 

pencil-paper homework with, for example, millions of 

students utilizing ALEKS (Sun et al., 2021). 

• Students’ perception of instructor feedback 

correlates with academic achievement (Nύñez et al., 

2015).

• Elaborated Feedback consists of hints, tips, written 

example, etc. (Shute, 2008)

• Elaborated Feedback is the most effective feedback 

type for the learner compared to Knowledge of 

Response (correct/incorrect) and Knowledge of 

Correct Response [correct/incorrect and provides the 

right answer] (Attali & van der Kleij, 2017; Trenholm 

et al., 2015).

• Research needs to focus on each format of 

Elaborated Feedback and attend to specific needs of 

mathematical content.

Student Perception of Automatic Feedback Type in 

Tertiary Pre-Calculus: A Pilot

Christine K. Austin

College of EHHS

Kent State University causti17@kent.edu

Intervention Feedback Examples 

A circle has a radius of 16 m. Find the length, s, of the arc intercepted by 

a central angle of 21 degrees.

With ConnectionsWithout Connections

FPI data is part of an ongoing validation Rasch 

process where a minimum 66 participants as needed

Non-parametric Kruskal-Wallis test did not detect  

statistically significant differences between groups on 

the :

• Piloted FPI (RQ1).

• Post-test (RQ2).

Future Research

• Due to the removal of the study topic from pre-calc, 

future research will use logarithms as the topic.

• A power analysis for IRT indicates a minimum 

sample of 66

Attali, Y., & van der Kleij, F. (2017). Effects of feedback elaboration and feedback timing during computer-based practice in mathematics problem solving. 

Computers & Education, 110, 154-169.
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PRIMUS, 25(1). 
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Methods: Pre-Post Design
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Understanding Decentering: How Tutors Put Student Thinking at 
the Front and Center

Victoria Barron Jessica Gehrtz

Introduction Results

References

Methodology

Conclusions & Future Steps

Background: Existing research has shown undergraduate mathematics tutoring centers’ impact on student success in
undergraduate mathematics courses (Rickard & Mills, 2017; Cooper, 2010; Byerley et al., 2018). However, minimal research
exists in examining the ways undergraduate tutors make instructional decisions in the moment when working with students. This
study sought out to better understand how undergraduate mathematics tutors consider and make sense of student thinking.

Research Question: In what ways do tutors at a small-scale tutoring center demonstrate
decentering in their extended interactions with students?

Theoretical Framework: When an instructor is making sense of student thinking during instruction, they are stepping outside of
their own mindset. This action can be classified as decentering (Piaget & Inhelder, 1967). Baş-Ader and Carlson (2021) presented
a framework introducing five levels of instructor decentering (Table 1). Mills et al. (2019) and Johns et al. (2021) extended Baş-
Ader and Carlson’s (2021) work to investigate undergraduate tutors’ abilities to decenter when working with their students. In
their studies, while Mills et al. (2019) and Johns et al. (2021) identified potential opportunities for tutors to decenter, the tutors
seldomly probed student thinking to take advantage of these opportunities. This project aimed to further investigate the ways an
undergraduate mathematics tutor exhibited decentering behaviors by answering the following research question:

Participants: Three undergraduate mathematics tutors
(each with at least two years of experience tutoring)
employed in a university mathematics department’s
virtual drop-in tutoring center

Data Collection:
• 3 recorded real time tutoring sessions over Zoom

from each tutor
• The extended tutoring sessions ranged from 8

minutes to 47 minutes
o The average tutoring session length was

approximately 25 minutes, and the standard
deviation of the set was 10.55 minutes

Data Analysis: The research team conducted qualitative analysis
of the data by creating a codebook used to record instances of
the tutors’ decentering at high or low levels. The codes were
created to depict specific decentering actions the tutors took in
their interactions with a student. We grouped the codes into
themes and drew connections between our coding and the
behaviors outlined by Baş-Ader and Carlson (2021). Following
the coding and grouping, the research team analyzed the
decentering levels exhibited from each tutor and identified a
progression, describing the typical behavior a tutor portrayed in
their interactions with the students. The progression of each tutor
will be presented in the findings.

Our findings outline specific actions a tutor takes when decentering at each of the five levels originally presented by Baş-Ader and Carlson
(2021). Each of the case studies outline additional specific actions, describing three tutors' consideration and responses to expressed student
thinking. The distinct behaviors shed light on how tutors exhibit high-levels of decentering and gives insight into the ways a tutor is
behaving at lower-levels of decentering. Professional development can be developed to support tutors performing decentering behaviors at
a high-level, while targeting the low-level behaviors. For example, when we find a tutor dismissing student work, we can encourage them
to listen and build upon the student’s thinking, thereby prioritizing the student’s thinking over the correct answer.

Each of the three tutors exhibited various progressions in the levels of decentering during their interactions with students. We will
present three case studies outlining the behaviors of the tutors and connect the themes to Baş-Ader and Carlson’s (2021) decentering
framework.

Baş-Ader, S., & Carlson, M. P. (2021). Decentering framework: A characterization of graduate student instructors’ actions to understand and act on student thinking. Mathematical Thinking and Learning, 1-24.
Byerly, C., Campbell, T., & Rickard, B. (2018). Evaluation of impact of Calculus Center on student achievement. In (Eds.) A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro, and S. Brown, Proceedings of the 

21st Annual Conference on Research in Undergraduate Mathematics Education, San Diego, California.
Cooper, E. (2010). Tutoring center effectiveness: The effect of drop-in tutoring. Journal of College reading and Learning, 40(2), 21-34.
Johns, C., Mills, M. & Ryals, M. (2021). An analysis of the observable behaviors of undergraduate drop-in mathematics tutors. Manuscript submitted for publication. 
Mills, M., Johns, C., & Ryals, M. (2019). Peer Tutors Attending to Student Mathematical Thinking. In Weinberg, A., Moore-Russo, D., Soto, H., & Wawro, M. (Eds.). (2019). Proceedings of the 22nd Annual 

Conference on Research in Undergraduate Mathematics Education, Oklahoma City, Oklahoma.
Piaget, J., & Inhelder, B. (1967). The child’s conception of space. The Norton Library.
Rickard, B., & Mills, M. (2018). The effect of attending tutoring on course grades in Calculus I. International Journal of Mathematical Education in Science and Technology, 49(3), 341-354.

Ken: 
In all three tutoring sessions, Ken began by explaining an overview of the concept to the student. After Ken’s 
explanation, he procedurally prompted the student to share their thinking about the problem, asking questions such 
as “We need to identify how the relationship is going to look like between those variables, right? Can you think of 
anything that will get those variables to have a relationship from the problem?” This interaction was coded as a 
procedural guiding step / question, aligning with level 0 decentering (Baş-Ader and Carlson, 2021), as the 
questions Ken asked were directed toward the mathematics rather than inviting the student to share their thinking. 
Following Ken’s questions, the student expressed their inability to identify a relationship between the variables, and 
Ken answered his own question. Since Ken made no further attempts to access or guide the student’s thinking, the 
remainder of the conversation was also categorized as level 0. We find a similar behavioral progression from Ken 
throughout the three tutoring sessions – asking the student to share their thinking, but not acting to understand the 
student’s thinking. The figure to the right represents Ken’s typical progression working with students during 
tutoring sessions.

Level 0: 
Tutor did not 

attempt to guide 
student thinking

Lisa:
Lisa began her sessions by asking the student guiding questions to understand the student’s thinking before
explaining the content. This behavior was coded as tutor attempts to understand student thinking through
questioning, or level 2 decentering. If the student was unable to answer the questions, Lisa provided the student
additional information, without revealing the answer. The procedural steps Lisa exhibited was coded at level 0
decentering, as this action made no attempt to access or understand student thinking. Following the mathematical
explanation, Lisa invited the student to share their thoughts. This responsive action to the student’s expressed
thinking was coded as level 3 decentering, as Lisa leverages the student knowledge to advance their understanding.
Analogous to Ken and Dylan, we find similarities in Lisa’s progression throughout her three tutoring sessions. The
figure to the right represents Lisa’s progression of decentering.

Level 0:
Corrected 

student work 
without guiding

Dylan:
During each tutoring session, Dylan began by asking each student to share their thinking / method of solving the
problem. In a particular session, Dylan asked the student “Okay, so what did you try to do before?” The student
replied, “Just find the derivative because that’s what it’s asking”. The student did not fully express their thinking, so
Dylan asked “Yeah, but how did you approach it? Did you try to simplify it first or did you go straight into the
derivative?” We coded Dylan’s behavior as tutor attempts to understand student thinking through questioning,
which aligns with level 2 decentering. The student went on to share their approach of solving the problem, and
Dylan identified an incorrect step in the student’s work. Dylan quickly pointed out the error and redirected the
student’s thinking before asking further guiding procedural questions. Although Dylan’s behavior was coded at
level 2 decentering during his initial questioning, we coded the rest of the interaction as level 0 decentering, as
Dylan corrected the student’s work without guiding them based on their expressed thinking. We found similar
behaviors from Dylan throughout each of his tutoring sessions. The figure to the left represents Dylan’s typical
progression working with students during his tutoring sessions.

Level 3:
Tutor was 

responsive based 
on a check for 
understanding

Level 2: 
Tutor attempted 
to understand 

student thinking 
through 

questioning

Level 2:
Tutor attempted 
to understand 

student thinking 
through 

questioning

Level 0: 
Procedural 

guiding steps / 
questions

Level 0: 
Procedural 

guiding steps / 
questions

University of Texas at San Antonio University of Texas at San Antonio

Table 1. Codebook representing specific tutor behaviors compared with the five levels of decentering originally presented by Baş-
Ader and Carlson (2021)
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Measuring Student, Instructor Attitudes and the Learning 
Environment

Leyla Batakci, Elizabethtown College; Marjorie E. Bond, Monmouth College; Wendine Bolon, Monmouth College

Attitudes matter in education, and it is crucial for educators to gain a better understanding of their students’ attitudes. The Motivational Attitudes toward Statistics and Data
Science Education Research (MASDER) team are creating a family of validated instruments to measure students’ attitudes toward statistics or data science, the instructors’ attitudes
toward teaching statistics or data science, as well the learning environment through a National Science Foundation (NSF) grant titled, Developing Validated Instruments to Measure
Student / Faculty Attitudes in Undergraduate Statistics and Data Science Education.

Abstract

GOALS STUDENT 
INSTRUMENT

INSTRUCTOR
INSTRUMENT

ENVIRONMENT
INVENTORY

HOW TO GET INVOLVED 

1. Develop instruments that measure 
undergraduate students’ attitudes towards 
statistics and data science
2. Develop instruments that measure 
the learning environment, instructor attitudes 
about teaching introductory statistics and data 
science, and pedagogical practices that may 
impact students’ attitudes, engagement, and/or 
achievement
3. Develop and rigorously validate the
instruments including expert reviews, pilot
surveys, instrument revision, measures of    
validity and reliability, and transparent reports 
on this process

4.  Create a sustainable infrastructure to 
facilitate data collection and dissemination

• Measures student
attitudes toward 
statistics or data 
science
• Administered pre
and post semester 
• Can be administered
longitudinally

• Measures  
instructor attitudes 
toward teaching 
statistics or data 
science
• Administered
perhaps once a year

• Measures institutional
and course 
characteristics, learning 
environment, and 
enacted classroom 
behaviors (Pedagogy)
• Instructor completes
for each course

• Pilot a survey for us in your Introduction to Statistics 
courses and/or Introduction to Data Science courses
• Serve as a Subject Matter Expert (SME)
• Participate in Focus Groups
• Pilot the Instructor and/or Environment Data Science 
Instruments by taking these surveys
• Have a colleague in Psychology or Educational
Psychology contact us
• If you want to get involved, please complete the
Google form on our website: http://sdsattitudes.com/

MASDER INSRUMENTS
Student Instrument Instructor Instrument Environment Inventory

Statistics S-SOMAS I-SOMAS E-SOMAS

Data Science S-SOMADS I-SOMADS E-SOMADS

MASDER 
Instrument

Develop 
Framework 

Write & 
Revise Items

Pilot Study Revisions
Operational 
Study & Use

Process
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Introductory Linear Algebra content coverage as per course descriptions

Linear algebra is widely used throughout
science, technology, and engineering fields
and therefore introductory linear algebra
courses offered in mathematics departments
often end up serving students from a variety
of client disciplines. In order to meet the
many needs of the diverse population in linear
algebra courses a number of broad
recommendations have been made throughout
the years as to what content to cover (Carlson,
Johnson, Lay, & Porter, 1993; Diefenderfer,
Hill, Axler, Neudauer, & Strong, 2015), all of
which specifically highlight the importance of
applications to client disciplines. While there
is anecdotal evidence based on personal
experiences and textbook use as to the content
covered in introductory linear algebra, this
poster reports on a systematic study
documenting content coverage in these
courses at the introductory level across the
United States. Linear Algebra is not only an
undeniably an integral part of undergraduate
studies, its usefulness and enrollment are both
on the rise. When comparing fall 2015 to fall
2010 courses course offerings, the percentage
of colleges offering Linear Algebra increased
five points to 25% (Conference Board of the
mathematical sciences [CBMS], 2018).

OVERVIEW OF METHODS AND DEMOGRAPHICS FINDINGS

NEXT STEPS  

REFERENCES

MOTIVATION

SETTING & BACKGROUND

RESEARCH QUESTIONS

OVERARCHING RESULTS

Broadly speaking, our research is 
interested in understanding how 

Introductory Linear Algebra courses are 
serving the wide range of students 

enrolled. We wonder:

What role does Introductory Linear 
Algebra play in the undergraduate 

curriculum?

We have begun by investigating:
• What content is currently being 

covered in Introductory Linear 
Algebra?

• What client disciplines does 
Introductory Linear Algebra serve?

1. What content is covered in 
Introductory Linear Algebra 
courses in the United States?

2. How prevalent are the topics 
covered in Introductory Linear 
Algebra across courses? 

3. How, if at all, does the content 
covered vary across institutional 
type?

Anna Marie Bergman Dana Kirin
anna_marie_bergman@sfu.ca danakirin1@gmail.com

VARIATION WITHIN SELECTED TOPICS

Carlson, D., Johnson, C. R., Lay, D. C., & Porter, A. D. 
(1993). The Linear Algebra Curriculum Study Group 
recommendations for the first course in linear 
algebra. The College Mathematics Journal, 24(1), 
41-46.

Blair, R., Kirkman, E., & Maxwell, J. (2018). Statistical 
Abstract of the Undergraduate Programs in the 
Mathematical Sciences in the United Stated: Fall 
2015 CBMS Survey, Washington, D.C.: American 
Mathematical Society.

Diefenderfer, C., Hill, D., Axler, S., Neudauer, N., & 
Strong, D. (2015). Linear Algebra. In P. Zorn (Ed.), 
2015 CUPM Curriculum Guide to Majors in the 
Mathematical Sciences. The Mathematical 
Association of America. Available at 
https://www.maa.org/sites/default/files/LinearAlgebr
aCASGreportFinal.pdf

Glaser, B. (1978). Theoretical sensitivity. Mill Valley, 
CA: Sociology Press.

Kung, M., Yang, S. C., & Zhang, Y. (2006). The 
Changing Information Systems (IS) Curriculum: A 
Survey of Undergraduate Programs in the United 
States. Journal of Education for Business, 81(6), 291-
300.

LaRossa, R. (2005). Grounded theory methods and 
qualitative family research. Journal of Marriage and 
Family, 67(4), 837-857.

Stefanidis, A. & Fitzgerald, G. (2014). IS Education 
Research: Review of Methods of Surveying the IS 
Curriculum to Support Future Development of IS 
Courses. In Information Systems: Education, 
Applications, Research, Springer, 1-11.

• We recognize that the most frequently 
mentioned topics in these course 
descriptions are somewhat unsurprising 
(especially for those who teach the 
course).

• Topics that appeared more frequently 
within these course descriptions were 
consistent across institution type, while 
less frequently mentioned topics varied 
more significantly.

• Few course descriptions mention 
applications of Linear Algebra concepts. 
Those that did, frequently mention 
applications related to the sciences or 
engineering.

• One surprising finding was the extent to 
which Introductory Linear Algebra is 
being offered as a transfer course at 
Associate-granting Institutions.

Cluster Sample of 11 States 
across the United States

• At least 75% of the course descriptions 
mentioned each of the following topics: 
matrices, vector spaces, systems of 
equations, transformations, 
eigentheory, and determinants.

• Less than 30% of the course 
descriptions specifically mentioned 
applications of linear algebra as a topic 
covered.
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Prevalence of Topics Across Courses 

N = 267
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Prevalence of Topics by Institution Type

AA (N = 147) BA (N = 43)

MA (N = 40) PhD (N = 37)

252 Undergraduate Public 
Institutions with course 

descriptions for Introductory 
Linear Algebra Courses were 

Identified. 

267 Introductory Linear Algebra 
Courses were  Identified and 

Course Descriptions Collected 
through Direct Survey Methods 
(Stefanidis & Fitzgerald, 2014).

205 Unique Codes were Identified 
by Analyzing the Course 

Descriptions Using Open Coding 
(Glaser, 1978).

11 Overarching Categories were 
Identified by Grouping Codes by 

Topics

57%

16%

15%

12%

Distribution of Institution Type

AA (N =
144)
BA (N = 40)

MA (N = 37)

36%

36%

28%

Regional Distribution of Institutions

South Central (N = 90)
Mid-Atlantic (N = 92)
Northwest (N = 70)
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• Series of follow up surveys to explore 
how well the identified topics in these 
course descriptions align with what is 
happening in the classroom. 

• Study to explore how well the content 
identified serves the needs of the client 
disciplines currently leveraging 
Introductory Linear Algebra.
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Strength- and Weakness-Based
Faculty Peer Observation in 
Undergraduate STEM Instruction

Sarah K. Bleiler-Baxter
Amanda Lake Heath
Olena T. James
Fonya C. Scott
O. Theresa Ayangbola
Grant E. Gardner
Gregory T. Rushton

What We Asked
In what ways do faculty reflect within TRIOS debrief sessions 

that utilize a weakness- vs. strength-based approach?

FA2020 SP2021 SU2021
Whole- and TRIOS-
Group Discussions
Of Inclusive
Pedagogy

Funded by Tennessee
Board of Regents

Contact: 
Sarah.Bleiler@mtsu.edu 

TRIOS 
Observation 
and Debriefing

Dept.
Change
Social
Contagion

Middle Tennessee 
State University

Time-Sensitive

Reciprocal

Inclusive

Operative

Strengths-Based

Environment
Well stop [the video] here for just a minute, because it 
seems to me like Tim is dominating the conversation.

-Mathematics faculty member

Behavior
Then what I do is I just assume they're going to read that, 

and I will kind of skip down to what I think are the big 
points.  - Mathematics faculty member

Identity
If I say “Don't make me use my mom voice,” every person 

in that room knows exactly what I mean.           
-Biology faculty member

Beliefs
It’s great because good teaching is generally inclusive 

teaching. 
-Biology faculty member

Mission
I care about you if you care about 

you. The first week is huge for 
this culture piece, where it's like 

“I will invest in you. I’m not going 
away. I am here for you, I’ll go 

one-on-one sessions, we can do 
face-to-face, we can Zoom. I’m 
here, but if you're expecting me 

to drag you to where you want to 
go, you're in the wrong room.” 

I’m in if you’re in.
-Biology faculty member

Competencies
The goal I had for myself 

in this class is to do a 
better job of using 

student thinking to move 
us forward….  I got to the 
end of class that day and 
I went, “Boy, I don't think 

I did a good job with 
that.”

-Mathematics faculty 
member

Weakness-Based Reflection
There were some opportunities for 

the students maybe to share, or 
maybe for them to have thought 

in advance about what it meant to 
them. 

- Mathematics faculty member

Strength-Based Reflection
What I really appreciated was 

how you were encouraging 
authentic responses in the chat. 

So you had a very deliberate 
conversation.

-Biology faculty member
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Documenting Diversity, Equity, and Inclusion Practices in Community College Algebra Instruction
Claire Boeck1,  Vilma Mesa1, Mary Beisiegel2, AI@CC 2.0 VMQI Research Group

1University of Michigan, 2Oregon State University

We summarize the steps we have taken to revise an instrument that assesses the quality of 
instruction of algebra lessons taught at community colleges (Evaluating the Quality of Instruction 
in Postsecondary Mathematics, EQIPM, Mesa et al., 2020) so that it could attend to dimensions of 
diversity, equity,  and inclusion (DEI). 

We reviewed: (1) the literature specifically focused on mathematics classrooms, (2) on 
instruments that attend to DEI practices, and (3) EQIPM. This three-pronged review allowed us to 
code videos of community college mathematics and other post-secondary mathematics 
classrooms. 

Our review identified three themes, Participation, Social Justice, and Empowerment, but these 
were difficult to identify in the available videos. We propose some questions for the field.

Abstract

Rationale and Motivation
+ Postsecondary mathematics classrooms are sites of inequity (Leyva et al., 2021).
+ Current observation instruments assessing quality of instruction in post-secondary contexts:
○ attend to interactions between teachers, students, and content but not at diversity, equity, 

and inclusion elements (EQIPM, Mesa et al., 2020).
○ quantify participation by inferred student characteristics but do not attend to content (EQIP, 

Reinholtz & Shah, 2018).
+ Diversity, equity, and inclusion postsecondary mathematics classroom require different 

approaches to describe instruction.
+ Observation instruments could contribute to existing research because they can capture 

contexts and interactions not measured with other methods used to investigate equitable 
teaching (e.g., surveys, student outcomes).

        
+ How can we capitalize on existing instruments so that they can be used to collect reliable 

evidence about the ways in which instruction attends to and accounts for diversity, equity, and 
inclusion in post-secondary mathematics classrooms?

+ What type of evidence is needed to make warranted inferences about how diversity, equity, 
and inclusion in post-secondary mathematics classrooms occur?

Process
Questions as We Move Forward
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Identifying Concepts and Frameworks

References
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Reinholz, D. L., & Shah, N. (2018). Equity analytics: A methodological approach for quantifying participation 
patterns in mathematics classroom discourse. Journal for Research in Mathematics Education, 49(2), 
140-177.

ᐩ Limitations of observation or videos: What can we see about DEI with this method of data 
collection? 

ᐩ How do we understand DEI  and how do our positionalities influence that understanding?
ᐩ Loaded terms: How do we define and recognize enthusiasm, positive affect, etc.?

Reviewed 49 pieces of literature (articles, reports, book chapters, dissertations) on:
ᐩ Equitable and/or inclusive teaching in mathematics 
ᐩ Equitable and/or inclusive teaching in community colleges or commuter institutions
ᐩ Classroom observations as a research method, including five observation tools
Examples of journals: Educational Studies in Mathematics, Journal of Teacher Education, Journal 
for Research in Mathematics Education, Teachers College Record

Themes from the Literature

ᐩ A short video clip or single lesson is insufficient to contextualize and interpret the evidence of 
practices supporting equity, diversity, and inclusion

ᐩ Having 2-3 video recorded lessons/teacher of various lengths (55mins to 3hrs) is insufficient to 
rule out that not seeing diversity, equity, and inclusive practices means that they are not 
enacted.

Theme Definition and Subthemes

Participation

ᐩ Participation: students have equitable opportunities and invitations to 
participate in classroom dialogue. (Johnson et al., 2020; Reinholz & Shah, 
2018)

ᐩ Accessibility: resources, options, and flexibility are provided so all students 
can participate. (Moriarty, 2007; Novak & Rodriguez, 2018)

ᐩ Opportunity to Learn: students have equitable access to resources and can 
engage in the learning process in the manner that helps them understand 
the content. (Goffney, 2010; Urbina-Lilback, 2018)

Social Justice

ᐩ Empowerment: students see themselves as capable of making important 
contributions to the classroom. (Grisalfi et al., 2009; Hand, 2012)

ᐩ Critical Awareness: teachers explicitly addressing and challenging 
stereotypes, oppressive structures, and societal inequities related to 
mathematics education (Bartell et al., 2017)

High 
Expectations

Affirming that all students, independently of their backgrounds or identities, are 
capable of succeeding. (Abell et al., 2018; Urbina, 2018)

Operationalizing Revised Concepts from Literature 

Applying Frameworks from the Literature to Videos of Lessons

Classroom 
Environment Category Tentative Definition Examples

Instructor Affect Demonstrates care for 
students and enthusiasm 
for teaching mathematics.

ᐩ Presents mathematics as an interesting 
topic

ᐩ Demonstrates genuine concern for teaching 
and learning

ᐩ Makes eye contact with students, smiles
ᐩ Uses students’ names
ᐩ Has conversations about something besides 

mathematics (“how was your weekend”)

Engaging Students 
in Learning

or
Equitable Engagement

Encourages and values 
students’ contributions, 
holds high expectations 
and creates supports for 
students’ participation.

ᐩ Encourages and affirms contributions of all 
kinds (emotions, questions, answers)

ᐩ Expects all students to participate in 
learning mathematics

ᐩ Offers targeted assistance and supports to 
keep students engaged

ᐩ Encourages students to develop 
mathematical ideas

Belonging Validates and welcomes 
students who are 
minoritized within the 
classroom (women, 
students of color, students 
with disabilities).

ᐩ Encourages minoritized students to 
participate

ᐩ Positions minoritized students as capable 
ᐩ Affirms minoritized students as being able to 

learn and produce mathematics
ᐩ Uses examples that do not assume White 

middle-class norms

ᐩ Videos of lessons taught in algebra courses in community colleges collected as part of the 
AI@CC project

ᐩ Video Cases for Mathematics Instruction

Research Questions

Repeated five times! 
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Experiencing Disability in Undergraduate Mathematics 
Kate Cruickshank and Miloš Savić

The University of  Oklahoma

Introduction
Dolmage (2017) made an argument that historical studies of  

disability created a knowledge base devoid of  the disabled perspective. 
The field of  disability studies emerged out of  “institutions in which 
disability as a negative concept, as a form of  disqualification, was 
invented and applied and cemented” (Dolmage, 2017, p. 6). The 
medical model of  disability emerged out of  this ideology, seeking to 
pathologize disability, insinuating that the individual is innately flawed. 
The expectation, then, is that the individual should overcome or 
compensate for this difference (Lambert, 2019). Another model of  
disability is the social model, which separates the body (impairments) 
from disability, defining disability as “the political and social 
oppression of  people with disabilities through lack of  access to 
society” (Lambert, 2019, p. 279). Both models do not consider the 
lived experience of  a disabled person but rather they create a binary 
between social worlds and impairment, essentially isolating the disabled 
individual from their own experience. 
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Discussion
Using my participants' narratives, I used the theory of  complex embodiment and the political/relational model 

of  disability to better understand how disability identities are constructed within undergraduate mathematics 
courses. My participants, who all claimed a disability identity, presume their own competence, expressing 
confidence in their ability to understand mathematical material. Simultaneously, they called attention to certain 
barriers within postsecondary mathematics that seemed to hinder their ability to participate in mathematics. These 
included time constraints, legal obstacles for obtaining accommodations, and power dynamics with instructors that 
can surface commonly-held stigmas about disability. There are many ways to think about and know mathematics; 
these differences in thinking are not deficits, but they are representative of  human diversity. Instead of  attempting 
to ‘fix’ these individual differences, disability should be reframed and relocated “from the individual student to 
other foci areas as needing to be ‘fixed’” (Tan et al., 2019). Academia not only excludes certain bodies through 
physically inaccessible buildings and campuses, but as evidenced in this paper, academia—specifically mathematics 
education—excludes certain minds through “mental, intellectual, social, and other forms of  inaccessibility” 
(Dolmage, 2017, p. 9). Until all minds and bodies can access mathematics material—accepting the presence of  
significant difference—mathematics education will fail to fully include.

Disability Theory 
We used both the complexly embodied (Siebers, 2008) and 

political/relational (Kafer, 2013) models that were employed by 
Lambert (2019). The complexly embodied model understands
disability as “a social location complexly embodied,” locating it both 
within the bodymind and our social worlds (Siebers, 2008, p.14). Kafer
(2013) proposed the political/relational model of  disability to assert 
that disability is socially negotiated, inseparable from politics. This 
model “views disability as a site of  shifting definitions that is felt, 
particularly in relation to concepts of  normalcy” (Lambert, 2019, p. 
283). Both theoretical models allow us to investigate undergraduate 
mathematics education through the lens of  disability research. 
Therefore, we asked the research question: How do disabled 
undergraduate students understand their identity as disabled in the 
context of  postsecondary mathematics education?

Quote (Relational, political, and complexly embodied) Coding and Explanation
“I don't think I ever finished a single test in any of  those classes. Um especially at the time I 
didn't really think anything beyond ‘well maybe I just hadn’t studied enough.’”

“The few exams I was able to review afterward I noticed that the questions that I did answer I 
largely got right. So that was also a contributing factor in the maybe this isn't such a studying 
problem but something else. So, I started to become more anxious because I wasn't sure I 
could deal with it. Going into these exams I would feel more anxious once I started to realize 
something didn't seem quite right.” (Alex)

Complexly Embodied: Alex embodied his inability to finish his exams in time as 
a deficit within him, even though he felt prepared and was answering the 
questions he did get to, correctly. He embodied the unpredictability of  finishing 
exams, resulting in anxious feelings which may have consequently affected his 
working memory (Lambert, 2019).

“I feel just as capable [as other students], if  not sometimes more. But I feel like the fact that 
I'm disabled alone means that I still have to fight through a lot more garbage than they do, 
like.. fighting for accommodations alone is a struggle. I have the benefit of  the fact that my 
special interest happens to be mathematics or physics related stuff  … which means I learn it 
really quickly… I do great in math classes. But I still need accommodations… Having to fight 
for those accommodations is really annoying. So, like I feel like I'm just as capable as other 
people, but it doesn't make it any easier you know?” (Bianca)

Political: Bianca, restricted by institutional and legal barriers, is unable to receive 
official accommodations, putting her in a position where she is to negotiate 
accessibility issues with her professors on a case-to-case basis.

Complexly Embodied: This accommodation negotiation process is emotionally 
and physically taxing, as there is a large power differential between students and 
professors.

The GPA before and after I started on my anxiety medicines were on the two ends of  the 
spectrum. It was not the same person, and even before in second grade—before I had ADD 
meds—the grades were bad. Then all of  a sudden, I can think without like.. going off  into the 
stars. I don't want to call it like a disability- I mean it is, but like it allows me to think thoughts 
that other people just don’t. (Connor)

Relational: Connor is using his Grade Point Average (GPA), a normative 
measure of  “success”, to describe his performance in mathematics.

Complexly Embodied: This is an embodied description of  a trait commonly 
associated with ADHD.

Relational: The use of  the word “allows” inferred to me that Connor valued 
thinking in ways that differ from others, or the “norm.”

I have a hard time staying motivated… With math I actually work a bit harder to understand 
stuff  because I want to learn, I want to understand it. That’s the main problem—I want to 
know how to do stuff. Like I can't just be given the answers, I need to know how to do it. 
(Tina)

Complexly Embodied: This lack of  motivation, based on context, seems to stem 
from a lack of  expectations within the classroom to learn the material.

Political: Tina seems to suggest that she has not been given the opportunity to 
learn, she has just been given the answers, depriving her the chance to develop 
her understanding of  the material.

Methods 
Five students who self-identified as having a learning, intellectual, 

or developmental disability from a research university in the Mid-South 
were interviewed for roughly one hour. Eight interview questions were 
developed using Siebers’ (2008) and Kafer’s (2013) models of  disability. 
Hypothesis coding (Saldaña, 2013) was used to analyze the interview 
data, and the predetermined codes were either complexly embodied, 
political, or relational.
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Wechsel der Textebene
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Start > Absatz > Listenebene 
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Hinweis zu Textfeldern:

•

•

Knowledge facets for teaching mathematics
• Content knowledge of the local & nonlocal mathematics

− "The local mathematical neighborhood has been defined as those

mathematical ideas that are relatively close to the content being

taught.“ (Wasserman, 2018; p. 3)

• Demand for profession-specific knowledge

− Mathematics from a higher standpoint: Nonlocal math reshaping the

understanding of local content (Hefendehl-Hebeker, 2013; Wasserman,

2018).

− Teacher pedagogical content knowledge positively predicts student

learning (Charalambous et al., 2019).

Designing learning trajectories in intertwined ways
• Instruction model for relating 

teaching practices to local and 

nonlocal content. 
(Wasserman et al., 2019)

• Relating registers and 

representations as a principle for developing understanding of 

and connecting mathematical content at school and at university   

level (Prediger & Wessel, 2011; Moreno-Arotzena et al., 2021). 

• Comparing and contrasting as cognitive activities having positive effects 

on the learning process of content knowledge (Lipowsky et al., 2019). 

I) Building-up

Preliminary design principles
Contrasting and comparing local

and nonlocal aspects in order to

make connections explicit.

Results & Outlook
•Content learning: Pre-service teachers mix up the arithmetic properties. This can be an obstacle for accomplishing profession-specific tasks.

• Profession-specific learning: Pre-service teachers show cognitive activity in relating to nonlocal content when working on authentic professional tasks.

• A redesign of the intertwined learning trajectory with more emphasis on the distinction between the two properties is currently in progress.

Methodology: Design research project with topic-specific and iterative design research cycles (Prediger, 2019).

Hypothetical Intertwined Learning Trajectory

“How can teaching-learning arrangements in an abstract algebra course be designed profession-specifically to promote 

relations of the different knowledge facets? Which learning pathways, obstacles and potentials can be identified?”

Pre-service Teachers‘ Professional Development

Relating Abstract Algebra and School Algebra 
Anna Dellori, Prof. Dr. Lena Wessel – Paderborn University

Background
In the German teacher education system many students are dissatisfied with their mathematics content courses (Mischau & Blunck, 2006). Especially in

abstract algebra, students experience a discontinuity between the course content and school mathematics (Ticknor, 2012).

Contact:

Anna Dellori

adellori@math.uni-paderborn.de

Instruction model (Wasserman et al., 2019; p.386)

Profession-specific learning pathway

Textbook excerpt (translated: Lambacher Schweizer 5) 

Mathematical content learning pathway 

Data base: 1st cycle of design experiments with pre-service primary teachers conducted in summer 2021 (4 pairs of two 90 min Zoom sessions).

Sequencing the intertwined learning trajectory by building-up

from teaching practices, (re-)learning academic mathematics and

stepping-down to teaching practices.

Insight into learning pathways: The case of Peter

Peter:

“How exactly do we define the associative law? That is

actually, I think, only defined with brackets. An in the end, it

is actually a certain order of the commutativity. So, you try to

exchange something and calculate it at different times. So, it

is/”

(Group 2 – Part III, Item 104)

Peter:

“Well. Look, these problems can be triggered by

the book. (…) That reminds me a bit of the task

we did last time, when we found out that it is not

associative. I think that is exactly the point.

Because in the example it’s not really

commutativity that’s being addressed, but rather

associativity, when you link three digits

together./”

(Group 2 – Part III, Item 41)

Definition commutativity:

“If these elements are linked together, exchanging the

elements is possible without changing the result.”

First definition associativity:

“If several elements are linked several times, the order of

the elements can be changed without changing the

result.”

Revised definition associativity:

“If several elements are combined several times and

associativity is valid, brackets can be placed arbitrarily

without changing the result.” (Group 2 – Part I)

Students define the associative and

commutative properties.

Students discover the properties in different local contexts.

Students explain the non-commutativity of the

symmetry group 𝐷3 using a Cayley table.

Students give an example of a commutative

algebraic structure..

Students classify various local and nonlocal algebraic structures

according to their arithmetic properties.

Students use Cayley tables to identify

similarities & differences between the symmetry

group 𝐷3 and a local algebraic structure.

Students identify local difficulties with multiplication tables by

reflecting on their nonlocal use of Cayley tables.

Students create an alternative local textbook excerpt about

the arithmetic properties.

III) Stepping-down

II) (Re-)learning

Commutative law of addition and multiplication
The addends of a sum or the factors of a product may be exchanged in any

way. For two numbers a and b goes 𝑎 + 𝑏 = 𝑏 + 𝑎 and 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎.

2 + 3 + 4 = 3 + 4 + 2 2 ⋅ 3 ⋅ 4 = 3 ⋅ 4 ⋅ 2

Students evaluate a local textbook excerpt about the

arithmetic properties using nonlocal knowledge.

Prof. Dr. Lena Wessel

lena.wessel@math.uni-paderborn.de

References:
Paderborn University

Germany

Relating registers and representations

from local and nonlocal mathematics in

order to establish connections.
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Assessing Mathematical Teaching Knowledge in a Master’s Program

Derrick S. Harkness, Brynja Kohler, David E. Brown, and Eric Rowley
Department of Mathematics and Statistics, Utah State University

Assessing Mathematical Teaching Knowledge in a Master’s Program

Derrick S. Harkness, Brynja Kohler, David E. Brown, and Eric Rowley
Department of Mathematics and Statistics, Utah State University

Master of Mathematics Program

With the aim of helping inservice educators–at the secondary and even tertiary levels–
continue to deepen their content knowledge, enhance their pedagogical practices, and
continue to instill positive, productive dispositions, the faculty at Utah State University
developed a master’s program focused on mathematics education.

Students enrolled in the Master of Mathematics program focus on the continued devel-
opment of their knowledge, skills and dispositions for mathematics teaching. They enroll
in classes from the Department of Mathematics and Statistics and the College of Ed-
ucation and Human Services to help them continue to develop a “robust knowledge of
mathematical and statistical content”and continue to build“foundations of pedagogical
knowledge, effective and equitable mathematics teaching practices, and positive and pro-
ductive dispositions” (AMTE, 2017, pp. 8-9).

Qualifying Exam in Mathematics Teaching

After their first year, students in the program demonstrate their mathematical teaching
knowledge by engaging in a set of experiences as part of the program’s qualifying exam.

The exam aims to provide synthesizing learning experiences that generate connections
across mathematical areas, the classroom, and emerging issues in the field of mathematics
education.

For the exam, students are given a set of five prompts and a week to compose responses
to them. These prompts, detailed in the poster, range from mathematical analysis to
abstract mathematical structures and from mathematical modeling to learning theories.

After the student has submitted their responses, they discuss what they have learned with
the exam committee. During this discussion, students may clarify their responses, justify
their claims, learn from their mistakes, and demonstrate their mathematical dispositions.

AMTE Standards

The Standards for Preparing Teachers of Mathematics (Association of Mathematics
Teacher Educators (AMTE), 2017) list a set of standards and related indicators that
beginning teachers of mathematics should achieve and possess in order to be effective
educators. However, because teaching is a“complex enterprise,”many aspects of teach-
ing will need to be nurtured and developed over a period of time (AMTE, 2017, p. 7).
Thus, the program and its qualifying exam aim to help inservice teachers to continue
their development and assess their achievement of these standards.

In particular, the program helps students achieve the following indicators for the given
standard:

Standard C.1. Mathematics Concepts, Practice, and Curriculum

Well-prepared beginning teachers of mathematics possess robust knowledge of mathemat-
ical and statistical concepts that underlie what they encounter in teaching. They engage
in appropriate mathematical and statistical practices and support their students in doing
the same. They can read, analyze, and discuss curriculum, assessment, and standards
documents as well as students’ mathematical productions.

C.1.1. Know Relevant Mathematical Content

C.1.2. Demonstrate Mathematical Practices and Processes

C.1.3. Exhibit Productive Mathematical Dispositions

Sample Exam Prompts

The 2021 Exam included 5 experiences. Below we share excerpts that illustrate the
theme and flavor of each.

1. Introduction to Formal Systems (Mathematics)

You could think of this as a game, but it is intended to be a small formal system. This
formal system consists of the symbols M, I, and U and strings constructed from those
symbols in accord with the five axioms below. Take a moment familiarize yourself with
these axioms (Hofstadter, 1979).

Axiom 1.0: MI ∈ S
Axiom 1.1: xI ∈ S ⇒ xIU ∈ S
Axiom 1.2: Mx ∈ S ⇒ Mxx ∈ S
Axiom 1.3: xIIIy ∈ S ⇒ xUy ∈ S
Axiom 1.4: xUUy ∈ S ⇒ xy ∈ S
Prompt: Understand the {M, I, U}-system well enough to state and prove a
metatheorem about it.

Prompt: (Motive) Prove one of the following claims:

(a)MU is a theorem; that is MU ∈ S;
(b)MU is not a theorem.

2.Modeling in Secondary Mathematics

How does the total mass of all living ants compare to the total mass of all living
humans?

(a) Solve the problem. Write up your solution justifying your result, including illus-
trations. Work first without consulting any resources. If you decide resources
are needed, keep track of what you look up along the way.

(b) One of the standards for mathematical practices is“Model with mathematics.”
Explain what this means to you.

3.Mathematical and Statistical Reasoning

Engage in the following:

(a) Create and give a complete example of a mathematical proof by contradiction.

(b) Create and give a complete example of a statistical test of significance.

(c) Referring to specific aspects of your two examples, write a 3 - 5 page essay on
the similarities and differences between the conceptual frameworks of“proof by
contradiction”and“test of significance.”

4.Analysis

Recall the following two definitions:

Definition 4.1: A sequence {an} converges to L if for every ϵ > 0, there exists a
natural number N such that n > N ⇒ |an − L| < ϵ.

Definition 4.2: A sequence {an} is Cauchy if for every ϵ > 0, there exists a natural
number N such that m,n > N ⇒ |am − an| < ϵ.

(a) Use these definitions directly to prove that if {bn} converges to B and {cn} is
Cauchy, then {bn + cn} is Cauchy.

(b) Indicate and elaborate on at least five significant properties that distinguish
between the set, Q, of rational numbers and the set, R, of real numbers.

5.Learning and Learning Theories

One of the greatest struggles for a mathematics teacher is the mis-alignment between
the preparation of students and the curriculum requirements for a course. What
practices are needed to create, support, and sustain a culture of access and equity in
the teaching and learning of mathematics? Provide research examples that are specific
with examples of various barriers that students face, and possible solutions.

Assessing Responses

After students submit their written responses, a committee of 3-5 will score one or two
of the responses and then lead the oral portion of the exam for those experiences.

Experience 1: This experience is designed to measure students ability to reason math-
ematically. The process which the student engaged in is the highlight of this experience,
allowing the student to demonstrate their mathematical disposition and reasoning abili-
ties, Indicators C.1.2 and C.1.3.

Experience 2: Responses are evaluated based on the extent to which the write-up shows
evidence of these elements of a typical mathematical modeling process: (1) understand
the problem situation; (2) make useful, appropriate assumptions to simplify complexity
of the situation; (3) develop a mathematical model or procedure (decontextualize); (4)
perform calculations correctly to compute a model solution; (5) interpret the solution
and draw conclusions (contextualize); (6) validate the conclusions; (7) communicate the
process with full explanations and justifications, and precise mathematical language and
notation. This relates to AMTE Indicator C.1.2.

Experience 3: This experience seeks to determine if the student is able to provide
appropriate examples of a proof by contradiction and a statistical test of significance
and link these two concepts together in a natural way. These prompts help students
demonstrate achievement toward Indicators C.1.1 and C.1.2. During the oral portion of
the exam, students are questioned about their choices of examples and they are asked
to explain their reasoning behind how they chose to relate the two concepts together.
Throughout, attention is given to how the student communicates mathematically and
how they feel toward their reasoning and mathematical skills, demonstrating their math-
ematical dispositions which helps demonstrate their achievement toward Indicator C.1.3.

Experience 4: The proof in part (a) is assessed based on its validity and coherence.
One would typically show that the convergent sequence {bn} is Cauchy, and then that
the sum of Cauchy sequences is also Cauchy. In the oral part we discuss to what
degree the proof was determined without referring to outside resources. Responses to
part (b) should include correct statements regarding the rational and real number sets,
and address the completeness property of the reals. Candidates should show that they
appreciate connections from advanced courses (analysis/topology) to secondary school
topics (rational and real numbers and their properties), addressing AMTE Indicator
C.1.3.

Experience 5: Although not explicitly mentioned in this poster, other AMTE standards
aim to ensure educators have a sufficient level of pedagogical knowledge and interest
toward improving their own teaching practice. This experience aims to measure the
student’s understanding of learning theories and best practices. The student is asked to
use resources to respond to the given prompt. Their ability to use current resources to
support their claims along with their ability to address all aspects of the prompts are
assessed.

Conclusions

Students who have completed the program have gone on to teach in secondary schools
or colleges, or pursue a doctoral degree leading to further engagement with education.

References
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Challenging Questions:
1. In what ways does the research at 

this conference rely on the 
paradigm of mathematics for 
justice? Give an example. 

2. How is that example similar 
to/different from research about 
equitable instruction?

3. What questions and answers can 
support building a paradigm of 
“RUME for justice”?

4. As researchers, how do we attend 
to our own limitations (e.g., as 
outsiders looking in) to review and 
give feedback to those who focus 
on RUME for justice? 

 This project is supported by a
                    grant from the National Science 
Foundation (DUE #1625215). Any 
opinions, findings, conclusions or 
recommendations are those of the 
authors and do not necessarily reflect 
the views of the Federal Government.

 Mathematics for Justice & Collegiate Mathematics Education Research

Background and Questions Framework

Research Examples
  What More? What Next?

Study Design Recruiting & Retention

ReportingOther Ideas, Questions?

Recruiting

Responses, alternatives, and extensions 
to the challenging questions.

In what ways does work in RUME 
acknowledge, act, and hold us 
accountable for increasing justice? 
What is the evidence of it, for you? 

Necessary Conditions

Shandy Hauk, Billy Jackson, & Jenq-Jong Tsay

Poster Purpose: offer and collect ideas for 
making sense of (and making sense with) 
justice as an essential component of research 
in undergraduate mathematics education 
(RUME). 
Background: Consider two paradigms about 
justice in mathematics education (Larnell et al., 
2016). One is based in Freire (1970/1993): 
mathematics is a tool to critically investigate, 
critique, and address social/societal issues. 
The other is based in Moses (1994): 
mathematical teaching and learning are the 
foundation for participation in, and 
transformation of, the status quo of majority 
society. The first perspective looks at the 
mathematics of social justice while the latter is 
concerned with mathematics for justice. 

TODOS/NCSM (2016) have offered three 
necessary conditions to establish just and 
equitable mathematical education:
1.  acknowledge that an unjust social 

 system exists. 
2. take action to eliminate inequities and to 

establish effective policies, procedures, and 
practices that ensure just and equitable 
learning opportunities for all, 

3. be accountable by measuring progress so 
changes are made and sustained. 

Mathematics for and of Justice

References
Freire, P. (1970/1993). Pedagogy of the oppressed. New York: Continuum.
Larnell, G. V., Bullock, E. C., & Jett, C. C. (2016). Rethinking teaching and learning 

mathematics for social justice from a critical race perspective. The Journal of 
Education, 196(1), 19-29.

Moses, R.P. (1994).  Remarks on the struggle for citizenship and math/science 
literacy.  Journal of Mathematical Behavior, 13(1), 107-111. 

TODOS: Mathematics for ALL and the National Council of Supervisors of 
Mathematics (2016). Mathematics education through the lens of social 
justice: Acknowledgement, Actions, and Accountability. 

Reporting on RUME for justice is like and unlike 
traditional forms. Some differences:
Background: RUME for justice is still emergent so 

the report must educate the reader about the 
distinctions of and between justice and equity

Theoretical Framework(s): of the research design, 
the researcher, and of the researched

Methods: includes statement of researcher position
Results: will challenge traditional views of what 

counts as mathematics, who decides, and what it 
means to teach, learn, or understand math 

Discussion: includes future directions for 
accountability as well as implications of the workReviewing

The definition of “RUME for justice” is still emerging. Certainly, it will demand responsiveness 
to those researched: the transformation of the status quo requires decentering the researcher as 
authority while acknowledging the various forms of expertise of the researcher and the researched. 
RUME for justice means civil and human rights are part of the work. Beyond the conduct of 
research, is the need to build skills for reporting and peer review of such work.

[notes added 

by visitors to 

the poster]

Old 
Researcher-Centered 

Cycle Must be 
Revised for Just and 
Equitable Research 

Design

Some of the skills needed for peer-review of reporting on RUME for justice:
1. Engage self-awareness. Acknowledge the unfamiliar and be purposeful in noticing nuances 

(e.g., to provide useful feedback to authors about injustice, inequity, or disrupting the status quo). 
2. Expect to experience discomfort. Embrace the discomfort as an indication of an opportunity to 

learn even when it challenges life-long assumptions.
3. Accept the truths of the researched. The goal is to understand the experiences of others 

(rather than approve or validate them).
4. Expect and accept an absence of closure. Equity and justice are processes with milestones 

along the way (not destinations). 

New Cycle 
Informs 

Participant 
Involvement in 

RUME for Justice

Reporting

Example: Consequences on Channels of 
Communication with/among Stakeholders:
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Comparing Professors’ Intended and Enacted Potential Intellectual Needs for Infinite Series in Calculus II 
with those Presented in the Textbook

Niki Heon | Oklahoma State University

Introduction 

MethodsLiterature Review

Corey, D., Weinberg, A., Tallman, M. A., Martin, J., & Jones, S. (in

preparation). Observing intellectual need and its relationship with

students’ learning of calculus. International Journal of Research in

Undergraduate Mathematics Education.

Harel, G. (2008). A DNR perspective on mathematics curriculum and

instruction, part II: With reference to teacher's knowledge base.

ZDM Mathematics Education, 40, 893-907.

Harel, G. (2013). Intellectual Need. In K. R. Leatham (Ed.), Vital

directions for mathematics education research. New York, NY:

Springer.

Jones, S., Jeppson, H., & Corey, D. (2019). Potential intellectual

needs for Taylor and power series within textbooks, and ideas for

improving them. In Weinberg, A Moore-Russo, D., Soto, H., &

Wawro, M., eds. Proceedings of the 22nd Annual Conference on

Research in Undergraduate Mathematics Education. Oklahoma

City, OK. p. 292-299.

Rogawski, J., & Adams, C. (2015). Calculus: Early transcendentals.

(3rd edition). W.H. Freeman, Macmillan Learning.
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Research Questions

What potential intellectual needs for infinite series and 

Taylor polynomials are provided in the textbook? 

What potential intellectual needs for infinite series and 

Taylor polynomials did instructors intend to present to 

their students in class? 

What potential intellectual needs for infinite series and 

Taylor polynomials are enacted by professors in class?

How do the intended potential intellectual needs for 

infinite series and Taylor polynomials compare to the 

enacted potential intellectual needs as conveyed by 

professors, and how do these compare to the potential 

intellectual needs presented in the textbook?

Infinite series are notoriously challenging for Calculus II

students perhaps in part because the content does not

resolve a problematic situation for the students (Harel,

2013). Jones, Jeppson, and Corey (2019) analyzed

multiple calculus textbooks to identify intellectual needs

for infinite series that students could potentially adopt, but

they did not investigate how instructors taught from the

textbooks and what potential intellectual needs they

presented to their students. This study combines a

textbook analysis with interviews and observations of

lectures of four professors to identify the intellectual needs

that professors intend to present and then how they

enacted those intentions in their lectures.

The textbook is not a sufficient resource for providing potential intellectual needs for infinite series and Taylor 

polynomials. Unlike the textbook, professors presented potential intellectual needs through class discussions, 

through application problems, and by supplementing intellectual need with motivation.

Important Result

Contact Information

• Email: niki.heon@okstate.edu

• Phone: 940-391-8085

Results

Data

The data for this study were gathered in three ways: a

textbook analysis, instructor interviews, and lecture

observations. Four university mathematics instructors

participated in semi-structured interviews which lasted

about 30 minutes each. Then roughly 35 combined hours

of their recorded lectures over infinite series were

observed and analyzed.

Harel (2013) defined intellectual need by saying: “If

𝐾 is a piece of knowledge possessed by an individual

or a community, then… there exists a problematic

situation 𝑆 out of which 𝐾 arose… Such a problematic

situation 𝑆, prior to the construction of 𝐾, is referred

to as an individual’s intellectual need.” However,

when a student experiences a perturbational state, they

do not necessarily construct the intended knowledge.

A student may remain in the perturbational state due

to a lack of interest or motivation, so Harel (2008)

characterized motivation as a manifestation of

psychological need, which is the initial interest in a

problem that drives a student to pursue a solution, and

affective need which is linked to social and cultural

values. While both psychological and affective need

“activate and boost” (Harel, 2013) or “stimulate and

sustain students’ mathematical activity…intellectual

need has the potential to enhance the nature and

quality of that activity” (Corey et al, in preperation).

Jones, Jeppson, and Corey (2019) operationalized

potential intellectual need to be “motivations

contained in a written curriculum that students might

potentially adopt as their own intellectual need for the

content.”

Potential Intellectual Need Textbook Professor A Professor B Professor C Professor D

Intended Enacted Intended Enacted Intended Enacted Intended

Taylor polynomials can be used to approximate 
functions that are hard to work with.

Linear approximation is not a sufficient approximation 
in some cases.

Taylor polynomials can be used to approximate 
integrals of functions with no elementary 
antiderivative.

Taylor series provide exact representation of 
functions.

Taylor series can be used for integrating functions with 
no elementary antiderivative.

Potential intellectual need presented through an 
application problem

Results

• Professors pulled from outside resources for examples

and applications of infinite series. Examples:

• Professor B and C presented Zeno’s paradox.

• Professor A presented the problem of computing an

infinite sum through an application problem about

calculating an investment for a scholarship fund.

• Professor C presented a position function for at atom

particle to motivate an extension of linear

approximation.

• These application problems supplemented potential

intellectual need with affective and psychological

need.

• The professors emphasized a necessity for infinite

series to represent functions and to integrate functions

with no elementary antiderivative, but the textbook

states that “a main goal of this chapter is to develop

techniques for determining whether a series converges

or diverges” (pg. 526), which establishes the emphasis

on learning the different convergence tests.

• Could presenting infinite series as a method of

integration help the students understand how infinite

series fit within the rest of the concepts in their course?

• The textbook does not provide as many details about

the problematic situations as the professors. For

example, in the opening of Chapter 10.6: Power Series,

the term “represented” is the only description offered to

communicate to the student that they are no longer

approximating but finding exact values. Professor C on

the other hand asked his students, “can we replace that

‘approximately equal to’ by ‘equal to’ if I replace ‘𝑛’
with ‘infinity’?” then proceeded to have a discussion

about how they are creating exact representations.

• Unlike the textbook, Professor C presented infinite 

series before sequences so that a local potential 

intellectual need for sequences to determine the 

convergence of an infinite sum can be presented at the 

beginning of the lesson about sequences.
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Fostering Student-Centered Online Tutoring Practices 
with OPTIMUM Interactions

CONTRIBUTORS:

• Nicole Engelke Infante*
• Lori Ogden†

• Keith Gallagher*
• Tim McEldowney‡

The INSPIRE Model for Tutoring ConclusionIntroduction

Methodology

Access to quality tutoring is an issue of equity.

Student use of tutoring resources has been correlated with 
an increase in
• final course grades (Rickard & Mills, 2018)
• improvements in persistence, retention, and degree 

completion (Rheinheimer et al., 2010). 

Johns and Mills (2021) and Turrentine and MacDonald 
(2006) identified two primary aspects of online tutoring 
needed for successful student outcomes:

1. the types of technology tutors have access to
2. communication in the online environment.

Building on this work and on pilot data collected during 
the spring 2020 semester, we identified practices that are 
essential to creating student-centered online tutoring 
sessions and that are distinctly different from in-person 
tutoring sessions. 

The Online Practices for Tutoring In Mathematics 
Using Meaningful (OPTIMUM) Interactions project
seeks to understand how Lepper and Woolverton’s (2002) 
Intelligent, Nurturant, Socratic, Progressive, Indirect, 
Reflective, and Encouraging (INSPIRE) tutoring model 
can be translated to an online environment.

Lepper and Woolverton (2002), in a comparison of the 
practices of expert tutors, identified characteristics of and 
techniques used by those tutors during tutoring sessions. 
The behaviors identified in these expert tutors include 
cognitive, metacognitive, and affective pedagogical 
strategies and considerations which focus not only on the 
academic content under consideration but also emphasize 
the importance of study skills and student mindsets. 

• Data collected during Spring 2020 semester.
• Tutors were trained for in-person tutoring.
• New tutors enrolled in a pedagogy course based on the 

INSPIRE model (Lepper & Woolverton, 2002).

• Tutoring suddenly moved online in March 2020.
• Video and audio were collected from 29 online 

tutoring sessions from 7 different tutors.

• Data were analyzed using deductive thematic analysis 
(Braun & Clarke, 2006, 2012).

• Initial coding based on the INSPIRE model.

• We present some of the themes that were found in the 
data, and we identify how the skills outlined in the 
INSPIRE model can translate to the online 
environment.

These results were generated from pilot data collected as 
part of a larger, ongoing study. These results, among 
others, informed the production of a set of training 
materials and resources for both tutors and tutor center 
leaders. We presented this preliminary set of materials to 
tutor center leaders in a “Train the Trainer” workshop in 
August 2021. These materials were also used to train 
online tutors for the current iteration of this study. Data 
collection  is ongoing and will be used to revise these 
materials. We look forward to hosting another “Train the 
Trainer” workshop in Summer 2022.

The full collection of resources generated from our work 
to date can be found here: 
https://drive.google.com/drive/folders/1-
yucC2Xf5lDrP8FrQcEwg5bHJNKJ4rQK?usp=sharing

*University of Nebraska Omaha, †West Virginia University, ‡Centre College

Building Relationships

A tutor’s ability to build a relationship with a tutee is 
closely related to the Nurturant and Encouraging aspects 
of the INSPIRE model. We identified three important 
points for tutors to consider:

• The student’s motivation for attending tutoring
• How to respond to failure/success
• How to work with challenging students

This work was supported by NSF IUSE award DUE-
2201747. All findings and opinions are those of the 
research team and do not necessarily reflect the NSF’s 
position. 
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The INSPIRE Model

Intelligent Knowledge of subject matter 
and pedagogical strategies

Nurturant Developing a personal rapport 
with the tutee

Socratic Asking questions to foster 
dialogue rather than telling

Progressive Purposeful selection of 
problems, systematic feedback, 
and predictable routines

Indirect Providing appropriate types 
and amounts of feedback

Reflective Asking the tutee to explain 
reasoning and generalize

Encouraging Promoting confidence, 
challenge, curiosity, and 
control of the learning

OPTIMUM Interactions

Scheduling

We identified scheduling considerations that seemed to 
affect both tutors’ and tutees’ online tutoring experiences.

• Tutor-to-student ratio – schedule more tutors during 
peak times

• “Zoom fatigue” – allow for 10-minute breaks every 
hour

• Tutors’ level of experience – have at least one 
experienced tutor scheduled to assist novice tutors

With the rapid shift to providing online tutoring, we 
observed that many in-person tutoring strategies were not 
translating to the online environment. We present four key 
observations and how they might be addressed.  

Technology Considerations

The most effective tutors in our study showed comfort 
and flexibility working with the technology they had 
available to them and were able to work around the 
technology limitations of the tutees they were helping. We 
consider these online pedagogical strategies as instances 
of the Intelligent aspect of the INSPIRE model.

Resources used by our most effective tutors included

• Shared virtual whiteboard software
• Online graphing tools

Tutors who had access to tablets or touchscreen 
computers were able to communicate mathematics more 
easily.

Video Case Studies

Interactions were primarily of the form: ask the tutor for 
help on a problem, tutor solves the problem, and move on 
to the next problem. There was limited dialogue between 
the tutor and student.

As an aid to tutor training, we (with the help of our tutors) 
created six fictional video case studies demonstrating 
various desirable and undesirable tutoring behaviors. 
These case studies were designed to generate discussion 
among tutors during training.
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Algebra Instruction at Community Colleges: Validating Measures of Quality Instruction
Dexter Lim,  Bismark Akoto, Irene Duranczyk, AI@CC 2.0 VMQI Research Group

University of Minnesota

This poster presents the research design and data collection strategies for a federally
funded project to investigate Mathematical Knowledge for Teaching Community College
Algebra (MKT-CCA). This poster focuses on the design of our overall project, a blueprint for
MKT-CCA highlighting some problematic issues we are facing while creating the blueprint,
and some challenges with writing assessment items in preparation for collecting pilot data.

Abstract

RQ1: What are the dimensions of mathematical knowledge for teaching college
algebra at community colleges?

RQ2: What is the relationship between the underlying dimensions of high quality of algebra
instruction at community colleges and aspects of diversity, equity, and inclusion?

RQ3: What is the connection between mathematical knowledge for teaching community
college algebra and the quality of instruction in the context of CC algebra?

Research Questions for AI@CC 2.0 VMQI
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For MKT-CCA
+ Writing items with a range in difficulty
+ Describing student thinking from prior experience
+ Writing MKT-CCA items about common student errors
+ Creating options that can be mathematically evaluated
+ Ensuring the included topics are part of the college algebra curriculum
+ Discarding some unusable items after revision

For EQIPM
+ Identifying equitable and inclusive practices in our videos
+ Connecting our videos to themes from literature about equitable and

inclusive practices

Challenges

Timeline

Figure 1. Instructional triangle (Cohen, 
Raudenbush, & Ball, 2003)

Project Description
The Algebra Instruction at Community Colleges (AI@CC 2.0: VMQI) project (Mesa et al.,
2020-2023) seeks to develop and validate an instrument to assess instructors’
Mathematical Knowledge for Teaching Community College Algebra (MKT-CCA) and
revising a video coding protocol.

The MKT-CCA instrument sets out to
measure the mathematical knowledge for
teaching college algebra at community
colleges (CC) using multiple-choice or
testlet items focusing on the following
college algebra topics:
+ Linear equations and functions
+ Exponential equations and functions
+ Rational equations and functions

We hypothesize that MKT-CCA will also
be organized along the following two
Tasks of Teaching:
+ Choosing problems
+ Understanding student work

August 2020 Collection of ideas and resources
• Looked into textbook, videos, and student work
• Started with Ball, Thames and Phelps’s MKT (2008)
• Reviewed other existing instruments: MET, LMT, 

COACTIVE, TEDS-M, DTAMS, etc.

September 2020 MKT-CCA development
• Training on item generation by team’s psychometrician
• Protocol for drafting items
• Internal review of items in small groups

EQIPM Development
• Reviewed literature on equity

October 2020 MKT-CCA blueprint development
• Decided on topics/content for items
• Decided on tasks of teaching

November 2020 Recruitment of MKT-CCA participants
• At conferences
• Via emails from a list of college instructors

April 2021 Received feedback of items from advisory board and 
faculty research associates

June 2021 Item writing session/camp (Kimani et al., 2022)
• 13 instructors and mathematics educators

outside of our research group
• 11 research group members

July 2021 Cognitive interview (Akoto et al., 2022)
• Interviewed 12 instructors with 36 items

November 2021 Gathered asynchronous feedback
• 15 instructors with 12 items

March 2022 Conduct MKT-CCA Pilot 
• ~120 participants with 60 items

Akoto, B., Lim, D., Duranczyk, I., & AI@CC 2.0 VMQI Research Group. (2022). Utilizing cognitive interviews to improve items that measure
mathematical knowledge for teaching community college algebra [Paper presentation]. PME45, Alicante, Spain.

Ball, D. L., Thames, M., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal for Teacher Education, 59(5),
389-407. https://doi.org/10.1177%2F0022487108324554
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25(2), 119-142.
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community colleges faculty in developing measures for mathematical knowledge for teaching [Paper presentation]. 12th Congress of the
European Society for Research in Mathematics Education, Bolzano, Italy.
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Linear function
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Exponential 

function

Category 3:
Rational 
function

Dimension 1

Dimension 4 Dimension 5

Dimension 2

Dimension 6

Dimension 3

MKT-CCA
Blueprint

Method
Sources
+ Video recordings of CC algebra instruction from our previous project (AI@CC 1.0)
+ Various college algebra textbooks used in CCs
+ Prior teaching experiences
+ Other MKT instruments
+ Students’ written work

Instrument 
development

Instrument 
testing

Instrument 
validation

Item 
development Item revision

Item testing

Overall
MKT-CCA
Process

To Learn More To Participate

Ball et al. 
(2008)

Choosing
Problems

Understanding
Student
Work

Mesa et al. 
(2020-2023)
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Investigating a Student’s Relative Size Reasoning 
Kayla Lock 

Under the advisement of Dr. Marilyn Carlson  
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Results 

Future research will aim to investigate
• Whether a student’s ability to engage in relative size reasoning is interrelated to one’s ability to conceptualize a unit of measure. 

Future Research

• Morgan’s scheme for fractions entails counting how many of the unit of measure fit into the length in which she is trying to measure 
rather than thinking about fractions in terms of partitioning. 

• The thinking revealed in the interview indicates that a student’s ability to conceptualize a unit of measure involves the ability to 
partition a quantity into equal parts based on the reference length she chooses. This interview also suggests that the mental
operations involved in conceptualizing a unit of measure is dependent on one’s meaning for each symbol and their relationship in
the equation !

"
= 𝑐. 

• I argue that in static situations, a student may not have to engage in covariational reasoning in order to think productively about the 
situation presented, however, in dynamic situations, a student’s ability to engage in covariational reasoning influences her ability to 
engage in relative size reasoning.

Conclusion

• Researchers have documented that students in university 
mathematics courses have difficulties comparing two quantities
in terms of their relative size (e.g. Byerley, 2019; Tallman, 2015). 

• Lobato and colleagues have reported that many students do not 
view the idea of proportionality, slope, rate of change, and 
average rate of change as being connected (Lobato, 2006; 
Lobato & Siebert, 2002; Lobato & Thanheiser, 2002). 

• Engaging in relative size reasoning may be beneficial for 
understanding several precalculus topics including constant rate 
of change, rational functions, trigonometry, and exponential 
functions (Lock, 2021) 

• Researchers have discussed how productive meanings for ideas 
in calculus such as the difference quotient (Byerley & 
Thompson, 2014), derivative (Byerley et al., 2012; Zandieh, 
2000), and the fundamental theorem of calculus 
(Thompson,1994) involve comparing two quantities 
multiplicatively.
• One’s ability to engage in relative size reasoning is dependent 

on their interrelated meanings for measurement, fractions, 
multiplication, division, ratio, proportionality, and magnitude
which involve quantitative reasoning (Thompson, 2011) and 
covariational reasoning (Carlson et al., 2002; Thompson and 
Carlson, 2017) (Lock, 2021).

Research Question: 
What mental operations do students engage in when approaching 

novel precalculus tasks that are designed to elicit relative size 
reasoning?

● Radical constructivism (Glasersfeld, 1995) is the lens used in this 
study which takes on the perspective that every individual has their 
own reality, knowledge is constructed based on previous personal 
experiences, and knowledge lies in the mind of the individual. 

● Quantitative reasoning is the analysis of a situation into a network 
of quantities and quantitative relationships (Thompson, 1994, 2012). 

● A quantity is a person’s conception of a quality of something such 
that they envision that quality admitting some measurement process. 
Part of conceiving of a quantity is conceiving of an appropriate unit 
by which one might measure the conceptualized measurable quality 
(Thompson, 1994, 2012). 

● One constructs a quantitative relationship in one’s mind when they 
have conceptualized two quantities and a quantitative operation 
which together make a third quantity (Thompson, 1990). 

● Covariational reasoning refers to the mental actions involved in 
coordinating the value of two varying quantities and how the values 
vary in relation to each other (Carlson Jacobs, Coe, Larson, & Hsu, 
2002; Saldanha & Thompson, 1998; Thompson & Carlson, 2017) 

● This work draws on theories of students’ understanding in the 
moment and communicating mathematics:
○ Students explained their meanings in the moment for each 

response they had to the questions. Each question posed was 
used as a point to characterize the students’ meanings 
(Thompson, 2013).

Theoretical PerspectiveMotivation and Research Question

● One who has a productive meaning for the relative size of two 
quantities imagines measuring one quantity’s magnitude in 
units of the other quantity’s magnitude, given that the two 
quantities are of the same unit of measurement (Lock, 2021). If 
the quantities are not of the same type of unit (e.g., speed 
which is a relationship between distance and time) it involves 
thinking of the measure of one quantity’s value in multiples of 
the measure of the other quantity’s value (Lock, 2021). 

● Relative size reasoning is a way of thinking (Thompson, 
Carlson, Byerley, & Hatfield, 2014) that a person has developed 
when thinking about comparing two quantities multiplicatively 
for which they can utilize when conceptualizing mathematical 
topics (Lock, 2021).

● Relative size reasoning involves imagining the multiplicative 
comparison of two quantities both in a static context and in
dynamic contexts. 

Example: Comparing two people’s height (static context)
● The students must conceptualize Darien and 

Haley’s height as quantities. 
● Measuring Darien’s height in units 

of Haley’s height (imagine Haley’s 
height as measurement unit):
Darien is #

$
rd the height of Haley.

● Measuring Haley’s height in units of 
Darien's height (imagine Darien’s 
height as measurement unit): Haley 
is $

#
the height of Darien.

Relative Size Reasoning 
• I conducted two 1.5hr long clinical interviews (Clements, 2000) 

where precalculus students from a large southwestern university 
worked on eight tasks from different topics (measurement, 
proportional relationships, rational functions, and concavity) 
designed to elicit students’ ways of thinking about relative size. 

• First task: a question that presents a static situation and does not 
require the students to think about varying quantities. 

• Second task: presents a dynamic situation and was designed to 
assess the student’s ability to think about a multiplicative comparison 
of two people’s, Joe’s and Trevor’s, ages as the number of years 
since Trevor was born varies. 

• I attempted to characterize one student’s, Morgan (pseudonym), 
thinking by determining what meanings these students had in the 
moment while working through the tasks. 

Methodology 

Interview Question 
Task 1: What does it mean to say that Rihanna is 67 and ½ inches tall?

Task 2: Suppose Joe, who is currently 46 years old, and Trevor want to 
compare their ages over time in years since Trevor was born in 1996. 

What does %&
#'

represent in this problem context? What does #'
%&

represent in this problem context? 
a) In the year 2000, describe how Trevor’s age compares to Joe’s 

age?
b) In the year 2015, describe how Joe’s age compares to Trevor’s 

age?
c) As time increases, how does the comparison of Trevor’s age to 

Joe’s age behave?
d) As time increases, how does the comparison of Joe’s age to 

Trevor’s age behave?

TASK 1:
● The student read the problem aloud and conceptualized the task as needing to convert Rihanna’s height from inches to feet. She 

wrote the equation 12inches = 1foot, stated “there’s 12 inches in 1 foot” and calculated &(.'
*#

= 5.625. When responding to why she 

performed the calculation of &(.'
*#

, she responded with, “so how many times 12 fits into 67.5. And since 12 inches is 1 foot, I guess 
like the 5.625 is how many times 12 goes into 67.5.”

● When Morgan was asked how she knew Rihanna was 5.625 feet tall and not another measure (e.g., 7.2 feet tall) she stated, “If I 
use a ruler to measure Rihanna and a ruler is only 12 inches, I will use it once, twice until its five and then six is too much. So then 
from there 5 times and a little of the ruler I would know her height.”

Excerpt 1
Interviewer: How would you describe the size of one inch in comparison to the size of a foot?
Morgan: Let's say like one inch, like one of them times 12 is one foot. So one inch 12 times is 12 inches or one foot so like one 

inch 12 times is one foot so then one inch 24 times is two feet, because 24 divided by 12 is 2.
Interviewer: Okay, so can you describe that relationship in the other direction? How would you explain it if you are comparing the 

size of a foot to the size of an inch?
Morgan: One …one divided by 12 so like *

*#
. Because there's 12 inches in one foot so 12 is how many times … yeah because its 

either 12 or *
*#

. So it's not how many how many times 12 feet fit into 1 inch. That’s not right, its how many times its how many 
inches fit in one foot and how many …How many .. Oh gosh I am not sure.

TASK 2:
• Morgan read the question aloud and after reading part (a), she was unaware of what  %&

#'
and #'

%&
represented other than writing %&

#'
=

1.84.  
Excerpt 2

Interviewer: What does each number or symbol in the expression %&
#'

represent? What does 46 represent? 
Morgan: 46 divided by 25 is 1.84. What does 1.84 mean? Um I do know it means how many times 25 fits into 46. So how many 

times ….so 25 fits into 46 1.84 times …so what does 25 mean? I don’t know, it's just Joe over Trevor’s age, but I don’t know 
what this equation like is trying to tell me. That is Joe’s age [46]. Okay so 25 fits into 46 1.84 times and 25 divided by 46, 46 fits 
into 25 0.5434 times. So what like what does that even mean? 

• Parts B and C involved comparing Joe’s and Trevor’s heights for a specific year after Trevor was born. In part D and E asks about 
the relative size of the two boys’ ages as the number of years since Trevor was born increases. 

Excerpt 3
Morgan: You see it here we know 46 minus 25 is 21 so as time increases Trevor's age will always be 21 times …well I mean 21 

years younger than Joe's age. So then for (e) as time increases, how does comparison of Joe's age to Trevor's age so and the 
other way around, so then Joe will always be 21 years older than Trevor.

Interviewer: Is there any other way, you can compare those two ages, as time increases?
Morgan: I guess you could like divide their ages and then. You find out exactly how many times older one is in the other how 

many times younger the other one is in the other.
Interviewer: Can you describe how that relationship will behave as time increases?
Morgan: Yeah, so Trevor's age to Joe’s age. Umm … it'll always be greater than zero because Trevor's age will always be able to 

fit into Joe’s age, but then Joe’s age won’t be able to fit into Trevor's age, because Joseph older, so it will always be like zero 
point something.
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Calculus	2	Functioning	as	a	Gatekeeper	from	STEM
Kelly MacArthur (she/her), Montana State University
Derek Williams (he/him), Montana State University

Sergazy Nurbavliyev (he/him), University of Utah

PURPOSE	&	MOTIVATION METHODS

•Spearheaded by the MAA, the Characteristics of 
Successful Programs in College Calculus provided 
insight into Calculus I from across the US, and 
showed the importance of teaching on student 
achievement, persistence and attitudes (Bressoud 
et al., 2015). 
•Calculus 2 is a natural entry point to consider 
persistence of STEM-intending students because 
almost all Calculus 2 students are STEM majors. 
•Not all students have historically been equally 
represented in STEM fields, which has had 
dramatic economic impacts on individuals and on 
the country as a whole (PCAST, 2012).
•Perhaps more importantly, this inequity has 
deleterious impacts on STEM-intending students’ 
aspirations and goals. 
•This study looks at achievement and persistence of 
Calculus 2 students at a predominantly white 
institution, including comparisons across different 
races or ethnicities.

RESEARCH	QUESTIONS

DISCUSSION

RESULTS

RESULTS

Supported in part by the MSU Graduate School

(1) Is there a difference in the proportion of men 
and women who discontinue taking math 
courses beyond Calculus 2?; 

(2) Is there is a difference in how students 
perform in their next math class between 
students listed as listed as Black, Hispanic, 
American Indian/Alaskan Native, and Native 
Hawaiian/Other Pacific Islander and students 
listed as white/Asian students?; and

(3) Is there a difference in student performance 
in their next math course based on race and 
gender for students who earned similar grades 
in Calculus 2?

Data Collection

• Institutional Data that included
• Gender (provided only as female, male 

or unknown)
• Race or Ethnicity
• Major
• Course Grade in Calculus 2 and 

Instructor Name (for Fall 2018)
• Course Grades for  all math classes 

taken over the next three semesters 

Data Analysis

• To analyze this data, we used a two-
proportion z-test for each question. All 
necessary conditions were met, 
including
• Sample sizes are much bigger than 30.
• They are independent samples.
• We used data for all students who 

took Calculus 2 in Fall of 2018.
• We find there is a significant difference 

for all questions.

• After almost a decade from the PCAST (2012) report, 
we are still seeing Calculus function as a gatekeeper 
from STEM fields. 

• Continuing to delve into why and how such 
differences in persistence and achievement exist 
across students remains an important question in 
STEM education. 

• Even after years with knowledge of good and 
ambitious teaching to support students, we are still 
seeing evidence that students from historically 
underserved groups in STEM continue to be 
underserved. 

• Especially for students who passed 
Calculus 2, the median letter grade in 
the next math courses tended to be 
higher for white/Asian students and 
the number of students earning 
those higher letter grades was much 
greater.

• There is a noticeably large difference 
in median next math grade by race 
for students who earned a B in 
Calculus 2. BIPOC students, as a 
group, earned one letter grade lower 
than W/A students.

• A similar distinction for students who 
earned a C in Calculus 2 emerged as 
well. However, for this group BIPOC 
students did not pass their next math 
course where W/A students earned a 
median C grade, as a group.

QUESTIONS	FOR	THE	READER
• What do you wonder and notice by looking at 

the tables?
• What are your thoughts on positioning these 

results, particularly to avoid “gap gazing”?
• What are your thoughts about the language in 

use as dictated by the restricted way the 
institution collects and reports students’ 
identification information? 

Calc 2 Letter 
Grade Sex Race

Next Math 
GPA Grade 
(median)

Count

A

Female
BIPOC 3.85 2

W/A 3.70 84

Male
BIPOC 3.30 10

W/A 3.70 255

Unknown W/A 3.30 2

B

Female
BIPOC 2.00 3

W/A 3.00 44

Male
BIPOC 2.30 9

W/A 3.00 187

Unknown W/A 0.00 3

C

Female
BIPOC 0.00 2

W/A 2.00 17

Male
BIPOC 0.00 3

W/A 2.00 90

Unknown
BIPOC 2.00 1

W/A 2.85 2

D

Female
BIPOC 2.30 2

W/A 1.00 5

Male
BIPOC 0.00 2

W/A 2.50 16

Unknown W/A 3.30 1

F

Female
BIPOC 2.00 3

W/A 1.50 12

Male
BIPOC 0.00 8

W/A 2.00 72

BIPOC W/A Totals

Female 12 162 174

Male 32 620 652

Unknown 1 8 9

Totals 45 790 835

Table 2: Count of students who took a next math course 
(by sex and race).

Table 1: Median next course grades (and counts) for 
students based on Calc 2 letter grades (by sex and race).

• 62% of men took a next math course beyond 
Calculus 2 compared to 42% of women.

• When controlling for majors that does not 
require a math course beyond Calculus 2, 
there remained a significant difference in 
proportions of men and women enrolled in 
future courses.
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Four Patterns in Students’ Connections
Between Mathematics and Computing

More in paper:

“By hand 
we can 
surely 
write…”

“But why 
isn’t it 
working 
here, 
then?”

Digital version:

Code Output

Math

“That’s an 
equation!”

Replicating Program

“If you set the 
remainder as 10-10

[…] for 0.5 and 1 
because that’s the 
worst case…”

Output

Improvement Cycle

“Oh yeah, that’s 
what we calculated. 
We should do that 
for both sides, then.”

“Yeah, that’s it, 
because then 
you’re dividing 
by a smaller 
number, and 
then it does 
become larger.”

Output

Math

Justified Improvement

“OK, so should 
we run it by 
hand first?”

“Yes, we are 
able to calculate 
that.”

Code

Math

Justified Design

Code

Odd Petter Sand1, Elise Lockwood1,2, Marcos D. Caballero1,3, Knut Mørken1

1Centre for Computing in Science Education (CCSE), University of Oslo, Norway
2Department of Mathematics, Oregon State University

3Department of Physics and Astronomy & CREATE for STEM Institute, Michigan State University

“There isn’t something 
called math.solve()?”

“We [could] 
try with a lot 
of different 
n’s […] if we 
write while
or for, yeah. ”

Math

Motivation

Computers are very 

common in the practice 

and teaching of 

mathematics. But how are 

students’ thinking and 

learning affected when 

they use mathematics and 

machine-based computing

(Lockwood & Mørken, 

2021) together?

Literature

Connections are important 

for learning and one of 

several ways in which 

students generalise

(Høffding, 1892; Lobato & 

Siebert, 2002; Ellis et al., 

2017). We wanted to know 

how connections function 

as affordances for 

students’ reasoning 

(Greeno et al., 1993).

Methods

We interviewed groups of 

students in a classroom-

like setting, capturing video 

of them working, audio, 

and the screen. We then 

performed a thematic 

analysis (Nowell et al., 

2017) to discover 

emerging themes in the 

data from the students’ 

points of view. The 

framework we developed 

was validated by co-author 

triangulation.

Discussion

We found that our students 

were able to shift flexibly 

between modes of thinking 

when they were making 

connections. These shifts 

afforded the students to 

prove that a program 

works, explain how it 

works, and explain specific 

results. These affordances 

seem to be linked to 

patterns of connections 

rather than individual 

connections. It appears 

that the more similar a 

mathematical 

representation and its 

computational equivalent 

is, the easier it is for 

students to connect them.

Research Questions

1. What types of cross-

domain connections do 

students form?

2. Which patterns of 

these connections 

emerge?

3. What are the 

affordances of these 

patterns?

(Students run their code)

Code → Mathematical model of code → Mathematical output / proof Output → Mathematical model of code → Improved code → Improved output

Code to be written → Mathematical model of code → Writing codeOutput → Mathematical model of code → Comparison with program output
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Learning Integrals Based on Adding Up Pieces Across a Unit on Integration

Brinley N. Stevens
Brigham Young University, Provo

Steven R. Jones
Brigham Young University, Provo

Background and Guiding Question

Adding up pieces (AUP) is a quantitatively-rich basis for learning the definite integral (Jones, 2015; 
Ely, 2017; Von Korff & Rebello, 2012). However, most work has examined student thinking and 
reasoning and little attention has been given to teaching integration from an AUP foundation. 
Further, a full unit on teaching integration cannot stop at definite integrals, ∫ 𝑓 𝑥 𝑑𝑥




, and needs 

to extend to integral functions, 𝑔 𝑋 = ∫ 𝑓 𝑥 𝑑𝑥



, in order to incorporate the FTC and 

antiderivatives. In response, we developed a learning trajectory for teaching integration in first 
semester calculus through an AUP perspective. Our guiding questions were: (a) How do we 
construct the conceptual pieces of definite integrals through AUP? and (b) How do we build on that 
same understanding to extend to integral functions?

Comparisons to Previous Learning Trajectories
An existing quantitative approach to learning integration is what we have called accumulation from 
rate (AR), which began with the work of Pat Thompson (Thompson, 1994, Thompson et al, 2013). 
One might wonder why a learning trajectory based on AUP is needed and whether those from AR 
can suffice. AUP and AR differ in key ways that have important implications for learning: (a) static 
partition pieces (AUP) versus dynamic continuous covariation (AR), (b) different roles of 
infinitesimals, (c) the centrality of definite integrals (AUP) versus integral functions (AR), and (d) 
the use of rate-only integrands (AR) versus the flexibility of using non-rate integrands (AUP) (see 
Jones & Ely, in preparation).

Three Contexts, developed as follows: 

1. Constant (basic), 2. Varying (definite integral), 
3. Extend (integral function)
Fuel Flow (interviews 1 & 3)
Consider the flow rate R of fuel 
through a pipe in L/min as a 
function of time t in minutes. How
much fuel passed through the pipe?
Road Construction (interviews 2 &4)
A road crew is levelling a stretch of terrain.
Consider the linear weight of dirt, W, in 
tons/yd, along the 24 yards. How much
dirt is on hand after leveling is done that 
needs to be hauled away?
Volume of a Solid (interviews 2 & 4)
Consider the round solid shown here is 
83 ft long, with different cross sections of 
area A. Describe how an integral could be 
used to determine its volume.

Framework
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Numeric Symbolic Graphical

Basic 
Quantities & 
Basic Model

Partition 
(infinitesimal)

Target 
Quantity
(infinitesimal)

Sum
(infinitesimal)

Variable 
Bound
(infinitesimal)

Output
(infinitesimal)

Function
(continuous)

t 0 1.25 2 2.5 3 3.75 4

R(t)
18 12 7 6 4 3 2.5

Layer 0: Orient 
(Sealey, 2014; 
Simm & Oehr, 
2019)

Layers 1-3: 
Definite 
integrals as 
AUP (Jones, 
2013, 2015; 
von Korff & 
Rebello, 2012; 
Simmons & 
Oehrtman, 
2019)

Layers 4-6: 
Extending to 
integral 
functions 
(Swidan & 
Yerushalmy, 
2014, 2016)

Constant case: 10 L/min over 4 min. 
How much fuel? (Basic quantities)

Non-constant case: Data table of 
different rates. How much fuel?
(Numeric/Symbolic: Partition, target 
quantity, sum; scale to infinitesimal)

Non-constant case: If we graph R(t), 
connect ideas to graph.
(Graphical: all layers 0 - 3)

Define definite integral:
𝐹 = ∫ 𝑅(𝑡)𝑑𝑡

ସ


as partition (dt), 

amount (Rdt), and sum (∫)

Constant case: If terrain is even, 
how much dirt? (Basic quantities)

Non-constant case: If terrain varies 
(see graph), how much dirt?
(Num/Symb/Graph: Partition, 
target quantity, sum)

Reinforce definite integral def’n:
𝐷 = ∫ 𝑇(𝑥)𝑑𝑥

ଶସ


as partition (dx), 

amount (Tdx), and sum (∫)

Volume: solidify definite integral
𝑉 = ∫ 𝐴𝑑𝑥

଼ଷ


as partition (dx), 

amount (Adx), and sum (∫)

Extend: What if time interval 
extended beyond 4 mins?
(Num/Symb/Graph: Var bound)

Extend: For each extra bit of time, 
what happens with fuel amount? 
(Num/Symb/Graph: Output)

Extend: Relationship between 
bounds and outputs?
(Num/Symb: Function)

Extend: Construct a graph that 
shows fuel amount at any time T
(Graphical: Function)

Extend: What if road continued?
(Num/Symb/Graph: Bound, 
output)

Extend: Relationship between 
road end and dirt amount? 
Graph amount of dirt on hand 
as road progresses
(Num/Symb/Graph: Function)

Build toward FTC:
Compare integral function 
graphs to original context 
graphs. What do you notice?
(Identify derivative-
antiderivative relationship)

Interview Lesson #1, 
Fuel Context

Interview Lesson #2, 
Road & Volume

Interview Lesson #3, 
Revisit Fuel

Interview Lesson #4, Revisit 
Road/Volume, build to FTC

Numeric Symbolic Graphical

Basic Quant 
& Model

Partition 
(infinitesimal)

Target 
Quantity
(infinitesimal)

Sum
(infinitesimal)

Variable 
Bound
(infinitesimal)

Output
(infinitesimal)

Function
(continuous)

Build to 
FTC

Theoretical Learning TrajectoryProgression of Unit on Integration : Key Activities and Associated Parts of Framework
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H. Poincaré

MAIN TAKEAWAY
Participants’ conceptions of domain & range were often intimately 
intertwined with their conceptions of specific types of functions 
and their preferred representations of these functions.

Students’ conceptions of the domain and range 
of different types of functions

Brady A. Tyburski
Michigan State University

Traditional multivariable calculus (MVC) courses are organized by 3 function types

𝒛 = 𝒇(𝒙, 𝒚) 𝒓 𝒕 = < 𝒇 𝒕 , 𝒈 𝒕 , 𝒉 𝒕 >

Real-Valued Functions 
of Two Variables

Parametric Functions Vector Fields

𝑭 𝒙, 𝒚, 𝒛 =
< 𝑴 𝒙, 𝒚, 𝒛 , 𝑵 𝒙, 𝒚, 𝒛 , 𝑷(𝒙, 𝒚, 𝒛) >

But how do students organize the course?

Mathematics is the art of giving the same name to different things

To what extent do students recognize the 
above objects as being of the same form,

f : D → C,
with a domain and a codomain?

QUESTION: 
What are some common student conceptions for the domain and 
range across different types of functions that appear in MVC?

Interpretant

D represents 
the inputs of 
f(x,y), 
x and y, 
which are in 
the domain

Domain

Object

SIGN

Signifier

• Participants: 4 students in a traditional MVC course
• 3 semi-structured, task-based interviews
• 1st: Single-variable, real-valued functions
• 2nd: Multivariable, real-valued functions
• 3rd: Vector-valued functions

• Questions about representing & interpreting the D&R of different function types 
in different modalities (graphically, symbolically, or verbally)

“Judging what is 

good and less 

good in a 

representation is 

an error-prone 

pursuit.” 

–diSessa (2004)

• Lens of signs & cultural semiotics
• Asset-based approach to students’ representations
• Set-based focus: Element ∈ Set ⊆ Superset framework
• How do students represent elements of sets? The sets themselves? What 

ambient dimension(s) do they consider the elements/set to be in?

Don’t hesitate to reach out with 
comments or questions!

Students mostly attended to factors other than domain and range when 
listing types of functions in MVC, including the coordinate system and the 
dimension of the function’s graph

Q: Tell me about the different kinds of functions you’ve encountered in MVC.

Amelia response Robin’s response

All but one student treated the range as being 1-dimensional, even when 
considering vector-valued functions

Two students’ representation of the range 
of a parametric function, r(t).

Trinidad: The range is (-∞,∞). I’m 

thinking of all the numbers you could 

get out. When you get the vector as an 

output, you get some number, some 

number [she writes <#,#>] and then 

you can account for the magnitude of 

that vector as well. . . . This means 

that the magnitude can be infinitely 

small or infinitely large as you can see 

[from the diagram of F(x,y)]. 

Two students took the magnitude of 
vector outputs to determine the range of 
a vector field on ℝ2:

Students frequently used non-normative signifiers for the domain and range 
of functions; however, their corresponding interpretant was often normative

A

B

C

D

Robin’s signifiers for 
A: “x=2 is in the domain of f(x)”
B: f(2)
C: The domain of f(x)
D: The range of f(x)

Trinidad’s signifiers for
B: Something in the domain of f(x,y)
T: f(B)
C: Something in the range of f(x,y)

• If we hope for students to organize MVC by function type, 

we must make this organization more explicit

• Students may benefit from explicit guidance when 

generalizing from real-valued to vector-valued functions

• Effort spent helping students organize their experiences by 

function type so they develop a unified notion for function 

(Zandieh et al., 2017) could pay off in future courses

• It is important to look beyond students’ potentially non-

normative representations when interpreting their thinking 

about multivariable functions
@BradyTyburski

tybursk2@msu.edu

Works Consulted
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Goal
We aimed at understanding the use of research based
instructional practices in introductory mathematics, physics, and
chemistry courses at the post-secondary level in the U.S.

Specifically, we sought to examine patterns (if any) of course
coordination among calculus instructors at four-year institutions
and how might different aspects of coordination impact the
instructional practices of instructors.

Participants
900 instructors responded to the two prompts. We reduced the
data-set to include only 877 respondents; we excluded 23
instructors who reported “does not apply” to Prompt 1.

We conducted a k-means cluster analysis to identify
categories of instructors.

Background
Calculus course coordination systems attempt to ensure
uniformity in course elements such as textbook, and exams;
create consistency in student learning opportunities; and
transform learning experiences through active learning
(Apkarian & Kirin, 2017; Rasmussen et al., 2021; Williams et al.,
2021).

Course coordination has the potential to initiate a community of
instructors working towards high quality instruction and
positively impact student learning (Rasmussen & Ellis, 2015;
Rasmussen et al., 2014).

Little is known about how similar or different coordination styles
are across contexts or in what ways does the coordination
impact the instructional strategies of instructors.

Research Questions
1. What patterns of course coordination, if any, exist among

calculus instructors at four-year institutions?
2. How do different aspects of coordination impact the

instructional practices of calculus instructors?

Kevin Moore, Teo Paoletti, Jason Silverman, Madhavi Vishnubhotla,            
Zareen Rahman, Ceire Monahan & Erell Germia

Results
Five clusters of instructors based on who the primary decision
makers were for the four coordination components.

We found no statistically significant differences between the
group means of the 5 clusters.

We found no statistically significant differences between group
means based on the proportion of in-class time students spent
on four different activities.

Proportion of in-class activities across the 5 
clusters Based on Prompt 2.

Survey Prompts
1. Who are the primary decision makers for (i) textbook; (ii) exams;

(iii) content and topics covered in class; and (iv) instructional
methods used? Instructors reported on on a four-point scale: (1)
myself; (2) myself and others; (3) one or more other people; and
(4) does not apply.

2. What proportion of time during regular class meetings (i.e.,
lecture sections) do students spend (i) working individually, (ii)
working in small groups, (iii) participating in whole-class
discussions, and (iv) listening to the instructor lecture or solve
problems?

Description of the Cluster Number 

The instructor collaborates with others in deciding the 
exams and instructional practices whereas a group of 
others decide the textbook and content to be taught.

48

The instructor collaborates with others in deciding the 
textbook and content to be taught but is the primary 
decision maker for exams and instructional practices. 

507

The instructor primarily decides the textbook, content, 
exams, and instructional practices.

125

The instructor collaborates with others to decide the 
content and exams, is the primary decision maker for 
instructional practice, and is sometimes on a group of 
others to decide the textbook.

113

A group of others decide textbook and content and while 
the instructor is sometimes on a group that decides exams 
they decide the instructional practices. 

84

Impact of C alculus  C oordination on Instructional P ractices :
A P reliminary Investigation

5 Clusters based on Prompt 1 with the mean 
score for each coordination component. 
The average scores are rounded up to whole 
number values. 

Rasmussen, C., & Ellis, J. (2015). Calculus coordination at PhD-granting 
universities: More than just using the same syllabus, textbook, and final 
exam. Insights and recommendations from the MAA national study of 
college calculus, 107-116.

Williams, M., Apkarian, N., Uhing, K., Martinez, A. E., Rasmussen, C., & 
Smith, W. M. (2021). In the driver’s seat: Course coordinators as change 
agents for active learning in university Precalculus to Calculus 
2. International Journal of Research in Undergraduate Mathematics 
Education, 1-28.

Madhavi Vishnubhotla, Ahsan C howdhury, Naneh 
Apkarian, Estrella Johnson

The research reported in this paper was supported by the National Science Foundation under grant numbers 
DUE 1726042, 1726281, 1726126, 1726328, & 1726379
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Aaron F. Wade

UniversityTemple

Keywords: Collaborative Learning, Statistics 
Undergraduate Education, Utility-value 
Intervention

Pedagogies that employ collaborative 
learning opportunities have been shown to 
positively increase students’ academic 
achievement (Whicker, Bol, & Nunnery, 
1997). In fact, a plethora of studies have 
replicated results of the same nature, as 
confirmed via a meta-analysis (Springer, 
Stanne, & Donovan, 1999), but there exists 
an atypical group of students who are not 
motivated to learn collaboratively (Plass et 
al., 2013).

A student can lack motivation towards 
collaborative learning when they attribute 
greater value to individualised learning 
experiences as opposed to collaborative 
learning experiences. Students who lack 
motivation (for example, because they 
believe they learn better from lecture) for 
collaborative learning are less receptive to 
the collaborative learning opportunities in 
which they partake in. Educators who seek 
to harness the benefits of collaborative 
learning are, therefore, 

The study’s goal was to explore 
undergraduate statistics students’ 
motivation for collaborative learning 
and explore the effects a particular 
intervention (Collaborative Learning 
Values Workshop, CLVW) had on their 
motivation for collaborative learning. 
The author/investigator conducted 
the study with the purpose of 
enhancing students’ motivation 
(values-utility, importance, cost) for 
collaborative learning. With students’ 
values for collaborative learning 
enhanced, they would be more 
receptive and appreciative of future 
collaborative learning experiences. In 
turn, increasing their receptiveness 
for collaborative learning would 
increase the effectiveness of 
collaborative learning opportunities. 
Study results suggest that statistics 
students’ motivation for collaborative 
learning can be enhanced via the 
CLVW intervention.

Participants comprised of 54 business 
statistics undergraduate students from a 
north eastern United States 4-year 
university from two differing sections of 
the same course. During the course of 
chapter 1, all pre-measures were 
collected. Mid-semester the CLVW was 
carried out via random selection. 
Towards semesters end all post-
measures were collected.

Cronbach alphas assessed the motivation 
constructs for reliability. Strength of 
correlations between constructs 
concurred with current research in the 
field. Regression was conducted. Final 
path analysis is shown below.

Although the CLVW intervention did not 
directly effect students’ achievement, the 
CLVW, when moderated by initial 
achievement, increased students 
motivation (expectancy). Expectancy 
increases, in turn, increased values 
(utility- importance-costs) which was the 
path of association with promoting 
increased student achievement.

data on their motivation for 
collaborative learning. SEVT motivational 
constructs operationalised for measure 
were that of student success 
expectancy, interest, values (utility, 
attainment, cost), while the assessments 
consisted of quizzes, achievement data.

presented with a challenge—how can 
students’ motivation for collaborative 
learning be increased?

In an effort to increase undergraduate 
statistics students’ motivation for 
collaborative learning the study 
investigated whether statistics students’ 
values (utility, importance, costs) for 
collaborative learning could be increased 
via the Collaborative Learning Values 
Workshop (CLVW). The CLVW intended to 
assist students better understand both 
their subjective experiences of learning 
statistics as well as their learning outcomes 
when engaged in classroom environments 
which employed individualised learning in 
comparison to learning which embraced 
collaboration as well.

Through an increase in undergraduate 
statistics students’ values for collaborative 
learning, via the CLVW, (a) their motivation 
for collaborative learning increased, (b) 
enabling said students to be more 
receptive of future collaborative learning 
experiences, (c) leading to their increases 
in learning effectiveness for collaborative 
learning experiences, before (d) promoting 
achievement in undergraduate statistics. 

The study’s theoretical framework was that 
of Situated Expectancy-Value Theory
(SEVT), Eccles & Wigfield (2020)--a 
prominent motivational theory in the field 
of education. Statistics students completed 
pre/post self-report and assessment 
measures. Self-report measures collected 
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Conclusions
• Beginning teachers implementing teaching mathematics via reasoning 

and proving needs to be examined while considering how teachers 

navigate the tensions between the proof-related teaching practices 

adopted during their teacher education program, their developing 

personal teaching styles, and the sociocultural components of 

learning/ teaching environments. 

• Contribution: developing theoretical and analytical tools for analyzing 

beginning teachers’ learning how to teach mathematics via reasoning 

and proving.

Teaching Mathematics via Reasoning and 
Proving  (Buchbinder & McCrone, in press)

• Capstone course Mathematical Reasoning and 
Proving for Secondary Teachers. 

• Prospective Secondary Teachers (PSTs) can 
develop knowledge, dispositions and skills  for 
teaching mathematics via reasoning and proving 
(Buchbinder & McCrone, 2020)

• Little is known about long-term development of 
beginning teachers’ learning to teach mathematics 
via reasoning and proving, and what factors affect 
this development (Stylianides et al., 2017). 

• Beginning teachers experience tensions between 

their commitments to the university, their 

cooperating teacher, and developing their own 

teaching styles (e.g., Smagorinsky et al., 2004)

Theoretical 

frameworks

A Sociocultural Perspective on Beginning Teachers 

Enacting Reasoning and Proving Practices
Merav Weingarden & Orly Buchbinder

University of New Hampshire

Olive’s teaching as a PST 

The sociocultural contexts supported

teaching mathematics via reasoning and proving

Background

The Study

Activity theory (Engeström, 1987)

Commognitive theory (Sfard, 2008)
Teaching mathematics via reasoning and proving 

includes providing students opportunities for:

Data analysis: 
➢ Olive’s teaching was examined by the activity system 

in two settings: as a PST and as an intern.
➢ Olive’s tasks and teaching actions were analyzed 

regarding the opportunities provided to students to 
learn mathematics via reasoning and proving.

➢ Tensions between the activity system components 
were identified

Supported by NSF #1941720. 

The opinions expressed herein are those 

of the authors and do not necessarily 

reflect the views of the NSF

Integration of reasoning and proving 
within the mathematics curriculum

Emphasis on deductive reasoning for 
producing and validating 
mathematical results

Use of precise mathematical language 
but within the conceptual reach of the 
students

Subject                        

Teacher

Tools                    

Mathematical tasks

Object                         

Teaching actions for 

supporting student 

learning mathematics via 

reasoning and proving

Rules                                                          

Classroom norms, 

Teaching style, 

Adopted curriculum, 

School-standards

Community                        

support personnel 

(the cooperating 

teacher)

Division of Labor                         

Support personnel 

involvement during 

the lesson’s planning 

and teaching

Outcome                        

Teaching mathematics via reasoning and proving

Learning mathematics via reasoning and proving

(Weingarden & Buchbinder, submitted)

Participating 
in the meta-
discourse 

about proof

Participating 
in the 

curricular-
based 

mathematical 
discourse

Enacting 
mathematical 

reasoning 
processes on 

curricular-
based objects.

Identifying a pattern

Generalizing

Conjecturing

Justifying

Proving

…

𝑃 → 𝑄
¬𝑄 → ¬𝑃

Counterexample

…

Goal: To examine how sociocultural 

contexts of the teacher preparation program 

and of the internship school, supported or 

inhibited teaching mathematics via 

reasoning and proving of beginning 

secondary mathematics teachers. 

Participant: 

Olive – a beginning teacher, interning in a local high 

school, supported by her cooperating teacher (CT). 

Olive participated in the capstone course, a year prior 

to the internship.  

Data sources: 

• PST: Four lessons: lesson plans, reflections

• Intern: Two lessons: lessons plans, observations 

and follow-up interviews.

“…This isn't 

my lesson 

plan. This is 

Anna’s [CT] 

lesson plan. 

So, it's me 

applying her 

lesson [...]”

Subject                        

Olive as an intern

Tools                                         

Tasks provide limited ORP   

Object                         

Olive’s teaching 

actions did not 

support students 

learning mathematics

via reasoning and 

proving

Rules                                                          

Olive was tacitly 

expected to adhere 

her CT’s teaching 

style and to strictly 

follow the schools' 

standards and 

curriculum.

Community                        

The CT implicitly 

restrained and limited 

Olive’s teaching and 

planning. 

Division of Labor                         

The CT played a 

significant role in 

Olive’s teaching 

and planning the 

lesson. 

“I disagreed with [the CT’s 

principle of] moving the 

things [variables and 

constants] to the left and 

right. I don't personally care 

which side the variable is on 

because I think it's the right 

answer at the end of the day. 

So, if they want to write 12 

equals N, I'm okay with 

that… I didn't immediately 

change anything… There 

was one example that I was 

like, I would move this five 

over here and put a zero over 

here, but I know she [CT] 

didn't do that. So, I was like, 

uhoh I don't want one group 

of kids to get a different 

system than another group”.

“They have the curriculum planned out for 

the year, so I'm pretty much facilitating it… 

I'm welcome to make things, you know, she 

[CT] included my input and stuff, but she's 

been teaching this class for seven years. 

So, she has like a system that tends to work 

for her. So that's what I've been doing…”

𝑦 − 24 = −7

+24 + 24

𝑦 = 17

Subject                        

Olive as a PST

Tools                                         

Tasks provide fully-integrated ORP   

Object                         

Olive’s teaching 

actions supported 

students learning 

mathematics via 

reasoning and proving

Rules                                                          

Olive was not 

expected to adhere 

her CT’s teaching 

style and to strictly 

follow the schools' 

standards and 

curriculum.

Community                        

The CT did not 

restrain or limit 

Olive’s teaching and 

planning. They 

hardly communicated 

(only technically)

Division of Labor                         

The CT was not 

involved in Olive’s 

teaching and 

planning the 

lesson. 

“So, let's look at proof 

one. I started with the 

statement that angle 

ADC is 90 degrees. 

Can anyone identify 

why that might be 

true?”

Results
Olive’s teaching as an intern 

The sociocultural contexts inhibited

teaching mathematics via reasoning and proving

Object                         

Olive’s teaching actions supported students 

learning mathematics via reasoning and proving

“I personally would love to … put something on the board and they tell me all the things that they wanna do [operations 

on equations] that don't necessarily make sense for them to grasp... I think they're stuck to doing only moving this, but if you 

can conceptually understand that we have a scale, and as long as you're doing both things to both sides, the answer is going to be 

the same at the end of the day. I think that would be cool for them to see, like, let two people do entirely different things 

and show them that they're gonna get to the same answer at the end of the day, as long as it's balanced on both sides”

Subject                        

Olive as an intern
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Utilizing Cognitive Interviews to Evaluate and Improve Items for an Instrument to Measure 

Mathematical Knowledge for Teaching Community College Algebra 

 

                                  Bismark Akoto                                         Dexter Lim 

 University of Minnesota University of Minnesota 

 

 Irene Duranczyk AI@CC 2.0 VMQI Research Group1 

 University of Minnesota EHR #2000602, 2000644, 2000527, 2000566 

 

As part of the Algebra Instruction at Community Colleges: Validating Measures of Quality 

Instruction project to develop an instrument to measure mathematical knowledge for teaching 

community college algebra (MKT-CCA), cognitive interviews were conducted with community 

college instructors of College Algebra. The findings and lessons learned from these interviews 

will be presented in this poster. 

Keywords: Cognitive interviews, Mathematical Knowledge for Teaching, College Algebra, 

Community College  

Research has shown that there is a connection between the quality of instruction and the 

instructor’s mathematical knowledge for teaching (MKT), and that students’ achievement gains 

are significantly tied to their teachers’ mathematical knowledge (Hill et al., 2005). The Algebra 

Instruction at Community Colleges: Validating Measures of Quality Instruction (AI@CC 2.0) 

project is developing an instrument to measure mathematical knowledge for teaching community 

college algebra (MKT-CCA). The development of an instrument involves a number of processes 

essential to the construction and selection of good items. This process involves five main stages: 

conceptualization, construction, tryout, analysis, and revision (Cohen & Swerdlik, 2009). In the 

construction stage, cognitive interviews play a significant role and have become an integral part 

in the development of assessment instruments since its introduction in the 1980's (Meadows, 

2021; Willis, 2005). Cognitive interviews are usually used by researchers to gain insight into 

respondents' understanding of survey items (Ryan et al., 2012; Willis, 2015).  

We conducted cognitive interviews with community college (CC) college algebra instructors 

to understand whether the items are interpreted by participants as intended and used the 

knowledge we thought was needed (Mesa et al., 2020-2023). Eighteen drafted MKT-CCA test 

items were reviewed by 12 CC instructors with each item being reviewed by two instructors. The 

data from these interview sessions were analyzed and the strengths and weaknesses of the items 

identified were used to improve on the items and also guided in the drafting of subsequent items. 

This poster will present the findings and lessons learned from this first stage of cognitive 

interviews with the instructors as part of the instrument and item construction stage. We will also 

highlight how the feedback received during the cognitive interviews were integrated in the items 

along with challenges that we faced during the process.  

1The AI@CC 2.0 VMQI Research group includes: Megan Breit-Goodwin, Anoka-Ramsey CC; 

April Ström, Chandler-Gilbert CC; Patrick Kimani and Laura Watkins, Glendale CC; Nicole 

Lang, North Hennepin CC; Mary Beisiegel, Oregon State University; Judy Sutor, Scottsdale CC; 

Claire Boeck, Inah Ko and Vilma Mesa, University of Michigan; Bismark Akoto, Irene 

Duranczyk, Siyad Gedi and Dexter Lim, University of Minnesota. Colleges and authors are listed 

alphabetically.  
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Students Generated Observations of a Function Represented as a Graph and Symbolic Equation 

Nigar Altindis     Melissa Aikens     Christopher Bauer 

University of New Hampshire  

Historically, mathematics was perceived as sets of calculations, numerals, or numerical 

operations mainly with a single correct answer. This study breaks this cycle by having 600 

STEM undergraduate students make accurate, distinct, and relevant observations or inferences 

about a function represented as a symbolic equation and graphical representation in parallel. 

The initial analyses indicated that; (a) the students rely on graphical representations more than 

the symbolic equation of the function, (b) the students indicated that the graph of the function 

represents more information about the function compared to the symbolic equation. We 

concluded that getting students to write their observations is far richer than having them answer 

a single correct answer.  

Keywords: Representations, Functions, Graph, Symbolic Equation, Sense-Making   

Historically, learning and teaching functions focus on a single correct answer mainly on a 

single representation: graph, symbolic equation, or table (Altindis, 2021; Altindis & Fonger, 

2019; Fonger & Altindis, 2019). However, as noted in the literature, meaning-making is a 

creative sense-making process. According to Voigt (1994), the mathematical meaning is 

"individual sense-making process" and "development of mathematical knowledge" (p. 276). 

Sfard and Linchevski (1994) further posit that students' construction of meaning evolves with a 

skill of recognizing "abstract ideas hidden behind symbols." (p. 224). Making accurate, relevant 

observations are processes that use our senses by interacting, touching, seeing, and giving 

meaning to what we see, feel, and touch, then creating new images. In other words, making 

accurate observations about function is a process that results in the act of creation. With that in 

mind, we explored undergraduate students' accurate, precise, relevant observation of a function 

presented as a graph and symbolic equation. To understand students' meaning-making about a 

function, we distributed pre-and post-survey asking 600 STEM undergraduate students to make 

observations or inferences about the graph and symbolic equation in parallel. This poster reports 

students' written responses related to Figure 1.  

 

 
Figure 1: Survey Item 1  

For the analyses, we analyzed students' responses to the survey item by employing Corbin 

and Strauss' (2008) constant comparison analyses. The findings indicated; first, the students were 

inclined to make a coordinated change on a graphical representation compared to symbolic 

representation. Second, the function graph represents more information about the function than 

the symbolic equation. And students coordinated change in the independent with the change in 

the dependent variable of function on graphical representations by stating, "While the x-axes 

approach 2 both from left and right, the function approaches infinity". We concluded that getting 

students to write their observations is far richer than having them answer a single correct answer. 

However, further research is needed to explore how students' accurate, distinct, and relevant 

observations about functions can inform learning and teaching functions.  
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Design Possibilities: Opening a Door to More Equitable Mathematical Discussions 
 

 Erin Barno Gregory Benoit 
 Boston University Boston University 

Keywords: Professional Development, Teacher Education, Digital Clinical Simulations 

Mathematics educators’ ideological perspectives that position mathematics and students 
within a binary of right or wrong (Christensen et al., 2008) can be disrupted by examining the 
laden social and cultural practices and expectations embedded within mathematics and 
mathematics learning (Gutiérrez, 2013). In light of this need, the popularity of digital 
experiences for practice-based teacher education (Cohen et al., 2020) presents an opportunity to 
design mathematics teachers’ instructional simulation towards disrupting settled notions of 
mathematics learning. Our work explores the design choices of a digital clinical simulation for 
in-service middle years mathematics teachers that intentionally surfaces opportunities and 
tensions of teacher moves within a students’ small group discourse. In this report, we detail the 
theoretical underpinnings when designing this three-fold digital simulation within the Teacher 
Moments (TM) simulation tool, and discuss how the designed simulation within TM is oriented 
towards disrupting teachers’ inequitable decision making in students’ small group discourse. 

In order to design simulations in which teachers can develop expansive pedagogical 
attunements, we created three discursive scenarios meant to model a small group challenge in 
terms of either student status, cognitive demand, or student (mis)conceptions. When imagining 
an unbalanced student status, we designed for a teacher to respond in ways in order for all 
students to feel and be perceived as competent by their teacher and classmates at moments when 
a student was dominating the group discussion (Horn, 2008). In order to practice maintaining 
cognitive demand, we designed for a teacher to identify where that student was struggling 
conceptually and then support a student’s access to a task as opposed to providing a step-by-step 
procedure (Stein & Lane, 1996). We also designed for a teacher to support students in their 
tentative, exploratory ideas while revisiting those ideas through engaging with their group and 
resist the need to “correct” student thinking (Horn, 2012; Jansen et al., 2016; Kazemi & Stipek, 
2001). These multiple moments of challenge and choice serve as powerful sites of learning for 
teachers experiencing the simulation, as they are opportunities to experience and reflect on a 
potential perpetuation or disruption of normative ways of facilitating mathematics. 

The TM digital simulation design shared here makes space for teachers to experience critical 
moments within small-group discussions and explicitly practice ways to respond, thus serving as 
a way to shape teacher discretion. While experiencing the entire simulation, teachers either 
choose or auditorily record responses at multiple moments; later, they can examine how their 
responses disrupts or perpetuates the given discursive challenge in a particular group experience 
by listening to their own responses or visually seeing how particular key decision moments led to 
particular student responses in each group design’s trajectory. The potential for small-group 
discussions to be a place for generative ideas to take root or not reveals how critical it is to have 
professional opportunities for teachers to practice how to orient themselves for real-life 
classroom discourse. TM is not a tool to illustrate instructional “rights or wrongs,” but as a lens 
to surface complexities that arise within micro-moments of mathematical discourse. Therefore, 
we believe designing digital simulations with TM can help foster critical conversations that 
expand teachers’ conceptions of students’ mathematical doing and learning when designed to 
particularly surface the potential expansive moments of teacher decision making. 
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Undergraduates Transition to Formal Proof-oriented Mathematics  

Hillary Bermudez 
Syracuse University 

Keywords: proof, proof-writing, undergraduate, transitional proof courses 

Most universities introduce students to formal proof-writing norms through transitional proof 
courses (Selden & Selden, 2008; Stylianou et al., 2015). However, the intent of these courses is 
commonly not aligned with the experiences that undergraduates have when acclimating to this 
genre (Bleiler-Baxter & Pair, 2017; Stavrou, 2014; Stylianou et al., 2015). I have reviewed 31 
sources from over ten journal venues related to undergraduate proof and proof-writing. I then 
used inclusion criteria such as impact factor, SCOPUS index, and citation counts to identify 
significant pieces in this line of inquiry. In this poster, I use Tall’s (2008) framework to anchor 
the findings from my review and to propose some implications for proof instruction. 

Challenges of Learning Proofs 
The transition to formal mathematics relies on developing three cognitive structures: 

conceptual embodiment, proceptual symbolism, and axiomatic formalism (Tall, 2008). Students’ 
axiomatic formalism involves their engagement in formal proofs in advanced mathematics 
courses, which thus relies heavily on their development of representations of concepts and 
symbols for describing concepts dually as a process and a structure (Tall, 2008). However, if 
students’ development of the first two structures is limited, they will encounter many difficulties 
in proofs (Stavrou, 2014; Tall, 2008). 

Students’ transition to formal mathematics is often abrupt (Stylianou et al., 2015), which 
limits the development of conceptual embodiment. For example, instructors often provide 
students with a repertoire of abstract definitions and theorems and expect students to apply them 
in proofs in their advanced mathematics courses (Stavrou, 2014) but without sufficient attention 
to supporting students to develop prototypical representations of the objects and relations 
described by definitions and theorems. One result is that students struggle to correctly apply 
definitions and theorems in proofs (Selden & Selden, 2008; Stavrou, 2014). 

In many proof-oriented mathematics courses, a large instructional emphasis is given to a 
proof’s logical structure (Baker & Campbell, 2004). The emphasis on logical structure focuses 
on a student’s development of axiomatic formalism, which leads to a deviation from conceptual 
embodiment and perceptual symbolism. This has been shown by Baker and Campbell (2004) to 
limit students understanding of the importance and uses of proof, for example, by viewing the 
role of proof as an end-product in comparison to a sense-making tool for mathematical thinking.   

Implications 
This review suggests that for students to fully develop axiomatic formalism, educators should 

provide students with opportunities to embody and symbolize essential concepts in proofs used in 
proofs. The development of a student’s conceptual embodiment and proceptual symbolism could 
then benefit from problem-solving pedagogies, such as small-group explorations and in-class 
discussions, which aim to develop rich understandings of mathematical concepts (Hiebert & 
Wearne, 2003). This could then promote students’ abilities to apply definitions and theorems in 
proofs and shift their perspective towards proofs as a tool for sense-making and mathematical 
thinking.  
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A Survey of Programs for Preparing Graduate Students to Teach Undergraduate Mathematics 
 

Jack Bookman     Emily Braley 
           Duke University       Johns Hopkins University 

 
We present preliminary results of a census survey of mathematics Ph.D programs conducted in 
Fall 2021.  The survey gathered information about how (or if) these programs prepare their 
graduate students to teach undergraduate mathematics.  This survey follows up and extends a 
similar survey conducted in 2015. Analysis of the survey data was used to examine the extent to 
which the cultural landscape about preparing graduate students for teaching has changed since 
2015.  
 
Keywords: Graduate Student Teaching Assistants, Professional Development 
 
     This work is part of a larger effort by MAA CoMInDS (NSF DUE-1432381) to support 
providers of professional development for teaching (PDT). Since 2014 CoMInDS (College 
Mathematics Instructor Development Source) has provided that support by (1) conducting 
workshops for faculty providers of PDT for graduate students (GTAs); (2) building an online 
resource suite of instructional materials and research products to support the work of preparing 
GTAs to teach undergraduate mathematics; and (3) promoting a professional community of 
practice comprising these providers. Each summer since 2016, CoMInDS has offered workshops 
for providers. A total of about 200 participants from 115 institutions have attended the 
workshops (Bookman & Speer, 2021).   
     In 2015, CoMInDS, working with the Progress through Calculus project (Rasmussen et al, 
2019), conducted a census survey of graduate mathematics programs. One focus of that survey 
was how departments prepared their GTAs for teaching. There was a 75% response rate from 
Ph.D granting institutions. A majority of mathematics departments reported that they conduct a 
PDT program for their GTAs, however the depth of that PDT varied widely.  Another finding 
was that evaluation of these efforts is limited and the primary means of evaluation were student 
evaluations (Speer et al. 2017). 
     In order to gauge the extent to which things have changed since 2015 and to get a more in- 
depth view of the PDT graduate programs offer, we adapted the 2015 survey and sought data 
from all US institutions with mathematics Ph.D programs. Some survey questions are identical 
or similar to questions asked in 2015. Other questions probe more deeply so we can better gauge 
the nature and extent of the PDT. Respondents were asked to choose from a list of 19 topics that 
GTAs typically learn about in their programs (e.g., facilitating group work, university resources 
for students) and are asked to choose from a list of 11 activities in which GTAs participate (e.g., 
develop a lesson plan, deliver a non-lecture based practice lesson).  We also asked what were the 
sources of the instructional materials and activities used in the PDT. 
     Part of the 2021 survey asked about the providers of PDT for the graduate students. This 
information was not gathered in the previous survey. Among other questions, we asked, “What 
kind of faculty positions do each of the providers of GTA preparation hold?”  “What factors 
were taken into consideration when choosing who will provide GTA preparation?” 
     Findings from the 2021 survey will be used to inform the mathematics community about the 
current state and needs of providers delivering the PDT.
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Instructors’ Dispositions to Incorporate Data Science in Mathematics Courses 

 
 Steven Boyce Christopher Orlando Roman 
 Portland State University Portland State University 

Keywords: data science, technology, computing, calculus, statistics 

Data science involves the application mathematical and statistical concepts, distinguished by 
the use of technology, particularly the use of software to visualize and structure data and to enact 
machine learning. Our research aim is to understand how to prepare mathematics instructors to 
incorporate data science learning goals in grades 11-14 courses (e.g., pre-calculus, calculus, 
linear algebra, and statistics). We engaged a group of four instructors of high school and 
community college mathematics in learning some technologies used in the discipline of data 
science and identifying opportunities to incorporate those technologies to concurrently serve 
mathematics learning goals. The participants each had prior experiences with Python or R and at 
least ten years of teaching experience at the high school or community college level. We first 
engaged the four instructors in collaborative learning about data science, via their working 
through an introductory open-source text, How to Think Like a Data Scientist (HTTLADS) 
(Miller, Boggs, & Pearce, 2020) over the course of five weeks during Summer 2021.  

We next embarked upon a modified lesson study (Rock & Wilson, 2005) in which each 
instructor began by preparing a lesson incorporating data science knowledge they learned to fit 
within learning objectives of mathematics or statistics course they would be teaching in the 
academic year. Participants met weekly for an hour to discuss their learning of the data science 
modules, interacted via shared annotations between meetings, and shared an approximately one 
hour video of themself engaging with HTTLADS. They were also individually interviewed for 
approximately one hour prior to the start of the school year by one of the authors. Interview 
questions included opportunities for reflection on their video submission as well as prompts for 
their dispositions for introducing data science in their mathematics teaching. 

To analyze the participants’ dispositions to incorporate data science in their mathematics 
teaching, we adapted Niess, Sadri, and Lee’s (2007) five-stage developmental model for 
incorporating technology in teaching and learning mathematics. At stage one, instructors learn to 
use the technology for themselves and recognize the alignment of the technology with 
mathematics content but are yet to integrate the technology in teaching and learning of 
mathematics. For most data science tools instructors were in stage one, but for some data science 
tools they were in stage two (during which instructors engage in activities that lead to a choice to 
adapt or reject introducing the data science tool). We used the constant comparative method 
(Strauss & Corbin, 1994) to further analyze commonalities and distinctions in their dispositions 
from the interviews. The poster will display our analyses of the interviews.  

One interesting result was that each participant described the use of Google’s search engine 
as an invaluable tool in their learning. They expressed diverging perspectives on expectations for 
mastery of a data science tool before introducing it to their classes. Two participants expressed a 
belief that their students would assist them with any issues that arose (such as syntax), while the 
others wanted to avoid software tools for which they felt less expertise. We look forward to 
further discussions with conference attendees about how the participants are identifying ways to 
align data science learning goals and mathematics and statistics learning goals. 
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Prospective Secondary Mathematics Teachers’ Understanding of the Role of Examples in 

Proving: Dealing With Conflicting Evidence  
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Secondary teachers’ knowledge of reasoning and proving is fundamental to supporting 

students’ opportunities to meaningfully participate in proof-related practices. Prior research 

identified several gaps in teacher knowledge of proof, such as misunderstanding the role of 

examples and counterexamples in proving. Still, intervention studies addressing these gaps are 

scarce (Stylianides, Stylianides & Weber, 2017). We designed a capstone course Mathematical 

Reasoning and Proving for Secondary Teachers and studied how it affects prospective secondary 

teachers’ (PSTs) knowledge of proof (Buchbinder & McCrone, 2020), specifically, their 

understanding of the roles of examples in proving. We report on data collected over several years 

from about 50 PSTs completing an online, scenario-based task What Can You Infer from This 

Example. The PSTs had to decide whether a statement “A quadrilateral whose diagonals are 

congruent and perpendicular to each other is a kite” is true or false and justify their reasoning. 

Then, the PSTs examined six quadrilaterals proposed by hypothetical students, and determined 

whether each one proves, only supports, disproves, or neither proves nor disproves the statement.  

We analyzed the PSTs’ responses with Buchbinder and Zaslavsky’s (2019) Role of Examples 

in Proving framework, and used open coding (Patton, 2002) to categorize PSTs’ justifications. 

The results suggest that the PSTs have strong declarative knowledge, e.g., “supportive examples 

do not prove”, “one counterexample disproves”. Yet, many PSTs struggled to discern between 

supportive, irrelevant and counter-examples. Since definitions of quadrilateral may vary, 

(Usiskin, 2008) it is important for teachers to apply a particular definition consistently when 

evaluating student contributions; but this was not always the case for our PSTs. About 33% of 

our PSTs struggled to maintain logical consistency throughout the task. For example, they 

correctly identified an isosceles trapezoid with perpendicular diagonals as a counterexample, but 

also thought that a general kite disproves the statement, when in fact it disproves the converse. 

After analyzing student work, PSTs were invites once again to decide whether the statement 

about quadrilaterals is true or false. Almost all PSTs correctly identified the statement as false, 

and the number of correct justifications increased by 65%. The PSTs and the course instructor 

(the second author), discussed the mathematical and pedagogical matters invoked by the task and 

collectively resolved any remaining confusion.  

The scientific significance of this work is twofold. First, we illustrate an example of a rich 

task, embedded in pedagogical practice that elicits and enhances PSTs’ knowledge of proof. 

Second, from the research perspective, we provide a nuanced analysis of how PSTs deal with 

examples that constitute presumably conflicting evidence for truth-falsehood of a given 

statement, and report on aspects of PSTs’ understanding of roles of examples in proving which, 

to our knowledge, have not been previously reported in the literature.   
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Identifying the Language Demands of Inquiry-Oriented Undergraduate Mathematics Courses 
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Undergraduate STEM courses are increasingly adopting active learning instructional 

approaches (Cooper, Downing, & Brownell, 2018) based on prior research findings that active 

learning is more effective overall than traditional lecturing (Freeman et al., 2014). In particular, 

one active learning approach that has gained traction in undergraduate mathematics is inquiry-

oriented (IO) instruction (Rasmussen & Laursen, 2019). According to Laursen and Rasmussen 

(2019), activities in an inquiry-oriented approach engage students in doing and thinking about 

mathematics (through reading, writing, discussing, or solving problems) as well as in talking 

with their peers and the teacher about what they are doing and thinking. In addition, the IO 

curricula consist of instructional sequences of daily tasks that lead students toward creating or 

reinventing big ideas, such as a major theorem, a definition or a procedure. IO classes engage 

students in authentic mathematical practices, such as explaining, justifying, conjecturing, 

proving, and defining (Moschkovich, 2007; Rasmussen et al., 2005). 

However, while IO classes may be beneficial on average, their impact may not be 

equitable on certain groups of students. For example, Johnson et al. (2020) found that IO abstract 

algebra benefited men more than women, while women performed equally well in inquiry-

oriented classes and lecture-based classes. Findings such as this one raise questions about which 

other student groups might also be differentially impacted by IO classes. One important group to 

consider is multilingual students who are learning the language of instruction. Attending to this 

group is critical because, while the undergraduate population is becoming more linguistically 

diverse, IO courses are usually taught only in English and they may induce different language 

demands than lectures do. To this end, I present and illustrate an emergent conceptual framework 

to identify the language demands in IO undergraduate math classes.  

Drawing primarily on a situated sociocultural theory of learning (Moschkovich, 2015) 

and K-12 mathematics education research on language and mathematics, the framework has 

three dimensions: systemic, discursive, and lexical. The systemic dimension attends to which 

linguistic systems are used, including mathematical language systems (Moschkovich, 2015), 

communicative modes and text genres (Lyon, Bunch, & Shaw, 2012), participant structures 

(Chapin, et al. 2014), and named languages. The discursive dimension attends to the patterned 

ways of being and acting – e.g., sociomathematical norms (Yackel & Cobb, 1996) and discourse 

practices (Moschkovich, 2007). The lexical dimension attends to the uses of key mathematical 

terms or any unfamiliar or ambiguous terms (Kaplan, Fisher, & Rogness, 2009). I will illustrate 

the use(fulness) of this framework using classroom interaction data from an IO undergraduate 

math class. Revealing the language demands of IO instruction will suggest the need (and 

possibly ways) to integrate linguistic supports to address those demands, making undergraduate 

mathematics learning more equitable for all students, including multilingual students. 
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Understanding Perceptions of an Innovative Active Learning Approach in Calculus  
Through a Learning Assistant’s Perspective 

 
 Adam Castillo Pablo Duran Oliva 
 Florida International University Florida International University 
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Learning Assistants (LAs) are becoming more popular in undergraduate STEM courses. LAs 
have become vital resources for instructors who have implemented active learning strategies in 
the classroom. The purpose of this study was to further explore LA perceptions of active learning 
in an introductory calculus course through focus groups. 

Keywords: learning assistants, active learning, calculus 

The use of Learning Assistants (LAs), trained ‘near-peer’ undergraduate classroom 
facilitators integrated into classrooms to support learning with groups (Otero et al., 2010), is 
becoming a more common practice across STEM departments in the United States. Research on 
LA impact shows the LA model improves student outcomes, including increasing conceptual 
understanding (Sellami et al., 2017; Van Dusen & Nissen, 2019), and lowering drop, fail, and 
withdrawal rates (Alzen et al., 2018, Barrasso & Spilios, 2021). The purpose of this qualitative 
study is to further explore LA perceptions of their participation in an innovative active learning 
approach in calculus. 

The Modeling Practices in Calculus (MPC) model is the innovative active learning in 
mathematics approach that accompanied this study (Castillo et al., 2020). The MPC model 
integrates three core elements: cooperative learning, social metacognition, and a culturally 
appropriate learning environment. This environment is also enhanced as LAs are incorporated 
into the classroom to support learning with groups. LAs are natural agents of this culturally 
appropriate model, as their demographics are that of the students, who provide insights and 
connections from the perspective of a recent participant in the course. 

Two pilot focus group interviews, lasting 45 to 60 minutes each, were conducted with 16 
new and returning LAs in Spring 2020. In Fall 2020, six focus group interviews were conducted 
with a total of 14 new LAs and 16 returning LAs. Focus groups were guided by a semi-structured 
interview protocol based on the aforementioned core elements of the MPC model. Interviews 
were analyzed using a grounded theory approach (Strauss & Corbin, 1994). The two pilot 
interviews were used to develop a codebook of perceptions related to LA experiences and 
perceptions of active learning. The codebook was modified and updated after two rounds of 
coding (interrater agreement of 71.1%) and was used to code the six Fall 2020 focus group 
interviews. After codes were subgrouped to exclude unrelated codes a total of 542 level-1 codes 
were included in the analysis.  

The top three main level-1 codes refer to the perceptions that LAs have about the 
development of their own instructional practice (22%), their experiences with students in the 
classroom (20%), and the significance of students’ conceptual understanding in the learning 
process (18%). Further discussion and breakdown of these overarching themes, as well as 
implications and areas for future research, will be presented in the poster. 
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An Investigation of Active Learning Impacts on Student Understanding of Infinite Series 

Convergence 

Zachary Coverstone                Brynja Kohler 

Utah State University       Utah State University 

Keywords: Calculus Education, Problem-Based Learning, Infinite Series, Concept Image 

The purpose of this study is to investigate the progression of student understanding 
throughout a three-week unit about infinite series convergence when active learning techniques 
are applied in a Calculus II classroom. The research question is: How does a problem-based 
curriculum implemented in a classroom affect concept images students create when learning 
about infinite series convergence? Research has been completed before regarding active learning 
techniques using problem-based learning and student understanding of infinite series 
convergence; however, the combination of these two areas has not been studied extensively. The 
poster will include samples from the curriculum designed with a problem-based learning 
approach, and a description of the research methods that will be applied to better understand 
student concept images of convergent and divergent sequences and series. 

Infinite Series and Curriculum Design 
When encountering infinite series and sequences for the first time, students have fundamental 

understandings about what it means for an infinite series to converge (Ergene & Özdemir, 2020). 
In contrast to the lecture with guided notes method of course delivery typical at the research 
university where this study took place, students enrolled in a particular section of Calculus II 
participated in a three-week study where they engaged in interactive problem sets in the style of 
the Park City Mathematics Institute program for teachers (see Kerins et al. (2017), for example).  
During each of the twelve class periods of the study, students worked at their own pace solving 
problems in small groups. Following some time in small groups, a whole-group discussion was 
employed to emphasize and formalize key ideas students developed. Focus was given in the 
problem sets to analyzing geometric series, p-series, and using integrals and comparisons to 
determine series convergence. Students were also introduced to alternating series and relevant 
theorems (“tests”) to determine convergence. Every four sessions, students were given a quiz to 
complete. Additionally, in the final in-class session, students were given a performance 
assessment regarding fractals to apply their learning. 

Methodology 
This study will address the research question with a qualitative analysis of student data 

generated in class and outside class using thematic analysis (Braun & Clarke, 2006) to make 
sense of students’ concept images of infinite series. After anonymizing and chronologically 
organizing student work, the researchers will identify changes in student thinking over time. 
Student work will be triangulated across both formative (problem set data) and summative 
(quizzes, performance assessment data) assessment, and literature on infinite series 
conceptualization. A brief summary of preliminary results will be provided on the poster and the 
researchers will seek feedback on improvements to analysis techniques. 
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In this poster, we examine student concept maps of sequences and series. By analyzing 

student concept maps, we hope to gain insight into student thinking about sequences and series.  

We then compare these maps to an optimal map designed by experts in the hopes of 

understanding what students know versus what experts expect students to know at the conclusion 

of a second semester calculus course. In particular, we look to address the research question, 

“How do students’ concept maps of sequences and series differ from an optimal map based on 

experts’ expectations of second semester calculus students?” 

Literature Review and Conceptual Framework 

Students tend to struggle with the topics of sequences and series (Earls, 2017; Martinez-

Planell et al., 2012; Nardi and Iannone 2001). One way of gaining insight into student thinking 

about a topic is to use concept maps (Williams, 1998; Coutinho Da Silva 2014). Hence, concept 

maps serve as our framework for analyzing student thinking about and struggles with sequences 

and series. 

 

Methodology 

This study was undertaken during the Spring and Summer of 2021. Participants included six 

students from a small, private college in a Northeastern urban center. After being provided with 

examples of concept maps, students were asked to draw their own concept maps of sequences 

and series. These maps were then compared to an optimal concept map developed by experts 

through an iterative process. In order to do the comparison between the optimal and student 

maps, we developed a scoring scheme using Cronin, Dekker, and Dunn (1982) and Bartels 

(1995). In this study, points were calculated across four categories: concepts, linking words, 

mathematical definitions, and holistic assessment. Each map was coded by every member of the 

team and all scores reached a consensus. Scores were then converted to a Likert rating. 

 

Results, Discussion, and Implications 

Of the six concept maps, one was missing several key concepts, including tests for 

convergence, and was considered “poor.” Three of the maps showed more concepts than this first 

map, but still struggled to join concepts with linking words. These maps were considered 

“average.” The last two maps were consistent in meeting experts’ expectations for concepts as 

well as linking words between the concepts and were considered “good.” These results suggest 

that students may not be learning what experts expect them to learn about sequences and series. 

This has implications to other areas of mathematics and other disciplines. Are students really 

learning what we expect them to at the end of a course? Perhaps concept maps can be a tool to 

help determine if students are meeting expectations at the end of a course. 
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This research consists of a comparative analysis of undergraduate mathematics and 
undergraduate humanities majors’ conceptualizations of the function and form of mathematical 
definitions. Analyses provide evidence of two distinct approaches.  

This study takes a sociocultural approach to investigating mathematical thinking and 
learning, conceptualizing mathematical definitions as cultural forms that serve varying cognitive 
and communicative functions in activity (Saxe, 2012), and mathematical defining – the process 
of formulating, reasoning about, and refining definitions over time – as a collective cultural 
practice (Lave, 1993). Data consists of one-on-one semi-structured interviews with 12 
mathematics and 12 humanities undergraduate participants.  
Functions of Mathematical Definitions 

I found differences in participants’ responses to the question “What are mathematical 
definitions usually used for?” as displayed in the left panel of Figure 1. While mathematics 
majors tended to see definitions as serving to facilitate communication and proof across a 
disciplinary community (6/12 participants), humanities majors tended not to (1/12 participants). 
By contrast, the majority of humanities participants (7/12) saw definitions as assisting them to 
find answers to routine exercises or problems with numerical or algorithmic solutions, while 
mathematics majors did not (1/12 participants). Both cohorts mentioned the role of mathematical 
definitions in aiding understanding of novel content (4/12 in each cohort). 
Forms of Mathematical Definitions 

I found differences in participants’ responses to the question “What makes for a good 
mathematical definition?” as displayed in the right panel of Figure 1. Mathematics majors voiced 
a preference for mathematical definitions that were comprehensive, precise, or unambiguous 
(5/12 participants), while humanities majors tended not to (1/12). Humanities majors voiced a 
preference for definitions that provided procedural instructions for problem solving (5/12), while 
mathematics majors did not (0/12). Both cohorts voiced a preference for definitions that were 
readable or understandable (5/12 in each cohort). 

 
Figure 1. The number of mathematics participants’ (n=12) and humanities participants’ (n=12) 
who referenced each function served by mathematical definitions (left panel) and each preferred 

feature of definitional forms (right panel). 
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The student teaching internship serves as the capstone experience for many undergraduate 
mathematics students. Further, student teaching marks an important transitional period in their 
developing mathematical identity from that of a student to that of teacher. With the secondary 
mathematics internship serving as the context for this study, this proposal details my ongoing 
work and initial findings for my dissertation. More specifically, this proposal outlines my efforts 
to understand the perceived influence that teaching practice has on novice math teachers’ 
teachers’ sense of understanding math concepts.  

A teacher’s mathematical identity is comprised of two interacting and overlapping categories, 
namely Aspect-of-Self in Mind (Shulman, 1986, 1987) and Aspect-of-Self in Community 
(Wenger, 1999), according to Van Zoest & Bohl’s (2005) Mathematics Teacher Identity 
Framework. In this framework, the authors organized a teacher’s identity into their “in the mind” 
perception of self, based on their knowledge, beliefs, commitments, and understandings 
(Shulman, 1986, 1987), and into their perception of self within communities of practice 
(Wenger, 1999), based on the teacher’s participation and varying dimensions of competence. My 
project sets out to provide narrative accounts as evidence of the interacting relationship between 
one’s social identity and one’s conceptual identity. 

This study takes place in the student teaching experience of three secondary mathematics 
teacher interns throughout the 2021-2022 school year. Their student teaching experience takes 
place over the course of a full-school year, and they are also concurrently enrolled in university 
courses. Throughout this project, I took on two roles in relation to these interns; I served as their 
university field instructor as well as a researcher. This dual role has allowed me the unique 
opportunity to view their internship with detail, as needed for case studies.  

To understand how the interns viewed their own content understanding in relation to their 
teaching practice, I rely upon case study methods (Yin, 2017), specifically I draw upon the 
interns’ guided reflection journals (Akinbode, 2013; Johns, 2010) as my main data source, as 
well as observations, field notes, and interviews. Data collection occurred in two phases: a 
preparatory phase, and two two-week collection periods in the Fall and Spring semesters. During 
the first phase, I met with the interns as a professional learning community to develop skills for 
noticing key classroom interactions and reflecting on their practice (van Es et al., 2017). This 
preparatory work laid the foundation for more in-depth collection periods. Towards the end of 
their first semester of the internship, they embarked on building a reflective narrative of an 
instructional unit. Using dialogical movements (Akinbode, 2013; Johns, 2010), the interns 
recorded daily synopses of their teaching interactions and responded to my follow up questions 
to begin distilling out themes that they noticed emerging from the texts in order to create their 
reflective narrative. These narratives serve as my primary data source in getting a sense of their 
lived teaching experiences and how they viewed the work of teaching as influencing their 
perception of their own content knowledge. 
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To conclude this poster presentation, I will present my early dive into analysis of the data. By 
presenting excerpts from the reflective narratives, I will demonstrate my developing coding 
process and put forth early claims that will help to answer my research question. 
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Math Teacher Technology Self-Efficacy 

Jenna Finnegan 

Liberty University 

Keywords: math teacher, self-efficacy, principal, classroom technology  

 Leadership goals and a desire to drive change are critical for successful technology 

integration (Tyler-Wood et al., 2018). In addition, principals play an essential role in supporting 

teachers' work by supporting professional development efforts (Sterrett & Richardson, 2020). 

Due to the overwhelming amount of technology resources available, teachers need professional 

development (PD) that emphasizes the pedagogical use of technology in teaching. Such PD 

would help them choose the software that best supports instruction in their classroom; this could 

increase their understanding of the relationship between pedagogy, technology, and the 

mathematical concept (Getenet, 2017; Koehler & Mishra, 2009). 

     The purpose of this study was to explore how a teacher's technology self-efficacy influences 

decisions they make about the use of technology in their classrooms. This study's theoretical 

framework was based on the combination of social cognitive theory and self-efficacy theory, 

providing insight into how external and internal factors influence a person's perception of their 

abilities. A qualitative design examined the factors influencing teachers' technology self-efficacy. 

A convenience sample of 10 high school math teachers from the five rural high schools in 

Virginia was selected to participate in the study.  

 Participants shared that practicing before using new technology with students was a critical 

experience used to increase their self-efficacy. The participants learned through mastery 

experiences 47% of the time. The participants did not share receiving any feedback from the 

administration regarding their use of technology. These findings are conclusive with the findings 

of Gross and Opalka (2020), who reported a lack of communication of expectations and support 

from school districts.  

 The continued reference to practice lends evidence to a need for a change in professional 

development from presenter-led with the teachers as passive learners to allowing the teachers a 

more active role in the professional development. Several participants in this study were well-

versed in finding quality technology software, which technology best blended the content with 

pedagogy, and the experiential learning process involved. Therefore, one recommendation of this 

study is for districts to provide math teachers with specific pedagogical-based technology 

professional development that involves hands-on learning opportunities for teachers and 

continued support throughout the school year. In addition, districts would benefit from more 

intensive and practical training to build on models such as the technological pedagogical content 

knowledge (TPACK), created by Mishra and Koehler (2006), which explains the skills teachers 

need to teach a subject and use technology effectively. 

     The participants did not receive any feedback from the administration about their technology 

use during the 2020-2021 school year. However, Sterrett and Richardson (2020) claim that 

principals play an essential role in supporting teachers' work; therefore, it is recommended that 

principals take a more active part in modeling technology use and providing critical feedback to 

teachers on their technology use. In addition, principals can strengthen teachers' best practices 

through relevant, timely, and individualized professional learning opportunities (Sterrett & 

Richardson, 2020).  
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Co-Requisite College Mathematics with Undergraduate Learning Assistant Support: A Pilot 
 

 Will Hall Serena Peterson 
 Washington State University Washington State University 

Keywords: calculus, developmental mathematics, co-requisite 

Undergraduate programs in the United States aimed at “developmental,” “foundational,” or 
“remedial” mathematics are vital to the quantitative reasoning of a well-educated citizenry. 
Traditionally, these programs have involved a sequence of courses students take, each course 
serving to prepare them for the next. Often, developmental programs begin with non-credit 
bearing courses that include mathematical content students were exposed to in their elementary 
and/or secondary education (or even elementary education in some cases) but for which they 
have not yet illustrated mastery of to various stakeholders at various moments. Such models have 
undergone scrutiny as of late both in terms of traditional markers of programmatic success (e.g., 
success in subsequent courses) as well as in terms of the lived experiences of people who are 
required to participate in such models (e.g., Larnell (2016)).  

Additionally, undergraduate calculus serves as a gatekeeper to many university programs 
(e.g., engineering, computer science programs) that include it as a pre-requisite for coursework 
in the major (e.g., Bressoud, Carlson, Mesa, & Rasmussen, 2013). Students who do not place 
directly into calculus in their first year can be, and often are, unable to complete their required 
coursework in four years since so much of their program begins after calculus.  

The coronavirus pandemic challenged many paradigms in education and new support 
structures are needed. Administrators and educators are concerned with the academic progress 
made by students during the coronavirus pandemic, specifically those who were studying 
secondary mathematics in Spring 2020. At [blinded], administrators and faculty designed a 
university-wide undergraduate learning assistant program aimed at helping provide student 
support in large-lecture classes.  

In this poster, we share details of a pilot co-requisite program in the Department of 
Mathematics and Statistics across multiple campuses of Washington State University in Fall 
2021. There are two elements of the program (1) students who would have been placed in 
MATH 100 (Basic Mathematics) were offered the opportunity to also enroll in MATH 103 
(College Algebra) simultaneously and (2) students who would have been placed in a pre-
requisite course for MATH 171 (Calculus I) were offered the opportunity to enroll in calculus 
along with a one-credit hour support course (MATH 110). Each program is being supported by 
several undergraduate learning assistants. 

Initial results from program evaluation indicate the students in the co-requisite pilots were 
performing at approximately the same levels in traditional course success markers (e.g., exams, 
quizzes, homework). Data will be collected at the conclusion of the semester and include weekly 
projection and reflection discussion posts, final course grades in co-requisite courses, and survey 
results regarding their experiences. Specifically, we investigate the self-efficacy, belongingness, 
mindset, and metacognitive actions of students in the co-requisite pilot compared with students 
from the general population. 

Acknowledgments 
This work is supported by funding from the WSU Office of Provost and the CARES Act.  

24th Annual Conference on Research in Undergraduate Mathematics Education 1220



References 
Larnell, G. V. (2016). More than just skill: Examining mathematics identities, racialized 

narratives, and remediation among black undergraduates. Journal for Research in 
Mathematics Education, 47(3), 233-269. 

 
Bressoud, D. M., Carlson, M. P., Mesa, V., & Rasmussen, C. (2013). The calculus student: 

insights from the Mathematical Association of America national study. International Journal 
of Mathematical Education in Science and Technology, 44(5), 685-698. 

 

24th Annual Conference on Research in Undergraduate Mathematics Education 1221



 

 

Undergraduate Students’ Use of Everyday Language to Make Sense of Indirect Proof 

 

 Alice Hempel Orly Buchbinder 

 University of New Hampshire University of New Hampshire 

Keywords: Pre-service Teachers, Indirect Proof, Everyday Language & Mathematical Language 

The formal language of mathematical logic, which is precise and eschewing ambiguity, is 

often at odds with informal, everyday language. Despite this fundamental difference, the two are 

intimately connected. Indeed, one can think of mathematical logic as a subset of everyday 

language: the terms and rules used in mathematics are part of everyday language, but everyday 

language contains additional rules and conventions (Epp, 1999). Furthermore, both instructors 

and students often use a combination of everyday language and mathematical language when 

discussing mathematical concepts. But the switching between mathematical language and 

everyday language, if not done with care, can muddy students’ understanding of these concepts. 

Our study explores the relationship between mathematical language and everyday language, 

as used by prospective secondary teachers (PSTs) in the context of indirect proof by examining 

how they describe contraposition equivalence, negation in proof by contradiction, and the 

converse. Despite these concepts being fundamental to proving, prior research on how students 

come to learn and make sense of these concepts is sparse (Antonini & Mariotti, 2008; 

Thompson, 1996; Stylianides et al., 2004). Some recent studies examined understanding of 

contrapositive by 8th graders (Yopp, 2017) and of proof by contradiction by undergraduates 

(Brown, 2018) but only few studies focused on PSTs (Buchbinder & McCrone, 2019).   

We analyzed responses to a Mathematical Knowledge for Teaching Proof questionnaire of 35 

PSTs enrolled in a capstone course Mathematical Reasoning and Proof for Secondary Teachers 

(Buchbinder & McCrone, 2020); they took the questionnaire twice: once at the beginning of the 

semester and once at the end of the semester. We used grounded theory and constant comparison 

method (Strauss & Corbin, 1994) to analyze participants’ written justifications to analyze a set of 

items dealing with proof by contradiction, converse and contrapositive equivalence. Specifically, 

we focused on how participants used certain words in everyday language, such as opposite or 

similar, to describe logical operations and logical forms. For example, despite correctly 

identifying the contrapositive to a given statement, a participant justified their equivalence by 

saying “because it’s the opposite”. When used solely as a stand-in for negation, the use of the 

word “opposite” was relatively harmless; but when used in a context such as the reordering of 

the antecedent and consequent to create the converse, more incorrect answers emerged. The use 

of everyday language declined overall between pre- and post-questionnaire, as the PSTs adopted 

more precise mathematical language to describe different concepts relating to indirect proof. 

Our study contributes to the literature on the relationship between mathematical logic and 

everyday language by identifying particular patterns, both correct and problematic, in the PSTs’ 

use of language related to indirect proof. Becoming aware of these patterns can help instructors 

of proof courses to reflect on their own use of everyday language and to help undergraduates in 

developing more sophisticated mathematical language. 
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The Efficacy of the Flipped Classroom Technique in Undergraduate Mathematics Education: 

A Review of the Research 

 

Adeli Hutton 

Washington University in St. Louis 

Keywords: Flipped Classroom Technique, Research Review 

     The flipped classroom technique has recently been a focus of attention for many math 

instructors and pedagogical researchers. Although research on the subject has greatly increased 

in recent years, it is still debated whether the flipped classroom technique can significantly 

increase the overall success of students in undergraduate math courses. While there have been 

meta-analyses that consider the efficacy of the technique across university disciplines and within 

other STEM fields, there has not yet been a systematic review within undergraduate math 

education. By analyzing the existing research and compiling the quantitative and qualitative data, 

this project examines the efficacy of the flipped classroom technique in undergraduate math 

courses, ranging from introductory calculus to transition-to-proof courses, in regards to students' 

performance in the classes, perceptions of the technique, and associated self-efficacy. This 

project also introduces the current use of the technique and covers successful implementation 

methods. Additionally, it highlights the flipped classroom technique's potential for improving 

retention of members of underrepresented groups in math by increasing their sense of belonging 

as well as discusses the efficacy of the method in early proof-based courses in regards to 

students' acquisition of sociomathematical norms.  
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Focusing on Multiplicative Foundations Essential for Calculus 
 

Andrew Izsák 
Tufts University 

Keywords: Multiplicative Structure, Calculus, Differentiation, Integration 

Reviews of teaching and learning calculus have concentrated on co-variation, functions, 
limits, differentiation, and integration (e.g., Frank & Thompson, 2021; Larsen, Marrongelle, 
Bressoud, & Graham, 2017). These foci are central to the subject but overlook a further potential 
source of difficulty––students' understanding of multiplication and division with quantities. Such 
oversight is consequential because (a) multiplication and division are foundational for 
differentiation, integration, and various families of functions central to most calculus courses and 
(b) reports exist (e.g., Izsák, Beckmann, & Stark, 2021) in which college students found it 
effortful to explain how multiplication and division fit diverse problem situations.  

I report on an innovative 1-semester calculus course offered at a selective university in the 
United States. None of the 18 students was majoring in a STEM field. Yet, all but 3 had 
completed at least one calculus course (e.g., AB calculus in high school, Calculus 1 at university, 
or similar). The course had three main features. First, the course began with an examination of 
multiplication understood in terms of measurement. Students worked to explain how 
measurement interpretations of multiplication equations fit situations involving both 
isomorphisms of measure spaces and products of measure spaces (Vergnaud, 1983). Second, the 
course made no mention of limits and, instead, relied on situations that could be modeled by 
linear, piecewise linear, and step functions. This allowed students to focus on multiplicative 
structure in the context of functions used to approximate derivatives and integrals more 
generally. Third, other than introducing a measurement perspective on multiplication equations, 
the course introduced no formulae: Students derived versions of central calculus results by 
coordinating natural language with measurement expressed in both equations and drawings. 

Results: (a) students demonstrated a range of facility explaining how multiplication and 
division fit diverse situations, suggesting the course provided appropriate challenge, (b) students 
were able to reason about multiplicative structure and drawings to understand slope in terms of 
measurement (how many of the horizontal length make the vertical length) instead of as a unit 
rate (so many vertical units for every one horizontal unit), (c) students built upon this 
measurement understanding of slope to derive the point-slope formula, a version of the chain 
rule, and a version of integration by substitution. In particular, students were able to reason about 
multiplicative structures in ways that support the chain rule (e.g., understanding why g'(x) 
appears in f'(g(x)) • g'(x)) and integration by substitution (e.g., understanding why inversely 
proportional relationships applied to areas of rectangles can justify this result). At the same time, 
their memory of calculus was often vague, and most did not see connections to prior courses 
immediately. They were, however, able to see connections with assistance from me. These 
results suggest that college students can learn to reason about multiplicative structures to explain 
core calculus concepts, which is in contrast to simply remembering formulae and rules. 
Important next steps for future offerings including making further connections to calculus––for 
instance, by using piece-wise linear and step functions to approximate derivatives and integrals 
of more complex functions––and examining whether a similar course would provide appropriate 
challenges for STEM majors.  
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Different Types of Mathematizing as Captured by a Novel Script Writing Activity 

Andrew Kercher 
Simon Fraser University 

In this report, I describe how student-reconstructed dialogues that capture problem solving 
processes extend the applications of scripting tasks. Analysis of these dialogues reveals how 
mathematizing can play a role in the symbolizing, algorithmatizing, and defining activities of 
students as they confront unfamiliar mathematical constructions—in this case, star polygons. 
For participants in this study, active teachers enrolled in graduate coursework, mathematization 
was sometimes supplanted by the use of technology. 

Keywords: Scripting Task, Mathematizing, Teacher Education, Technology, Guided Reinvention 

Script writing tasks have been used in a variety of research and didactical contexts: in 
constructing and clarifying proofs (Zazkis, 2014), in anticipating and planning for student-
teacher interactions in mathematics classrooms (Zazkis, Sinclair, & Liljedahl, 2013), and in 
probing mathematical understandings (Zazkis & Zazkis, 2014). Adding to these uses, the script 
writing task that forms the foundation of this research project asked participants to capture their 
mathematical exploration, refutation, and discovery in a problem-solving script. Analysis of 
these scripts allowed us to answer the following research question: What types of 
mathematization facilitate the problem solving work of students, and in what way do they do so? 

As described in Gravemeijer & Doorman (1999), mathematization is often both a necessary 
prerequisite for and a byproduct of the type of guided reinvention of concepts that plays a central 
role in realistic mathematics education (RME). Rasmussen et al. (2005) use excerpts from 
teaching experiments grounded in RME to illustrate different types of mathematizing; namely, 
how there exists both horizontal and vertical mathematizing, and that both types of 
mathematizing appear across different manifestations of students’ mathematical activity. 
Rasmussen et al. attend to mathematizing in the context of symbolizing, algorithmatizing, and 
defining; I consider these activities as well as conjecturing and justifying. 

The scripting task in this report was completed by a population of practicing mathematics 
teachers enrolled in a graduate-level mathematics education course. Participants first generated 
an empirical definition of a star polygon by characterizing differences between different types of 
self-intersecting polygons. Then, they answered the following questions: 

• Does there exist a star polygon on N vertices? 
• How many different star polygons on N vertices are there? What do you consider 

“different”? 
Participants’ scripts were analyzed for instances of both horizontal and vertical mathematization 
as well as how students leveraged symbolizing, algorithmatizing, defining, conjecturing, and 
justifying while exploring the properties of star polygons. 

In this poster, I will share instances of each type of mathematization and how they facilitated 
participants’ problem-solving efforts. I will also explore how mathematization may have been 
inhibited when participants relied on technological applets to produce diagrams of star polygons. 
Finally, I consider implications of the star polygon activity as an experientially real starting point 
for an abstract algebra lesson that leverages RME principals to help students reinvent ideas of 
finite cyclic groups and their subgroups (cf. Larsen, 2013; Larsen & Lockwood, 2013).  
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Exploring Student Generalizations About 2x2 Determinants from using a GeoGebra Applet 
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Determinants are often presented in a formulaic way that obscures their rich connections to 

graphical interpretations of linear transformations. The Inquiry-Oriented Linear Algebra (IOLA) 

curricular materials (Wawro et al., 2013) build from a set of experientially real tasks that allow 

for active student engagement in the guided reinvention of key mathematical ideas through 

student and instructor inquiry (Gravemeijer, 1999). The IOLA determinants task sequence (NSF 

DUE #1914793, 1914841, and 1915156) uses distortion of space as an experientially real starting 

point. Students build a conceptualization of matrix determinant as a measure of (signed) 

multiplicative change in the area and discover its formula for a general 2 x 2 matrix. The 

sequence utilizes GeoGebra applets that allow students to actively explore the geometric effects 

of changing 2x2 and 3x3 matrix transformations and note their relationship with the determinant. 

Students make conjectures that link concepts such as linear independence, inverses, and column 

operations to changes in the determinant. 

In this poster, we explore two research questions: (1) What observations and generalizations 

about 2x2 determinants do students make from exploring a GeoGebra applet? (2) What is the 

nature of the students’ generalizations? To answer the second research question, we analyze the 

forms and types of students’ generalizations according to Ellis et al.’s (2021) Relating-Forming- 

Extending (RFE) Framework, which defines generalizing as “identifying commonality, deriving 

broader results from particular cases to form general relationships, rules, concepts, or 

connections, or extending one’s reasoning beyond the range in which it originated.” (p. 9).  

Data were collected from two sections of an online, synchronous IOLA course taught by the 

same instructor; class sessions included whole-class discussion and small-group breakout rooms. 

The new unit leverages a Geogebra applet in which students change the four entries of a 2x2 

matrix and two vectors that define a parallelogram in the domain. The applet displays a real-time 

mapping of the vectors and parallelogram under the matrix transformation as well as the matrix’s 

determinant. In the post-class discussion board, students individually explained at least one 

observation or conjecture that their group made while working on the applet and one thing they 

wondered. Thirty discussion board postings were coded individually by the research team using 

the RFE framework (2021) before discussing codes together.  

Thus far in our analysis, we have found that students generalized relationships between the 

matrix entries and geometric properties of the associated linear transformation, ratio between the 

pre-image and image areas, or determinant. These observations and generalizations largely fell 

into the larger Forming and Extending categories of the framework. For example, a student 

posted “One conjecture my group made from the applet was that if the determinant is 0, the 

image was squished onto a line.” This was coded as Forming under Identifying a Regularity: 

Extracted, because this student noticed a pattern connecting the value of the determinant with the 

geometric transformation output. The poster will include analysis of the complete data set and 

will extract themes in students’ generalizations about determinants.  
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Authority Manifestations in an Introduction to Proof Course 
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Authority in a classroom becomes shared when participants of a community beyond a 

textbook or instructor present valid mathematical ideas that hold authority in their context (Amit 

& Fried, 2005; Gerson & Bateman, 2010; Langer-Osuna, 2016). Mathematical proof presents an 

opportunity for shared authority when participants in a community communicate their ideas and 

develop an argument for the validity of a statement (Burton, 1998; Inglis & Mejia-Ramos, 2009; 

Weber et al., 2014). When mathematicians participate in mathematical proving activities, they 

often focus on participating in communities and build upon definitions to validate a statement 

(Burton, 1998). We are interested in what authority sources students rely on to validate a 

mathematical claim when authority becomes shared in an introduction to proof classroom. 

Further, we are interested in comparing the practices of students in this shared setting to how 

mathematicians practice mathematical proving. To answer this question, we have the following 

research question. (Bleiler-Baxter et al., under review) 

1.  What are the sources of authority manifested within small-group conversations related to 

proof construction? (i.e., Upon what do students base their decisions?) 

To answer this question, we recorded video data of students in small-group settings as they 

worked together to prove tasks in an introduction to proof course. Students were placed in groups 

of 3-4 to prove conjectures in 9 different proving episodes. After working collaboratively on 

their proofs, student groups presented their proofs to their peers for feedback. We then as a 

research team looked over the 9 episodes holistically to examine themes that emerged for 

authority sources of students in this shared environment. This was accomplished by looking for 

times in the episodes when students made decisions as a group to move their proof forward 

before presenting their group’s proof to their peers. 

Our results produced four themes of authority attended to by students: (1) The course-

developed rubric for proof writing as authority, (2) Peers’ confidence (and the need to produce a 

product) as authority, (3) Form and symbols as authority and (4) Logical structure and 

mathematical definition as authority.  

This poster will provide excerpts from group-proving discussions that highlight the themes 

developed from our inductive analysis. Then we will make connections between students’ 

sources of authority and mathematicians’ sources of authority, informed by previous empirical 

work on mathematicians’ practice (e.g., Burton, 1998).  
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Comparing the Mathematical Knowledge for Teaching Geometry of Preservice and Inservice 

Secondary Teachers 
 

 
 Inah Ko Mike Ion Patricio Herbst 
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Keywords: Mathematical knowledge for teaching, Measurement invariance, Pre-service teachers, 
Teaching geometry 

In this poster presentation, we share what our research team has learned by collecting 
responses from Geometry for Teachers (GeT) students who have taken a mathematical 
knowledge for teaching geometry (MKT-G) assessment before and after taking the GeT course. 
By following the definitions of mathematical knowledge for teaching from Ball, Thames, and 
Phelps (2008), Herbst and colleagues developed an instrument to measure MKT-G called for in 
the mathematical work involved in tasks of teaching nested in different instructional situations. 
We used a unidimensional item factor model with 17 items selected from the instrument to 
understand the participating GeT students’ (preservice teachers) MKT-G growth over the 
duration of the course. GeT students’ MKT-G scores were estimated using a distribution of in-
service teachers’ MKT-G scores. Specifically, to estimate the growth in GeT students’ MKT-G 
scores using their pre-test and post-test MKT-G scores and interpret the growth in the scale of 
inservice teachers’ MKT-G, we first tested multiple-group measurement invariance between the 
group of GeT students and inservice teachers. After confirming that the same knowledge 
construct is being assessed across the groups, the averages of 435 GeT students’ pre-test and 
post-test scores were estimated relative to the inservice teachers by setting the average of 405 
inservice teachers’ scores to be referenced as zero. Next, the GeT students’ growth in MKT-G 
was estimated by the difference between the estimated post-test and pre-test scores. 

Four main results emerge: (1) On average, GeT students score about 0.23 standard deviation 
units higher on the MKT-G test after completing the Geometry for Teachers course. (2) GeT 
students taking the MKT-G test score about 0.98 standard deviation below inservice teachers 
(with an average of 14.2 years of mathematics teaching) that took the same test, on average. (3) 
The analyses showed that partial measurement invariance was attainable between the groups, 
meaning that the relationships of the items to the measured knowledge were equivalent between 
preservice (GeT students) and inservice teachers. (4) the growth in GeT students’ MKT-G is 
equivalent to the difference in MKT-G scores between teachers who differ 3 years in experience 
teaching geometry. 

This study shows the positive association between the college geometry courses designed for 
future teachers and the mathematical knowledge for teaching geometry in terms of the growth in 
the knowledge of the students who took the courses. Also, this study contributes to the 
methodological approach measuring knowledge gains of one teacher population (e.g., preservice 
teachers) in terms of a scale from a different teacher population (e.g., inservice teachers). 
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Prospective Teachers’ Knowledge of Students’ Understanding Concept of Area 
Merve N. Kursav  

Michigan State University 
Student struggles are not dead ends, they are foundations for the inquiry into 

mathematical concepts (National Council of Teachers of Mathematics [NCTM], 2000). In the 
literature, most studies have focused on numbers and operations, and have generally overlooked 
geometry and measurement; specifically, area (Ball et al., 2001). In this qualitative study, seven 
prospective teachers were given three tasks (see about the area of a triangle. The purpose was to 
understand how prospective teachers interpret the given elementary and middle grades students’ 
answers.  

Findings revealed that only 
14% of prospective teachers responded 
to task 1 correctly. For task 2, although 
only 14% of prospective teachers 
correctly interpreted the solutions of 
students A, B, C, and E, 29% of 
prospective teachers correctly 
interpreted Student D’s solution and 
43% of prospective teachers correctly 
interpreted Student F’s solution. For task 3, prospective teachers mainly stated that seeing 
multiple solutions for the same problem from multiple students and interpreting them is very 
helpful. Results showed that there is a need to support prospective teachers’ understanding of 
deep fundamental content and concepts of the disciplines that they will teach. One possible way 
to do this could be via making content accessible through the courses in mathematics with 
methods courses and field experience. If prospective teachers can learn the content of geometry 
with problem-solving, connect the content courses with their interests, practice teaching in 
various diverse school settings, they will be more ready to tackle the challenges that their 
students may face in the future. Having a solid knowledge of students is an essential component 
of good teaching (Wilson et al., 2005). Students’ experiences can be developed through their 
teachers’ teaching in a classroom (Martin, 2006). However, prospective teachers do not have 
much opportunity to accumulate knowledge of students from their teaching. Although teachers 
develop their understanding of their students’ geometrical thinking through the years, novice 
teachers may not have such a background. That is why more opportunities to build knowledge of 
students’ geometrical learning and thinking should be provided to prospective teachers. For 
example, providing more opportunities to learn about learning theories (e.g., Van Hiele, 1986) 
that can help them understand students’ thinking and struggles based on their developmental 
stages of knowledge). Prospective teachers can also develop their geometrical knowledge of and 
knowledge of students’ geometrical thinking through their coursework with tasks that engage 
them in analyzing students’ thinking. Due to this kind of learning opportunity, prospective 
teachers can relate their knowledge to their future teaching. More research studies investigating 
teacher education programs exploring prospective teachers’ responses to students’ struggles with 
the use of interviews, observations, and other data collection tools are needed. Research 
examining how prospective teachers respond to students’ errors would also allow researchers to 
understand prospective teachers’ ways of thinking. Research studies exploring prospective 
teachers’ interpretations and responses to students’ struggles will enhance communication among 
various stakeholders such as teacher educators, professional development experts, teachers, and 
policymakers. 

 
Figure 1. Area of Triangle Task for Prospective Teachers (Adapted 

from Kim, 2002)* 
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*Two readable tables including prospective teachers’ responses and tasks items will be provided clearly on 
the poster presentation for audience. 
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An Analysis of Eleven Department Change Initiatives 
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Keywords: Active learning, Departmental change, Calculus 

Mathematics departments across the country are working to innovate and improve their 
introductory precalculus and calculus courses. There is an emerging body of research to which 
we aim to contribute that is focusing on department change efforts to improve student success in 
these gatekeeper courses (Reinholz et al, 2020). The analysis reported here is part of a larger 
study, Student Engagement in Mathematics through an Institutional Network for Active Learning 
(SEMINAL) (Smith et al., 2021). This larger project included longitudinal investigation of nine 
departments that received financial and network support to implement active learning per their 
self-designed change initiatives. These nine departments were selected from 37 proposals to join 
the SEMINAL project. Of the 29 unsupported proposals, we identified 11 departments that were 
able to follow up in varying degrees on their proposed change initiatives. This report focuses on 
these 11 departments with the following research question: What characterizes these 11 change 
initiatives and what levers and constraints did these change initiatives use or encounter? In 
addition to providing insight into the change process, this report also lays the groundwork for 
subsequent analyses that will compare and contrast the 11 stories of change to the strategies, 
successes, and challenges of the nine departments that were involved with the SEMINAL 
network. 

To learn about their change implementation efforts, we conducted interviews with key 
personnel at each of the three sites. Interviews were transcribed and summary reports were sent 
to each site for member checking purposes. We used the four frames model (structures, symbols, 
people, and power; Reinholz & Apkarian, 2018) as an a priori coding scheme to analyze the 
culture and subsequent change strategies in each department. The features of each strategy were 
further organized according to the following Four Categories of Change Strategies: 
Individual/Prescribed, Individual/Emergent, Environments and Structures/Prescribed, 
Environments and Structures/Emergent (Henderson et al., 2012). Results revealed that individual 
mathematics departments may rely on multiple approaches to change and that their desired 
strategy may not be aligned with their current strategy due to various constraints. For example, 
the change strategy at Blue State is partitioned into two approaches, one executed through the 
Math Learning Center (MLC) and another through the mathematics department. In the MLC 
change efforts can be classified as an Individual/Prescriptive approach, with the coordinator 
overseeing exam-writing and providing required activities for those teaching courses under his 
purview. The approach in the math department can be described as an Individual/Emergent 
approach with the coordinator leading a group of instructors in regular meetings to develop 
shared course materials. Through the lens of the four frames both approaches are supported by 
the structure of coordination, but the enactment of this structure varies due to differences in the 
people, power, and symbols. The poster presentation will provide descriptive accounts and 
implications of the varying change strategies in each department. This is particularly significant 
for mathematics departments looking to support the implementation of active learning. 
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Exploring the Interactional Dynamics of Undergraduate Students’ First Mathematics Advising 
Experiences 

 
 Claudine Margolis Elena Crosley Maisie Gholson 
 University of Michigan University of Michigan University of Michigan 
 
We examined the advising practices for incoming, first year undergraduate students by a 
mathematics department. Our analysis indicates that gender influences the interactional 
dynamics in ways that can have a longstanding impact on students’ mathematical futures.  
 
Keywords: Gender, Advising, Women, Interactional Analysis 
 

This poster reports on preliminary findings from a study of the advising practices for 
incoming first year undergraduate students by a mathematics department at a large public 
university. The primary objective of this analysis is to explore the mediating role of gender in 
mathematics advising sessions, and implications for equity-oriented advising practices are 
considered as a result of the findings. 

A variety of factors have been theorized to result in attrition of STEM-interested and STEM-
capable women at various points along the pipeline, some of which are during the college 
application process, during or after the first year of undergraduate courses, or after graduating 
with a STEM degree (Blickenstaff, 2005; Chen, 2013). While many of these efforts have focused 
on factors that impact the decision-making of individual women over the course of weeks, 
months, and even years, this study focuses on a much smaller scale—an event that occurs in 
minutes between two people—as a uniquely critical site of attrition for STEM-interested 
women.  

The mathematics advising sessions we examine take place over a very short timescale (five 
to ten minutes) but have significant implications for the mathematical trajectories of the students 
involved. In this brief interaction, the advisor needs to gather relevant information from the 
student, such as their mathematical background and academic or career goals, provide 
information on the available courses, and arrive at a consensus with the student about what 
course is most appropriate. The student’s main responsibility is to share the relevant aspects of 
their background and gather information about the available courses from the advisor. Although 
this seems like a relatively straightforward interaction, all the advisor has to go on is the 
student’s performance of their mathematical background and goals. Both the advisor and the 
student use their perceptions of the other to inform how they engage in the encounter through 
verbal and nonverbal communication.  

We seek to understand how particular advising structures and practices result in advising 
sessions where gendered discourses influence (or do not influence) the placement 
recommendations for students. In this study, we analyze cases in which a pair of students enters 
the advising context with fairly similar qualifications (i.e., AP scores, placement test scores, 
academic and career goals) but end up with significantly different course recommendations. 
Preliminary analysis suggests that course recommendations are influenced by a set of gendered 
interactional dynamics (i.e., talk, gesture, and body comportment) that strongly influence 
narratives of mathematical competence and, consequentially, mathematics course 
recommendations. 
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Student Grade Trajectories through the Precalculus, Calculus 1, and Calculus 2 Sequence 
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The Precalculus, Calculus 1, and Calculus 2 sequence (P2C2) remains a gatekeeper into 
STEM, effectively discouraging students from pursuing STEM majors (Seymour & Hunter, 
2019). Working toward a more inclusive STEM educational system necessitates understanding 
STEM systems as they currently exist. This work investigates the transcript grade trajectories of 
undergraduates as they navigate the P2C2 sequence using data drawn from the Progress through 
Calculus project. In the analysis presented on this poster, we investigate the research question: 
What are the grade trajectories of students who start with Precalculus in the P2C2 pathway? This 
question then sets the stage for analyses on grade trajectory as stratified by demographic 
markers. 

We conducted this analysis by creating a Sankey graph (Figure 1) using R software to 
visualize student grades across the P2C2 trajectory for 1171 unique students from eight 
universities across the U.S. Grades are stratified into three categories: “A/B”, “C”, and “DFW.” 
The Sankey graphs allow us a powerful visual with which to analyze patterns across courses 
(e.g., how many students passed Calculus 1 with an A or B out of those that passed Precalculus 
with an A or B, what proportion of students who started in Precalculus passed P2C2 after three 
terms). 

 
Figure 1. Flow of grade trajectories beginning from Precalculus (in shades of blue labelled P), to Calculus I (in shades of red 
labelled C1), to Calculus II (in shades of green labelled C2). Each stack represents one term, and each flow line is a student. 

This analysis resulted in a detailed visual depiction of how students are moving through 
P2C2 in terms of grade earned. For example, of the 809 students that received an A or B in 
Precalculus in their first term, 522 (65%) also received an A or B in Calculus 1 after one term. 
Of the 449 students who completed the P2C2 sequence within three terms, 202 (45%) of those 
who received an A or B in Precalculus received an A or B in Calculus 2. However, of the 221 
students that received a C in Precalculus during their first term in the sequence, only 26% 
received an A or B in Calculus 1 in their second term. We will also present pathways as 
disaggregated by gender and ethnicity. This data could be used to inform development and 
specificity for various courses in the P2C2 sequence, as well as identify places within the 
sequence that warrant mathematical intervention. 
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Exploring Students’ Problem Posing Abilities and Difficulties in Differential Equations 

 

Thembinkosi P. Mkhatshwa  

Miami University 

This exploratory study investigated an undergraduate student’s problem posing abilities and 

difficulties when tasked with posing a real-world problem that can be modeled using a first-

order linear initial value ordinary differential equation. A task-based interview was conducted 

with the student. Analysis of verbal responses and work written by the student revealed that 

while he was familiar with solving real-world problems that involve initial value first-order 

linear ordinary differential equations, posing one was problematic. Recommendations for 

instruction are discussed.  

Keywords: Problem posing, problem-posing tasks, differential equations, initial value       

problems, student thinking 

Problem-posing tasks (hereafter, PPTs) have many benefits in mathematics education, 

including developing and strengthening students’ critical thinking skills (Nixon-Ponder, 1995), 

developing students’ understanding of mathematical ideas (cf. Cai & Hwang, 2002; English et 

al., 2005), and gauging students’ understanding of mathematical ideas when used as assessment 

tools (cf. Arikan & Ünal, 2015; Stoyanova, 2003). Evidence from research shows that there is a 

paucity of research that has examined student thinking about PPTs at the undergraduate level (cf. 

Ghasempour et al., 2012; Nedaei et al., 2019, 2021). Contributing towards narrowing this 

knowledge gap, we conducted a task-based interview (Goldin, 2000) with a student (pseudonym 

Jude) who had previously completed an ordinary differential equations course. The interview 

was based on the following PPT: 

Give an example of a real-world problem that can be modeled using the initial-value problem:  
𝑑𝑦

𝑑𝑡
= 80 −

45𝑦

2000−5𝑡
, 𝑦(0) = 100. 

The following research question guided this study: What mathematical abilities and 

difficulties do students exhibit when tasked with posing problems that can be modeled using 

first-order linear initial value ordinary differential equations? 

Among other things, findings of this study provide an insight on the importance of using 

PPTs in the teaching and learning of mathematics at the undergraduate level. While reasoning 

about the PPT, Jude claimed that working with the PPT forced him to think differently. In fact, 

Jude even posited that “if you can go backwards like this to make the situation [i.e., generate a 

PPT], then you truly understand the material,” suggesting that PPTs could be used as assessment 

tools of students’ understanding of mathematical ideas, an observation that has been made by 

some researchers (cf. Arikan & Ünal, 2015; Stoyanova, 2003). At another time, Jude expressed a 

positive attitude towards PPTs when he said creating a PPT was “very interesting” for him. 

Overall, Jude struggled to generate a PPT-this is not surprising as the student had not been 

previously exposed to working with PPTs during course lectures or on homework assignments. 

Given the numerous benefits of using PPTs during classroom instruction such as developing 

students’ understanding of mathematical ideas (cf. Cai & Hwang, 2002; English et al., 2005), we 

recommend the inclusion of PPTs in the teaching of ordinary differential equations, and more 

broadly, in the teaching and learning of undergraduate mathematics.  
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Success in first-year mathematics courses is commonly measured by higher passing rates and 

lower course DFW rates. Yet, mathematics courses are designed to be taken in a particular 

sequence to ensure student preparation and to enhance student success in requisite courses. In 

most mathematics programs, students select a mathematics course-sequences dependent upon 

their educational and career goals, such as Liberal Arts, Business, and STEM majors. How can 

we analyze and quantify student success in a sequence of mathematics courses? How many paths 

do students take through sequences of mathematics courses? How might the analysis of student 

success in a sequence of mathematics courses aid in the identification of courses that serve as a 

barrier to student success? How might it also aid in targeting interventions to support student 

success? 

This research examined 10 years of de-identified registrar data (Fall 2010 through Spring 

2020) regarding 100-level mathematics course-taking at a public university in a Western state. 

This data set included 86,840 data points for 26,129 individual students.  

The open-source programming package, R, was used to distill the data down to unique paths 

through 100-level mathematics course-sequences. A path is different from a course-sequence in 

that it includes repeated courses (Figure 1) or divergences from the typical course-sequence 

(Figure 2). The most common paths were identified and the percent of students successfully 

completing each path with a grade of  C- or higher was calculated. 

 

College Algebra  Precalculus 1  Precalculus 1  Precalculus 2  Calculus 1 
Figure 1. Path illustrating repeated course taking in a course sequence.  

College Algebra  Quantitative Reasoning  College Algebra  Precalculus 1 
Figure 2. Path illustrating divergent course taking in a course sequence.  

Preliminary Findings and Future Analysis 

The initial data analysis produced 2193 unique mathematics course-taking paths. That result 

posed a challenge because 1330 of the unique paths had a sample size of one student. Thus, we 

have begun analyzing data based on path clusters, a set of paths defined by a common starting-

course and ending-course. The most common clusters of paths will be identified. The percent of 

students successfully completing the ending-course of a cluster with a grade of  C- or higher will 

be calculated. In addition, the variance of the length of the paths within the cluster will be 

calculated to identify course-sequences with higher numbers of repeated courses. Analysis is 

ongoing and further results may be shared.  
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The Professional Identity Development of Mathematics Teaching Assistants 
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Mathematics Teaching Assistants (TAs) play a crucial role in undergraduate instruction but 
there is still limited work examining their professional identity (Clark et al., 2013) development. 
Professional identities – including self-beliefs and perceptions of one’s roles – directly shape 
one’s instructional practices (Sachs, 2005). The development of professional identity is a 
complex, dynamic process that is heavily influenced by contextual, social interactions. The 
present study examines the professional identity development of mathematics TAs as it relates to 
students, faculty, and other TAs. The research question is: How do mathematics TAs describe 
their professional identities relative to students, faculty, and other TAs? 

Framing 
We draw on the perspective that professional identity development in higher education is a 

social and contextual process (Clarke et al., 2013). Professional identities of mathematics TAs 
are the product of their prior knowledge, experiences, university contexts, and relationships with 
students, faculty, and other TAs. More specifically, the conceptions and expectations that these 
individuals have for TAs shape their professional identities (Schepens et al., 2009).  

Method 
The study was enacted within a larger research project examining the experiences of transfer 

mathematics students at a Minority-Serving Institution. Purposive sampling (Miles et al., 2020) 
was used to recruit five PhD students in the mathematics department who served as TAs for an 
introductory proof course. We open-coded (Miles et al., 2020) their responses to semi-structured 
interviews (Rubin & Rubin, 2011) about their experiences and perceptions of their roles and 
identities as TAs. Then, we wrote memos to identify the common themes in their identities. 

Findings 
TAs often described their professional identities relative to the students, faculty, and other 

TAs. The most common identity described was that of Content Deliverers – directly related to 
the perception of their roles as bridging students and faculty. They described needing to present 
material as “accessible and interesting.” The TAs considered themselves as the students’ first 
point of contact for mathematics content and general support. Additionally, TAs described being 
prompted to be Mentors and Encouragers by students as they were asked to provide academic 
and career advice, as well as emotional support. TAs embodied the professional identity of 
Assistants, which was directly related to their job title and perception of their position in relation 
to the faculty. TAs mentioned attending to the expectations of the faculty, “doing some of the 
grunt work like grading”, and overall “being a solid helper.” 

Discussion and Conclusion 
The TAs’ professional identities were closely tied to their perceptions of their position within 

the network of students, faculty, and TAs. A deeper understanding of the development of 
mathematics TAs’ professional identities can better inform the training and support they receive.  
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 In recent years, the focus on practice-based, inclusive pedagogy in mathematical sciences has 
increased as research demonstrated that active learning pedagogy in STEM classrooms narrows 
achievement gaps (Freeman et al., 2014; Theobald et al., 2020).  In response, instruction-related 
training programs for graduate teaching assistants (GTAs) now emphasize classroom 
pedagogical techniques that graduate students themselves may not have experienced during their 
own undergraduate mathematical training. Peer mentoring programs support new GTAs as they 
move from learning about pedagogy in their teaching training seminar to their first 
undergraduate mathematics classroom experiences. These peer-relationships, designed as weekly 
or biweekly interactions between mentors and mentees, develop across the span of an academic 
semester or year (Lorenzetti et al., 2019). While the mentor-mentee conversations facilitate 
support and resource sharing (Browne-Ferrigno & Muth, 2012) and provide mentees with 
constructive criticism after classroom observations (Yee & Rogers, 2017), mentors are not 
necessarily tasked with being instructional coaches to assist with entire lesson plan development 
and implementation, like K-12 instructional coaches. Similar to the paired teaching approach to 
help new faculty adopt active learning strategies (Strubbe et al., 2019), a peer instructional TA 
coach (hereafter “TA Coach”) is a unique element of a graduate peer mentoring program.   
 This poster focuses on the experiences of TA Coaches in a comprehensive graduate teaching 
assistant training program in mathematical sciences that was designed and refined at one 
institution and is being replicated at two peer institutions. During program development, TA 
coaches were tasked with working with GTAs teaching recitation sections of college algebra and 
calculus I to facilitate active learning pedagogy and were asked to free-form journal about their 
experience. At the two institutions replicating the program, the duties changed to support the 
structure and needs of each department. Recent TA coaches at the three institutions participated 
in interviews about their experiences. This poster summarizes the roles of the TA Coaches across 
the three universities and explores their perceptions of the unique benefits that the TA coach role 
provides to the GTAs they assist and their own instructional experiences.   
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A Local Instruction Theory for Emergent Graphical Shape Thinking 
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Moore and colleagues (Moore, 2021; Moore & Thompson, 2015) have described emergent 
graphical shape thinking (or emergent reasoning) as conceiving of a graph as a trace 
representing a covariational relationship between two quantities’ magnitudes or values. Although 
such thinking is critical to graph construction and interpretation in mathematics and other subject 
areas (e.g., Glazer, 2011; Paoletti et al., 2020; Potgieter et al., 2008), researchers have indicated 
emergent graphical shape thinking is non-trivial, even for U.S. teachers (Thompson et al., 2017). 
However, there is some evidence that students from middle school (e.g., Ellis et al., 2015) 
through undergraduate mathematics (e.g., Paoletti & Moore, 2017) can engage in elements of 
emergent reasoning. These studies suggest that emergent reasoning is within reach for students if 
there is deliberate efforts to support their development of such reasoning. In this theoretically-
oriented poster, we present a local instruction theory to describe ways to support students’ 
developing emergent graphical shape thinking.  

A local instruction theory (hereafter, LIT) aims both to incorporate and generate 
generalizable theory to anchor the design of specific learning experiences (Gravemeijer & Cobb, 
2006), specifically addressing how learning might occur for students as opposed to what precise 
tasks should be used (Prediger et al., 2015). Hence, a LIT strives to reach a broad audience (e.g., 
teachers, researchers) who can adapt the theory to meet specific classroom needs (Nickerson & 
Whitacre, 2010). Particular to this poster, we initially developed a LIT by leveraging the extant 
research on students’ quantitative and covariational reasoning (Thompson & Carlson, 2017), 
understandings of coordinate systems (Lee, 2016; Lee et al., 2020), and emergent thinking 
(Moore, 2021). We iteratively refined the LIT through six small group teaching experiments 
(Steffe & Thompson, 2000) and a whole class teaching experiment (Cobb et al., 1995) over the 
course of three years.  

The LIT is composed of three main layered components: (M1) quantitative and covariational 
reasoning, (M2) (a) constructing a Cartesian coordinate system and (b) representing quantities in 
the coordinate system, and (M3) emergent graphical shape thinking. These components each 
have several sub-components. For example, within M2, our LIT includes the following sub-
components: M2.1. (a) conceive of varying segment lengths and (b) consider how they can 
represent a quantity’s magnitude (M1.1); M2.2. (a) overlay segment lengths on axes in a 
Cartesian coordinate system and (b) consider their variations in relation to two covarying 
quantities; M2.3. (a) construct a point as a multiplicative object in the coordinate system 
simultaneously representing the two segments’ magnitudes (M2.2) and (b) conceive this point as 
representing the multiplicative object constructed situationally (M1.3). 

In this poster, we present the full LIT. We also provide examples from students as they 
engaged in tasks designed in alignment with our LIT to highlight the interrelationship of the 
ways of thinking we describe. We present implications that span both research and practice, with 
emphasis on designing instructional supports for supporting students’ graphical fluency. 
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Investigating students’ interpretations of points and trends on a reaction coordinate diagram by 

combining analytical graphical frameworks 

 

      Alexander P. Parobek Patrick M. Chaffin Marcy H. Towns 

 Purdue University Purdue University Purdue University 

Reaction Coordinate Diagrams (RCDs) are chemical representations that encode information 

about the energy of an evolving molecular trajectory via an abstracted Cartesian coordinate 

space. Previous research has revealed that students often conflate the x-axis of an RCD with 

“time.” In this study, the location-thinking and value-thinking and graphical forms frameworks 

were applied to investigate students’ interpretations of points and trends along a reaction 

coordinate diagram to characterize the nature and character of this alternative conception. 

Results derived from this study demonstrate that students’ alternative conceptions about the x-

axis arise from the application of unproductive value-thinking and graphical forms reasoning 

approaches, while productive reasoning approaches were supported by location-thinking.  

Graphical Representations, Visualization, Physical Interpretation, Chemistry 

Study Overview and Research Question 

Reaction coordinate diagrams (RCDs) are abstracted graphical representations used within 

the general chemistry classroom to compare kinetic and thermodynamic parameters of chemical 

reactions. Previous research has demonstrated that students often conflate the x-axis of a RCD 

with “time” (Atkinson, Croisant, & Bretz, 2021; Lamichhane, Reck, & Maltese, 2018) and 

associate graphical ideas with perceived trends in a RCD (Rodriguez, Stricker, & Becker, 2020).   

To better understand the mechanism behind these alternative conceptions, a qualitative 

interview study was undertaken to assess how chemistry students (N = 16) interpret the points 

and trends along a RCD. The location-thinking and value-thinking (David, Roh, & Sellers, 2018) 

and graphical forms (Rodriguez, Bain, & Towns, 2020) frameworks were simultaneously applied 

to investigate and understanding students’ interpretations of points and trends along a RCD given 

the ability of both frameworks to bridge fine-grain mathematical resources (Hammer, Elby, 

Scherr, & Redish, 2005) to the conceptual ideas students associate with graphical features. 

Guided by the actor-oriented model of transfer (Lobato, 2012), the following research question 

was used to frame the applied methods and analysis: What mathematical resources do students 

transfer to make inferences about the points and trends on a reaction coordinate diagram? 

 

Results and Implications 

Analysis of findings revealed six distinguishable graphical reasoning approaches students 

adopted to interpret RCDs that incorporated location-thinking, value-thinking, or graphical 

forms. Additionally, students were also shown to re-frame the RCD at times into a kinematic 

system to associate intuitive meaning with the diagram. Similar to previous research, students 

were found to associate the x-axis of the RCD with time. Further examination of these x-axis 

interpretations revealed that these alternative conceptions were supported by value-thinking and 

graphical forms approaches. Productive instances of graphical reasoning instead involved the 

application of location-thinking by mapping unique physical states to points or regions along the 

diagram. This emergent form of location-thinking has been designated as “location-thinking, 

states.” Suggestions are made to practitioners on how to depict RCDs in the chemistry classroom 

to drive students to apply location-thinking, states reasoning when interpreting RCDs. 
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Interplay of Mindset and Metacognition: A Pilot Study 

 

 Serena Peterson William Hall 

 Washington State University Washington State University 

Individually, growth mindset and metacognition are powerful learning influences.  However, 

there is little to be found in literature regarding their interplay.  This poster reports on 

preliminary findings of a pilot study which aims to explore the interplay of these two constructs 

as they affect mathematics learners.  Quantitative findings addressing the statistical relationship 

between constructs are presented in this poster.  At RUME 2022, we seek feedback on future 

directions for this study and its research design. 

Keywords: Mindset, Metacognition, Self-Regulation, Learning 

Metacognition (Flavell, 1979) and growth mindset (Dweck, 2006) have been found to 

positively influence learning individually (Dweck, 1986; NAS, 2018), yet there is little to be 

found in the literature about their intersection.  As many are aware, failure and withdrawal rates 

in undergraduate mathematics course are alarmingly high (Barr & Wessel, 2017) with one 

contributing factor being that many students arrive underprepared and struggle to adapt to the 

post-secondary learning environment (Burrill, 2016).  Moreover, to combat this difficult post-

secondary transition, the ability to persist through challenges and regulate learning—promoted 

by the attainment of a growth mindset and metacognitive practices—becomes critical for 

undergraduate mathematics students.  Thus, investigating the interplay of mindset and 

metacognition may help determine what interventions and support is needed for students varying 

across these two factors in the face of academic challenge and failure.   

In this poster, we will present preliminary findings of a pilot study aiming to answer the 

following research question: Is there a relationship between mathematics students’ level of 

metacognitive action and mindset type?  In this study, a nonidentifying survey consisting of 

demographics, the Metacognitive Awareness Inventory (MAI) (Schraw & Dennison, 1994), and 

an adapted version (P’Pool, 2012) of the Dweck Mindset Instrument (DMI) (Dweck, 2006) was 

assigned to calculus students enrolled in a corequisite support course (N = 49) as part of their 

regular coursework.  Students were assigned to a mindset type—growth, fixed, or undecided—

and a level of metacognition—high, medium, low—based upon the scoring of each instrument.  

A chi-square test of homogeneity showed no significant relationship between mindset type and 

level of metacognitive action (p = 0.82).  This result indicates that students with a particular 

mindset type (e.g., fixed mindset) are equally distributed among levels of metacognitive action.  

We note that excellent internal consistency was found in both the MAI and DMI.  Due to the 

small sample size of our pilot, an a priori power analysis was conducted to compute the projected 

sample size needed to reject the null hypothesis at this effect size in future studies.  

As we move forward with this study, we seek to unpack the nuances of this interplay through 

a qualitative study.  For example, as we consider these constructs, we may ask ourselves how 

supporting a highly metacognitive student with a growth mindset differs from support of a highly 

metacognitive student with a fixed mindset.  More broadly, our research questions are as follows: 

(a) For various intersections of mindset type and metacognition level, how does affect, attitude, 

and behavior differ in the mathematics classroom? (b) How does supporting these various types 

of mathematics students differ?  At RUME 2022, we will discuss future directions for this study 

and seek feedback on the details of the research design.    
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Research-Based, Inquiry-Oriented Linear Algebra Videogame - Vector Unknown: Echelon Seas 

 

 David Plaxco Michelle Zandieh 

 Clayton State University Arizona State University 

 Matthew Mauntel Christopher Olson Ashish Amresh 

 Florida State University Arizona State University Arizona State University 

Keywords: Design-Based Research, Inquiry-Oriented Linear Algebra, Game-Based Learning 

We report on the newest iteration of a videogame to support Linear Algebra students’ 

understanding of linear algebra. We drew on design principles from Game-Based Learning 

(GBL; Gee, 2003; Williams-Pierce & Thevenow-Harrison, 2021), Inquiry-Oriented Instruction 

(IOI; Rasmussen & Kwon, 2007; Zandieh, Wawro, & Rasmussen, 2017), and Realistic 

Mathematics Education (RME; Gravemeijer, 1994; Freudenthal, 1991) to develop the videogame 

(Zandieh, et al., 2018; Mauntel et al., 2019; Mauntel et al., 2020; Mauntel et al., 2021). To build 

this iteration of the game, we leveraged our experience with students playing prior versions to 

extend the gameplay experience in multiple ways. Most importantly, the current game [Echelon 

Seas] takes place in a 3-dimensional environment, increasing the ways in which vectors might be 

used during gameplay. Beyond this, the current game integrates mathematics and puzzles 

towards an overarching goal. For instance, Echelon Seas contains levels in which the player uses 

matrix multiplication to fire cannonballs and spans of vectors to solve a tilting labyrinth.  

During the session, to compare and contrast the two versions, we will allow audience 

members to play a prior version of the videogame [Vector Unknown] as well as Echelon Seas 

[Puzzle 4]. In both versions of the game, the goal is to use vectors to help an avatar reach a goal 

position. In Vector Unknown (Figure 1a), players could only use vectors in the xy-plane and all 

puzzle levels were restricted to 2-dimensional vectors. In Echelon Seas, there are stages for 1-, 2-

, and 3-dimensions (Figure 1b). Players can also toggle visual representations of the x-, y-, and z-

axes to provide geometric references for real-time, dynamic linear combinations of vectors. As in 

the Inquiry-Oriented Linear Algebra instructional materials (Wawro, et al., 2012), both versions 

support understanding linear combinations as modes of transportation to reach a destination. 
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Figure 1: Gameplay images of Vector Unknown (left) and Echelon Seas, Puzzle 4, level 3 (right) 
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Efficacy of a Three Factor Assessment Method in Teaching Undergraduate Linear Algebra 

 

 Michael Preheim Josef Dorfmeister Ethan Snow 

North Dakota State University North Dakota State University University of Nebraska  

Knowledge requires assessment of information correctness and justification. Post-item certainty 

has been used to measure response justification, but pre-assessment confidence has yet to be 

simultaneously investigated. The objective of this study is to implement a novel three-factor 

assessment method which simultaneously collects student confidence, certainty, and response 

correctness in an undergraduate linear algebra course to more comprehensively assess student 

performance and competency in multiple choice, end-product, and process-based questions. 

Keywords: Metacognition, Assessment, Linear algebra, Multidimensional knowledge 

Knowledge is information which is both true and justified (Hunt, 2003). Self-reported 

certainty (i.e., how sure a student is in their provided answer) has been used to justify correctness 

of information (Hunt, 2003; Snow, 2019; Gardner-Medwin et al., 2003). Evaluating certainty in 

conjunction with response correctness (2C) accurately assesses absent, partial, complete, and 

flawed knowledge (Snow, 2019). Confidence, another element of metacognition which indicates 

how sure students are in their abilities to perform correctly given well-defined criteria, provides 

critical information about student beliefs prior to viewing assessment items. Confidence, 

certainty, and correctness (3C) have not been effectively assessed at the same time for 

strategically identifying outlying student performance behaviors and assessment item efficacies. 

In this poster we discuss the outcomes of implementing a novel 3C assessment method in an 

undergraduate linear algebra course and the efficacy of an index for measuring students’ 

metacognitive accuracy which we developed for this method. 

Immediately preceding each of six examinations, students in an undergraduate linear algebra 

course were asked to self-report their levels of confidence for correctly answering forthcoming 

exam questions pertaining to given learning objectives. Students were then administered the 

respective examination consisting of multiple choice, end-product, and process-based questions. 

Immediately after each assessment item, students reported how certain they were that their 

provided response was correct. Accuracy indices developed to measure the alignment of reported 

high and low confidence and certainty with answer correctness (i.e., earned credit) were used to 

determine student and item performance efficacies. Pre-established critical limits were used to 

determine consistent over- or under- confidence/certainty.  

The 3C assessment method employed in this study produces a more meaningful and more 

accurate assessment of student performance than 2C or correctness-only methods have 

generated. While high and low confidence and certainty were separately accurate for 33% and 

47% of responses respectively, they were simultaneously accurate for only 25% of responses. 

Students more frequently exhibited consistent under- and over- confidence than consistent under- 

and over- certainty, respectfully. Early intervention for students exhibiting concerning behaviors 

highlighted by this assessment method could be critical for advising and guiding students toward 

more successful learning. The 3C method also provided new and valuable data for analyzing 

assessment item efficacy. Most notably, 19% of items with high discrimination indices (DI) 

exhibited inaccurate confidence or certainty. Furthermore, 42% of assessment items with low DI 

demonstrated accurate confidence or certainty. Future directions for this project include further 

refinement of the 3C method and analysis of the 3C method in other course frameworks. 
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Use of a Three Factor Assessment Method to Investigate Proof Comprehension in Undergraduate 

Mathematics 

 

 Michael Preheim Josef Dorfmeister Ethan Snow 

North Dakota State University North Dakota State University University of Nebraska  

In this poster we discuss the use of a three-factor assessment method to empirically investigate 

student metacognition (and accuracy thereof) at each level within an established proof 

comprehension framework. We also observe the progress of student metacognitive accuracy 

from beginning to end of an introductory proof course, identifying specific areas of this proof 

comprehension framework in which students exhibit significant frequencies of particular 

knowledge deficiencies. 

Keywords: Metacognition, Assessment, Proof comprehension, Multidimensional knowledge 

The proof comprehension framework (PCF) developed by Mejía-Ramos et al. (2012) 

identifies seven aspects of proof comprehension that occur at the local and holistic levels for 

proving mathematical statements. This PCF serves as a guide by which to construct assessment 

items for proof comprehension assessments (PCAs) in advanced mathematics. Student 

metacognitive behaviors at each level of the PCF have not previously been empirically 

investigated but undoubtedly contribute to student competency within the PCF levels. A 

multifactor assessment method which simultaneously collects pre-assessment confidence, post-

item certainty, and response correctness (3C) has shown proof of concept by generating 

comprehensive student performance information in undergraduate mathematics education. 

Applying 3C assessment methodology to PCAs which adhere to the PCF identifies which areas 

within the PCF students experience misalignment of confidence, certainty, and correctness. 

Multiple choice PCAs developed by Mejía-Ramos et al. (2017) which adhere to the PCF 

were adapted to include the 3C assessment methods. Pre-assessment confidence was collected on 

established PCF subitems (Mejía-Ramos et al., 2012). Students in an undergraduate mathematics 

introductory proof course were trained on the PCF levels as well as metacognitive self-

assessment to ensure foundational understanding. These students were then administered two of 

the above-described 3C PCAs, one near the beginning of the course and the other near the end. 

Frequencies of each response type were summed and compared. Confidence and certainty 

accuracy indices were considered according to the PCF levels to which they pertained. 

In this poster we report and compare 3C assessment data at each level of the PCF. General 

confidence and certainty data at each level is compared to identify at which levels students 

exhibit high or low perceived sureness in their abilities. Accuracy indices among questions at 

each level of the PCF are analyzed to detect frequencies of over- and under- confidence and 

certainty among questions at each level of the PCF. Similarly, viewing the frequencies of more 

specific response types among questions at each level are considered. We also observe progress 

of student metacognition from the start to the end of the course. Identifying misalignment of 

student confidence, certainty, and correctness within the levels of PCF better enables 

mathematicians and mathematics educators to effectively adapt proof comprehension teaching 

strategies and employ early intervention efforts for students demonstrating consistently low 

confidence or certainty. This outcome may prove especially effective for underrepresented and 

minority populations who have not had the same thinking and learning privileges as other 

students.  
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Argumentative knowledge construction in asynchronous calculus discussion boards 
 

 Zackery Reed         Darryl Chamberlain                Karen Keene 
Embry-Riddle Aeronautical University Worldwide 

Keywords: Calculus, Knowledge Co-Construction, Asynchronous Instruction, Design Research 

A Focus on Mathematical Discourse in Asynchronous Discussion Boards 
 

Classroom discourse constitutes a fundamental activity in which learners can acquire 
knowledge. A multifaceted phenomenon, any enacted classroom discussion entails the 
enmeshment of social, cultural, curricular, and modality factors. Focusing specifically on 
discourse in the context of mathematical discussion activities in the asynchronous online 
modality, we propose use of Weinberger and Fischer’s (2006) Argumentative Knowledge 
Construction framework for design research.  We contend that this framework, suitably amended 
to meet the particular needs of mathematics courses, may enable in-depth analysis of major 
dimensions of students’ knowledge construction as they engage in activities in an asynchronous 
modality.  Research using this framework in the context of face-to-face mathematical learning 
(Author, Date) and in online settings in other disciplines (Schrire, 2006; Clark & Sampson, 2008; 
Dubovi & Tabak. 2020) has been reported.  

Dimensions to Argumentative Knowledge Construction 
Weinberger and Fischer proposed that computer-supported collaborative learning could be 

analyzed according to four dimensions: participation, epistemic, argument, and social modes of 
co-construction (Weinberger and Fischer, 2006).  

The participation dimension examines the quantity and heterogeneity of students’ 
contributions to the discussion board for each discussion activity. The epistemic dimension 
focuses on the content of students’ contributions, attending particularly to the degree to which 
students’ contributions adequately relate the particulars of a problem with the intended concepts 
that the problem engages. The argument dimension derives from Toulmin’s (1958) model of 
arguments to qualify the types of micro and macro argument moves put forth by students in 
pursuit of a solution. Finally, the dimensions of social modes of co-construction “describe to 
what extent learners refer to contributions of their learning partners” (Weinberger & Fischer, 
2006, p. 77). In an asynchronous modality, participants’ textual, imagistic, and video 
submissions can be retroactively analyzed to build group-by-group comprehensive accounts of 
the knowledge construction associated with a particularly designed prompt.  

Use of the AKC Framework for Design Research 
We intend to adapt Weinberger and Fischer’s (2006) AKC framework in order to conduct 

design research in asynchronous online mathematics courses. In the theoretical poster herein 
proposed, we will diagrammaticaly present the dimensions of the AKC framework as conceived 
by Weinberger and Fischer. We will also identify aspects of the framework that we believe to 
require adaptation to suit the needs of mathematics-specific courses, will present various pilot 
discussion prompts, and will invite critique and commentary regarding our proposed use of this 
framework for our purposes. 
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Students in an Introduction to Proofs Course Recognizing When They Are ‘Stuck’

Samuel D. Reed Jordan Kirby Sarah K. Bleiler-Baxter
Lander University Middle Tennessee Middle Tennessee

State University State University

Key words: Introduction-to-Proof, Proof, Proving

With students’ demonstrated difficulty in transitioning to proof-based mathematics
courses (Stylianides et al., 2017), many universities now offer Introduction to Proof (ITP)
courses to help students learn the mechanics of proof writing and underlying logical principles
(David & Zazkis, 2020). Many studies have shown the various difficulties which students face as
they learn to write proofs, but less research has been done to demonstrate what students learn as
they make this transition (Stylianides et al., 2017). In this study, we describe one way in which
students learn to write proofs in mathematics, namely by recognizing when they are stuck (i.e.,
they have made some progress on their proof and have explicit recognition that they are limited
in their ability to make further progress). In Reed’s (2021) dissertation study, it was found that
meaningful learning occurs when students recognize when they are stuck or limited in some way
when writing a proof. Indeed, Andrew Wiles describes, “accepting this state of being stuck,” as
an essential component to doing mathematics (plusmathsorg, 2016, 1:00).

The purpose of this study was to further refine and categorize what it means for a student
to be stuck when writing a proof. Thus, our guiding research question was: What are the ways
students express that they are stuck when collaboratively writing proofs in an ITP course? To
answer this question, we identified and examined six cases where students have recognized that
they are not making progress in their proof, oftentimes in these cases they explicitly mention that
they are stuck, but that is not the distinguishing criteria to be ‘stuck.’ To guide our analysis, each
researcher wrote their own qualitative description of each case in order to collaboratively
describe and categorize the ways students expressed they were stuck. In the synthesis of our
descriptions, we found 5 distinct ways throughout the six episodes that students get stuck when
writing proofs: (1) Students recognize the lack of operability of mathematical objects; (2)
Students are stuck in understanding a peer’s proof; (3) Students are stuck in understanding what
statements must be justified within a proof; (4) Students are stuck in how to ‘write up’ the proof
(i.e., translating conceptual insight into technical handle); (5) Students are stuck in the algebraic
manipulations of a proof.

In this poster session we hope to prompt the following related discussions: What other
ways may students get stuck when learning to write proofs? And how might we help students to
productively move forward from these instances?
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Towards An Operationalization of Mathematization 
 

 Elizabeth Roan Jennifer Czocher 
 Texas State University Texas State University 

Keywords: mathematical modeling, quantitative reasoning, covariational reasoning  

Mathematization, the process of transforming a real-world situation into a mathematical 
model, is historically difficult for students, called horizontal mathematising by Freudenthal 
(2002). Literature on mathematizing typically frames the research problem as identifying some 
sort of “blockage” or that an action associated with mathematizing was “difficult” to perform 
(Brahmia, 2014; Galbraith & Stillman, 2006; Jankvist & Niss, 2020; Stillman & Brown, 2014). 
While these studies further our understanding of students’ difficulties with the mathematizing 
step in modeling, there is more to be learned about how students’ mathematical reasoning 
influences mathematizing a dynamic situation. Previous studies have indicated that quantitative 
reasoning promotes mathematization (Ellis, 2007; Ellis, Ozgur, Kulow, Williams, & Amidon, 
2012; Mkhatshwa, 2020), and is a lens with which to understand students’ reasoning while 
mathematizing during a modeling task (Carlson, Larsen, & Lesh, 2003; Czocher & Hardison, 
2021; Larson, 2013). Given these arguments, it is appropriate to use a quantitative, covariational, 
and multivariational reasoning theories to describe students reasoning when mathematizing. The 
goal of this poster is to integrate and synthesize a definition of modeling (Lesh & Doerr, 2003), 
Thompson (2011)’s conception of quantities and quantitative reasoning, Carlson, Jacobs, Coe, 
Larsen, and Hsu (2002)’s conception of covariational reasoning, and Jones (2018)’s conception 
of multivariational reasoning to operationalize mathematization for future study of the mental 
processes students exhibit while performing a modeling task. 

According to Lesh and Doerr (2003), a mathematical model is a conceptual system consisting 
of elements, the relationships between elements, operations, and rules of governing interactions. 
Because a mathematical model is a conceptual system, it is held, at least partially, internally and 
is expressed into the world through different representations. These different representations are 
dictated by a student’s use of any external notation systems (Lesh & Doerr, 2003). The 
individual’s mental representation of the real-world situation dictates the objects with attributes 
that the individual has the intention of measuring, and the rules governing interactions between 
objects. Through quantification, the act of conceptualizing the object with an attribute with a 
measure so that the measure has a proportional relationship with its unit, the objects with 
attributes are conceptualized as quantities. The quantities then define the elements of the model. 
The relationships between quantities can then be described by an individual’s covariational 
reasoning, defined as "the cognitive activities involved in coordinating two varying quantities 
while attending to the ways in which they change in relation to each other" (Carlson et al. 2002 p 
354), and multivariational reasoning, is the extension of covariational reasoning to two or more 
varying quantities (Jones, 2018). The operations on the quantities are determined by the schema 
of action employed by the students, where schema of action is defined as organized pattern of 
thoughts or behaviors (actions) that can be applied to different cognitive objects in different 
situations (Nunes & Bryant, 2021).  
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Combing Eye-Tracking with Coordination Class Theory to Analyze Students’ Conceptions 
Related to Graphical Models in Chemistry 

 
 Jon-Marc G. Rodriguez Kevin H. Hunter  Nicole M. Becker 
 University of Iowa University of Iowa University of Iowa 
 
In this work we describe preliminary results from a study that analyzes students’ ideas related to 
graphical models in chemistry. Our project was designed using the theoretical assumptions 
outlined by knowledge-in-pieces and coordination class theory. Knowledge-in-pieces 
emphasizes the manifold ontology of cognitive structures and the context-specific nature of 
knowledge, with coordination class theory building on these ideas to define a concept in terms of 
the combination of features attended to and inferences. These theoretical commitments informed 
our methodological approach which involves using eye-tracking to draw conclusions about the 
features students attend to as they interpret graphical models. Using a first-year chemistry course 
as the context for our work, we conducted semi-structured eye-tracking interviews that prompted 
students to interpret graphs centered around particulate-level variation. The current work 
presents on pilot data that illustrates how eye-tracking compliments coordination class theory. 

Keywords: Coordination Class Theory; Graphical Models; Chemistry; Eye-Tracking 

Across science and mathematics contexts there is a large body of literature that emphasizes 
students’ reasoning related to graphs and graphical representations. The general consensus of this 
research is that students have difficulty integrating mathematical reasoning with discipline-
specific principles (Bollen et al., 2016; Glazer, 2011; Phage et al., 2017; Planinic et al., 2013; 
Potgieter et al., 2008). While some work has emphasized the challenges students have (Beichner, 
1994; McDermott et al., 1987), other work focuses on the productive ideas students bring to 
interpreting graphs and representations in a problem-solving task (Elby, 2000; Lee & Sherin, 
2006; Nemirovsky, 1996). Research that focuses on leveraging students’ ideas is rooted in 
theoretical commitments that emphasize a manifold view of cognitive structure in which ideas 
are emergent and activated in response to contextual cuing (diSessa, 1993; Hammer et al., 2005).  

Central to the design and analysis of the proposed work is the knowledge-in-pieces view of 
cognitive structure, which models knowledge as an ensemble of local knowledge clusters that are 
activated in an emergent process in response to contextual cues (diSessa, 1993). Within the 
knowledge-in-pieces perspective, coordination class theory models a concept as involving 
extractions (features attended to) and the inferential net (a knowledge structure that contains 
relevant ideas for drawing conclusions) (diSessa et al., 2016; diSessa & Sherin, 1998). In the 
context of typical qualitative research, there are limitations related to drawing conclusions about 
the features students are attending to in an interview context (i.e., identifying extractions). To 
this end, we describe preliminary results from a mixed-methods study involving student 
interviews that combines the quantitative metrics of gaze patterns from eye-tracking with 
qualitative analysis of students’ verbal discussions. Students were sampled from a first-year 
general chemistry course, with the prompts focusing on graphs and graphical representations. 
The prompts centered on the threshold concept in chemistry that variation exists at the level of 
atoms and molecules, the varied population schema (Talanquer, 2015). Presentation will 
emphasize the role of integrating theory with methods, illustrating the affordances of combining 
eye-tracking with interviews to draw claims about students’ coordination class for the varied 
population schema concept.  
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Proof Without Claim 

 

 Andre Rouhani Alison Mirin 

 Arizona State University University of Arizona 

Keywords: Reading of mathematical proof (ROMP); Proof frameworks; Transition-to-proof 

Our work addresses the question: How do students determine what is being proven by a 

given proof? If students are given a valid proof that does not explicitly state what is being 

proven, can they ascertain the proof’s claim? Investigating these questions sheds light on how 

students conceptualize proof and proving. We report findings on a student who recently 

completed a transition-to-proof course. They were presented with proofs without claim: valid 

proofs in which the claim being proven is replaced with blank spaces for them to fill in the claim 

(see Figure 1). 

 
Figure 1. An example proof without claim task.  

These tasks give access to how students read and interpret the proofs. This includes (1) the 

attention, such as verification, that they give to intermediary steps, (2) how they determine what 

text goes in the blank spaces, and (3) whether what they write in one blank space differs from 

what they write in the other. Our tasks are informed by the proof frameworks in Selden and 

Selden (2016). We have included typical logical structures of claims and have employed all the 

basic proof strategies, such as proofs of universal claims via arbitrary instantiations. We also 

include a proof by counterexample: an opportunity to examine whether students consider the 

proof as a proof of the negation of a claim or as disproof of the veracity of a claim. We examine 

how fluently a student can generalize about a claim being (dis)proven and with what logic they 

state the claim. This study integrates two bodies of literature: that on proof construction (e.g., 

Selden & Selden, 1995) and that on reading of mathematical proofs (Dawkins & Zazkis, 2021, 

Inglis & Alcock, 2012, Weber, 2015). We see our work through two lenses. The cognitive lens 

looks at the relationship between proof frameworks (Selden & Selden), the surrounding logic, 

and the claim. The second lens is epistemological: what is it that a proof is and what is it doing? 

Both are central questions to mathematics education with a rich history that our work fits into. 

Our data suggest that some students view proofs as containers for their constituent 

calculations. That is, they view these proofs without claim as instructions to perform 

calculations, and ascertaining the claim amounts to determining to which ‘problem’ these 

calculations correspond. 
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Examining Student Experience in an Inquiry Mathematics Classroom 

 

Megan Selbach-Allen 
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Keywords: Calculus, Inquiry-based Mathematics Education, Student Experience 

 

With mathematics playing such an important role as a gateway to other STEM fields, finding 

ways to improve mathematics instruction has long been a focus of education researchers. This 

work examines students experiences in an active, inquiry-mathematics classroom which 

implemented pedagogical techniques shown in prior research to be associated with better 

outcomes for students.  

 

Research Questions 

The research questions for this work are focused on student experiences with particular focus 

on students who had a negative experience in the course. The questions are: Were any 

characteristics of students’ prior experiences, identities or beliefs entering the course or early 

experiences in the course likely to associate with students having a negative experience in the 

course? To drive divergent experiences? 

 

Theoretical Framework 

Inquiry-based mathematics education (IBME) has been defined by four pillars outlining the 

main tenants of this instruction (Laursen & Rasmussen, 2019). For this work I focused on the 

two student centered pillars shown below in Figure (1) and include additional thinking on how 

students are entering and leaving the classroom.  

 
Figure 1. An image of the framework focusing on students identities and beliefs and the two student focused pillars. 

 

Methods and Data 

This work took place in the context of a summer bridge program at a university. The data for 

this work includes math history essays completed prior to the start of class, multiple in class 

reflections and a final reflection written at the conclusion of the class. This author was involved 

with the designing and instruction of the course. 

 

Findings and Discussion 

Unfortunately, the students’ writings reveal how common non-availing beliefs (Muis, 2004) 

were among students entering the course. In addition to a fixed mindset, a few students described 

feeling anxiety around mathematics in their math histories. Students who entered the course with 

math anxiety were more likely to have a negative experience. Early experiences with group work 

seemed to be a driver of divergent experiences. These findings have important implications for 

inquiry-mathematics instructors.  
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How Undergraduate Mathematics Instructors Assess their Impact at Hispanic-Serving
Institutions

Mollee Shultz Eleanor Close Jayson Nissen
Texas State University Texas State University Nissen Education Research and Design

Ben Van Dusen Sarah Hug Robert Talbot
Iowa State University University of Colorado-Boulder University of Colorado-Denver

Keywords: Concept inventories, LASSO, decision-making, beliefs

Undergraduate mathematics instructors largely rely on lecture rather than student-centered
teaching methods (Larsen et al., 2015; Woods & Weber, 2020). Studies have shown that
instructors’ behavior is linked to the perception of the necessity of change (Woodbury &
Gess-Newsome, 2002) and how instructors make instructional decisions depends on their
perceived impact on individual students’ learning (Herbst & Chazan, 2012; Schoenfeld, 2011).
Thus, we aim to investigate what instructors are using to assess their impact on students.

Many instructors and researchers use research-based assessments (RBAs) to assess
instructional impacts. RBAs have been identified as resources for teaching (Furrow & Hsu,
2019) that allow instructors to reflect on their teaching over time and in comparison to other
instructors and institutions (Madsen et al., 2017). For example, the Force Concept Inventory has
shifted physics teaching from lecture to more student-centered methods (Mazur, 1997).

Our research questions are (1) How are undergraduate mathematics instructors at
Hispanic-serving institutions (HSIs) assessing their impact on students, and (2) How can we
support the use of research-based assessments for faculty to self-assess their instruction?

Methods
The data for this study come from semi-structured interviews with 10 mathematics

instructors from HSIs, from a larger study funded by NSF DUE 1928596. The question that
elicited responses relevant to this study was: “How do you assess the impact of your course on
students?” Interviews were transcribed with an automatic service and coded by the first author.

Results and Discussion
We found that undergraduate mathematics instructors at HSIs assess student success by the

following criteria: student performance on exams, homework, and their subsequent final grade;
listening to student thinking during classroom interactions; comments from current or previous
students; and department-administered student evaluations. The assessments that instructors used
appear to be highly influenced by their  contexts, and dependent on locally created sources. We
posit that the use of external, less locally dependent, assessment sources could provide an
inspiration for change.

We use Learning About STEM Student Outcomes (LASSO) as an example of one tool that
can lower barriers for instructors using RBAs. LASSO currently hosts 65 RBAs, with 6 focused
on undergraduate mathematics content and 5 cross-disciplinary assessments. Instructors can use
LASSO’s data analysis tools to explore their student outcomes, compare student outcomes across
institutions, and gain another perspective on their courses’ impacts on students.
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Shifts in Student Pre-Assessment Confidence and Post-Response Certainty when Evaluated at 3 

vs. 4 Levels in an Undergraduate Linear Algebra Course  

 

 Ethan Snow Michael Preheim Josef Dorfmeister 

 University of Nebraska North Dakota State University North Dakota State University 

Students’ confidence in their abilities and certainty in exam responses are two elements of 

metacognition that influence teaching and learning efficacy. Some epistemologists have studied 

how confidence and certainty can impact student learning in mathematics education, but none 

have empirically compared these metacognitive states with respect to specific mathematics 

content (i.e., learning objectives) and problem solving methods (e.g., multiple choice (MCQ) vs. 

process based (PBQ) questions). In the present study, we collect students’ pre-assessment 

confidence and post-response certainty during routine exams in an undergraduate linear algebra 

course to investigate shifts in these perceptions at critical time points and from evaluation at 3 

vs. 4 levels. Results of this study suggest an effective method for identifying students with “red 

flag” metacognitive behaviors and provide meaningful information about student perceptions of 

specific content in linear algebra that can be used to guide corrective interventions. 

Keywords: confidence, certainty, metacognition, epistemology, multidimensional assessment 

Motivation and Study Objectives 

Most mathematics educators are familiar with “red flag” student behaviors – students who 

are confident before an exam but then perform poorly, students who are not confident in their 

abilities yet perform outstandingly, and others between (Cheema & Skultety, 2016; Özsoy, 2011; 

Parsons, Croft, & Harrison, 2009). The purpose of this study is to examine student confidence 

and certainty in undergraduate linear algebra relative to specific content and assessment variables 

to better understand these behaviors. Our objectives are to identify significant metacognitive 

shifts between student confidence and certainty for individual learning objectives, determine how 

MCQ vs. PBQ responses influence post-response certainty, and conclude whether a 3- or 4- level 

evaluation of confidence and certainty produces more reliable data.  

Methods and Preliminary Results  

Students’ pre-assessment confidence and post-response certainty levels were collected 

throughout six exams in an undergraduate linear algebra course. The first semester evaluated 

these variables at 3 levels (low, moderate, and high), and the second semester evaluated at 4 

levels (low, moderately low, moderately high, and high) to examine the distribution of shifts in 

moderate and extreme levels of confidence and certainty. Preliminary analyses show significant 

metacognitive shifts in certain learning objectives, MCQ vs. PBQ assessment methods, and 

among top vs. bottom performers. The poster will include overall and exemplary analyses of 

these outcomes while demonstrating how using a 4-level evaluation yields more reliable data.   

Discussion and Conclusions 

The impact of metacognition on student learning has been extensively studied, especially in 

the field of mathematics education (Desoete & Craene, 2019; Özcan, 2014; Schoenfeld, 1992; 

Snow, 2019). Our study utilizes the foundational principles described in the literature to 

investigate the comparison of pre-assessment confidence and post-response certainty among 

undergraduate linear algebra students to guide corrective interventions in mathematics education. 
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Professional Development and Systemic Change 
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Professional development (PD) designed for mathematics instructors, and research studying 
the effectiveness of these programs, continues to grow (Scher & O’Reilly, 2009; Foster et al., 
2013; Borrego & Henderson, 2014; Deshler et al., 2015). Our research explores how PD for 
mathematics instructors can influence departmental change regarding student-centered teaching 
and learning. The setting is the PROMESAS SSC1 PD, a regional STEM initiative aimed to 
inspire systemic change in teaching collegiate mathematics through building classroom 
community, emphasizing student-centered teaching, and promoting rich mathematical tasks. In 
this research, we examined (1) How the teaching culture of the participating institutions 
transformed, if at all, as a result of faculty participation in PROMESAS SSC and (2) How the 
culture of the departments transformed, if at all, as a result of faculty participation in 
PROMESAS SSC? To frame this work, we adopted the Four Categories of Change Strategies 
model (Henderson et al., 2011) along with eight change strategies relevant to STEM fields as 
described by Borrego and Henderson (2014). They argue that change occurs by (1) disseminating 
information about curriculum and pedagogical practices, (2) developing reflective teachers, (3) 
enacting policy, and (4) developing a shared vision. This model greatly informed data collection 
and analysis of the results. Data collection consisted of five 90-minute focus groups including 
administrators from participating institutions, PD facilitators, and PD participants. We 
constructed and organized the focus group questions around Henderson et al.’s four change 
categories. We began the analysis with open-coding, where code-words emerged from both the 
interview questions and participants’ responses. After this, we categorized the open codes into 
umbrella codes and then categorized the umbrella codes into themes within each change strategy. 
Within each of the four categories, we found results similar to those documented in the recent 
publication, Transformational Change Efforts (Smith et al., 2021). Here we document a few 
highlights. First, as part of implementing new pedagogical practices the participants learned as 
part of the PD, we found some spillover onto other instructors. We learned that non-participant 
instructors and administrators were intrigued when they walked by a classroom and observed 
students talking to one another. This curiosity prompted administrators to ask the participants to 
share what they learned at the PD at a faculty meeting. The participants also conveyed that they 
felt as though they were more reflective teachers and began to perceive teaching as a scholarly 
endeavor. They mentioned how they think about how to modify a lesson immediately after 
teaching and this was a novel practice for them. In terms of enacting policy, the administrators 
indicated that the PD “changed their hiring practices” because they wanted instructors who could 
teach using methods that emulated the PD themes. Within the developing a shared vision 
category, all research participants described the value of a community and how they appreciated 
learning from and sharing resources with colleagues from the various institutions. They also 
conveyed that this made transforming their practices more feasible because they had internal and 
external support. It appears that the PD acted as a catalyst that brought departments and 
institutions together to introduce student- and teacher-centered learning. 

 
1 For more information, visit https://www.csuci.edu/promesas/pathways-outreach-math-excellence-stem.htm#SSC  
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Active Learning in a Dynamic Textbook Needs Student Feedback. 

 George Tintera Ping Tintera 

 Texas A&M University-Corpus Christi Texas A&M University-Corpus Christi 

Abstract: This poster presents a process for development of a dynamic textbook allowing its 

authors to provide students with the authority of a textbook along with integration of learning as 

directed by the author/instructor in a manner receptive to the students.  The presenters have 

followed these principles to develop a business mathematics and business calculus texts using 

the PreTeXt formatting system.  The content is aligned with statewide content standards and 

reviewed by professional mathematicians but is revised with student feedback making the 

dynamic aspects vary over term to remain viable. 

Keywords:  dynamic textbook, didactic contract, instructor as author 

 

Economic pressures have led to the development of open educational resources which are 

generally available as dynamic textbooks.  The presentation, in the format of a textbook except 

as a webpage or pdf file-- making it mostly static, is made dynamic through the use mathematics 

analysis software, or MAS (Pierce et. Al, 2010) embedded in the resource.  As noted in (Mali et 

al., 2018) the instructor and the students must be essentially engaged with the dynamic aspects of 

the materials to capture the full value intended by the author.  Incorporating the instructor as an 

author ensures complete instruction using the materials.  Students recognizing the talent of the 

instructor strengthens the didactic contract.  

To balance the didactic contract expanded by valuing the instructor as author, students are 

afforded the responsibility of providing feedback on the content as presented in the dynamic 

textbook.  This student commentary on the dynamic materials will contribute to the craft 

knowledge of the instructor (Chorney, 2021). 

In the poster itself we describe the formatting and content of the materials, the dynamic aspects 

of the content and the process for including student feedback into revisions of the materials. 

Acknowledgements.  The presenters appreciate the support of the Texas Higher Education 

Coordinating Board.  
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“Here I Am”: Using Poetic Transcription to Explore Students’ Narratives of Mathematical 

Success 

 

Rachel Tremaine 

Colorado State University 

Keywords: Research Methodology, Poetic Transcription, Student Success, Qualitative Methods 

As arts-based analysis gains popularity and credibility in research spheres, it is prudent to 

investigate its efficacy in the context of mathematics education research. Poetic analysis, one 

such arts-based research methodology, can take several forms that draw from literary poetic 

traditions (Lahman et al., 2010). In the context of mathematics specifically, researchers have 

used poetic analysis to analyze the ways in which mathematical discourse and reasoning mirrors 

poetic structure (Holden, 1985; Staats, 2008; Staats, 2021), or have incorporated poetry into the 

teaching of mathematics through the creation of poetry-based mathematical tasks (LaBonty & 

Danielson, 2004; Triandafillidis, 2006). However, mathematics education literature has seldom 

utilized poetic transcription, a specific type of poetic analysis utilized in social science inquiry, 

as a form of research methodology.  

Poetic transcription offers mathematics education an imaginative and simultaneously 

grounded “method of knowing” (Richardson, 2003, p. 379). It draws from the literary tradition of 

a found poem, in which excerpts from existing written media are juxtaposed to create poetry with 

distilled meaning. In poetic transcription, participants' words from interview or focus group 

transcripts are pulled in such a way as to honor and reflect the participant’s meaning and 

narrative style (Glesne, 2007). Prendergrast (2009) emphasizes that these poetic transcriptions 

are built from the participants' words but filtered and “re-presented” through the lens of the 

researcher by referring to these poems as “participant-voiced poems.” Via use of member-

checking practices and researcher-participant co-construction of such poetry, poetic transcription 

can provide direction for research that is “genuinely inclusive and democratic” (Levinson, 2020, 

p. 195). Further, via the artistic embodiment of experiential knowledge, poetic transcription can 

present nuances of qualitative data in a way that the quoting and analysis of traditional prose may 

not, particularly when viewed through a lens of feminist theory (Faulkner, 2018) and critical 

qualitative research (Keith & Endsley, 2020).  

This poster will present a use case for poetic transcription by analyzing four students’ 

narratives of their experiences of and definitions for mathematical success. Data for this study 

involved interviews from four first-year undergraduate women students, all of whom were Pell-

grant eligible, First-Generation, or students of color, or held some subset of these three identities. 

During a semi-structured interview, each student was asked the questions “Describe a time in 

which you felt successful in mathematics” and “How would you define success in undergraduate 

mathematics?” This poster describes the process of poetic transcription using Feminist theory 

(Burton, 1995) to present counterstories of what can be conceptualized as mathematical 

success.This poetic transcription process included parsing of the data into meaningful phrases, 

extraction and distillation of such phrases, and rearranging the phrases in poetic juxtaposition. 

The final step of the process incorporated member-checking through participants’ affirming and 

editing of the poems to construct finished free-verse poetry as re-presentations of the data. In the 

poster, I share these poems, discuss the opportunities and limitations afforded by such re-

presentation, and set the stage for future work surrounding poetic analysis as a viable 

methodology in the field of mathematics education. 
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“But Again, We’re Human”: Engaging Undergraduate Students with the Social Context of K-12 

Mathematics 

 Rachel Tremaine Elizabeth Arnold 

 Colorado State University Colorado State University 

Keywords: Curricula development; Human context of mathematics; Undergraduate mathematics 

Mathematics is a human activity, existing in a socio-cultural space, and today, instructors are 

increasingly aiming to implement humanizing approaches to learning mathematics in their 

courses. One approach is to provide context for mathematics curricula by developing and 

incorporating mathematical tasks which prompt students to connect mathematics to familiar 

social and cultural contexts (Chapman, 2006; Díez-Palomar et al., 2006; Leonard & Guha, 2002; 

Niss, 1994). Currently, much of standard undergraduate mathematics incorporates contexts based 

in physics, engineering, or other science-related applications (e.g., calculating the maximum 

height of a ball thrown in the air with some velocity). While these types of applications resonate 

to those students for whom the context is a primary course of study or personal interest, they 

often do not provide opportunities for students to engage with the human context of 

mathematics. Curriculum development can include applications of mathematics that hold the 

human context on par with the mathematics content. Further, these applications can focus on 

contexts that resonate with most undergraduate students - the shared social context of secondary 

mathematics education (see Álvarez et al., 2020).  

In the META Math project, we explored connections between undergraduate mathematics 

and secondary mathematics and developed curricula materials for use in standard undergraduate 

mathematics courses that embed applications to teaching (i.e., mathematical tasks whose context 

is related to teaching) in an explicitly human context (see Álvarez et al., 2019; Álvarez et al., 

2020; Arnold & Fulton, 2021). Many of these mathematical tasks asked undergraduate students 

to examine, complement, and critique the work and mathematical understanding of a 

hypothetical school student. Additionally, the tasks prompted undergraduate students to pose 

guiding questions to help guide the hypothetical students’ mathematical understanding.  

In this poster, we examine undergraduate students’ written responses to such tasks, as well as 

their interview responses about such tasks, to investigate the following research question: What 

is the nature of undergraduate students’ perceptions of mathematics tasks designed to include 

the social K-12 human context of mathematics? Through the lens of three principles—Habit of 

Respect, Active Engagement, and Recognition of Mathematics as a Human Activity (see Álvarez 

et al., 2020)—we report on how undergraduate students qualitatively embodied these principles 

through their written responses and verbal perceptions of the hypothetical students in the tasks.  

The undergraduate students’ responses revealed different emphasis for each of the four 

different content courses the tasks were implemented in. For example, responses from 

undergraduate students in discrete mathematics indicated respect for the hypothetical students’ 

mathematical work and capacity for knowledge building, while undergraduate students in 

abstract algebra positioned the hypothetical students’ work as a way to identify common 

misunderstandings to avoid in their own mathematical work. Further work is presently being 

done to analyze how undergraduate students attributed humanness to such hypothetical students 

in these tasks; this is being done through a lens of mind perception, with specific attention paid 

to the agency given to the hypothetical students (Gray et al., 2007). Our hope is that such work 

can provide further grounding on the importance of work done engaging students with 

meaningful contexts through mathematical tasks (Bright, 2016; Yeh, 2017). 
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Adapting to Challenges in Undergraduate Pre-Calculus: The Cases of Bailey, Rose, and Toby 

 

  Kyle R. Turner James A. Mendoza Álvarez 

 University of Texas at Arlington University of Texas at Arlington 

Keywords: Self-Regulation, Preparation to Calculus, Undergraduate Mathematics 

Transitioning to undergraduate mathematics from secondary mathematics may trigger 

obstacles that make this transition more difficult for students (Gueudet, 2008; Sonnert et al., 

2020). For example, Gueudet (2008) and Sonnert et al. (2020) report students’ feeling 

unexpectedly ill-prepared for the material presented in a college classroom. To navigate these 

obstacles and synthesize and process new information, students need to develop self-regulation 

strategies. That is, the appropriate skills and actions to address these challenges (Zimmerman & 

Pons, 1986). This poster analyzes interviews conducted with three first-time freshmen in 

precalculus aimed at addressing the following research question: In what ways do students adapt 

their self-regulation strategies from high school mathematics to college mathematics? 

To investigate students’ adaptation of their self-regulation strategies, a sequence of five 

interviews were conducted with three students, Bailey, Rose, and Toby. These students were 

among a total population of twenty-five precalculus students who completed a survey within the 

first week of the semester at a large, urban research university in the Southwestern United States 

during Fall 2021. Students were invited to interview based on their responses to the survey. 

Bailey, Rose, and Toby participated in two individual interviews, one within the first few weeks 

of the semester which focused on expectations of the course and background information about 

their prior school experience, the second, occurring shortly before the end of the semester, 

reflected on the course and how the students may have adapted to any challenges that arose. The 

remaining three group interviews were task-based, occurring throughout the semester. Group 

interviews focused on the use of self-regulation strategies during weekly in-class group 

departmentalized lab activities. Audiovisual recordings of the interviews were made and 

transcribed verbatim.  

Preliminary data analysis of the interviews reveals the following self-regulation strategies 

used by the three students: seeking information from external sources, keeping records of 

progress, seeking assistance from peers and instructors, self-evaluating own understanding, 

providing extrinsic rewards, reminding oneself of the value of the task (or course), and changing 

their environment. While each of the three students reported using most of these strategies, each 

mentioning that they would often ask a peer or the instructor for help when stuck on a problem, 

observations from the task-based interviews revealed that these students responded by seeking 

external sources of information primarily from online sources, rather than asking a peer for help, 

even when the peer was nearby in-person. Adaptations identified in the interviews included 

adopting new study habits to account for increased difficulty of the college course, working 

practice tests, reviewing notes after lectures.  Rose, in particular, reported the most substantive 

change of study habits, with ongoing adjustments throughout the semester. The fundamental 

knowledge she believed she needed from the precalculus course motivated her to adopt new 

strategies and refine old ones.   

Findings regarding how Bailey, Rose, and Toby develop and acquire self-regulation 

strategies as they navigate their first undergraduate mathematics course provides further insight 

into Johns’ (2020) findings of a correlation of high strategy usage in an undergraduate 

mathematics class with higher performance. 
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An Exploration of Caring Relations Through the Energy Exchange Cycle 
 

Cheryl M. Vallejo 
Virginia Tech 

Keywords: Caring Relations, Energy, Mathematical Caring Relations 

Caring relationships are a critical element of a supportive mathematics learning environment, 
including undergraduate classrooms. However, undergraduate education is often left out of care 
ethics research. A novel aspect of this poster brings the work of Noddings (2012a) and 
Hackenberg (2005, 2010a, 2010b) from a K-12 focus to encompass undergraduate mathematics 
education.  

Hackenberg (2005) presents a mathematical framework based on Noddings’s (2012a) caring 
relations and scheme theory to create student learning models she titled Mathematical Caring 
Relations (MCR). The Energy Exchange Cycle (Figure 1) is an extension of Hackenberg’s caring 
cycle, a visual adaptation I created to match Hackenberg’s (2005) description of MCRs between 
a teacher and a student during interviews that comprised of a student working through a 
mathematics problem. Within the description of her caring cycle, Hackenberg describes social 
interactions as encompassing stimulation and depletion. Stimulation is defined as a “feeling of 
being excited or awake, usually accompanied by a boost in energy or a stronger sense of 
aliveness” (p. 45). Depletion is defined as a “feeling of being taxed in some way, usually 
accompanied by a decrease in energy or diminishment of overall well-being” (p. 45). Later, 
Hackenberg (2010a, 2010b) added the notion of subjective vitality to the dualism of stimulation 
and depletion. Subjective vitality is a “physical experience of energy and aliveness, characterized 
by enthusiasm and vigor” (Hackenberg, 2010a, p. 241). Each of these definitions describe an 
increase or decrease in energy during a social interaction. The Energy Exchange Cycle shows a 
full cycle of caring relations between teacher and student in a mathematical interaction.  

This poster begins a discussion of how a caring relations model can be used as a supportive 
element in undergraduate mathematics. 

 
Figure 1. Energy Exchange Cycle  
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Alternative Measures of Effectiveness in an Innovative Active Learning Calculus Course 
 

 Charity Watson Pablo Duran Oliva  
 Florida International University Florida International University 
 
 Adam Castillo Edgar Fuller  
 Florida International University Florida International University 
  

Results of an implementation of the Modeling Practices in Calculus (MPC) curriculum, an 
innovative active learning approach, in Calculus I at a large, urban, research-intensive (R1) 
institution are presented. Using a randomized-control trial research design, students were 
randomly assigned to either traditional, lecture-based classrooms, or MPC classrooms. Two 
alternative measures of effectiveness of the curriculum were examined: students’ attitudes 
towards mathematics and precalculus proficiency. Our findings show that active learning 
classrooms lead to significant effect sizes in attitudes towards math and precalculus proficiency 
gains when compared to traditional lecture-based classrooms. Furthermore, active learning was 
found to diminish gender gaps in both measures, acting as a gender equalizer.  

Keywords: Active Learning, Attitudes Towards Mathematics, Calculus, Precalculus Proficiency   

Recommendations to incorporate student-centered instructional approaches have recently 
been made by a number of scientific associations (Bressoud et al., 2013; Rasmussen et al., 2019). 
However, efforts to assess the effectiveness of these approaches have primarily focused on 
students’ achievement (Freeman et al., 2014), somehow neglecting important measures of 
effectiveness including students’ affect and their development of certain foundational skills. 
These alternative measures are extremely important since they have been linked to persistence in 
STEM careers (Bressoud et al. 2013) and issues of equity (Ellis et al., 2016). We will present 
preliminary results from a three-semester RCT study on the adoption of the Modeling Practices 
in Calculus (MPC) curriculum, an innovative active learning approach, in an introductory 
calculus course. The main measures of student outcomes considered in this study were student 
attitudes towards mathematics and precalculus proficiency. Students’ attitudes towards math was 
measured using the Attitudes Towards Mathematics Inventory (Tapia & Marsh, 2004), and 
precalculus proficiency, using the Precalculus Concept Assessment (PCA) inventory (Carlson et 
al., 2010).  

Data from both inventories were compared across the two groups, finding significant effect 
sizes in both attitudes towards math and precalculus proficiency development. In terms of 
attitudes towards math, the MPC curriculum was found to mitigate the detrimental effect of 
lecture-based calculus on students’ self-confidence (Sonnert & Sadler, 2015). Furthermore, 
students with low values of self-confidence were found to benefit the most from the model. In 
terms of foundational quantitative skills, MPC students were more likely to succeed in their 
calculus course even if they started with lower precalculus proficiency, and they also develop 
these skills significantly more than those from traditional lecture-based classrooms. The MPC 
curriculum also led to eradicating gender gaps in self-confidence that were found at the 
beginning of the semester. Our results provide further evidence of the positive effect that well-
designed active learning classrooms can have on university calculus students.  
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Mathematical Knowledge for Teaching Community College Algebra: The Life Cycle of an Item 
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Research has shown a positive relationship between quality of instruction, instructors’ 
mathematical knowledge, and student achievement in mathematics (Hill et al., 2005; Hill et al., 
2012). The Algebra Instruction at Community Colleges project (AI@CC; Watkins et al., 2016-
2020) sought to establish a similar connection in the community college algebra classrooms but 
faced the challenge of lacking an instrument to measure the mathematical knowledge for 
teaching for community college faculty. The Algebra Instruction at Community Colleges: 
Validating Measures of Quality Instruction (AI@CC 2.0:VMQI) project (Mesa et al., 2020-
2023) sets out to develop and validate such an instrument, Mathematical Knowledge for 
Teaching Community College Algebra (MKT-CCA). The MKT-CCA instrument seeks to 
measure the mathematical knowledge for teaching college algebra at community colleges using 
multiple-choice or testlet items focused on linear, exponential, and rational equations and 
functions as taught in the college algebra setting. 

As we drafted items, the AI@CC 2.0:VMQI project team needed to create processes for 
reviewing and revising items. These processes include using feedback provided by our advisory 
board, creating a system for internal review and revision of items by pairs of team members, 
drawing upon findings from cognitive interviews, and shifting to internal review and revision 
through a tiered team system. Throughout these various processes of collecting and applying 
feedback, we revised items to maintain the original goal of the item and the mathematical 
content, and when items could not be revised, we took components that allowed us to develop 
new items. 

In this poster we will present the life cycle of an MKT-CCA item. We will explain how our 
process influences how items evolve and change based on the nature of the feedback and our 
interpretation of the suggestions, how that influenced an item’s longevity and content, and the 
challenges we faced in the process. 
 
 
 
 
 
 

 
1The AI@CC 2.0 VMQI Research Group includes: Megan Breit-Goodwin, Anoka-Ramsey CC; 
April Ström, Chandler-Gilbert CC; Patrick Kimani and Laura Watkins, Glendale CC; Nicole 
Lang, North Hennepin CC; Mary Beisiegel, Oregon State University; Judy Sutor, Scottsdale CC; 
Claire Boeck, Inah Ko and Vilma Mesa, University of Michigan; Bismark Akoto, Irene 
Duranczyk, Siyad Gedi and Dexter Lim, University of Minnesota. Colleges and authors are listed 
alphabetically. 
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Characterizing Community College Instruction in Response to State-Mandated Policy and 

a Global Pandemic 
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Introduction 

This poster describes the instructional styles of four mathematics instructors at a community 

college, who were responding to a state-legislated mandate to overhaul developmental 

mathematics to increase learners’ success rate taking remedial math courses (The Campaign for 

College Opportunity, 2018), and a global pandemic. These external agitations have the potential 

to catalyze shifts in instruction to be more inquiry-focused and equitable (e.g., through the use of 

technology), but they also pose considerable challenges. Here, we detail how these four 

instructors navigated this situation by describing instructional practices in their classrooms. 

Methods 

We coded four classroom observations of each instructor using an equity-based observation 

protocol (Reinholz & Shah, 2018). Upon coding the classroom observations, we ran several 

different crosstabs using R Statistics to characterize the quality and distributions of participation. 

Our statistical analysis was triangulated with instructor interviews to better understand patterns 

in the data (Miles, Huberman, & Saldaña, 2014). 

Findings 

Findings suggest that instructors’ practice was typical (Hiebert & Stigler, 1997). We noticed that 

students mostly provided “what” answers during instruction across instructors. “What” 

statements are more procedural in nature, focusing on providing “the answer.” Yet, students did 

not provide answers proportionally across venue types (e.g., 95% of contributions for Arenas 

were in chat, whereas 61% were in whole-class discussions, for Martinez).  

 

Table 1. Student Talk Type Across Venue. 

 

 Venue Student Talk Type 

Instructor Chat WC Breakouts Why How What Other 

Arenas 403 19 0 0 20 320 82 

Martinez 53 342 163 14 48 278 218 

Peterson 98 2 81 7 16 70 88 

Lee 39 21 22 2 4 44 32 

 

Discussion 

Our findings showed both commonalities in the procedural nature of instruction, and also 

differences, insofar that instructors leveraged technology to provide different venues of 

instruction for different students. In the full poster we also describe patterns disaggregated by 

race and gender for student participation. On the whole, we found that the external agitations did 

little to change the status quo of teaching. We will comment on implications for practice.   
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Effective use of formal and informal resources in mathematical activity is of central concern 
in advanced math courses such as Real Analysis. Lecturing in advanced mathematics has been 
criticized for focusing exclusively on “polished formalism” (Davis & Hersh, 1981; Dreyfus, 
1991). However, observational research of teaching demonstrated that instructors routinely go 
beyond the formal text and do engage with informal aspects of the discipline too (Weber, 2004). 
Yet, formal and informal resources are not situated in lectures in the same way. Formal aspects 
of activity get written down on the blackboard, while informal aspects come through in oral 
commentary, gestures, and other ephemeral dimensions of discourse (Greiffenhagen, 2008; Lew, 
Fukawa-Connelly, Mejía-Ramos, & Weber, 2016). This pattern is both systematic and 
consequential. Students tend to copy down only what instructors write on the board and “don’t 
get” most of what instructors try to convey through non-written discourse (Lew et al., 2016).  

The present case study aims to extend this line of work by exploring the roles formal and 
informal resources play in a context not yet extensively studied, that of an instructor interacting 
with student groups. The primary data source for the analysis reported here is a video-recording 
of a classroom episode from a Uniform Convergence curricular unit of a Real Analysis course in 
which a mathematician-instructor interacts with five student-groups working on a proof 
construction exercise. This episode was selected from a larger corpus of ethnographic data 
because it featured use of both formal and informal resources and thus allowed me to interrogate: 
What mediates students’ access to using formal and informal resources in advanced math?  

In line with the methodological tradition of video-based classroom ethnography (Derry et al., 
2010; Erickson, 1992), I created detailed content logs of classroom videos and segmented them 
into a nested structure of episodes and sub-episodes. Drawing on sociocultural theory, I took 
social practice – mediated, goal-directed, joint action – as the basic unit of analysis in this study 
(Cole, 1998; Wertsch, 2012). Thus, for each sub-episode, I noted shifts in resources (formal or 
informal), disciplinary functions (e.g. proposition-reading, proof-writing) and participation 
structures. I created multimodal transcripts that helped determine the discursive resources (e.g. 
types of words, gestures) participants used. Finally, I abstracted patterns of what type of resource 
gets used for what function and by whom, checking them against all transcripts of the episode. 

I found that while both formal and informal resources served important functions in activity, 
the two form-types were deployed toward different ends. Formal resources were consistently 
used to support proof-writing functions, whereas informal resources were consistently used to 
support other goals such as: proposition-interpretation, proof-validation, and phenomenon-
observation. I further found that the enactment of these disciplinary functions involved different 
division-of-labor arrangements between the instructor and students: students were invited to 
actively contribute to proof-writing, but only observe the instructor enact other functions. These 
findings suggest that positioning proof-writing as the main disciplinary task students are 
accountable to in Real Analysis courses, as opposed to practices such as text interpretation, 
validation or phenomenon observation, can explain why advanced math courses are so often 
experienced as focusing solely on “polished formalism,” despite instructors’ best intentions. 
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